1
|
Zhang Y, Wu L, Wang J, Bai Y, Xiao J, Coutard B, Pei H, Deng F, Shen S. Latitude-driven patterns and dynamics in Jingmen group viral lineages: Spatial correlation, recombination, and phylogeography. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105744. [PMID: 40188900 DOI: 10.1016/j.meegid.2025.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 04/12/2025]
Abstract
The global emergence of Jingmen group viruses (JMVs), including Jingmen tick virus (JMTV), Alongshan virus (ALSV), and Yanggou tick virus (YGTV), has significantly broadened our perspective on the potential public health risks posed by segmented flaviviruses. However, the global evolutionary and genetic epidemiology of JMVs remains unclear. In this study, we conducted a comprehensive analysis of the spatial correlation, recombination, and phylogeography of JMVs. Our phylogenetic analysis identified three latitudinal lineages: (1) a mid-high-latitude group with YGTV and ALSV, prevalent in Europe and Asia; (2) a mid-latitude group with JMTV in Romania, Turkey, Kosovo, Trinidad, and Tobago; and (3) a mid-low-latitude group with JMTV and the Sichuan tick virus in Brazil, Japan, China, Kenya, and Uganda. The strong correlation between genetic distance and latitude also supports a latitude-dependent evolutionary pattern. Notably, concordance between the phylogenies of dominant tick species and JMVs underscores the pivotal role of tick species in the evolution of JMVs. Furthermore, the detection of frequent intra-lineage recombination and global migration events underscores the ecological pressures and tick-mediated evolutionary mechanisms that propel the global dissemination of emerging segmented flaviviruses. Additionally, the complex interplay of JMV recombination and migration events of JMVs identified here, particularly the recombination between JMTV and ALSV from disparate regions and viral migration across different regions and continents, complicates their evolutionary interrelationships and heightens potential health risks. Overall, our study provides valuable insights into ecological factors and tick species-mediated evolution and transmission that shape the global spread of emerging segmented flaviviruses.
Collapse
Affiliation(s)
- You Zhang
- Department of Medical laboratory, the Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - LvYing Wu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Jun Wang
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Yuan Bai
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jian Xiao
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Burno Coutard
- Unité des Virus émergents (UVE : Aix-Marseille Univ, Università di Corsica, Corte, IRD 190, Inserm 1207, IRBA), France
| | - Hua Pei
- Department of Medical laboratory, the Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| | - Fei Deng
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.
| | - Shu Shen
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.
| |
Collapse
|
2
|
Alice M, Fabienne T, Jean‐Christophe P. Genetic Evolution Between HIV-1 Groups M and O: HIV-1/MO Recombinant Forms. J Med Virol 2025; 97:e70358. [PMID: 40297956 PMCID: PMC12038789 DOI: 10.1002/jmv.70358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
HIV exhibits significant genetic diversity, with genetic recombination being a major evolutionary process. The co-circulation of HIV-1/M and HIV-1/O variants has led to the description of 20 HIV-1/M+O dual infections since 1998. Despite the genetic divergence between these variants, HIV-1/M+O dual infections have resulted in the emergence of HIV-1/MO intergroup recombinant forms, with 20 unique HIV-1/MO recombinant forms (URF_MO) currently described, raising the question of a possible benefit of the recombination and the modalities of their emergence. This review summarized the current knowledge of HIV-1/MO recombinant forms, including their virological and genetic characteristics, phylogenetic analysis, genome profiles, and breakpoints number and location. This study also identified the potential impacts of HIV-1/MO recombination on diagnosis, monitoring, and treatment, as well as the replicative capacity of such recombinants. This review highlighted the greater diversity and complexity of HIV-1/MO recombinants than originally thought, offering new research perspectives on their emergence and virological properties.
Collapse
Affiliation(s)
- Moisan Alice
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of VirologyNational Reference Center of HIVRouenFrance
| | - Tombette Fabienne
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of VirologyNational Reference Center of HIVRouenFrance
| | - Plantier Jean‐Christophe
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of VirologyNational Reference Center of HIVRouenFrance
| |
Collapse
|
3
|
Lian CY, Yao XY, Lv ZH, Zhang XL, Shao JW. Genetic diversity of canine coronavirus identified in dogs in yulin city, southern China. Virology 2025; 608:110528. [PMID: 40233446 DOI: 10.1016/j.virol.2025.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
The global outbreak of the novel coronavirus has renewed interest in related viral pathogens, including canine coronavirus (CCoV), which causes severe gastroenteritis, diarrhea, and vomiting in dogs worldwide. While cases of CCoV have been reported in China, specific instances in the Guangxi Zhuang Autonomous Region-a major center for dog breeding and consumption-have not been documented. In this study, we collected spleen tissue samples from dogs in Yulin city and conducted meta-transcriptomic sequencing. Bioinformatics analysis confirmed CCoV presence in these samples. Furthermore, virus screening and phylogenetic analyses identified the circulation of two CCoV genotypes within the dog population, revealing an overall prevalence of 14.2 %, with CCoV-IIb being the predominant genotype. Notably, two significant recombination events were detected among the analyzed strains. These findings provide valuable insights into the presence and genetic diversity of CCoV Yulin's dog populations, enhancing the understanding of its genetic variation and evolution.
Collapse
Affiliation(s)
- Chun-Yang Lian
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Xin-Yan Yao
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhi-Hang Lv
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Xue-Lian Zhang
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Jian-Wei Shao
- School of Animal Science and Technology, Foshan University, Foshan 528225, China.
| |
Collapse
|
4
|
Purushotham JN, Lutz HL, Parker E, Andersen KG. Immunological drivers of zoonotic virus emergence, evolution, and endemicity. Immunity 2025; 58:784-796. [PMID: 40168990 PMCID: PMC11981831 DOI: 10.1016/j.immuni.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025]
Abstract
The disruption of natural ecosystems caused by climate change and human activity is amplifying the risk of zoonotic spillover, presenting a growing global health threat. In the past two decades, the emergence of multiple zoonotic viruses has exposed critical gaps in our ability to predict epidemic trajectories and implement effective interventions. RNA viruses, in particular, are challenging to control due to their high mutation rates and ability to adapt and evade immune defenses. To better prepare for future outbreaks, it is vital that we deepen our understanding of the factors driving viral emergence, transmission, and persistence in human populations. Specifically, deciphering the interactions between antibody-mediated immunity and viral evolution will be key. In this perspective, we explore these dynamic relationships and highlight research priorities that may guide the development of more effective strategies to mitigate the impact of emerging infectious diseases.
Collapse
Affiliation(s)
- Jyothi N Purushotham
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Scripps Research Translational Institute, La Jolla, CA, USA
| | - Holly L Lutz
- Denver Museum of Nature and Science, Denver, CO, USA
| | - Edyth Parker
- The Institute of Genomics and Global Health (IGH), Redeemer's University, Ede, Osun, Nigeria
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Scripps Research Translational Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Jang YH, Kim T, Hong SJ, Kim SY, Hwang H, Kim S, Kang SA, Won N, Kim D, Kim MJ, Chong YP, Jang S, Jo K, Lim KI. Rapid and Sensitive Detection of RNA Viruses through Imaging of Marker Molecules Derived from Designed Circular DNA Probes. SMALL METHODS 2025:e2500182. [PMID: 40195921 DOI: 10.1002/smtd.202500182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/05/2025] [Indexed: 04/09/2025]
Abstract
In the absence of treatment, detection of pathogenic RNA viruses and quarantine of infected individuals are critical for controlling the infection spread. Conventional antibody-based methods often lack the required accuracy and sensitivity, due to the need for a substantial amount of viral antigens. Similarly, traditional reverse transcription real-time polymerase chain reaction methods face challenges in providing timely results due to their multiple thermal nucleic acid amplification steps. To overcome these limitations, a new method based on imaging of virus-specific DNA markers is developed. This approach employs specially designed single-stranded circular DNA probes that capture virus-derived RNA fragments generated by RNase digestion of the viral genome. These fragments serve as primers for a subsequent single-step DNA filling reaction, producing double-stranded virus-specific marker molecules. These individual markers are recognized through fluorescence imaging following linearization by enzyme cleavage and subsequent fluorescence staining. This method can detect viruses at a genome equivalent level of 14 within 40 min. In addition, the molecule-level imaging-based method effectively detects human immunodeficiency virus-1 in clinical samples. This diagnostic approach does not require sophisticated thermal controls nor extensive nucleic acid amplifications, allowing for accurate, sensitive, and rapid detection without the need for large equipment, offering substantial potential for point-of-care applications.
Collapse
Affiliation(s)
- Yoon-Ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, 04312, Republic of Korea
| | - Taesoo Kim
- Department of Chemistry and Program of Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Su-Jin Hong
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, 04312, Republic of Korea
| | - Se-Yeon Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, 04312, Republic of Korea
| | - Hyeseung Hwang
- Department of Chemistry and Program of Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Siwon Kim
- Department of Chemistry and Program of Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Su-A Kang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, 04312, Republic of Korea
| | - Nabin Won
- Department of Chemistry and Program of Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Dogeun Kim
- Department of Chemistry and Program of Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Program of Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Kwang-Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, 04312, Republic of Korea
| |
Collapse
|
6
|
Wang X, Zhu B, Li H, Han J, Wang X, Jia L, Zhang B, Li J, Liu Y, Wen H, Li L. Identification of a Novel HIV-1 Second-Generation Circulating Recombinant Form (CRF117_0107) in China. AIDS Res Hum Retroviruses 2025; 41:211-215. [PMID: 39818961 DOI: 10.1089/aid.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Under the background of the main epidemic HIV strains (CRF01_AE and CRF07_BC) co-circulation in China, more HIV second-generation recombinant (SGR) strains with CRF01_AE and CRF07_BC as the backbone were also emerging. In this study, we characterize a novel HIV-1 second-generation circulating recombinant form (CRF117_0107) consisting of CRF01_AE and CRF07_BC fragments from three epidemiologically unrelated individuals infected with HIV-1. One near full-length genome (NFLG) sequence was amplified, sequenced, and spliced in two halves using RNA extracted from the plasma of a homosexual in Shenzhen, Guangdong Province. Two other NFLG sequences were obtained from the Los Alamos HIV Sequence Database under accession numbers KY201177 and MK397789, which were isolated from men who have sex with men (MSM) in Guangdong Province and Zhejiang Province, respectively. Phylogenetic analysis revealed that these NFLG sequences formed a monophyletic cluster with a high bootstrap value of 1.0. Recombination analysis demonstrated that the genome of CRF117_0107 was separated into three segments by two breakpoints. Further subregional phylogenetic analysis was performed that showed segment I+III (790-5990nt, 8295-9412nt) of CRF117_0107 originated from the CRF07_BC cluster, and Segment I+III (5991-8294nt) originated from the CRF01_AE cluster. The appearance of CRF117_0107 further highlights that HIV-1 SGR strains containing CRF01_AE and CRF07_BC will be generated more frequently and will most likely be more conducive to accelerating the spread of HIV in China. This study suggested it's essential to monitor HIV-1 second-generation CRFs among high-risk populations such as MSM for the epidemic and evolution dynamics of HIV-1 in China.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Shandong University, Jinan, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Bo Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xiaolin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Bohan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Shandong University, Jinan, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Nemchinov LG. Selective Diversity in RNA Viruses: Do They Know How to Evolve? A Hypothesis. Bioessays 2025; 47:e202400281. [PMID: 39916531 PMCID: PMC11931676 DOI: 10.1002/bies.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025]
Abstract
Genetic diversity of viral populations is almost unanimously attributed to the build-up of random mutations along with accidental recombination events. This passive role of viruses in the selection of viable genotypes is widely acknowledged. According to the hypothesis presented here, populations of steady-state error copies of a master viral sequence would have a dominant mutant rather than a random pool of heterogeneous viral genomes with changes scattered uniformly without any preferential distribution. It would let viruses face the selection stage of host surveillance having a preceding set of potential survivors or "guard" genomes among an ordinary cloud of random quasispecies.
Collapse
Affiliation(s)
- Lev G. Nemchinov
- Molecular Plant Pathology LaboratoryU.S. Department of Agriculture, Beltsville Agricultural Research CenterBeltsvilleMarylandUSA
| |
Collapse
|
8
|
Pankovics P, Takáts K, Urbán P, Mátics R, Reuter G, Boros Á. Identification of a potential interspecies reassortant rotavirus G and avastrovirus 2 co-infection from black-headed gull (Chroicocephalus ridibundus) in Hungary. PLoS One 2025; 20:e0317400. [PMID: 40127066 PMCID: PMC11932466 DOI: 10.1371/journal.pone.0317400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/27/2024] [Indexed: 03/26/2025] Open
Abstract
The black-headed gull is the most common nesting gull species in Hungary. Based on the lifestyle and feeding habits of the black-headed gull, which is highly adapted to the human environment, they can be carriers and spreaders of potential human and other animal pathogens. Between 2014 and 2018 within the framework of the "Life Bird Ringing program" a total of 7 faecal samples were collected from gulls and one sample (MR04) was randomly selected for viral metagenomics and mass sequencing. 95.4% and 4% of the reads were classified into family Seadornaviridae and Astroviridae, respectively, and then were verified by RT-PCR method. In this study, the complete genome of a potential interspecies reassortant rotavirus (RV) strain gull/MR04_RV/HUN/2014 (PP239049-PP239059) and the partial ORF1ab, complete ORF2 of a novel avian nephritis virus strain gull/MR04_AAstV/HUN/2014 (PP239060) was discussed. The strain gull/MR04_RV/HUN/2014 was closely related to rotavirus G (RVG) viruses based on the proteins VP1-VP3, VP6, NSP2, NSP3, and NSP5, but it was more related to the human rotavirus B (RVB) strain Bang373 based on the NSP1, NSP4 and VP7, VP4 proteins, which is assumed to be the result of reassortment between different RVG-RVB rotavirus species. The strain gull/MR04_AAstV/HUN/2014 belonged to the genus Avastrovirus species avastrovirus 2 (AAstV-2) and is related to members of group 6 of avian nephritis viruses (ANVs), but based on the genetic distances it may be the first representative of a separate group. Additional gull samples were found to be negative by RT-PCR. Gulls, which are well adapted to the human environment, could potentially spread enterically transmitted viral pathogens like interspecies reassortant rotaviruses (RVG/RVB), but further molecular surveillance is needed to explore more deeply the viral communities of gulls or other related species adapted to human environments.
Collapse
Affiliation(s)
- Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Károly Takáts
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Róbert Mátics
- Hungarian Nature Research Society, Ajka, Hungary
- Department of Behavioural Science, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Fan S, Zhang M, Li Y, Tian J, Xian J, Chen Q. A TaqMan probe-based multiplex real-time quantitative pcr for simultaneous detection of kobuvirus, parechovirus B, rosavirus B, and hunnivirus carried by murine rodents and shrews. Virol J 2025; 22:61. [PMID: 40050884 PMCID: PMC11883910 DOI: 10.1186/s12985-025-02671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/15/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Picornaviruses, common infectious agents in humans and various animal species, pose significant health threats. Conventional monoplex PCR is widely employed in laboratory diagnostics but is relatively time-intensive and laborious. RESULTS In this study, we developed a multiplex TaqMan probe-based real-time quantitative PCR (qPCR) assay for the rapid and simultaneous detection of kobuvirus, parechovirus B, rosavirus B and hunnivirus in murine rodent and shrew samples. The approach demonstrated high sensitivity and specificity, with detection limits of 1 × 102 copies/µL for kobuvirus, parechovirus B, and rosavirus B, and 50 copies/µL for hunnivirus. Evaluation using 149 clinical samples showed strong concordance with conventional PCR methods. CONCLUSIONS This work developed an effective multiplex qPCR method for the simultaneous detection of emerging picornaviruses particularly in rodents, including kobuvirus, parechovirus B, rosavirus B, and hunnivirus. Our findings contribute valuable insights into the monitoring and prevention of zoonotic diseases associated with these pathogens.
Collapse
Affiliation(s)
- Shunchang Fan
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Minyi Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yucheng Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jingli Tian
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Juxian Xian
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Chowdhury S, Jacobsen C, Depledge DP, Wedemeyer H, Sandmann L, Kefalakes H. Sequence analysis of the hepatitis D virus across genotypes reveals highly conserved regions amidst evidence of recombination. Virus Evol 2025; 11:veaf012. [PMID: 40123834 PMCID: PMC11927530 DOI: 10.1093/ve/veaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Sequence diversity of the hepatitis D virus (HDV) may impact viral clearance, contributing to the development of chronic infection. T-Cell-induced selection pressure and viral recombination can induce diversity throughout the viral genome including coding and noncoding regions, with the former potentially impacting viral pathogenicity and the latter exerting regulatory functions. Here, we aim to assess sequence variations of the HDV genome within and across HDV genotypes. Sequences from 721 complete HDV genomes and 793 large hepatitis D antigen (L-HDAg) regions belonging to all eight genotypes and published through December 2023 were compiled. Most retrieved sequences belonged to Genotype 1, whereas for Genotype 8, the fewest sequences were available. Alignments were conducted using Clustal Omega and Multiple Alignment using Fast Fourier Transform. Phylogeny was analysed using SplitsTree4, and recombination sites were inspected using Recombination Detection Program 4. All reported sequences were aligned per genotype to retrieve consensus and reference sequences based on the highest similarity to consensus per genotype. L-HDAg alignments of the proposed reference sequences showed that not only conserved but also highly variable positions exist, which was also reflected in the epitope variability across HDV genotypes. Importantly, in silico binding prediction analysis showed that CD8+ T-cell epitopes mapped for Genotype 1 may not bind to major histocompatibility complex class I when examining their corresponding sequence in other genotypes. Phylogenetic analysis showed evidence of recombinant genomes within each individual genotype as well as between two different HDV genotypes, enabling the identification of common recombination sites. The identification of conserved regions within the L-HDAg allows their exploitation for genotype-independent diagnostic and therapeutic strategies, while the harmonized use of the proposed reference sequences may facilitate efforts to achieve HDV control.
Collapse
Affiliation(s)
- Shruti Chowdhury
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- Cluster of Excellence RESIST, EXC-2155, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Carina Jacobsen
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- Cluster of Excellence RESIST, EXC-2155, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Daniel P Depledge
- Cluster of Excellence RESIST, EXC-2155, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover 30625, Germany
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- Cluster of Excellence RESIST, EXC-2155, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover 30625, Germany
- D-SOLVE Consortium, an EU Horizon Europe funded project (No 101057917), Hannover 30625, Germany
| | - Lisa Sandmann
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- Cluster of Excellence RESIST, EXC-2155, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover 30625, Germany
- D-SOLVE Consortium, an EU Horizon Europe funded project (No 101057917), Hannover 30625, Germany
| | - Helenie Kefalakes
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- Cluster of Excellence RESIST, EXC-2155, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover 30625, Germany
- D-SOLVE Consortium, an EU Horizon Europe funded project (No 101057917), Hannover 30625, Germany
| |
Collapse
|
11
|
Arnold JJ, Martinez A, Jain A, Liu X, Moustafa IM, Cameron CE. Mechanism of forced-copy-choice RNA recombination by enteroviral RNA-dependent RNA polymerases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637143. [PMID: 39974949 PMCID: PMC11839138 DOI: 10.1101/2025.02.07.637143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Forced-copy-choice recombination occurs at the end of a template, differing from copy-choice recombination, which happens at internal positions. This mechanism may produce full-length genomes from fragments created by host antiviral responses. Previous studies from our laboratory demonstrated that poliovirus (PV) RNA-dependent RNA polymerase (RdRp) switches to an "acceptor" template in vitro when initiated on a heteropolymeric RNA-primed "donor" template. Surprisingly, recombinants showed template switching from the 3'-end of the donor template. We have developed a primed-template system to study PV RdRp-catalyzed forced-copy-choice RNA recombination. PV RdRp adds a single, non-templated nucleotide to the 3'-end of a blunt-ended, double-stranded RNA product, forming a "plus-one" intermediate essential for template switching. Non-templated addition of CMP was favored over AMP and GMP (80:20:1); UMP addition was negligible. A single basepair between the plus-one intermediate and the 3'-end of the acceptor template was necessary and sufficient for template switching, which could occur without RdRp dissociation. Formation of the plus-one intermediate was rate limiting for template switching. PV RdRp also utilized synthetic, preformed intermediates, including those with UMP 3'-overhangs. Reactions showed up to five consecutive template-switching events, consistent with a repair function for this form of recombination. PV RdRp may exclude UMP during forced-copy-choice RNA recombination to preclude creation of nonsense mutations during RNA fragment assembly. Several other picornaviral RdRps were evaluated, and all were capable of RNA fragment assembly to some extent. Lastly, we propose a structure-based hypothesis for the PV RdRp-plus-one intermediate complex based on an elongating PV RdRp structure.
Collapse
Affiliation(s)
- Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Alexandre Martinez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abha Jain
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Xinran Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Sha Y, Yan W, Liu X, Chai H, Chen J, Li H, Wang M, Jiang S, Wang S, Ren Y, Li H, Liu Y, Stoeger T, Wajid A, Dodovski A, Gao C, Mingala CN, Andreychuk DB, Yin R. The first report and biological characterization of Avian Orthoavulavirus 16 in wild migratory waterfowl and domestic poultry in China reveal a potential threat to birds. Avian Pathol 2025; 54:40-49. [PMID: 38922304 DOI: 10.1080/03079457.2024.2373366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS First confirmation of AOAV-16 in domestic and wild birds in China.AOAV-16 are low virulent viruses for chickens.Co-circulation/co-infection of AOAV-16 and H9N2 subtype AIV enhanced pathogenicity.Different intergenic sequences and recombination events exist within AOAV-16.
Collapse
Affiliation(s)
- Yuxin Sha
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Weiwen Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xinxin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Haoran Chai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, People's Republic of China
| | - Hongjin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Mengjun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Shanshan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Sijie Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yongning Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hongli Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Yifei Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Aleksandar Dodovski
- Department for Avian Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Chao Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Claro N Mingala
- Livestock Biotechnology Center, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija, Philippines
| | - Dmitry B Andreychuk
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), Vladimir, Russia
| | - Renfu Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
13
|
Mohan G, Choudhury A, Bhat J, Phartyal R, Lal R, Verma M. Human Riboviruses: A Comprehensive Study. J Mol Evol 2025; 93:11-37. [PMID: 39739017 DOI: 10.1007/s00239-024-10221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings. Their evolution has been a long road to harbour important adaptations for increasing fitness, mutability and virulence; a result of natural selection and mutation pressure, making these viruses highly infectious and difficult to counter. Accumulating favourable mutations in the course, they imitate the GC content and codon usage patterns of the host for maximising the chances of infection. A myriad of viral and host factors determine the fate of specific viral infections, which may include virus protein and host receptor compatibility, host restriction factors and others. Thus, understanding the biology, transmission and molecular mechanisms of Riboviruses is essential for the development of effective antiviral treatments, vaccine development and strategies to prevent and control viral infections. Keeping these aspects in mind, this review aims to provide a holistic approach towards understanding Riboviruses.
Collapse
Affiliation(s)
- Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Jeevika Bhat
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rajendra Phartyal
- Department of Zoology, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana, 122001, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
| |
Collapse
|
14
|
Finger A, Ashash U, Goldenberg D, Raviv Z. Lessons learnt on infectious bronchitis virus lineage GI-23. Avian Pathol 2025; 54:27-39. [PMID: 39190026 DOI: 10.1080/03079457.2024.2398030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Infectious bronchitis virus (IBV) is the first coronavirus discovered in the world in the early 1930s and despite decades of extensive immunoprophylaxis efforts, it remains a major health concern to poultry producers worldwide. Rapid evolution due to large poultry population sizes coupled with high mutation and recombination events and the reliance of the antiviral immune response on specific antibodies against the epitopes of the S1 glycoprotein, render the control of IBV extremely challenging. The numerous and rapidly evolving genetic and antigenic IBV types are currently classified based on the whole S1 gene sequence, into 36 lineages clustered in eight genotypes. Most lineages (29) are grouped in genotype I (GI). "Variant 2" (Israel/Variant 2/1998) is the prototype strain of lineage GI-23 and, since this lineage emerged during the mid-1990s in the Middle East, it has evolved into numerous genetically related strains and disseminated to five continents. The hallmarks of IBV Variant 2-like strain infections are high virulence and remarkable nephrotropism and nephropathogenicity; however, the molecular mechanisms of these traits remain to be elucidated. Limited protection from previously utilized vaccine strains and accumulated losses to poultry producers have urged the development and implementation of homologous Variant 2-like vaccine strains. The latest avian coronavirus biology with specific emphasis on the cumulative knowledge about IBV "Variant 2" and emergence of related strains, characteristics and control are reviewed.
Collapse
Affiliation(s)
- Avner Finger
- Phibro Animal Health Corporation, Airport City, Israel
| | - Udi Ashash
- Phibro Animal Health Corporation, Airport City, Israel
| | | | - Ziv Raviv
- Poultry PathoScience Solutions, Inc., Plantation, FL, USA
| |
Collapse
|
15
|
Huang PN, Hsia SH, Huang KYA, Chen CJ, Wang ET, Shih SR, Lin TY. Reflecting on the 1998 enterovirus outbreak: A 25-year retrospective and learned lessons. Biomed J 2025; 48:100715. [PMID: 38492637 PMCID: PMC11751406 DOI: 10.1016/j.bj.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Enterovirus A71 (EV-A71) infections are a major Asia-Pacific health issue. However, this infection can cause serious and potentially fatal neurological issues. We attempt to explain EV-A71's molecular virology, epidemiology, and recombination events in this review. The clinical and neurological signs of EV-A71 infections are well documented. The review discusses EV-A71 central nervous system infections' causes, diagnostic criteria, treatment choices, and prognosis. Some consequences are aseptic meningitis, acute flaccid paralysis, and acute transverse myelitis. These problems' pathophysiology and EV-A71's central nervous system molecular processes are examined in the review. EV-A71 infections must be diagnosed accurately for therapy. No particular antiviral medications exist for EV-A71 infections, thus supportive care is the main treatment. The study emphasises addressing symptoms including temperature, dehydration, and pain to ease suffering. EV-A71 CNS infections have different prognoses depending on severity. The review discusses long-term effects and neurological sequelae of EV-A71 infections. In conclusion, Asia-Pacific public health is threatened by EV-A71 infections. This review helps prevent, diagnose, and treat EV-A71 infections by addressing the mechanisms, diagnostic criteria, treatment choices, and prognosis. This study fully examines the challenges and considerations of managing and treating EV-A71 infections. It also recommends future research and development to generate effective viral infection treatments.
Collapse
Affiliation(s)
- Peng-Nien Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shao-Hsuan Hsia
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Department of Pediatric Respiratory Therapy, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Ying Arthur Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - En-Tzu Wang
- Division of Acute Infectious Diseases, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Kar S, Mehrotra S, Prajapati VK. From infection to remedy: Harnessing oncolytic viruses in cancer treatment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:213-257. [PMID: 39978967 DOI: 10.1016/bs.apcsb.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Oncolytic virus (OV) mediated immunotherapy is one of the recent techniques used to treat higher grade cancers where conventional therapies like chemotherapy, radiation fail. OVs as a therapeutic tool show high efficacy and fewer side effects than conventional methods as supported by multiple preclinical and clinical studies since they are engineered to target tumours. In this chapter, we discuss the modifications in viruses to make them oncolytic, types of strains commonly administered, mechanisms employed by viruses to specifically target and eradicate malignancy and progress achieved as reported in case studies (preclinical and clinical trials). OVs also face some unique challenges with respect to the malignancy being treated and the varied pathogen exposure of the patients, which is also highlighted here. Since pathogen exposure varies according to population dynamics worldwide, chances of generating a non-specific recall response to an OV cannot be negated. Lastly, the future perspectives and ongoing practises of combination therapies are discussed as they provide a leading edge over monotherapies in terms of tumour clearance, blocking metastasis and enhancing patient survival. Efforts undertaken to overcome current challenges are also highlighted.
Collapse
Affiliation(s)
- Sramona Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
17
|
Cavalli M, Campoli G, Anselmo A, Brandi R, Fortunato A, Di Spirito M, Monte A, Lipari M, Bortone M, Fain VV, D'Amelio R, Lista F, Fillo S. Next generation sequencing of multiple SARS-CoV-2 infections in the Omicron Era. Sci Rep 2025; 15:3372. [PMID: 39870695 PMCID: PMC11772649 DOI: 10.1038/s41598-024-84952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025] Open
Abstract
Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the need for an effective vaccine has appeared crucial for stimulating immune system responses to produce humoral/cellular immunity and activate immunological memory. It has been demonstrated that SARS-CoV-2 variants escape neutralizing immunity elicited by previous infection and/or vaccination, leading to new infection waves and cases of reinfection. The study aims to gain into cases of reinfections, particularly infections and/or vaccination-induced protection. We conducted a retrospective descriptive study using data collected during the SARS-CoV-2 pandemic. This analysis involved Reverse Transcriptase Quantitative Polymerase Chain Reaction (RT-qPCR) and Next Generation Sequencing (NGS). RT-qPCR was performed on 416,466 naso-oropharyngeal swabs, with 10,380 samples further analyzed using NGS technology. RT-qPCR identified 350 cases of reinfection, of which 228 were subjected to detailed analysis via NGS. Our findings revealed two interesting cases involving pediatric patients who were not vaccinated. Positive results were observed in these cases within a short interval (< 60 days) and the "nature" of the infection, whether attributable to Reinfection or Viral Persistence, was investigated. Specifically, we discuss a case involving an unvaccinated 18-month-old child, which may represent one of the earliest instances of BA.5/BA.5 reinfection identified worldwide.
Collapse
Affiliation(s)
- Marzia Cavalli
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy.
| | - Giulia Campoli
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
| | - Anna Anselmo
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
| | - Rossella Brandi
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy
| | - Antonella Fortunato
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
- National Council of Research - Institute of Electronics, Information Engineering and Telecommunications, Milan, Italy
| | - Maria Di Spirito
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy
| | - Anella Monte
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Martina Lipari
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
| | - Manfredo Bortone
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy
| | - Vanessa Vera Fain
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
- Department of Science, University of Rome "Roma Tre", Rome, Italy
| | - Raffaele D'Amelio
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Rome, Italy
| | - Florigio Lista
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
| | - Silvia Fillo
- Defence Institute for Biomedical Sciences, 00184, Rome, Italy
| |
Collapse
|
18
|
Zhang Y, Cheng J, Guo Y, Hu Y, Zhao Z, Liu W, Zhou L, Wu P, Cheng C, Yang C, Yang J, Du E, Li Y. Highly pathogenic bovine viral diarrhea virus BJ-11 unveils genetic evolution related to virulence in calves. Front Microbiol 2025; 15:1540358. [PMID: 39877754 PMCID: PMC11772275 DOI: 10.3389/fmicb.2024.1540358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea, which causes significant economic loss to the global livestock industry. Despite the widespread use of inactivated BVDV vaccines, highly pathogenic strains continue to emerge. In China, regional variations in BVDV subtypes, morbidities, and symptoms, however, only the BVDV 1a subtype vaccine is currently approved. Therefore, this study is to gain insight into the biological characteristics and genetic variation of BVDV strains prevalent in Beijing. Meanwhile, this will provide a theoretical foundation and technical support for the prevention and control of BVDV, as well as raise awareness of the potential for virulence enhancement caused by the unregulated use of BVDV vaccines. In this study, A BVDV strain, BJ-11, was isolated from calves that died of diarrhea and vaccinated of BVDV. To evaluate its virulence, newborn calves were experimentally infected with the BJ-11. Clinical signs included fever, diarrhea, bloody stools, anorexia, and death in some cases. A marked reduction in leukocyte and lymphocyte counts were observed, accompanied by an increase in neutrophil counts. Histopathological changes manifested as severe lung lesions. Phylogenetic analysis indicated that BJ-11 belongs to the BVDV 1b subtype, genetically closest to the JL-1 strain. Analysis of the E2 glycosylation site disappeared (298SYT) in one of the four common glycosylation sites in the BVDV-1, which has been reported to affect the ability of the virus to infect and an additional glycosylation site (122NGS). These results indicate that BJ-11 is a highly pathogenic strain evolved from a low-virulence ancestor and should be served as a challenge strain. Simultaneously, these results contribute to a broader understanding of BVDV and whether imperfect vaccination strategies lead to reversal of immunosuppressive virulence.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yu Guo
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yibin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Centrebio Biological Co., Ltd., Beijing, China
| | - Zhuo Zhao
- Beijing Centrebio Biological Co., Ltd., Beijing, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Peize Wu
- Beijing Centrebio Biological Co., Ltd., Beijing, China
| | - Chunjie Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jing Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
19
|
Zhang XL, Zhang YQ, Liu CH, Ma Y, Huang SJ, Shao JW. Research note: Genetically diverse avian hepatitis E virus identified in chickens with hepatitis-splenomegaly syndrome in Guangdong Province, China. Poult Sci 2025; 104:104557. [PMID: 39608284 PMCID: PMC11636295 DOI: 10.1016/j.psj.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Avian hepatitis E virus (HEV) is recognized as the primary causative agent of big liver and spleen disease, hepatitis-splenomegaly syndrome, and hepatic rupture hemorrhage syndrome, resulting in substantial economic losses within the global poultry industry. Since its discovery in 1991, diverse strains of avian HEV have been extensively identified worldwide. Epidemiological investigations have demonstrated the wide distribution and genetic diversity of avian HEV strains in China. In this study, avian HEV strains were identified in chickens exhibiting hepatitis-splenomegaly syndrome in Guangdong province, China. Sequence analysis indicated that these strains shared the highest nucleotide sequence identities with genotype 3 strains, and phylogenetic analysis demonstrated that they clustered with strains belonging to avian HEV genotype 3. Moreover, a statistically supported recombination event was detected within one of the avian HEV strain identified in this study. These findings significantly enhance our understanding of the genetic diversity and evolution of avian HEV in chickens, providing new insights for disease prevention and control strategies.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong Province, China
| | - Yu-Qian Zhang
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong Province, China
| | - Chun-Hong Liu
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong Province, China
| | - Yan Ma
- Animal Disease Prevention and Control Center of Guoluo Prefecture, Qinghai Province, China
| | - Shu-Jian Huang
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong Province, China
| | - Jian-Wei Shao
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong Province, China.
| |
Collapse
|
20
|
Che H, Gao S, Lin Y, Long H, Li Y, Cai L, Li S, Ma Y. Viromics Reveals Two Novel Viruses of the Family Closteroviridae in Codiaeum variegatum Plant with Leaf Variegation Symptoms. PLANT DISEASE 2025; 109:115-122. [PMID: 39215501 DOI: 10.1094/pdis-05-24-1013-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Codiaeum variegatum is a valuable ornamental plant with distinct bright yellowing and golden spots on dark green leaves, which resemble virus symptoms. To investigate the factors, especially viral agents, associated with the variegated leaf color of C. variegatum, we performed virome profiling of a single C. variegatum 'Gold Dust' leaf sample collected from Hainan, China, using ribosomal RNA-depleted total RNA sequencing on an Illumina NovaSeq 6000 platform. Two novel viruses, with two variants each, belonging to the family Closteroviridae, were detected and characterized: Croton golden spot-associated virus C variants 1 and 2 (CGSaVC-v1 and CGSaVC-v2) of the genus Crinivirus and Croton golden spot-associated virus A variants 1 and 2 (CGSaVA-v1 and CGSaVA-v2) of the genus Ampelovirus. Transmission electron microscopy showed long, flexuous, filamentous virus particles approximately 15 nm in diameter and 760 to 770 nm in length. Molecular screening of 97 variegated individual plant leaves showed a high prevalence of CGSaVA-v2 (90.7%), CGSaVA-v1 (75.3%), CGSaVC-v1 (70.1%), and CGSaVC-v2 (47.4%), while asymptomatic leaves near the meristem tip were mostly free of the target viruses. To our knowledge, this is the first study to demonstrate the significant association between closterovirids and the golden spots. The findings provide novel insights into the genetic diversity of the family Closteroviridae and inform future germplasm conservation and new cultivar development of C. variegatum.
Collapse
Affiliation(s)
- Haiyan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Shengfeng Gao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan Province, China
| | - Yating Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Haibo Long
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Ye Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Lulu Cai
- Center for Biosafety, Chinese Academy of Inspection and Quarantine, Sanya 572024, Hainan Province, China
| | - Shifang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
- Center for Biosafety, Chinese Academy of Inspection and Quarantine, Sanya 572024, Hainan Province, China
| | - Yuxin Ma
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| |
Collapse
|
21
|
Tang J, Hung YF, Yoo D. Genomic RNA recombination of porcine reproductive and respiratory syndrome virus and other arteriviruses. Virology 2025; 601:110284. [PMID: 39531889 DOI: 10.1016/j.virol.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Arteriviruses in the Nidovirales order are single-stranded positive-sense RNA viruses infecting mammals. Arteriviruses are recognized for causing various clinical diseases, ranging from asymptomatic infections to severe conditions like respiratory syndromes and viral hemorrhagic fever. Notably, arteriviruses exhibit a high frequency of RNA recombination, and their robust recombination rates are a crucial factor in recurrent outbreaks. The recombination events also shape the countermeasures employed by arteriviruses during virus-host co-evolution and confer specific evolutionary benefits to viruses, implicating a role as a selective advantage in viral adaptation. This review delves into the molecular basis of RNA recombination in arteriviruses, the bioinformatics tools and methodologies used to visualize evolutionary relationships, and the identification of recombination breakpoints. Significant recombination events are highlighted for PRRSV and other arteriviruses, illustrating the profound implications of recombination for viral evolution and pathogenesis. Recombination between field viruses and between field viruses and vaccine strains can generate new variants with altered antigenic profiles and virulence, leading to diagnostic failure, severe clinical outcomes, and reduced vaccine efficacy. Despite the advances, further research is needed to understand recombination rates and hotspots, as well as to develop potential antiviral strategies and diagnostic approaches for arteriviruses.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Yu Fan Hung
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
22
|
Yu T, Blyton MBJ, Koppetsch BS, Abajorga M, Luban J, Chappell K, Theurkauf WE, Weng Z. The Trajectory of KoRV-A Evolution Indicates Initial Integration into the Koala Germline Genome Near Coffs Harbour. RESEARCH SQUARE 2024:rs.3.rs-5671983. [PMID: 39764129 PMCID: PMC11703332 DOI: 10.21203/rs.3.rs-5671983/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background Koala Retrovirus-A is a gamma-retrovirus that is spreading across wild koala populations through horizontal and vertical transmission, contributing significantly to genomic diversity across and even within koala populations. Previous studies have estimated that KoRV-A initially integrated into the koala genome less than 50,000 years ago, but the precise origins and the patterns of spread after its endogenization remain unclear. Results In this study, we analyzed germline insertions of KoRV-A using whole-genome sequencing data from 405 wild koalas, representing nearly the species' entire geographic range. Our findings reveal an evolutionary trajectory for KoRV-A, suggesting that the initial endogenization might occur near Coffs Harbour on the Mid-north coast of NSW around the middle of the koala's range. As KoRV-A spread, certain subtypes emerged and became prevalent, two of which recombined with an ancient endogenous retrovirus, PhER, resulting in distinct recombination variants in northern and southern koala populations. Additionally, we identified a geographic barrier north of Sydney, which may have slowed the southward spread of KoRV-A into Sydney and beyond. Conclusions Our study proposes a comprehensive evolutionary pathway for KoRV-A, beginning with its initial endogenization near Coffs Harbour and highlighting barriers and diversification events that have shaped its distribution and impact on koala populations.
Collapse
|
23
|
Brandi R, Paganelli A, D’Amelio R, Giuliani P, Lista F, Salemi S, Paganelli R. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines (Basel) 2024; 12:1418. [PMID: 39772079 PMCID: PMC11680146 DOI: 10.3390/vaccines12121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity. METHODS To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein-Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases. RESULTS RNA viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-2, HIV, and influenza, are characterized by high variability, thus creating the need to rapidly adapt the vaccines to the circulating viral strain, a task that mRNA vaccines can easily accomplish; however, the speed of variability may be higher than the time needed for a vaccine to be adapted. mRNA vaccines, using lipid nanoparticles as the delivery system, may act as adjuvants, thus powerfully stimulating innate as well as adaptive immunity, both humoral, which is rapidly waning, and cell-mediated, which is highly persistent. Safety profiles were satisfactory, considering that only a slight increase in prognostically favorable anaphylactic reactions in young females and myopericarditis in young males has been observed. CONCLUSIONS The COVID-19 pandemic determined a shift in the use of RNA: after having been used in medicine as micro-RNAs and tumor vaccines, the new era of anti-infectious mRNA vaccines has begun, which is currently in great development, to either improve already available, but unsatisfactory, vaccines or develop protective vaccines against infectious agents for which no preventative tools have been realized yet.
Collapse
Affiliation(s)
- Rossella Brandi
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | | | | | - Paolo Giuliani
- Poliambulatorio Montezemolo, Ente Sanitario Militare del Ministero Della Difesa Presso la Corte dei Conti, 00195 Rome, Italy;
| | - Florigio Lista
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | - Simonetta Salemi
- Division of Internal Medicine, Azienda Ospedaliero-Universitaria S. Andrea, 00189 Rome, Italy
| | - Roberto Paganelli
- Internal Medicine, Faculty of Medicine and Surgery, Unicamillus, International School of Medicine, 00131 Rome, Italy
| |
Collapse
|
24
|
Achs A, Glasa M, Šubr Z. Potyvirus-Based Vectors for Heterologous Gene Expression in Plants. Viruses 2024; 16:1920. [PMID: 39772227 PMCID: PMC11680211 DOI: 10.3390/v16121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Over the past two decades, plant viral vectors have emerged as a powerful tool for the production of recombinant proteins in plants. Among the different plant viruses engineered to carry foreign genes of interest in their genomes, potyviruses have gained attention due to their polyprotein expression strategy and broad host range. To date, at least eleven different species belonging to the genus Potyvirus have been used for heterologous gene expression in both their natural and experimental hosts. This review article provides an overview of the current state of potyvirus-based plant viral vectors, discussing the advantages and limitations of these systems. We also discuss the future challenges and potential applications of potyvirus-based expression vectors, including the production of vaccines, nanoparticles, therapeutics, and metabolic engineering. Overall, we highlight the potential of potyvirus-based vectors as a versatile tool for recombinant protein production in plants.
Collapse
Affiliation(s)
- Adam Achs
- Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Miroslav Glasa
- Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Námestie J. Herdu 2, 917 01 Trnava, Slovakia
| | - Zdeno Šubr
- Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
25
|
Faye M, Di Paola N, Dia M, Sall AA, Faye O. Molecular epidemiology and pathogenicity of Wesselsbron virus circulating in Africa. Virus Res 2024; 350:199499. [PMID: 39547415 PMCID: PMC11615586 DOI: 10.1016/j.virusres.2024.199499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Wesselsbron is a neglected, mosquito-borne zoonotic disease transmitted by several species of virus-infected Aedes mosquitoes endemic to tropical regions in Africa. It affects primarily domestic livestock species with teratogenic effects, but can jump to humans. Herein, we investigated the molecular epidemiology of Wesselsbron virus in Africa using whole genome sequencing and structural analysis, and assessed its pathogenicity and tropism through in vivo experiments. A total of twenty-five isolates collected from three countries were successfully characterized. Our study is noteworthy by identifying, for the first time, inter-clade recombination events on the genome of Wesselsbron virus. However, more investigations on the precise molecular mechanisms conducting the occurrence of recombination on the genome of Wesselsbron virus, are warranted. The identification of polymorphisms on motifs of virulence and selection pressures on major proteins showed evidence of genetic evolution for Wesselsbron virus. The clade 1 was more pathogenic and neurotropic in suckling mice and the intramuscular route was found to be the best transmission mode. Our findings also provide new insights in the pathogenicity and tropism of Wesselsbron virus, which could be useful for prevention, preparedness and future outbreak response. Considering its high prevalence in mosquito populations and the increasing number of sporadic human cases, Wesselsbron virus merits more attention in terms of prevention and preparedness, as its mosquito vectors continue to globally expand and there is no vaccine.
Collapse
Affiliation(s)
- Martin Faye
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220 Dakar, Senegal.
| | - Nicholas Di Paola
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, USA
| | - Moussa Dia
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220 Dakar, Senegal
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220 Dakar, Senegal
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220 Dakar, Senegal
| |
Collapse
|
26
|
Zadra N, Rizzoli A, Rota-Stabelli O. Comprehensive phylogenomic analysis of Zika virus: Insights into its origin, past evolutionary dynamics, and global spread. Virus Res 2024; 350:199490. [PMID: 39489463 PMCID: PMC11583807 DOI: 10.1016/j.virusres.2024.199490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Zika virus (ZIKV), a Flaviviridae family member, has been linked to severe neurological disorders. Despite detailed studies on recent outbreaks, the early evolutionary history of ZIKV remains partially unclear. This study elucidates ZIKV origin and evolutionary dynamics, focusing on recombination events, early lineage diversification, and virus spread across continents. METHODS We assessed recombination using multiple methods. We conducted Bayesian phylogenetic analyses to understand the evolutionary relationships and timing of key diversification events. Model selection was carried out to determine the most appropriate evolutionary model for our dataset. RESULTS Our phylogenies revealed recent recombination between Singaporean and African lineages, indicating the co-circulation of diverse lineages during outbreaks. Thailand was identified as a crucial hub in the spread across Asia. The phylogenetic analysis suggests that the ZIKV lineage dates back to the eleventh century, with the first significant diversification occurring in the nineteenth century. The timing of the re-introduction of the Asian lineage into Africa and the delay between probable introduction and outbreak onset were also determined. CONCLUSIONS This study provides novel insights into ZIKV's origin and early evolutionary dynamics, highlighting Thailand's role in the spread of the virus in Asia and recent recombination events between distant lineages. These findings emphasize the need for continuous surveillance and a better understanding of ZIKV biology to forecast and mitigate future outbreaks.
Collapse
Affiliation(s)
- Nicola Zadra
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Annapaola Rizzoli
- Applied Ecology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
27
|
Ameni G, Zewude A, Tulu B, Derara M, Bayissa B, Mohammed T, Degefa BA, Hamad ME, Tibbo M, Barigye R. A Narrative Review on the Pandemic Zoonotic RNA Virus Infections Occurred During the Last 25 Years. J Epidemiol Glob Health 2024; 14:1397-1412. [PMID: 39378018 PMCID: PMC11652441 DOI: 10.1007/s44197-024-00304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Pandemic zoonotic RNA virus infections have continued to threaten humans and animals worldwide. The objective of this review was to highlight the epidemiology and socioeconomic impacts of pandemic zoonotic RNA virus infections that occurred between 1997 and 2021. METHODS Literature search was done from Web of Science, PubMed, Google Scholar and Scopus databases, cumulative case fatalities of individual viral infection calculated, and geographic coverage of the pandemics were shown by maps. RESULTS Seven major pandemic zoonotic RNA virus infections occurred from 1997 to 2021 and were presented in three groups: The first group consists of highly pathogenic avian influenza (HPAI-H5N1) and swine-origin influenza (H1N1) viruses with cumulative fatality rates of 53.5% and 0.5% in humans, respectively. Moreover, HPAI-H5N1 infection caused 90-100% death in poultry and economic losses of >$10 billion worldwide. Similarly, H1N1 caused a serious infection in swine and economic losses of 0.5-1.5% of the Gross Domestic Product (GDP) of the affected countries. The second group consists of severe acute respiratory syndrome-associated coronavirus infection (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Coronavirus disease 2019 (COVID-19) with case fatalities of 9.6%, 34.3% and 2.0%, respectively in humans; but this group only caused mild infections in animals. The third group consists of Ebola and Zika virus infections with case fatalities of 39.5% and 0.02%, respectively in humans but causing only mild infections in animals. CONCLUSION Similar infections are expected in the near future, and hence strict implementation of conventional biosecurity-based measures and development of efficacious vaccines would help minimize the impacts of the next pandemic infection.
Collapse
Affiliation(s)
- Gobena Ameni
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia.
| | - Aboma Zewude
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Begna Tulu
- College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir City, Ethiopia
| | - Milky Derara
- Department of Dentistry, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Berecha Bayissa
- Vaccine Production and Drug Formulation Directorate, National Veterinary Institute, PO Box 35, Debre Zeit, Ethiopia
| | - Temesgen Mohammed
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Berhanu Adenew Degefa
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Mohamed Elfatih Hamad
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Markos Tibbo
- Sub Regional Office for the Gulf-cooperation Council States and Yemen-SNG, Food and Agricultural Organization of the United Nations, Al Qala-id Street, PO Box 62027, Abu Dhabi, United Arab Emirates
| | - Robert Barigye
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
28
|
Litz B, Sehl-Ewert J, Breithaupt A, Landmesser A, Pfaff F, Romey A, Blaise-Boisseau S, Beer M, Eschbaumer M. Leaderless foot-and-mouth disease virus serotype O did not cause clinical disease and failed to establish a persistent infection in cattle. Emerg Microbes Infect 2024; 13:2348526. [PMID: 38683015 PMCID: PMC11100440 DOI: 10.1080/22221751.2024.2348526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The foot-and-mouth disease virus (FMDV) Leader proteinase Lpro inhibits host mRNA translation and blocks the interferon response which promotes viral survival. Lpro is not required for viral replication in vitro but serotype A FMDV lacking Lpro has been shown to be attenuated in cattle and pigs. However, it is not known, whether leaderless viruses can cause persistent infection in vivo after simulated natural infection and whether the attenuated phenotype is the same in other serotypes. We have generated an FMDV O/FRA/1/2001 variant lacking most of the Lpro coding region (ΔLb). Cattle were inoculated intranasopharyngeally and observed for 35 days to determine if O FRA/1/2001 ΔLb is attenuated during the acute phase of infection and whether it can maintain a persistent infection in the upper respiratory tract. We found that although this leaderless virus can replicate in vitro in different cell lines, it is unable to establish an acute infection with vesicular lesions and viral shedding nor is it able to persistently infect bovine pharyngeal tissues.
Collapse
Affiliation(s)
- Benedikt Litz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anja Landmesser
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Aurore Romey
- Animal Health Laboratory, Foot-and-Mouth Disease Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- Animal Health Laboratory, Foot-and-Mouth Disease Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort, France
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
29
|
Xu Z, Asakawa S. The Definition of RNA Age Related to RNA Sequence Changes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1876. [PMID: 39628136 DOI: 10.1002/wrna.1876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 04/10/2025]
Abstract
Ribonucleic acid (RNA) undergoes dynamic changes in its structure and function under various intracellular and extracellular conditions over time. However, there is a lack of research on the concept of the RNA age to describe its diverse fates. This study proposes a definition of RNA age to address this issue. RNA age was defined as a sequence of numbers wherein the elements in the sequence were the nucleotide ages of the ribonucleotide residues in the RNA. Mean nucleotide age was used to represent RNA age. This definition describes the temporal properties of RNAs that have undergone diverse life histories and reflects the dynamic state of each ribonucleotide residue, which can be expressed mathematically. Notably, events (including base insertions, base deletions, and base substitutions) are likely to cause RNA to become younger or older when using mean nucleotide ages to represent the RNA age. Although information, including the presence of added markers in RNA, chemical modification structure of the RNA, and the excision of introns in the mRNA in cells, may provide a basis for identifying RNA age, little is known about determining the RNA age of extracellular RNA in the wild. Nonetheless, we believe that RNA age has an important relationship with the diverse biological properties of RNA under intracellular and extracellular conditions. Therefore, our proposed definition of RNA age offers new perspectives for studying dynamic changes in RNA function, RNA aging, ancient RNA, environmental RNA, and the ages of other biomolecules.
Collapse
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Riller Q, Schmutz M, Fourgeaud J, Fischer A, Neven B. Protective role of antibodies in enteric virus infections: Lessons from primary and secondary immune deficiencies. Immunol Rev 2024; 328:243-264. [PMID: 39340232 PMCID: PMC11659928 DOI: 10.1111/imr.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
| | - Jacques Fourgeaud
- Université Paris Cité, FETUSParisFrance
- Microbiology DepartmentAP‐HP, Hôpital NeckerParisFrance
| | - Alain Fischer
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker‐Children's Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
- INSERM UMRS 1163, Institut ImagineParisFrance
- Collège de FranceParisFrance
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker‐Children's Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
| |
Collapse
|
31
|
Pauciullo S, Zulian V, La Frazia S, Paci P, Garbuglia AR. Spillover: Mechanisms, Genetic Barriers, and the Role of Reservoirs in Emerging Pathogens. Microorganisms 2024; 12:2191. [PMID: 39597581 PMCID: PMC11596118 DOI: 10.3390/microorganisms12112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Viral spillover represents the transmission of pathogen viruses from one species to another that can give rise to an outbreak. It is a critical concept that has gained increasing attention, particularly after the SARS-CoV-2 pandemic. However, the term is often used inaccurately to describe events that do not meet the true definition of spillover. This review aims to clarify the proper use of the term and provides a detailed analysis of the mechanisms driving zoonotic spillover, with a focus on the genetic and environmental factors that enable viruses to adapt to new hosts. Key topics include viral genetic variability in reservoir species, biological barriers to cross-species transmission, and the factors that influence viral adaptation and spread in novel hosts. The review also examines the role of evolutionary processes such as mutation and epistasis, alongside ecological conditions that facilitate the emergence of new pathogens. Ultimately, it underscores the need for more accurate predictive models and improved surveillance to better anticipate and mitigate future spillover events.
Collapse
Affiliation(s)
- Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Paola Paci
- Department of Computer, Control, and Management Engineering “A. Ruberti” (DIAG), Sapienza University of Rome, 00185 Rome, Italy;
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| |
Collapse
|
32
|
Yang Z, Shan Y, Liu X, Chen G, Pan Y, Gou Q, Zou J, Chang Z, Zeng Q, Yang C, Kong J, Sun Y, Li S, Zhang X, Wu WC, Li C, Peng H, Holmes EC, Guo D, Shi M. VirID: Beyond Virus Discovery-An Integrated Platform for Comprehensive RNA Virus Characterization. Mol Biol Evol 2024; 41:msae202. [PMID: 39331699 PMCID: PMC11523140 DOI: 10.1093/molbev/msae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
RNA viruses exhibit vast phylogenetic diversity and can significantly impact public health and agriculture. However, current bioinformatics tools for viral discovery from metagenomic data frequently generate false positive virus results, overestimate viral diversity, and misclassify virus sequences. Additionally, current tools often fail to determine virus-host associations, which hampers investigation of the potential threat posed by a newly detected virus. To address these issues we developed VirID, a software tool specifically designed for the discovery and characterization of RNA viruses from metagenomic data. The basis of VirID is a comprehensive RNA-dependent RNA polymerase database to enhance a workflow that includes RNA virus discovery, phylogenetic analysis, and phylogeny-based virus characterization. Benchmark tests on a simulated data set demonstrated that VirID had high accuracy in profiling viruses and estimating viral richness. In evaluations with real-world samples, VirID was able to identify RNA viruses of all types, but also provided accurate estimations of viral genetic diversity and virus classification, as well as comprehensive insights into virus associations with humans, animals, and plants. VirID therefore offers a robust tool for virus discovery and serves as a valuable resource in basic virological studies, pathogen surveillance, and early warning systems for infectious disease outbreaks.
Collapse
Affiliation(s)
- Ziyue Yang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yongtao Shan
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xue Liu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Guowei Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Yuanfei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qinyu Gou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jie Zou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zilong Chang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Qiang Zeng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chunhui Yang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jianbin Kong
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Shaochuan Li
- Goodwill Institute of Life Sciences, Guangzhou, China
| | - Xu Zhang
- Goodwill Institute of Life Sciences, Guangzhou, China
| | - Wei-chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chunmei Li
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Hong Peng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong (SAR), China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
33
|
Bardossy ES, Volpe S, Suzuki Y, Merwaiss F, Faraj S, Montes M, Saleh MC, Alvarez DE, Filomatori CV. Molecular basis of RNA recombination in the 3'UTR of chikungunya virus genome. Nucleic Acids Res 2024; 52:9727-9744. [PMID: 39051569 PMCID: PMC11381336 DOI: 10.1093/nar/gkae650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Chikungunya virus (CHIKV) is a rapidly spreading re-emergent virus transmitted from mosquitoes to humans. The emergence of epidemic variants has been associated with changes in the viral genome, such as the duplication of repeated sequences in the 3' untranslated region (UTR). Indeed, blocks of repeated sequences seemingly favor RNA recombination, providing the virus with a unique ability to continuously change the 3'UTR architecture during host switching. In this work, we provide experimental data on the molecular mechanism of RNA recombination and describe specific sequence and structural elements in the viral 3'UTR that favor template switching of the viral RNA-dependent RNA polymerase on the 3'UTR. Furthermore, we found that a 3'UTR deletion mutant that exhibits markedly delayed replication in mosquito cells and impaired transmission in vivo, recombines in reference laboratory strains of mosquitoes. Altogether, our data provide novel experimental evidence indicating that RNA recombination can act as a nucleic acid repair mechanism to add repeated sequences that are associated to high viral fitness in mosquito during chikungunya virus replication.
Collapse
Affiliation(s)
- Eugenia S Bardossy
- Escuela de Bio y Nanotecnología, Universidad de San Martín - CONICET, Buenos Aires, Argentina
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Sebastiano Volpe
- Escuela de Bio y Nanotecnología, Universidad de San Martín - CONICET, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Yasutsugu Suzuki
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Fernando Merwaiss
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Santiago Faraj
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Mónica Montes
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Diego E Alvarez
- Escuela de Bio y Nanotecnología, Universidad de San Martín - CONICET, Buenos Aires, Argentina
| | - Claudia V Filomatori
- Escuela de Bio y Nanotecnología, Universidad de San Martín - CONICET, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| |
Collapse
|
34
|
Roh H, Skaftnesmo KO, Kannimuthu D, Madhun A, Patel S, Kvamme BO, Morton HC, Grove S. Nanopore sequencing provides snapshots of the genetic variation within salmonid alphavirus-3 (SAV3) during an ongoing infection in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Vet Res 2024; 55:106. [PMID: 39227887 PMCID: PMC11373506 DOI: 10.1186/s13567-024-01349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/24/2024] [Indexed: 09/05/2024] Open
Abstract
Frequent RNA virus mutations raise concerns about evolving virulent variants. The purpose of this study was to investigate genetic variation in salmonid alphavirus-3 (SAV3) over the course of an experimental infection in Atlantic salmon and brown trout. Atlantic salmon and brown trout parr were infected using a cohabitation challenge, and heart samples were collected for analysis of the SAV3 genome at 2-, 4- and 8-weeks post-challenge. PCR was used to amplify eight overlapping amplicons covering 98.8% of the SAV3 genome. The amplicons were subsequently sequenced using the Nanopore platform. Nanopore sequencing identified a multitude of single nucleotide variants (SNVs) and deletions. The variation was widespread across the SAV3 genome in samples from both species. Mostly, specific SNVs were observed in single fish at some sampling time points, but two relatively frequent (i.e., major) SNVs were observed in two out of four fish within the same experimental group. Two other, less frequent (i.e., minor) SNVs only showed an increase in frequency in brown trout. Nanopore reads were de novo clustered using a 99% sequence identity threshold. For each amplicon, a number of variant clusters were observed that were defined by relatively large deletions. Nonmetric multidimensional scaling analysis integrating the cluster data for eight amplicons indicated that late in infection, SAV3 genomes isolated from brown trout had greater variation than those from Atlantic salmon. The sequencing methods and bioinformatics pipeline presented in this study provide an approach to investigate the composition of genetic diversity during viral infections.
Collapse
Affiliation(s)
- HyeongJin Roh
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway.
| | - Kai Ove Skaftnesmo
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| | | | - Abdullah Madhun
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| | - Sonal Patel
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
- Norwegian Veterinary Institute, Bergen, Norway
| | - Bjørn Olav Kvamme
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| | - H Craig Morton
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| | - Søren Grove
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| |
Collapse
|
35
|
Hassanin A, Tu VT, Görföl T, Ngon LQ, Pham PV, Hang CT, Tuan TA, Prot M, Simon-Lorière E, Kemenesi G, Tóth GE, Moulin L, Wurtzer S. Phylogeography of horseshoe bat sarbecoviruses in Vietnam and neighbouring countries. Implications for the origins of SARS-CoV and SARS-CoV-2. Mol Ecol 2024; 33:e17486. [PMID: 39161178 DOI: 10.1111/mec.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
Previous studies on horseshoe bats (Rhinolophus spp.) have described many coronaviruses related to SARS-CoV (SARSCoVr) in China and only a few coronaviruses related to SARS-CoV-2 (SARSCoV2r) in Yunnan (southern China), Cambodia, Laos and Thailand. Here, we report the results of several field missions carried out in 2017, 2021 and 2022 across Vietnam during which 1218 horseshoe bats were sampled from 19 locations. Sarbecoviruses were detected in 11% of faecal RNA extracts, with much more positives among Rhinolophus thomasi (46%). We assembled 38 Sarbecovirus genomes, including 32 SARSCoVr, four SARSCoV2r, and two recombinants of SARSCoVr and SARSCoV2r (RecSar), one showing a Spike protein very similar to SARS-CoV-2. We detected a bat co-infected with four coronaviruses, including two sarbecoviruses. Our analyses revealed that Sarbecovirus genomes evolve in Vietnam under strong geographical and host constraints. First, we found evidence for a deep separation between viruses from northern Vietnam and those from central and southern Vietnam. Second, we detected only SARSCoVr in Rhinolophus thomasi, both SARSCoVr and SARSCoV2r in Rhinolophus affinis, and only RecSar in Rhinolophus pusillus captured close to the border with China. Third, the bias in favour of Uracil in synonymous third codon positions of SARSCoVr extracted from R. thomasi showed a negative correlation with latitudes. Our results also provided support for an emergence of SARS-CoV in horseshoe bats from northern Yunnan and emergence of SARS-CoV-2 in horseshoe bats from northern Indochina subtropical forests (southern Yunnan, northern Laos and north-western Vietnam).
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), SU, MNHN, CNRS, EPHE, UA, Sorbonne Université, Paris, France
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Lam Quang Ngon
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phu Van Pham
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Chu Thi Hang
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tran Anh Tuan
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Mathieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Etienne Simon-Lorière
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Laurent Moulin
- R&D Laboratory, Direction Recherche, Développement et Qualité de l'Eau, Eau de Paris, Ivry-sur-Seine, France
| | - Sébastien Wurtzer
- R&D Laboratory, Direction Recherche, Développement et Qualité de l'Eau, Eau de Paris, Ivry-sur-Seine, France
| |
Collapse
|
36
|
Bonavita CM, Wells HL, Anthony SJ. Cellular dynamics shape recombination frequency in coronaviruses. PLoS Pathog 2024; 20:e1012596. [PMID: 39331680 PMCID: PMC11463787 DOI: 10.1371/journal.ppat.1012596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Coronavirus genomes have evolutionary histories shaped extensively by recombination. Yet, how often recombination occurs at a cellular level, or the factors that regulate recombination rates, are poorly understood. Utilizing experimental co-infections with pairs of genetically distinct coronaviruses, we found that recombination is both frequent and rare during coinfection. Recombination occurred in every instance of co-infection yet resulted in relatively few recombinant RNAs. By integrating a discrete-time Susceptible-Infected-Removed (SIR) model, we found that rates of recombination are determined primarily by rates of cellular co-infection, rather than other possible barriers such as RNA compartmentalization. By staggering the order and timing of infection with each virus we also found that rates of co-infection are themselves heavily influenced by genetic and ecological mechanisms, including superinfection exclusion and the relative fitness of competing viruses. Our study highlights recombination as a potent yet regulated force: frequent enough to ensure a steady influx of genetic variation but also infrequent enough to maintain genomic integrity. As recombination is thought to be an important driver of host-switching and disease emergence, our study provides new insights into the factors that regulate coronavirus recombination and evolution more broadly.
Collapse
Affiliation(s)
- Cassandra M. Bonavita
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
| | - Heather L. Wells
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
| | - Simon J. Anthony
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
| |
Collapse
|
37
|
Levi LI, Madden EA, Boussier J, Erazo D, Sanders W, Vallet T, Bernhauerova V, Moorman NJ, Heise MT, Vignuzzi M. Chikungunya Virus RNA Secondary Structures Impact Defective Viral Genome Production. Microorganisms 2024; 12:1794. [PMID: 39338469 PMCID: PMC11434300 DOI: 10.3390/microorganisms12091794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne RNA virus that poses an emerging threat to humans. In a manner similar to other RNA viruses, CHIKV encodes an error-prone RNA polymerase which, in addition to producing full-length genomes, gives rise to truncated, non-functional genomes, which have been coined defective viral genomes (DVGs). DVGs have been intensively studied in the context of therapy, as they can inhibit viral replication and dissemination in their hosts. In this work, we interrogate the influence of viral RNA secondary structures on the production of CHIKV DVGs. We experimentally map RNA secondary structures of the CHIKV genome using selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), which couples chemical labelling with next-generation sequencing. We correlate the inferred secondary structure with preferred deletion sites of CHIKV DVGs. We document an increased probability of DVG generation with truncations at unpaired nucleotides within the secondary structure. We then generated a CHIKV mutant bearing synonymous changes at the nucleotide level to disrupt the existing RNA secondary structure (CHIKV-D2S). We show that CHIKV-D2S presents altered DVG generation compared to wild-type virus, correlating with the change in RNA secondary structure obtained by SHAPE-MaP. Our work thus demonstrates that RNA secondary structure impacts CHIKV DVG production during replication.
Collapse
Affiliation(s)
- Laura I. Levi
- Viral Populations and Pathogenesis Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France (M.V.)
- Infectious Disease Department, Université Paris Cité and Hôpital Saint-Louis and Lariboisière, APHP, INSERM U944, 75010 Paris, France
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jeremy Boussier
- Viral Populations and Pathogenesis Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France (M.V.)
| | - Diana Erazo
- Viral Populations and Pathogenesis Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France (M.V.)
| | - Wes Sanders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France (M.V.)
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Veronika Bernhauerova
- Viral Populations and Pathogenesis Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France (M.V.)
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France (M.V.)
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
38
|
Hajizadeh M, Ben Mansour K, Gibbs AJ. A Genetic Study of Spillovers in the Bean Common Mosaic Subgroup of Potyviruses. Viruses 2024; 16:1351. [PMID: 39339828 PMCID: PMC11436247 DOI: 10.3390/v16091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Nine viruses of the bean common mosaic virus subgroup of potyviruses are major international crop pathogens, but their phylogenetically closest relatives from non-crop plants have mostly been found only in SE Asia and Oceania, which is thus likely to be their "centre of emergence". We have compared over 700 of the complete genomic ORFs of the crop pandemic and the non-crop viruses in various ways. Only one-third of crop virus genomes are non-recombinant, but more than half the non-crop virus genomes are. Four of the viruses were from crops domesticated in the Old World (Africa to SE Asia), and the other five were from New World crops. There was a temporal signal in only three of the crop virus datasets, but it confirmed that the most recent common ancestors of all the crop viruses were before inter-continental marine trade started after 1492 CE, whereas all the crown clusters of the phylogenies are from after that date. The non-crop virus datasets are genetically more diverse than those of the crop viruses, and Tajima's D analyses showed that their populations were contracting, and only one of the crop viruses had a significantly expanding population. dN/dS analyses showed that most of the genes and codons in all the viruses were under significant negative selection, and the few that were under significant positive selection were mostly in the PIPO-encoding region of the P3 protein, or the PIPO protein itself. Interestingly, more positively selected codons were found in non-crop than in crop viruses, and, as the hosts of the former were taxonomically more diverse than the latter, this may indicate that the positively selected codons are involved in host range determination; AlphaFold3 modelling was used to investigate this possibility.
Collapse
Affiliation(s)
- Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Karima Ben Mansour
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic;
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
39
|
Onwongá AA, Oyola SO, Juma J, Konongoi S, Nyamota R, Mwangi R, Muli C, Dobi P, Bett BB, Ongus JR. Genome characterization of Rift Valley fever virus isolated from cattle, goats and sheep during interepidemic periods in Kenya. BMC Vet Res 2024; 20:376. [PMID: 39180076 PMCID: PMC11342565 DOI: 10.1186/s12917-024-04161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/26/2024] [Indexed: 08/26/2024] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne RNA virus of the Phlebovirus genus in the phenuviridae family. Its genome is trisegmented with small (S), medium (M) and large (L) fragments. In nature, the virus exists as a single serotype that is responsible for outbreaks of Rift Valley fever (RVF), a zoonotic disease that often occurs in Africa and the Middle East. RVFV genomes are thought to undergo both recombination and reassortment and investigations of these events is important for monitoring the emergence of virulent strains and understanding the evolutionary characteristics of this virus. The aim of this study was to characterize the genomes of RVFV isolates from cattle, sheep, and goats collected during an interepidemic period in Kenya between June 2016 and November 2021. A total of 691 serum samples from cattle (n = 144), goats (n = 185) and sheep (n = 362) were analysed at the Central Veterinary Laboratories. The competitive IgM-capture ELISA, was used to screen the samples; 205 samples (29.67%) tested positive for RVFV. Of the 205 positive samples, 42 (20.5%) were from cattle, 57 (27.8%) from goats, and 106 (51.7%) from sheep. All the IgM-positive samples were further analyzed by qPCR, and 24 (11.71%) tested positive with Ct values ranging from 14.788 to 38.286. Two samples, 201808HABDVS from sheep and 201810CML3DVS from cattle, had Ct values of less than 20.0 and yielded whole genome sequences with 96.8 and 96.4 coverage, respectively. There was no statistically significant evidence of recombination in any of the three segments and also phylogenetic analysis showed no evidence of reassortment in the two isolated RVFV segments when compared with other isolates of different lineages from previous outbreaks whose genomes are deposited in the GenBank. No evidence of reassortment leaves room for other factors to be the most probable contributors of change in virulence, pathogenicity and emergence of highly virulent strains of the RVFV.
Collapse
Affiliation(s)
- Amos A Onwongá
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya.
- Department of Veterinary Services, Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya.
| | - Samuel O Oyola
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - John Juma
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | - Richard Nyamota
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Reuben Mwangi
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Collins Muli
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Paul Dobi
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Bernard B Bett
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Juliette R Ongus
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| |
Collapse
|
40
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
41
|
Tang X, Shang J, Chen G, Chan KHK, Shi M, Sun Y. SegVir: Reconstruction of Complete Segmented RNA Viral Genomes from Metatranscriptomes. Mol Biol Evol 2024; 41:msae171. [PMID: 39137184 PMCID: PMC11346362 DOI: 10.1093/molbev/msae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Segmented RNA viruses are a complex group of RNA viruses with multisegment genomes. Reconstructing complete segmented viruses is crucial for advancing our understanding of viral diversity, evolution, and public health impact. Using metatranscriptomic data to identify known and novel segmented viruses has sped up the survey of segmented viruses in various ecosystems. However, the high genetic diversity and the difficulty in binning complete segmented genomes present significant challenges in segmented virus reconstruction. Current virus detection tools are primarily used to identify nonsegmented viral genomes. This study presents SegVir, a novel tool designed to identify segmented RNA viruses and reconstruct their complete genomes from complex metatranscriptomes. SegVir leverages both close and remote homology searches to accurately detect conserved and divergent viral segments. Additionally, we introduce a new method that can evaluate the genome completeness and conservation based on gene content. Our evaluations on simulated datasets demonstrate SegVir's superior sensitivity and precision compared to existing tools. Moreover, in experiments using real data, we identified some virus segments missing in the NCBI database, underscoring SegVir's potential to enhance viral metagenome analysis. The source code and supporting data of SegVir are available via https://github.com/HubertTang/SegVir.
Collapse
Affiliation(s)
- Xubo Tang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Jiayu Shang
- Department of Information Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong (SAR), China
| | - Guowei Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Kei Hang Katie Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| |
Collapse
|
42
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
43
|
Li W, Tahiri N. Host-Virus Cophylogenetic Trajectories: Investigating Molecular Relationships between Coronaviruses and Bat Hosts. Viruses 2024; 16:1133. [PMID: 39066295 PMCID: PMC11281392 DOI: 10.3390/v16071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Bats, with their virus tolerance, social behaviors, and mobility, are reservoirs for emerging viruses, including coronaviruses (CoVs) known for genetic flexibility. Studying the cophylogenetic link between bats and CoVs provides vital insights into transmission dynamics and host adaptation. Prior research has yielded valuable insights into phenomena such as host switching, cospeciation, and other dynamics concerning the interaction between CoVs and bats. Nonetheless, a distinct gap exists in the current literature concerning a comparative cophylogenetic analysis focused on elucidating the contributions of sequence fragments to the co-evolution between hosts and viruses. In this study, we analyzed the cophylogenetic patterns of 69 host-virus connections. Among the 69 host-virus links examined, 47 showed significant cophylogeny based on ParaFit and PACo analyses, affirming strong associations. Focusing on two proteins, ORF1ab and spike, we conducted a comparative analysis of host and CoV phylogenies. For ORF1ab, the specific window ranged in multiple sequence alignment (positions 520-680, 770-870, 2930-3070, and 4910-5080) exhibited the lowest Robinson-Foulds (RF) distance (i.e., 84.62%), emphasizing its higher contribution in the cophylogenetic association. Similarly, within the spike region, distinct window ranges (positions 0-140, 60-180, 100-410, 360-550, and 630-730) displayed the lowest RF distance at 88.46%. Our analysis identified six recombination regions within ORF1ab (positions 360-1390, 550-1610, 680-1680, 700-1710, 2060-3090, and 2130-3250), and four within the spike protein (positions 10-510, 50-560, 170-710, and 230-730). The convergence of minimal RF distance regions with combination regions robustly affirms the pivotal role of recombination in viral adaptation to host selection pressures. Furthermore, horizontal gene transfer reveals prominent instances of partial gene transfer events, occurring not only among variants within the same host species but also crossing host species boundaries. This suggests a more intricate pattern of genetic exchange. By employing a multifaceted approach, our comprehensive strategy offers a nuanced understanding of the intricate interactions that govern the co-evolutionary dynamics between bat hosts and CoVs. This deeper insight enhances our comprehension of viral evolution and adaptation mechanisms, shedding light on the broader dynamics that propel viral diversity.
Collapse
Affiliation(s)
| | - Nadia Tahiri
- Department of Computer Science, University of Sherbrooke, 2500 Bd University, Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
44
|
Singhal S, Balitactac AK, Nayagam AG, Pour Bahrami P, Nayeem S, Turner PE. Experimental Evolution Studies in Φ6 Cystovirus. Viruses 2024; 16:977. [PMID: 38932268 PMCID: PMC11209170 DOI: 10.3390/v16060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Experimental evolution studies, in which biological populations are evolved in a specific environment over time, can address questions about the nature of spontaneous mutations, responses to selection, and the origins and maintenance of novel traits. Here, we review more than 30 years of experimental evolution studies using the bacteriophage (phage) Φ6 cystovirus. Similar to many lab-studied bacteriophages, Φ6 has a high mutation rate, large population size, fast generation time, and can be genetically engineered or cryogenically frozen, which facilitates its rapid evolution in the laboratory and the subsequent characterization of the effects of its mutations. Moreover, its segmented RNA genome, outer membrane, and capacity for multiple phages to coinfect a single host cell make Φ6 a good non-pathogenic model for investigating the evolution of RNA viruses that infect humans. We describe experiments that used Φ6 to address the fitness effects of spontaneous mutations, the consequences of evolution in the presence of coinfection, the evolution of host ranges, and mechanisms and consequences of the evolution of thermostability. We highlight open areas of inquiry where further experimentation on Φ6 could inform predictions for pathogenic viruses.
Collapse
Affiliation(s)
- Sonia Singhal
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Akiko K. Balitactac
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Aruna G. Nayagam
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Parnian Pour Bahrami
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Sara Nayeem
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA;
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
45
|
Matsukura K, Matsumura M. The Spread of Southern Rice Black-Streaked Dwarf Virus Was Not Caused by Biological Changes in Vector Sogatella furcifera. Microorganisms 2024; 12:1204. [PMID: 38930586 PMCID: PMC11205324 DOI: 10.3390/microorganisms12061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The pandemic of Southern rice black-streaked dwarf virus (SRBSDV) in and after the late 2000s caused serious yield losses in rice in Southeast and East Asia. This virus was first recorded in China in 2001, but its exclusive vector insect, Sogatella furcifera, occurred there before then. To clarify the evolutionary origin of SRBSDV as the first plant virus transmitted by S. furcifera, we tested virus transmission using three chronological strains of S. furcifera, two of which were established before the first report of SRBSDV. When the strains fed on SRBSDV-infected rice plants were transferred to healthy rice plants, those established in 1989 and 1999 transmitted the virus to rice similarly to the strain established in 2010. SRBSDV quantification by RT-qPCR confirmed virus accumulation in the salivary glands of all three strains. Therefore, SRBSDV transmission by S. furcifera was not caused by biological changes in the vector, but probably by the genetic change of the virus from a closely related Fijivirus, Rice black-streaked dwarf virus, as suggested by ecological and molecular biological comparisons between the two viruses. This result will help us to better understand the evolutionary relationship between plant viruses and their vector insects and to better manage viral disease in rice cropping in Asia.
Collapse
Affiliation(s)
- Keiichiro Matsukura
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan
| | - Masaya Matsumura
- Koshi Research Station, Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Koshi 861-1192, Kumamoto, Japan
| |
Collapse
|
46
|
González Aparicio LJ, López CB. Selection of nonstandard viral genomes during the evolution of RNA viruses: A virus survival strategy or a pesky inconvenience? Adv Virus Res 2024; 119:39-61. [PMID: 38897708 DOI: 10.1016/bs.aivir.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
RNA viruses are some of the most successful biological entities due their ability to adapt and evolve. Despite their small genome and parasitic nature, RNA viruses have evolved many mechanisms to ensure their survival and maintenance in the host population. We propose that one of these mechanisms of survival is the generation of nonstandard viral genomes (nsVGs) that accumulate during viral replication. NsVGs are often considered to be accidental defective byproducts of the RNA virus replication, but their ubiquity and the plethora of roles they have during infection indicate that they are an integral part of the virus life cycle. Here we review the different types of nsVGs and discuss how their multiple roles during infection could be beneficial for RNA viruses to be maintained in nature. By shifting our perspectives on what makes a virus successful, we posit that nsVG generation is a conserved phenomenon that arose during RNA virus evolution as an essential component of a healthy virus community.
Collapse
Affiliation(s)
- Lavinia J González Aparicio
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Carolina B López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
47
|
Cui XY, Xia DS, Luo LZ, An TQ. Recombination of Porcine Reproductive and Respiratory Syndrome Virus: Features, Possible Mechanisms, and Future Directions. Viruses 2024; 16:929. [PMID: 38932221 PMCID: PMC11209122 DOI: 10.3390/v16060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in recent years. In this review, all the existing reports on PRRSV recombination events were collected, and the genotypes, parental strains, and locations of the recombination breakpoints have been summarized and analyzed. The results showed that the recombination pattern constantly changes; whether inter- or intra-lineage recombination, the recombination hotspots vary in different recombination patterns. The virulence of recombinant PRRSVs was higher than that of the parental strains, and the emergence of virulence reversion was caused by recombination after using MLV vaccines. This could be attributed to the enhanced adaptability of recombinant PRRSV for entry and replication, facilitating their rapid propagation. The aim of this paper was to identify common features of recombinant PRRSV strains, reduce the recombination risk, and provide a foundation for future research into the mechanism of PRRSV recombination.
Collapse
Affiliation(s)
- Xing-Yang Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Da-Song Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ling-Zhi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
48
|
Wang Z, Wen H. A review of the recombination events, mechanisms and consequences of Coxsackievirus A6. INFECTIOUS MEDICINE 2024; 3:100115. [PMID: 38974347 PMCID: PMC11225671 DOI: 10.1016/j.imj.2024.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is one of the most common class C infectious diseases, posing a serious threat to public health worldwide. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) have been regarded as the major pathogenic agents of HFMD; however, since an outbreak caused by coxsackievirus A6 (CV-A6) in France in 2008, CV-A6 has gradually become the predominant pathogen in many regions. CV-A6 infects not only children but also adults, and causes atypical clinical symptoms such as a more generalized rash, eczema herpeticum, high fever, and onychomadesis, which are different from the symptoms associated with EV-A71 and CV-A16. Importantly, the rate of genetic recombination of CV-A6 is high, which can lead to changes in virulence and the rapid evolution of other characteristics, thus posing a serious threat to public health. To date, no specific vaccines or therapeutics have been approved for CV-A6 prevention or treatment, hence it is essential to fully understand the relationship between recombination and evolution of this virus. Here, we systematically review the genetic recombination events of CV-A6 that have occurred worldwide and explore how these events have promoted virus evolution, thus providing important information regarding future HFMD surveillance and prevention.
Collapse
Affiliation(s)
- Zequn Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| |
Collapse
|
49
|
Sayama Y, Sakagami A, Okamoto M, Sakamoto M, Koizumi H, Kimura Y, Dapat C, Saito M, Suzuki Y, Sasaki M, Sugawara N, Oshitani H. Identification of Various Recombinants in a Patient Coinfected With the Different SARS-CoV-2 Variants. Influenza Other Respir Viruses 2024; 18:e13340. [PMID: 38890805 PMCID: PMC11187932 DOI: 10.1111/irv.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Viral recombination that occurs by exchanging genetic materials between two viral genomes coinfecting the same host cells is associated with the emergence of new viruses with different virulence. Herein, we detected a patient coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants and identified various recombinants in the SARS-CoV-2 full-length spike gene using long-read and Sanger sequencing. METHODS Samples from five patients in Japan with household transmission of coronavirus disease 2019 (COVID-19) were analyzed using molecular assays for detection and identification of SARS-CoV-2. Whole-genome sequencing was conducted using multiplex PCR with short-read sequencing. RESULTS Among the five SARS-CoV-2-positive patients, the mutation-specific assay identified the Delta variant in three, the Omicron variant in one, and an undetermined in one. The undermined patient was identified as Delta using whole-genome sequencing, but samples showed a mixed population of Delta and Omicron variants. This patient was analyzed for viral quasispecies by long-read and Sanger sequencing using a full-length spike gene amplicon. In addition to the Delta and Omicron sequences, the viral quasispecies analysis identified nine different genetic recombinant sequences with various breakpoints between Delta and Omicron sequences. The nine detected recombinant sequences in the spike gene showed over 99% identity with viruses that were detected during the Delta and Omicron cocirculation period from the United States and Europe. CONCLUSIONS This study demonstrates that patients coinfected with different SARS-CoV-2 variants can generate various viral recombinants and that various recombinant viruses may be produced during the cocirculation of different variants.
Collapse
Affiliation(s)
- Yusuke Sayama
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Akie Sakagami
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Michiko Okamoto
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Masahiro Sakamoto
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Hikari Koizumi
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Yoko Kimura
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Clyde Dapat
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Mayuko Saito
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Yuko Suzuki
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Mie Sasaki
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Naoko Sugawara
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Hitoshi Oshitani
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| |
Collapse
|
50
|
Li J, Miller LC, Sang Y. Current Status of Vaccines for Porcine Reproductive and Respiratory Syndrome: Interferon Response, Immunological Overview, and Future Prospects. Vaccines (Basel) 2024; 12:606. [PMID: 38932335 PMCID: PMC11209547 DOI: 10.3390/vaccines12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains a formidable challenge for the global pig industry. Caused by PRRS virus (PRRSV), this disease primarily affects porcine reproductive and respiratory systems, undermining effective host interferon and other immune responses, resulting in vaccine ineffectiveness. In the absence of specific antiviral treatments for PRRSV, vaccines play a crucial role in managing the disease. The current market features a range of vaccine technologies, including live, inactivated, subunit, DNA, and vector vaccines, but only modified live virus (MLV) and killed virus (KV) vaccines are commercially available for PRRS control. Live vaccines are promoted for their enhanced protective effectiveness, although their ability to provide cross-protection is modest. On the other hand, inactivated vaccines are emphasized for their safety profile but are limited in their protective efficacy. This review updates the current knowledge on PRRS vaccines' interactions with the host interferon system, and other immunological aspects, to assess their current status and evaluate advents in PRRSV vaccine development. It presents the strengths and weaknesses of both live attenuated and inactivated vaccines in the prevention and management of PRRS, aiming to inspire the development of innovative strategies and technologies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| | - Laura C. Miller
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA;
| | - Yongming Sang
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| |
Collapse
|