1
|
Li J, Jia K, Wang W, Pang Y, Wang H, Hao J, Zhao D, Li F. FBXW7 mediates high glucose-induced epithelial to mesenchymal transition via KLF5 in renal tubular cells of diabetic kidney disease. Tissue Cell 2025; 94:102801. [PMID: 40010183 DOI: 10.1016/j.tice.2025.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
F-box and WD repeat domain-containing 7 (FBXW7) protein is known as one of the crucial components of the E3 ubiquitin ligase called the Skp1-Cullin1-F-box (SCF) complex, which regulates the degradation of a network of proteins via the ubiquitin-proteasome system. In our study, we investigated the latent impact of FBXW7 on renal tubular cells injury and its molecular mechanism in diabetic kidney disease (DKD). FBXW7 was upregulated in kidneys of diabetic mice and human renal proximal tubular cells exposed to high glucose. Again, the function of experiment found that overexpression of FBXW7 led to epithelial-mesenchymal transition (EMT) of HK2 cells, as indicated by decreased E-cadherin and increased α-smooth muscle actin (α-SMA). Knockdown of FBXW7 ameliorated high glucose-induced EMT of HK2 cells via downregulation of TGF-β1. Then, FBXW7 overexpression downregulated the stability of the KLF5 protein and promoted protein ubiquitination in normal glucose-cultured HK2 cells, which was significantly reversed by the addition of MG132, a specific proteasome inhibitor. Furthermore, overexpression of KLF5 effectively prevented FBXW7 upregulation-induced EMT in HK2 cells. Finally, chemical inhibitors or mTOR kinase dead vector to interfere the activity of mTOR effectively suppressed FBXW7 expression in HK2 cells treated with high glucose. Taken together, these above data suggest that mTOR signaling pathway-regulated FBXW7 mediates high glucose-induced EMT of renal tubular cells by affecting the stability of KLF5.
Collapse
Affiliation(s)
- Juan Li
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Keqi Jia
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Wenjie Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Yingxue Pang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Dong Zhao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Hwang J, Lauinger L, Kaiser P. Distinct Stress Regulators in the CRL Family: Emerging Roles of F-Box Proteins: Cullin-RING Ligases and Stress-Sensing. Bioessays 2025; 47:e202400249. [PMID: 40091294 DOI: 10.1002/bies.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Cullin-RING ligases (CRLs) are central regulators of environmental and cellular stress responses, orchestrating diverse processes through the ubiquitination of substrate proteins. As modular complexes, CRLs employ substrate-specific adaptors to target proteins for degradation and other ubiquitin-mediated processes, enabling dynamic adaptation to environmental cues. Recent advances have highlighted the largest CRL subfamily SCF (Skp1-cullin-F-box) in environmental sensing, a role historically underappreciated for SCF ubiquitin ligases. Notably, emerging evidence suggests that the F-box domain, a 50-amino acid motif traditionally recognized for mediating protein-protein interactions, can act as a direct environmental sensor due to its ability to bind heavy metals. Despite these advances, the roles of many CRL components in environmental sensing remain poorly understood. This review provides an overview of CRLs in stress response regulation and emphasizes the emerging functions of F-box proteins in environmental adaptation.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
3
|
Almeida MV, Li Z, Rebelo-Guiomar P, Dallaire A, Fiedler L, Price JL, Sluka J, Liu X, Butter F, Rödelsperger C, Miska EA. Transposable Elements Drive Regulatory and Functional Innovation of F-box Genes. Mol Biol Evol 2025; 42:msaf097. [PMID: 40279373 PMCID: PMC12062965 DOI: 10.1093/molbev/msaf097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/27/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025] Open
Abstract
Protein domains of transposable elements (TEs) and viruses increase the protein diversity of host genomes by recombining with other protein domains. By screening 10 million eukaryotic proteins, we identified several domains that define multicopy gene families and frequently co-occur with TE/viral domains. Among these, a Tc1/Mariner transposase helix-turn-helix (HTH) domain was captured by F-box genes in the Caenorhabditis genus, creating a new class of F-box genes. For specific members of this class, like fbxa-215, we found that the HTH domain is required for diverse processes including germ granule localization, fertility, and thermotolerance. Furthermore, we provide evidence that Heat Shock Factor 1 (HSF-1) mediates the transcriptional integration of fbxa-215 into the heat shock response by binding to Helitron TEs directly upstream of the fbxa-215 locus. The interactome of HTH-bearing F-box factors suggests roles in post-translational regulation and proteostasis, consistent with established functions of F-box proteins. Based on AlphaFold2 multimer proteome-wide screens, we propose that the HTH domain may diversify the repertoire of protein substrates that F-box factors regulate post-translationally. We also describe an independent capture of a TE domain by F-box genes in zebrafish. In conclusion, we identify two independent TE domain captures by F-box genes in eukaryotes and provide insights into how these novel proteins are integrated within host gene regulatory networks.
Collapse
Affiliation(s)
- Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Zixin Li
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Alexandra Dallaire
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond TW9 3DS, UK
| | - Lukáš Fiedler
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Jonathan L Price
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Jan Sluka
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Mainz 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald 17493, Germany
| | - Xiaodan Liu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Falk Butter
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Mainz 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald 17493, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Eric A Miska
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
4
|
Tanaka S, Oide H, Ikeda S, Tagaya M, Nagai H, Kubori T, Arasaki K. Subversion of the host endocytic pathway by Legionella pneumophila-mediated ubiquitination of Rab5. J Cell Biol 2025; 224:e202406159. [PMID: 40035702 PMCID: PMC11893168 DOI: 10.1083/jcb.202406159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/17/2024] [Accepted: 01/10/2025] [Indexed: 03/06/2025] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that modulates membrane trafficking to survive and proliferate within host cells. After phagocytosis, the L. pneumophila-containing vacuole evades the endocytic pathway by excluding the host GTPase Rab5, a crucial regulator of phagosomal maturation. In this study, we show that the evolutionarily conserved lysine residue K134 of Rab5 undergoes ubiquitination during infection. This modification depends on Lpg2525, an F-box protein from L. pneumophila that acts as a component of the SKP-Cullin-F-box complex. We further demonstrate that Rab5 ubiquitination facilitates the recruitment of RabGAP-5, a Rab5-specific GAP, leading to Rab5 inactivation and subsequent release from the bacterial vacuole. Importantly, the K134 Rab5 mutant limits L. pneumophila replication within host cells. These findings reveal that Lpg2525-mediated Rab5 ubiquitination is a key survival strategy employed by L. pneumophila in infected host cells.
Collapse
Affiliation(s)
- Shino Tanaka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hiromu Oide
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Shumma Ikeda
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
5
|
Sahasrabuddhe AA, Chen X, Ma K, Wu R, Liang HC, Kapoor R, Chhipa RR, Onder O, McFetridge C, Van Arnam JS, Zhang X, Morrissette JJ, Pillai V, Li MM, Szankasi P, Basrur V, Conlon KP, Raabe TD, Bailey NG, Hogaboam CM, Rottapel R, Kim J, López C, Schlesner M, Siebert R, Dreval K, Morin RD, Moro L, Pagano M, Staudt LM, Lim MS, Elenitoba-Johnson KS. The FBXO45-GEF-H1 Axis Controls Germinal Center Formation and B-cell Lymphomagenesis. Cancer Discov 2025; 15:838-861. [PMID: 39820335 PMCID: PMC11962402 DOI: 10.1158/2159-8290.cd-24-0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/29/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
SIGNIFICANCE We describe the identification of a previously unrecognized ubiquitin ligase-substrate (FBXO45-GEF-H1) regulatory axis that plays an important role in germinal center formation and pathogenesis of common BCLs. These studies reveal novel insights linking dysregulated ubiquitin-mediated control to exploitable vulnerabilities and novel therapeutic strategies for these cancers.
Collapse
Affiliation(s)
- Anagh A. Sahasrabuddhe
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Kaiyu Ma
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rui Wu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Huan-Chang Liang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richa Kapoor
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rishi R. Chhipa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ozlem Onder
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Courtney McFetridge
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John S. Van Arnam
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xiao Zhang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer J.D. Morrissette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marilyn M. Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin P. Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tobias D. Raabe
- Division of Translational Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Cory M. Hogaboam
- Department of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Robert Rottapel
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cristina López
- Institute of Human Genetics, Ulm University and Ulm Medical Center, Ulm, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm Medical Center, Ulm, Germany
| | - Kostiantyn Dreval
- Canada’s Michael Smith Genome Sciences Center, BC Cancer Research Centre, Vancouver, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Ryan D. Morin
- Canada’s Michael Smith Genome Sciences Center, BC Cancer Research Centre, Vancouver, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Loredana Moro
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Laura and Isaac Perlmutter NYU Cancer Center, NYU Grossman School of Medicine, New York, New York
- Howard Hughes Medical Institute, New York, New York
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kojo S.J. Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
6
|
Lancaster GI, Murphy AJ. GPX4 methylation puts a brake on ferroptosis. Nat Cell Biol 2025; 27:556-557. [PMID: 40119200 DOI: 10.1038/s41556-025-01640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Affiliation(s)
- Graeme I Lancaster
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Immunology, Monash University, Melbourne, Victoria, Australia.
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Kim B, Lee S, Kim BH, Kim L, Song HK. Revisiting the structure of UBR box from human UBR6. Protein Sci 2025; 34:e70092. [PMID: 40099808 PMCID: PMC11915344 DOI: 10.1002/pro.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Eukaryotic N-degron pathways are proteolytic systems with the ability to recognize specific N-terminal residues of substrate proteins, which are essential parts of their degradation signals. Domains, referred to as UBR boxes, of several E3 ubiquitin ligases can recognize basic N-terminal residues as N-degrons. UBR6 is among the seven mammalian UBR family proteins containing the UBR box domain. However, the recognition of basic type-1 N-degrons by UBR6 is still not well understood. The crystal structure of the UBR box from human UBR6 revealed zinc-mediated dimerization, a structural feature distinct from other monomeric UBR boxes. Furthermore, its folding pattern differed from that of the UBR fold, although the sequences aligned well with those of other UBR boxes. In this study, we re-determined the structure of the UBR box from human UBR6 to investigate whether the unusual domain-swapped dimer was structurally relevant. The newly determined UBR box of UBR6 at 1.5 Å resolution was a monomer with a classical UBR fold. Our structure was compared with previously reported structures of UBR boxes, and its structural features were further analyzed using N-degron binding assays.
Collapse
Affiliation(s)
- Bokyung Kim
- Department of Life SciencesKorea UniversitySeoulSouth Korea
- Present address:
Department of Integrative Structural and Computational BiologyThe Scripps Research Institute and Howard Hughes Medical InstituteLa JollaCaliforniaUSA
| | - Sohae Lee
- Department of Life SciencesKorea UniversitySeoulSouth Korea
| | - Bong Heon Kim
- Department of Life SciencesKorea UniversitySeoulSouth Korea
| | - Leehyeon Kim
- Department of Life SciencesKorea UniversitySeoulSouth Korea
- Present address:
Cell Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Hyun Kyu Song
- Department of Life SciencesKorea UniversitySeoulSouth Korea
| |
Collapse
|
8
|
Camillo-Andrade AC, Sales LA, Fischer JSG, Duran R, Santos MDM, Carvalho PC. Paired proteomic analysis reveals protein alterations in sun-exposed skin of professional drivers : 1Laboratory for structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Brazil. Sci Rep 2025; 15:10955. [PMID: 40164647 PMCID: PMC11958692 DOI: 10.1038/s41598-024-82308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/04/2024] [Indexed: 04/02/2025] Open
Abstract
Professional drivers represent an ideal cohort for investigating the effects of solar radiation on skin due to their unique, asymmetric exposure to sun, a consequence of vehicle window orientations. Consequently, one side of the face is naturally subjected to more solar radiation, resulting in uneven sunlight exposure. This scenario supports a paired experimental design for precise within-individual comparisons, crucial for assessing sun exposure's impact on skin health, including signs of aging. Leveraging this approach, our study reveals sun-induced overexpression of proteins linked to photoaging through paired proteomic analysis, providing novel insights into the skin's adaptive responses to chronic solar exposure. Initially, our research focused on a dataset from ten male professional drivers, identifying a set upregulated proteins in sun-exposed skin compared to the less exposed side of the face. To validate these findings, we extended our investigation to a new cohort of seven female bus drivers. Our motivation in switching genders and utilizing different mass spectrometry equipment and sample preparation techniques was for assessing the robustness of our initial findings, encompassing not just sex differences but also methodological variations, and also for understanding the broader implications of our results for photodermatology. To enable this detailed analysis, we developed specialized software that allows precise paired proteomic analysis, significantly enhancing the robustness and clarity of our findings. Our results shortlisted keratins, S100A14, and F-box proteins-by remaining consistently overexpressed in sun-exposed skin-and hemoglobin subunit beta as downregulated across both cohorts. Our findings underscore the potential of proteomic techniques in advancing our understanding of the molecular dynamics of photoaging and highlight the value of selecting cohorts with specific exposure characteristics.
Collapse
Affiliation(s)
- Amanda C Camillo-Andrade
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Positivo University, Paraná, Brazil
| | - Lucas A Sales
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Juliana S G Fischer
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Rosario Duran
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil.
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil.
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
9
|
Ashitomi H, Nakagawa T, Nakagawa M, Hosoi T. Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders. Biomedicines 2025; 13:810. [PMID: 40299365 PMCID: PMC12024872 DOI: 10.3390/biomedicines13040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeostasis. This process is orchestrated through a hierarchical enzymatic cascade involving three key enzymes: the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligase. The final step of ubiquitination is catalyzed by the E3 ubiquitin ligase, which facilitates the transfer of ubiquitin from the E2 enzyme to the substrate, thereby dictating which proteins undergo ubiquitination. Emerging evidence underscores the critical roles of ubiquitin ligases in neurodevelopment, regulating fundamental processes such as neuronal polarization, axonal outgrowth, synaptogenesis, and synaptic function. Mutations in genes encoding ubiquitin ligases and the consequent dysregulation of these pathways have been increasingly implicated in a spectrum of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder. This review synthesizes current knowledge on the molecular mechanisms underlying neurodevelopment regulated by Cullin-RING ubiquitin ligases-the largest subclass of ubiquitin ligases-and their involvement in the pathophysiology of neurodevelopmental disorders. A deeper understanding of these mechanisms holds significant promise for informing novel therapeutic strategies, ultimately advancing clinical outcomes for individuals affected by neurodevelopmental disorders.
Collapse
Affiliation(s)
- Honoka Ashitomi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| | - Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube 755-8505, Japan
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Ube 755-8611, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| |
Collapse
|
10
|
Xu M, Hu H, Yang W, Zhang J, Wang H, Zhang W, Huan C. FBXO45 restricts HIV-1 replication by inducing SQSTM1/p62-mediated autophagic degradation of Tat. J Virol 2025; 99:e0191224. [PMID: 39936917 PMCID: PMC11916737 DOI: 10.1128/jvi.01912-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
As a key regulator of human immunodeficiency virus type 1 (HIV-1) transcription, Tat plays an essential role in viral replication and latency, making it a promising target for designing viral control strategies. Identifying host factors that modulate Tat and exploring the underlying mechanisms will benefit our understanding of HIV-1 transcriptional regulation and provide valuable insights into Tat-based therapeutic strategies. Here, by employing the TurboID approach, we discovered high-affinity binding between FBXO45 and Tat. Our findings demonstrate that FBXO45 negatively regulates Tat by promoting Tat ubiquitination and directing it to autophagic degradation. Autophagic degradation of Tat has been reported, but the specific underlying mechanisms remain unidentified. We elucidated this issue by providing evidence that FBXO45-mediated Tat polyubiquitination is an essential prerequisite for this process. Silencing of FBXO45 leads to a deficiency of autophagy receptor SQSTM1/p62 to bind and facilitate the autophagic degradation of Tat. Our results further underscore the crosstalk between post-translational modifications of Tat by demonstrating that the phosphorylation site of the Tat S62 residue is required for ubiquitination induced by FBXO45. Furthermore, in the context of the regulation of HIV-1, FBXO45 inhibits viral replication and maintains the latency of HIV-1 by suppressing viral transcription. Importantly, FBXO45 overexpression significantly attenuated viral rebound after antiretroviral therapy withdrawal. In summary, our findings suggest a novel role for FBXO45 in regulating HIV-1 replication by inducing the ubiquitination and SQSTM1/p62-dependent autophagic degradation of Tat. Considering the indispensable role of Tat in the regulation of HIV-1 replication and reactivation, FBXO45 may be a potential target for therapeutic intervention against HIV-1.IMPORTANCEHIV-1 Tat plays an indispensable role in regulating viral transcription and is a promising target for achieving a functional cure for AIDS. Identifying the host factors that modulate Tat expression could benefit the development of anti-HIV-1 strategies targeting Tat. Using TurboID assay, we identified a significant interaction between FBXO45 and Tat. Functionally, FBXO45 ubiquitinates and directs Tat for SQSTM1/p62-mediated autophagic degradation, thereby effectively restricting HIV-1 replication and maintaining HIV-1 latency by suppressing Tat-dependent viral transcription. These findings uncover a novel role for FBXO45 in regulating Tat and broaden our understanding of the host mechanisms involved in Tat processing.
Collapse
Affiliation(s)
- Mingxiu Xu
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Haobo Hu
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weijing Yang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxiang Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hong Wang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Huan
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Galiullina RA, Pigidanov AA, Safronov GG, Trusova SV, Teplova AD, Golyshev SA, Serebryakova MV, Kovaleva IE, Litvinova AV, Chichkova NV, Vartapetian AB. Retrograde Transport of Tobacco Phytaspase Is Mediated by Its Partner, Tubby-like F-Box Protein 8. Int J Mol Sci 2025; 26:2236. [PMID: 40076858 PMCID: PMC11900523 DOI: 10.3390/ijms26052236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Phytaspases, plant cell death-promoting and proprotein-processing proteolytic enzymes of the plant subtilase family, display aspartate (caspase-like) cleavage specificity and a very unusual retrograde trafficking from the apoplast to the cell interior upon induction of death-inducing stresses. To determine the underlying molecular mechanisms, we performed a search for tobacco phytaspase (NtPhyt) interactors using an in vivo cross-linking approach in Nicotiana tabacum plants. Tobacco Tubby-like F-box protein 8 (named Tubic hereafter) was identified as an NtPhyt interactor, with formation of the cross-linked complex being only efficient under the oxidative stress conditions. Direct interaction of the two proteins was further corroborated in the in vitro experiments. Analysis of Tubic-EGFP behavior in plant cells revealed that Tubic is a membrane-associated and fairly unstable protein. Furthermore, we showed that NtPhyt and Tubic are capable of negatively affecting one another in plant cells. On the other hand, down-regulation of Tubic in Tubic-silenced plants impaired specifically the retrograde transport of NtPhyt upon the induction of oxidative stress, testifying to a critical role of Tubic in this process. Our study, thus, contributes to understanding of the mechanisms of NtPhyt retrograde trafficking in plant cells subjected to stress.
Collapse
Affiliation(s)
- Raisa A. Galiullina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (R.A.G.); (S.V.T.); (S.A.G.); (M.V.S.); (I.E.K.); (N.V.C.)
| | - Artemii A. Pigidanov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia; (A.A.P.); (G.G.S.); (A.D.T.); (A.V.L.)
| | - Grigoriy G. Safronov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia; (A.A.P.); (G.G.S.); (A.D.T.); (A.V.L.)
| | - Svetlana V. Trusova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (R.A.G.); (S.V.T.); (S.A.G.); (M.V.S.); (I.E.K.); (N.V.C.)
| | - Anastasia D. Teplova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia; (A.A.P.); (G.G.S.); (A.D.T.); (A.V.L.)
| | - Sergei A. Golyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (R.A.G.); (S.V.T.); (S.A.G.); (M.V.S.); (I.E.K.); (N.V.C.)
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (R.A.G.); (S.V.T.); (S.A.G.); (M.V.S.); (I.E.K.); (N.V.C.)
| | - Irina E. Kovaleva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (R.A.G.); (S.V.T.); (S.A.G.); (M.V.S.); (I.E.K.); (N.V.C.)
| | - Anastasia V. Litvinova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia; (A.A.P.); (G.G.S.); (A.D.T.); (A.V.L.)
| | - Nina V. Chichkova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (R.A.G.); (S.V.T.); (S.A.G.); (M.V.S.); (I.E.K.); (N.V.C.)
| | - Andrey B. Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (R.A.G.); (S.V.T.); (S.A.G.); (M.V.S.); (I.E.K.); (N.V.C.)
| |
Collapse
|
12
|
Ji S, Yin P, Li T, Du X, Chen W, Zhang R, Yang X, Zhang X. Pan-WD40ome analysis of 26 diverse inbred lines reveals the structural and functional diversity of WD40 proteins in maize. BMC Genomics 2025; 26:181. [PMID: 39987072 PMCID: PMC11847395 DOI: 10.1186/s12864-025-11342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The WD40 repeat proteins are crucial components of eukaryotic genomes and contribute to a wide array of plant developmental processes and environmental interactions. However, the true extent of intraspecific WD40 diversity in plants is unclear. RESULTS We defined a nearly complete species-wide pan-WD40ome in maize based on the published genome sequences of 26 nested association mapping (NAM) population founders. The pan-WD40ome largely saturated with inclusion of approximately 20 inbred lines, with about 95% of the pan-WD40ome being present in at least two founders. The architectural diversity of the WD40 domains, additional domains, and consequent spatial protein structures suggested the functional diversity of the maize pan-WD40ome. This finding was supported by significant associations between 87 WD40 genes and 19 agronomic, 3 kernel-quality, and 3 biotic-stress traits, as well as the multiple molecular pathways through which the trait-associated WD40 genes were predicted to function. In addition, WD40 genes exhibited abundant genomic variations among the NAM founders. Sequence analysis indicated that gene duplications and gene translocations caused by Helitron transposons may play important roles in the amplification of WD40 genes during the evolution of the maize WD40 gene family. CONCLUSIONS In summary, this study provides a comprehensive framework for understanding the structural and functional diversity of the pan-WD40ome in maize and other agronomically important species with complex genomes, as well as excellent candidate genes/alleles for maize genetic improvement.
Collapse
Affiliation(s)
- Shenghui Ji
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Pengfei Yin
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Tao Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaoxia Du
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Wenkang Chen
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Renyu Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| | - Xuan Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Clague MJ, Urbé S. Diverse routes to mitophagy governed by ubiquitylation and mitochondrial import. Trends Cell Biol 2025:S0962-8924(25)00003-0. [PMID: 39922712 DOI: 10.1016/j.tcb.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/10/2025]
Abstract
The selective removal of mitochondria by mitophagy proceeds via multiple mechanisms and is essential for human well-being. The PINK1/Parkin and NIX/BNIP3 pathways are strongly linked to mitochondrial dysfunction and hypoxia, respectively. Both are regulated by ubiquitylation and mitochondrial import. Recent studies have elucidated how the ubiquitin kinase PINK1 acts as a sensor of mitochondrial import stress through stable interaction with a mitochondrial import supercomplex. The stability of BNIP3 and NIX is regulated by the SCFFBXL4 ubiquitin ligase complex. Substrate recognition requires an adaptor molecule, PPTC7, whose availability is limited by mitochondrial import. Unravelling the functional implications of each mode of mitophagy remains a critical challenge. We propose that mitochondrial import stress prompts a switch between these two pathways.
Collapse
Affiliation(s)
- Michael J Clague
- Department of Biochemistry, Cell, and Systems Biology, Institute of Systems, Molecular, and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3BX, UK.
| | - Sylvie Urbé
- Department of Biochemistry, Cell, and Systems Biology, Institute of Systems, Molecular, and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
14
|
Wang X, Zhu R, Yu P, Qi S, Zhong Z, Jin R, Wang Y, Gu Y, Ye D, Chen K, Shu Y, Wang Y, Yu FX. WWC proteins-mediated compensatory mechanism restricts schwannomatosis driven by NF2 loss of function. SCIENCE ADVANCES 2025; 11:eadp4765. [PMID: 39841844 PMCID: PMC11753430 DOI: 10.1126/sciadv.adp4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to NF2 gene mutations. Mice with Nf2 deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation. In NF2 mutated cells, WWC1-3 accumulation is a compensatory mechanism to prevent YAP/TAZ hyperactivation and rapid tumorigenesis. Accordingly, we generate a synthetic mouse model with complete penetrance and short latency by concurrently deleting Nf2 and Wwc1/2 in Schwann cells. This model closely resembles NF2-related schwannomatosis in patients, as confirmed by histological and single-cell transcriptome analysis. Moreover, a cell line from mouse schwannomas and a syngeneic tumor model in immune-competent mice are established. Furthermore, a screen using established models has identified candidate drugs that effectively suppress schwannoma progression. Hence, this work has developed rapid and transplantable models that will facilitate both basic and translational research on NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Xueying Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sixian Qi
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruxin Jin
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Gu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ye
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, National Children’s Medical Center, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Jin Y, Wang H, Xin Y, Zhang Y. Fbxo11 maintains mitochondrial function and prevents podocyte injury in adriamycin-induced nephropathy by mediating the ubiquitin degradation of Fosl2. Exp Cell Res 2025; 444:114345. [PMID: 39581215 DOI: 10.1016/j.yexcr.2024.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Mitochondrial dysfunction is a pivotal factor in the onset of podocyte damage, which is a central component in the pathogenesis of nephrotic syndrome (NS). However, the precise mechanisms underlying the changes in podocyte mitochondria remain elusive. Our study aims to clarify the potential mechanisms involved in the role of F-box protein 11 (Fbxo11) in NS, specifically concentrating on its impact on mitochondrial function. A mouse model was established by tail vein injection of adriamycin (ADR, 10 mg/kg) and was infected with lentivirus overexpressing Fbxo11 (lenti-Fbxo11-OE). Mouse podocytes (MPC-5) were infected with lenti-Fbxo11-OE, followed by treatment with 0.4 μg/mL of ADR. We identified the decreased expression of Fbxo11 in mouse renal tissues and MPC-5 cells induced by ADR. Lenti-Fbxo11-OE intervention relieved ADR-induced glomerular lesion, podocyte injury, and mitochondrial dysfunction. In vitro, overexpression of Fbxo11 in mouse podocytes improved mitochondrial function and reduced podocyte damage, thereby inhibiting podocyte apoptosis. Mechanistically, Fbxo11 decreased the protein expression of Fosl2 through ubiquitin-dependent proteasomal degradation. Rescue experiments revealed that overexpression of Fosl2 abolished the protective effects of Fbxo11 overexpression on mitochondrial damage and podocyte injury. Importantly, the regulatory effects of the Fbxo11/Fosl2 axis were reversed when treated with the mitochondrial fission inhibitor mdivi-1. Taken together, our results demonstrated that Fbxo11-mediated protein degradation of Fosl2 is critical for maintaining mitochondrial function and preventing podocyte injury during NS.
Collapse
Affiliation(s)
- Yanhua Jin
- Department of Nephrology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Huan Wang
- Department of Nephrology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Yu Xin
- Department of Nephrology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Yanning Zhang
- Department of Nephrology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
16
|
Liu Z, Ma K, Zhang P, Zhang S, Song X, Qin Y. F-box protein Fbx23 acts as a transcriptional coactivator to recognize and activate transcription factor Ace1. PLoS Genet 2025; 21:e1011539. [PMID: 39836692 PMCID: PMC11750091 DOI: 10.1371/journal.pgen.1011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity. The limited number of identified ubiquitin ligase-substrate pairs is a major bottleneck in the ubiquitination field. Penicillium oxalicum contains many transcription factors, such as BrlA, CreA, XlnR, and Ace1, conserved in filamentous fungi that regulate the fungal development and transcription of (hemi)cellulase genes. Transcription factor Ace1 (also known as SltA) positively correlated with fungal growth and conidiation and negatively correlated with the expression of (hemi)cellulase genes. A ubiquitin ligase-substrate pair, SCFFbx23-Ace1, is identified in P. oxalicum. Most of PoFbx23 is present in free form within the nucleus. A small portion of PoFbx23 associates with Skp1 to form PoFbx23-Skp1 heterodimer or assembles with the three invariable core components (Skp1, Cul1, and Rbx1) of SCF to form the SCFFbx23 complex. Under glucose signal, PoFbx23 absence (Δfbx23) results in decreased transcription levels of the brlA gene which encodes the master regulator for asexual development and six spore pigmentation genes (abrB→abrA→aygB→arpA→arpB→albA) which encode the proteins in the dihydroxynaphthalene-melanin pathway, along with impaired conidiation. Under cellulose signal, transcription levels of (hemi)cellulase genes in the Δfbx23 mutant are significantly upregulated. When PoFbx23 is present, PoAce1 exists as a full-length version and several low-molecular-weight degraded versions. PoAce1 has polyubiquitin modification. Deleting the Pofbx23 gene does not affect Poace1 gene transcription but results in the remarkable accumulation of all versions of the PoAce1 protein. Accumulated PoAce1 protein is a dysfunctional form that no longer binds promoters of the target gene, including the cellulase genes cbh1 and eg1, the hemicellulase gene xyn11A, and the pigmentation-related gene abrB. PoFbx23 acts as a transcriptional coactivator, recognizing and activating PoAce1, allowing the latter to regulate the transcription of target genes with different effects (activating or repressing) under different signals.
Collapse
Affiliation(s)
- Zhongjiao Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Kexuan Ma
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Panpan Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Siqi Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
17
|
Sun X, LaVoie M, Lefebvre PA, Gallaher SD, Glaesener AG, Strenkert D, Mehta R, Merchant SS, Silflow CD. Identification of a gene controlling levels of the copper response regulator 1 transcription factor in Chlamydomonas reinhardtii. THE PLANT CELL 2024; 37:koae300. [PMID: 39777451 PMCID: PMC11708838 DOI: 10.1093/plcell/koae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia. By selecting for mutants able to swim even in normoxia, we obtained strains that constitutively express the reporter gene. One identified mutant was affected in a gene encoding an F-box protein 3 (FBXO3) that participates in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 (constitutive expression of hydrogenases and copper-responsive genes), triggers the upregulation of genes known to be targets of copper response regulator 1 (CRR1), a transcription factor involved in the nutritional copper signaling pathway and in the hypoxia response pathway. CRR1 was required for upregulating the HYDA1 reporter gene expression in response to hypoxia and for the constitutive expression of the reporter gene in cehc1-1 mutant cells. The CRR1 protein, normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 facilitates CRR1 degradation. Our results describe a previously unknown pathway for CRR1 inhibition and possibly other pathways leading to complex metabolic changes.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Matthew LaVoie
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Paul A Lefebvre
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Sean D Gallaher
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Anne G Glaesener
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Daniela Strenkert
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Radhika Mehta
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Sabeeha S Merchant
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Carolyn D Silflow
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
18
|
Wang W, Liu X, Zhao L, Jiang K, Yu Z, Yang R, Zhou W, Cui J, Liang T. FBXW7 in gastrointestinal cancers: from molecular mechanisms to therapeutic prospects. Front Pharmacol 2024; 15:1505027. [PMID: 39749199 PMCID: PMC11694028 DOI: 10.3389/fphar.2024.1505027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
F-box and WD repeat domain-containing 7 (FBXW7), formerly known as hCdc4, hAGO Fbw7, or SEL10, plays a specific recognition function in SCF-type E3 ubiquitin ligases. FBXW7 is a well-established cancer suppressor gene that specifically controls proteasomal degradation and destruction of many key oncogenic substrates. The FBXW7 gene is frequently abnormal in human malignancies especially in gastrointestinal cancers. Accumulating evidence reveals that mutations and deletions of FBXW7 are participating in the occurrence, progression and treatment resistance of human gastrointestinal cancers. Considering the current therapeutic challenges faced by gastrointestinal cancers, elucidating the biological function and molecular mechanism of FBXW7 can provide new perspectives and references for future personalized treatment strategies. In this review, we elucidate the key molecular mechanisms by which FBXW7 and its substrates are involved in gastrointestinal cancers. Furthermore, we discuss the consequences of FBXW7 loss or dysfunction in tumor progression and underscore its potential as a prognostic and therapeutic biomarker. Lastly, we propose potential therapeutic strategies targeting FBXW7 to guide the precision treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Zeng L, Zhang X, Huang Z, Song S, Li M, Wang T, Sun A, Ge J. Ubiquitin proteasome system in cardiac fibrosis. J Adv Res 2024:S2090-1232(24)00562-9. [PMID: 39653114 DOI: 10.1016/j.jare.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Cardiac fibrosis, including reactive fibrosis and replacement fibrosis, is a common pathological process in most cardiovascular diseases. The ubiquitin proteasome system (UPS) plays an important role in the development of fibrosis by mediating the degradation and synthesis of proteins involved in transforming growth factor-β (TGF-β)-dependent and TGF-β-independent fibrous pathways. AIM OF REVIEW This review aims to provide an overview of ubiquitinated and deubiquitinated molecules that participating in cardiac fibrosis, with the ultimate purpose to identify promising targets for therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW The UPS primarily impacts cardiac fibrosis through modulation of the TGF-β signaling pathway targeting key molecules involved, including the TGF-β receptors, Smad2/3/4 complexes, and inhibitory Smad7, thereby influencing fibrotic processes. In addition to its effect on TGF-β signaling, UPS also regulates pro-fibrotic pathways independent of TGF-β, including p53, AKT1-p38, and JNK1/2. Understanding these pathways is critical due to their involvement in diverse fibrotic mechanisms. The interplay between ubiquitination and deubiquitination of crucial pathways and molecules is pivotal in cardiac fibrosis and represents a promising area for identifying novel therapeutic targets. Different types of cardiac fibrosis involve distinct fibrotic pathways, leading to differential effects of ubiquitin ligases (E3 ligases) and deubiquitinating enzymes (DUBs) across various cardiac fibrotic diseases. Insights into UPS-mediated regulation of cardiac fibrosis provide potential anti-fibrotic therapeutic strategies, emphasizing the importance of targeting UPS components specific to the heart for effective therapy against cardiac fibrosis.
Collapse
Affiliation(s)
- Linqi Zeng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zihang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Mohan Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Tongyao Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Nishimura A, Tanahashi R, Takagi H. The Yeast F-Box Protein Met30 Regulates Proline Utilization Independently of Transceptor Can1 Under Nutrient-Rich Conditions. Microorganisms 2024; 12:2510. [PMID: 39770713 PMCID: PMC11679997 DOI: 10.3390/microorganisms12122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Proline is the most abundant amino acid in wine and beer, largely due to the limited utilization of proline by the yeast Saccharomyces cerevisiae during fermentation. Previous studies have shown that the arginine transporter Can1 plays a role in regulating proline utilization by acting as a transceptor, combining the functions of both a transporter and a receptor for basic amino acids. However, the CAN1-disrupted strains have exhibited the inhibition of proline utilization under nutrient-rich conditions, indicating that additional factors beyond basic amino acids contribute to the inhibition of proline utilization. Here, we used the parent strain with the CAN1 deletion to derive mutants that can utilize proline even under nutrient-rich conditions. A genomic analysis revealed a mutation in the MET30 gene, which encodes an F-box subunit of the SCF ubiquitin ligase complex, that causes reduced Met30 function. Importantly, we found that Met30 and Can1 independently regulate proline utilization. Our screening showed that the Met30-dependent inhibition of proline utilization occurs when ammonium ions, methionine or cysteine, and another amino acid (especially threonine or isoleucine) are present simultaneously. The present data offer new insights into the regulation of proline metabolism.
Collapse
Affiliation(s)
- Akira Nishimura
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
| | - Ryoya Tanahashi
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
- Department of Food Science and Technology, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| | - Hiroshi Takagi
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
| |
Collapse
|
21
|
Xie D, Ma Y, Ye P, Liu Y, Ding Q, Huang G, Félix MA, Cai Z, Zhao Z. A newborn F-box gene blocks gene flow by selectively degrading phosphoglucomutase in species hybrids. Proc Natl Acad Sci U S A 2024; 121:e2418037121. [PMID: 39514314 PMCID: PMC11573670 DOI: 10.1073/pnas.2418037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
The establishment of reproductive barriers such as postzygotic hybrid incompatibility (HI) remains the key to speciation. Gene duplication followed by differential functionalization has long been proposed as a major model underlying HI, but little supporting evidence exists. Here, we demonstrate that a newborn F-box gene, Cni-neib-1, of the nematode Caenorhabditis nigoni specifically inactivates an essential phosphoglucomutase encoded by Cbr-shls-1 in its sister species Caenorhabditis briggsae and their hybrids. Zygotic expression of Cni-neib-1 specifically depletes Cbr-SHLS-1, but not Cni-SHLS-1, in approximately 40 min starting from gastrulation, causing embryonic death. Cni-neib-1 is one of thirty-three paralogues emerging from a recent surge in F-box gene duplication events within C. nigoni, all of which are evolving under positive selection. Cni-neib-1 undergoes turnover even among C. nigoni populations. Differential expansion of F-box genes between the two species could reflect their distinctive innate immune responses. Collectively, we demonstrate how recent duplication of genes involved in protein degradation can cause incidental destruction of targets in hybrids that leads to HI, providing an invaluable insight into mechanisms of speciation.
Collapse
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yiqing Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Gefei Huang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris75005, France
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| |
Collapse
|
22
|
Li M, Chen X, Qu P, Shao Z, Shi L, Quan H, Zhao X, Xu J, Shi L, Chen S, Zheng J, Pan ZQ, Bai J. FBXO22 inhibits colitis and colorectal carcinogenesis by regulating the degradation of the S2448-phosphorylated form of mTOR. Proc Natl Acad Sci U S A 2024; 121:e2402035121. [PMID: 39485803 PMCID: PMC11551398 DOI: 10.1073/pnas.2402035121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a considerable threat to human health with a significant risk for colorectal cancer (CRC). However, currently, both the molecular pathogenesis and therapeutic treatment of IBD remain limited. In this report, using both systemic and intestinal epithelium-specific gene knockout mouse models, we demonstrate that FBXO22, a substrate receptor within the SKP1-Cullin 1-F-box family of E3 ubiquitin ligases, plays an inhibitory role in the Azoxymethane/Dextran Sodium Sulfate-induced colorectal inflammatory responses and CRC. FBXO22 targets the serine 2448-phosphorylated form of mammalian mechanistic target of rapamycin (pS2448-mTOR) for ubiquitin-dependent degradation. This proteolytic targeting effect is established based on multiple lines of evidence including the results of colon tissue immunoblots, analysis of cultured cells with altered abundance of FBXO22 by depletion or overexpression, comparison of protein decay rate, effects on mTOR substrates S6K1 and 4E-BP1, analysis of protein-protein interactions, phosphor-peptide binding and competition, as well as reconstituted and cellular ubiquitination. Finally, we have shown that mTOR inhibitor rapamycin (RAPA) was able to alleviate the effects of fbxo22 deletion on colorectal inflammatory response and CRC. These RAPA effects are correlated with the ability of RAPA to inhibit pS2448-mTOR, pS6K1, and p4E-BP1. Collectively, our data support a suppressive role for FBXO22 in colorectal inflammation signaling and CRC initiation by targeting pS2448-mTOR for degradation.
Collapse
Affiliation(s)
- Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Xuan Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Pengfei Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Lei Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Haoyu Quan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Xue Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Jian Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Luling Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing211166, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY10029-6574
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| |
Collapse
|
23
|
Hong T, Hogger AC, Wang D, Pan Q, Gansel J, Engleitner T, Öllinger R, Gschwend JE, Rad R, Nawroth R. CDK4/6 inhibition initiates cell cycle arrest by nuclear translocation of RB and induces a multistep molecular response. Cell Death Discov 2024; 10:453. [PMID: 39461947 PMCID: PMC11513128 DOI: 10.1038/s41420-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
CDK4/6 inhibitors are standard of care in the treatment of metastatic breast cancer. Treatment regimen consists of a combination with endocrine therapy, since their therapeutic efficacy as monotherapy in most clinical trials was rather limited. Thus, understanding the molecular mechanisms that underlie response to therapy might allow for the development of an improved therapy design. We analyzed the response to the CDK4/6 inhibitor palbociclib in bladder cancer cells over a 48-hour time course using RNA sequencing and identified a multi-step mechanism of response. We next translated these results to the molecular mechanism in bladder cancer cells upon PD treatment. The initial step is characterized by translocation of the RB protein into the nucleus by activation of importin α/β, a mechanism that requires the NLS sequence. In parallel, RB is proteolyzed in the cytoplasm, a process regulated by gankyrin and the SCF complex. Only hypophosphorylated RB accumulates in the nucleus, which is an essential step for an efficient therapy response by initiating G1 arrest. This might explain the poor response in RB negative or mutated patients. At later stages during therapy, increased expression of the MiT/TFE protein family leads to lysosomal biogenesis which is essential to maintain this response. Lastly, cancer cells either undergo senescence and apoptosis or develop mechanisms of resistance following CDK4/6 inhibition.
Collapse
Affiliation(s)
- Ting Hong
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna C Hogger
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dongbiao Wang
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Qi Pan
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Julie Gansel
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Jürgen E Gschwend
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
24
|
Liao S, Zhou Z, Jiao Y, Chen S, Bao Y, Cao J, Mao S, Li H. RBFOX2 as a regulatory linchpin in cancer: insights from a comprehensive review of its roles in tumorigenesis. Am J Cancer Res 2024; 14:5045-5060. [PMID: 39553227 PMCID: PMC11560822 DOI: 10.62347/bnpo2363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/25/2024] [Indexed: 11/19/2024] Open
Abstract
RNA-binding proteins (RBPs) are essential regulators of RNA expression during both transcriptional and post-transcriptional processes. Recent evidence indicates that dysregulation of RBPs is associated with cancer initiation and progression. Among these, RBFOX2 has been identified as exhibiting variable expression patterns across different cancers and is implicated in various malignant processes, including tumor growth, metastasis, ferroptosis, stemness, and chemoresistance. Despite these findings, the precise mechanisms by which RBFOX2 contributes to carcinogenesis remain largely unexplored. In this comprehensive review, we systematically examine the multifaceted functions of RBFOX2 in tumorigenesis, with a particular focus on its roles in alternative splicing, mRNA stability, and microRNA processing. Upon elucidating the specific roles of RBFOX2 in various cancers, targeted drugs can be devised to inhibit cancer development. Furthermore, we evaluate the specific roles of RBFOX2 in various cancer types, including pancreatic ductal adenocarcinoma, myeloid leukemia, and nasopharyngeal carcinoma. By providing an in-depth analysis, we aim to establish RBFOX2 as a potential diagnostic and therapeutic target in cancer biology and treatment, thereby offering new insights for future research.
Collapse
Affiliation(s)
- Siqian Liao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Queen Mary School, Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Zhiyong Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yiqiao Jiao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Queen Mary School, Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shen Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Queen Mary School, Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yuxuan Bao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Queen Mary School, Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jiaqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Huizi Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
25
|
Bhat SA, Vasi Z, Jiang L, Selvaraj S, Ferguson R, Salarvand S, Gudur A, Adhikari R, Castillo V, Ismail H, Dhabaria A, Ueberheide B, Kuchay S. Geranylgeranylated SCF FBXO10 regulates selective outer mitochondrial membrane proteostasis and function. Cell Rep 2024; 43:114783. [PMID: 39306844 PMCID: PMC11573457 DOI: 10.1016/j.celrep.2024.114783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Compartment-specific cellular membrane protein turnover is not well understood. We show that FBXO10, the interchangeable component of the cullin-RING-ligase 1 complex, undergoes lipid modification with geranylgeranyl isoprenoid at cysteine953, facilitating its dynamic trafficking to the outer mitochondrial membrane (OMM). FBXO10 polypeptide lacks a canonical mitochondrial targeting sequence (MTS); instead, its geranylgeranylation at C953 and interaction with two cytosolic factors, cytosolic factor-like δ subunit of type 6 phosphodiesterase (PDE6δ; a prenyl-group-binding protein) and heat shock protein 90 (HSP90; a chaperone), orchestrate specific OMM targeting of prenyl-FBXO10. The FBXO10(C953S) mutant redistributes away from the OMM, impairs mitochondrial ATP production and membrane potential, and increases fragmentation. Phosphoglycerate mutase-5 (PGAM5) was identified as a potential substrate of FBXO10 at the OMM using comparative quantitative proteomics of enriched mitochondria. FBXO10 loss or expression of prenylation-deficient FBXO10(C953S) inhibited PGAM5 degradation, disrupted mitochondrial homeostasis, and impaired myogenic differentiation of human induced pluripotent stem cells (iPSCs) and murine myoblasts. Our studies identify a mechanism for FBXO10-mediated regulation of selective mitochondrial proteostasis potentially amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Zahra Vasi
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Shruthi Selvaraj
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Rachel Ferguson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Sanaz Salarvand
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Anish Gudur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Ritika Adhikari
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Veronica Castillo
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Hagar Ismail
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10013, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10013, USA
| | - Shafi Kuchay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Dibus N, Salyova E, Kolarova K, Abdirov A, Pagano M, Stepanek O, Cermak L. FBXO38 is dispensable for PD-1 regulation. EMBO Rep 2024; 25:4206-4225. [PMID: 39266770 PMCID: PMC11467412 DOI: 10.1038/s44319-024-00220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/05/2024] [Accepted: 06/13/2024] [Indexed: 09/14/2024] Open
Abstract
SKP1-CUL1-F-box protein (SCF) ubiquitin ligases are versatile protein complexes that mediate the ubiquitination of protein substrates. The direct substrate recognition relies on a large family of F-box-domain-containing subunits. One of these substrate receptors is FBXO38, which is encoded by a gene found mutated in families with early-onset distal motor neuronopathy. SCFFBXO38 ubiquitin ligase controls the stability of ZXDB, a nuclear factor associated with the centromeric chromatin protein CENP-B. Loss of FBXO38 in mice results in growth retardation and defects in spermatogenesis characterized by deregulation of the Sertoli cell transcription program and compromised centromere integrity. Moreover, it was reported that SCFFBXO38 mediates the degradation of PD-1, a key immune-checkpoint inhibitor in T cells. Here, we have re-addressed the link between SCFFBXO38 and PD-1 proteolysis. Our data do not support the notion that SCFFBXO38 directly or indirectly controls the abundance and stability of PD-1 in T cells.
Collapse
Affiliation(s)
- Nikol Dibus
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Salyova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Kolarova
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alikhan Abdirov
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
27
|
Mandalasi MN, Gas-Pascual E, Baptista CG, Deng B, van der Wel H, Kruijtzer JAW, Boons GJ, Blader IJ, West CM. Oxygen-dependent regulation of F-box proteins in Toxoplasma gondii is mediated by Skp1 glycosylation. J Biol Chem 2024; 300:107801. [PMID: 39307307 PMCID: PMC11570480 DOI: 10.1016/j.jbc.2024.107801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 11/07/2024] Open
Abstract
A dynamic proteome is required for cellular adaption to changing environments including levels of O2, and the SKP1/CULLIN-1/F-box protein/RBX1 (SCF) family of E3 ubiquitin ligases contributes importantly to proteasome-mediated degradation. We examine, in the apicomplexan parasite Toxoplasma gondii, the influence on the interactome of SKP1 by its novel glycan attached to hydroxyproline generated by PHYa, the likely ortholog of the HIFα PHD2 oxygen-sensor of human host cells. Strikingly, the representation of several putative F-box proteins (FBPs) is substantially reduced in PHYaΔ parasites grown in fibroblasts. One, FBXO13, is a predicted lysyl hydroxylase related to the human JmjD6 oncogene except for its F-box domain. The abundance of FBXO13, epitope-tagged at its genetic locus, was reduced in PHYaΔ parasites thus explaining its diminished presence in the SKP1 interactome. A similar effect was observed for FBXO14, a cytoplasmic protein of unknown function that may have co-evolved with PHYa in apicomplexans. Similar findings in glycosylation-mutant cells, rescue by proteasomal inhibitors, and unchanged transcript levels suggested the involvement of the SCF in their degradation. The effect was selective because FBXO1 was not affected by loss of PHYa. These findings are physiologically significant because the effects were phenocopied in parasites reared at 0.5% O2. Modest impact on steady-state SKP1 modification levels suggests that effects are mediated during a lag phase in hydroxylation of nascent SKP1. The dependence of FBP abundance on O2-dependent SKP1 modification likely contributes to the reduced virulence of PHYaΔ parasites owing to impaired ability to sense O2 as an environmental signal.
Collapse
Affiliation(s)
- Msano N Mandalasi
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology & Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Bowen Deng
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hanke van der Wel
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - John A W Kruijtzer
- Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, CG Utrecht, The Netherlands; Department of Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ira J Blader
- Department of Microbiology & Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
28
|
Turek I, Wong A, Domingo G, Vannini C, Bracale M, Irving H, Gehring C. Moonlighting Crypto-Enzymes and Domains as Ancient and Versatile Signaling Devices. Int J Mol Sci 2024; 25:9535. [PMID: 39273482 PMCID: PMC11394779 DOI: 10.3390/ijms25179535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Increasing numbers of reports have revealed novel catalytically active cryptic guanylate cyclases (GCs) and adenylate cyclases (ACs) operating within complex proteins in prokaryotes and eukaryotes. Here we review the structural and functional aspects of some of these cyclases and provide examples that illustrate their roles in the regulation of the intramolecular functions of complex proteins, such as the phytosulfokine receptor (PSKR), and reassess their contribution to signal generation and tuning. Another multidomain protein, Arabidopsis thaliana K+ uptake permease (AtKUP5), also harbors multiple catalytically active sites including an N-terminal AC and C-terminal phosphodiesterase (PDE) with an abscisic acid-binding site. We argue that this architecture may enable the fine-tuning and/or sensing of K+ flux and integrate hormone responses to cAMP homeostasis. We also discuss how searches with motifs based on conserved amino acids in catalytic centers led to the discovery of GCs and ACs and propose how this approach can be applied to discover hitherto masked active sites in bacterial, fungal, and animal proteomes. Finally, we show that motif searches are a promising approach to discover ancient biological functions such as hormone or gas binding.
Collapse
Affiliation(s)
- Ilona Turek
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, VIC 3220, Australia
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
| | - Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, 21100 Varese, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, 21100 Varese, Italy
| | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, 21100 Varese, Italy
| | - Helen Irving
- La Trobe Institute of Molecular Sciences, La Trobe University, Bendigo, VIC 3552, Australia
- Holsworth Initiative for Medical Research, Rural People, Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3552, Australia
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy
| |
Collapse
|
29
|
Abd-Hamid NA, Ismail I. An F-box Kelch repeat protein, PmFBK2, from Persicaria minor interacts with GID1b to modulate gibberellin signalling. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154299. [PMID: 38936241 DOI: 10.1016/j.jplph.2024.154299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The F-box protein (FBP) family plays diverse functions in the plant kingdom, with the function of many members still unrevealed. In this study, a specific FBP called PmFBK2, containing Kelch repeats from Persicaria minor, was functionally investigated. Employing the yeast two-hybrid (Y2H) assay, PmFBK2 was found to interact with Skp1-like proteins from P. minor, suggesting its potential to form an E3 ubiquitin ligase, known as the SCF complex. Y2H and co-immunoprecipitation tests revealed that PmFBK2 interacts with full-length PmGID1b. The interaction marks the first documented binding between these two protein types, which have never been reported in other plants before, and they exhibited a negative effect on gibberellin (GA) signal transduction. The overexpression of PmFBK2 in the kmd3 mutant, a homolog from Arabidopsis, demonstrated the ability of PmFBK2 to restore the function of the mutated KMD3 gene. The function restoration was supported by morphophysiological and gene expression analyses, which exhibited patterns similar to the wild type (WT) compared to the kmd3 mutant. Interestingly, the overexpression of PmFBK2 or PmGID1b in Arabidopsis had opposite effects on rosette diameter, seed weight, and plant height. This study provides new insights into the complex GA signalling. It highlights the crucial roles of the interaction between FBP and the GA receptor (GID1b) in regulating GA responses. These findings have implications for developing strategies to enhance plant growth and yield by modulating GA signalling in crops.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
30
|
Kawale AS, Zou L. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer. DNA Repair (Amst) 2024; 141:103734. [PMID: 39047499 PMCID: PMC11330346 DOI: 10.1016/j.dnarep.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
31
|
Kaneda Y, Miyata H, Xu Z, Shimada K, Kamoshita M, Nakagawa T, Emori C, Ikawa M. FBXO24 deletion causes abnormal accumulation of membraneless electron-dense granules in sperm flagella and male infertility. eLife 2024; 13:RP92794. [PMID: 39163107 PMCID: PMC11335345 DOI: 10.7554/elife.92794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ribonucleoprotein (RNP) granules are membraneless electron-dense structures rich in RNAs and proteins, and involved in various cellular processes. Two RNP granules in male germ cells, intermitochondrial cement and the chromatoid body (CB), are associated with PIWI-interacting RNAs (piRNAs) and are required for transposon silencing and spermatogenesis. Other RNP granules in male germ cells, the reticulated body and CB remnants, are also essential for spermiogenesis. In this study, we disrupted FBXO24, a testis-enriched F-box protein, in mice and found numerous membraneless electron-dense granules accumulated in sperm flagella. Fbxo24 knockout (KO) mice exhibited malformed flagellar structures, impaired sperm motility, and male infertility, likely due to the accumulation of abnormal granules. The amount and localization of known RNP granule-related proteins were not disrupted in Fbxo24 KO mice, suggesting that the accumulated granules were distinct from known RNP granules. Further studies revealed that RNAs and two importins, IPO5 and KPNB1, abnormally accumulated in Fbxo24 KO spermatozoa and that FBXO24 could ubiquitinate IPO5. In addition, IPO5 and KPNB1 were recruited to stress granules, RNP complexes, when cells were treated with oxidative stress or a proteasome inhibitor. These results suggest that FBXO24 is involved in the degradation of IPO5, disruption of which may lead to the accumulation of abnormal RNP granules in sperm flagella.
Collapse
Affiliation(s)
- Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
- Graduate School of Pharmaceutical Sciences, Osaka UniversityOsakaJapan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Zoulan Xu
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
- Graduate School of Pharmaceutical Sciences, Osaka UniversityOsakaJapan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Maki Kamoshita
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Tatsuya Nakagawa
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
- Graduate School of Pharmaceutical Sciences, Osaka UniversityOsakaJapan
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
- Graduate School of Pharmaceutical Sciences, Osaka UniversityOsakaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversityOsakaJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversityOsakaJapan
| |
Collapse
|
32
|
Su D, Wang R, Chen G, Ding C, Liu Y, Tao J, Wang Y, Qiu J, Luo W, Weng G, Yang G, Zhang T. FBXO32 Stimulates Protein Synthesis to Drive Pancreatic Cancer Progression and Metastasis. Cancer Res 2024; 84:2607-2625. [PMID: 38775804 DOI: 10.1158/0008-5472.can-23-3638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/16/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide, primarily due to its rapid progression. The current treatment options for PDAC are limited, and a better understanding of the underlying mechanisms responsible for PDAC progression is required to identify improved therapeutic strategies. In this study, we identified FBXO32 as an oncogenic driver in PDAC. FBXO32 was aberrantly upregulated in PDAC, and high FBXO32 expression was significantly associated with an unfavorable prognosis in patients with PDAC. FRG1 deficiency promoted FBXO32 upregulation in PDAC. FBXO32 promoted cell migration and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, FBXO32 directly interacted with eEF1A1 and promoted its polyubiquitination at the K273 site, leading to enhanced activity of eEF1A1 and increased protein synthesis in PDAC cells. Moreover, FBXO32-catalyzed eEF1A1 ubiquitination boosted the translation of ITGB5 mRNA and activated focal adhesion kinase (FAK) signaling, thereby facilitating focal adhesion assembly and driving PDAC progression. Importantly, interfering with the FBXO32-eEF1A1 axis or pharmaceutical inhibition of FAK by defactinib, an FDA-approved FAK inhibitor, substantially inhibited PDAC growth and metastasis driven by aberrantly activated FBXO32-eEF1A1 signaling. Overall, this study uncovers a mechanism by which PDAC cells rely on FBXO32-mediated eEF1A1 activation to drive progression and metastasis. FBXO32 may serve as a promising biomarker for selecting eligible patients with PDAC for treatment with defactinib. Significance: FBXO32 upregulation in pancreatic cancer induced by FRG1 deficiency increases eEF1A1 activity to promote ITGB5 translation and stimulate FAK signaling, driving cancer progression and sensitizing tumors to the FAK inhibitor defactinib.
Collapse
Affiliation(s)
- Dan Su
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruobing Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Chen
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Chen Ding
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guihu Weng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Zhou J, Li Q, Deng X, Peng L, Sun J, Zhang Y, Du Y. Comprehensive analysis identifies ubiquitin ligase FBXO42 as a tumor-promoting factor in neuroblastoma. Sci Rep 2024; 14:18697. [PMID: 39134694 PMCID: PMC11319589 DOI: 10.1038/s41598-024-69760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
Neuroblastoma, the deadliest solid tumor in children, exhibits alarming mortality rates, particularly among high-risk cases. To enhance survival rates, a more precise risk stratification for patients is imperative. Utilizing proteomic data from 34 cases with or without N-Myc amplification, we identified 28 differentially expressed ubiquitination-related proteins (URGs). From these, a prognostic signature comprising 6 URGs was constructed. A nomogram incorporating clinical-pathological parameters yielded impressive AUC values of 0.88, 0.93, and 0.95 at 1, 3, and 5 years, respectively. Functional experiments targeting the E3 ubiquitin ligase FBXO42, a component of the prognostic signature, revealed its TP53-dependent promotion of neuroblastoma cell proliferation. In conclusion, our ubiquitination-related prognostic model robustly predicts patient outcomes, guiding clinical decisions. Additionally, the newfound pro-proliferative role of FBXO42 offers a novel foundation for understanding the molecular mechanisms of neuroblastoma.
Collapse
Affiliation(s)
- Jianwu Zhou
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Qijun Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaobin Deng
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Liang Peng
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Jian Sun
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yao Zhang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yifei Du
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
34
|
Schettini GP, Morozyuk M, Biase FH. Identification of novel cattle (Bos taurus) genes and biological insights of their function in pre-implantation embryo development. BMC Genomics 2024; 25:775. [PMID: 39118001 PMCID: PMC11313146 DOI: 10.1186/s12864-024-10685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Appropriate regulation of genes expressed in oocytes and embryos is essential for acquisition of developmental competence in mammals. Here, we hypothesized that several genes expressed in oocytes and pre-implantation embryos remain unknown. Our goal was to reconstruct the transcriptome of oocytes (germinal vesicle and metaphase II) and pre-implantation cattle embryos (blastocysts) using short-read and long-read sequences to identify putative new genes. RESULTS We identified 274,342 transcript sequences and 3,033 of those loci do not match a gene present in official annotations and thus are potential new genes. Notably, 63.67% (1,931/3,033) of potential novel genes exhibited coding potential. Also noteworthy, 97.92% of the putative novel genes overlapped annotation with transposable elements. Comparative analysis of transcript abundance identified that 1,840 novel genes (recently added to the annotation) or potential new genes were differentially expressed between developmental stages (FDR < 0.01). We also determined that 522 novel or potential new genes (448 and 34, respectively) were upregulated at eight-cell embryos compared to oocytes (FDR < 0.01). In eight-cell embryos, 102 novel or putative new genes were co-expressed (|r|> 0.85, P < 1 × 10-8) with several genes annotated with gene ontology biological processes related to pluripotency maintenance and embryo development. CRISPR-Cas9 genome editing confirmed that the disruption of one of the novel genes highly expressed in eight-cell embryos reduced blastocyst development (ENSBTAG00000068261, P = 1.55 × 10-7). CONCLUSIONS Our results revealed several putative new genes that need careful annotation. Many of the putative new genes have dynamic regulation during pre-implantation development and are important components of gene regulatory networks involved in pluripotency and blastocyst formation.
Collapse
Affiliation(s)
- Gustavo P Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michael Morozyuk
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
35
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
36
|
Yang K, Tang Y, Li Y, Guo W, Hu Z, Wang X, Berger F, Li J. Two imprinted genes primed by DEMETER in the central cell and activated by WRKY10 in the endosperm. J Genet Genomics 2024; 51:855-865. [PMID: 38599515 DOI: 10.1016/j.jgg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring. This process is believed to be evolutionarily associated with genomic imprinting, resulting in parentally biased allelic gene expression. Beyond FertilizationIndependentSeed (FIS) genes, the number of imprinted genes involved in early endosperm development and seed size determination remains limited. This study introduces early endosperm-expressed HAIKU (IKU) downstream Candidate F-box 1 (ICF1) and ICF2 as maternally expressed imprinted genes (MEGs) in Arabidopsis thaliana. Although these genes are also demethylated by DEMETER (DME) in the central cell, their activation differs from the direct DME-mediated activation seen in classical MEGs such as the FIS genes. Instead, ICF maternal alleles carry pre-established hypomethylation in their promoters, priming them for activation by the WRKY10 transcription factor in the endosperm. On the contrary, paternal alleles are predominantly suppressed by CG methylation. Furthermore, we find that ICF genes partially contribute to the small seed size observed in iku mutants. Our discovery reveals a two-step regulatory mechanism that highlights the important role of conventional transcription factors in the activation of imprinted genes, which was previously not fully recognized. Therefore, the mechanism provides a new dimension to understand the transcriptional regulation of imprinting in plant reproduction and development.
Collapse
Affiliation(s)
- Ke Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yuling Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yue Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenbin Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhengdao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuanpeng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
37
|
Sun K, Bose D, Singh RK, Pei Y, Robertson ES. The F-box E3 ligase protein FBXO11 regulates EBNA3C-associated degradation of BCL6. J Virol 2024; 98:e0054824. [PMID: 38864622 PMCID: PMC11265398 DOI: 10.1128/jvi.00548-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Most mature B-cell malignancies originate from the malignant transformation of germinal center (GC) B cells. The GC reaction appears to have a role in malignant transformation, in which a major player of the GC reaction is BCL6, a key regulator of this process. We now demonstrate that BCL6 protein levels were dramatically decreased in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines and Burkitt's lymphoma cell lines. Notably, BCL6 degradation was significantly enhanced in the presence of both EBNA3C and FBXO11. Furthermore, the amino-terminal domain of EBNA3C, which contains residues 50-100, interacts directly with FBXO11. The expression of EBNA3C and FBXO11 resulted in a significant induction of cell proliferation. Furthermore, BCL6 protein expression levels were regulated by EBNA3C via the Skp Cullin Fbox (SCF)FBXO11 complex, which mediated its ubiquitylation, and knockdown of FBXO11 suppressed the transformation of lymphoblastoid cell lines. These data provide new insights into the function of EBNA3C in B-cell transformation during GC reaction and raise the possibility of developing new targeted therapies against EBV-associated cancers. IMPORTANCE The novel revelation in our study involves the suppression of BCL6 expression by the essential Epstein-Barr virus (EBV) antigen EBNA3C, shedding new light on our current comprehension of how EBV contributes to lymphomagenesis by impeding the germinal center reaction. It is crucial to note that while several EBV latent proteins are expressed in infected cells, the collaborative mechanisms among these proteins in regulating B-cell development or inducing B-cell lymphoma require additional investigation. Nonetheless, our findings carry significance for the development of emerging strategies aimed at addressing EBV-associated cancers.
Collapse
Affiliation(s)
- Kunfeng Sun
- The Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dipayan Bose
- The Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rajnish Kumar Singh
- The Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Erle S. Robertson
- The Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Bellon M, Yeh CH, Bai XT, Nicot C. The HTLV-I oncoprotein Tax inactivates the tumor suppressor FBXW7. J Virol 2024; 98:e0040524. [PMID: 38874362 PMCID: PMC11264933 DOI: 10.1128/jvi.00405-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Mutational analysis has demonstrated that the tumor suppressor, F-box and WD repeat domain containing 7 (FBXW7/FBW7/CDC4), is mutated in primary ATL patients. However, even in the absence of genetic mutations, FBXW7 substrates are stabilized in ATL cells, suggesting additional mechanisms can prevent FBXW7 functions. Here, we report that the viral oncoprotein Tax represses FBXW7 activity, resulting in the stabilization of activated Notch intracellular domain, c-MYC, Cyclin E, and myeloid cell leukemia sequence 1 (BCL2-related) (Mcl-1). Mechanistically, we demonstrate that Tax directly binds to FBXW7 in the nucleus, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 substrates. In support of the nuclear role of Tax, a non-degradable form of the nuclear factor kappa B subunit 2 (NFκB2/p100) was found to delocalize Tax to the cytoplasm, thereby preventing Tax interactions with FBXW7 and Tax-mediated inhibition of FBXW7. Finally, we characterize a Tax mutant that is unable to interact with FBXW7, unable to block FBXW7 tumor suppressor functions, and unable to effectively transform fibroblasts. These results demonstrate that HTLV-I Tax can inhibit FBXW7 functions without genetic mutations to promote an oncogenic state. These results suggest that Tax-mediated inhibition of FBXW7 is likely critical during the early stages of the cellular transformation process. IMPORTANCE F-box and WD repeat domain containing 7 (FBXW7), a critical tumor suppressor of human cancers, is frequently mutated or epigenetically suppressed. Loss of FBXW7 functions is associated with stabilization and increased expression of oncogenic factors such as Cyclin E, c-Myc, Mcl-1, mTOR, Jun, and Notch. In this study, we demonstrate that the human retrovirus human T-cell leukemia virus type 1 oncoprotein Tax directly interacts with FBXW7, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 cellular substrates. We further demonstrate that a Tax mutant unable to interact with and inactivate FBXW7 loses its ability to transform primary fibroblasts. Collectively, our results describe a novel mechanism used by a human tumor virus to promote cellular transformation.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chien-hung Yeh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xue Tao Bai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
39
|
Johnson BS, Farkas D, El-Mergawy R, Adair JA, Elhance A, Eltobgy M, Coan FM, Chafin L, Joseph JA, Cornwell A, Johns FJ, Rosas L, Rojas M, Farkas L, Bednash JS, Londino JD, Ray P, Ray A, Kagan V, Lee JS, Chen BB, Mallampalli RK. Targeted degradation of extracellular mitochondrial aspartyl-tRNA synthetase modulates immune responses. Nat Commun 2024; 15:6172. [PMID: 39039092 PMCID: PMC11263397 DOI: 10.1038/s41467-024-50031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The severity of bacterial pneumonia can be worsened by impaired innate immunity resulting in ineffective pathogen clearance. We describe a mitochondrial protein, aspartyl-tRNA synthetase (DARS2), which is released in circulation during bacterial pneumonia in humans and displays intrinsic innate immune properties and cellular repair properties. DARS2 interacts with a bacterial-induced ubiquitin E3 ligase subunit, FBXO24, which targets the synthetase for ubiquitylation and degradation, a process that is inhibited by DARS2 acetylation. During experimental pneumonia, Fbxo24 knockout mice exhibit elevated DARS2 levels with an increase in pulmonary cellular and cytokine levels. In silico modeling identified an FBXO24 inhibitory compound with immunostimulatory properties which extended DARS2 lifespan in cells. Here, we show a unique biological role for an extracellular, mitochondrially derived enzyme and its molecular control by the ubiquitin apparatus, which may serve as a mechanistic platform to enhance protective host immunity through small molecule discovery.
Collapse
Affiliation(s)
- Benjamin S Johnson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Daniela Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Rabab El-Mergawy
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Jessica A Adair
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Ajit Elhance
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Moemen Eltobgy
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Francesca M Coan
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Lexie Chafin
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Jessica A Joseph
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Alex Cornwell
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Finny J Johns
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Lorena Rosas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Mauricio Rojas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Joseph S Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - James D Londino
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Prabir Ray
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, the University of Pittsburgh, Pittsburgh, PA, and Sleep Medicine, Pittsburgh, PA, USA
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, the University of Pittsburgh, Pittsburgh, PA, and Sleep Medicine, Pittsburgh, PA, USA
| | - Valerian Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Bill B Chen
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, the University of Pittsburgh, Pittsburgh, PA, and Sleep Medicine, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
40
|
Zhou B, Sheng Q, Yao X, Li T, Lu L. Overexpression of CsBRC, an F-box gene from Camellia sinensis, increased the plant branching in tobacco and rice. PLANT DIRECT 2024; 8:e618. [PMID: 38962172 PMCID: PMC11220506 DOI: 10.1002/pld3.618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Tea plant (Camellia sinensis [L.]) is one of the most important crops in China, and tea branch is an important agronomic trait that determines the yield of tea plant. In previous work focused on GWAS that detecting GWAS signals related to plant architecture through whole genome re-sequencing of ancient tea plants, a gene locus TEA 029928 significantly related to plant type was found. Sequence alignment results showed that this gene belonged to the F-box family. We named it CsBRC. CsBRC-GFP fusion proteins were mainly localized in the plasma membrane. By comparing the phenotypes of CsBRC transgenic tobacco and WT tobacco, it was found that the number of branches of transgenic tobacco was significantly higher than that of wild-type tobacco. Through RNA-seq analysis, it was found that CsBRC affects the branching development of plants by regulating the expression of genes related to brassinosteroid synthesis pathway in plants. In addition, overexpression of CsBRC in rice could increase tiller number, grain length and width, and 1,000-grain weight.
Collapse
Affiliation(s)
- Bokun Zhou
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life ScienceGuizhou UniversityGuiyangChina
| | - Qi Sheng
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life ScienceGuizhou UniversityGuiyangChina
| | - Xinzhuan Yao
- College of Tea Science, Institute of Plant Health and MedicineGuizhou UniversityGuiyangChina
| | - Tong Li
- College of Tea Science, Institute of Plant Health and MedicineGuizhou UniversityGuiyangChina
| | - Litang Lu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life ScienceGuizhou UniversityGuiyangChina
- College of Tea Science, Institute of Plant Health and MedicineGuizhou UniversityGuiyangChina
| |
Collapse
|
41
|
Zhuang X, Ruan J, Zhou C, Li Z. The emerging and diverse roles of F-box proteins in spermatogenesis and male infertility. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:13. [PMID: 38918264 PMCID: PMC11199460 DOI: 10.1186/s13619-024-00196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.
Collapse
Affiliation(s)
- Xuan Zhuang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 363000, China
- Department of Urology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Jun Ruan
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Canquan Zhou
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Center for Reproductive Medicine and Department of Gynecology & Obstetrics, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhiming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
42
|
Breen PC, Kanakanui KG, Newman MA, Dowen RH. The F-box protein FBXL-5 governs vitellogenesis and lipid homeostasis in C. elegans. Front Cell Dev Biol 2024; 12:1389077. [PMID: 38946799 PMCID: PMC11211535 DOI: 10.3389/fcell.2024.1389077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the Caenorhabditis elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6, a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1, which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.
Collapse
Affiliation(s)
- Peter C Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Kendall G Kanakanui
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Martin A Newman
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Robert H Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| |
Collapse
|
43
|
Yang Y, Xie Q, Hu C, Xu J, Chen L, Li Y, Luo C. F-box proteins and gastric cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Int J Med Sci 2024; 21:1575-1588. [PMID: 38903918 PMCID: PMC11186432 DOI: 10.7150/ijms.91584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy characterized by significant morbidity and mortality, yet its underlying pathogenesis remains elusive. The etiology of GC is multifaceted, involving the activation of oncogenes and the inactivation of antioncogenes. The ubiquitin-proteasome system (UPS), responsible for protein degradation and the regulation of physiological and pathological processes, emerges as a pivotal player in GC development. Specifically, the F-box protein (FBP), an integral component of the SKP1-Cullin1-F-box protein (SCF) E3 ligase complex within the UPS, has garnered attention for its prominent role in carcinogenesis, tumor progression, and drug resistance. Dysregulation of several FBPs has recently been observed in GC, underscoring their significance in disease progression. This comprehensive review aims to elucidate the distinctive characteristics of FBPs involved in GC, encompassing their impact on cell proliferation, apoptosis, invasive metastasis, and chemoresistance. Furthermore, we delve into the emerging role of FBPs as downstream target proteins of non-coding RNAs(ncRNAs) in the regulation of gastric carcinogenesis, outlining the potential utility of FBPs as direct therapeutic targets or advanced therapies for GC.
Collapse
Affiliation(s)
- Yanzhen Yang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Qu Xie
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Can Hu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Jingli Xu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Lei Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Yuan Li
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Cong Luo
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| |
Collapse
|
44
|
Zheng L, Shen J, Chen Y, Lin J, Li P, Zhao X, Ren H, Sun Y, Wang Z. FBXO43 promotes cell cycle progression in cancer cells through stabilizing SKP2. Cancer Lett 2024; 591:216848. [PMID: 38604312 DOI: 10.1016/j.canlet.2024.216848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
FBXO43 is a member of the FBXO subfamily of F-box proteins, known to be a regulatory hub during meiosis. A body of data showed that FBXO43 is overexpressed in a number of human cancers. However, whether and how FBXO43 affects cell cycle progression and growth of cancer cells remain elusive. In this study, we provide first piece of evidence, showing a pivotal role of FBXO43 in cell cycle progression and growth of cancer cells. Specifically, FBXO43 acts as a positive cell cycle regulator with an oncogenic activity in variety types of human cancer, including non-small cell lung cancer, hepatocellular carcinoma and sarcoma. Mechanistically, FBXO43 interacts with phosphorylated SKP2 induced by AKT1, leading to reduced SKP2 auto-ubiquitylation and subsequent proteasome degradation. Taken together, our study demonstrates that FBXO43 promotes cell cycle progression by stabilizing SKP2, and FBXO43 could serve as a potential anti-cancer target.
Collapse
Affiliation(s)
- Liyun Zheng
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiajia Shen
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Chen
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Lin
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Pengyu Li
- Qilu Hospital of Shan Dong University, Jinan, Shandong Province, China
| | - Xiaoli Zhao
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hangjiang Ren
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Research Center for Life Science and Human Health, Beijing Institute of Zhejiang University, Hangzhou, China.
| | - Zhen Wang
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
45
|
Lauinger L, Andronicos A, Flick K, Yu C, Durairaj G, Huang L, Kaiser P. Cadmium binding by the F-box domain induces p97-mediated SCF complex disassembly to activate stress response programs. Nat Commun 2024; 15:3894. [PMID: 38719837 PMCID: PMC11079001 DOI: 10.1038/s41467-024-48184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.
Collapse
Affiliation(s)
- Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Anna Andronicos
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Karin Flick
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Geetha Durairaj
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
46
|
Xian W, Fu J, Zhang Q, Li C, Zhao YB, Tang Z, Yuan Y, Wang Y, Zhou Y, Brzoic PS, Zheng N, Ouyang S, Luo ZQ, Liu X. The Shigella kinase effector OspG modulates host ubiquitin signaling to escape septin-cage entrapment. Nat Commun 2024; 15:3890. [PMID: 38719850 PMCID: PMC11078946 DOI: 10.1038/s41467-024-48205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.
Collapse
Affiliation(s)
- Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, 130021, Changchun, China
| | - Qinxin Zhang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Chuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan-Bo Zhao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yan Zhou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Peter S Brzoic
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
47
|
Lu J, Zhang G, Ma C, Li Y, Jiang C, Wang Y, Zhang B, Wang R, Qiu Y, Ma Y, Jia Y, Jiang CZ, Sun X, Ma N, Jiang Y, Gao J. The F-box protein RhSAF destabilizes the gibberellic acid receptor RhGID1 to mediate ethylene-induced petal senescence in rose. THE PLANT CELL 2024; 36:1736-1754. [PMID: 38315889 PMCID: PMC11062431 DOI: 10.1093/plcell/koae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.
Collapse
Affiliation(s)
- Jingyun Lu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guifang Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yao Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chuyan Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaru Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bingjie Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuexuan Qiu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yangchao Jia
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
48
|
Kaneda Y, Miyata H, Xu Z, Shimada K, Kamoshita M, Nakagawa T, Emori C, Ikawa M. FBXO24 deletion causes abnormal accumulation of membraneless electron-dense granules in sperm flagella and male infertility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566635. [PMID: 37986737 PMCID: PMC10659433 DOI: 10.1101/2023.11.10.566635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ribonucleoprotein (RNP) granules are membraneless electron-dense structures rich in RNAs and proteins, and involved in various cellular processes. Two RNP granules in male germ cells, intermitochondrial cement and the chromatoid body (CB), are associated with PIWI-interacting RNAs (piRNAs) and are required for transposon silencing and spermatogenesis. Other RNP granules in male germ cells, the reticulated body and CB remnants, are also essential for spermiogenesis. In this study, we disrupted FBXO24, a testis-enriched F-box protein, in mice and found numerous membraneless electron-dense granules accumulated in sperm flagella. Fbxo24 knockout (KO) mice exhibited malformed flagellar structures, impaired sperm motility, and male infertility, likely due to the accumulation of abnormal granules. The amount and localization of known RNP granule-related proteins were not disrupted in Fbxo24 KO mice, suggesting that the accumulated granules were distinct from known RNP granules. Further studies revealed that RNAs and two importins, IPO5 and KPNB1, abnormally accumulated in Fbxo24 KO spermatozoa and that FBXO24 could ubiquitinate IPO5. In addition, IPO5 and KPNB1 were recruited to stress granules, RNP complexes, when cells were treated with oxidative stress or a proteasome inhibitor. These results suggest that FBXO24 is involved in the degradation of IPO5, disruption of which may lead to the accumulation of abnormal RNP granules in sperm flagella.
Collapse
Affiliation(s)
- Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Zoulan Xu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Maki Kamoshita
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Tatsuya Nakagawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 5650871 JAPAN
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 1088639 JAPAN
- Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, 2-8 Yamadaoka, Suita, Osaka 5650871 JAPAN
| |
Collapse
|
49
|
Breen PC, Kanakanui KG, Newman MA, Dowen RH. The F-box protein FBXL-5 governs vitellogenesis and lipid homeostasis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590113. [PMID: 38712300 PMCID: PMC11071313 DOI: 10.1101/2024.04.18.590113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the C. elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6 , a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1 , which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.
Collapse
|
50
|
Wu J, Wen T, Marzio A, Song D, Chen S, Yang C, Zhao F, Zhang B, Zhao G, Ferri A, Cheng H, Ma J, Ren H, Chen QY, Yang Y, Qin S. FBXO32-mediated degradation of PTEN promotes lung adenocarcinoma progression. Cell Death Dis 2024; 15:282. [PMID: 38643215 PMCID: PMC11032391 DOI: 10.1038/s41419-024-06635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
FBXO32, a member of the F-box protein family, is known to play both oncogenic and tumor-suppressive roles in different cancers. However, the functions and the molecular mechanisms regulated by FBXO32 in lung adenocarcinoma (LUAD) remain unclear. Here, we report that FBXO32 is overexpressed in LUAD compared with normal lung tissues, and high expression of FBXO32 correlates with poor prognosis in LUAD patients. Firstly, we observed with a series of functional experiments that FBXO32 alters the cell cycle and promotes the invasion and metastasis of LUAD cells. We further corroborate our findings using in vivo mouse models of metastasis and confirmed that FBXO32 positively regulates LUAD tumor metastasis. Using a proteomic-based approach combined with computational analyses, we found a positive correlation between FBXO32 and the PI3K/AKT/mTOR pathway, and identified PTEN as a FBXO32 interactor. More important, FBXO32 binds PTEN via its C-terminal substrate binding domain and we also validated PTEN as a bona fide FBXO32 substrate. Finally, we demonstrated that FBXO32 promotes EMT and regulates the cell cycle by targeting PTEN for proteasomal-dependent degradation. In summary, our study highlights the role of FBXO32 in promoting the PI3K/AKT/mTOR pathway via PTEN degradation, thereby fostering lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Jie Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Antonio Marzio
- Department of Pathology and Laboratory Medicine, Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Dingli Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sisi Chen
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengcheng Yang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengyu Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Boxiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Alessandra Ferri
- Department of Pathology and Laboratory Medicine, Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Hao Cheng
- Department of Rehabilitation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiao Ma
- Department of Rehabilitation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yiping Yang
- Clinical Research Center for Shaanxi Provincial Radiotherapy, Department of Radiation Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China.
| | - Sida Qin
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|