1
|
Hartung F, Krutmann J, Haarmann-Stemmann T. Evidence that the aryl hydrocarbon receptor orchestrates oxinflammatory responses and contributes to airborne particulate matter-induced skin aging. Free Radic Biol Med 2025; 233:264-278. [PMID: 40157462 DOI: 10.1016/j.freeradbiomed.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Exposure to airborne particulate matter (PM) is a substantial threat to public health, contributing to respiratory, cardiovascular, and skin-related diseases. Population-based studies strongly indicate that chronic exposure to airborne PM, especially combustion-derived PM2.5, accelerates skin aging and thus reduces the quality of life of those affected. There is increasing evidence that especially PM-bound polycyclic aromatic hydrocarbons (PAHs) critically contribute to the clinical manifestation of skin aging, i.e. the development of lentigines/pigment spots and coarse wrinkles. PAHs harm human skin primarily by activating the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor amongst others involved in orchestrating xenobiotic metabolism and immune responses. In this review, we summarize the available population-based data linking particulate air pollution exposure to skin aging. We explain in detail how PAH-rich PM induces the formation of oxidative stress, the release of pro-inflammatory mediators, the expression extracellular matrix degrading metalloproteases, and melanin synthesis, in an AHR-dependent manner, and how these events may culminate in the development of pigment spots and wrinkles, respectively. We also review the current data on the interaction of airborne PM with another factor of the skin aging exposome that exerts its deleterious effects in part through AHR-dependent signaling pathways, namely solar ultraviolet radiation.
Collapse
Affiliation(s)
- Frederick Hartung
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | | |
Collapse
|
2
|
Khunger N, Dash A. Impact of Air Pollution on Skin Pigmentation: Mechanisms and Protective Strategies. Int J Dermatol 2025. [PMID: 40415192 DOI: 10.1111/ijd.17867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/30/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Air pollution, a critical global health challenge, impacts nearly the entire world population, with low- and middle-income countries bearing a disproportionate burden. In 2021, the World Health Organization (WHO) stated that air pollution is the most urgent and largest public health problem. While its role in respiratory and cardiovascular diseases is well established, its effects on skin, particularly in inducing pigmentation, remain underexplored. The pollutants, particularly particulate matter, penetrate the skin and activate pathways like the aryl hydrocarbon receptor (AhR) and promote the production of reactive oxygen species (ROS). This oxidative stress exacerbates inflammatory responses and triggers melanocyte stimulation, leading to hyperpigmentation disorders such as melasma, senile lentigines, and diffuse facial pigmentation. Additionally, the synergistic interaction of air pollution with ultraviolet radiation (UVR) exacerbates its impact on skin. Emerging evidence highlights the potential of antioxidants such as N-acetylcysteine, vitamin E, and niacinamide as protective measures against the effects of air pollution. It is vital that air pollution is recognized as a significant contributor to inflammatory skin disorders and skin pigmentation, patients are made aware of the need for preventive measures, and policymakers are cognizant of the urgent need for sustainable environmental policies to reduce its impact. This narrative review focuses on current knowledge on pollution-induced skin pigmentation, preventive measures, and skin care strategies to mitigate pollution-induced pigmentary changes.
Collapse
Affiliation(s)
- Niti Khunger
- Department of Dermatology and STD, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Anshuman Dash
- Department of Dermatology and STD, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
3
|
Han HS, Seok J, Park KY. Air Pollution and Skin Diseases. Ann Dermatol 2025; 37:53-67. [PMID: 40165563 PMCID: PMC11965873 DOI: 10.5021/ad.24.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 04/02/2025] Open
Abstract
Air pollution is a widespread environmental issue, with substantial global implications for human health. Recent epidemiological studies have shown that exposure to air pollution exacerbates various inflammatory skin conditions, including atopic dermatitis, psoriasis, or acne. Furthermore, air pollutants are associated with accelerated skin aging, hair loss, and skin cancer. The aim of this review is to elucidate the current understanding of the impact of air pollution on skin health, emphasizing the underlying mechanisms involved and existing therapeutic and cosmetic interventions available to prevent or mitigate these effects. A pivotal factor in the harmful effects of air pollution is the formation of reactive oxygen species and the resulting oxidative stress. The aryl hydrocarbon receptor signaling pathway also substantially contributes to mediating the effects of air pollutants on various skin conditions. Moreover, air pollutants can disrupt the skin barrier function and trigger inflammation. Consequently, antioxidant and anti-inflammatory therapies, along with treatments designed to restore the skin barrier function, have the potential to mitigate the adverse effects of air pollutants on skin health.
Collapse
Affiliation(s)
- Hye Sung Han
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
- Institute of Clinical Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea
| | - Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Huang Q, Zhu C, Hong T, Li H, Li L, Zheng M, Li Z, Jiang Z, Ni H, Zhu Y. Characterization of a Na +-stimulated acidic hyaluronate lyase from Microbulbifer sp. ALW1 and the antioxidant activity of its hydrolysates. World J Microbiol Biotechnol 2025; 41:94. [PMID: 40045116 DOI: 10.1007/s11274-025-04315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Hyaluronic acid (HA) is a natural polymer that can be degraded by hyaluronate lyase into oligomers with diverse biological activities. In this study, a novel hyaluronate lyase (named HCLase6) of polysaccharide lyase family 6 from Microbulbifer sp. ALW1 was cloned and characterized. Optimal temperature and pH for HCLase6 was determined to be 40 ℃ and 5.0, respectively. It displayed good stability at temperature up to 45 ℃ and in the pH range of 4.0-9.0. In addition, HCLase6 demonstrated good tolerance to detergents of Tween 20, Tween 80 and SDS, and was halophilic and halotolerant to Na+. Molecular dynamics simulations indicated that the presence of Na+ increased the flexibility of the loop region adjacent to the active pocket of HCLase6, altered the surface hydrophobicity and electrostatic potential, and strengthened the motion correlation between amino acid residues. Notably, the enzymatic products of HA oligosaccharides (O-HA) produced by HCLase6 showed significantly enhanced free radical scavenging activities and iron reducing power. They also exhibited the antioxidant activity in human keratinocytes cells after exposure to PM SRM 1648a. This study provides the knowledge of the enzymatic properties of HCLase6 and a reference for its industrial application.
Collapse
Affiliation(s)
- Qianli Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Chunhua Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China.
| |
Collapse
|
5
|
Kartal D, Dirican MH, Taheri S, Memiş M, Solak EÖ, Cinar SL, Borlu M. Regulation of DNA methylation in lesional tissue of children with atopic dermatitis. Front Med (Lausanne) 2025; 12:1531777. [PMID: 40098928 PMCID: PMC11913172 DOI: 10.3389/fmed.2025.1531777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Background Genetic and epigenetic mechanisms have been shown to play a role in the pathogenesis of atopic dermatitis (AD). However, the role of genes involved in the establishment of DNA methylation has not yet been demonstrated. Methods A total of 15 pediatric patients with AD and 15 healthy volunteers were included in this study. The mRNA gene expression levels of eight different genes involved in the regulation of DNA methylation were examined in the blood and tissue samples. Results The mRNA expression levels of DNMT3A genes were significantly increased, while the mRNA expression levels of DNMT3B, TET1, and TET2 genes were statistically significantly reduced in the lesional tissue of patients compared to the control group. It was observed that the mRNA expression levels of DNMT1, DNMT3A, and TET3 genes were increased, while the mRNA expression levels of DNMT3L and TET1 genes were found to be decreased in the blood of the patients. Conclusion The results indicated that the DNA methylation pattern in the patients was hypermethylated, especially in the lesional tissue. The data obtained may contribute to the understanding of the epigenetic regulation of AD and aid in the development of new diagnostic and treatment options.
Collapse
Affiliation(s)
- Demet Kartal
- Dermatology and Venereology Department, Erciyes University Medical School, Kayseri, Türkiye
| | | | - Serpil Taheri
- Betul Ziya Eren Genome and Stem Cell (GENKÖK) Center, Erciyes University, Kayseri, Türkiye
| | - Mehmet Memiş
- Betul Ziya Eren Genome and Stem Cell (GENKÖK) Center, Erciyes University, Kayseri, Türkiye
- Technology Transfer Office Application and Research Center, Bayburt University, Bayburt, Türkiye
| | - Eda Öksüm Solak
- Dermatology and Venereology Department, Erciyes University Medical School, Kayseri, Türkiye
| | - Salih Levent Cinar
- Dermatology and Venereology Department, Erciyes University Medical School, Kayseri, Türkiye
| | - Murat Borlu
- Dermatology and Venereology Department, Erciyes University Medical School, Kayseri, Türkiye
| |
Collapse
|
6
|
Gong FH, Liu L, Wang X, Xiang Q, Yi X, Jiang DS. Ferroptosis induced by environmental pollutants and its health implications. Cell Death Discov 2025; 11:20. [PMID: 39856053 PMCID: PMC11759704 DOI: 10.1038/s41420-025-02305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Environmental pollution represents a significant public health concern, with the potential health risks associated with environmental pollutants receiving considerable attention over an extended period. In recent years, a substantial body of research has been dedicated to this topic. Since the discovery of ferroptosis, an iron-dependent programmed cell death typically characterized by lipid peroxidation, in 2012, there have been significant advances in the study of its role and mechanism in various diseases. A growing number of recent studies have also demonstrated the involvement of ferroptosis in the damage caused to the organism by environmental pollutants, and the molecular mechanisms involved have been partially elucidated. The targeting of ferroptosis has been demonstrated to be an effective means of ameliorating the health damage caused by PM2.5, organic and inorganic pollutants, and ionizing radiation. This review begins by providing a summary of the most recent and important advances in ferroptosis. It then proceeds to offer a critical analysis of the health effects and molecular mechanisms of ferroptosis induced by various environmental pollutants. Furthermore, as is the case with all rapidly evolving research areas, there are numerous unanswered questions and challenges pertaining to environmental pollutant-induced ferroptosis, which we discuss in this review in an attempt to provide some directions and clues for future research in this field.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuesheng Wang
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Wang L, Li Z, He H, Qin L, Xu W, Tian H, Liu R, Lian X, Li W, Qi Y, Wang Z. Low-dose radiation ameliorates PM2.5-induced lung injury through non-canonical TLR1/TLR2-like receptor pathways modulated by Akkermansia muciniphila. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117625. [PMID: 39752914 DOI: 10.1016/j.ecoenv.2024.117625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025]
Abstract
Exposure of PM2.5 can cause different degrees of lung injury, which is referred with inflammatory response. Some evidences showed that low-dose radiation (LDR) induces hormesis in immune, however, it is unknown if LDR ameliorates the PM2.5-induced lung injury. Additionally, gut microbiota and inflammation are crucial in lung injury and the health benefits of LDR through gut microbiota need further exploration. Here, we aim to investigate the impact of LDR on PM2.5-induced lung injury in vivo and in vitro, and elucidated the potential mechanisms of anti-inflammation activated by gut microbiota. We observed that LDR ameliorated the lung damage induced by PM2.5 in mice. Additionally, after PM2.5 exposure, M1 polarization of macrophages in alveolar lavage fluid and Th1 polarization in spleen increased, pro-inflammatory cytokines (IL-1, IL-6 and TNF-α) increased and anti-inflammatory cytokines (IL-4, IL-10 and TGF-β) decreased in lung and serum. LDR could deteriorate the changes described as above. Intriguingly, Akkermansia muciniphila (Akk) differed most significantly in the gut microbiota of mice. Notably, PM2.5 activated the Toll-like receptors-induced MyD88/NF-κB pathways to mediate the pro-inflammation, and LDR could inhibited the pathway. However, the TLR1 and TLR2 continuously increased after LDR, indicating the downstream non-canonical TLR1/TLR2 pathway of Akk was activated to blunt the pro-inflammation of PM2.5. Our results strongly indicate that LDR-induced activation of gut Akk-dependent non-canonical TLR1/TLR2-like receptor pathway ameliorates lung injury and inflammation resulted from PM2.5.
Collapse
Affiliation(s)
- Li Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Zhipeng Li
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing, China
| | - Huan He
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Lijing Qin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Weiqiang Xu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Hongyuan Tian
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Rongrong Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Xinru Lian
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Wen Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Yali Qi
- Department of Epidemiology, School of Public Health, Jilin Medical College, Jilin, Jilin 132013, PR China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China.
| |
Collapse
|
8
|
Fernando PDSM, Piao MJ, Herath HMUL, Kang KA, Ha KS, Chae S, Hyun JW. C-Peptide Ameliorates Particulate Matter 2.5-Induced Skin Cell Apoptosis by Inhibiting NADPH Oxidation. Biomol Ther (Seoul) 2025; 33:221-230. [PMID: 39690967 PMCID: PMC11704398 DOI: 10.4062/biomolther.2024.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 12/19/2024] Open
Abstract
Connecting peptide (C-peptide), a byproduct of insulin biosynthesis, has diverse cellular and biological functions. Particulate matter 2.5 (PM2.5) adversely affects human skin, leading to skin thickening, wrinkle formation, skin aging, and inflammation. This study aimed to investigate the protective effects of C-peptide against PM2.5-induced damage to skin cells, focusing on oxidative stress as a key mechanism. C-peptide mitigated NADPH oxidation and intracellular reactive oxygen species (ROS) production induced by PM2.5. It also suppressed PM2.5-induced NADPH oxidase (NOX) activity and alleviated PM2.5-induced NOX1 and NOX4 expression. C-peptide protected against PM2.5-induced DNA damage, lipid peroxidation, and protein carbonylation. Additionally, C-peptide mitigated PM2.5-induced apoptosis by inhibiting intracellular ROS production. In summary, our findings suggest that C-peptide mitigates PM2.5-induced apoptosis in human HaCaT keratinocytes by inhibiting intracellular ROS production and NOX activity.
Collapse
Affiliation(s)
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Sungwook Chae
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
9
|
Zou R, Lu J, Bai X, Yang Y, Zhang S, Wu S, Tang Z, Li K, Hua X. The epigenetic-modified downregulation of LOXL1 protein mediates EMT in bladder epithelial cells exposed to benzo[a]pyrene and its metabolite BPDE. Int Immunopharmacol 2024; 142:113232. [PMID: 39340995 DOI: 10.1016/j.intimp.2024.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Benzo[a]pyrene (B[a]P) is a well-known polycyclic aromatic hydrocarbon (PAH) pollutant with high carcinogenicity, widespread environmental presence, and significant threat to public health. Epidemiological studies have linked exposure to B[a]P and its metabolite 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE) to the development and progression of various cancers, including bladder cancer. However, its underlying mechanism remains unclear. Our study revealed that B[a]P and BPDE induced epithelial-mesenchymal transition (EMT), a critical early event in cell malignant transformation, involving a decrease in E-Cadherin and upregulation of N-Cadherin protein levels, leading to increased cell motility and migration in bladder epithelial cells. Further studies have indicated that LOXL1 DNA undergoes methylation and modification influenced by methyltransferase 3a (DNMT3a) and DNMT3b, resulting in decreased LOXL1 protein levels. The decreased LOXL1 promotes the zinc finger transcription factor SLUG, which then inhibits E-Cadherin protein levels and initiates the EMT process. Moreover, DNMT3a/3b expression appears to be influenced by intracellular oxidative stress levels. These findings suggest that exposure to B[a]P/BPDE promotes the EMT process through the pivotal factor LOXL1, thereby contributing to bladder carcinogenesis. Our study provides a theoretical basis for considering LOXL1 as a potential biomarker for early diagnosis and a novel target for the precise diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shouyue Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuai Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhixin Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Kang Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
10
|
Shilnikova K, Kang KA, Piao MJ, Herath HMUL, Fernando PDSM, Boo HJ, Yoon SP, Hyun JW. Shikonin protects skin cells against oxidative stress and cellular dysfunction induced by fine particulate matter. Cell Biol Int 2024; 48:1836-1848. [PMID: 39169545 DOI: 10.1002/cbin.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Shikonin, an herbal naphthoquinone, demonstrates a broad spectrum of pharmacological properties. Owing to increasingly adverse environmental conditions, human skin is vulnerable to harmful influences from dust particles. This study explored the antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter (PM2.5). We found that shikonin at a concentration of 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH). Furthermore, shikonin enhanced GSH level by upregulating glutamate-cysteine ligase catalytic subunit and glutathione synthetase mediated by nuclear factor-erythroid 2-related factor. Shikonin reduced ROS levels induced by PM2.5, leading to recovering PM2.5-impaired cellular biomolecules and cell viability. Shikonin restored the GSH level in PM2.5-exposed keratinocytes via enhancing the expression of GSH-synthesizing enzymes. Notably, buthionine sulphoximine, an inhibitor of GSH synthesis, diminished effect of shikonin against PM2.5-induced cell damage, confirming the role of GSH in shikonin-induced cytoprotection. Collectively, these findings indicated that shikonin could provide substantial cytoprotection against the adverse effects of PM2.5 through direct ROS scavenging and modulation of cellular antioxidant system.
Collapse
Affiliation(s)
- Kristina Shilnikova
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Herath Mudiyanselage Udari Lakmini Herath
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Sang Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| |
Collapse
|
11
|
Chanda F, Lin KX, Chaurembo AI, Huang JY, Zhang HJ, Deng WH, Xu YJ, Li Y, Fu LD, Cui HD, Shu C, Chen Y, Xing N, Lin HB. PM 2.5-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176255. [PMID: 39276993 DOI: 10.1016/j.scitotenv.2024.176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Air pollution, particularly fine particulate matter (PM2.5) with <2.5 μm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.
Collapse
Affiliation(s)
- Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Chen
- University of Chinese Academy of Sciences, Beijing, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China.
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Tao Q, Zhao Z, Yang R, Li Q, Qiao J. Fine particulate matter and ovarian health: A review of emerging risks. Heliyon 2024; 10:e40503. [PMID: 39650185 PMCID: PMC11625118 DOI: 10.1016/j.heliyon.2024.e40503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/26/2024] [Accepted: 11/17/2024] [Indexed: 12/11/2024] Open
Abstract
Fine particulate matter (PM2.5) pollution has raised significant public concerns, especially for vulnerable populations. Studies have indicated the association between PM2.5 and ovarian disorders, although the mechanisms underlying the effects have not yet been fully elucidated. In this review, we elucidated three main conditions pertaining to ovarian function that may result from exposure to PM2.5: diminished ovarian reserve, polycystic ovary syndrome, and infertility. Specific effects of ovarian disorders caused by PM2.5 are discussed, including reactive oxygen species, apoptosis, DNA damage, and inflammation.
Collapse
Affiliation(s)
- Qingqing Tao
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Zhengyang Zhao
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Qin Li
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
13
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
14
|
Vilas-Boas V, Chatterjee N, Carvalho A, Alfaro-Moreno E. Particulate matter-induced oxidative stress - Mechanistic insights and antioxidant approaches reported in in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104529. [PMID: 39127435 DOI: 10.1016/j.etap.2024.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo. This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS's harmful effects are described, providing future perspectives on the topic.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Nivedita Chatterjee
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Andreia Carvalho
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
15
|
Seong SH, Kim JY, Kim SH, Lee J, Lee EJ, Bae YJ, Park S, Kwon IJ, Yoon SM, Lee J, Kim TG, Oh SH. Interleukin-24: A molecular mediator of particulate matter's impact on skin aging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116738. [PMID: 39029221 DOI: 10.1016/j.ecoenv.2024.116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Air pollution, a global health concern, has been associated with adverse effects on human health. In particular, particulate matter (PM), which is a major contributor to air pollution, impacts various organ systems including the skins. In fact, PM has been suggested as a culprit for accelerating skin aging and pigmentation. In this study, using single-cell RNA sequencing, IL-24 was found to be highly upregulated among the differentially expressed genes commonly altered in keratinocytes and fibroblasts of ex vivo skins exposed to PM. It was verified that PM exposure triggered the expression of IL-24 in keratinocytes, which subsequently led to a decrease in type I procollagen expression and an increase in MMP1 expression in fibroblasts. Furthermore, long-term treatment of IL-24 induced cellular senescence in fibroblasts. Through high-throughput screening, we identified chemical compounds that inhibit the IL-24-STAT3 signaling pathway, with lovastatin being the chosen candidate. Lovastatin not only effectively reduced the expression of IL24 induced by PM in keratinocytes but also exhibited a capacity to restore the decrease in type I procollagen and the increase in MMP1 caused by IL-24 in fibroblasts. This study provides insights into the significance of IL-24, illuminating mechanisms behind PM-induced skin aging, and proposes IL-24 as a promising target to mitigate PM-associated skin aging.
Collapse
Affiliation(s)
- Seol Hwa Seong
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hee Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Joohee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Il Joo Kwon
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sei-Mee Yoon
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahakro, Yeonsu-gu, Incheon, South Korea
| | - Jinu Lee
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahakro, Yeonsu-gu, Incheon, South Korea.
| | - Tae-Gyun Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Fernando PDSM, Piao MJ, Herath HMUL, Kang KA, Hyun CL, Kim ET, Koh YS, Hyun JW. Hyperoside reduced particulate matter 2.5-induced endoplasmic reticulum stress and senescence in skin cells. Toxicol In Vitro 2024; 99:105870. [PMID: 38848825 DOI: 10.1016/j.tiv.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Particulate matter 2.5 (PM2.5) causes skin aging, inflammation, and impaired skin homeostasis. Hyperoside, a flavanol glycoside, has been proposed to reduce the risk of diseases caused by oxidative stress. This study evaluated the cytoprotective potential of hyperoside against PM2.5-induced skin cell damage. Cultured human HaCaT keratinocytes were pretreated with hyperoside and treated with PM2.5. Initially, the cytoprotective and antioxidant ability of hyperoside against PM2.5 was evaluated. Western blotting was further employed to investigate endoplasmic reticulum (ER) stress and cellular senescence and for evaluation of cell cycle regulation-related proteins. Hyperoside inhibited PM2.5-mediated ER stress as well as mitochondrial damage. Colony formation assessment confirmed that PM2.5-impaired cell proliferation was restored by hyperoside. Moreover, hyperoside reduced the activation of PM2.5-induced ER stress-related proteins, such as protein kinase R-like ER kinase, cleaved activating transcription factor 6, and inositol-requiring enzyme 1. Hyperoside promoted cell cycle progression in the G0/G1 phase by upregulating the PM2.5-impaired cell cycle regulatory proteins. Hyperoside significantly reduced the expression of PM2.5-induced senescence-associated β-galactosidase and matrix metalloproteinases (MMPs), such as MMP-1 and MMP-9. Overall, hyperoside ameliorated PM2.5-impaired cell proliferation, ER stress, and cellular senescence, offering potential therapeutic implications for mitigating the adverse effects of environmental pollutants on skin health.
Collapse
Affiliation(s)
- Pincha Devage Sameera Madushan Fernando
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Kyoung Ah Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang Lim Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eui Tae Kim
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Young Sang Koh
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
17
|
Zhen AX, Kang KA, Piao MJ, Madushan Fernando PDS, Lakmini Herath HMU, Hyun JW. Protective effects of astaxanthin on particulate matter 2.5‑induced senescence in HaCaT keratinocytes via maintenance of redox homeostasis. Exp Ther Med 2024; 28:275. [PMID: 38800049 PMCID: PMC11117106 DOI: 10.3892/etm.2024.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Particulate matter 2.5 (PM2.5) imposes a heavy burden on the skin and respiratory system of human beings, causing side effects such as aging, inflammation and cancer. Astaxanthin (ATX) is a well-known antioxidant widely used for its anti-inflammatory and anti-aging properties. However, few studies have investigated the protective effects of ATX against PM2.5-induced senescence in HaCaT cells. In the present study, the levels of reactive oxygen species (ROS) and antioxidant enzymes were measured after treatment with PM2.5. The results revealed that PM2.5 generated excessive ROS and reduced the translocation of nuclear factor erythroid 2-related factor 2 (NRF2), subsequently reducing the expression of antioxidant enzymes. However, pretreatment with ATX reversed the ROS levels as well as the expression of antioxidant enzymes. In addition, ATX protected cells from PM2.5-induced DNA damage and rescued PM2.5-induced cell cycle arrest. The levels of senescence-associated phenotype markers, such as interleukin-1β, matrix metalloproteinases, and β-galactosidase, were increased by exposure to PM2.5, however these effects were reversed by ATX. After interfering with NRF2 mRNA expression and exposing cells to PM2.5, the levels of ROS and β-galactosidase were higher compared with siControl RNA cells exposed to PM2.5. However, ATX inhibited ROS and β-galactosidase levels in both the siControl RNA and the siNRF2 RNA groups. Thus, ATX protects HaCaT keratinocytes from PM2.5-induced senescence by partially inhibiting excessive ROS generation via the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Ao Xuan Zhen
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Jin Won Hyun
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
18
|
Hu R, Fan W, Li S, Zhang G, Zang L, Qin L, Li R, Chen R, Zhang L, Gu W, Zhang Y, Rajagopalan S, Sun Q, Liu C. PM 2.5-induced cellular senescence drives brown adipose tissue impairment in middle-aged mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116423. [PMID: 38705039 PMCID: PMC12070286 DOI: 10.1016/j.ecoenv.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Airborne fine particulate matter (PM2.5) exposure is closely associated with metabolic disturbance, in which brown adipose tissue (BAT) is one of the main contributing organs. However, knowledge of the phenotype and mechanism of PM2.5 exposure-impaired BAT is quite limited. In the study, male C57BL/6 mice at three different life phases (young, adult, and middle-aged) were simultaneously exposed to concentrated ambient PM2.5 or filtered air for 8 weeks using a whole-body inhalational exposure system. H&E staining and high-resolution respirometry were used to assess the size of adipocytes and mitochondrial function. Transcriptomics was performed to determine the differentially expressed genes in BAT. Quantitative RT-PCR, immunohistochemistry staining, and immunoblots were performed to verify the transcriptomics and explore the mechanism for BAT mitochondrial dysfunction. Firstly, PM2.5 exposure caused altered BAT morphology and mitochondrial dysfunction in middle-aged but not young or adult mice. Furthermore, PM2.5 exposure increased cellular senescence in BAT of middle-aged mice, accompanied by cell cycle arrest, impaired DNA replication, and inhibited AKT signaling pathway. Moreover, PM2.5 exposure disrupted apoptosis and autophagy homeostasis in BAT of middle-aged mice. Therefore, BAT in middle-aged mice was more vulnerable to PM2.5 exposure, and the cellular senescence-initiated apoptosis, autophagy, and mitochondrial dysfunction may be the mechanism of PM2.5 exposure-induced BAT impairment.
Collapse
Affiliation(s)
- Renjie Hu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Wenjun Fan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoqing Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Lu Zang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200433, China
| | - Sanjay Rajagopalan
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China.
| |
Collapse
|
19
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Yi JM, Choi YH, Hyun YM, Zhang K, Park CO, Hyun JW. Particulate matter stimulates the NADPH oxidase system via AhR-mediated epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123675. [PMID: 38447650 DOI: 10.1016/j.envpol.2024.123675] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Stimulation of human keratinocytes with particulate matter 2.5 (PM2.5) elicits complex signaling events, including a rise in the generation of reactive oxygen species (ROS). However, the mechanisms underlying PM2.5-induced ROS production remain unknown. Here, we show that PM2.5-induced ROS production in human keratinocytes is mediated via the NADPH oxidase (NOXs) system and the Ca2+ signaling pathway. PM2.5 treatment increased the expression of NOX1, NOX4, and a calcium-sensitive NOX, dual oxidase 1 (DUOX1), in human epidermal keratinocyte cell line. PM2.5 bound to aryl hydrocarbon receptor (AhR), and this complex bound to promoter regions of NOX1 and DUOX1, suggesting that AhR acted as a transcription factor of NOX1 and DUOX1. PM2.5 increased the transcription of DUOX1 via epigenetic modification. Moreover, a link between DNA demethylase and histone methyltransferase with the promoter regions of DUOX1 led to an elevation in the expression of DUOX1 mRNA. Interestingly, PM2.5 increased NOX4 expression and promoted the interaction of NOX4 and Ca2+ channels within the cytoplasmic membrane or endoplasmic reticulum, leading to Ca2+ release. The increase in intracellular Ca2+ concentration activated DUOX1, responsible for ROS production. Our findings provide evidence for a PM2.5-mediated ROS-generating system network, in which increased NOX1, NOX4, and DUOX1 expression serves as a ROS signal through AhR and Ca2+ activation.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea
| | | | | | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, 47392, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, 47340, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kelun Zhang
- Department of Dermatology, and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chang Ook Park
- Department of Dermatology, and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
20
|
Thomas SA, Yong HM, Rule AM, Gour N, Lajoie S. Air Pollution Drives Macrophage Senescence through a Phagolysosome-15-Lipoxygenase Pathway. Immunohorizons 2024; 8:307-316. [PMID: 38625119 PMCID: PMC11066713 DOI: 10.4049/immunohorizons.2300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Urban particulate matter (PM; uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer. PM exposure is also linked to extrapulmonary disorders such as heart and neurodegenerative diseases. Moreover, prolonged exposure to elevated PM levels can reduce overall life expectancy. Senescence is a dysfunctional cell state typically associated with age but can also be precipitated by environmental stressors. This study aimed to determine whether uPM could drive senescence in macrophages, an essential cell type involved in particulate phagocytosis-mediated clearance. Although it is known that uPM exposure impairs immune function, this deficit is multifaceted and incompletely understood, partly because of the use of particulates such as diesel exhaust particles as a surrogate for true uPM. uPM was collected from several locations in the United States, including Baltimore, Houston, and Phoenix. Bone marrow-derived macrophages were stimulated with uPM or reference particulates (e.g., diesel exhaust particles) to assess senescence-related parameters. We report that uPM-exposed bone marrow-derived macrophages adopt a senescent phenotype characterized by increased IL-1α secretion, senescence-associated β-galactosidase activity, and diminished proliferation. Exposure to allergens failed to elicit such a response, supporting a distinction between different types of environmental exposure. uPM-induced senescence was independent of key macrophage activation pathways, specifically inflammasome and scavenger receptors. However, inhibition of the phagolysosome pathway abrogated senescence markers, supporting this phenotype's attribution to uPM phagocytosis. These data suggest that uPM exposure leads to macrophage senescence, which may contribute to immunopathology.
Collapse
Affiliation(s)
- Sarah A. Thomas
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Ana M. Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Naina Gour
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Stephane Lajoie
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Xu S, Ma L, Wu T, Tian Y, Wu L. Assessment of cellular senescence potential of PM2.5 using 3D human lung fibroblast spheroids in vitro model. Toxicol Res (Camb) 2024; 13:tfae037. [PMID: 38500513 PMCID: PMC10944558 DOI: 10.1093/toxres/tfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Background Epidemiological studies demonstrate that particulate matter 2.5 (PM2.5) exposure closely related to chronic respiratory diseases. Cellular senescence plays an important role in many diseases. However, it is not fully clear whether PM2.5 exposure could induce cellular senescence in the human lung. In this study, we generated a three-dimensional (3D) spheroid model using isolated primary human lung fibroblasts (HLFs) to investigate the effects of PM2.5 on cellular senescence at the 3D level. Methods 3D spheroids were exposed to 25-100 μg/ml of PM2.5 in order to evaluate the impact on cellular senescence. SA-β-galactosidase activity, cell proliferation, and the expression of key genes and proteins were detected. Results Exposure of the HLF spheroids to PM2.5 yielded a more sensitive cytotoxicity than 2D HLF cell culture. Importantly, PM2.5 exposure induced the rapid progression of cellular senescence in 3D HLF spheroids, with a dramatically increased SA-β-Gal activity. In exploiting the mechanism underlying the effect of PM2.5 on senescence, we found a significant increase of DNA damage, upregulation of p21 protein levels, and suppression of cell proliferation in PM2.5-treated HLF spheroids. Moreover, PM2.5 exposure created a significant inflammatory response, which may be at least partially associated with the activation of TGF-β1/Smad3 axis and HMGB1 pathway. Conclusions Our results indicate that PM2.5 could induce DNA damage, inflammation, and cellular senescence in 3D HLF spheroids, which may provide a new evidence for PM2.5 toxicity based on a 3D model which has been shown to be more in vivo-like in their phenotype and physiology than 2D cultures.
Collapse
Affiliation(s)
- Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Jingkai District, Hefei, Anhui 230601, China
| | - Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Jingkai District, Hefei, Anhui 230601, China
| | - Tao Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, Anhui 230031, China
| | - Yushan Tian
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, 6 Cuizhu Street, New & High-tech Industry Development District, Zhengzhou, Henan 450001, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Jingkai District, Hefei, Anhui 230601, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, Anhui 230031, China
| |
Collapse
|
22
|
Park SS, Lee YK, Choi YW, Lim SB, Park SH, Kim HK, Shin JS, Kim YH, Lee DH, Kim JH, Park TJ. Cellular senescence is associated with the spatial evolution toward a higher metastatic phenotype in colorectal cancer. Cell Rep 2024; 43:113912. [PMID: 38446659 DOI: 10.1016/j.celrep.2024.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
In this study, we explore the dynamic process of colorectal cancer progression, emphasizing the evolution toward a more metastatic phenotype. The term "evolution" as used in this study specifically denotes the phenotypic transition toward a higher metastatic potency from well-formed glandular structures to collective invasion, ultimately resulting in the development of cancer cell buddings at the invasive front. Our findings highlight the spatial correlation of this evolution with tumor cell senescence, revealing distinct types of senescent tumor cells (types I and II) that play different roles in the overall cancer progression. Type I senescent tumor cells (p16INK4A+/CXCL12+/LAMC2-/MMP7-) are identified in the collective invasion region, whereas type II senescent tumor cells (p16INK4A+/CXCL12+/LAMC2+/MMP7+), representing the final evolved form, are prominently located in the partial-EMT region. Importantly, type II senescent tumor cells associate with local invasion and lymph node metastasis in colorectal cancer, potentially affecting patient prognosis.
Collapse
Affiliation(s)
- Soon Sang Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
| | - Young-Kyoung Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
| | - Yong Won Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea; Department of Hematology and Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
| | - So Hyun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea; Department of Pathology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Han Ki Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Department of Brain Science and Neurology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jun Sang Shin
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea
| | - Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea; Department of Pathology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Dong Hyun Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea; Department of Pathology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea.
| |
Collapse
|
23
|
Sarandy MM, Gonçalves RV, Valacchi G. Cutaneous Redox Senescence. Biomedicines 2024; 12:348. [PMID: 38397950 PMCID: PMC10886899 DOI: 10.3390/biomedicines12020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Our current understanding of skin cell senescence involves the role of environmental stressors (UV, O3, cigarette smoke, particulate matter, etc.), lifestyle (diet, exercise, etc.) as well as genetic factors (metabolic changes, hormonal, etc.). The common mechanism of action of these stressors is the disturbance of cellular redox balance characterized by increased free radicals and reactive oxygen species (ROS), and when these overload the intrinsic antioxidant defense system, it can lead to an oxidative stress cellular condition. The main redox mechanisms that activate cellular senescence in the skin involve (1) the oxidative damage of telomeres causing their shortening; (2) the oxidation of proteomes and DNA damage; (3) an a in lysosomal mass through the increased activity of resident enzymes such as senescence-associated β-galactosidase (SA-β-gal) as well as other proteins that are products of lysosomal activity; (4) and the increased expression of SASP, in particular pro-inflammatory cytokines transcriptionally regulated by NF-κB. However, the main targets of ROS on the skin are the proteome (oxi-proteome), followed by telomeres, nucleic acids (DNAs), lipids, proteins, and cytoplasmic organelles. As a result, cell cycle arrest pathways, lipid peroxidation, increased lysosomal content and dysfunctional mitochondria, and SASP synthesis occur. Furthermore, oxidative stress in skin cells increases the activity of p16INK4A and p53 as inhibitors of Rb and CDks, which are important for maintaining the cell cycle. p53 also promotes the inactivation of mTOR-mediated autophagic and apoptotic pathways, leading to senescence. However, these markers alone cannot establish the state of cellular senescence, and multiple analyses are encouraged for confirmation. An updated and more comprehensive approach to investigating skin senescence should include further assays of ox-inflammatory molecular pathways that can consolidate the understanding of cutaneous redox senescence.
Collapse
Affiliation(s)
- Mariáurea Matias Sarandy
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
24
|
Qin H, Liu C, Li C, Feng C, Bo Huang. Advances in bi-directional relationships for EZH2 and oxidative stress. Exp Cell Res 2024; 434:113876. [PMID: 38070859 DOI: 10.1016/j.yexcr.2023.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Over the past two decades, polycomb repressive complex 2(PRC2) has emerged as a vital repressive complex in overall cell fate determination. In mammals, enhancer of zeste homolog 2 (EHZ2), which is the core component of PRC2, has also been recognized as an important regulator of inflammatory, redox, tumorigenesis and damage repair signalling networks. To exert these effects, EZH2 must regulate target genes epigenetically or interact directly with other gene expression-regulating factors, such as LncRNAs and microRNAs. Our review provides a comprehensive summary of research advances, discoveries and trends regarding the regulatory mechanisms between EZH2 and reactive oxygen species (ROS). First, we outline novel findings about how EZH2 regulates the generation of ROS at the molecular level. Then, we summarize how oxidative stress controls EHZ2 alteration (upregulation, downregulation, or phosphorylation) via various molecules and signalling pathways. Finally, we address why EZH2 and oxidative stress have an undefined relationship and provide potential future research ideas.
Collapse
Affiliation(s)
- Heng Qin
- Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| |
Collapse
|
25
|
Zhang W, Lyu L, Xu Z, Ni J, Wang D, Lu J, Yao YF. Integrative DNA methylome and transcriptome analysis reveals DNA adenine methylation is involved in Salmonella enterica Typhimurium response to oxidative stress. Microbiol Spectr 2023; 11:e0247923. [PMID: 37882553 PMCID: PMC10715015 DOI: 10.1128/spectrum.02479-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) comes across a wide variety of stresses from entry to dissemination, such as reactive oxygen species. To adapt itself to oxidative stress, Salmonella must adopt various and complex strategies. In this study, we revealed that DNA adenine methyltransferase was essential for S. Typhimurium to survive in hydrogen peroxide. We then screened out oxidative stress-responsive genes that were potentially regulated by DNA methylation in S. Typhimurium. Our results show that the DNA methylome is highly stable throughout the genome, and the coupled change of m6A GATC with gene expression is identified in only a few positions, which suggests the complexity of the DNA methylation and gene expression regulation networks. The results may shed light on our understanding of m6A-mediated gene expression regulation in bacteria.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lyu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihiong Xu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
26
|
Bang E, Hwangbo H, Kim MY, Ji SY, Kim DH, Shim JH, Moon SK, Kim GY, Cheong J, Choi YH. Urban aerosol particulate matter promotes mitochondrial oxidative stress-induced cellular senescence in human retinal pigment epithelial ARPE-19 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104211. [PMID: 37423393 DOI: 10.1016/j.etap.2023.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Environmental exposure to urban particulate matter (UPM) is a serious health concern worldwide. Although several studies have linked UPM to ocular diseases, no study has reported effects of UPM exposure on senescence in retinal cells. Therefore, this study aimed to investigate the effects of UPM on senescence and regulatory signaling in human retinal pigment epithelial ARPE-19 cells. Our study demonstrated that UPM significantly promoted senescence, with increased senescence-associated β-galactosidase activity. Moreover, both mRNA and protein levels of senescence markers (p16 and p21) and the senescence-associated secretory phenotype, including IL-1β, matrix metalloproteinase-1, and -3 were upregulated. Notably, UPM increased mitochondrial reactive oxygen species-dependent nuclear factor-kappa B (NF-κB) activation during senescence. In contrast, use of NF-κB inhibitor Bay 11-7082 reduced the level of senescence markers. Taken together, our results provide the first in vitro preliminary evidence that UPM induces senescence by promoting mitochondrial oxidative stress-mediated NF-κB activation in ARPE-19 cells.
Collapse
Affiliation(s)
- EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| |
Collapse
|
27
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Yi JM, Hyun JW. Korean Red Ginseng Attenuates Particulate Matter-Induced Senescence of Skin Keratinocytes. Antioxidants (Basel) 2023; 12:1516. [PMID: 37627511 PMCID: PMC10451201 DOI: 10.3390/antiox12081516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Skin is a direct target of fine particulate matter (PM2.5), as it is constantly exposed. Herein, we investigate whether Korean red ginseng (KRG) can inhibit PM2.5-induced senescence in skin keratinocytes. PM2.5-treated human keratinocyte cell lines and normal human epidermal keratinocytes showed characteristics of cellular senescence, including flat and enlarged forms; however, KRG suppressed them in both cell types. Moreover, while cells exposed to PM2.5 showed a higher level of p16INK4A expression (a senescence inducer), KRG inhibited its expression. Epigenetically, KRG decreased the expression of the ten-eleven translocation (TET) enzyme, a DNA demethylase induced by PM2.5, and increased the expression of DNA methyltransferases suppressed by PM2.5, resulting in the decreased methylation of the p16INK4A promoter region. Additionally, KRG decreased the expression of mixed-lineage leukemia 1 (MLL1), a histone methyltransferase, and histone acetyltransferase 1 (HAT1) induced by PM2.5. Contrastingly, KRG increased the expression of the enhancer of zeste homolog 2, a histone methyltransferase, and histone deacetyltransferase 1 reduced by PM2.5. Furthermore, KRG decreased TET1, MLL1, and HAT1 binding to the p16INK4A promoter, corresponding with the decreased mRNA expression of p16INK4A. These results suggest that KRG exerts protection against the PM2.5-induced senescence of skin keratinocytes via the epigenetic regulation of p16INK4A.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; (K.A.K.); (M.J.P.); (P.D.S.M.F.); (H.M.U.L.H.)
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; (K.A.K.); (M.J.P.); (P.D.S.M.F.); (H.M.U.L.H.)
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea;
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; (K.A.K.); (M.J.P.); (P.D.S.M.F.); (H.M.U.L.H.)
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
28
|
Zhen AX, Piao MJ, Kang KA, Fernando PDSM, Herath HMUL, Cho SJ, Hyun JW. 3-Bromo-4,5-dihydroxybenzaldehyde Protects Keratinocytes from Particulate Matter 2.5-Induced Damages. Antioxidants (Basel) 2023; 12:1307. [PMID: 37372037 DOI: 10.3390/antiox12061307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence can be activated by several stimuli, including ultraviolet radiation and air pollutants. This study aimed to evaluate the protective effect of marine algae compound 3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) on particulate matter 2.5 (PM2.5)-induced skin cell damage in vitro and in vivo. The human HaCaT keratinocyte was pre-treated with 3-BDB and then with PM2.5. PM2.5-induced reactive oxygen species (ROS) generation, lipid peroxidation, mitochondrial dysfunction, DNA damage, cell cycle arrest, apoptotic protein expression, and cellular senescence were measured using confocal microscopy, flow cytometry, and Western blot. The present study exhibited PM2.5-generated ROS, DNA damage, inflammation, and senescence. However, 3-BDB ameliorated PM2.5-induced ROS generation, mitochondria dysfunction, and DNA damage. Furthermore, 3-BDB reversed the PM2.5-induced cell cycle arrest and apoptosis, reduced cellular inflammation, and mitigated cellular senescence in vitro and in vivo. Moreover, the mitogen-activated protein kinase signaling pathway and activator protein 1 activated by PM2.5 were inhibited by 3-BDB. Thus, 3-BDB suppressed skin damage induced by PM2.5.
Collapse
Affiliation(s)
- Ao-Xuan Zhen
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei-Jing Piao
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung-Ah Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Suk-Ju Cho
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Jin-Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
29
|
Abdalla MMI, Mohanraj J, Somanath SD. Adiponectin as a therapeutic target for diabetic foot ulcer. World J Diabetes 2023; 14:758-782. [PMID: 37383591 PMCID: PMC10294063 DOI: 10.4239/wjd.v14.i6.758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
The global burden of diabetic foot ulcers (DFUs) is a significant public health concern, affecting millions of people worldwide. These wounds cause considerable suffering and have a high economic cost. Therefore, there is a need for effective strategies to prevent and treat DFUs. One promising therapeutic approach is the use of adiponectin, a hormone primarily produced and secreted by adipose tissue. Adiponectin has demonstrated anti-inflammatory and anti-atherogenic properties, and researchers have suggested its potential therapeutic applications in the treatment of DFUs. Studies have indicated that adiponectin can inhibit the production of pro-inflammatory cytokines, increase the production of vascular endothelial growth factor, a key mediator of angiogenesis, and inhibit the activation of the intrinsic apoptotic pathway. Additionally, adiponectin has been found to possess antioxidant properties and impact glucose metabolism, the immune system, extracellular matrix remodeling, and nerve function. The objective of this review is to summarize the current state of research on the potential role of adiponectin in the treatment of DFUs and to identify areas where further research is needed in order to fully understand the effects of adiponectin on DFUs and to establish its safety and efficacy as a treatment for DFUs in the clinical setting. This will provide a deeper understanding of the underlying mechanisms of DFUs that can aid in the development of new and more effective treatment strategies.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Physiology, Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Jaiprakash Mohanraj
- Department of Biochemistry, Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sushela Devi Somanath
- Department of Microbiology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
30
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
31
|
Lee JY, Lee SM, Lee WK, Park JY, Kim DS. NAA10 Hypomethylation is associated with particulate matter exposure and worse prognosis for patients with non-small cell lung cancer. Anim Cells Syst (Seoul) 2023; 27:72-82. [PMID: 37033451 PMCID: PMC10075488 DOI: 10.1080/19768354.2023.2189934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Airborne particulate matter (PM) is a major health hazard worldwide and is a key factor in lung cancer, which remains the most common type of malignancy and the leading cause of cancer-related deaths. DNA methylation is a critical mechanism underlying the detrimental effects of PM, however, the molecular link between PM exposure and lung cancer remains to be elucidated. N-α-acetyltransferase 10 (NAA10) is involved in the cell cycle, migration, apoptosis, differentiation, and proliferation. In order to investigate the role of NAA10 in PM-induced pathogenesis processes leading to lung cancer, we determined the expression and methylation of NAA10 in normal human bronchial epithelial (NHBE) cells treated with PM10, PM10-polycyclic aromatic hydrocarbons (PAH), and PM2.5 and evaluated the prognostic value of the NAA10 methylation status in lung cancer patients. Exposure to all PM types significantly increased the expression of NAA10 mRNA and decreased the methylation of the NAA10 promoter in NHBE cells compared with the mock-treated control. NAA10 hypomethylation was observed in 9.3% (13/140) of lung cancer tissue samples and correlated with NAA10 transcriptional upregulation. Univariate and multivariate analyses revealed that NAA10 hypomethylation was associated with decreased survival of patients with lung cancer. Therefore, these results suggest that PM-induced hypomethylation of the NAA10 may play an important role in the pathogenesis of lung cancer and may be used as a potential prognostic biomarker for lung cancer progression. Further studies with large numbers of patients are warranted to confirm our findings.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Anatomy, BK21 Plus Biomedical Convergence Program, Daegu, Republic of Korea
| | - Su Man Lee
- Department of Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Won Kee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Sun Kim
- Department of Anatomy, BK21 Plus Biomedical Convergence Program, Daegu, Republic of Korea
| |
Collapse
|
32
|
Rubio K, Hernández-Cruz EY, Rogel-Ayala DG, Sarvari P, Isidoro C, Barreto G, Pedraza-Chaverri J. Nutriepigenomics in Environmental-Associated Oxidative Stress. Antioxidants (Basel) 2023; 12:771. [PMID: 36979019 PMCID: PMC10045733 DOI: 10.3390/antiox12030771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Complex molecular mechanisms define our responses to environmental stimuli. Beyond the DNA sequence itself, epigenetic machinery orchestrates changes in gene expression induced by diet, physical activity, stress and pollution, among others. Importantly, nutrition has a strong impact on epigenetic players and, consequently, sustains a promising role in the regulation of cellular responses such as oxidative stress. As oxidative stress is a natural physiological process where the presence of reactive oxygen-derived species and nitrogen-derived species overcomes the uptake strategy of antioxidant defenses, it plays an essential role in epigenetic changes induced by environmental pollutants and culminates in signaling the disruption of redox control. In this review, we present an update on epigenetic mechanisms induced by environmental factors that lead to oxidative stress and potentially to pathogenesis and disease progression in humans. In addition, we introduce the microenvironment factors (physical contacts, nutrients, extracellular vesicle-mediated communication) that influence the epigenetic regulation of cellular responses. Understanding the mechanisms by which nutrients influence the epigenome, and thus global transcription, is crucial for future early diagnostic and therapeutic efforts in the field of environmental medicine.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Estefani Y. Hernández-Cruz
- Postgraduate in Biological Sciences, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| | - Diana G. Rogel-Ayala
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via Paolo Solaroli 17, 28100 Novara, Italy
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
33
|
Jin S, Yoon SJ, Jung NY, Lee WS, Jeong J, Park YJ, Kim W, Oh DB, Seo J. Antioxidants prevent particulate matter-induced senescence of lung fibroblasts. Heliyon 2023; 9:e14179. [PMID: 36915477 PMCID: PMC10006845 DOI: 10.1016/j.heliyon.2023.e14179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Particulate matter (PM) contributes to human diseases, particularly lung disease; however, the molecular mechanism of its action is yet to be determined. Herein, we found that prolonged PM exposure induced the cellular senescence of normal lung fibroblasts via a DNA damage-mediated response. This PM-induced senescence (PM-IS) was only observed in lung fibroblasts but not in A549 lung adenocarcinoma cells. Mechanistic analysis revealed that reactive oxygen species (ROS) activate the DNA damage response signaling axis, increasing p53 phosphorylation, ultimately leading to cellular senescence via an increase in p21 expression without affecting the p16-pRB pathway. A549 cells, instead, were resistant to PM-IS due to the PM-induced ROS production suppression. Water-soluble antioxidants, such as vitamin C and N-Acetyl Cysteine, were found to alleviate PM-IS by suppressing ROS production, implying that antioxidants are a promising therapeutic intervention for PM-mediated lung pathogenesis.
Collapse
Affiliation(s)
- Sein Jin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Na-Young Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Young-Jun Park
- Environmental Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, 34113, South Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Doo-Byoung Oh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
34
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
35
|
Santibáñez-Andrade M, Quezada-Maldonado EM, Rivera-Pineda A, Chirino YI, García-Cuellar CM, Sánchez-Pérez Y. The Road to Malignant Cell Transformation after Particulate Matter Exposure: From Oxidative Stress to Genotoxicity. Int J Mol Sci 2023; 24:ijms24021782. [PMID: 36675297 PMCID: PMC9860989 DOI: 10.3390/ijms24021782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
In cells, oxidative stress is an imbalance between the production/accumulation of oxidants and the ability of the antioxidant system to detoxify these reactive products. Reactive oxygen species (ROS), cause multiple cellular damages through their interaction with biomolecules such as lipids, proteins, and DNA. Genotoxic damage caused by oxidative stress has become relevant since it can lead to mutation and play a central role in malignant transformation. The evidence describes chronic oxidative stress as an important factor implicated in all stages of the multistep carcinogenic process: initiation, promotion, and progression. In recent years, ambient air pollution by particulate matter (PM) has been cataloged as a cancer risk factor, increasing the incidence of different types of tumors. Epidemiological and toxicological evidence shows how PM-induced oxidative stress could mediate multiple events oriented to carcinogenesis, such as proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, and activation of invasion/metastasis pathways. In this review, we summarize the findings regarding the involvement of oxidative and genotoxic mechanisms generated by PM in malignant cell transformation. We also discuss the importance of new approaches oriented to studying the development of tumors associated with PM with more accuracy, pursuing the goal of weighing the impact of oxidative stress and genotoxicity as one of the main mechanisms associated with its carcinogenic potential.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Andrea Rivera-Pineda
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla CP 54090, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| |
Collapse
|
36
|
Wen L, Ren Q, Guo F, Du X, Yang H, Fu P, Ma L. Tubular aryl hydratocarbon receptor upregulates EZH2 to promote cellular senescence in cisplatin-induced acute kidney injury. Cell Death Dis 2023; 14:18. [PMID: 36635272 PMCID: PMC9837170 DOI: 10.1038/s41419-022-05492-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023]
Abstract
Acute kidney injury (AKI) is one of the serious clinical syndromes with high morbidity and mortality. Despite substantial progress in understanding the mechanism of AKI, no effective drug is available for treatment or prevention. In this study, we identified that a ligand-activated transcription factor aryl hydrocarbon receptor (AhR) was abnormally increased in the kidneys of cisplatin-induced AKI mice or tubular epithelial TCMK-1 cells. The AhR inhibition by BAY2416964 and tubular conditional deletion both alleviated cisplatin-induced kidney dysfunction and tubular injury. Notably, inhibition of AhR could improve cellular senescence of injured kidneys, which was indicated by senescence-associated β-galactosidase (SA-β-gal) activity, biomarker p53, p21, p16 expression, and secretory-associated secretory phenotype IL-1β, IL-6 and TNFα level. Mechanistically, the abnormal AhR expression was positively correlated with the increase of a methyltransferase EZH2, and AhR inhibition suppressed the EZH2 expression in cisplatin-injured kidneys. Furthermore, the result of ChIP assay displayed that EZH2 might indirectly interact with AhR promoter region by affecting H3K27me3. The direct recruitment between H3K27me3 and AhR promoter is higher in the kidneys of control than that of cisplatin-treated mice, suggesting EZH2 reversely influenced AhR expression through weakening H3K27me3 transcriptional inhibition on AhR promoter. The present study implicated that AhR and EZH2 have mutual regulation, which further accelerated tubular senescence in cisplatin-induced AKI. Notably, the crucial role of AhR is potential to become a promising target for AKI.
Collapse
Affiliation(s)
- Li Wen
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qian Ren
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fan Guo
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Du
- Department of Pharmacy, West China Hospital, Chengdu, 610041, China
| | - Hongliu Yang
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Lan J, Huang Q, Yang L, Li Y, Yang J, Jiang B, Zhao L, Xia Y, Yu X, Tao J. Effects of ambient air pollution on outpatient visits for psoriasis in Wuhan, China: a time-series analysis. Br J Dermatol 2022; 188:491-498. [PMID: 36641781 DOI: 10.1093/bjd/ljac124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 11/06/2022] [Accepted: 12/04/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Psoriasis can be provoked by both external and internal factors. The effects of environmental factors on psoriasis remain unclear. OBJECTIVES To investigate the effects of air pollution on outpatient visits for psoriasis. METHODS A distributed lag nonlinear model following quasi-Poisson regression was used to evaluate the lag effects of air pollutants on psoriasis outpatient visits, adjusting for potential confounders. Stratified analyses were performed to identify potential effect modifications by sex, age and season. RESULTS In total, 13 536 outpatient visits for psoriasis were recorded in Wuhan, China from 1 January 2015 to 31 December 2019. In the single-pollutant model, exposures to particulate matter (PM) smaller than 2.5 μm (PM2.5), PM smaller than 10 μm (PM10), NO2 and SO2 were found to be significantly associated with increased daily psoriasis outpatient visits. For the largest effects, a 10-μg m-3 increase in concentrations of PM2.5 (lag1), PM10 (lag1), NO2 (lag0) and SO2 (lag3) corresponded to 0.32% [95% confidence interval (CI) 0.01-0.63], 0.26% (95% CI 0.05-0.48), 0.98% (95% CI 0.01-1.96) and 2.73% (95% CI 1.01-4.47) increases in psoriasis outpatient visits, respectively. In the two-pollutant model, only NO2 showed significant and stable effects on the outpatient visits for psoriasis. CONCLUSIONS Ambient air pollution, especially NO2, appears to be significantly associated with an increased risk of outpatient visits for psoriasis in Wuhan, China. Air pollution control and exposure prevention could be effective measures to relieve the symptoms of psoriasis among these patients.
Collapse
Affiliation(s)
- Jiajia Lan
- Department of Dermatology and.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiuyi Huang
- Department of Dermatology and.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liu Yang
- Department of Dermatology and.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Li
- Department of Dermatology and.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Yang
- Department of Dermatology and.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Biling Jiang
- Department of Dermatology and.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Zhao
- Department of Dermatology and.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuting Xia
- Department of Dermatology and.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinyu Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan Tao
- Department of Dermatology and.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
38
|
Kim HB, Choi MG, Chung BY, Um JY, Kim JC, Park CW, Kim HO. Particulate matter 2.5 induces the skin barrier dysfunction and cutaneous inflammation via AhR- and T helper 17 cell-related genes in human skin tissue as identified via transcriptome analysis. Exp Dermatol 2022; 32:547-554. [PMID: 36471583 DOI: 10.1111/exd.14724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Particulate matter (PM2.5) is an environmental pollutant causing skin inflammatory diseases via epidermal barrier damage. However, the mechanism and related gene expression induced by PM2.5 remains unclear. Our aim was to determine the effect of PM2.5 on human skin tissue ex vivo, and elucidate the mechanism of T helper 17 cell-related inflammatory cytokine and skin barrier function. We verified the expression levels of gene in PM2.5-treated human skin tissue using Quantseq (3' mRNA-Seq), and Gene Ontology (GO) terms and protein-protein interaction (PPI) networks were performed. The PM2.5 treatment significantly enhanced the expression of Th 1, 2, 17 and 22 cell-related genes (cut-off value: │1.2 │ > fold change and p < 0.05). Most of all, Th17 cell-related genes are upregulated and those genes are associated with skin epidermal barrier function and Aryl hydrocarbon receptor (AhR), a xenobiotic receptor, pathway. In human keratinocyte cell lines, AhR-regulated genes (e.g. AhRR, CYP1A1, IL6 and IL36G), Th17 cell-related genes (e.g. IL17C) and epidermal barrier-related genes (e.g. SPRR2A and KRT71) are significantly increased after PM2.5. In the protein level, the secretion of IL-6 and IL-36G was increased in human skin tissue following PM2.5 treatment, and the expression of SPRR2A and KRT71 was significantly increased. PM2.5 exposure could ruin the skin epidermal barrier function via AhR- and Th17 cell-related inflammatory pathway.
Collapse
Affiliation(s)
- Han Bi Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Min Gyu Choi
- Department of Computer Science, Kwangwoon University, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Ji Young Um
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Jin Cheol Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Hye One Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| |
Collapse
|
39
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
40
|
Lee KY, Ho SC, Sun WL, Feng PH, Lin CW, Chen KY, Chuang HC, Tseng CH, Chen TT, Wu SM. Lnc-IL7R alleviates PM 2.5-mediated cellular senescence and apoptosis through EZH2 recruitment in chronic obstructive pulmonary disease. Cell Biol Toxicol 2022; 38:1097-1120. [PMID: 35303175 DOI: 10.1007/s10565-022-09709-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Long-term exposure to PM2.5 (particulate matter with an aerodynamic diameter of ≤ 2.5 μm) is associated with pulmonary injury and emphysema in patients with chronic obstructive pulmonary disease (COPD). We investigated mechanisms through which the long noncoding RNA lnc-IL7R contributes to cellular damage by inducing oxidative stress in COPD patients exposed to PM2.5. METHODS Associations of serum lnc-IL7R levels with lung function, emphysema, and previous PM2.5 exposure in COPD patients were analyzed. Reactive oxygen species and lnc-IL7R levels were measured in PM2.5-treated cells. The levels of lnc-IL7R and cellular senescence-associated genes, namely p16INK4a and p21CIP1/WAF1, were determined through lung tissue section staining. The effects of p16INK4a or p21CIP1/WAF1 regulation were examined by performing lnc-IL7R overexpression and knockdown assays. The functions of lnc-IL7R-mediated cell proliferation, cell cycle, senescence, colony formation, and apoptosis were examined in cells treated with PM2.5. Chromatin immunoprecipitation assays were conducted to investigate the epigenetic regulation of p21CIP1/WAF1. RESULTS Lnc-IL7R levels decreased in COPD patients and were negatively correlated with emphysema or PM2.5 exposure. Lnc-IL7R levels were upregulated in normal lung epithelial cells but not in COPD cells exposed to PM2.5. Lower lnc-IL7R expression in PM2.5-treated cells induced p16INK4a and p21CIP1/WAF1 expression by increasing oxidative stress. Higher lnc-IL7R expression protected against cellular senescence and apoptosis, whereas lower lnc-IL7R expression augmented injury in PM2.5-treated cells. Lnc-IL7R and the enhancer of zeste homolog 2 (EZH2) synergistically suppressed p21CIP1/WAF1 expression through epigenetic modulation. CONCLUSION Lnc-IL7R attenuates PM2.5-mediated p21CIP1/WAF1 expression through EZH2 recruitment, and its dysfunction may augment cellular injury in COPD.
Collapse
Affiliation(s)
- Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
41
|
Serafini MM, Maddalon A, Iulini M, Galbiati V. Air Pollution: Possible Interaction between the Immune and Nervous System? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316037. [PMID: 36498110 PMCID: PMC9738575 DOI: 10.3390/ijerph192316037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
Exposure to environmental pollutants is a serious and common public health concern associated with growing morbidity and mortality worldwide, as well as economic burden. In recent years, the toxic effects associated with air pollution have been intensively studied, with a particular focus on the lung and cardiovascular system, mainly associated with particulate matter exposure. However, epidemiological and mechanistic studies suggest that air pollution can also influence skin integrity and may have a significant adverse impact on the immune and nervous system. Air pollution exposure already starts in utero before birth, potentially causing delayed chronic diseases arising later in life. There are, indeed, time windows during the life of individuals who are more susceptible to air pollution exposure, which may result in more severe outcomes. In this review paper, we provide an overview of findings that have established the effects of air pollutants on the immune and nervous system, and speculate on the possible interaction between them, based on mechanistic data.
Collapse
|
42
|
Wang X, Wang Y, Huang D, Shi S, Pei C, Wu Y, Shen Z, Wang F, Wang Z. Astragaloside IV regulates the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to inhibit PM2.5-mediated lung injury in mice. Int Immunopharmacol 2022; 112:109186. [PMID: 36115280 DOI: 10.1016/j.intimp.2022.109186] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Exposure to PM2.5 will increase the risk of respiratory disease and increase the burden of social health care. Astragaloside Ⅳ (Ast-IV) is one of the main biologically active substances form Chinese herb Astragalus membranaceus, which owns various pharmacological effects. Ferroptosis is a novel form of cell death characterized by accumulation of iron-dependent lipid reactive oxygen species (ROS). It is not clear whether there are typical features of ferroptosis in PM2.5-induced lung injury. This study investigates whether PM2.5-induced lung injury in mice has a special form of ferroptosis and the specific protective mechanism of Ast-IV. SUBJECTS AND METHODS Forty-two male C57BL/6J mice were randomly divided into six groups (n = 7 per group): NS group (normal saline), Ast group (Ast-IV 100 mg/kg), PM2.5 group, Ast-L group (Ast-IV 50 mg/kg + PM2.5), Ast-H group (Ast-IV 100 mg/kg + PM2.5) and Era group (Ast-IV 100 mg/kg + erastin 20 mg/kg + PM2.5). Mice were pre-treated with Ast-IV intraperitoneally for three days. Then, PM2.5 (7.5 mg/kg) was given by non-invasive tracheal instillation to induce lung injury. The ferroptosis' agonist erastin was used to verify the mechanism of Ast-IV anti-ferroptosis. 12 h after PM2.5 stimulation, the mice were euthanized. Bronchoalveolar lavage fluid (BALF) and serum were collected for oxidative stress and cytokine determination. Lung tissues were collected for glutathione (GSH), tissue iron content, histology, immunofluorescence, transmission electron microscopy, and western blot analysis. RESULTS Ast-IV reduced the lung wet-dry ratio and the levels of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) in serum. Ast-IV could also improve the oxidative stress level in BALF, restore the GSH level in the lung tissue, and reduce the iron content in the lung tissue. Western blot outcomes revealed that Ast-IV regulated the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to protect PM2.5-mediated lung injury. CONCLUSION The protective effect of Ast-IV on PM2.5-induced lung injury in mice might be related to the inhibition of ferroptosis in lung tissue. Anti-ferroptosis might be a new mechanism of Ast-IV on PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Xiaoming Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Yongcan Wu
- College of Traditional Chinese Medicine, CQMU, No. 1, Medical School Road, Yuzhong District, Chongqing 400016, People's Republic of China.
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
43
|
Shi D, Shan Y, Zhu X, Wang H, Wu S, Wu Z, Bao W. Histone Methyltransferase MLL1 Mediates Oxidative Stress and Apoptosis upon Deoxynivalenol Exposure in the Intestinal Porcine Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11102006. [PMID: 36290729 PMCID: PMC9598511 DOI: 10.3390/antiox11102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
Deoxynivalenol (DON), as a secondary metabolite of fungi, is continually detected in livestock feed and has a high risk to animals and humans. Moreover, pigs are very sensitive to DON. Recently, the role of histone modification has drawn people’s attention; however, few studies have elucidated how histone modification participates in the cytotoxicity or genotoxicity induced by mycotoxins. In this study, we used intestinal porcine epithelial cells (IPEC-J2 cells) as a model to DON exposure in vitro. Mixed lineage leukemia 1 (MLL1) regulates gene expression by exerting the role of methyltransferase. Our studies demonstrated that H3K4me3 enrichment was enhanced and MLL1 was highly upregulated upon 1 μg/mL DON exposure in IPEC-J2 cells. We found that the silencing of MLL1 resulted in increasing the apoptosis rate, arresting the cell cycle, and activating the mitogen-activated protein kinases (MAPKs) pathway. An RNA-sequencing analysis proved that differentially expressed genes (DEGs) were enriched in the cell cycle, apoptosis, and tumor necrosis factor (TNF) signaling pathway between the knockdown of MLL1 and negative control groups, which were associated with cytotoxicity induced by DON. In summary, these current results might provide new insight into how MLL1 regulates cytotoxic effects induced by DON via an epigenetic mechanism.
Collapse
Affiliation(s)
- Dongfeng Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yiyi Shan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.W.); (W.B.)
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.W.); (W.B.)
| |
Collapse
|
44
|
Thompson EL, Pitcher LE, Niedernhofer LJ, Robbins PD. Targeting Cellular Senescence with Senotherapeutics: Development of New Approaches for Skin Care. Plast Reconstr Surg 2022; 150:12S-19S. [PMID: 36170431 PMCID: PMC9529240 DOI: 10.1097/prs.0000000000009668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SUMMARY Aging of the skin is evidenced by increased wrinkles, age spots, dryness, and thinning with decreased elasticity. Extrinsic and intrinsic factors including UV, pollution, and inflammation lead to an increase in senescent cells (SnCs) in skin with age that contribute to these observed pathological changes. Cellular senescence is induced by multiple types of damage and stress and is characterized by the irreversible exit from the cell cycle with upregulation of cell cycle-dependent kinase inhibitors p16INK4a and p21CIP1. Most SnCs also developed an inflammatory senescence-associated secretory phenotype (SASP) that drives further pathology through paracrine effects on neighboring cells and endocrine effects on cells at a distance. Recently, compounds able to kill senescent cells specifically, termed senolytics, or suppress the SASP, termed senomorphics, have been developed that have the potential to improve skin aging as well as systemic aging in general. Here, we provide a summary of the evidence for a key role in cellular senescence in driving skin aging. In addition, the evidence for the potential application of senotherapeutics for skin treatments is presented. Overall, topical, and possibly oral senotherapeutic treatments have tremendous potential to eventually become a standard of care for skin aging and related skin disorders.
Collapse
Affiliation(s)
- Elizabeth L Thompson
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Louise E Pitcher
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Laura J Niedernhofer
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Paul D Robbins
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| |
Collapse
|
45
|
Wu T, Xu S, Chen B, Bao L, Ma J, Han W, Xu A, Yu KN, Wu L, Chen S. Ambient PM2.5 exposure causes cellular senescence via DNA damage, micronuclei formation, and cGAS activation. Nanotoxicology 2022; 16:757-775. [PMID: 36403163 DOI: 10.1080/17435390.2022.2147460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ambient PM2.5 is one of the environmental risk factors and was correlated with senescence-related diseases based on the epidemiologic investigation. However, little is known about senescence induced by PM2.5 as well as the underlying mechanisms. In this study, we demonstrated that PM2.5 exposure aggravated cellular senescence in vivo and in vitro, and disrupted micronuclei (MN) played a vital role in this process. Our results suggested that the nuclear envelope (NE) of PM2.5-induced MN was ruptured. Subsequently, cGAS was found to localize to approximately 80% of the disrupted MN but few for intact MN. Upon examination of cGAMP and SA-β-Gal, the cGAS-STING pathway was found activated and related to cellular senescence induced by PM2.5. Taken together, we reported a novel finding that PM2.5 exposure causes cellular senescence via DNA damage, MN formation, and cGAS activation. These results revealed the potential toxicity of PM2.5 and its related mechanisms in cellular senescence.
Collapse
Affiliation(s)
- Tao Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Biao Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lingzhi Bao
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Jie Ma
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Wei Han
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - An Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China.,State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Lijun Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shaopeng Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,School of Public Health, Wannan Medical College, Wuhu, China
| |
Collapse
|
46
|
Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells 2022; 11:cells11142220. [PMID: 35883663 PMCID: PMC9320051 DOI: 10.3390/cells11142220] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
The human skin is exposed daily to different environmental factors such as air pollutants and ultraviolet (UV) light. Air pollution is considered a harmful environmental risk to human skin and is known to promote aging and inflammation of this tissue, leading to the onset of skin disorders and to the appearance of wrinkles and pigmentation issues. Besides this, components of air pollution can interact synergistically with ultraviolet light and increase the impact of damage to the skin. However, little is known about the modulation of air pollution on cellular senescence in skin cells and how this can contribute to skin aging. In this review, we are summarizing the current state of knowledge about air pollution components, their involvement in the processes of cellular senescence and skin aging, as well as the current therapeutic and cosmetic interventions proposed to prevent or mitigate the effects of air pollution in the skin.
Collapse
|
47
|
Hesperidin Protects Human HaCaT Keratinocytes from Particulate Matter 2.5-Induced Apoptosis via the Inhibition of Oxidative Stress and Autophagy. Antioxidants (Basel) 2022; 11:antiox11071363. [PMID: 35883854 PMCID: PMC9312010 DOI: 10.3390/antiox11071363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous epidemiological studies have reported that particulate matter 2.5 (PM2.5) causes skin aging and skin inflammation and impairs skin homeostasis. Hesperidin, a bioflavonoid that is abundant in citrus species, reportedly has anti-inflammatory properties. In this study, we evaluated the cytoprotective effect of hesperidin against PM2.5-mediated damage in a human skin cell line (HaCaT). Hesperidin reduced PM2.5-induced intracellular reactive oxygen species (ROS) generation and oxidative cellular/organelle damage. PM2.5 increased the proportion of acridine orange-positive cells, levels of autophagy-related proteins, beclin-1 and microtubule-associated protein light chain 3, and apoptosis-related proteins, B-cell lymphoma-2-associated X protein, cleaved caspase-3, and cleaved caspase-9. However, hesperidin ameliorated PM2.5-induced autophagy and apoptosis. PM2.5 promoted cellular apoptosis via mitogen-activated protein kinase (MAPK) activation by promoting the phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. The MAPK inhibitors U0126, SP600125, and SB203580 along with hesperidin exerted a protective effect against PM2.5-induced cellular apoptosis. Furthermore, hesperidin restored PM2.5-mediated reduction in cell viability via Akt activation; this was also confirmed using LY294002 (a phosphoinositide 3-kinase inhibitor). Overall, hesperidin shows therapeutic potential against PM2.5-induced skin damage by mitigating excessive ROS accumulation, autophagy, and apoptosis.
Collapse
|
48
|
Taylor E, Kim Y, Zhang K, Chau L, Nguyen BC, Rayalam S, Wang X. Antiaging Mechanism of Natural Compounds: Effects on Autophagy and Oxidative Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144396. [PMID: 35889266 PMCID: PMC9322024 DOI: 10.3390/molecules27144396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/22/2022]
Abstract
Aging is a natural biological process that manifests as the progressive loss of function in cells, tissues, and organs. Because mechanisms that are meant to promote cellular longevity tend to decrease in effectiveness with age, it is no surprise that aging presents as a major risk factor for many diseases such as cardiovascular disease, neurodegenerative disorders, cancer, and diabetes. Oxidative stress, an imbalance between the intracellular antioxidant and overproduction of reactive oxygen species, is known to promote the aging process. Autophagy, a major pathway for protein turnover, is considered as one of the hallmarks of aging. Given the progressive physiologic degeneration and increased risk for disease that accompanies aging, many studies have attempted to discover new compounds that may aid in the reversal of the aging process. Here, we summarize the antiaging mechanism of natural or naturally derived synthetic compounds involving oxidative stress and autophagy. These compounds include: 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) derivatives (synthetic triterpenoids derived from naturally occurring oleanolic acid), caffeic acid phenethyl ester (CAPE, the active ingredient in honey bee propolis), xanthohumol (a prenylated flavonoid identified in the hops plant), guggulsterone (a plant steroid found in the resin of the guggul plant), resveratrol (a natural phenol abundantly found in grape), and sulforaphane (a sulfur-containing compound found in cruciferous vegetables).
Collapse
Affiliation(s)
- Elizabeth Taylor
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA;
| | - Yujin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Kaleb Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Lenne Chau
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Bao Chieu Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Xinyu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
- Correspondence:
| |
Collapse
|
49
|
Crochemore C, Cimmaruta C, Fernández-Molina C, Ricchetti M. Reactive Species in Progeroid Syndromes and Aging-Related Processes. Antioxid Redox Signal 2022; 37:208-228. [PMID: 34428933 DOI: 10.1089/ars.2020.8242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Significance: Reactive species have been classically considered causative of age-related degenerative processes, but the scenario appears considerably more complex and to some extent counterintuitive than originally anticipated. The impact of reactive species in precocious aging syndromes is revealing new clues to understand and perhaps challenge the resulting degenerative processes. Recent Advances: Our understanding of reactive species has considerably evolved, including their hormetic effect (beneficial at a certain level, harmful beyond this level), the occurrence of diverse hormetic peaks in different cell types and organisms, and the extended type of reactive species that are relevant in biological processes. Our understanding of the impact of reactive species has also expanded from the dichotomic damaging/signaling role to modulation of gene expression. Critical Issues: These new concepts are affecting the study of aging and diseases where aging is greatly accelerated. We discuss how notions arising from the study of the underlying mechanisms of a progeroid disease, Cockayne syndrome, represent a paradigm shift that may shed a new light in understanding the role of reactive species in age-related degenerative processes. Future Issues: Future investigations urge to explore established and emerging notions to elucidate the multiple contributions of reactive species in degenerative processes linked to pathophysiological aging and their possible amelioration. Antioxid. Redox Signal. 37, 208-228.
Collapse
Affiliation(s)
- Clément Crochemore
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sup'Biotech, Villejuif, France
| | - Chiara Cimmaruta
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| | - Cristina Fernández-Molina
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, Paris, France
| | - Miria Ricchetti
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
50
|
Lee E, Ahn H, Park S, Kim G, Kim H, Noh MG, Kim Y, Yeon JS, Park H. Staphylococcus epidermidis WF2R11 Suppresses PM 2.5-Mediated Activation of the Aryl Hydrocarbon Receptor in HaCaT Keratinocytes. Probiotics Antimicrob Proteins 2022; 14:915-933. [PMID: 35727505 PMCID: PMC9474527 DOI: 10.1007/s12602-022-09922-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
The skin supports a diverse microbiome whose imbalance is related to skin inflammation and diseases. Exposure to fine particulate matter (PM2.5), a major air pollutant, can adversely affect the skin microbiota equilibrium. In this study, the effect and mechanism of PM2.5 exposure in HaCaT keratinocytes were investigated. PM2.5 stimulated the aryl hydrocarbon receptor (AhR) to produce reactive oxygen species (ROS) in HaCaT cells, leading to mitochondrial dysfunction and intrinsic mitochondrial apoptosis. We observed that the culture medium derived from a particular skin microbe, Staphylococcus epidermidis WF2R11, remarkably reduced oxidative stress in HaCaT cells caused by PM2.5-mediated activation of the AhR pathway. Staphylococcus epidermidis WF2R11 also exhibited inhibition of ROS-induced inflammatory cytokine secretion. Herein, we demonstrated that S. epidermidis WF2R11 could act as a suppressor of AhRs, affect cell proliferation, and inhibit apoptosis. Our results highlight the importance of the clinical application of skin microbiome interventions in the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Eulgi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyeok Ahn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shinyoung Park
- Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Myung-Giun Noh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae-Sung Yeon
- Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea. .,Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea.
| |
Collapse
|