1
|
Wang Q, Zhang Y, Ma K, Lin P, Wang Y, Wang R, Li H, Li Z, Wang G. Plexin B2 in physiology and pathophysiology of the central nervous system. Int Immunopharmacol 2025; 155:114627. [PMID: 40220620 DOI: 10.1016/j.intimp.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
The Plexin protein family was initially found in 1995, comprising subfamilies from Plexin A to Plexin D. Plexin B2, a member of the Plexin subfamily, has widespread expression in many human organs and tissues, particularly in the nervous system where expression levels are significantly heightened. The biological roles of Plexin B2 are mostly determined by its protein structure and functional domains. These domains regulate the binding selectivity and affinity for ligands. Ligand binding activates signal transduction pathways, resulting in regulatory effects on several biological processes. This includes managing brain growth and change, keeping angiogenesis and vascular homeostasis in check, and preventing the start, growth, and metastasis of cancer. Plexin B2 has also been associated with the onset of many nervous system illnesses. Plexin B2 aids in the invasion and spread of malignant cells, facilitates nerve healing following spinal cord damage, and plays a role in the etiology of schizophrenia. This article thoroughly examines the existing research on Plexin B2 and its importance in central nervous system biology. Simultaneously, it investigates the regulatory function of Plexin B2 across many cell types in the central nervous system, specifically neural stem cells, neurons, microglia, and astrocytes. This study examines the current knowledge of Plexin B2's role in central nervous system diseases, including schizophrenia, spinal cord injury, neuroblastoma, and fear memory. Overall, the prospects for the clinical translation of Plexin B2 are promising. However, challenges related to specificity and drug delivery must be addressed. Future research could explore the integration of nanodrug delivery systems to enhance the clinical application of Plexin B2-targeted therapies.
Collapse
Affiliation(s)
- Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Kaixuan Ma
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Peng Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Ran Wang
- School of Pharmacy, Harbin Medical University, Daqing, Heilongjiang 163319, China
| | - He Li
- Department of Parasitology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Guangtian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China; Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
2
|
Varanasi SM, Gulani Y, Rachamala HK, Mukhopadhyay D, Angom RS. Neuropilin-1: A Multifaceted Target for Cancer Therapy. Curr Oncol 2025; 32:203. [PMID: 40277760 PMCID: PMC12025621 DOI: 10.3390/curroncol32040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/26/2025] Open
Abstract
Neuropilin-1 (NRP1), initially identified as a neuronal guidance protein, has emerged as a multifaceted regulator in cancer biology. Beyond its role in axonal guidance and angiogenesis, NRP1 is increasingly recognized for its significant impact on tumor progression and therapeutic outcomes. This review explores the diverse functions of NRP1 in cancer, encompassing its influence on tumor cell proliferation, migration, invasion, and metastasis. NRP1 interacts with several key signaling pathways, including vascular endothelial growth factor (VEGF), semaphorins, and transforming growth factor-beta (TGF-β), modulating the tumor microenvironment and promoting angiogenesis. Moreover, NRP1 expression correlates with poor prognosis in various malignancies, underscoring its potential as a prognostic biomarker. Therapeutically, targeting NRP1 holds promise as a novel strategy to inhibit tumor growth and enhance the efficacy of regular treatments such as chemotherapy and radiotherapy. Strategies involving NRP1-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and gene silencing techniques, are being actively investigated in preclinical and clinical settings. Despite challenges in specificity and delivery, advances in understanding NRP1 biology offer new avenues for personalized cancer therapy. Although several types of cancer cells can express NRPs, the role of NRPs in tumor pathogenesis is largely unknown. Future investigations are needed to enhance our understanding of the effects and mechanisms of NRPs on the proliferation, apoptosis, and migration of neuronal, endothelial, and cancer cells. The novel frameworks or multi-omics approaches integrate data from multiple databases to better understand cancer's molecular and clinical features, develop personalized therapies, and help identify biomarkers. This review highlights the pivotal role of NRP1 in cancer pathogenesis and discusses its implications for developing targeted therapeutic approaches to improve patient outcomes, highlighting the role of OMICS in targeting cancer patients for personalized therapy.
Collapse
Affiliation(s)
| | | | | | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (Y.G.); (H.K.R.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (Y.G.); (H.K.R.)
| |
Collapse
|
3
|
Zhang Y, Shi H, Dai X, Shen J, Yin J, Xu T, Yue G, Guo H, Liang R, Chen Q, Gao S, Wang L, Zhang D. Semaphorin 3A on Osteoporosis: An Overreview of the Literature. Calcif Tissue Int 2025; 116:43. [PMID: 39985619 DOI: 10.1007/s00223-025-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Semaphorin 3A (Sema3A) is a signaling protein that has attracted increasing attention in recent years for its important role in regulating bone metabolism. In this review, we searched different databases with various combinations of keywords to analyze the effects of Sema3A on osteoporosis. Sema3A promotes bone formation and inhibits bone resorption by directly affecting the osteoblast and osteoclast or indirectly targeting the nervous system. The sympathetic nervous system may be the main link between the central nervous system and bone metabolism for Sema3A. In the peripheral nervous system, Sema3A may improve bone quality via sensory nervous innervation. In addition, estrogen is found to regulate Sema3A levels to improve bone homeostasis. Lots of Sema3A agonists have been documented to exhibit anti-osteoporotic potential in preclinical investigations. Therefore, Sema3A can be considered a novel therapeutic target for preserving bone mass, highlighting an alternative strategy for the development of anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Yueyi Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hanfen Shi
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuan Dai
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin Shen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiyuan Yin
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianshu Xu
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gaiyue Yue
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haochen Guo
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiqiong Liang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qishuang Chen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Riley KL, Dietrich S, Schubert FR. Semaphorin 3A repulsion directs the caudal projection of pioneer longitudinal axons in the developing chicken brain. Dev Biol 2025; 518:77-84. [PMID: 39615562 DOI: 10.1016/j.ydbio.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 05/14/2025]
Abstract
The medial longitudinal fasciculus (MLF) is the first axon tract to develop in the ventral vertebrate brain. It originates in the diencephalon and projects caudally into the spinal cord, pioneering the path for later developing axons. Previous anatomical and expression analyses in the chicken suggested Semaphorin 3 A (Sema3A) as the candidate to repel the amniote MLF from the forebrain. However, studies in the zebrafish implicated a distantly related semaphorin with a role in axon fasciculation, not guidance. Thus, the mechanism accounting for the caudal projection of the MLF remains unclear. Here we show that misexpression of Sema3A or grafting of Sema3A-expressing cells into the path of the MLF diverts the axons or blocks their outgrowth in chicken embryos. In vitro, Sema3A exposure resulted in the collapse of MLF growth cones. A dominant-negative approach or siRNA to interfere with the function of the Sema3A receptor Neuropilin1 allowed MLF axons to project rostrally. Together, this suggests that Sema3a repulsion directs the caudal extension of the MLF to pioneer the ventral longitudinal tract.
Collapse
Affiliation(s)
- Kerry-Lyn Riley
- School of the Environment and Life Sciences, Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, UK
| | - Susanne Dietrich
- School of Medicine, Pharmacy and Biomedical Sciences, Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, UK
| | - Frank R Schubert
- School of the Environment and Life Sciences, Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
5
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
6
|
Peach CJ, Tonello R, Damo E, Gomez K, Calderon-Rivera A, Bruni R, Bansia H, Maile L, Manu AM, Hahn H, Thomsen AR, Schmidt BL, Davidson S, des Georges A, Khanna R, Bunnett NW. Neuropilin-1 inhibition suppresses nerve growth factor signaling and nociception in pain models. J Clin Invest 2024; 135:e183873. [PMID: 39589827 PMCID: PMC11827847 DOI: 10.1172/jci183873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain, yet failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a coreceptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 was coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppressed NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibited NGF/TrkA signaling, whereas NRP1 overexpression enhanced signaling. NGF bound NRP1 with high affinity and interacted with and chaperoned TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggested that the C-terminal R/KXXR/K NGF motif interacts with the extracellular "b" NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G α interacting protein C-terminus 1 (GIPC1), which scaffolds NRP1 and TrkA to myosin VI, colocalized in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogated NGF-evoked excitation of nociceptors and pain-like behavior. Thus, NRP1 is a nociceptor-enriched coreceptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via the GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited nonopioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain.
Collapse
Affiliation(s)
- Chloe J. Peach
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Raquel Tonello
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Elisa Damo
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Renato Bruni
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Harsh Bansia
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Laura Maile
- Department of Anesthesiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ana-Maria Manu
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Hyunggu Hahn
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Alex R.B. Thomsen
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Brian L. Schmidt
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
- Translational Research Center, College of Dentistry
- Department of Oral and Maxillofacial Surgery, College of Dentistry, and
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York, USA
| | - Steve Davidson
- Department of Anesthesiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Amedee des Georges
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York, USA
| |
Collapse
|
7
|
Peach CJ, Tonello R, Damo E, Gomez K, Calderon-Rivera A, Bruni R, Bansia H, Maile L, Manu AM, Hahn H, Thomsen ARB, Schmidt BL, Davidson S, des Georges A, Khanna R, Bunnett NW. Neuropilin-1 is a co-receptor for Nerve Growth Factor-evoked pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570398. [PMID: 38106002 PMCID: PMC10723411 DOI: 10.1101/2023.12.06.570398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain yet, failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a co-receptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 is coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppress NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibits NGF/TrkA signaling, whereas NRP1 overexpression enhances signaling. NGF binds NRP1 with high affinity and interacts with and chaperones TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggests that C-terminal R/KXXR/K NGF motif interacts with extracellular "b" NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G Alpha Interacting Protein C-terminus 1 (GIPC1) scaffolds NRP1 and TrkA to myosin VI and colocalizes in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogates NGF-evoked excitation of nociceptors and pain-like behavior. NRP1 is a nociceptor-enriched co-receptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via the GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited non-opioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain. Summary Neuropilin-1 and G Alpha Interacting Protein C-terminus 1 are necessary for nerve growth factor-evoked pain and are non-opioid therapeutic targets for chronic pain.
Collapse
|
8
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2024; 162:185-186. [PMID: 39093410 DOI: 10.1007/s00418-024-02315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
9
|
Bessa P, Newman AG, Yan K, Schaub T, Dannenberg R, Lajkó D, Eilenberger J, Brunet T, Textoris-Taube K, Kemmler E, Deng P, Banerjee P, Ravindran E, Preissner R, Rosário M, Tarabykin V. Semaphorin heterodimerization in cis regulates membrane targeting and neocortical wiring. Nat Commun 2024; 15:7059. [PMID: 39152101 PMCID: PMC11329519 DOI: 10.1038/s41467-024-51009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
Disruption of neocortical circuitry and architecture in humans causes numerous neurodevelopmental disorders. Neocortical cytoarchitecture is orchestrated by various transcription factors such as Satb2 that control target genes during strict time windows. In humans, mutations of SATB2 cause SATB2 Associated Syndrome (SAS), a multisymptomatic syndrome involving epilepsy, intellectual disability, speech delay, and craniofacial defects. Here we show that Satb2 controls neuronal migration and callosal axonal outgrowth during murine neocortical development by inducing the expression of the GPI-anchored protein, Semaphorin 7A (Sema7A). We find that Sema7A exerts this biological activity by heterodimerizing in cis with the transmembrane semaphorin, Sema4D. We could also observe that heterodimerization with Sema7A promotes targeting of Sema4D to the plasma membrane in vitro. Finally, we report an epilepsy-associated de novo mutation in Sema4D (Q497P) that inhibits normal glycosylation and plasma membrane localization of Sema4D-associated complexes. These results suggest that neuronal use of semaphorins during neocortical development is heteromeric, and a greater signaling complexity exists than was previously thought.
Collapse
Affiliation(s)
- Paraskevi Bessa
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Kuo Yan
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Rike Dannenberg
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Denis Lajkó
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia Eilenberger
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Theresa Brunet
- Department of Pediatric Neurology and Developmental Medicine and Ludwig Maximilians University Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Hospital, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathrin Textoris-Taube
- Institute of Biochemistry, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
- Core Facility - High-Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility - High-Throughput Mass Spectrometry, Am Charitéplatz 1, Berlin, Germany
| | - Emanuel Kemmler
- Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Penghui Deng
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Priyanka Banerjee
- Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Ethiraj Ravindran
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Robert Preissner
- Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russian Federation.
| |
Collapse
|
10
|
Painter C, Sankaranarayanan NV, Nagarajan B, Mandel Clausen T, West AM, Setiawan NJ, Park J, Porell RN, Bartels PL, Sandoval DR, Vasquez GJ, Chute JP, Godula K, Vander Kooi CW, Gordts PL, Corbett KD, Termini CM, Desai UR, Esko JD. Alteration of Neuropilin-1 and Heparan Sulfate Interaction Impairs Murine B16 Tumor Growth. ACS Chem Biol 2024; 19:1820-1835. [PMID: 39099090 PMCID: PMC11334110 DOI: 10.1021/acschembio.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Neuropilin-1 acts as a coreceptor with vascular endothelial growth factor receptors to facilitate binding of its ligand, vascular endothelial growth factor. Neuropilin-1 also binds to heparan sulfate, but the functional significance of this interaction has not been established. A combinatorial library screening using heparin oligosaccharides followed by molecular dynamics simulations of a heparin tetradecasaccharide suggested a highly conserved binding site composed of amino acid residues extending across the b1 and b2 domains of murine neuropilin-1. Mutagenesis studies established the importance of arginine513 and lysine514 for binding of heparin to a recombinant form of Nrp1 composed of the a1, a2, b1, and b2 domains. Recombinant Nrp1 protein bearing R513A,K514A mutations showed a significant loss of heparin-binding, heparin-induced dimerization, and heparin-dependent thermal stabilization. Isothermal calorimetry experiments suggested a 1:2 complex of heparin tetradecasaccharide:Nrp1. To study the impact of altered heparin binding in vivo, a mutant allele of Nrp1 bearing the R513A,K514A mutations was created in mice (Nrp1D) and crossbred to Nrp1+/- mice to examine the impact of altered heparan sulfate binding. Analysis of tumor formation showed variable effects on tumor growth in Nrp1D/D mice, resulting in a frank reduction in tumor growth in Nrp1D/- mice. Expression of mutant Nrp1D protein was normal in tissues, suggesting that the reduction in tumor growth was due to the altered binding of heparin/heparan sulfate to neuropilin-1. These findings suggest that the interaction of neuropilin-1 with heparan sulfate modulates its stability and its role in tumor formation and growth.
Collapse
Affiliation(s)
- Chelsea
D. Painter
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Nehru Viji Sankaranarayanan
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Balaji Nagarajan
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Thomas Mandel Clausen
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alan M.V. West
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - Nicollette J. Setiawan
- Translational
Science and Therapeutics Division, Fred
Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Jeeyoung Park
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - Ryan N. Porell
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Phillip L. Bartels
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Daniel R. Sandoval
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Gabriel J. Vasquez
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - John P. Chute
- Samuel
Oschin Cancer Center, Cedars Sinai Medical
Center, Los Angeles, California 90048, United States
- Division
of Hematology & Cellular Therapy, Cedars
Sinai Medical Center, Los Angeles, California 90048, United States
- Regenerative
Medicine Institute, Cedars Sinai Medical
Center, Los Angeles, California 90048, United States
| | - Kamil Godula
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Craig W. Vander Kooi
- Department
of Biochemistry and Molecular Biology, University
of Florida, Gainesville, Florida 32610, United
States
| | - Philip L.S.M. Gordts
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Kevin D. Corbett
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Molecular Biology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Christina M. Termini
- Translational
Science and Therapeutics Division, Fred
Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Umesh R. Desai
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Jeffrey D. Esko
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Yamaoka B, Nagasaki-Maeoka E, Uekusa S, Muto-Fujita E, Abe N, Fujiwara K, Koshinaga T, Uehara S. NRP1 knockdown inhibits the invasion and migration of rhabdoid tumor of the kidney cells. Pediatr Surg Int 2024; 40:221. [PMID: 39133317 PMCID: PMC11319361 DOI: 10.1007/s00383-024-05808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE The aim of this study was to detect candidate oncogenes of rhabdoid tumor of the kidney (RTK) and evaluate their roles in RTK in vitro. METHODS An integrated analysis of messenger RNA (mRNA) and microRNA (miRNA) sequencing was performed to determine the expression profile of exosome-derived miRNAs and mRNAs in human RTK-derived cell lines and a human embryonic renal cell line. A Gene Ontology enrichment analysis was performed to analyze the functional characteristics of differentially expressed mRNAs in RTK cells. Matrigel invasion and wound-healing assays were performed to evaluate the cell invasion and migration abilities. RESULTS Forty mRNAs were highly expressed in RTK cells targeted by exosomal miRNAs, the expression of which was lower in RTK cells than in the controls. These mRNAs were primarily related to cell adhesion. Of these mRNAs, we selected neuropilin 1 (NRP1) as a candidate oncogene because its upregulated expression is associated with a poor prognosis of several types of tumors. RTK cells in which NRP1 had been knocked down exhibited decreased invasive and migratory abilities. CONCLUSION Our study indicates that NRP1 acts as an oncogene by promoting the invasion and migration of RTK cells and that it could serve as a therapeutic target.
Collapse
Affiliation(s)
- Bin Yamaoka
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Eri Nagasaki-Maeoka
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan.
- Department of Pediatric Surgery, Jichi Medical University, Saitama Medical Center, 1-847, Amanumacho, Omiya, Saitama, 330-8503, Japan.
| | - Shota Uekusa
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Eri Muto-Fujita
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Naoko Abe
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Kyoko Fujiwara
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo, 173-0032, Japan
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Shuichiro Uehara
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan.
| |
Collapse
|
12
|
Lewis PA, Silajdžić E, Smith H, Bates N, Smith CA, Mancini FE, Knight D, Denning C, Brison DR, Kimber SJ. A secreted proteomic footprint for stem cell pluripotency. PLoS One 2024; 19:e0299365. [PMID: 38875182 PMCID: PMC11178176 DOI: 10.1371/journal.pone.0299365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/08/2024] [Indexed: 06/16/2024] Open
Abstract
With a view to developing a much-needed non-invasive method for monitoring the healthy pluripotent state of human stem cells in culture, we undertook proteomic analysis of the waste medium from cultured embryonic (Man-13) and induced (Rebl.PAT) human pluripotent stem cells (hPSCs). Cells were grown in E8 medium to maintain pluripotency, and then transferred to FGF2 and TGFβ deficient E6 media for 48 hours to replicate an early, undirected dissolution of pluripotency. We identified a distinct proteomic footprint associated with early loss of pluripotency in both hPSC lines, and a strong correlation with changes in the transcriptome. We demonstrate that multiplexing of four E8- against four E6- enriched secretome biomarkers provides a robust, diagnostic metric for the pluripotent state. These biomarkers were further confirmed by Western blotting which demonstrated consistent correlation with the pluripotent state across cell lines, and in response to a recovery assay.
Collapse
Affiliation(s)
- Philip A. Lewis
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Edina Silajdžić
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Helen Smith
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Christopher A. Smith
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Fabrizio E. Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David Knight
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Daniel R. Brison
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
13
|
Shang P, Dos Santos Natividade R, Taylor GM, Ray A, Welsh OL, Fiske KL, Sutherland DM, Alsteens D, Dermody TS. NRP1 is a receptor for mammalian orthoreovirus engaged by distinct capsid subunits. Cell Host Microbe 2024; 32:980-995.e9. [PMID: 38729153 PMCID: PMC11176008 DOI: 10.1016/j.chom.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Mammalian orthoreovirus (reovirus) is a nonenveloped virus that establishes primary infection in the intestine and disseminates to sites of secondary infection, including the CNS. Reovirus entry involves multiple engagement factors, but how the virus disseminates systemically and targets neurons remains unclear. In this study, we identified murine neuropilin 1 (mNRP1) as a receptor for reovirus. mNRP1 binds reovirus with nanomolar affinity using a unique mechanism of virus-receptor interaction, which is coordinated by multiple interactions between distinct reovirus capsid subunits and multiple NRP1 extracellular domains. By exchanging essential capsid protein-encoding gene segments, we determined that the multivalent interaction is mediated by outer-capsid protein σ3 and capsid turret protein λ2. Using capsid mutants incapable of binding NRP1, we found that NRP1 contributes to reovirus dissemination and neurovirulence in mice. Collectively, our results demonstrate that NRP1 is an entry receptor for reovirus and uncover mechanisms by which NRPs promote viral entry and pathogenesis.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kay L Fiske
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium; WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Peng W, Chen Q, Zheng F, Xu L, Fang X, Wu Z. The emerging role of the semaphorin family in cartilage and osteoarthritis. Histochem Cell Biol 2024:10.1007/s00418-024-02303-y. [PMID: 38849589 DOI: 10.1007/s00418-024-02303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
In the pathogenesis of osteoarthritis, various signaling pathways may influence the bone joint through a common terminal pathway, thereby contributing to the pathological remodeling of the joint. Semaphorins (SEMAs) are cell-surface proteins actively involved in and primarily responsible for regulating chondrocyte function in the pathophysiological process of osteoarthritis (OA). The significance of the SEMA family in OA is increasingly acknowledged as pivotal. This review aims to summarize the mechanisms through which different members of the SEMA family impact various structures within joints. The findings indicate that SEMA3A and SEMA4D are particularly relevant to OA, as they participate in cartilage injury, subchondral bone remodeling, or synovitis. Additionally, other elements such as SEMA4A and SEMA5A may also contribute to the onset and progression of OA by affecting different components of the bone and joint. The mentioned mechanisms demonstrate the indispensable role of SEMA family members in OA, although the detailed mechanisms still require further exploration.
Collapse
Affiliation(s)
- Wenjing Peng
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Chen
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Fengjuan Zheng
- The Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Li Xu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Xinyi Fang
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| | - Zuping Wu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
15
|
Hohlstein P, Schumacher E, Abu Jhaisha S, Adams JK, Pollmanns MR, Schneider CV, Hamesch K, Horvathova K, Wirtz TH, Tacke F, Trautwein C, Weiskirchen R, Koch A. Soluble Neuropilin-1 Is Elevated in Sepsis and Correlates with Organ Dysfunction and Long-Term Mortality in Critical Illness. Int J Mol Sci 2024; 25:5438. [PMID: 38791476 PMCID: PMC11121523 DOI: 10.3390/ijms25105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Critical illness and sepsis may cause organ failure and are recognized as mortality drivers in hospitalized patients. Neuropilin-1 (NRP-1) is a multifaceted transmembrane protein involved in the primary immune response and is expressed in immune cells such as T and dendritic cells. The soluble form of NRP-1 (sNRP-1) acts as an antagonist to NRP-1 by scavenging its ligands. The aim of this study was to determine the value of sNRP-1 as a biomarker in critical illness and sepsis. We enrolled 180 critically ill patients admitted to a medical intensive care unit and measured serum sNRP-1 concentrations at admission, comparing them to 48 healthy individuals. Critically ill and septic patients showed higher levels of sNRP-1 compared to healthy controls (median of 2.47 vs. 1.70 nmol/L, p < 0.001). Moreover, sNRP-1 was also elevated in patients with sepsis compared to other critical illness (2.60 vs. 2.13 nmol/L, p = 0.01), irrespective of disease severity or organ failure. In critically ill patients, sNRP-1 is positively correlated with markers of kidney and hepatic dysfunction. Most notably, critically ill patients not surviving in the long term (one year after admission) showed higher concentrations of sNRP-1 at the time of ICU admission (p = 0.036), with this association being dependent on the presence of organ failure. Critically ill and septic patients exhibit higher serum concentrations of circulating sNRP-1, which correlates to organ failure, particularly hepatic and kidney dysfunction.
Collapse
Affiliation(s)
- Philipp Hohlstein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Eileen Schumacher
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Samira Abu Jhaisha
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Jule K. Adams
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Maike R. Pollmanns
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Carolin V. Schneider
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Karim Hamesch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | | | - Theresa H. Wirtz
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Christian Trautwein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Alexander Koch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| |
Collapse
|
16
|
Barnkob MB, Michaels YS, André V, Macklin PS, Gileadi U, Valvo S, Rei M, Kulicke C, Chen JL, Jain V, Woodcock VK, Colin-York H, Hadjinicolaou AV, Kong Y, Mayya V, Mazet JM, Mead GJ, Bull JA, Rijal P, Pugh CW, Townsend AR, Gérard A, Olsen LR, Fritzsche M, Fulga TA, Dustin ML, Jones EY, Cerundolo V. Semmaphorin 3 A causes immune suppression by inducing cytoskeletal paralysis in tumour-specific CD8 + T cells. Nat Commun 2024; 15:3173. [PMID: 38609390 PMCID: PMC11017241 DOI: 10.1038/s41467-024-47424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.
Collapse
Affiliation(s)
- Mike B Barnkob
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK.
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | - Yale S Michaels
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Paul Albrechtsen Research Institute, CancerCare Manitoba, 675 Mcdermot Ave, Winnipeg, MB, R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Bannatyne Ave, Winnipeg, MB, R3E 3N4, Canada
| | - Violaine André
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Margarida Rei
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Corinna Kulicke
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, US
| | - Ji-Li Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Victoria K Woodcock
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Huw Colin-York
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Andreas V Hadjinicolaou
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Division of Gastroenterology & Hepatology, Department of Medicine, Cambridge University Hospitals, University of Cambridge, Cambridge, England
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, England
| | - Youxin Kong
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Julie M Mazet
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Gracie-Jennah Mead
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Joshua A Bull
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Christopher W Pugh
- Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Alain R Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Audrey Gérard
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Lars R Olsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800 Kgs, Lyngby, Denmark
| | - Marco Fritzsche
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Tudor A Fulga
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| |
Collapse
|
17
|
Jacob TV, Doshi GM. New Promising Routes in Peptic Ulcers: Toll-like Receptors and Semaphorins. Endocr Metab Immune Disord Drug Targets 2024; 24:865-878. [PMID: 37605412 DOI: 10.2174/1871530323666230821102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023]
Abstract
Peptic ulcers (PU) are one of the commonest yet problematic diseases found to be existing in the majority of the population. Today, drugs from a wide range of therapeutic classes are available for the management of the disease. Still, the complications of the condition are difficult to tackle and the side effect profile is quite a concern. The literature indicates that Toll-like receptors (TLRs) and Semaphorins (SEMAs) have been under study for their various pharmacological actions over the past few decades. Both these signalling pathways are found to regulate immunological and inflammatory responses. Moreover, receptors and signalling molecules from the family of TLRs and SEMAs are found to have bacterial recognition and antibacterial properties which are essential in eradicating Helicobacter pylori (H. pylori), one of the major causative agents of PU. Our understanding of SEMAs, a class of proteins involved in cell signalling, is relatively less developed compared to TLRs, another class of proteins involved in the immune response. SEMAs and TLRs play different roles in biological processes, with SEMAs primarily involved in guiding cell migration and axon guidance during development, while TLRs are responsible for recognizing pathogens and initiating an immune response. Here, in this review, we will discuss in detail the signalling cascade of TLRs and SEMAs and thereby understand its association with PU for future therapeutic targeting. The review also aims at providing an overview of the study that has been into exploring the role of these signalling pathways in the management of PU.
Collapse
Affiliation(s)
- Teresa V Jacob
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
18
|
Freiría-Martínez L, Iglesias-Martínez-Almeida M, Rodríguez-Jamardo C, Rivera-Baltanás T, Comís-Tuche M, Rodrígues-Amorím D, Fernández-Palleiro P, Blanco-Formoso M, Álvarez-Chaver P, Diz-Chaves Y, Gonzalez-Freiria N, Martín-Forero-Maestre M, Fernández-Feijoo CD, Suárez-Albo M, Fernández-Lorenzo JR, Guisán AC, Olivares JM, Spuch C. Proteomic analysis of exosomes derived from human mature milk and colostrum of mothers with term, late preterm, or very preterm delivery. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4905-4917. [PMID: 37718950 DOI: 10.1039/d3ay01114c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The growth and development of the human brain is a long and complex process that requires a precise sequence of genetic and molecular events. This begins in the third week of gestation with the differentiation of neural progenitor cells and extends at least until late adolescence, possibly for life. One of the defects of this development is that we know very little about the signals that modulate this sequence of events. The first 3 years of life, during breastfeeding, is one of the critical periods in brain development. In these first years of life, it is believed that neurodevelopmental problems may be the molecular causes of mental disorders. Therefore, we herein propose a new hypothesis, according to which the chemical signals that could modulate this entire complex sequence of events appear in this early period, and the molecular level study of human breast milk and colostrum of mothers who give birth to children in different gestation periods could give us information on proteins influencing this process. In this work, we collected milk and colostrum samples (term, late preterm and moderate/very preterm) and exosomes were isolated. The samples of exosomes and complete milk from each fraction were analyzed by LC-ESI-MS/MS. In this work, we describe proteins in the different fractions of mature milk and colostrum of mothers with term, late preterm, or very preterm delivery, which could be involved in the regulation of the nervous system by their functions. We describe how they differ in different types of milk, paving the way for the investigation of possible new neuroregulatory pathways as possible candidates to modulate the nervous system.
Collapse
Affiliation(s)
- Luis Freiría-Martínez
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- University of Vigo, Vigo, 36310, Spain
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- University of Vigo, Vigo, 36310, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- University of Vigo, Vigo, 36310, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- CIBERSAM, Madrid, 28029, Spain.
| | - María Comís-Tuche
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
| | - Daniela Rodrígues-Amorím
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
| | - María Blanco-Formoso
- Department of Physical Chemistry, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, Vigo, 36310, Spain
| | - Paula Álvarez-Chaver
- Structural Determination, Proteomic and Genomic Service, CACTI, University of Vigo, Vigo, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Endocrinology, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | - María Suárez-Albo
- Neonatal Intensive Care Unit, Alvaro Cunqueiro Hospital, Vigo, 36312, Spain
| | | | | | - Jose Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- CIBERSAM, Madrid, 28029, Spain.
| | - Carlos Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- CIBERSAM, Madrid, 28029, Spain.
| |
Collapse
|
19
|
Sang Y, Tsuji K, Nakanoh H, Fukushima K, Kitamura S, Wada J. Role of Semaphorin 3A in Kidney Development and Diseases. Diagnostics (Basel) 2023; 13:3038. [PMID: 37835781 PMCID: PMC10572269 DOI: 10.3390/diagnostics13193038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney diseases are worldwide public health problems affecting millions of people. However, there are still limited therapeutic options against kidney diseases. Semaphorin 3A (SEMA3A) is a secreted and membrane-associated protein, which regulates diverse functions, including immune regulation, cell survival, migration and angiogenesis, thus involving in the several pathogeneses of diseases, including eyes and neurons, as well as kidneys. SEMA3A is expressed in podocytes and tubular cells in the normal adult kidney, and recent evidence has revealed that excess SEMA3A expression and the subsequent signaling pathway aggravate kidney injury in a variety of kidney diseases, including nephrotic syndrome, diabetic nephropathy, acute kidney injury, and chronic kidney disease. In addition, several reports have demonstrated that the inhibition of SEMA3A ameliorated kidney injury via a reduction in cell apoptosis, fibrosis and inflammation; thus, SEMA3A may be a potential therapeutic target for kidney diseases. In this review article, we summarized the current knowledge regarding the role of SEMA3A in kidney pathophysiology and their potential use in kidney diseases.
Collapse
Affiliation(s)
- Yizhen Sang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Rheumatology and Immunology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| |
Collapse
|
20
|
Goudiaby I, Malliavin TE, Mocchetti E, Mathiot S, Acherar S, Frochot C, Barberi-Heyob M, Guillot B, Favier F, Didierjean C, Jelsch C. New Crystal Form of Human Neuropilin-1 b1 Fragment with Six Electrostatic Mutations Complexed with KDKPPR Peptide Ligand. Molecules 2023; 28:5603. [PMID: 37513474 PMCID: PMC10385628 DOI: 10.3390/molecules28145603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropilin 1 (NRP1), a cell-surface co-receptor of a number of growth factors and other signaling molecules, has long been the focus of attention due to its association with the development and the progression of several types of cancer. For example, the KDKPPR peptide has recently been combined with a photosensitizer and a contrast agent to bind NRP1 for the detection and treatment by photodynamic therapy of glioblastoma, an aggressive brain cancer. The main therapeutic target is a pocket of the fragment b1 of NRP1 (NRP1-b1), in which vascular endothelial growth factors (VEGFs) bind. In the crystal packing of native human NRP1-b1, the VEGF-binding site is obstructed by a crystallographic symmetry neighbor protein, which prevents the binding of ligands. Six charged amino acids located at the protein surface were mutated to allow the protein to form a new crystal packing. The structure of the mutated fragment b1 complexed with the KDKPPR peptide was determined by X-ray crystallography. The variant crystallized in a new crystal form with the VEGF-binding cleft exposed to the solvent and, as expected, filled by the C-terminal moiety of the peptide. The atomic interactions were analyzed using new approaches based on a multipolar electron density model. Among other things, these methods indicated the role played by Asp320 and Glu348 in the electrostatic steering of the ligand in its binding site. Molecular dynamics simulations were carried out to further analyze the peptide binding and motion of the wild-type and mutant proteins. The simulations revealed that specific loops interacting with the peptide exhibited mobility in both the unbound and bound forms.
Collapse
Affiliation(s)
- Ibrahima Goudiaby
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
- Université Assane Seck de Ziguinchor, Laboratoire de Chimie et de Physique des Matériaux (LCPM), 523 Ziguinchor, Senegal
| | | | - Eva Mocchetti
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Sandrine Mathiot
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | | | - Benoît Guillot
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Frédérique Favier
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Claude Didierjean
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Christian Jelsch
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| |
Collapse
|
21
|
Chen CY, Chao YM, Cho CC, Chen CS, Lin WY, Chen YH, Cassar M, Lu CS, Yang JL, Chan JYH, Juo SHH. Cerebral Semaphorin3D is a novel risk factor for age-associated cognitive impairment. Cell Commun Signal 2023; 21:140. [PMID: 37316917 DOI: 10.1186/s12964-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND We previously reported that miR-195 exerts neuroprotection by inhibiting Sema3A and cerebral miR-195 levels decreased with age, both of which urged us to explore the role of miR-195 and miR-195-regulated Sema3 family members in age-associated dementia. METHODS miR-195a KO mice were used to assess the effect of miR-195 on aging and cognitive functions. Sema3D was predicted as a miR-195 target by TargetScan and then verified by luciferase reporter assay, while effects of Sema3D and miR-195 on neural senescence were assessed by beta-galactosidase and dendritic spine density. Cerebral Sema3D was over-expressed by lentivirus and suppressed by si-RNA, and effects of over-expression of Sema3D and knockdown of miR-195 on cognitive functions were assessed by Morris Water Maze, Y-maze, and open field test. The effect of Sema3D on lifespan was assessed in Drosophila. Sema3D inhibitor was developed using homology modeling and virtual screening. One-way and two-way repeated measures ANOVA were applied to assess longitudinal data on mouse cognitive tests. RESULTS Cognitive impairment and reduced density of dendritic spine were observed in miR-195a knockout mice. Sema3D was identified to be a direct target of miR-195 and a possible contributor to age-associated neurodegeneration as Sema3D levels showed age-dependent increase in rodent brains. Injection of Sema3D-expressing lentivirus caused significant memory deficits while silencing hippocampal Sema3D improved cognition. Repeated injections of Sema3D-expressing lentivirus to elevate cerebral Sema3D for 10 weeks revealed a time-dependent decline of working memory. More importantly, analysis of the data on the Gene Expression Omnibus database showed that Sema3D levels were significantly higher in dementia patients than normal controls (p < 0.001). Over-expression of homolog Sema3D gene in the nervous system of Drosophila reduced locomotor activity and lifespan by 25%. Mechanistically, Sema3D might reduce stemness and number of neural stem cells and potentially disrupt neuronal autophagy. Rapamycin restored density of dendritic spines in the hippocampus from mice injected with Sema3D lentivirus. Our novel small molecule increased viability of Sema3D-treated neurons and might improve autophagy efficiency, which suggested Sema3D could be a potential drug target. Video Abstract CONCLUSION: Our results highlight the importance of Sema3D in age-associated dementia. Sema3D could be a novel drug target for dementia treatment.
Collapse
Affiliation(s)
- Chien-Yuan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Chang Cho
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Yong Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Brain Diseases Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Marlène Cassar
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institut du Cerveau Et de La Moelle Epinière (ICM)-Sorbonne, UniversitéInserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cecilia S Lu
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Suh-Hang H Juo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
22
|
Cowan R, Trokter M, Oleksy A, Fedorova M, Sawmynaden K, Worzfeld T, Offermanns S, Matthews D, Carr MD, Hall G. Nanobody inhibitors of Plexin-B1 identify allostery in plexin-semaphorin interactions and signalling. J Biol Chem 2023; 299:104740. [PMID: 37088134 DOI: 10.1016/j.jbc.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Plexin-B1 is a receptor for the cell surface semaphorin, Sema4D. This signalling system has been implicated in a variety of human diseases, including cancer, multiple sclerosis and osteoporosis. Whilst inhibitors of the Plexin-B1:Sema4D interaction have been previously reported, understanding their mechanism has been hindered by an incomplete structural view of Plexin-B1. In this study, we have raised and characterised a pair of nanobodies that are specific for mouse Plexin-B1, and which inhibit the binding of Sema4D to mouse Plexin-B1 and its biological activity. Structural studies of these nanobodies reveal that they inhibit the binding of Sema4D in an allosteric manner, binding to epitopes not previously reported. In addition, we report the first unbound structure of human Plexin-B1, which reveals that Plexin-B1 undergoes a conformational change on Sema4D binding. These changes mirror those seen upon binding of allosteric peptide modulators, which suggests a new model for understanding Plexin-B1 signalling, and provides a potential innovative route for therapeutic modulation of Plexin-B1.
Collapse
Affiliation(s)
- Richard Cowan
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Martina Trokter
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Arkadiusz Oleksy
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Marina Fedorova
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Kovilen Sawmynaden
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Str. 2 35043, Germany; Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Stefan Offermanns
- Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - David Matthews
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Mark D Carr
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| |
Collapse
|
23
|
Koropouli E, Wang Q, Mejías R, Hand R, Wang T, Ginty DD, Kolodkin AL. Palmitoylation regulates neuropilin-2 localization and function in cortical neurons and conveys specificity to semaphorin signaling via palmitoyl acyltransferases. eLife 2023; 12:e83217. [PMID: 37010951 PMCID: PMC10069869 DOI: 10.7554/elife.83217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/22/2023] [Indexed: 04/04/2023] Open
Abstract
Secreted semaphorin 3F (Sema3F) and semaphorin 3A (Sema3A) exhibit remarkably distinct effects on deep layer excitatory cortical pyramidal neurons; Sema3F mediates dendritic spine pruning, whereas Sema3A promotes the elaboration of basal dendrites. Sema3F and Sema3A signal through distinct holoreceptors that include neuropilin-2 (Nrp2)/plexinA3 (PlexA3) and neuropilin-1 (Nrp1)/PlexA4, respectively. We find that Nrp2 and Nrp1 are S-palmitoylated in cortical neurons and that palmitoylation of select Nrp2 cysteines is required for its proper subcellular localization, cell surface clustering, and also for Sema3F/Nrp2-dependent dendritic spine pruning in cortical neurons, both in vitro and in vivo. Moreover, we show that the palmitoyl acyltransferase ZDHHC15 is required for Nrp2 palmitoylation and Sema3F/Nrp2-dependent dendritic spine pruning, but it is dispensable for Nrp1 palmitoylation and Sema3A/Nrp1-dependent basal dendritic elaboration. Therefore, palmitoyl acyltransferase-substrate specificity is essential for establishing compartmentalized neuronal structure and functional responses to extrinsic guidance cues.
Collapse
Affiliation(s)
- Eleftheria Koropouli
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Qiang Wang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Rebeca Mejías
- Department of Physiology,University of SevilleSevilleSpain
| | - Randal Hand
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Alex L Kolodkin
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
24
|
Toledano S, Sabag AD, Ilan N, Liburkin-Dan T, Kessler O, Neufeld G. Plexin-A2 enables the proliferation and the development of tumors from glioblastoma derived cells. Cell Death Dis 2023; 14:41. [PMID: 36658114 PMCID: PMC9852426 DOI: 10.1038/s41419-023-05554-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
The semaphorin guidance factors receptor plexin-A2 transduces sema6A and sema6B signals and may mediate, along with plexin-A4, the anti-angiogenic effects of sema6A. When associated with neuropilins plexin-A2 also transduces the anti-angiogenic signals of sema3B. Here we show that inhibition of plexin-A2 expression in glioblastoma derived cells that express wild type p53 such as U87MG and A172 cells, or in primary human endothelial cells, strongly inhibits cell proliferation. Inhibition of plexin-A2 expression in U87MG cells also results in strong inhibition of their tumor forming ability. Knock-out of the plexin-A2 gene in U87MG cells using CRISPR/Cas9 inhibits cell proliferation which is rescued following plexin-A2 re-expression, or expression of a truncated plexin-A2 lacking its extracellular domain. Inhibition of plexin-A2 expression results in cell cycle arrest at the G2/M stage, and is accompanied by changes in cytoskeletal organization, cell flattening, and enhanced expression of senescence associated β-galactosidase. It is also associated with reduced AKT phosphorylation and enhanced phosphorylation of p38MAPK. We find that the pro-proliferative effects of plexin-A2 are mediated by FARP2 and FYN and by the GTPase activating (GAP) domain located in the intracellular domain of plexin-A2. Point mutations in these locations inhibit the rescue of cell proliferation upon re-expression of the mutated intracellular domain in the knock-out cells. In contrast re-expression of a plexin-A2 cDNA containing a point mutation in the semaphorin binding domain failed to inhibit the rescue. Our results suggest that plexin-A2 may represent a novel target for the development of anti-tumorigenic therapeutics.
Collapse
Affiliation(s)
- Shira Toledano
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Adi D Sabag
- Division of Allergy & Clinical Immunology, Bnai-Zion medical Center, Haifa, 33394, Israel
| | - Neta Ilan
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Tanya Liburkin-Dan
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Ofra Kessler
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Gera Neufeld
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel.
| |
Collapse
|
25
|
Eiza N, Kessler O, Sabag A, Neufeld G, Jones EY, Vadasz Z. Truncated-semaphorin3A is a potential regulatory molecule to restore immune homeostasis in immune-mediated diseases. Front Pharmacol 2023; 13:1085892. [PMID: 36703747 PMCID: PMC9871560 DOI: 10.3389/fphar.2022.1085892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Regulatory molecules have recently been recognized for their beneficial effects in the treatment of immune-mediated diseases, rather than using cytotoxic immune-suppressing drugs, which are associated with many unwanted side effects. Semaphorin3A (sema3A), a unique regulatory master of the immune system, was shown to be decreased in the serum of systemic lupus erythematosus (SLE) patients, in association with disease severity. Later, we were able to show its extremely beneficial effect in treating lupus nephritis in the NZB/W mice model. The mechanisms by which sema3A maintains its regulatory effect is by binding the regulatory receptor CD72 on B cells, thereby reducing the threshold of BCR signaling on B cells and reducing the production of pro-inflammatory cytokines. The aim of this study was to generate a stable sema3A molecule, easy to produce with a higher binding capacity to CD72 receptor rather than to Neuropilin-1 (NRP-1) receptor, which is expressed in many cell types. Using the crystallographic structure of parental sema3A, we synthesized a new secreted (shorter) sema3A derivative, which we called truncated sema3A (T-sema3A). The new molecule lacked the NRP-1 binding domain (the C-terminal site) and has an artificial dimerization site at position 257 (serine residue was exchanged with a cysteine residue). To facilitate the purification of this molecule we added Histidine epitope tag in frame upstream to a stop codon. This construct was transfected using a viral vector to 293HEK cells to generate cells stably expressing T-sema3A. T-sema3A is shown to be with a higher binding ability to CD72 than to NRP-1 as demonstrated by a homemade ELISA. In addition, T-sema3A was shown to be a regulatory agent which can induce the expression of IL-10 and TGF-β and reduce the secretion of pro-inflammatory cytokines such as IL-6, IFN-γ, and IL-17A from human T and B-lymphocytes. Keeping this in mind, T-sema3A is highly effective in maintaining immune homeostasis, therefore, becoming a potential agent in restoring the regulatory status of the immune system in immune-mediated diseases.
Collapse
Affiliation(s)
- Nasren Eiza
- The Proteomic Unit, Bnai Zion Medical Center, Haifa, Israel
- Cancer research center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer research center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Adi Sabag
- The Proteomic Unit, Bnai Zion Medical Center, Haifa, Israel
| | - Gera Neufeld
- Cancer research center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - E. Yvonne Jones
- The Division of Structural Biology (STRUBI), Nuffield Department of Clinical Medicine, Oxford, United Kingdom
| | - Zahava Vadasz
- The Proteomic Unit, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
26
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
27
|
Larue L, Kenzhebayeva B, Al-Thiabat MG, Jouan-Hureaux V, Mohd-Gazzali A, Wahab HA, Boura C, Yeligbayeva G, Nakan U, Frochot C, Acherar S. tLyp-1: A peptide suitable to target NRP-1 receptor. Bioorg Chem 2023; 130:106200. [PMID: 36332316 DOI: 10.1016/j.bioorg.2022.106200] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
Abstract
Targeting vascular endothelial growth factor receptor (VEFGR) and its co-receptor neuropilin-1 (NRP-1) is an interesting vascular strategy. tLyp-1 is a tumor-homing and penetrating peptide of 7 amino acids (CGNKRTR). It is a truncated form of Lyp-1 (CGNKRTRGC), which is known to target NRP-1 receptor, with high affinity and specificity. It is mediated by endocytosis via C-end rule (CendR) internalization pathway. The aim of this study is to evaluate the importance of each amino acid in the tLyp-1 sequence through alanine-scanning (Ala-scan) technique, during which each of the amino acid in the sequence was systematically replaced by alanine to produce 7 different analogues. In silico approach through molecular docking and molecular dynamics are employed to understand the interaction between the peptide and its analogues with the NRP-1 receptor, followed by in vitro ligand binding assay study. The C-terminal Arg is crucial in the interaction of tLyp-1 with NRP-1 receptor. Substituting this residue dramatically reduces the affinity of this peptide which is clearly seen in this study. Lys-4 is also important in the interaction, which is confirmed via the in vitro study and the MM-PBSA analysis. The finding in this study supports the CendR, in which the presence of R/K-XX-R/K motif is essential in the binding of a ligand with NRP-1 receptor. This presented work will serve as a guide in the future work pertaining the development of active targeting agent towards NRP-1 receptor.
Collapse
Affiliation(s)
- Ludivine Larue
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France; Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Bibigul Kenzhebayeva
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France; Institute of Geology and Oil-gas Business, Satbayev University, Almaty 050013, Kazakhstan
| | - Mohammad G Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | - Amirah Mohd-Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Gulzhakhan Yeligbayeva
- Institute of Geology and Oil-gas Business, Satbayev University, Almaty 050013, Kazakhstan
| | - Ulantay Nakan
- Institute of Geology and Oil-gas Business, Satbayev University, Almaty 050013, Kazakhstan
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
28
|
Christie SM, Tada T, Yin Y, Bhardwaj A, Landau NR, Rothenberg E. Single-virus tracking reveals variant SARS-CoV-2 spike proteins induce ACE2-independent membrane interactions. SCIENCE ADVANCES 2022; 8:eabo3977. [PMID: 36490345 PMCID: PMC9733935 DOI: 10.1126/sciadv.abo3977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a global health crisis after its emergence in 2019. Replication of the virus is initiated by binding of the viral spike (S) protein to human angiotensin-converting enzyme 2 (ACE2) on the target cell surface. Mutations acquired by SARS-CoV-2 S variants likely influence virus-target cell interaction. Here, using single-virus tracking to capture these initial steps, we observe how viruses carrying variant S interact with target cells. Specificity for ACE2 occurs for viruses with the reference sequence or D614G mutation. Analysis of the Alpha, Beta, and Delta SARS-CoV-2 variant S proteins revealed a progressive altered cell interaction with a reduced dependence on ACE2. Notably, the Delta variant S affinity was independent of ACE2. These enhanced interactions may account for the increased transmissibility of variants. Knowledge of how mutations influence cell interaction is essential for vaccine development against emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Shaun M. Christie
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Takuya Tada
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Amit Bhardwaj
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nathaniel R. Landau
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
29
|
Orr BO, Fetter RD, Davis GW. Activation and expansion of presynaptic signaling foci drives presynaptic homeostatic plasticity. Neuron 2022; 110:3743-3759.e6. [PMID: 36087584 PMCID: PMC9671843 DOI: 10.1016/j.neuron.2022.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Presynaptic homeostatic plasticity (PHP) adaptively regulates synaptic transmission in health and disease. Despite identification of numerous genes that are essential for PHP, we lack a dynamic framework to explain how PHP is initiated, potentiated, and limited to achieve precise control of vesicle fusion. Here, utilizing both mice and Drosophila, we demonstrate that PHP progresses through the assembly and physical expansion of presynaptic signaling foci where activated integrins biochemically converge with trans-synaptic Semaphorin2b/PlexinB signaling. Each component of the identified signaling complexes, including alpha/beta-integrin, Semaphorin2b, PlexinB, talin, and focal adhesion kinase (FAK), and their biochemical interactions, are essential for PHP. Complex integrity requires the Sema2b ligand and complex expansion includes a ∼2.5-fold expansion of active-zone associated puncta composed of the actin-binding protein talin. Finally, complex pre-expansion is sufficient to accelerate the rate and extent of PHP. A working model is proposed incorporating signal convergence with dynamic molecular assemblies that instruct PHP.
Collapse
Affiliation(s)
- Brian O Orr
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA.
| |
Collapse
|
30
|
Gerstmann K, Kindbeiter K, Telley L, Bozon M, Reynaud F, Théoulle E, Charoy C, Jabaudon D, Moret F, Castellani V. A balance of noncanonical Semaphorin signaling from the cerebrospinal fluid regulates apical cell dynamics during corticogenesis. SCIENCE ADVANCES 2022; 8:eabo4552. [PMID: 36399562 PMCID: PMC9674300 DOI: 10.1126/sciadv.abo4552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
During corticogenesis, dynamic regulation of apical adhesion is fundamental to generate correct numbers and cell identities. While radial glial cells (RGCs) maintain basal and apical anchors, basal progenitors and neurons detach and settle at distal positions from the apical border. Whether diffusible signals delivered from the cerebrospinal fluid (CSF) contribute to the regulation of apical adhesion dynamics remains fully unknown. Secreted class 3 Semaphorins (Semas) trigger cell responses via Plexin-Neuropilin (Nrp) membrane receptor complexes. Here, we report that unconventional Sema3-Nrp preformed complexes are delivered by the CSF from sources including the choroid plexus to Plexin-expressing RGCs via their apical endfeet. Through analysis of mutant mouse models and various ex vivo assays mimicking ventricular delivery to RGCs, we found that two different complexes, Sema3B/Nrp2 and Sema3F/Nrp1, exert dual effects on apical endfeet dynamics, nuclei positioning, and RGC progeny. This reveals unexpected balance of CSF-delivered guidance molecules during cortical development.
Collapse
Affiliation(s)
- Katrin Gerstmann
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Karine Kindbeiter
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Ludovic Telley
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva 4, Switzerland
| | - Muriel Bozon
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Florie Reynaud
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Emy Théoulle
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Camille Charoy
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva 4, Switzerland
| | - Frédéric Moret
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Valerie Castellani
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| |
Collapse
|
31
|
Seidel F, Cherianidou A, Kappenberg F, Marta M, Dreser N, Blum J, Waldmann T, Blüthgen N, Meisig J, Madjar K, Henry M, Rotshteyn T, Scholtz-Illigens A, Marchan R, Edlund K, Leist M, Rahnenführer J, Sachinidis A, Hengstler JG. High Accuracy Classification of Developmental Toxicants by In Vitro Tests of Human Neuroepithelial and Cardiomyoblast Differentiation. Cells 2022; 11:3404. [PMID: 36359802 PMCID: PMC9653768 DOI: 10.3390/cells11213404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Human-relevant tests to predict developmental toxicity are urgently needed. A currently intensively studied approach makes use of differentiating human stem cells to measure chemically-induced deviations of the normal developmental program, as in a recent study based on cardiac differentiation (UKK2). Here, we (i) tested the performance of an assay modeling neuroepithelial differentiation (UKN1), and (ii) explored the benefit of combining assays (UKN1 and UKK2) that model different germ layers. Substance-induced cytotoxicity and genome-wide expression profiles of 23 teratogens and 16 non-teratogens at human-relevant concentrations were generated and used for statistical classification, resulting in accuracies of the UKN1 assay of 87-90%. A comparison to the UKK2 assay (accuracies of 90-92%) showed, in general, a high congruence in compound classification that may be explained by the fact that there was a high overlap of signaling pathways. Finally, the combination of both assays improved the prediction compared to each test alone, and reached accuracies of 92-95%. Although some compounds were misclassified by the individual tests, we conclude that UKN1 and UKK2 can be used for a reliable detection of teratogens in vitro, and that a combined analysis of tests that differentiate hiPSCs into different germ layers and cell types can even further improve the prediction of developmental toxicants.
Collapse
Affiliation(s)
- Florian Seidel
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany
| | - Anna Cherianidou
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Franziska Kappenberg
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Miriam Marta
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany
| | - Nadine Dreser
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, 78454 Konstanz, Germany
| | - Jonathan Blum
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, 78454 Konstanz, Germany
| | - Tanja Waldmann
- Department of Advanced Cell Systems, trenzyme GmbH, Byk-Gulden-Str. 2, 78467 Konstanz, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
- IRI Life Sciences, Humboldt Universität zu Berlin, Philippstraße 13, Haus 18, 10115 Berlin, Germany
| | - Johannes Meisig
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
- IRI Life Sciences, Humboldt Universität zu Berlin, Philippstraße 13, Haus 18, 10115 Berlin, Germany
| | - Katrin Madjar
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Margit Henry
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Andreas Scholtz-Illigens
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, 78454 Konstanz, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Agapios Sachinidis
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Jan Georg Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
32
|
Akkermans O, Delloye-Bourgeois C, Peregrina C, Carrasquero-Ordaz M, Kokolaki M, Berbeira-Santana M, Chavent M, Reynaud F, Raj R, Agirre J, Aksu M, White ES, Lowe E, Ben Amar D, Zaballa S, Huo J, Pakos I, McCubbin PTN, Comoletti D, Owens RJ, Robinson CV, Castellani V, Del Toro D, Seiradake E. GPC3-Unc5 receptor complex structure and role in cell migration. Cell 2022; 185:3931-3949.e26. [PMID: 36240740 PMCID: PMC9596381 DOI: 10.1016/j.cell.2022.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.
Collapse
Affiliation(s)
- Onno Akkermans
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Céline Delloye-Bourgeois
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France
| | - Claudia Peregrina
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Maria Carrasquero-Ordaz
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Maria Kokolaki
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Miguel Berbeira-Santana
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Matthieu Chavent
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, France
| | - Florie Reynaud
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Metin Aksu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eleanor S White
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Edward Lowe
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dounia Ben Amar
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France
| | - Sofia Zaballa
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK; Division of Structural Biology, University of Oxford, Oxford, UK
| | - Irene Pakos
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Patrick T N McCubbin
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Davide Comoletti
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK; Division of Structural Biology, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Valérie Castellani
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France.
| | - Daniel Del Toro
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain.
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
34
|
Abstract
Semaphorin 3A is a secreted glycoprotein, which was originally identified as axon guidance factor in the neuronal system, but it also possesses immunoregulatory properties. Here, the effect of semaphorin 3A on T-lymphocytes, myeloid dendritic cells and macrophages is systematically analyzed on the bases of all publications available in the literature for 20 years. Expression of semaphorin 3A receptors – neuropilin-1 and plexins A – in these cells is described in details. The data obtained on human and murine cells is described comparatively. A comprehensive overview of the interaction of semaphorin 3A with mononuclear phagocyte system is presented for the first time. Semaphorin 3A signaling mostly results in changes of the cytoskeletal machinery and cellular morphology that regulate pathways involved in migration, adhesion, and cell–cell cooperation of immune cells. Accumulating evidence indicates that this factor is crucially involved in various phases of immune responses, including initiation phase, antigen presentation, effector T cell function, inflammation phase, macrophage activation, and polarization. In recent years, interest in this field has increased significantly because semaphorin 3A is associated with many human diseases and therefore can be used as a target for their treatment. Its involvement in the immune responses is important to study, because semaphorin 3A and its receptors turn to be a promising new therapeutic tools to be applied in many autoimmune, allergic, and oncology diseases.
Collapse
Affiliation(s)
- Ekaterina P Kiseleva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
- Mechnikov North-Western State Medical University, St. Petersburg, 195067, Russia
| | - Kristina V Rutto
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
| |
Collapse
|
35
|
Wee NK, Sims NA, Morello R. The Osteocyte Transcriptome: Discovering Messages Buried Within Bone. Curr Osteoporos Rep 2021; 19:604-615. [PMID: 34757588 PMCID: PMC8720072 DOI: 10.1007/s11914-021-00708-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue. RECENT FINDINGS Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.
Collapse
Affiliation(s)
- Natalie Ky Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, 3065, Australia
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
36
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
37
|
Pérez Y, Bonet R, Corredor M, Domingo C, Moure A, Messeguer À, Bujons J, Alfonso I. Semaphorin 3A-Glycosaminoglycans Interaction as Therapeutic Target for Axonal Regeneration. Pharmaceuticals (Basel) 2021; 14:ph14090906. [PMID: 34577606 PMCID: PMC8465649 DOI: 10.3390/ph14090906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Semaphorin 3A (Sema3A) is a cell-secreted protein that participates in the axonal guidance pathways. Sema3A acts as a canonical repulsive axon guidance molecule, inhibiting CNS regenerative axonal growth and propagation. Therefore, interfering with Sema3A signaling is proposed as a therapeutic target for achieving functional recovery after CNS injuries. It has been shown that Sema3A adheres to the proteoglycan component of the extracellular matrix (ECM) and selectively binds to heparin and chondroitin sulfate-E (CS-E) glycosaminoglycans (GAGs). We hypothesize that the biologically relevant interaction between Sema3A and GAGs takes place at Sema3A C-terminal polybasic region (SCT). The aims of this study were to characterize the interaction of the whole Sema3A C-terminal polybasic region (Sema3A 725–771) with GAGs and to investigate the disruption of this interaction by small molecules. Recombinant Sema3A basic domain was produced and we used a combination of biophysical techniques (NMR, SPR, and heparin affinity chromatography) to gain insight into the interaction of the Sema3A C-terminal domain with GAGs. The results demonstrate that SCT is an intrinsically disordered region, which confirms that SCT binds to GAGs and helps to identify the specific residues involved in the interaction. NMR studies, supported by molecular dynamics simulations, show that a new peptoid molecule (CSIC02) may disrupt the interaction between SCT and heparin. Our structural study paves the way toward the design of new molecules targeting these protein–GAG interactions with potential therapeutic applications.
Collapse
Affiliation(s)
- Yolanda Pérez
- NMR Facility, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Correspondence: (Y.P.); (I.A.)
| | - Roman Bonet
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Miriam Corredor
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Cecilia Domingo
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Alejandra Moure
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Àngel Messeguer
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Jordi Bujons
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
- Correspondence: (Y.P.); (I.A.)
| |
Collapse
|
38
|
Christie SM, Hao J, Tracy E, Buck M, Yu JS, Smith AW. Interactions between semaphorins and plexin-neuropilin receptor complexes in the membranes of live cells. J Biol Chem 2021; 297:100965. [PMID: 34270956 PMCID: PMC8350011 DOI: 10.1016/j.jbc.2021.100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Signaling of semaphorin ligands via their plexin-neuropilin receptors is involved in tissue patterning in the developing embryo. These proteins play roles in cell migration and adhesion but are also important in disease etiology, including in cancer angiogenesis and metastasis. While some structures of the soluble domains of these receptors have been determined, the conformations of the full-length receptor complexes are just beginning to be elucidated, especially within the context of the plasma membrane. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy allows direct insight into the formation of protein-protein interactions in the membranes of live cells. Here, we investigated the homodimerization of neuropilin-1 (Nrp1), plexin A2, plexin A4, and plexin D1 using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy. Consistent with previous studies, we found that Nrp1, plexin A2, and plexin A4 are present as dimers in the absence of exogenous ligand. Plexin D1, on the other hand, was monomeric under similar conditions, which had not been previously reported. We also found that plexin A2 and A4 assemble into a heteromeric complex. Stimulation with semaphorin 3A or semaphorin 3C neither disrupts nor enhances the dimerization of the receptors when expressed alone, suggesting that activation involves a conformational change rather than a shift in the monomer-dimer equilibrium. However, upon stimulation with semaphorin 3C, plexin D1 and Nrp1 form a heteromeric complex. This analysis of interactions provides a complementary approach to the existing structural and biochemical data that will aid in the development of new therapeutic strategies to target these receptors in cancer.
Collapse
Affiliation(s)
| | - Jing Hao
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin Tracy
- Department of Chemistry, University of Akron, Akron, Ohio, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA; Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, Ohio, USA.
| |
Collapse
|
39
|
Jin H, Zheng W, Hou J, Peng H, Zhuo H. An Essential NRP1-Mediated Role for Tagln2 in Gastric Cancer Angiogenesis. Front Oncol 2021; 11:653246. [PMID: 34150622 PMCID: PMC8213069 DOI: 10.3389/fonc.2021.653246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
Knowledge about the precise biological role and underlying mechanism of Tagln2 in tumor progression is relatively limited, especially in angiogenesis focused on tumor derived endothelial cells (ECs) has rarely been reported. Here, the function, molecular mechanism and potential clinical value of Tagln2 in gastric cancer (GC) angiogenesis were investigated. GC tissue microarrays were used to assess the expression of Tagln2 in ECs. The relationships between expression and clinicopathological features were analyzed to evaluate the clinical value of Tagln2. Gain- and loss-of-function approaches were performed in ECs to investigate the functions of Tagln2 in angiogenesis. A combination of angiogenesis antibody array, RNA-Seq analyses and a series of in vitro experiments were performed to reveal the proangiogenic mechanism mediated by NRP1. Immunohistochemistry performed on an independent tissue chip (n=75) revealed significant upregulation of Tagln2 in tumor-derived ECs which were specifically immunolabeled with CD34. Additionally, high Tagln2 levels correlated significantly with the presence of lymph node as well as distant metastases. Gain- and loss-of-function approaches highlighted the function of Tagln2 in promoting EC proliferation, motility, and capillary-like tube formation and in reducing apoptosis. Tagln2 upregulation led to significantly increased mRNA and protein levels of NRP1 and subsequently activated the NRP1/VEGFR2 and downstream MAPK signaling pathways. These data indicate the importance of Tagln2 in angiogenesis, as a potential therapeutic target, and as a candidate prognostic marker in GC.
Collapse
Affiliation(s)
- Hongwei Jin
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Huifang Peng
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| |
Collapse
|
40
|
Lu D, Shang G, He X, Bai XC, Zhang X. Architecture of the Sema3A/PlexinA4/Neuropilin tripartite complex. Nat Commun 2021; 12:3172. [PMID: 34039996 PMCID: PMC8155012 DOI: 10.1038/s41467-021-23541-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Secreted class 3 semaphorins (Sema3s) form tripartite complexes with the plexin receptor and neuropilin coreceptor, which are both transmembrane proteins that together mediate semaphorin signal for neuronal axon guidance and other processes. Despite extensive investigations, the overall architecture of and the molecular interactions in the Sema3/plexin/neuropilin complex are incompletely understood. Here we present the cryo-EM structure of a near intact extracellular region complex of Sema3A, PlexinA4 and Neuropilin 1 (Nrp1) at 3.7 Å resolution. The structure shows a large symmetric 2:2:2 assembly in which each subunit makes multiple interactions with others. The two PlexinA4 molecules in the complex do not interact directly, but their membrane proximal regions are close to each other and poised to promote the formation of the intracellular active dimer for signaling. The structure reveals a previously unknown interface between the a2b1b2 module in Nrp1 and the Sema domain of Sema3A. This interaction places the a2b1b2 module at the top of the complex, far away from the plasma membrane where the transmembrane regions of Nrp1 and PlexinA4 embed. As a result, the region following the a2b1b2 module in Nrp1 must span a large distance to allow the connection to the transmembrane region, suggesting an essential role for the long non-conserved linkers and the MAM domain in neuropilin in the semaphorin/plexin/neuropilin complex.
Collapse
Affiliation(s)
- Defen Lu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guijun Shang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Chung S, Yang J, Kim HJ, Hwang EM, Lee W, Suh K, Choi H, Mook-Jung I. Plexin-A4 mediates amyloid-β-induced tau pathology in Alzheimer's disease animal model. Prog Neurobiol 2021; 203:102075. [PMID: 34004220 DOI: 10.1016/j.pneurobio.2021.102075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Amyloid-β (Aβ) and tau are major pathological hallmarks of Alzheimer's disease (AD). Several studies have revealed that Aβ accelerates pathological tau transition and spreading during the disease progression, and that reducing tau can mitigate pathological features of AD. However, molecular links between Aβ and tau pathologies remain elusive. Here, we suggest a novel role for the plexin-A4 as an Aβ receptor that induces aggregated tau pathology. Plexin-A4, previously known as proteins involved in regulating axon guidance and synaptic plasticity, can bound to Aβ with co-receptor, neuropilin-2. Genetic downregulation of plexin-A4 in neurons was sufficient to prevent Aβ-induced activation of CDK5 and reduce tau hyperphosphorylation and aggregation, even in the presence of Aβ. In an AD mouse model that manifests both Aβ and tau pathologies, genetic downregulation of plexin-A4 in the hippocampus reduced tau pathology and ameliorated spatial memory impairment. Collectively, these results indicate that the plexin-A4 is capable of mediating Aβ-induced tau pathology in AD pathogenesis.
Collapse
Affiliation(s)
- Sunwoo Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Jinhee Yang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Biorchestra Co., Ltd., Techno 4-ro 17, Daejeon 34013, South Korea.
| | - Haeng Jun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea.
| | - Wonik Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Kyujin Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Hayoung Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
42
|
Perez-Miller S, Patek M, Moutal A, de Haro PD, Cabel CR, Thorne CA, Campos SK, Khanna R. Novel Compounds Targeting Neuropilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry. ACS Chem Neurosci 2021; 12:1299-1312. [PMID: 33787218 PMCID: PMC8029449 DOI: 10.1021/acschemneuro.0c00619] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Paz Duran de Haro
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
- Regulonix LLC, Tucson, AZ, USA
| |
Collapse
|
43
|
Semaphorin3F Drives Dendritic Spine Pruning Through Rho-GTPase Signaling. Mol Neurobiol 2021; 58:3817-3834. [PMID: 33856648 DOI: 10.1007/s12035-021-02373-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Dendritic spines of cortical pyramidal neurons are initially overproduced then remodeled substantially in the adolescent brain to achieve appropriate excitatory balance in mature circuits. Here we investigated the molecular mechanism of developmental spine pruning by Semaphorin 3F (Sema3F) and its holoreceptor complex, which consists of immunoglobulin-class adhesion molecule NrCAM, Neuropilin-2 (Npn2), and PlexinA3 (PlexA3) signaling subunits. Structure-function studies of the NrCAM-Npn2 interface showed that NrCAM stabilizes binding between Npn2 and PlexA3 necessary for Sema3F-induced spine pruning. Using a mouse neuronal culture system, we identified a dual signaling pathway for Sema3F-induced pruning, which involves activation of Tiam1-Rac1-PAK1-3 -LIMK1/2-Cofilin1 and RhoA-ROCK1/2-Myosin II in dendritic spines. Inhibitors of actin remodeling impaired spine collapse in the cortical neurons. Elucidation of these pathways expands our understanding of critical events that sculpt neuronal networks and may provide insight into how interruptions to these pathways could lead to spine dysgenesis in diseases such as autism, bipolar disorder, and schizophrenia.
Collapse
|
44
|
Kim SK, Roche MD, Fredericson M, Dragoo JL, Horton BH, Avins AL, Belanger HG, Ioannidis JPA, Abrams GD. A Genome-wide Association Study for Concussion Risk. Med Sci Sports Exerc 2021; 53:704-711. [PMID: 33017352 DOI: 10.1249/mss.0000000000002529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to screen the entire genome for genetic markers associated with risk for concussion. METHODS A genome-wide association analyses was performed using data from the Kaiser Permanente Research Bank and the UK Biobank. Concussion cases were identified based on electronic health records from the Kaiser Permanente Research Bank and the UK Biobank from individuals of European ancestry. Genome-wide association analyses from both cohorts were tested for concussion using a logistic regression model adjusting for sex, height, weight, and race/ethnicity using allele counts for single nucleotide polymorphisms. Previously identified genes within the literature were also tested for association with concussion. RESULTS There were a total of 4064 cases of concussion and 291,472 controls within the databases, with two single nucleotide polymorphisms demonstrating a genome-wide significant association with concussion. The first polymorphism, rs144663795 (P = 9.7 × 10-11; OR = 2.91 per allele copy), is located within the intron of SPATA5. Strong, deleterious mutations in SPATA5 cause intellectual disability, hearing loss, and vision loss. The second polymorphism, rs117985931 (P = 3.97 × 10-9; OR = 3.59 per allele copy), is located within PLXNA4. PLXNA4 plays a key role is axon outgrowth during neural development, and DNA variants in PLXNA4 are associated with risk for Alzheimer's disease. Previous investigations have identified five candidate genes that may be associated with concussion, but none showed a significant association in the current model (P < 0.05). CONCLUSION Two genetic markers were identified as potential risk factors for concussion and deserve further validation and investigation of molecular mechanisms.
Collapse
Affiliation(s)
- Stuart K Kim
- Department of Developmental Biology, Stanford University Medical School, Stanford, CA
| | - Megan D Roche
- Department Orthopaedic Surgery, Stanford University Medical Center, Stanford, CA
| | - Michael Fredericson
- Department Orthopaedic Surgery, Stanford University Medical Center, Stanford, CA
| | - Jason L Dragoo
- UCHealth Steadman Hawkins Clinic Denver-Surgery Center, Englewood, CO
| | - Brandon H Horton
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Andy L Avins
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | | | - Geoffrey D Abrams
- Department Orthopaedic Surgery, Stanford University Medical Center, Stanford, CA
| |
Collapse
|
45
|
Sun L, Wei N, Kuhle B, Blocquel D, Novick S, Matuszek Z, Zhou H, He W, Zhang J, Weber T, Horvath R, Latour P, Pan T, Schimmel P, Griffin PR, Yang XL. CMT2N-causing aminoacylation domain mutants enable Nrp1 interaction with AlaRS. Proc Natl Acad Sci U S A 2021; 118:e2012898118. [PMID: 33753480 PMCID: PMC8020758 DOI: 10.1073/pnas.2012898118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.
Collapse
Affiliation(s)
- Litao Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- School of Public Health (Shenzhen), Sun Yat-sen University, 510006 Guangzhou, China
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - David Blocquel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Scott Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Zaneta Matuszek
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Huihao Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiwei He
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237 Shanghai, China
| | - Jingjing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, 510006 Guangzhou, China
| | - Thomas Weber
- Dynamic Biosensors GmbH, 82152 Martinsried, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Philippe Latour
- Biology and Pathology Department, Hospices Civils, 68500 Lyon, France
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
46
|
Cleavage of the Perlecan-Semaphorin 3A-Plexin A1-Neuropilin-1 (PSPN) Complex by Matrix Metalloproteinase 7/Matrilysin Triggers Prostate Cancer Cell Dyscohesion and Migration. Int J Mol Sci 2021; 22:ijms22063218. [PMID: 33809984 PMCID: PMC8004947 DOI: 10.3390/ijms22063218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
The Perlecan-Semaphorin 3A-Plexin A1-Neuropilin-1 (PSPN) Complex at the cell surface of prostate cancer (PCa) cells influences cell–cell cohesion and dyscohesion. We investigated matrix metalloproteinase-7/matrilysin (MMP-7)’s ability to digest components of the PSPN Complex in bone metastatic PCa cells using in silico analyses and in vitro experiments. Results demonstrated that in addition to the heparan sulfate proteoglycan, perlecan, all components of the PSPN Complex were degraded by MMP-7. To investigate the functional consequences of PSPN Complex cleavage, we developed a preformed microtumor model to examine initiation of cell dispersion after MMP-7 digestion. We found that while perlecan fully decorated with glycosaminoglycan limited dispersion of PCa microtumors, MMP-7 initiated rapid dyscohesion and migration even with perlecan present. Additionally, we found that a bioactive peptide (PLN4) found in perlecan domain IV in a region subject to digestion by MMP-7 further enhanced cell dispersion along with MMP-7. We found that digestion of the PSPN Complex with MMP-7 destabilized cell–cell junctions in microtumors evidenced by loss of co-registration of E-cadherin and F-actin. We conclude that MMP-7 plays a key functional role in PCa cell transition from a cohesive, indolent phenotype to a dyscohesive, migratory phenotype favoring production of circulating tumor cells and metastasis to bone.
Collapse
|
47
|
Pijuan J, Ortigoza-Escobar JD, Ortiz J, Alcalá A, Calvo MJ, Cubells M, Hernando-Davalillo C, Palau F, Hoenicka J. PLXNA2 and LRRC40 as candidate genes in autism spectrum disorder. Autism Res 2021; 14:1088-1100. [PMID: 33749153 DOI: 10.1002/aur.2502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability with high heritability yet the genetic etiology remains elusive. Therefore, it is necessary to elucidate new genotype-phenotype relationships for ASD to improve both the etiological knowledge and diagnosis. In this work, a copy-number variant and whole-exome sequencing analysis were performed in an ASD patient with a complex neurobehavioral phenotype with epilepsy and attention deficit hyperactivity disorder. We identified rare recessive single nucleotide variants in the two genes, PLXNA2 encoding Plexin A2 that participates in neurodevelopment, and LRRC40, which encodes Leucine-rich repeat containing protein 40, a protein of unknown function. PLXNA2 showed the heterozygous missense variants c.614G>A (p.Arg205Gln) and c.4904G>A (p.Arg1635Gln) while LRRC40 presented the homozygous missense variant c.1461G>T (p.Leu487Phe). In silico analysis predicted that these variants could be pathogenic. We studied PLXNA2 and LRRC40 mRNA and proteins in fibroblasts from the patient and controls. We observed a significant PlxnA2 subcellular delocalization and very low levels of LRRC40 in the patient. Moreover, we found a novel interaction between PlxnA2 and LRRC40 suggesting that participate in a common neural pathway. This interaction was significant decreased in the patient's fibroblasts. In conclusion, our results identified PLXNA2 and LRRC40 genes as candidates in ASD providing novel clues for the pathogenesis. Further attention to these genes is warranted in genetic studies of patients with neurodevelopmental disorders, particularly ASD. LAY SUMMARY: Genomics is improving the knowledge and diagnosis of patients with autism spectrum disorder (ASD) yet the genetic etiology remains elusive. Here, using genomic analysis together with experimental functional studies, we identified in an ASD complex patient the PLXNA2 and LRRC40 recessive genes as ASD candidates. Furthermore, we found that the proteins of these genes interact in a common neural network. Therefore, more attention to these genes is warranted in genetic studies of patients with neurodevelopmental disorders, particularly ASD.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Department of Pediatric Neurology, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Juan Ortiz
- Department of Child Psychiatry, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Adrián Alcalá
- Department of Genetic Medicine - IPER, Hospital Sant Joan de Déu, Barcelona, Spain
| | - María José Calvo
- Department of Pediatric Neurology, Hospital San Jorge de Huesca, Huesca, Spain
| | - Mariona Cubells
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Department of Genetic Medicine - IPER, Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona, Spain.,Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
48
|
An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int J Mol Sci 2021; 22:ijms22052434. [PMID: 33670945 PMCID: PMC7957817 DOI: 10.3390/ijms22052434] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
During restricted time windows of postnatal life, called critical periods, neural circuits are highly plastic and are shaped by environmental stimuli. In several mammalian brain areas, from the cerebral cortex to the hippocampus and amygdala, the closure of the critical period is dependent on the formation of perineuronal nets. Perineuronal nets are a condensed form of an extracellular matrix, which surrounds the soma and proximal dendrites of subsets of neurons, enwrapping synaptic terminals. Experimentally disrupting perineuronal nets in adult animals induces the reactivation of critical period plasticity, pointing to a role of the perineuronal net as a molecular brake on plasticity as the critical period closes. Interestingly, in the adult brain, the expression of perineuronal nets is remarkably dynamic, changing its plasticity-associated conditions, including memory processes. In this review, we aimed to address how perineuronal nets contribute to the maturation of brain circuits and the regulation of adult brain plasticity and memory processes in physiological and pathological conditions.
Collapse
|
49
|
Duncan BW, Murphy KE, Maness PF. Molecular Mechanisms of L1 and NCAM Adhesion Molecules in Synaptic Pruning, Plasticity, and Stabilization. Front Cell Dev Biol 2021; 9:625340. [PMID: 33585481 PMCID: PMC7876315 DOI: 10.3389/fcell.2021.625340] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian brain circuits are wired by dynamic formation and remodeling during development to produce a balance of excitatory and inhibitory synapses. Synaptic regulation is mediated by a complex network of proteins including immunoglobulin (Ig)- class cell adhesion molecules (CAMs), structural and signal-transducing components at the pre- and post-synaptic membranes, and the extracellular protein matrix. This review explores the current understanding of developmental synapse regulation mediated by L1 and NCAM family CAMs. Excitatory and inhibitory synapses undergo formation and remodeling through neuronal CAMs and receptor-ligand interactions. These responses result in pruning inactive dendritic spines and perisomatic contacts, or synaptic strengthening during critical periods of plasticity. Ankyrins engage neural adhesion molecules of the L1 family (L1-CAMs) to promote synaptic stability. Chondroitin sulfates, hyaluronic acid, tenascin-R, and linker proteins comprising the perineuronal net interact with L1-CAMs and NCAM, stabilizing synaptic contacts and limiting plasticity as critical periods close. Understanding neuronal adhesion signaling and synaptic targeting provides insight into normal development as well as synaptic connectivity disorders including autism, schizophrenia, and intellectual disability.
Collapse
Affiliation(s)
- Bryce W Duncan
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kelsey E Murphy
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
50
|
Verkhratsky A, Li Q, Melino S, Melino G, Shi Y. Can COVID-19 pandemic boost the epidemic of neurodegenerative diseases? Biol Direct 2020; 15:28. [PMID: 33246479 PMCID: PMC7691955 DOI: 10.1186/s13062-020-00282-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) presents the world with the medical challenge associated with multifactorial nature of this pathology. Indeed COVID-19 affects several organs and systems and presents diversified clinical picture. COVID-19 affects the brain in many ways including direct infection of neural cells with SARS-CoV-2, severe systemic inflammation which floods the brain with pro-inflammatory agents thus damaging nervous cells, global brain ischaemia linked to a respiratory failure, thromboembolic strokes related to increased intravascular clotting and severe psychological stress. Often the COVID-19 is manifested by neurological and neuropsychiatric symptoms that include dizziness, disturbed sleep, cognitive deficits, delirium, hallucinations and depression. All these indicate the damage to the nervous tissue which may substantially increase the incidence of neurodegenerative diseases and promote dementia.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT UK
- Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Sonia Melino
- University of Rome Tor Vergata, via Cracovia 1, 00133 Rome, Italy
| | - Gerry Melino
- University of Rome Tor Vergata, via Cracovia 1, 00133 Rome, Italy
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, 215123 Jiangsu China
| |
Collapse
|