1
|
Huang T, Ma X, Zhao Z, Qin D, Qin W, Wang J, Chen B, He X. Homeostasis of Calnexin Is Essential for the Growth, Virulence, and Hypovirus RNA Accumulation in the Chestnut Blight Fungus. Mol Microbiol 2025; 123:393-405. [PMID: 39935319 DOI: 10.1111/mmi.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/24/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Calnexin, a calcium-binding protein, promotes correct protein folding and prevents incompletely folded glycopolypeptides from premature oxidation and degradation. Cryphonectria parasitica, an ascomycete fungus responsible for chestnut blight, poses a significant threat to the chestnut forest or orchards worldwide. Although various aspects of calnexin have been investigated, little is known about the impact of fungal viruses. CpCne was identified and characterized in this study, encoding the calnexin in C. parasitica. Strains with deletion or interference of the CpCne gene had a significant reduction in biomass and pathogenicity, and strains with overexpression of the CpCne gene had retarded growth and reduced pathogenicity. Transcriptome analysis showed that the △CpCne mutant had significant changes in the expression of genes related to carbohydrate metabolism, cell wall polysaccharide synthesis and degradation, indicating that CpCne may reduce virulence by affecting the cell wall. Additionally, the △CpCne mutant was sensitive to endoplasmic reticulum (ER) stress, suggesting that CpCne plays an important role in maintaining ER homeostasis. Furthermore, CpCne was also involved in the interaction between C. parasitica and the CHV1-EP713. Deletion or overexpression of the CpCne gene reduced viral RNA accumulation, and deletion of the CpCne gene altered the lipid and carboxylic acid metabolic pathways, thereby interfering with virus replication and assembly. Together, we demonstrated that the homeostasis of calnexin in C. parasitica (CpCne) is essential for hyphal growth and virulence, and revealed its role in viral replication and virulence.
Collapse
Affiliation(s)
- Tao Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xiaoling Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Ziqi Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Danna Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Weiye Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jinzi Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Protection and Utilization of Marine Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xipu He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Zhang W, Zhong J, Zhu JZ, Chen Y, Wang YR. Two novel mitoviruses coinfecting the fungus Colletotrichum karstii. Arch Virol 2025; 170:100. [PMID: 40216691 DOI: 10.1007/s00705-025-06290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Here, we isolated two novel mycoviruses coinfecting the fugus Colletotrichum karstii, which were designated as "Colletotrichum karstii mitovirus 1" (CkMV1) and "Colletotrichum karstii mitovirus 2" (CkMV2). The length of the complete genome of CkMV1 is 2,441 nucleotides, and that of CkMV2 is 2,391 nucleotides. Both contain a single open reading frame (ORF) that encodes an RNA-dependent RNA polymerase (RdRp). BLAST searches showed that the amino acids (aa) sequences of CkMV1 and CkMV2 had the highest amino acid sequence identity of 35.41% and 52.37% to the RdRp of Pleurotus pulmonarius duamitovirus 1 and Fusarium oxysporum f. sp. cubense mitovirus 4, respectively. Phylogenetic analysis based on RdRp sequences revealed that CkMV1 grouped with members of the genus Duamitovirus and that CkMV2 grouped with members of the genus Unuamitovirus, both within the family Mitoviridae.
Collapse
Affiliation(s)
- Wei Zhang
- College of Agronomy, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunmin, Yunnan Province, 650021, P.R. China.
| | - Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China.
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, College of Pratacultural Science, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
3
|
Li C, Wu Y, Li X, An H, Fang S, Zhang S, Deng Q. Molecular characterization of a novel gammascleroulivirus from the rice blast fungus Magnaporthe oryzae isolate ES155. Arch Virol 2025; 170:85. [PMID: 40121345 DOI: 10.1007/s00705-025-06267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025]
Abstract
A novel single-stranded (+ss) RNA mycovirus, designated as "Magnaporthe oryzae botourmiavirus 14" (MoBV14), was identified in the rice blast fungus Magnaporthe oryzae isolate ES155. The viral genome is 2,336 nucleotides in length and contains a single open reading frame (ORF) that is predicted to encode an RNA-dependent RNA polymerase (RdRp). Genome sequence comparisons and phylogenetic analysis indicated that MoBV14 is a new member of the genus Gammascleroulivirus in the family Botourmiaviridae.
Collapse
Affiliation(s)
- Cong Li
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yuxin Wu
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xinyi Li
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Hongliu An
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Shouguo Fang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qingchao Deng
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
- Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
4
|
Mu F, Xia J, Jia J, Jiang D, Zhang B, Fu Y, Cheng J, Xie J. Exploring the interaction between endornavirus and Sclerotinia sclerotiorum: mechanisms of phytopathogenic fungal virulence and antivirus. mBio 2025; 16:e0336524. [PMID: 39969183 PMCID: PMC11898685 DOI: 10.1128/mbio.03365-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Hypovirulence-associated mycoviruses have the potential as biocontrol agents for plant fungal disease management, and exploration of the interactions between these mycoviruses and phytopathogenic fungi can provide opportunities to elucidate the underlying mechanisms of hypovirulence and antiviruses. We previously found that Sclerotinia sclerotiorum endornavirus 3 (SsEV3), belonging to the genus Betaendornavirus within the family Endornaviridae, confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum, but the underlying mechanisms remains unclear. In this study, we found that the SsEV3-infected strain produced fewer sclerotia, failed to form infection cushions on plant hosts, exhibited increased cell vacuolation, and was more sensitive to abiotic stresses. SsEV3 infection evoked transcriptional rewiring in S. sclerotiorum, affecting genes related to virulence factors for pathogenicity and RNAi pathway for antiviruses. An unknown biological function of gene Sssnf1 was downregulated following SsEV3 infection. Deletion of Sssnf1 impaired infection cushion formation and decreased virulence of S. sclerotiorum. Five key RNAi-related genes were significantly upregulated, and deletion of Ssdcl2 contributed to SsEV3 accumulation. Additionally, we identified a hypothetical protein encoded by Sshp1 that directly interacts with the RNA-dependent RNA polymerase (RdRp) domain encoded by SsEV3. Although the deletion mutants of Sshp1 exhibited normal colony morphology, they showed higher SsEV3 accumulation and reduced resistance to reactive oxygen species, indicating that this gene, similar to RNAi-related genes, plays an antiviral role in response to SsEV3 infection and may represent a new antivirus factor. Therefore, examination of the interaction between endornavirus and S. sclerotiorum provides new insights into the mechanisms of antivirus and virulence in phytopathogenic fungi.IMPORTANCEHypovirulence-associated mycoviruses have emerged as promising biocontrol agents, and studying their interactions with phytopathogenic fungi helps uncover mechanisms of fungal pathogenesis and antiviral defense. This study provides critical insights into the interaction between Sclerotinia sclerotiorum and its hypovirulence-associated endornavirus, SsEV3, elucidating the molecular mechanisms underlying mycovirus-induced changes in fungal virulence and antivirus defense. SsEV3 infection not only impairs fungal virulence traits, including infection cushion formation and sclerotial production but also triggers host antiviral responses involving typical RNA interference pathways. New virulence factors, such as Sssnf1, and antiviral factors, such as Sshp1, were identified based on the established interaction system between S. sclerotiorum and endornavirus. These findings deepen our understanding of fungus-mycovirus interactions, highlighting the role of SsEV3 in reducing the virulence of S. sclerotiorum, and facilitating the development of mycovirus-based biological control strategies.
Collapse
Affiliation(s)
- Fan Mu
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Managementin Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- National Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinsheng Xia
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Managementin Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jichun Jia
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Managementin Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Managementin Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yanping Fu
- National Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiaseng Cheng
- National Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
5
|
Rueda-Maíllo F, Garrido-Jurado I, Kotta-Loizou I, Quesada-Moraga E. A mycoviral infection drives virulence and ecological fitness of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 2025; 209:108251. [PMID: 39644991 DOI: 10.1016/j.jip.2024.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Entomopathogenic ascomycetes are important natural regulators of insect pest populations and an increasingly adopted microbial control option. Fungal virulence in entomopathogenic ascomycetes can be modified by mycoviruses, viruses that infect fungi, whereas the possible role of these viruses on the physical and biochemical properties of the virus-containing fungal strains and on their ecological fitness has remained largely unexplored. Here, utilizing a Beauveria bassiana strain naturally infected with two mycoviruses, Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1), we found that the mycovirus-containing strain is hypervirulent towards the experimental insect Galleria mellonella and shows major physical and biochemical changes in spore size, isoelectric point, and Pr1 activity, but even more impactful, the mycoviral infection confers a significant environmental- abiotic and biotic stress tolerance to the fungus. Hence, mycovirus infection expanded the temperature range for fungal growth and germination, and improved tolerance to osmotic stress, water stress, and UV-B radiation. Similarly, the antagonistic activity of the mycovirus-containing strain against Trichoderma harzianum was increased as compared to the mycovirus-free one. Taken together, these data suggest for the first time a mycovirus related adaptation of key traits indicators of environmental competence of a beneficial fungus, rendering these mycoviruses as potent tools for entomopathogenic fungal strain selection and development as mycoinsecticides.
Collapse
Affiliation(s)
- F Rueda-Maíllo
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, United Kingdom
| | - E Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain.
| |
Collapse
|
6
|
Ma G, Zhang Y, Ma L, Cui K, Zhang B, Jiang H, Qi K, Qi J. Molecular and Biological Characterization of an Isolate of Fusarium graminearum dsRNA mycovirus 4 (FgV4) from a New Host Fusarium pseudograminearum. Microorganisms 2025; 13:418. [PMID: 40005784 PMCID: PMC11858025 DOI: 10.3390/microorganisms13020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Wheat Fusarium crown rot (FCR), mainly caused by Fusarium pseudograminearum, is one of the most important diseases. Some mycoviruses are reported to have a hypovirulence trait and considered as a biocontrol agent for plant fungal diseases. In most cases, mycovirus biological effects have not been explored clearly. In this study, we identified and characterized a novel isolate of double-stranded RNA (dsRNA) mycovirus, Fusarium graminearum dsRNA mycovirus 4 (FgV4), from a new host, an isolate WC9-2 of F. pseudograminearum. The genome of FgV4-WC9-2 includes two dsRNA segments of 2194 bp and 1738 bp. FgV4-WC9-2 dsRNA1 contains a single open reading frame (ORF1), which encodes a protein of 675 amino acids (aa) and has a conserved RNA-dependent RNA polymerase (RdRp) domain. FgV4-WC9-2 dsRNA2 contains two discontinuous ORFs (ORF2-1 and ORF2-2) that code for hypothetical proteins with unknown function. Biological characteristics research has shown that FgV4-WC9-2 infection did not change the colony morphology, but it could significantly decrease colony growth rate. FgV4-WC9-2 could also reduce the sporulation ability, change the conidia size and reduce the pathogenicity of the host to a certain extent. This study is the first to describe a hypovirulence-associated orthocurvulavirus infecting F. pseudograminearum, which has the potential to assist with FCR disease biological management.
Collapse
Affiliation(s)
- Guoping Ma
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.M.); (Y.Z.); (L.M.); (B.Z.); (H.J.)
| | - Yueli Zhang
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.M.); (Y.Z.); (L.M.); (B.Z.); (H.J.)
| | - Liguo Ma
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.M.); (Y.Z.); (L.M.); (B.Z.); (H.J.)
| | - Kai Cui
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Bo Zhang
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.M.); (Y.Z.); (L.M.); (B.Z.); (H.J.)
| | - Hang Jiang
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.M.); (Y.Z.); (L.M.); (B.Z.); (H.J.)
| | - Kai Qi
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.M.); (Y.Z.); (L.M.); (B.Z.); (H.J.)
| | - Junshan Qi
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.M.); (Y.Z.); (L.M.); (B.Z.); (H.J.)
| |
Collapse
|
7
|
Zhang L, Li P, Wang Y, Wang S, Guo L. p18 encoded by FgGMTV1 is responsible for asymptomatic infection in Fusarium graminearum. mBio 2025; 16:e0306624. [PMID: 39584833 PMCID: PMC11708013 DOI: 10.1128/mbio.03066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
The intricate interplay between mycoviruses and their fungal hosts frequently culminates in asymptomatic infections, but the virus-derived factors underlying these infections remain poorly understood. Our study introduces p18, a novel protein encoded by the DNA-C segment of the genomovirus FgGMTV1, which facilitates the transition from virus-induced hypovirulence to asymptomatic infection within Fusarium graminearum upon its expression. We have confirmed the expression of p18 during FgGMTV1 infection and observed its presence in both the nucleus and cytoplasm. Remarkably, strains with a p18 null mutation show a significant reduction in colony expansion, conidial production, and virulence, leading to a hypovirulent phenotype. Our results also indicate that p18 hinders the accumulation of FgGMTV1, thus determining asymptomatic infection and enabling vertical transmission through conidia. Furthermore, the p18 null mutant virus converts F. graminearum from virulent to hypovirulent strains on wheat leaves after horizontal transmission. This work not only expands our knowledge of the genomovirus proteome but also provides insights into the strategies of viral evolution and adaptation. Moreover, we propose an innovative approach for creating hypovirulent strains utilizing engineered mycoviruses for the biocontrol of plant pathogenic fungi. IMPORTANCE Mycovirus-fungus interplay often leads to asymptomatic infections. Our study identifies p18, a novel protein from the genomovirus FgGMTV1, as a key determinant of asymptomatic infection in Fusarium graminearum. A p18-null mutant exhibits a pronounced hypovirulent phenotype. By modulating viral accumulation, p18 promotes asymptomatic infection and facilitates vertical transmission via conidia. This insight deepens our understanding of mycovirus-fungus interactions and introduces a novel strategy for biocontrol using engineered mycoviruses.
Collapse
Affiliation(s)
- Lihang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengfei Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yanfei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Wu CF, Regedanz E, Mathew F, Kashyap R, Mohan K, Marzano SYL. Mycovirome of Diaporthe helianthi and D. gulyae, causal agents of Phomopsis stem canker of sunflower (Helianthus annuus L.). Virus Res 2025; 351:199521. [PMID: 39732174 PMCID: PMC11750566 DOI: 10.1016/j.virusres.2024.199521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Diaporthe gulyae and D. helianthi cause Phomopsis stem canker, which is a yield-limiting fungal disease of sunflower (Helianthus annuus L.) in the United States. In this study, the mycovirus population was characterized in D. gulyae and D. helianthi using 52 and 42 isolates, respectively, that were recovered from diseased sunflower plants randomly sampled from commercial sunflower fields in the U.S. states of Minnesota, Nebraska, North Dakota, and South Dakota. Total RNA extracts depleted of rRNA from each fungus were pooled to construct one library for sequencing to obtain 20 GB per library of raw reads using a metatranscriptomics approach. Only the family Mitoviridae was present in both Diaporthe species. Twelve and nine novel viral contigs were discovered infecting D. gulyae and D. helianthi, respectively. Additionally, we detected two of the same viruses infecting D. helianthi, Helianthus annuus leaf-associated partitivirus 3 and 5, that were detected in a direct sunflower metatranscriptome reported before. Interestingly, Qinvirus, which is mostly known as a group of insect viruses, was found in a contig. An ambivirus that is rarely reported in the phylum Ascomycota was also discovered in this study. Besides an understanding of virome diversity, the mycovirome survey provides the first clue of biological molecules that can be further developed for antifungal purposes.
Collapse
Affiliation(s)
- Chien-Fu Wu
- Department of Plant Pathology, Ohio State University, Wooster, OH, United States
| | - Elizabeth Regedanz
- USDA-ARS, Application Technology Research Unit, Wooster, OH, United States
| | - Febina Mathew
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Ruchika Kashyap
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Karthika Mohan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | | |
Collapse
|
9
|
Zhang K, Mu G, Wu W, Wang P, Shang J, Li C, Deng Q, Fang S, Wang H, Zhang S. An isolate of human blood-associated partitivirus naturally infects the phytopathogenic fungus Bipolaris maydis. Arch Virol 2024; 170:17. [PMID: 39671103 DOI: 10.1007/s00705-024-06204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Human blood-associated partitivirus (HuBPV) was first identified through metagenomic analysis of serum samples from two Peruvians, but its natural host remains unknown. Here, we report the detection of an HuBPV strain (HuBPV-Bm) in the phytopathogenic fungus Bipolaris maydis strain HN11 in Hubei Province, China. The dsRNA1 and dsRNA2 of HuBPV-Bm show more than 97.6% and 98.8% nucleotide sequence identity, respectively, to those from the metagenomically discovered HuBPV strain (HuBPV-M). Notably, HuBPV-Bm contains a third dsRNA segment that was not reported for HuBPV-M. All mycelia derived from individual asexual spores of HN11 tested positive for HuBPV-Bm, as did nine out of 293 B. maydis strains collected across Hubei.
Collapse
Affiliation(s)
- Kun Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, 434025, China
| | - Ge Mu
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Weilan Wu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, 434025, China
| | - Peng Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Jun Shang
- Liupanshui Branch of Guizhou Tobacco Company, Liupanshui, 553000, China
| | - Changquan Li
- Liupanshui Branch of Guizhou Tobacco Company, Liupanshui, 553000, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, 434025, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, 434025, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Haoran Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, 434025, China.
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
10
|
Wang YR, Zhong J, Liu TB, Xiao YS. Genomic characteristics of a novel non-segmented double-stranded RNA mycovirus from the fungus Nigrospora oryzae. Arch Virol 2024; 169:249. [PMID: 39560795 DOI: 10.1007/s00705-024-06178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/30/2024] [Indexed: 11/20/2024]
Abstract
In this study, a novel virus isolated from Nigrospora oryzae, tentatively named "Nigrospora oryzae mycovirus 1" (NoMyV1), was identified. NoMyV1 has a non-segmented dsRNA genome that is 2891 bp in length and contains two non-overlapping open reading frames (ORF1 and 2). ORF1 encodes a protein with sequence similarity to the putative capsid proteins or hypothetical proteins of other unclassified viruses, while ORF2 encodes an RNA-dependent RNA polymerase (RdRp). Sequence comparisons showed that NoMyV1 was most similar to Penicillium janczewskii Beauveria bassiana-like virus 1 (PjBblV1), with 76.12% amino acid sequence identity in the RdRp. In a phylogenetic analysis based on RdRp sequences, NoMyV1 was found to cluster with several other unclassified viruses for which a new genus, "Unirnavirus", which is distinct from the family Partitiviridae, has been proposed. Thus, we conclude that NoMyV1 is a novel member of the proposed genus "Unirnavirus".
Collapse
Affiliation(s)
- Ya Rong Wang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Colleage of Pratacultural Science, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, PR China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province, 410128, P.R. China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province, 410128, P.R. China
| | - Tian Bo Liu
- Tobacco Research Institute of Hunan Province, Changsha City, Hunan Province, 410004, P.R. China.
| | - Yan Song Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou City, Hunan Province, 423000, P.R. China.
| |
Collapse
|
11
|
Duan J, Zhang A, Fu Y, Lin Y, Xie J, Cheng J, Chen T, Li B, Yu X, Lyu X, Jiang D. A Mycovirus Representing a Novel Lineage and a Mitovirus of Botrytis cinerea Co-Infect a Basidiomycetous Fungus, Schizophyllum commune. Viruses 2024; 16:1767. [PMID: 39599881 PMCID: PMC11598958 DOI: 10.3390/v16111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Strain IBc-114 was isolated from a gray mold lesion and was identified as the fungus Schizophyllum commune. In this strain, two mycoviruses, Schizophyllum commune RNA virus 1 (ScRV1, C_AA053475.1) and Botrytis cinerea mitovirus 9 strain IBc-114 (BcMV9/IBc-114, C_AA053476.1), were isolated and characterized. ScRV1 has flexuous filamentous particles about 20 ± 2.1 nm in diameter and 1000 ± 94.2 nm in length. The genome of ScRV1 is 7370 nt in length and contains two open reading frames (ORFs) which encode a polyprotein and a coat protein, respectively. The polyprotein has 1967 aa, including a helicase domain and an RdRp domain which has the highest identity of 28.21% with that of Entomophthora benyvirus E (EbVE). The coat protein has 241 aa which is mostly phylogenetically close to the coat proteins of Alphatetraviridae. Based on the phylogenetic analysis of ScRV1 and viruses selected, ScRV1 might represent a new family (temporarily named Mycobenyviridae) of the order Hepelivirales. The genome of BcMV9/IBc-114 that infects S. commune is 2729 nt in length and has only one ORF encoding an RdRp protein with 719 aa. BcMV9/IBc-114 has the highest identity of 98.61% with Botrytis cinerea mitovirus 9 (BcMV9) (MT089704). ScRV1, but not BcMV9/IBc-114, has certain effects on the host growth of S. commune. Furthermore, BcMV9/IBc-114 has been demonstrated to replicate in the ascomycetous fungi Botrytis cinerea and Sclerotinia sclerotiorum, and it negatively affects the growth and pathogenicity of B. cinerea, but it does not affect S. sclerotiorum. This is the first report of mycoviruses in S. commune and cross-phyla transmission of mitovirus in nature.
Collapse
Affiliation(s)
- Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Anmeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| |
Collapse
|
12
|
Wu CF, Okada R, Neri U, Chang YC, Ogawara T, Kitaura K, Komatsu K, Moriyama H. Identification of a novel mycovirus belonging to the "flexivirus"-related family with icosahedral virion. Virus Evol 2024; 10:veae093. [PMID: 39697687 PMCID: PMC11654247 DOI: 10.1093/ve/veae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
The order Tymovirales currently comprises five viral families with positive-sense RNA [(+)RNA] genomes that infect plants, fungi, and insects. Virion morphologies within the order Tymovirales differ between families, with icosahedral virions in the Tymoviridae and filamentous virions in the other "flexi"viridae families. Despite their different morphologies, these viruses are placed in the same order based on phylogenetic analyses of replicase-associated polyproteins. However, one of the families in the Tymovirales, Deltaflexiviridae, is considered to be capsidless because there have been no published reports of virion isolation. Here, we report that a new "flexivirus"-related (+)RNA virus, prospectively named Fusarium oxysporum icosahedral virus 1 (FoIV1), is icosahedral and that most deltaflexiviruses may have icosahedral virions. Phylogenetic analyses based on replicase-associated polyproteins indicated that FoIV1 forms a distinct group in the Tymovirales with some viruses originally assigned to the Deltaflexiviridae. Electron microscopy, protein analysis, and protein structure predictions indicate that FoIV1 open reading frame 4 encodes a single jelly-roll (SJR)-like coat protein (CP) that constitutes the icosahedral virions. Results of clustering analyses based on amino acid sequences and predicted CP structures suggested that most of the deltaflexiviruses have icosahedral virions composed of SJR-like CPs as in FoIV1, rather than having filamentous virions or capsidless. These results challenge the conventional understanding of viruses in the order Tymovirales, with important implications for revising its taxonomic framework and providing insights into the evolutionary relationships within this diverse and broad host range group of (+)RNA viruses.
Collapse
Affiliation(s)
- Chien-Fu Wu
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Ryo Okada
- Horticultural Research Institute, Ibaraki Agricultural Center, 3165-1 Ago, Kasama 319-0292, Japan
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Chaim Levanon St 55, Tel Aviv 6997801, Israel
| | - Yi-Cheng Chang
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Ogawara
- Horticultural Research Institute, Ibaraki Agricultural Center, 3165-1 Ago, Kasama 319-0292, Japan
| | - Kentaro Kitaura
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
13
|
Wyckhuys KAG, Gu B, Ben Fekih I, Finger R, Kenis M, Lu Y, Subramanian S, Tang FHM, Weber DC, Zhang W, Hadi BAR. Restoring functional integrity of the global production ecosystem through biological control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122446. [PMID: 39270336 DOI: 10.1016/j.jenvman.2024.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Human society is anchored in the global agroecosystem. For millennia, this system has provided humans with copious supplies of nutrient-rich food. Yet, through chemical intensification and simplification, vast shares of present-day farmland derive insufficient benefits from biodiversity and prove highly vulnerable to biotic stressors. Here, we argue that on-farm action centered on biological control can effectively defuse pest risk by bolstering foundational ecosystem services. By harnessing plant, animal and microbial biodiversity, biological control offers safe, efficacious and economically-sound plant health solutions and coevolved options for invasive species mitigation. In recent years, its scientific foundation has been fortified and solutions have been refined for myriad ecologically brittle systems. Yet, for biological control to be mainstreamed, it needs to be rebooted, intertwined with (on- and off-farm) agroecological tactics and refurbished - from research, policy and regulation, public-private partnerships up to modes of implementation. Misaligned incentives (for chemical pesticides) and adoption barriers further need to be removed, while its scientific underpinnings should become more interdisciplinary, policy-relevant, solution-oriented and linked with market demand. Thus, biological control could ensure human wellbeing in a nature-friendly manner and retain farmland ecological functioning under global change.
Collapse
Affiliation(s)
- Kris A G Wyckhuys
- Chrysalis Consulting, Danang, Viet Nam; Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing, China; School of Biological Sciences, University of Queensland, Saint Lucia, Australia; Food and Agriculture Organization (FAO), Rome, Italy.
| | - Baogen Gu
- Food and Agriculture Organization (FAO), Rome, Italy
| | | | | | | | - Yanhui Lu
- Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sevgan Subramanian
- International Center for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - Donald C Weber
- USDA-ARS Invasive Insect Biocontrol & Behavior Laboratory, Beltsville, MD, USA
| | - Wei Zhang
- International Food Policy Research Institute (IFPRI-CGIAR), Washington DC, USA
| | - Buyung A R Hadi
- Food and Agriculture Organization (FAO), Rome, Italy; International Fund for Agricultural Development (IFAD), Rome, Italy
| |
Collapse
|
14
|
Ježić M, Nuskern L, Peranić K, Popović M, Ćurković-Perica M, Mendaš O, Škegro I, Poljak I, Vidaković A, Idžojtić M. Regional Variability of Chestnut ( Castanea sativa) Tolerance Toward Blight Disease. PLANTS (BASEL, SWITZERLAND) 2024; 13:3060. [PMID: 39519976 PMCID: PMC11548496 DOI: 10.3390/plants13213060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Since its introduction into Europe in the first half of the 20th century, Cryphonectria parasitica has been gradually spreading across the natural range of the sweet chestnut (Castanea sativa Mill.), infecting the trees and causing lethal bark cankers. Serendipitously, a hyperparasitic Cryphonectria hypovirus 1 (CHV1), which attenuates C. parasitica virulence in combination with more tolerant European chestnut species, was able to ward off the worst effect of the disease. In North America, unfortunately, the native Castanea dentata is now functionally extinct since it occurs only as root sprouts in eastern deciduous forests where it was once dominant. In our work, we investigated changes in C. parasitica populations over time and the regional variability in chestnut populations' tolerance toward the blight disease. While vegetative compatibility (vc) type diversity and prevalence of hypovirulence remained similar as in previous studies, in the Buje population, unlike in previous studies, we were unable to find any hypovirulent fungal strains. The most common vegetative compatibility types (vc types) were EU-1, EU-2 and EU-12. However, several rare EU-types were found, including one previously unreported: EU-46. By inoculating several C. parasitica strains on tree stems from several chestnut populations, we observed that the induced lesion size was affected by the type of inoculum (CHV1-free or CHV1-infected), genotype-related individual chestnut stem and chestnut stem population of origin-related variability. The largest lesions were induced by CHV1-free fungal isolate DOB-G: 20.13 cm2 (95% C.I. 18.10-22.15) and the smallest by CHV1-infected L14/EP713: 2.49 cm2 (95% C.I. 1.59-3.39). Surprisingly, the size of the lesions induced by other CHV1-infected strains fell somewhere in between these extremes. The size of induced lesions was dependent on the population of origin as well and ranged from 11.60 cm2 (95% C.I. 9.87-13.33) for stems from the Moslavačka gora population to 17.75 cm2 (95% C.I. 15.63-19.87) for stems from Ozalj.
Collapse
Affiliation(s)
- Marin Ježić
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Lucija Nuskern
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Karla Peranić
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Maja Popović
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
- Institute of Forest Engineering, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Mirna Ćurković-Perica
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Ozren Mendaš
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Ivan Škegro
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Igor Poljak
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 23, 10000 Zagreb, Croatia; (I.P.); (A.V.); (M.I.)
| | - Antonio Vidaković
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 23, 10000 Zagreb, Croatia; (I.P.); (A.V.); (M.I.)
| | - Marilena Idžojtić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 23, 10000 Zagreb, Croatia; (I.P.); (A.V.); (M.I.)
| |
Collapse
|
15
|
Muñoz-Suárez H, Ruiz-Padilla A, Donaire L, Benito EP, Ayllón MA. Reexamining the Mycovirome of Botrytis spp. Viruses 2024; 16:1640. [PMID: 39459972 PMCID: PMC11512270 DOI: 10.3390/v16101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Botrytis species cause gray mold disease in more than 200 crops worldwide. To control this disease, chemical fungicides are usually applied. However, more sustainable control alternatives should be explored, such as the use of hypovirulent mycovirus-infected fungal strains. To determine the mycovirome of two Botrytis species, B. cinerea and B. prunorum, we reanalyzed RNA-Seq and small RNA-Seq data using different assembly programs and an updated viral database, aiming to identify new mycoviruses that were previously not described in the same dataset. New mycoviruses were identified, including those previously reported to infect or be associated with B. cinerea and Plasmopara viticola, such as Botrytis cinerea alpha-like virus 1 and Plasmopara viticola lesion-associated ourmia-like virus 80. Additionally, two novel narnaviruses, not previously identified infecting Botrytis species, have been characterized, tentatively named Botrytis cinerea narnavirus 1 and Botrytis narnavirus 1. The analysis of small RNAs suggested that all identified mycoviruses were targeted by the antiviral fungal mechanism, regardless of the viral genome type. In conclusion, the enlarged list of newly found viruses and the application of different bioinformatics approaches have enabled the identification of novel mycoviruses not previously described in Botrytis species, expanding the already extensive list.
Collapse
Affiliation(s)
- Hugo Muñoz-Suárez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
| | - Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
| | - Livia Donaire
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100 Murcia, Spain;
| | - Ernesto Pérez Benito
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, C/Río Duero, 12, Villamayor, 37185 Salamanca, Spain;
| | - María A. Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
16
|
Yang Z, Fei M, Wu G, Xiang Y, Zhong J, Su JE, Chen Y. Molecular characterization of a novel mycotombus‑like virus isolated from the phytopathogenic fungus Nigrospora oryzae. Arch Virol 2024; 169:224. [PMID: 39424630 DOI: 10.1007/s00705-024-06150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 10/21/2024]
Abstract
In this study, we identified a new mycotombus-like mycovirus from the phytopathogenic fungus Nigrospora oryzae, which was tentatively designated as "Nigrospora oryzae umbra-like virus 1" (NoULV1). The complete genome of NoULV1 is 3,381 nt long, containing two open reading frames (ORF1 and ORF2). ORF1 encodes a hypothetical protein with an unknown function, while ORF2 encodes an RNA-dependent RNA polymerase (RdRp) with a conserved RdRp domain containing a metal-binding 'GDN' triplet in motif C, which is distinct from the 'GDD' motif found in most + ssRNA mycoviruses. A homology search revealed that the RdRp encoded by ORF2 was similar to the RdRp of umbra-like mycoviruses. Phylogenetic analysis based on the RdRp indicated that NoULV1 was grouped into a clade together with umbra-like mycoviruses belonging to the proposed family "Mycotombusviridae".
Collapse
Affiliation(s)
- Zhijuan Yang
- Dali Tobacco Company of Yunnan Province, Dali City, 671000, Yunnan Province, P.R. China
| | - Mingliang Fei
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming City, 650021, Yunnan Province, P.R. China
| | - Guicheng Wu
- Yunnan Aromatic Tobacco Company, Baoshan City, 678000, Yunnan Province, P.R. China
| | - Yansuobao Xiang
- Yunnan Aromatic Tobacco Company, Baoshan City, 678000, Yunnan Province, P.R. China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, 410128, Hunan Province, P.R. China
| | - Jia En Su
- Dali Tobacco Company of Yunnan Province, Dali City, 671000, Yunnan Province, P.R. China.
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming City, 650021, Yunnan Province, P.R. China.
| |
Collapse
|
17
|
Tebbi CK, Yan J, Sahakian E, Mediavilla-Varela M, Pinilla-Ibarz J, Patel S, Rottinghaus GE, Liu RY, Dennison C. Mycovirus-Containing Aspergillus flavus Alters Transcription Factors in Normal and Acute Lymphoblastic Leukemia Cells. Int J Mol Sci 2024; 25:10361. [PMID: 39408690 PMCID: PMC11476453 DOI: 10.3390/ijms251910361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Transcription factors control genes to maintain normal hemopoiesis, and dysregulation of some factors can lead to acute lymphoblastic leukemia (ALL). Mycoviruses are known to alter the genetics of their fungal host. The present study evaluates the effects of the products of a mycovirus-containing Aspergillus flavus (MCAF), isolated from the home of a patient with ALL, on certain transcription factors of normal and ALL cell lines. Our published studies have shown that ALL patients have antibodies to MCAF, and that exposure of the mononuclear leukocytes of patients in complete remission to its products, unlike controls, results in the re-development of genetic and cell surface phenotypes characteristic of ALL. For the present study, normal, pre-B, and B-cell leukemia cell lines were exposed to the culture of MCAF. Pre- and post-exposure levels of PAX5, Ikaros, and NF-κB were assessed. Exposure to MCAF resulted in apoptosis, cell cycle changes, and complete downregulation of all transcription factors in normal cell lines. In acute leukemia cell lines, cellular apoptosis and alterations in the cell cycle were also noted; however, while there was downregulation of all tested transcription factors, residual levels were retained. The noted alterations in the transcription factors caused by MCAF are novel findings. The possible role of MCAF in leukemogenesis needs to be further investigated. Mycovirus-containing Aspergillus flavus was initially isolated from a leukemia patient's home. Our prior published studies have illuminated intriguing associations of this organism with leukemia. Unlike controls, patients diagnosed with acute lymphoblastic leukemia (ALL) harbor antibodies to this organism. Furthermore, the exposure of mononuclear cells from patients with ALL in complete remission to the products of this organism reproduced genetic and cell phenotypes characteristic of ALL. These findings underscore the potential role of environmental factors in leukemogenesis and hint at novel avenues for therapeutic intervention and preventive strategies.
Collapse
Affiliation(s)
- Cameron K. Tebbi
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA; (J.Y.); (R.Y.L.)
| | - Jiyu Yan
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA; (J.Y.); (R.Y.L.)
| | - Eva Sahakian
- Moffitt Cancer Center, Tampa, FL 33612, USA; (E.S.); (M.M.-V.); (J.P.-I.)
| | | | | | | | | | - Rachel Y. Liu
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA; (J.Y.); (R.Y.L.)
| | - Clare Dennison
- Diagnostic Laboratories, College of Veterinary Medicine, University of South Florida, Tampa, FL 33620, USA;
| |
Collapse
|
18
|
Xie H, Liu T, Guo J, Zhang T, Hu H, Yin J, Zhao Y, Xu G, Wang J, Chen J, Yang J. A novel ormycovirus isolated from the plant-pathogenic fungus Fusarium graminearum. Arch Virol 2024; 169:202. [PMID: 39294444 DOI: 10.1007/s00705-024-06131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 09/20/2024]
Abstract
In this study, we identified a novel mycovirus, Fusarium graminearum ormycovirus 1 (FgOV1), from the pathogenic fungus Fusarium graminearum. The virus has two RNA segments, RNA1 and RNA2, with lengths of 2,591 and 1,801 nucleotides, respectively, excluding the polyA tail. Each segment contains a single open reading frame (ORF). The ORF in RNA1 encodes an RNA-dependent RNA polymerase, while the ORF in RNA2 encodes a hypothetical protein. Phylogenetic analysis showed that FgOV1 belongs to the gammaormycovirus clade, whose members are related to betaormycoviruses. To our knowledge, this is the first report of an ormycovirus in Fusarium graminearum.
Collapse
Affiliation(s)
- Haoxin Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianbo Liu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Jun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jingliang Yin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yingjie Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Gecheng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jinnan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
19
|
Li H, Lu Y, Liu Z, Ren Q, Liu Z, Liu S, Ren R, Wang F, Liu Y, Zhang Y. Transcriptomic analysis unveils alterations in the genetic expression profile of tree peony (Paeonia suffruticosa Andrews) infected by Alternaria alternata. BMC Genomics 2024; 25:861. [PMID: 39277723 PMCID: PMC11402206 DOI: 10.1186/s12864-024-10784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Black spot disease in tree peony caused by the fungal necrotroph A. alternata, is a primary limiting factor in the production of the tree peony. The intricate molecular mechanisms underlying the tree peony resistance to A. alternata have not been thoroughly investigated. RESULTS The present study utilized high-throughput RNA sequencing (RNA-seq) technology to conduct global expression profiling, revealing an intricate network of genes implicated in the interaction between tree peony and A. alternata. RNA-Seq libraries were constructed from leaf samples and high-throughput sequenced using the BGISEQ-500 sequencing platform. Six distinct libraries were characterized. M1, M2 and M3 were derived from leaves that had undergone mock inoculation, while I1, I2 and I3 originated from leaves that had been inoculated with the pathogen. A range of 10.22-11.80 gigabases (Gb) of clean bases were generated, comprising 68,131,232 - 78,633,602 clean bases and 56,677 - 68,996 Unigenes. A grand total of 99,721 Unigenes were acquired, boasting a mean length of 1,266 base pairs. All these 99,721 Unigenes were annotated in various databases, including NR (Non-Redundant, 61.99%), NT (Nucleotide, 45.50%), SwissProt (46.32%), KEGG (Kyoto Encyclopedia of Genes and Genomes, 49.33%), KOG (clusters of euKaryotic Orthologous Groups, 50.18%), Pfam (Protein family, 47.16%), and GO (Gene Ontology, 34.86%). In total, 66,641 (66.83%) Unigenes had matches in at least one database. By conducting a comparative transcriptome analysis of the mock- and A. alternata-infected sample libraries, we found differentially expressed genes (DEGs) that are related to phytohormone signalling, pathogen recognition, active oxygen generation, and circadian rhythm regulation. Furthermore, multiple different kinds of transcription factors were identified. The expression levels of 10 selected genes were validated employing qRT-PCR (quantitative real-time PCR) to confirm RNA-Seq data. CONCLUSIONS A multitude of transcriptome sequences have been generated, thus offering a valuable genetic repository for further scholarly exploration on the immune mechanisms underlying the tree peony infected by A. alternata. While the expression of most DEGs increased, a few DEGs showed decreased expression.
Collapse
Affiliation(s)
- Huiyun Li
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| | - Yifan Lu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zixin Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Qing Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zhongyan Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Sibing Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Ruili Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Fei Wang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yi Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yanzhao Zhang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| |
Collapse
|
20
|
Wang YR, Su JE, Yang ZJ, Zhong J, Li XG, Chen Y, Zhu JZ. A pooled mycoviral resource in a strain of Rhizoctonia solani are regulators of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106042. [PMID: 39277369 DOI: 10.1016/j.pestbp.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Rhizoctonia solani is a widespread and devastating soil-borne plant fungal pathogen that causes diseases, including rice sheath blight, which are difficult to control. Some mycoviruses are potential biocontrol agents for the control of fungal diseases. In order to investigate the factors that influence the virulence of R. solani and search for mycoviruses with the potential for biocontrol of R. solani, a rice-infecting R. solani strain, ZJXD1-1, was isolated and confirmed to contain eight mycoviruses via dsRNA extraction and high-throughput sequencing. The identified mycoviruses belong to families of Endornaviridae (RsEV11 and RsEV12) and Mitoviridae (RsMV125 to RsMV129), and an unclassified Toti-like clade (RsTLV1). The C39 domain in RsEV12, which shares a close evolutionary relationship with bacteria, is observed for the first time in a mycovirus. Strains with different virus combinations were obtained through viral horizontal transfer, and pathogenicity test deduced that the Endornaviruses RsEV11 and RsEV12, and Mitovirus RsMV129 might potentially enhance the pathogenicity of R. solani, while RsMV125 might reduce the virulence or interfere with the function of other Mitoviruses. Furthermore, virus curing via protoplast regeneration and viral horizontal transfer demonstrated that RsMV129 is the causal agent of R. solani hypervirulence. Overall, our study provided the resource pool of viruses that may contribute to the discovery of new biocontrol agents against R. solani and enhance our understanding of the pathogenesis of R. solani regulated by mycoviruses.
Collapse
Affiliation(s)
- Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China; Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jia En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Zhi Juan Yang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China.
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China.
| |
Collapse
|
21
|
Yang Z, Zhang B, Hu Y, Zhao L, Chen Z, Zhong J, Su J, Chen Y. Molecular characterization of a novel gammapartitivirus infecting the fungus Nigrospora oryzae. Arch Virol 2024; 169:188. [PMID: 39187668 DOI: 10.1007/s00705-024-06111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Here, we identified a new mycovirus infecting the phytopathogenic fungus Nigrospora oryzae, which we have designated "Nigrospora oryzae partitivirus 2" (NoPV2). The genome of NoPV2 consists of two dsRNA segments (dsRNA 1 and dsRNA 2), measuring 1771 and 1440 bp in length, respectively. dsRNA 1 and dsRNA 2 each contain a single open reading frame (ORF) that encodes the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP), respectively. A BLASTp search showed that the RdRp of NoPV2 had significant sequence similarity to the RdRps of other partitiviruses, including Nigrospora sphaerica partitivirus 1 (75.61% identity) and Magnaporthe oryzae partitivirus 1 (67.53% identity). Phylogenetic analysis revealed that NoPV2 is a new member of the genus Gammapartitivirus in the family Partitiviridae. This study provides important information for understanding the diversity of mycoviruses in N. oryzae.
Collapse
Affiliation(s)
- Zhijuan Yang
- Dali Tobacco Company of Yunnan Province, Dali City, Yunnan Province, 671000, P.R. China
| | - Baolin Zhang
- Qujing Tobacco Company of Yunnan Province, Qujing Yunnan Province, 655000, P.R. China
| | - Yang Hu
- Chuxiong Company of Yunnan Provincial Tobacco Corporation, Chuxiong, 675000, P.R. China
| | - Lianjing Zhao
- Chuxiong Company of Yunnan Provincial Tobacco Corporation, Chuxiong, 675000, P.R. China
| | - Zengmin Chen
- Chuxiong Company of Yunnan Provincial Tobacco Corporation, Chuxiong, 675000, P.R. China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province, 410128, P.R. China
| | - Jiaen Su
- Dali Tobacco Company of Yunnan Province, Dali City, Yunnan Province, 671000, P.R. China.
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province, 650021, P.R. China.
| |
Collapse
|
22
|
Battersby JL, Stevens DA, Coutts RHA, Havlíček V, Hsu JL, Sass G, Kotta-Loizou I. The Expanding Mycovirome of Aspergilli. J Fungi (Basel) 2024; 10:585. [PMID: 39194910 DOI: 10.3390/jof10080585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
Collapse
Affiliation(s)
- Josephine L Battersby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Department of Analytical Chemistry, Palacky University, 17. Listopadu 2, 779 00 Olomouc, Czech Republic
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
23
|
Zhou K, Zhou H, Tang Z. Complete genome analysis of a novel hypovirus in the phytopathogenic fungus Monilinia fructicola. Arch Virol 2024; 169:165. [PMID: 38990253 DOI: 10.1007/s00705-024-06092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Monilinia fructicola is one of the most devastating fungal diseases of rosaceous fruit crops, both in the field and postharvest, causing significant yield losses. Here, we report the discovery of a novel positive single-stranded RNA virus, Monilinia fructicola hypovirus 3 (MfHV3), in a strain (hf-1) of the phytopathogenic fungus Monilinia fructicola. The complete genome of MfHV3 is 9259 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt position 462 to 8411. This ORF encodes a polyprotein with three conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), and DEAD-like helicase. The MfHV3 polyprotein shares the highest similarity with Colletotrichum camelliae hypovirus 1. Phylogenetic analysis indicated that MfHV3 clustered with members of the genus Betahypovirus within the family Hypoviridae. Taken together, the results of genomic organization comparisons, amino acid sequence alignments, and phylogenetic analysis convincingly show that MfHV3 is a new member of the genus Betahypovirus, family Hypoviridae.
Collapse
Affiliation(s)
- Kang Zhou
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236037, China.
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, 236037, China.
| | - Hui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhimin Tang
- Chenzhou Institute of Agricultural Science, Chenzhou, 423000, China
- Chenzhou Branch, Hunan Academy of Agricultural Sciences, Chenzhou, 423000, China
| |
Collapse
|
24
|
Buivydaitė Ž, Winding A, Sapkota R. Transmission of mycoviruses: new possibilities. Front Microbiol 2024; 15:1432840. [PMID: 38993496 PMCID: PMC11236713 DOI: 10.3389/fmicb.2024.1432840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mycoviruses are viruses that infect fungi. In recent years, an increasing number of mycoviruses have been reported in a wide array of fungi. With the growing interest of scientists and society in reducing the use of agrochemicals, the debate about mycoviruses as an effective next-generation biocontrol has regained momentum. Mycoviruses can have profound effects on the host phenotype, although most viruses have neutral or no effect. We speculate that understanding multiple transmission modes of mycoviruses is central to unraveling the viral ecology and their function in regulating fungal populations. Unlike plant virus transmission via vegetative plant parts, seeds, pollen, or vectors, a widely held view is that mycoviruses are transmitted via vertical routes and only under special circumstances horizontally via hyphal contact depending on the vegetative compatibility groups (i.e., the ability of different fungal strains to undergo hyphal fusion). However, this view has been challenged over the past decades, as new possible transmission routes of mycoviruses are beginning to unravel. In this perspective, we discuss emerging studies with evidence suggesting that such novel routes of mycovirus transmission exist and are pertinent to understanding the full picture of mycovirus ecology and evolution.
Collapse
Affiliation(s)
| | | | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
25
|
Ferilli F, Lione G, Gonthier P, Turina M, Forgia M. First detection of mycoviruses in Gnomoniopsis castaneae suggests a putative horizontal gene transfer event between negative-sense and double-strand RNA viruses. Virology 2024; 594:110057. [PMID: 38527381 DOI: 10.1016/j.virol.2024.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Gnomoniopsis castaneae is an ascomycetous fungus mainly known as a major pathogen of chestnut causing nut rots, although it is often found as an endophyte in chestnut tissues. To date, no virus has been reported as associated with to this fungus. Here, a collection of G. castaneae isolates from several European countries was screened to detect mycoviruses infecting the fungus: for the first time we report the identification and prevalence of mitovirus Gnomoniopsis castaneae mitovirus 1 (GcMV1) and the chrysovirus Gnomoniopsis castaneae chrysovirus 1 (GcCV1). Interestingly, we provide evidence supporting a putative horizontal gene transfer between members of the phyla Negarnaviricota and Duplornaviricota: a small putative protein of unknown function encoded on the RNA3 of GcCV1 (Chrysoviridae) has homologs in the genome of viruses of the family Mymonaviridae.
Collapse
Affiliation(s)
- Franco Ferilli
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy; Currently an EFSA Staff Member in the Environment, Plants & Ecotoxicology Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126, Parma, Italy
| | - Guglielmo Lione
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Paolo Gonthier
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce, 73, Torino, 10135, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce, 73, Torino, 10135, Italy.
| |
Collapse
|
26
|
Lu X, Dai Z, Xue J, Li W, Ni P, Xu J, Zhou C, Zhang W. Discovery of novel RNA viruses through analysis of fungi-associated next-generation sequencing data. BMC Genomics 2024; 25:517. [PMID: 38797853 PMCID: PMC11129472 DOI: 10.1186/s12864-024-10432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Like all other species, fungi are susceptible to infection by viruses. The diversity of fungal viruses has been rapidly expanding in recent years due to the availability of advanced sequencing technologies. However, compared to other virome studies, the research on fungi-associated viruses remains limited. RESULTS In this study, we downloaded and analyzed over 200 public datasets from approximately 40 different Bioprojects to explore potential fungal-associated viral dark matter. A total of 12 novel viral sequences were identified, all of which are RNA viruses, with lengths ranging from 1,769 to 9,516 nucleotides. The amino acid sequence identity of all these viruses with any known virus is below 70%. Through phylogenetic analysis, these RNA viruses were classified into different orders or families, such as Mitoviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Mymonaviridae, Bunyavirales, and Partitiviridae. It is possible that these sequences represent new taxa at the level of family, genus, or species. Furthermore, a co-evolution analysis indicated that the evolutionary history of these viruses within their groups is largely driven by cross-species transmission events. CONCLUSIONS These findings are of significant importance for understanding the diversity, evolution, and relationships between genome structure and function of fungal viruses. However, further investigation is needed to study their interactions.
Collapse
Affiliation(s)
- Xiang Lu
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ziyuan Dai
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Jiaxin Xue
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Ping Ni
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Juan Xu
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Wen Zhang
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
27
|
Yu D, Wang Q, Song W, Kang Y, Lei Y, Wang Z, Chen Y, Huai D, Wang X, Liao B, Yan L. Characterization of Two Novel Single-Stranded RNA Viruses from Agroathelia rolfsii, the Causal Agent of Peanut Stem Rot. Viruses 2024; 16:854. [PMID: 38932147 PMCID: PMC11209298 DOI: 10.3390/v16060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Peanut stem rot is a soil-borne disease caused by Agroathelia rolfsii. It occurs widely and seriously affects the peanut yield in most peanut-producing areas. The mycoviruses that induce the hypovirulence of some plant pathogenic fungi are potential resources for the biological control of fungal diseases in plants. Thus far, few mycoviruses have been found in A. rolfsii. In this study, two mitoviruses, namely, Agroathelia rolfsii mitovirus 1 (ArMV1) and Agroathelia rolfsii mitovirus 2 (ArMV2), were identified from the weakly virulent A. rolfsii strain GP3-1, and they were also found in other A. rolfsii isolates. High amounts of ArMV1 and ArMV2in the mycelium could reduce the virulence of A. rolfsii strains. This is the first report on the existence of mitoviruses in A. rolfsii. The results of this study may provide insights into the classification and evolution of mitoviruses in A. rolfsii and enable the exploration of the use of mycoviruses as biocontrol agents for the control of peanut stem rot.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| | - Liying Yan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| |
Collapse
|
28
|
Shi N, Zhu Q, Yang G, Wang P, Huang B. Prevalence and species diversity of dsRNA mycoviruses from Beauveria bassiana strains in the China's Guniujiang nature. Heliyon 2024; 10:e30186. [PMID: 38694113 PMCID: PMC11061733 DOI: 10.1016/j.heliyon.2024.e30186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
We investigated the prevalence and species diversity of dsRNA mycoviruses in Beauveria bassiana isolates from the China's Guniujiang Nature Preserve. Among the 28 isolates analyzed, electropherotyping revealed viral infections in 28.6 % (8 out of 28) of the isolates. Metatranscriptomic identification and RT-PCR confirmed the presence of six putative virus species, including two novel species: Beauveria bassiana victorivirus 2 (BbV-2) and Beauveria bassiana bipartite mycovirus 2 (BbBV-2). Four previously characterized mycoviruses were also identified: Beauveria bassiana polymycovirus 4 (BbPmV4), Beauveria bassiana partitivirus 1 (BbPV-1), Beauveria bassiana bipartite mycovirus 1 (BbBV-1), and Beauveria bassiana chrysovirus 2 (BbCV-2). BbPmV4 was found to be the prevailing mycovirus among the infected isolates, and three isolates showed co-infection with both BbPmV4 and BbBV-2. This study enhances our understanding of fungal viral taxonomy and diversity, providing insights into mycovirus infections in B. bassiana populations in China's Guniujiang Nature Preserve. Furthermore, the study on the diversity of B. bassiana viruses lays the foundation for recognizing fungal viruses as potential enhancers of biocontrol agents.
Collapse
Affiliation(s)
- Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
29
|
Li S, Chen F, Wei X, Yuan L, Qin J, Li R, Chen B. CpSmt3, an ortholog of small ubiquitin-like modifier, is essential for growth, organelle function, virulence, and antiviral defense in Cryphonectria parasitica. Front Microbiol 2024; 15:1391855. [PMID: 38784801 PMCID: PMC11111931 DOI: 10.3389/fmicb.2024.1391855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction SUMOylation is an important post-translational modification that regulates the expression, localization, and activity of substrate proteins, thereby participating in various important cellular processes such as the cell cycle, cell metabolism, gene transcription, and antiviral activity. However, the function of SUMOylation in phytopathogenic fungi has not yet been adequately explored. Methods A comprehensive analysis composed of proteomics, affinity pull-down, molecular and cellular approaches was performed to explore the roles of SUMOylation in Cryphonectria parasitica, the fungal pathogen responsible for chestnut blight. Results and discussion CpSmt3, the gene encoding the SUMO protein CpSmt3 in C. parasitica was identified and characterized. Deletion of the CpSmt3 gene resulted in defects in mycelial growth and hyphal morphology, suppression of sporulation, attenuation of virulence, weakening of stress tolerance, and elevated accumulation of hypovirus dsRNA. The ΔCpSmt3 deletion mutant exhibited an increase in mitochondrial ROS, swollen mitochondria, excess autophagy, and thickened cell walls. About 500 putative SUMO substrate proteins were identified by affinity pull-down, among which many were implicated in the cell cycle, ribosome, translation, and virulence. Proteomics and SUMO substrate analyses further revealed that deletion of CpSmt3 reduced the accumulation of CpRho1, an important protein that is involved in TOR signal transduction. Silencing of CpRho1 resulted in a phenotype similar to that of ΔCpSmt3, while overexpression of CpRho1 could partly rescue some of the prominent defects in ΔCpSmt3. Together, these findings demonstrate that SUMOylation by CpSmt3 is vitally important and provide new insights into the SUMOylation-related regulatory mechanisms in C. parasitica.
Collapse
Affiliation(s)
- Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jiayao Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
30
|
Shamsi W, Mittelstrass J, Ulrich S, Kondo H, Rigling D, Prospero S. Possible Biological Control of Ash Dieback Using the Mycoparasite Hymenoscyphus Fraxineus Mitovirus 2. PHYTOPATHOLOGY 2024; 114:1020-1027. [PMID: 38114080 DOI: 10.1094/phyto-09-23-0346-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Invasive fungal diseases represent a major threat to forest ecosystems worldwide. As the application of fungicides is often unfeasible and not a sustainable solution, only a few other control options are available, including biological control. In this context, the use of parasitic mycoviruses as biocontrol agents of fungal pathogens has recently gained particular attention. Since the 1990s, the Asian fungus Hymenoscyphus fraxineus has been causing lethal ash dieback across Europe. In the present study, we investigated the biocontrol potential of the mitovirus Hymenoscyphus fraxineus mitovirus 2 (HfMV2) previously identified in Japanese populations of the pathogen. HfMV2 could be successfully introduced via co-culturing into 16 of 105 HfMV2-free isolates. Infection with HfMV2 had contrasting effects on fungal growth in vitro, from cryptic to detrimental or beneficial. Virus-infected H. fraxineus isolates whose growth was reduced by HfMV2 showed overall a lower virulence on ash (Fraxinus excelsior) saplings as compared with their isogenic HfMV2-free lines. The results suggest that mycoviruses exist in the native populations of H. fraxineus in Asia that have the potential for biological control of ash dieback in Europe. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wajeeha Shamsi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jana Mittelstrass
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Sven Ulrich
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Daniel Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
31
|
Zhou Q, Yao Z, Cao X, Chen Y, Zou C, Chen B. Fusarium sacchari hypovirus 1, a Member of Hypoviridae with Virulence Attenuation Capacity in Phytopathogenic Fusarium Species. Viruses 2024; 16:608. [PMID: 38675949 PMCID: PMC11054305 DOI: 10.3390/v16040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In a survey of mycoviruses in Fusarium species that cause sugarcane Pokkah boeng disease, twelve Fusarium strains from three Fusarium species (F. sacchari, F. andiyazi, and F. solani) were found to contain Fusarium sacchari hypovirus 1 (FsHV1), which we reported previously. The genomes of these variants range from 13,966 to 13,983 nucleotides, with 98.6% to 99.9% nucleotide sequence identity and 98.70% to 99.9% protein sequence similarity. Phylogenetic analysis placed these FsHV1 variants within the Alphahypovirus cluster of Hypoviridae. Intriguingly, no clear correlation was found between the geographic origin and host specificity of these viral variants. Additionally, six out of the twelve variants displayed segmental deletions of 1.5 to 1.8 kilobases, suggesting the existence of defective viral dsRNA. The presence of defective viral dsRNA led to a two-thirds reduction in the dsRNA of the wild-type viral genome, yet a tenfold increase in the total viral dsRNA content. To standardize virulence across natural strains, all FsHV1 strains were transferred into a single, virus-free Fusarium recipient strain, FZ06-VF, via mycelial fusion. Strains of Fusarium carrying FsHV1 exhibited suppressed pigment synthesis, diminished microspore production, and a marked decrease in virulence. Inoculation tests revealed varying capacities among different FsHV1 variants to modulate fungal virulence, with the strain harboring the FsHV1-FSA1 showing the lowest virulence, with a disease severity index (DSI) of 3.33, and the FsHV1-FS1 the highest (DSI = 17.66). The identification of highly virulent FsHV1 variants holds promise for the development of biocontrol agents for Pokkah boeng management.
Collapse
Affiliation(s)
- Qiujuan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Ministry and Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ziting Yao
- Plant Protection Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007, China
| | - Xueying Cao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuejia Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Ministry and Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Ministry and Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Ministry and Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
32
|
Walterová L, Botella L, Hejna O, de la Peña M, Tonka T, Čurn V. Characterization of Mycoviruses in Armillaria ostoyae and A. cepistipes in the Czech Republic. Viruses 2024; 16:610. [PMID: 38675951 PMCID: PMC11053624 DOI: 10.3390/v16040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Members of the genus Armillaria are widespread forest pathogens against which effective protection has not yet been developed. Due to their longevity and the creation of large-scale cloning of Armillaria individuals, the use of mycoviruses as biocontrol agents (BCAs) against these pathogens could be an effective alternative. This work describes the detection and characterization of viruses in Armillaria spp. collected in the Czech Republic through the application of stranded total RNA sequencing. A total of five single-stranded RNA viruses were detected in Armillaria ostoyae and A. cepistipes, including viruses of the family Tymoviridae and four viruses belonging to the recently described "ambivirus" group with a circular ambisense genome arrangement. Both hammerhead (HHRz) and hairpin (HpRz) ribozymes were detected in all the ambiviricot sequences. Armillaria viruses were compared through phylogenetic analysis and confirmed their specific host by direct RT-PCR. One virus appears to infect both Armillaria species, suggesting the occurrence of interspecies transmission in nature.
Collapse
Affiliation(s)
- Lucie Walterová
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (O.H.); (T.T.); (V.Č.)
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic;
| | - Ondřej Hejna
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (O.H.); (T.T.); (V.Č.)
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022 Valencia, Spain;
| | - Tomáš Tonka
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (O.H.); (T.T.); (V.Č.)
| | - Vladislav Čurn
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (O.H.); (T.T.); (V.Č.)
| |
Collapse
|
33
|
Zhou K, Zhang F, Deng Y. Comparative Analysis of Viromes Identified in Multiple Macrofungi. Viruses 2024; 16:597. [PMID: 38675938 PMCID: PMC11054281 DOI: 10.3390/v16040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal viruses are common in filamentous fungi, and some of them can affect the growth and development of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing. The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel viruses or viral fragments were characterized from the four species of macrofungi. Based on the phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders: Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were widely distributed among the studied species. Furthermore, the number and overall abundance of viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes versicolor, significantly contributing to research on mycoviruses in macrofungi.
Collapse
Affiliation(s)
- Kang Zhou
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang 236037, China
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236037, China
| | - Fan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Deng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| |
Collapse
|
34
|
Wang J, Ni Y, Zhao H, Liu X, Qiu R, Li S, Liu H. Complete genome sequence of a novel dsRNA virus from the phytopathogenic fungus Fusarium oxysporum. Arch Virol 2024; 169:75. [PMID: 38492088 DOI: 10.1007/s00705-024-05976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 03/18/2024]
Abstract
Fusarium oxysporum is a widespread plant pathogen that causes fusarium wilt and fusarium root rot in many economically significant crops. Here, a novel dsRNA virus tentatively named "Fusarium oxysporum virus 1" (FoV1) was identified in F. oxysporum strain 3S-18. The genome of FoV1 is 2,944 nucleotides (nt) in length and contains two non-overlapping open reading frames (ORF1 and 2). The larger of these, ORF2, encodes an RNA-dependent RNA polymerase (RdRp) of 590 amino acids with a molecular mass of 67.52 kDa. ORF1 encodes a putative nucleocapsid protein consisting of 134 amino acids with a molecular mass of 34.25 kDa. The RdRp domain of FoV1 shares 60.00% to 84.24% sequence identity with non-segmented dsRNA viruses. Phylogenetic analysis further suggested that FoV1 is a new member of the proposed genus "Unirnavirus" accommodating unclassified monopartite dsRNA viruses.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yunxia Ni
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Hui Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Rui Qiu
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Shujun Li
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan Province, People's Republic of China.
| |
Collapse
|
35
|
Schiwek S, Slonka M, Alhussein M, Knierim D, Margaria P, Rose H, Richert-Pöggeler KR, Rostás M, Karlovsky P. Mycoviruses Increase the Attractiveness of Fusarium graminearum for Fungivores and Suppress Production of the Mycotoxin Deoxynivalenol. Toxins (Basel) 2024; 16:131. [PMID: 38535797 PMCID: PMC10975473 DOI: 10.3390/toxins16030131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2025] Open
Abstract
RNA viruses of the genera Ambivirus, Mitovirus, Sclerotimonavirus, and Partitivirus were found in a single isolate of Fusarium graminearum. The genomes of the mitovirus, sclerotimonavirus, and partitivirus were assigned to previously described viruses, whereas the ambivirus genome putatively represents a new species, named Fusarium graminearum ambivirus 1 (FgAV1). To investigate the effect of mycoviruses on the fungal phenotype, the spontaneous loss of mycoviruses during meiosis and the transmission of mycoviruses into a new strain via anastomosis were used to obtain isogenic F. graminearum strains both with and without mycoviruses. Notable effects observed in mycovirus-harboring strains were (i) the suppression of the synthesis of trichothecene mycotoxins and their precursor trichodiene, (ii) the suppression of the synthesis of the defense compound aurofusarin, (iii) the stimulation of the emission of 2-methyl-1-butanol and 3-methyl-1-butanol, and (iv) the increased attractiveness of fungal mycelia for fungivorous collembolans. The increased attractiveness of mycovirus-infected filamentous fungi to animal predators opens new perspectives on the ecological implications of the infection of fungi with viruses.
Collapse
Affiliation(s)
- Simon Schiwek
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| | - Matthäus Slonka
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Dennis Knierim
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Paolo Margaria
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Hanna Rose
- Institute of Horticultural Production Systems, University of Hannover, 30419 Hannover, Germany
| | - Katja R. Richert-Pöggeler
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Michael Rostás
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
36
|
Fu M, Qu Z, Pierre-Pierre N, Jiang D, Souza FL, Miklas PN, Porter LD, Vandemark GJ, Chen W. Exploring the Mycovirus Sclerotinia sclerotiorum Hypovirulence-Associated DNA Virus 1 as a Biocontrol Agent of White Mold Caused by Sclerotinia sclerotiorum. PLANT DISEASE 2024; 108:624-634. [PMID: 37743591 DOI: 10.1094/pdis-07-23-1458-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Sclerotinia sclerotiorum is a necrotrophic fungal pathogen causing white mold on many important economic crops. Recently, some mycoviruses such as S. sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) converted S. sclerotiorum into a beneficial symbiont that helps plants manage pathogens and other stresses. To explore the potential use of SsHADV-1 as a biocontrol agent in the United States and to test the efficacy of SsHADV-1-infected United States isolates in managing white mold and other crop diseases, SsHADV-1 was transferred from the Chinese strain DT-8 to United States isolates of S. sclerotiorum. SsHADV-1 is readily transmitted horizontally among United States isolates of S. sclerotiorum and consistently conferred hypovirulence to its host strains. Biopriming of dry bean seeds with hypovirulent S. sclerotiorum strains enhanced resistance to white mold, gray mold, and Rhizoctonia root rot. To investigate the underlying mechanisms, endophytic growth of hypovirulent S. sclerotiorum in dry beans was confirmed using PCR, and the expression of 12 plant defense-related genes were monitored before and after infection. The results indicated that the endophytic growth of SsHADV-1-infected strains in plants stimulated the expression of plant immunity pathway genes that assisted a rapid response from the plant to fungal infection. Finally, application of the seed biopriming technology with SsHADV-1-infected hypervirulent strain has promise for the biological control of several diseases of wheat, pea, and sunflower.
Collapse
Affiliation(s)
- Min Fu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zheng Qu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nickisha Pierre-Pierre
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164, U.S.A
| | - Daohong Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fernanda L Souza
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA 99350, U.S.A
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA 99350, U.S.A
| | - Lyndon D Porter
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA 99350, U.S.A
| | - George J Vandemark
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164, U.S.A
| | - Weidong Chen
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164, U.S.A
| |
Collapse
|
37
|
Ahmad F, Tomada S, Poonsiri T, Baric S. Molecular genetic variability of Cryphonectria hypovirus 1 associated with Cryphonectria parasitica in South Tyrol (northern Italy). Front Microbiol 2024; 15:1291542. [PMID: 38476955 PMCID: PMC10927965 DOI: 10.3389/fmicb.2024.1291542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Cryphonectria hypovirus 1 (CHV-1) has been widely studied and used as a biocontrol agent because of its ability to infect the chestnut blight fungus, Cryphonectria parasitica, and to reduce its virulence. Knowledge about the hypovirus, its presence, and diversity is completely lacking in South Tyrol (northern Italy), which may obstruct biocontrol measures for chestnut blight based on CHV-1. This work aimed to study the occurrence of CHV-1 infecting C. parasitica in South Tyrol and to perform a genetic characterization of the hypovirus. In South Tyrol, CHV-1 was found to occur in 29.2% of the fungal isolates investigated, varying in frequency between different regions and chestnut stands. Twenty-three haplotypes based on partial cDNA (complementary DNA) sequences of open reading frame (ORF)-A and 30 haplotypes based on partial cDNA sequences of ORF-B were identified among 47 and 56 hypovirulent fungal isolates, respectively. Phylogenetic analysis showed that all the haplotypes belonged to the Italian subtype of CHV-1 and that they were closely related to the populations of Italy, Switzerland, Croatia and Slovenia. Evidence of recombination was not found in the sequences and point mutations were the main source of diversity. Overall, this study indicated that the prevalence of CHV-1 in South Tyrol is low compared to many other central and western European populations and determined a need to actively impose biocontrol measures. Using sequence analysis, we identified some variants of interest of CHV-1 that should be studied in detail for their potential use in biocontrol.
Collapse
Affiliation(s)
- Farooq Ahmad
- Laboratory for Phytopathology, Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Selena Tomada
- Laboratory for Phytopathology, Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Thanalai Poonsiri
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sanja Baric
- Laboratory for Phytopathology, Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
38
|
Wang Y, Li Q, Wu Y, Han S, Xiao Y, Kong L. The Effects of Mycovirus BmPV36 on the Cell Structure and Transcription of Bipolaris maydis. J Fungi (Basel) 2024; 10:133. [PMID: 38392805 PMCID: PMC10890528 DOI: 10.3390/jof10020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Bipolaris maydis partitivirus 36 (BmPV36) is a mycovirus that can significantly reduce the virulence of the host Bipolaris maydis, but its hypovirulence mechanism is not clear. To investigate the response of B. maydis to BmPV36, the effects of BmPV36 on host cell structure and gene expression were studied via transmission electron microscopy and transcriptome sequencing using BmPV36-carrying and virus-free mycelium on the second and fifth culture. The results of transmission electron microscopy showed that the cell wall microfibrils of B. maydis were shortened, the cell membrane was broken, and membrane-bound vesicles and vacuoles appeared in the cells after carrying BmPV36. Transcriptome sequencing results showed that after carrying BmPV36, B. maydis membrane-related genes were significantly up-regulated, but membrane transport-related genes were significantly down-regulated. Genes related to carbohydrate macromolecule polysaccharide metabolic and catabolic processes were significantly down-regulated, as were genes related to the synthesis of toxins and cell wall degrading enzymes. Therefore, we speculated that BmPV36 reduces the virulence of B. maydis by destroying the host's cell structure, inhibiting the synthesis of toxins and cell wall degrading enzymes, and reducing cell metabolism. Gaining insights into the hypovirulence mechanism of mycoviruses will provide environmentally friendly strategies for the control of fungal diseases.
Collapse
Affiliation(s)
- Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Qiusheng Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Yuxing Wu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Sen Han
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Ying Xiao
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Lingxiao Kong
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| |
Collapse
|
39
|
Urayama SI, Zhao YJ, Kuroki M, Chiba Y, Ninomiya A, Hagiwara D. Greetings from virologists to mycologists: A review outlining viruses that live in fungi. MYCOSCIENCE 2024; 65:1-11. [PMID: 39239117 PMCID: PMC11371549 DOI: 10.47371/mycosci.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 09/07/2024]
Abstract
Viruses are genetic elements that parasitize self-replicating cells. Therefore, organisms parasitized by viruses are not limited to animals and plants but also include microorganisms. Among these, viruses that parasitize fungi are known as mycoviruses. Mycoviruses with an RNA genome persistently replicate inside fungal cells and coevolve with their host cells, similar to a cellular organelle. Within host cells, mycoviruses can modulate various fungal characteristics and activities, including pathogenicity and the production of enzymes and secondary metabolites. In this review, we provide an overview of the mycovirus research field as introduction to fungal researchers. Recognition of all genetic elements in fungi aids towards better understanding and control of fungi, and makes fungi a significant model system for studying microorganisms containing multiple genetic elements.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yan-Jie Zhao
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
| | - Misa Kuroki
- c Department of Biotechnology, Laboratory of Brewing Microbiology (donated by Kikkoman), The University of Tokyo
| | - Yuto Chiba
- d School of Agriculture, Meiji University
| | - Akihiro Ninomiya
- e Graduate School of Agricultural and Life Sciences, Laboratory of Aquatic Natural Products Chemistry, The University of Tokyo
| | - Daisuke Hagiwara
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| |
Collapse
|
40
|
Kambara K, Shimura H, Fujino K, Masuta C. Metagenomic Analyses of Viruses in the Orchid Mycorrhizal Interaction Using Improved Assemble Tools. Methods Mol Biol 2024; 2732:67-81. [PMID: 38060118 DOI: 10.1007/978-1-0716-3515-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In nature, mycorrhizal association with soil-borne fungi is indispensable for orchid species. Compatible mycorrhizal fungi form endo-mycorrhizal structures in orchid cells, and the fungal structures are digested in orchid cells to be supplied to orchids as nutrition. Because orchid seeds lack the reserves for germination, they keep receiving nutrition through mycorrhizal formation from seed germination until nonphotosynthetic young seedlings develop leaves and become photoautotrophic. Seeds of all orchids germinate with the help of their own fungal partners, and therefore, specific partnership has been acquired in a long evolutionary history between orchids and fungi. Assuming that horizontal transmission of viruses may occur in such a close relationship, we are focusing on viruses that infect orchids and their mycorrhizal fungi. We prepared aseptically germinated orchid plants (i.e., fungi-free plants) together with pure-cultured fungal isolates and conducted transcriptome analyses (RNA-seq) by next-generation sequencing (NGS) approach. To reconstruct virus-related sequences that would have been present in the RNA sample of interest, de novo assembly process is required using short read sequences obtained from RNA-seq. In the previous version of our protocol (see Viral Metagenomics, first edition 2018), virus searches were conducted using contig sets constructed by a single assembler, but this time we devised a method to construct more reliable contigs using multiple assemblers and again reinvestigated that viruses could be detected. Because the virus detection efficiency and number of detected virus species clearly differed depending on the assembly pipeline and the number of the input data, multiple methods should be used to identify viral infection, if possible.
Collapse
Affiliation(s)
- Kota Kambara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Tokyo, Japan
| | - Hanako Shimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Kaien Fujino
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
41
|
Contreras-Soto MB, Tovar-Pedraza JM. Viruses of plant-pathogenic fungi: a promising biocontrol strategy for Sclerotinia sclerotiorum. Arch Microbiol 2023; 206:38. [PMID: 38142438 DOI: 10.1007/s00203-023-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.
Collapse
Affiliation(s)
- María Belia Contreras-Soto
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
42
|
Ahmad F, Diez JJ. Spanish ecological battleground: population structure of two invasive fungi, Cryphonectria parasitica and Fusarium circinatum. FRONTIERS IN PLANT SCIENCE 2023; 14:1310254. [PMID: 38186600 PMCID: PMC10771289 DOI: 10.3389/fpls.2023.1310254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Introduction Invasive fungi distributed worldwide through globalization have caused devastating diseases in different forests, causing economic and ecologic disturbances. Two such invasive species are Cryphonectria parasitica and Fusarium circinatum, which were introduced to Europe from North America, separated temporally: C. parasitica was introduced about nine decades ago, whereas F. circinatum was introduced around two decades ago. As C. parasitica had a longer time to undergo genetic changes, we hypothesized that it has higher genetic diversity than the recently introduced F. circinatum in Spain. In addition, we studied the genetic characterization of both fungi present in similar ecological conditions in Northern Spain with the aim of providing data for biocontrol measures. Methods Molecular genetic markers were used to test these hypotheses, including mating type and DNA sequencing of internal transcribed spacer (ITS) regions. In addition, we used vegetative compatibility (VC) type markers in C. parasitica as the information about VC type is essential to apply biocontrol against the fungus. Results and discussion All the isolates of C. parasitica from the studied area belonged to only one VC type (EU-1) and one mating type (MAT-2). However, three distinct haplotypes of C. parasitica were identified through ITS sequencing, showing that multiple introductions might have happened to Cantabria. Among F. circinatum, no diversity was observed in ITS and MAT loci in the studied area but isolates from other Spanish regions showed the presence of both mating types. Overall, C. parasitica had higher genetic diversity than F. circinatum, despite both organisms appearing to reproduce clonally. This study helped understand the invasion patterns of C. parasitica and F. circinatum in northern Spain and will be useful in applying biocontrol measures against both pathogens.
Collapse
Affiliation(s)
- Farooq Ahmad
- Department of Plant Production and Forest Resources, University of Valladolid, Palencia, Spain
- Sustainable Forest Management Research Institute, University of Valladolid and INIA, Palencia, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, University of Valladolid, Palencia, Spain
- Sustainable Forest Management Research Institute, University of Valladolid and INIA, Palencia, Spain
| |
Collapse
|
43
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
44
|
Arshed S, Cox MP, Beever RE, Parkes SL, Pearson MN, Bowen JK, Templeton MD. The Bcvic1 and Bcvic2 vegetative incompatibility genes in Botrytis cinerea encode proteins with domain architectures involved in allorecognition in other filamentous fungi. Fungal Genet Biol 2023; 169:103827. [PMID: 37640199 DOI: 10.1016/j.fgb.2023.103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Vegetative incompatibility is a fungal allorecognition system characterised by the inability of genetically distinct conspecific fungal strains to form a viable heterokaryon and is controlled by multiple polymorphic loci termed vic (vegetative incompatibility) or het (heterokaryon incompatibility). We have genetically identified and characterised the first vic locus in the economically important, plant-pathogenic, necrotrophic fungus Botrytis cinerea. A bulked segregant approach coupled with whole genome Illumina sequencing of near-isogenic lines of B. cinerea was used to map a vic locus to a 60-kb region of the genome. Within that locus, we identified two adjacent, highly polymorphic open reading frames, Bcvic1 and Bcvic2, which encode predicted proteins that contain domain architectures implicated in vegetative incompatibility in other filamentous fungi. Bcvic1 encodes a predicted protein containing a putative serine esterase domain, a NACHT family of NTPases domain, and several Ankyrin repeats. Bcvic2 encodes a putative syntaxin protein containing a SNARE domain; such proteins typically function in vesicular transport. Deletion of Bcvic1 and Bcvic2 individually had no effect on vegetative incompatibility. However, deletion of the region containing both Bcvic1 and Bcvic2 resulted in mutant lines that were severely restricted in growth and showed loss of vegetative incompatibility. Complementation of these mutants by ectopic expression restored the growth and vegetative incompatibility phenotype, indicating that Bcvic1 and Bcvic2 are controlling vegetative incompatibility at this vic locus.
Collapse
Affiliation(s)
- Saadiah Arshed
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa Centre of Research Excellence, New Zealand; School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Ross E Beever
- Manaaki Whenua Landcare Research, Auckland, New Zealand
| | | | - Michael N Pearson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K Bowen
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand.
| | - Matthew D Templeton
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand.
| |
Collapse
|
45
|
Khalifa ME, MacDiarmid RM. Molecular Characterization of Two Totiviruses from the Commensal Yeast Geotrichum candidum. Viruses 2023; 15:2150. [PMID: 38005831 PMCID: PMC10674808 DOI: 10.3390/v15112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Mycoviruses can infect many of the major taxa of fungi including yeasts. Mycoviruses in the yeast fungus Geotrichum candidum are not well studied with only three G. candidum-associated viral species characterized to date, all of which belong to the Totiviridae genus Totivirus. In this study, we report the molecular characteristics of another two totiviruses co-infecting isolate Gc6 of G. candidum. The two totiviruses were tentatively named Geotrichum candidum totivirus 2 isolate Gc6 (GcTV2-Gc6) and Geotrichum candidum totivirus 4 isolate Gc6 (GcTV4-Gc6). Both viruses have the typical genome organization of totiviruses comprising two ORFs encoding capsid protein (CP) and RNA-dependent RNA polymerase (RdRp) at the N and C termini, respectively. The genomes of GcTV2-Gc6 and GcTV4-Gc6 are 4592 and 4530 bp long, respectively. Both viruses contain the-frameshifting elements and their proteins could be expressed as a single fusion protein. GcTV2-Gc6 is closely related to a totivirus isolated from the same host whereas GcTV4-Gc6 is related to insect-associated totiviruses. The phylogenetic analysis indicated that GcTV2-Gc6 and GcTV4-Gc6 belong to two different sister clades, I-A and I-B, respectively. It is interesting that all viruses identified from G. candidum belong to the genus Totivirus; however, this might be due to the lack of research reporting the characterization of mycoviruses from this fungal host. It is possible that the RNA interference (RNAi) mechanism cannot actively suppress totivirus accumulation in G. candidum Gc6.
Collapse
Affiliation(s)
- Mahmoud E. Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
46
|
Sun A, Zhao L, Sun Y, Chen Y, Li C, Dong W, Yang G. Horizontal and Vertical Transmission of a Mycovirus Closely Related to the Partitivirus RhsV717 That Confers Hypovirulence in Rhizoctonia solani. Viruses 2023; 15:2088. [PMID: 37896865 PMCID: PMC10611285 DOI: 10.3390/v15102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Rhizoctonia solani virus717 (RhsV717) was isolated from the Rhizoctonia solani (R. solani) AG-2 strain Rhs717. This study isolated a virus designated as Rhizoctonia solani partitivirus BS-5 (RsPV-BS5) from the R. solani AG-3 strain BS-5, the causal agent of tobacco target spot disease. The virus was identified as a strain of RhsV717. Transmission electron microscopy (TEM) images showed that RsPV-BS5 had virus particles with a diameter of approximately 40 nm. Importantly, it can be horizontally transmitted through hyphal anastomosis and vertically transmitted via sexual basidiospores. Furthermore, this study demonstrated that RsPV-BS5 infection significantly impedes mycelial growth and induces hypovirulence in tobacco leaves. Thus, RsPV-BS5 presents a promising avenue for biocontrolling tobacco target spot disease. Transcriptome analysis unveiled differential expression of four genes related to cell wall-degrading enzymes between two isogenic strains, 06-2-15V and 06-2-15. These findings shed light on the molecular mechanism through which RsPV-BS5 reduces host pathogenicity.
Collapse
Affiliation(s)
- Aili Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China
| | - Lianjing Zhao
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Yang Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Yingrui Chen
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Chengyun Li
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Wenhan Dong
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Genhua Yang
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| |
Collapse
|
47
|
Zhang L, Wang S, Ruan S, Nzabanita C, Wang Y, Guo L. A Mycovirus VIGS Vector Confers Hypovirulence to a Plant Pathogenic Fungus to Control Wheat FHB. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302606. [PMID: 37587761 PMCID: PMC10582431 DOI: 10.1002/advs.202302606] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Mycovirus-mediated hypovirulence has the potential to control fungal diseases. However, the availability of hypovirulence-conferring mycoviruses for plant fungal disease control is limited as most fungal viruses are asymptomatic. In this study, the virus-induced gene silencing (VIGS) vector p26-D4 of Fusarium graminearum gemytripvirus 1 (FgGMTV1), a tripartite circular single-stranded DNA mycovirus, is successfully constructed to convert the causal fungus of cereal Fusarium head blight (FHB) into a hypovirulent strain. p26-D4, with an insert of a 75-150 bp fragment of the target reporter transgene transcript in both sense and antisense orientations, efficiently triggered gene silencing in Fusarium graminearum. Notably, the two hypovirulent strains, p26-D4-Tri101, and p26-D4-FgPP1, obtained by silencing the virulence-related genes Tri101 and FgPP1 with p26-D4, can be used as biocontrol agents to protect wheat from a fungal disease FHB and mycotoxin contamination at the field level. This study not only describes the first mycovirus-derived VIGS system but also proves that the VIGS vector can be used to establish multiple hypovirulent strains to control pathogenic fungi.
Collapse
Affiliation(s)
- Lihang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Shaojian Ruan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Clement Nzabanita
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Yanfei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
48
|
Vijayraghavan S, Kozmin SG, Strope PK, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. RNA viruses, M satellites, chromosomal killer genes, and killer/nonkiller phenotypes in the 100-genomes S. cerevisiae strains. G3 (BETHESDA, MD.) 2023; 13:jkad167. [PMID: 37497616 PMCID: PMC10542562 DOI: 10.1093/g3journal/jkad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid. Novel L-A-dependent phenotypes were identified. Ten M+ strains exhibited M satellite-dependent killing (K+) of at least 1 of the naturally M0 and cured M0 derivatives of the 100-genomes strains; in these M0 strains, sensitivities to K1+, K2+, and K28+ strains varied. Finally, to complement our M satellite-encoded killer toxin analysis, we assembled the chromosomal KHS1 and KHR1 killer genes and used naturally M0 and cured M0 derivatives of the 100-genomes strains to assess and characterize the chromosomal killer phenotypes.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
49
|
Li S, Zhu H, He Y, Hong N, Wang G, Wang L. BdCV1-Encoded P3 Silencing Suppressor Identification and Its Roles in Botryosphaeria dothidea, Causing Pear Ring Rot Disease. Cells 2023; 12:2386. [PMID: 37830600 PMCID: PMC10571871 DOI: 10.3390/cells12192386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Pear ring rot disease is an important branch disease, caused by Botryosphaeria dothidea. With the discovery of fungal viruses, the use of their attenuated properties for biological control provides a new strategy for the biological control of fungal disease. RNA silencing is a major antiviral defense mechanism in plants, insects, and fungi. Viruses encode and utilize RNA silencing suppressors to suppress host defenses. Previous studies revealed that Botryosphaeria dothidea chrysovirus 1 (BdCV1) exhibited weak pathogenicity and could activate host gene silencing by infecting B. dothidea. The aim of our study was to investigate whether BdCV1 can encode a silencing suppressor and what effect it has on the host. In this study, the capability of silencing inhibitory activity of four BdCV1-encoded proteins was analyzed, and the P3 protein was identified as a BdCV1 RNA silencing suppressor in the exotic host Nicotiana benthamiana line 16c. In addition, we demonstrated that P3 could inhibit local silencing, block systemic RNA silencing, and induce the necrosis reaction of tobacco leaves. Furthermore, overexpression of P3 could slow down the growth rate and reduce the pathogenicity of B. dothidea, and to some extent affect the expression level of RNA silencing components and virus-derived siRNAs (vsiRNAs). Combined with transcriptomic analysis, P3 had an effect on the gene expression and biological process of B. dothidea. The obtained results provide new theoretical information for further study of interaction between BdCV1 P3 as a potential silencing suppressor and B. dothidea.
Collapse
Affiliation(s)
- Shanshan Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Haodong Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
50
|
Li R, Chen F, Li S, Yuan L, Zhao L, Tian S, Chen B. Comparative acetylomic analysis reveals differentially acetylated proteins regulating fungal metabolism in hypovirus-infected chestnut blight fungus. MOLECULAR PLANT PATHOLOGY 2023; 24:1126-1138. [PMID: 37278715 PMCID: PMC10423328 DOI: 10.1111/mpp.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Cryphonectria parasitica, the chestnut blight fungus, and hypoviruses are excellent models for examining fungal pathogenesis and virus-host interactions. Increasing evidence suggests that lysine acetylation plays a regulatory role in cell processes and signalling. To understand protein regulation in C. parasitica by hypoviruses at the level of posttranslational modification, a label-free comparative acetylome analysis was performed in the fungus with or without Cryphonectria hypovirus 1 (CHV1) infection. Using enrichment of acetyl-peptides with a specific anti-acetyl-lysine antibody, followed by high accuracy liquid chromatography-tandem mass spectrometry analysis, 638 lysine acetylation sites were identified on 616 peptides, corresponding to 325 unique proteins. Further analysis revealed that 80 of 325 proteins were differentially acetylated between C. parasitica strain EP155 and EP155/CHV1-EP713, with 43 and 37 characterized as up- and down-regulated, respectively. Moreover, 75 and 65 distinct acetylated proteins were found in EP155 and EP155/CHV1-EP713, respectively. Bioinformatics analysis revealed that the differentially acetylated proteins were involved in various biological processes and were particularly enriched in metabolic processes. Differences in acetylation in C. parasitica citrate synthase, a key enzyme in the tricarboxylic acid cycle, were further validated by immunoprecipitation and western blotting. Site-specific mutagenesis and biochemical studies demonstrated that the acetylation of lysine-55 plays a vital role in the regulation of the enzymatic activity of C. parasitica citrate synthase in vitro and in vivo. These findings provide a valuable resource for the functional analysis of lysine acetylation in C. parasitica, as well as improving our understanding of fungal protein regulation by hypoviruses from a protein acetylation perspective.
Collapse
Affiliation(s)
- Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Shigen Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Sugarcane Biology, College of AgricultureGuangxi UniversityNanningChina
| |
Collapse
|