1
|
Bean DJ, Liang YM, Avila F, He X, Asundi A, Sagar M. Endemic coronavirus infection is associated with SARS-CoV-2 Fc receptor-binding antibodies. J Virol 2025:e0055025. [PMID: 40387363 DOI: 10.1128/jvi.00550-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 05/20/2025] Open
Abstract
Recent documented infection with an endemic coronavirus (eCoV) is associated with less severe coronavirus disease 2019 (COVID-19), yet the immune mechanism behind this protection has not been fully explored. We measured both antibody and T-cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in SARS-CoV-2-naïve individuals, classified into two groups: those with or without presumed recent eCoV infections. There was no difference in neutralizing antibodies and T-cell responses against SARS-CoV-2 antigens between the two groups. SARS-CoV-2-naïve individuals with recent presumed eCoV infection, however, had higher and significantly correlated levels of Fc receptor (FcR)-binding antibodies against eCoV spikes (S) and SARS-CoV-2 S2. Recent eCoV infection boosts cross-reactive antibodies that can mediate Fc effector functions, and this may play a role in the observed heterotypic immune protection against severe COVID-19. IMPORTANCE With the recent emergence of SARS-CoV-2 and other pathogenic coronaviruses, it is important to understand how the immune system may protect against disease from future coronavirus outbreaks. We investigated the adaptive immune responses elicited from a "common cold" eCoV and measured the cross-reactivity against SARS-CoV-2 in individuals classified as having or not having a recent eCoV infection. Although both groups had similar cross-reactive T-cell and neutralizing antibody responses, individuals with a recent eCoV infection had higher antibody levels capable of Fc receptor binding. Antibodies with enhanced Fc receptor binding could mediate the killing of virally infected cells through mechanisms such as antibody-dependent cellular cytotoxicity, which may reduce the severity of COVID-19. Antibodies capable of mediating Fc effector functions may be critical for therapies and vaccines against future pathogenic coronavirus outbreaks.
Collapse
Affiliation(s)
- David J Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Frida Avila
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Xianbao He
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Archana Asundi
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Sun Y, Huang S, Li F, Huang S, Li P, Zhao Q, Wang T, Bao H, Fu Y, Sun P, Bai X, Yuan H, Ma X, Zhao Z, Zhang J, Wang J, Li D, Zhang Q, Cao Y, Li K, Lu Z, Fan H. Porcine antibodies reveal novel non-neutralizing universal epitopes on FMDV and their overlaps with neutralization sites. Vet Microbiol 2025; 303:110440. [PMID: 40037011 DOI: 10.1016/j.vetmic.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Foot-and-mouth disease virus (FMDV) is highly infectious and lacks cross-protection among serotypes, with antibodies playing a key role in antiviral immunity. To map conserved epitopes on the FMDV surface that exhibit cross-serotype reactivity, we constructed a pig-specific B-cell receptor (BCR) library through single B-cell sorting and high-throughput sequencing. This led to the identification of 16 broadly reactive, non-neutralizing monoclonal antibodies (mAbs), with 10 targeting VP2 (pOTB-1, pOTB-10, pOTB-13, pOTB-33, pOTB-37, pONY-14, pONY-17, pONY-23, pONY-30, pONY-60) and 6 targeting VP3 (pOTB-6, pOTB-11, pOTB-22, pOTB-23, pONY-3, pONY-59). Among these, a novel free linear epitope was identified at the C-terminus of VP2, recognized by pOTB-1, with the minimal recognition motif "KE." Key residues, T53 and W101, within the complementarity-determining region (CDR) of the pOTB-1 heavy chain, interact with the carboxyl group of the C-terminal glutamate through hydrogen bonding, contributing to the free-form nature of the epitope. Competitive enzyme-linked immunosorbent assays (cELISA) showed that most non-neutralizing antibodies (nNAbs) interfered with the binding of neutralizing antibodies B82 (site 2) and C4 (site 4), confirming the overlap between non-neutralizing and neutralizing epitopes. It has been confirmed that nNAbs mediate antiviral activity in vivo through various mechanisms, such as the formation of immune complexes. These findings reveal new epitopes on VP2 and VP3 and their spatial overlap with neutralizing sites, enhancing our understanding of FMDV immunogenicity and providing novel targets for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Ying Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Shenglin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fengjuan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Shulun Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Qiongqiong Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| |
Collapse
|
3
|
Liu J, Wu Y, Gao GF. A Structural Voyage Toward the Landscape of Humoral and Cellular Immune Escapes of SARS-CoV-2. Immunol Rev 2025; 330:e70000. [PMID: 39907512 DOI: 10.1111/imr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
The genome-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the past nearly 5 years since its emergence has refreshed our understanding of virus evolution, especially on convergent co-evolution with the host. SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations that affect the functional properties of the virus by altering its infectivity, virulence, transmissibility, and interactions with host immunity. This poses a huge challenge to global prevention and control measures based on drug treatment and vaccine application. As one of the key evasion strategies in response to the immune profile of the human population, there are overwhelming amounts of evidence for the reduced antibody neutralization of SARS-CoV-2 variants. Additionally, data also suggest that the levels of CD4+ and CD8+ T-cell responses against variants or sub-variants decrease in the populations, although non-negligible cross-T-cell responses are maintained. Herein, from the perspectives of structural immunology, we outline the characteristics and mechanisms of the T cell and antibody responses to SARS-CoV and its variants/sub-variants. The molecular bases for the impact of the immune escaping variants on the interaction of the epitopes with the key receptors in adaptive immunity, that is, major histocompatibility complex (MHC), T-cell receptor (TCR), and antibody are summarized and discussed, the knowledge of which will widen our understanding of this pandemic-threatening virus and assist the preparedness for Pathogen X in the future.
Collapse
Affiliation(s)
- Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Cao J, Gan M, Zhang Z, Lin X, Ouyang Q, Fu H, Xu X, Wang Z, Li X, Wang Y, Cai H, Lei Q, Liu L, Wang H, Fan X. A Hidden Guardian: The Stability and Spectrum of Antibody-Dependent Cell-Mediated Cytotoxicity in COVID-19 Response in Chinese Adults. Vaccines (Basel) 2025; 13:262. [PMID: 40266151 PMCID: PMC11945335 DOI: 10.3390/vaccines13030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVES Identifying immune-protective biomarkers is crucial for the effective management and mitigation of current and future COVID-19 outbreaks, particularly in preventing or counteracting the immune evasion exhibited by the Omicron variants. The emergence of SARS-CoV-2 variants, especially those within the Omicron lineage, has highlighted their capacity to evade neutralizing antibodies, emphasizing the need to understand the role of antibody-dependent cell-mediated cytotoxicity (ADCC) in combating these infections. METHODS This study, conducted in Qichun City, Hubei province, from December 2021 to March 2023, involved 50 healthy Chinese adults who had received two doses of inactivated vaccines and had subsequently experienced mild infections with the Omicron BA.5 variant. Blood samples from these 50 healthy Chinese adults were collected at six distinct time points: at baseline and at the 1st, 3rd, 6th, and 9th months following the third dose of the inactivated vaccine, as well as 3 months post-breakthrough infection. Their sera were analyzed to assess ADCC and neutralization effects. RESULTS The results indicated that the antibodies elicited by the inactivated SARS-CoV-2 vaccine targeted the spike protein, exhibiting both pre-existing neutralizing and ADCC activities against Omicron variants BA.5 and XBB.1.5. Notably, the ADCC activity demonstrated greater stability compared to that of the neutralizing effects, persisting for at least 15 months post-vaccination, and could be augmented by additional vaccine doses and breakthrough infections. The ADCC effect associated with hybrid immunity effectively targets a spectrum of prospective Omicron variants, including BA.2.86, CH.1.1, EG.5.1, and JN.1. CONCLUSIONS In light of its stability and broad-spectrum efficacy, we recommend the use of the ADCC effect as a biomarker for assessing protective immunity and guiding the development of vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhihao Zhang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Qi Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Xinyue Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhen Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xinlian Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Yaxin Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Qing Lei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Li Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| |
Collapse
|
5
|
Yin D, Zhong Y, Ling S, Lu S, Wang X, Jiang Z, Wang J, Dai Y, Tian X, Huang Q, Wang X, Chen J, Li Z, Li Y, Xu Z, Jiang H, Wu Y, Shi Y, Wang Q, Xu J, Hong W, Xue H, Yang H, Zhang Y, Da L, Han ZG, Tao SC, Dong R, Ying T, Hong J, Cai Y. Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers. Nat Biomed Eng 2025; 9:185-200. [PMID: 38714892 DOI: 10.1038/s41551-024-01208-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/31/2024] [Indexed: 02/21/2025]
Abstract
Messenger RNA vaccines lack specificity for dendritic cells (DCs)-the most effective cells at antigen presentation. Here we report the design and performance of a DC-targeting virus-like particle pseudotyped with an engineered Sindbis-virus glycoprotein that recognizes a surface protein on DCs, and packaging mRNA encoding for the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or for the glycoproteins B and D of herpes simplex virus 1. Injection of the DC-targeting SARS-CoV-2 mRNA vaccine in the footpad of mice led to substantially higher and durable antigen-specific immunoglobulin-G titres and cellular immune responses than untargeted virus-like particles and lipid-nanoparticle formulations. The vaccines also protected the mice from infection with SARS-CoV-2 or with herpes simplex virus 1. Virus-like particles with preferential uptake by DCs may facilitate the development of potent prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Di Yin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiye Zhong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sikai Ling
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- BDGENE Therapeutics, Shanghai, China
| | - Sicong Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Zhuofan Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Dai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Tian
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qijing Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziying Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hewei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Wu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Quanjun Wang
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Medical Countermeasures and Toxicology, Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Jianjiang Xu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Xue
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijiao Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
7
|
Halfmann PJ, Patel RS, Loeffler K, Yasuhara A, Van De Velde LA, Yang JE, Chervin J, Troxell C, Huang M, Zheng N, Wright ER, Thomas PG, Wilson PC, Kawaoka Y, Kane RS. Multivalent S2 subunit vaccines provide broad protection against Clade 1 sarbecoviruses in female mice. Nat Commun 2025; 16:462. [PMID: 39774966 PMCID: PMC11706982 DOI: 10.1038/s41467-025-55824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit. This vaccine alone, or as a cocktail with a SARS-CoV-2 S2 subunit vaccine, protects female transgenic K18-hACE2 mice from challenges with Omicron subvariant XBB as well as several sarbecoviruses identified as having pandemic potential including the bat sarbecovirus WIV1, BANAL-236, and a pangolin sarbecovirus. Challenge studies in female Fc-γ receptor knockout mice reveal that antibody-based cellular effector mechanisms play a role in protection elicited by these vaccines. These results demonstrate that our S2-based vaccines provide broad protection against clade 1 sarbecoviruses and offer insight into the mechanistic basis for protection.
Collapse
Affiliation(s)
- Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Raj S Patel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lee-Ann Van De Velde
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Jordan Chervin
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Chloe Troxell
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Min Huang
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Naiying Zheng
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan.
| | - Ravi S Kane
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Azuly H, Shafat T, Grupel D, Porges T, Abuhasira R, Belkin A, Deri O, Oster Y, Zahran S, Horwitz E, Horowitz NA, Khatib H, Batista MV, Cortez AC, Brosh-Nissimov T, Segman Y, Ishay L, Cohen R, Atamna A, Spallone A, Chemaly RF, Ramos JC, Chowers M, Rogozin E, Oren NC, Keske Ş, Barchad OW, Nesher L. Preventing Severe COVID-19 with Tixagevimab-Cilgavimab in Hematological Patients Treated with Anti-CD20 Monoclonal Antibodies: An International Multicenter Study. Infect Dis Ther 2025; 14:167-180. [PMID: 39652286 PMCID: PMC11782782 DOI: 10.1007/s40121-024-01089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/20/2024] [Indexed: 01/31/2025] Open
Abstract
INTRODUCTION Despite the declining public health emergency status, COVID-19 still poses significant risks, especially for immunocompromised individuals. We aimed to evaluate the effectiveness of tixagevimab-cilgavimab (T-C) prophylaxis in preventing severe COVID-19 in patients with hematologic malignancies (HM) treated with anti-CD20 therapy during the early Omicron variant phase of the pandemic. METHODS The European Society of Clinical Microbiology and Infectious Diseases Study Group for Respiratory Viruses (ESGREV) conducted a multicenter retrospective cohort study involving 15 centers from 5 countries. The study included 749 patients with HM treated with anti-CD20 between February 15 and June 30, 2022, comparing 215 who received T-C prophylaxis to 534 who did not. RESULTS The study revealed a significant reduction in the risk of COVID-19 among patients who received T-C prophylaxis compared to those who did not (11.2% vs 23.4%, p < 0.001), with hazard ratio (HR) of 0.40 (95% CI 0.26-0.63), adjusted for age, sex, vaccination status, baseline HM malignancy and type of anti-CD-20. We also demonstrated a reduction for severe-critical diseases within all study populations, 1.4% vs 5.2%, p = 0.017, HR 0.26 (95% CI 0.08-0.84). CONCLUSION T-C prophylaxis effectively prevented COVID-19 and severe-critical COVID-19 in patients with HM treated with anti-CD20 monoclonal antibodies during the early Omicron variant phase of the pandemic. Even though T-C is ineffective against current variants, these findings highlight the importance of additional protective measures and the continued development of monoclonal antibodies to protect immunocompromised individuals to mitigate the impact of COVID-19 and other respiratory viral diseases.
Collapse
Affiliation(s)
- Hovav Azuly
- Infectious Diseases Institute, Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tali Shafat
- Infectious Diseases Institute, Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Clinical Research Center, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Grupel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Tzvika Porges
- Hematology Department, Soroka University Medical Center, Beer-Sheva, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Ran Abuhasira
- Clinical Research Center, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ana Belkin
- Internal Medicine D and Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Israel
| | - Ofir Deri
- Internal Medicine T, Sheba Medical Center, Ramat-Gan, Israel
| | - Yonatan Oster
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Shadi Zahran
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Ehud Horwitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Netanel A Horowitz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Hazim Khatib
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | | | - Anita Cassoli Cortez
- Department of Hematology and Cell Therapy, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Tal Brosh-Nissimov
- Infectious Diseases Unit, Samson Assuta Ashdod University Hospital, Ashdod, Israel
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yafit Segman
- Hematology Institute, Samson Assuta Ashdod University Hospital, Ashdod, Israel
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Linor Ishay
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel
- Infectious Diseases Unit Hillel-Yaffe Medical Center, Hadera, Israel
| | - Regev Cohen
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel
- Infectious Diseases Unit Hillel-Yaffe Medical Center, Hadera, Israel
| | - Alaa Atamna
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Amy Spallone
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan Carlos Ramos
- Infectious Disease Unit, Internal Medicine Service, CIBERINFEC. Hospital Universitario La Paz, Madrid, Spain
| | - Michal Chowers
- Meir Medical Centre, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Evgeny Rogozin
- Infectious Diseases Unit, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Noga Carmi Oren
- Infectious Diseases Unit, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Şiran Keske
- Department of Infectious Diseases, VKV American Hospital, Koç University İşbank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | | | - Lior Nesher
- Infectious Diseases Institute, Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
9
|
Zhu X, Luo Z, Leonard RA, Hamele CE, Spreng RL, Heaton NS. Administration of antigenically distinct influenza viral particle combinations as an influenza vaccine strategy. PLoS Pathog 2025; 21:e1012878. [PMID: 39841684 PMCID: PMC11753672 DOI: 10.1371/journal.ppat.1012878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
One approach for developing a more universal influenza vaccine is to elicit strong immune responses against canonically immunosubdominant epitopes in the surface exposed viral glycoproteins. While standard vaccines typically induce responses directed primarily against mutable epitopes in the hemagglutinin (HA) head domain, there are generally limited or variable responses directed against epitopes in the relatively more conserved HA stalk domain and neuraminidase (NA) proteins. Here we describe a vaccine approach that utilizes a combination of wildtype (WT) influenza virus particles along with virus particles engineered to display a trimerized HA stalk in place of the full-length HA protein to elicit both responses simultaneously. After initially generating the "headless" HA-containing viral particles in the A/Hawaii/70/2019 (HI/19) genetic background and demonstrating the ability to elicit protective immune responses directed against the HA-stalk and NA, we co-formulated those virions with unmodified WT viral particles. The combination vaccine elicited "hybrid" and protective responses directed against the HA-head, HA-stalk, and NA proteins in both naïve and pre-immune mice and ferrets. Collectively, our results highlight a potentially generalizable method combining viral particles with differential antigenic compositions to elicit broader immune responses that may lead to more durable protection from influenza disease post-vaccination.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Zhaochen Luo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rebecca A. Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cait E. Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
10
|
Wells TJ, Esposito T, Henderson IR, Labzin LI. Mechanisms of antibody-dependent enhancement of infectious disease. Nat Rev Immunol 2025; 25:6-21. [PMID: 39122820 DOI: 10.1038/s41577-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases.
Collapse
Affiliation(s)
- Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tyron Esposito
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
Liu F, Yu Y, Tong J, Wu J, Lu Q, Liu R, Cao L, Ma X, Zhu J, Wang T, Liu S, Liang Z, Wu X, Li T, Zhao C, Nie J, Wang Y, Huang W, Gao W. Omicron JN.1 escape neutralization by omicron subvariants infection in elderly individuals. Vaccine 2024:126658. [PMID: 39732559 DOI: 10.1016/j.vaccine.2024.126658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/28/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Affiliation(s)
- Fan Liu
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | | | - Jincheng Tong
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Qiong Lu
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Ruixin Liu
- Peking Union Medical College Hospital, Beijing, China
| | - LinLin Cao
- Peking University People's Hospital, Beijing, China
| | - Xiaolu Ma
- Peking University People's Hospital, Beijing, China
| | - Jihong Zhu
- Peking University People's Hospital, Beijing, China
| | | | - Shuo Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziteng Liang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuelian Wu
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Tao Li
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chenyan Zhao
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jianhui Nie
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | | | - Weijin Huang
- National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| | - Weibo Gao
- Peking University People's Hospital, Beijing, China.
| |
Collapse
|
12
|
Hojo-Souza NS, de Castro JT, Rivelli GG, Azevedo PO, Oliveira ER, Faustino LP, Salazar N, Bagno FF, Carvalho AF, Rattis B, Lourenço KL, Gomes IP, Assis BRD, Piccin M, Fonseca FG, Durigon E, Silva JS, de Souza RP, Goulart GAC, Santiago H, Fernandes APS, Teixeira SR, Gazzinelli RT. SpiN-Tec: A T cell-based recombinant vaccine that is safe, immunogenic, and shows high efficacy in experimental models challenged with SARS-CoV-2 variants of concern. Vaccine 2024; 42:126394. [PMID: 39368129 DOI: 10.1016/j.vaccine.2024.126394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024]
Abstract
The emergence of new SARS-CoV-2 variants of concern associated with waning immunity induced by natural infection or vaccines currently in use suggests that the COVID-19 pandemic will become endemic. Investing in new booster vaccines using different platforms is a promising way to enhance protection and keep the disease under control. Here, we evaluated the immunogenicity, efficacy, and safety of the SpiN-Tec vaccine, based on a chimeric recombinant protein (SpiN) adjuvanted with CTVad1 (MF59-based adjuvant), aiming at boosting immunity against variants of concern of SARS-CoV-2. Immunization of K18-hACE-2 transgenic mice and hamsters induced high antibody titers and cellular immune response to the SpiN protein as well as to its components, RBD and N proteins. Importantly in a heterologous prime/boost protocol with a COVID-19 vaccine approved for emergency use (ChAdOx1), SpiN-Tec enhanced the level of circulation neutralizing antibodies (nAb). In addition to protection against the Wuhan isolate, protection against the Delta and Omicron variants was also observed as shown by reduced viral load and lung pathology. Toxicity and safety tests performed in rats demonstrated that the SpiN-Tec vaccine was safe and, based on these results, the SpiN-Tec phase I/II clinical trial was approved.
Collapse
MESH Headings
- Animals
- COVID-19 Vaccines/immunology
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Mice
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Cricetinae
- Mice, Transgenic
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- T-Lymphocytes/immunology
- Female
- Immunogenicity, Vaccine
- Humans
- Rats
- Disease Models, Animal
- Adjuvants, Vaccine
- Immunization, Secondary
- Vaccine Efficacy
Collapse
Affiliation(s)
- Natália S Hojo-Souza
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil
| | - Júlia T de Castro
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil; Plataforma Bi-Institucional de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Graziella G Rivelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Patrick O Azevedo
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil
| | | | - Lídia P Faustino
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil
| | - Natália Salazar
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Flávia F Bagno
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Alex F Carvalho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Bruna Rattis
- Plataforma Bi-Institucional de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Karine L Lourenço
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Isabela P Gomes
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Bruna R D Assis
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Mariela Piccin
- Plataforma Bi-Institucional de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Flávio G Fonseca
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Edison Durigon
- Instituto de Ciências Biológicas, Universidade de São Paulo, Brazil
| | - João S Silva
- Plataforma Bi-Institucional de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Renan P de Souza
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Brazil
| | - Gisele A C Goulart
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Helton Santiago
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil
| | - Ana Paula S Fernandes
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Santuza R Teixeira
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo T Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
13
|
Huber A, Baas FS, van der Ven AJAM, Dos Santos JC. Innate Immune Cell Functions Contribute to Spontaneous HIV Control. Curr HIV/AIDS Rep 2024; 22:6. [PMID: 39614998 PMCID: PMC11608392 DOI: 10.1007/s11904-024-00713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW To review the role of innate immune cells in shaping the viral reservoir and maintenance of long-term viral control of spontaneous Elite and Viremic HIV controllers. RECENT FINDINGS HIV controllers exhibit a smaller and transcriptionally suppressed viral reservoir. Different studies report that early responses from innate cells play a pivotal role in this reservoir configuration. NK cells, particularly those with cytotoxic activity and polyfunctional monocytes, have been linked to viral control, and DCs may contribute through early viral sensing and activation of adaptive responses. In some cases, cytotoxic NK cells appeared before HIV-specific CD8 + T cells, underscoring their importance in early viral suppression. Innate immune cells, including NK cells, monocytes, DCs, and γδ T-cells, are crucial in shaping the viral reservoir in HIV controllers. Early, robust innate responses may help to maintain long-term viral suppression and offer insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Alisa Huber
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Floor S Baas
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Andre J A M van der Ven
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Jéssica C Dos Santos
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Sanchez-Vargas LA, Mathew A, Salje H, Sousa D, Casale NA, Farmer A, Buddhari D, Anderson K, Iamsirithaworn S, Kaewhiran S, Friberg H, Currier JR, Rothman AL. Protective Role of NS1-Specific Antibodies in the Immune Response to Dengue Virus Through Antibody-Dependent Cellular Cytotoxicity. J Infect Dis 2024; 230:1147-1156. [PMID: 38478732 PMCID: PMC11565885 DOI: 10.1093/infdis/jiae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Dengue virus (DENV) nonstructural protein 1 (NS1) has multiple functions within infected cells, on the cell surface, and in secreted form, and is highly immunogenic. Immunity from previous DENV infections is known to exert both positive and negative effects on subsequent DENV infections, but the contribution of NS1-specific antibodies to these effects is incompletely understood. METHODS We investigated the functions of NS1-specific antibodies and their significance in DENV infection. We analyzed plasma samples collected in a prospective cohort study prior to symptomatic or subclinical secondary DENV infection. We measured binding to purified recombinant NS1 protein and to NS1-expressing CEM cells, antibody-mediated natural killer (NK) cell activation by plate-bound NS1 protein, and antibody-dependent cellular cytotoxicity (ADCC) of NS1-expressing target cells. RESULTS We found that antibody responses to NS1 were highly serotype cross-reactive and that subjects who experienced subclinical DENV infection had significantly higher antibody responses to NS1 in preinfection plasma than subjects who experienced symptomatic infection. We observed strong positive correlations between antibody binding and NK activation. CONCLUSIONS These findings demonstrate the involvement of NS1-specific antibodies in ADCC and provide evidence for a protective effect of NS1-specific antibodies in secondary DENV infection.
Collapse
Affiliation(s)
- Luis A Sanchez-Vargas
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Anuja Mathew
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David Sousa
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Nicole A Casale
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Aaron Farmer
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Darunee Buddhari
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kathryn Anderson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sopon Iamsirithaworn
- Department of Communicable Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| |
Collapse
|
15
|
Rabdano SO, Ruzanova EA, Vertyachikh AE, Teplykh VA, Emelyanova AB, Rudakov GO, Arakelov SA, Pletyukhina IV, Saveliev NS, Lukovenko AA, Fakhretdinova LN, Safi AS, Zhirenkina EN, Polyakova IN, Belozerova NS, Klykov VV, Savelieva AP, Ekimov AA, Pokachalov KV, Merkulov VA, Yudin SM, Kruchko DS, Berzin IA, Skvortsova VI. N-protein vaccine is effective against COVID-19: Phase 3, randomized, double-blind, placebo-controlled clinical trial. J Infect 2024; 89:106288. [PMID: 39341405 DOI: 10.1016/j.jinf.2024.106288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Despite the success of first-generation COVID-19 vaccines targeting the spike (S) protein, emerging SARS-CoV-2 variants have led to immune escape, reducing the efficacy of these vaccines. Additionally, some individuals are unable to mount an effective immune response to S protein-based vaccines. This has created a need for alternative vaccine strategies that are less susceptible to mutations and capable of providing broad and durable protection. This study aimed to evaluate the efficacy and safety of a novel COVID-19 vaccine based on the full-length recombinant nucleocapsid (N) protein of SARS-CoV-2. METHODS We conducted a prospective, multicenter, randomized, double-blind, placebo-controlled phase 3 clinical trial (NCT05726084) in Russia. Participants (n = 5229) were adults aged 18 years and older, with a BMI of 18.5-30 kg/m², and without significant clinical abnormalities. They were randomized in a 2:1 ratio to receive a single intramuscular dose of either the N protein-based vaccine (50 µg) or placebo. Randomization was done through block randomization, and masking was ensured by providing visually identical formulations of vaccine and placebo. The primary outcome was the incidence of symptomatic COVID-19 confirmed by PCR more than 15 days after vaccination within a 180-day observation period, analyzed on an intention-to-treat basis. FINDINGS Between May 18, 2023, and August 9, 2023, 5229 participants were randomized, with 3486 receiving the vaccine and 1743 receiving the placebo. Eight cases of PCR-confirmed symptomatic COVID-19 occurred in the vaccine group (0.23%) compared to 27 cases in the placebo group (1.55%), yielding a vaccine efficacy of 85.2% (95% CI: 67.4-93.3; p < 0.0001). Adverse events were mostly mild and included local injection site reactions. There were no vaccine-related serious adverse events. INTERPRETATION The N protein-based COVID-19 vaccine demonstrated significant efficacy and a favorable safety profile, suggesting it could be a valuable addition to the global vaccination effort, particularly in addressing immune escape variants and offering an alternative for those unable to respond to S protein-based vaccines. These results support the continued development and potential deployment of N protein-based vaccines in the ongoing fight against COVID-19.
Collapse
Affiliation(s)
- Sevastyan O Rabdano
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia.
| | - Ellina A Ruzanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Anastasiya E Vertyachikh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Valeriya A Teplykh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Alla B Emelyanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - German O Rudakov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Sergei A Arakelov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Iuliia V Pletyukhina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Nikita S Saveliev
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Anna A Lukovenko
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Liliya N Fakhretdinova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Ariana S Safi
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Ekaterina N Zhirenkina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Irina N Polyakova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Natalia S Belozerova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Vladislav V Klykov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Arina P Savelieva
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Aleksey A Ekimov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Konstantin V Pokachalov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Vadim A Merkulov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Centre for Evaluation and Control of Finished Pharmaceutical Products, Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergei M Yudin
- Centre for Strategic Planning of FMBA of Russia Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Moscow, Russia
| | | | - Igor A Berzin
- Federal Medical-Biological Agency of Russia, Moscow, Russia
| | | |
Collapse
|
16
|
Bean DJ, Liang YM, Sagar M. Recent Endemic Coronavirus Infection Associates With Higher SARS-CoV-2 Cross-Reactive Fc Receptor Binding Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619886. [PMID: 39484477 PMCID: PMC11527020 DOI: 10.1101/2024.10.23.619886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recent documented infection with an endemic coronavirus (eCoV) associates with less severe coronavirus disease 2019 (COVID-19), yet the immune mechanism behind this protection has not been fully explored. We measured both antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in SARS-CoV-2 naïve individuals classified into two groups, either with or without presumed recent eCoV infections. There was no difference in neutralizing antibodies and T cell responses against SARS-CoV-2 antigens between the two groups. SARS-CoV-2 naïve individuals with recent presumed eCoV infection, however, had higher levels of Fc receptor (FcR) binding antibodies against eCoV spikes (S) and SARS-CoV-2 S2. There was also a significant correlation between eCoV and SARS-CoV-2 FcR binding antibodies. Recent eCoV infection boosts cross-reactive antibodies that can mediate Fc effector functions, and this may play a role in the observed heterotypic immune protection against severe COVID-19.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| |
Collapse
|
17
|
Tong X, Kellman B, Avendano MJ, Mendu M, Hsiao JC, Serrano E, Garcia-Salum T, Muena N, Pardo-Roa C, Morales M, Levican J, Salinas E, Cardenas-Cáceres S, Riquelme A, Tischler ND, Lauffenburger DA, Alter G, McNamara RP, Medina RA. Humoral waning kinetics against SARS-CoV-2 is dictated by disease severity and vaccine platform. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.17.24315607. [PMID: 39484236 PMCID: PMC11527045 DOI: 10.1101/2024.10.17.24315607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
SARS-CoV-2 vaccine-acquired immunity provides robust cross-variant recognition, while infection-acquired immunity can be heterogenous, with disease severity often modulating post-recovery responses. We assessed antibody waning dynamics between infection- and vaccination-acquired immunity across variants of concern (VOC). mRNA vaccination induced potent, cross-VOC Spike recognition and functional responses, but waned more rapidly for Omicron Spike. Hospitalized individuals developed more durable functional responses with lower peaks compared to mRNA vaccination, while outpatients exhibited slower decay than inactivated vaccine recipients. Humoral decay for the receptor binding domain tracked with neutralizing antibody titers, while S2-directed responses tracked with antibody-dependent myeloid cellular phagocytosis. Boosting the recovered patients with mRNA or inactivated vaccines expanded humoral breadth, durability, and restored functional responses, eliminating the severity- and platform-associated decay differences. Therefore, post-recovery hybrid immunization compensates for this distinction and broadens humoral breadth, highlighting the value of boosting immunity in previously infected individuals.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Benjamin Kellman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Maria-Jose Avendano
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Maanasa Mendu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Jeff C. Hsiao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Massachusetts, MA, 02139, USA
| | - Eileen Serrano
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Tamara Garcia-Salum
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Nicolas Muena
- Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago 8581151, Chile
| | - Catalina Pardo-Roa
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Department of Child and Adolescent Health, School of Nursing, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Mauricio Morales
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jorge Levican
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Erick Salinas
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | | | - Arnoldo Riquelme
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8331010, Chile
| | - Nicole D. Tischler
- Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago 8581151, Chile
- Escuela de Bioquímica, Facultad de Salud y Ciencia, Universidad San Sebastián, Santiago 7510156, Chile
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Massachusetts, MA, 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Rafael A. Medina
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Center for Research on Influenza Pathogenesis and Transmission (CRIPT) Center of Excellence of Influenza Research and Response (CEIRR), New York, New York, USA
| |
Collapse
|
18
|
Tang Y, Tang K, Hu Y, Ye ZW, Luo W, Luo C, Cao H, Wang R, Yue X, Liu D, Liu C, Ge X, Liu T, Chen Y, Yuan S, Deng L. M protein ectodomain-specific immunity restrains SARS-CoV-2 variants replication. Front Immunol 2024; 15:1450114. [PMID: 39416782 PMCID: PMC11480003 DOI: 10.3389/fimmu.2024.1450114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The frequent occurrence of mutations in the SARS-CoV-2 Spike (S) protein, with up to dozens of mutations, poses a severe threat to the current efficacy of authorized COVID-19 vaccines. Membrane (M) protein, which is the most abundant viral structural protein, exhibits a high level of amino acid sequence conservation. M protein ectodomain could be recognized by specific antibodies; however, the extent to which it is immunogenic and provides protection remains unclear. Methods We designed and synthesized multiple peptides derived from coronavirus M protein ectodomains, and determined the secondary structure of specific peptides using circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was utilized to detect IgG responses against the synthesized peptides in clinical samples. To evaluate the immunogenicity of peptide vaccines, BALB/c mice were intraperitoneally immunized with peptide-keyhole limpet hemocyanin (KLH) conjugates adjuvanted with incomplete Freund's adjuvant (IFA). The humoral and T-cell immune responses induced by peptide-KLH conjugates were assessed using ELISA and ELISpot assays, respectively. The efficacy of the S2M2-30-KLH vaccine against SARS-CoV-2 variants was evaluated in vivo using the K18-hACE2 transgenic mouse model. The inhibitory effect of mouse immune serum on SARS-CoV-2 virus replication in vitro was evaluated using microneutralization assays. The subcellular localization of the M protein was evaluated using an immunofluorescent staining method, and the Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) activity of the S2M2-30-specific monoclonal antibody (mAb) was measured using an ADCC reporter assay. Results Seroconversion rates for ectodomain-specific IgG were observed to be high in both SARS-CoV-2 convalescent patients and individuals immunized with inactivated vaccines. To assess the protective efficacy of the M protein ectodomain-based vaccine, we initially identified a highly immunogenic peptide derived from this ectodomain, named S2M2-30. The mouse serum specific to S2M2-30 showed inhibitory effects on the replication of SARS-CoV-2 variants in vitro. Immunizations of K18-hACE2-transgenic mice with the S2M2-30-keyhole limpet hemocyanin (KLH) vaccine significantly reduced the lung viral load caused by B.1.1.7/Alpha (UK) infection. Further mechanism investigations reveal that serum neutralizing activity, specific T-cell response and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) correlate with the specific immuno-protection conferred by S2M2-30. Discussion The findings of this study suggest that the antibody responses against M protein ectodomain in the population most likely exert a beneficial effect on preventing various SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yibo Tang
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yunqi Hu
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - Zi-Wei Ye
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wanyu Luo
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hehe Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ran Wang
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xinyu Yue
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - Dejian Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Cuicui Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Xingyi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaoqing Chen
- School of Public Health, Sun Yat-sen University, Shenzhen, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Sun Yat-sen University, Guangzhou, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
- Research and Development Department, Beijing Weimiao Biotechnology Co. Ltd., Beijing, China
| |
Collapse
|
19
|
Khurana S, Grubbs G, Ravichandran S, Cluff E, Kim J, Kuehne AI, Zak S, Dye JM, Lutwama JJ, Herbert AS. Longitudinal proteome-wide antibody profiling in Marburg virus survivors identifies wing domain immunogen for vaccine design. Nat Commun 2024; 15:8133. [PMID: 39285186 PMCID: PMC11405854 DOI: 10.1038/s41467-024-51021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Limited knowledge exists on the quality of polyclonal antibody responses generated following Marburg virus (MARV) infection and its evolution in survivors. In this study, we evaluate MARV proteome-wide antibody repertoire longitudinally in convalescent phase approximately every six months for five years following MARV infection in ten human survivors. Differential kinetics were observed for IgM vs IgG vs IgA epitope diversity, antibody binding, antibody affinity maturation and Fc-receptor interaction to MARV proteins. Durability of MARV-neutralizing antibodies is low in survivors. MARV infection induces a diverse epitope repertoire with predominance against GP, VP40, VP30 and VP24 that persisted up to 5 years post-exposure. However, the IgM and IgA repertoire declines over time. Within MARV-GP, IgG recognize antigenic sites predominantly in the amino-terminus, wing domain and GP2-heptad repeat. Interestingly, MARV infection generates robust durable FcɣRI, FcɣRIIA and FcɣRIIIA IgG-Fc receptor interactions. Immunization with immunodominant MARV epitopes reveals conserved wing region between GP1 and GP2, induces neutralizing antibodies against MARV. These findings demonstrate that MARV infection generates a diverse, long-lasting, non-neutralizing, IgG antibody repertoire that perturbs disease by FcɣR activity. This information, along with discovery of neutralizing immunogen in wing domain, could aid in development of effective therapeutics and vaccines against Marburg virus.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA.
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Emily Cluff
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - JungHyun Kim
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Ana I Kuehne
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Samantha Zak
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - John M Dye
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Julius J Lutwama
- Department of Arbovirology, Emerging, and Re-emerging Infection, Uganda Virus Research Institute, Entebbe, Uganda
| | - Andrew S Herbert
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
20
|
Inizan C, Courtot A, Sturmach C, Griffon AF, Biron A, Bruel T, Enouf V, Demaneuf T, Munier S, Schwartz O, Gourinat AC, Médevielle G, Jouan M, van der Werf S, Madec Y, Albert-Dunais V, Dupont-Rouzeyrol M. Levels and functionality of Pacific Islanders' hybrid humoral immune response to BNT162b2 vaccination and delta/omicron infection: A cohort study in New Caledonia. PLoS Med 2024; 21:e1004397. [PMID: 39325828 PMCID: PMC11466435 DOI: 10.1371/journal.pmed.1004397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Pacific Islanders are underrepresented in vaccine efficacy trials. Few studies describe their immune response to COVID-19 vaccination. Yet, this characterization is crucial to re-enforce vaccination strategies adapted to Pacific Islanders singularities. METHODS AND FINDINGS We evaluated the humoral immune response of 585 adults, self-declaring as Melanesians, Europeans, Polynesians, or belonging to other communities, to the Pfizer BNT162b2 vaccine. Anti-spike and anti-nucleoprotein IgG levels, and their capacity to neutralize SARS-CoV-2 variants and to mediate antibody-dependent cellular cytotoxicity (ADCC) were assessed across communities at 1 and 3 months post-second dose or 1 and 6 months post-third dose. All sera tested contained anti-spike antibodies and 61.3% contained anti-nucleoprotein antibodies, evidencing mostly a hybrid immunity resulting from vaccination and SARS-CoV-2 infection. At 1-month post-immunization, the 4 ethnic communities exhibited no significant differences in their anti-spike IgG levels (p value = 0.17, in an univariate linear regression model), in their capacity to mediate omicron neutralization (p value = 0.59 and 0.60, in an univariate logistic regression model at 1-month after the second and third dose, respectively) and in their capacity to mediate ADCC (p value = 0.069 in a multivariate linear regression model), regardless of the infection status. Anti-spike IgG levels and functionalities of the hybrid humoral immune response remained equivalent across the 4 ethnic communities during follow-up and at 6 months post-third dose. CONCLUSIONS Our study evidenced Pacific Islander's robust humoral immune response to Pfizer BNT162b2 vaccine, which is pivotal to re-enforce vaccination deployment in a population at risk for severe COVID-19. TRIAL REGISTRATION This trial has been register in ClinicalTrials.gov (ID: NCT05135585).
Collapse
Affiliation(s)
- Catherine Inizan
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Adrien Courtot
- Provincial Office for Health and Social Action of the South Province (Direction Provinciale de l’Action Sanitaire et Sociale en Province Sud), Nouméa, New Caledonia
| | - Chloé Sturmach
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Anne-Fleur Griffon
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Antoine Biron
- New Caledonia Territorial Hospital, Dumbéa-sur-Mer, New Caledonia
| | - Timothée Bruel
- Antiviral Activities of Antibodies Group, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Vincent Enouf
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Thibaut Demaneuf
- Social and Sanitary Agency of New Caledonia (Agence Sanitaire et Sociale de Nouvelle-Calédonie), Nouméa, New Caledonia
| | - Sandie Munier
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | | | - Georges Médevielle
- Provincial Office for Health and Social Action of the South Province (Direction Provinciale de l’Action Sanitaire et Sociale en Province Sud), Nouméa, New Caledonia
| | - Marc Jouan
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Sylvie van der Werf
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Yoann Madec
- Epidemiology of Emerging Diseases, Institut Pasteur, Université de Paris, Paris, France
| | | | - Myrielle Dupont-Rouzeyrol
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| |
Collapse
|
21
|
Li L, Matsui Y, Prahl MK, Cassidy AG, Golan Y, Jigmeddagva U, Ozarslan N, Lin CY, Buarpung S, Gonzalez VJ, Chidboy MA, Basilio E, Lynch KL, Song D, Jegatheesan P, Rai DS, Govindaswami B, Needens J, Rincon M, Myatt L, Taha TY, Montano M, Ott M, Greene WC, Gaw SL. Neutralizing and binding antibody responses to SARS-CoV-2 with hybrid immunity in pregnancy. NPJ Vaccines 2024; 9:156. [PMID: 39191763 PMCID: PMC11349990 DOI: 10.1038/s41541-024-00948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Hybrid immunity against SARS-CoV-2 has not been well studied in pregnancy. We conducted a comprehensive analysis of neutralizing antibodies (nAb) and binding antibodies in pregnant individuals who received mRNA vaccination, natural infection, or both. A third vaccine dose augmented nAb levels compared to the two-dose regimen or natural infection alone; this effect was more pronounced in hybrid immunity. There was reduced anti-Omicron nAb, but the maternal-fetal transfer efficiency remained comparable to that of other variants. Vaccine-induced nAbs were transferred more efficiently than infection-induced nAbs. Anti-spike receptor binding domain (RBD) IgG was associated with nAb against wild-type (Wuhan-Hu-1) following breakthrough infection. Both vaccination and infection-induced anti-RBD IgA, which was more durable than anti-nucleocapsid IgA. IgA response was attenuated in pregnancy compared to non-pregnant controls. These data provide additional evidence of augmentation of humoral immune responses in hybrid immunity in pregnancy.
Collapse
Affiliation(s)
- Lin Li
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yusuke Matsui
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Mary K Prahl
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Division of Pediatric Infectious Diseases and Global Health, University of California San Francisco, San Francisco, CA, USA
| | - Arianna G Cassidy
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yarden Golan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Unurzul Jigmeddagva
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Nida Ozarslan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Christine Y Lin
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sirirak Buarpung
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Veronica J Gonzalez
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Megan A Chidboy
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Emilia Basilio
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Dongli Song
- Division of Neonatology, Department of Pediatrics, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Priya Jegatheesan
- Division of Neonatology, Department of Pediatrics, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Daljeet S Rai
- Stanford-O'Connor Family Medicine Residency Program, Division of Family Medicine, Stanford University, Palo Alto, CA, USA
| | - Balaji Govindaswami
- Division of Neonatology, Department of Pediatrics, Marshall University Joan C Edwards School of Medicine, Huntington, WV, USA
| | - Jordan Needens
- Department of Obstetrics and Gynecology, Marshall University Joan C Edwards School of Medicine, Huntington, WV, USA
| | - Monica Rincon
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Taha Y Taha
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Mauricio Montano
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Departments of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Warner C Greene
- Gladstone Institute of Virology, San Francisco, CA, USA.
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Departments of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
| | - Stephanie L Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Baig AM, Rosko S, Jaeger B, Gerlach J, Rausch H. Unraveling the enigma of long COVID: novel aspects in pathogenesis, diagnosis, and treatment protocols. Inflammopharmacology 2024; 32:2075-2090. [PMID: 38771409 DOI: 10.1007/s10787-024-01483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Long COVID, now unmistakably identified as a syndromic entity encompassing a complex spectrum of symptoms, demands immediate resolution of its elusive pathogenic underpinnings. The intricate interplay of diverse factors presents a complex puzzle, difficult to resolve, and thus poses a substantial challenge. As instances of long COVID manifest by repeated infections of SARS-CoV-2 and genetic predisposition, a detailed understanding in this regard is needed. This endeavor is a comprehensive exploration and analysis of the cascading pathogenetic events driven by viral persistence and replication. Beyond its morbidity, long COVID, more disabling than fatal, exacts one of the most substantial tolls on public health in contemporary times, with the potential to cripple national economies. The paper introduces a unified theory of long COVID, detailing a novel pathophysiological framework that interlinks persistent SARS-CoV-2 infection, autoimmunity, and systemic vascular pathology. We posit a model where viral reservoirs, immune dysregulation, and genetic predispositions converge to perpetuate disease. It challenges prevailing hypotheses with new evidence, suggesting innovative diagnostic and therapeutic approaches. The paper aims to shift the paradigm in long COVID research by providing an integrative perspective that encapsulates the multifaceted nature of the condition. We explain the immunological mechanisms, hypercoagulability states, and viral reservoirs in the skull that feed NeuroCOVID in patients with long COVID. Also, this study hints toward a patient approach and how to prioritize treatment sequences in long COVID patients in hospitals and clinics.
Collapse
Affiliation(s)
| | - Sandy Rosko
- Clinicum St. George, Rosenheimer Str. 6-8, Bad Aibling, Germany
| | - Beate Jaeger
- Clinicum St. George, Rosenheimer Str. 6-8, Bad Aibling, Germany
| | - Joachim Gerlach
- Clinicum St. George, Rosenheimer Str. 6-8, Bad Aibling, Germany
| | - Hans Rausch
- Clinicum St. George, Rosenheimer Str. 6-8, Bad Aibling, Germany
| |
Collapse
|
23
|
Gelderloos AT, Lakerveld AJ, Schepp RM, Nicolaie MA, van Beek J, Beckers L, van Binnendijk RS, Rots NY, van Kasteren PB. Primary SARS-CoV-2 infection in children and adults results in similar Fc-mediated antibody effector function patterns. Clin Transl Immunology 2024; 13:e1521. [PMID: 39071109 PMCID: PMC11273100 DOI: 10.1002/cti2.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Objectives Increasing evidence suggests that Fc-mediated antibody effector functions have an important role in protection against respiratory viruses, including SARS-CoV-2. However, limited data are available on the potential differences in the development, heterogeneity and durability of these responses in children compared to adults. Methods Here, we assessed the development of spike S1-specific serum antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and natural killer cell activation (ADNKA), alongside specific antibody binding concentrations (IgG, IgA and IgM) and IgG avidity in healthy adults (n = 38, 18-56 years) and children (n = 21, 5-16 years) following primary SARS-CoV-2 infection, with a 10-month longitudinal follow-up. Differences between groups were assessed using a nonparametric Kruskal-Wallis test with Dunn's multiple comparisons test. Results We found similar (functional) antibody responses in children compared to adults, with a tendency for increased durability in children, which was statistically significant for ADCD (P < 0.05). While ADNKA was strongly reduced in both adults (P < 0.001) and children (P < 0.05) at the latest time point, ADCP remained relatively stable over time, possibly relating to an increase in avidity of the spike-specific antibodies (P < 0.001). Finally, the ADNKA capacity relative to antibody concentration appeared to decrease over time in both children and adults. Conclusion In conclusion, our data provide novel insights into the development of SARS-CoV-2-specific antibody Fc-mediated effector functions in children and adults. An increased understanding of these characteristics in specific age populations is valuable for the future design of novel and improved vaccination strategies for respiratory viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- Anne T Gelderloos
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Anke J Lakerveld
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Rutger M Schepp
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Mioara Alina Nicolaie
- Department of Statistics, Information Technology and Modelling (SIM)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Josine van Beek
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Lisa Beckers
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Robert S van Binnendijk
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Nynke Y Rots
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Puck B van Kasteren
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| |
Collapse
|
24
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. Front Immunol 2024; 15:1429909. [PMID: 39081315 PMCID: PMC11286471 DOI: 10.3389/fimmu.2024.1429909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4+ helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
Affiliation(s)
- Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wakako Furuyama
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noemí A. Saavedra-Ávila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Christopher T. Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
25
|
Motsoeneng BM, Bhiman JN, Richardson SI, Moore PL. SARS-CoV-2 humoral immunity in people living with HIV-1. Trends Immunol 2024; 45:511-522. [PMID: 38890026 DOI: 10.1016/j.it.2024.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
The effect of COVID-19 on the high number of immunocompromised people living with HIV-1 (PLWH), particularly in Africa, remains a critical concern. Here, we identify key areas that still require further investigation, by examining COVID-19 vaccine effectiveness, and understanding antibody responses in SARS-CoV-2 infection and vaccination in comparison with people without HIV-1 (PWOH). We also assess the potential impact of pre-existing immunity against endemic human coronaviruses on SARS-CoV-2 responses in these individuals. Lastly, we discuss the consequences of persistent infection in PLWH (or other immunocompromised individuals), including prolonged shedding, increased viral diversity within the host, and the implications on SARS-CoV-2 evolution in Africa.
Collapse
Affiliation(s)
- Boitumelo M Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Jinal N Bhiman
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa; Centre for the AIDS Program of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
26
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595735. [PMID: 38853867 PMCID: PMC11160617 DOI: 10.1101/2024.05.28.595735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4 + helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
|
27
|
Gao R, Feng C, Sheng Z, Li F, Wang D. Research progress in Fc-effector functions against SARS-CoV-2. J Med Virol 2024; 96:e29638. [PMID: 38682662 DOI: 10.1002/jmv.29638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused more than 676 million cases in the global human population with approximately 7 million deaths and vaccination has been proved as the most effective countermeasure in reducing clinical complications and mortality rate of SARS-CoV-2 infection in people. However, the protective elements and correlation of protection induced by vaccination are still not completely understood. Various antibodies with multiple protective mechanisms can be induced simultaneously by vaccination in vivo, thereby complicating the identification and characterization of individual correlate of protection. Recently, an increasing body of observations suggests that antibody-induced Fc-effector functions play a crucial role in combating SARS-CoV-2 infections, including neutralizing antibodies-escaping variants. Here, we review the recent progress in understanding the impact of Fc-effector functions in broadly disarming SARS-CoV-2 infectivity and discuss various efforts in harnessing this conserved antibody function to develop an effective SARS-CoV-2 vaccine that can protect humans against infections by SARS-CoV-2 virus and its variants of concern.
Collapse
Affiliation(s)
- Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Chenchen Feng
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
28
|
Escalera A, Rojo-Fernandez A, Rombauts A, Abelenda-Alonso G, Carratalà J, García-Sastre A, Aydillo T. SARS-CoV-2 infection induces robust mucosal antibody responses in the upper respiratory tract. iScience 2024; 27:109210. [PMID: 38433913 PMCID: PMC10906537 DOI: 10.1016/j.isci.2024.109210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Despite multiple research efforts to characterize coronavirus disease 2019 (COVID-19) in humans, there is no clear data on the specific role of mucosal immunity on COVID-19 disease. Here, we longitudinally profile the antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal HCoV-OC43 S proteins in serum and nasopharyngeal swabs from COVID-19 patients. Results showed that specific antibody responses against SARS-CoV-2 and HCoV-OC43 S proteins can be detected in the upper respiratory tract. We found that COVID-19 patients mounted a robust mucosal antibody response against SARS-CoV-2 S with specific secretory immunoglobulin A (sIgA), IgA, IgG, and IgM antibody subtypes detected in the nasal swabs. Additionally, COVID-19 patients showed IgG, IgA, and sIgA responses against HCoV-OC43 S in the local mucosa, whereas no specific IgM was detected. Interestingly, mucosal antibody titers against SARS-CoV-2 peaked at day 7, whereas HCoV-OC43 titers peaked earlier at day 3 post-recruitment, suggesting an immune memory recall to conserved epitopes of beta-HCoVs in the upper respiratory tract.
Collapse
Affiliation(s)
- Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amaya Rojo-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Rombauts
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriela Abelenda-Alonso
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCII), 28029 Madrid, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCII), 28029 Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Vitiello A, Sabbatucci M, Ponzo A, Salzano A, Zovi A. A Short Update on the Use of Monoclonal Antibodies in COVID-19. AAPS J 2024; 26:30. [PMID: 38443725 DOI: 10.1208/s12248-024-00904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Monoclonal antibodies in the prophylaxis and treatment of COVID-19 have been crucial in reducing severe infections when vaccines were unavailable. However, as the virus and its variants have changed over time, the effectiveness of monoclonal antibodies has been questioned. This technical note highlights the need to assess the antiviral activity of these antibodies against new variants and adapt treatment strategies accordingly. On the one hand, in vitro studies have suggested reduced susceptibility of the latest variants to monoclonal antibodies, whereas clinical data still show benefits in reducing severe illness and mortality, indicating that laboratory results do not always mirror real-world outcomes. As a result, although resistance to monoclonal antibodies can develop over time, they could still have an important role in COVID-19 treatment, especially when used in combination, and ongoing research aims to identify effective antibodies against new variants.
Collapse
Affiliation(s)
- Antonio Vitiello
- Directorate General for Health Prevention, Italian Ministry of Health, Rome, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Annarita Ponzo
- Biology Department L. Spallanzani, University of Pavia, Pavia, Italy
| | - Antonio Salzano
- Directorate General for Health Prevention, Italian Ministry of Health, Rome, Italy
| | | |
Collapse
|
30
|
Zedan HT, Smatti MK, Al-Sadeq DW, Al Khatib HA, Nicolai E, Pieri M, Bernardini S, Hssain AA, Taleb S, Qotba H, Issa K, Abu Raddad LJ, Althani AA, Nasrallah GK, Yassine HM. SARS-CoV-2 infection triggers more potent antibody-dependent cellular cytotoxicity (ADCC) responses than mRNA-, vector-, and inactivated virus-based COVID-19 vaccines. J Med Virol 2024; 96:e29527. [PMID: 38511514 DOI: 10.1002/jmv.29527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/08/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Neutralizing antibodies (NAbs) are elicited after infection and vaccination and have been well studied. However, their antibody-dependent cellular cytotoxicity (ADCC) functionality is still poorly characterized. Here, we investigated ADCC activity in convalescent sera from infected patients with wild-type (WT) severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or omicron variant compared with three coronavirus disease 2019 (COVID-19) vaccine platforms and postvaccination breakthrough infection (BTI). We analyzed ADCC activity targeting SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in convalescent sera following WT SARS-CoV-2-infection (n = 91), including symptomatic and asymptomatic infections, omicron-infection (n = 8), COVID-19 vaccination with messenger RNA- (mRNA)- (BNT162b2 or mRNA-1273, n = 77), adenovirus vector- (n = 41), and inactivated virus- (n = 46) based vaccines, as well as post-mRNA vaccination BTI caused by omicron (n = 28). Correlations between ADCC, binding, and NAb titers were reported. ADCC was elicited within the first month postinfection and -vaccination and remained detectable for ≥3 months. WT-infected symptomatic patients had higher S-specific ADCC levels than asymptomatic and vaccinated individuals. Also, no difference in N-specific ADCC activity was seen between symptomatic and asymptomatic patients, but the levels were higher than the inactivated vaccine. Notably, omicron infection showed reduced overall ADCC activity compared to WT SARS-CoV-2 infection. Although post-mRNA vaccination BTI elicited high levels of binding and NAbs, ADCC activity was significantly reduced. Also, there was no difference in ADCC levels across the four vaccines, although NAbs and binding antibody titers were significantly higher in mRNA-vaccinated individuals. All evaluated vaccine platforms are inferior in inducing ADCC compared to natural infection with WT SARS-CoV-2. The inactivated virus-based vaccine can induce N-specific ADCC activity, but its relevance to clinical outcomes requires further investigation. Our data suggest that ADCC could be used to estimate the extra-neutralization level against COVID-19 and provides evidence that vaccination should focus on other Fc-effector functions besides NAbs. Also, the decreased susceptibility of the omicron variant to ADCC offers valuable guidance for forthcoming efforts to identify the specific targets of antibodies facilitating ADCC.
Collapse
Affiliation(s)
- Hadeel T Zedan
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| | - Duaa W Al-Sadeq
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Hebah A Al Khatib
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| | - Eleonora Nicolai
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | - Sara Taleb
- Department of Research, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hamda Qotba
- Department of Clinical Research, Primary Health Care Centers, Doha, Qatar
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Khodr Issa
- Proteomics, Inflammatory Response, and Mass Spectrometry (PRISM) Laboratory, INSERM U-1192, University of Lille, Lille, France
| | - Laith J Abu Raddad
- Department of Population Health Sciences, Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Asmaa A Althani
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| |
Collapse
|
31
|
Liu Y, Li M, Cui T, Chen Z, Xu L, Li W, Peng Q, Li X, Zhao D, Valencia CA, Dong B, Wang Z, Chow HY, Li Y. A superior heterologous prime-boost vaccination strategy against COVID-19: A bivalent vaccine based on yeast-derived RBD proteins followed by a heterologous vaccine. J Med Virol 2024; 96:e29454. [PMID: 38445768 DOI: 10.1002/jmv.29454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.
Collapse
Affiliation(s)
- Yu Liu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Tingting Cui
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhian Chen
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liangting Xu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Qinhua Peng
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xingxing Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Danhua Zhao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - C Alexander Valencia
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Real & Best Biotech Co., Ltd, Chengdu, China
| | - Zhongfang Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Hoi Yee Chow
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
32
|
Karampinis E, Papadopoulou MM, Chaidaki K, Georgopoulou KE, Magaliou S, Roussaki Schulze AV, Bogdanos DP, Zafiriou E. Plaque Psoriasis Exacerbation and COVID-19 Vaccination: Assessing the Characteristics of the Flare and the Exposome Parameters. Vaccines (Basel) 2024; 12:178. [PMID: 38400161 PMCID: PMC10892964 DOI: 10.3390/vaccines12020178] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The diverse patient population and widespread vaccination in the COVD-19 era make vaccine-triggered episodes of psoriasis an ideal model of exposome research. This scenario explores the fine balance between protective and exacerbating factors, providing insights into the complex relationship between environmental exposure and psoriasis immunopathogenesis when a trigger appears, such as that of the hyperinflammatory state induced by the COVID-19 vaccine. Analyzing interactions between vaccine-induced phenomena and exposome parameters may provide clinically relevant information important for personalized medicine decision-making. We performed a literature review seeking patients with plaque psoriasis flares or new onset or change in plaque psoriasis into another psoriasis subtype, such as pustular or erythrodermic flare, focusing on the inner and external exposome traits of patients. We identified 71 patients with plaque psoriasis flares, 12 patients with new-onset psoriasis, and 17 with plaque psoriasis subtype change, and assessed the COVID-19 vaccine-induced plaque psoriasis in terms of clinical presentation, post-vaccination flare period and treatment status, as well as inner exposome parameters (genomics, oxidative stress, hormonal impact due to gender, aging, skin color) and external parameters (UV, infectomics). Novel data on psoriasis flares following COVID-19 vaccination are primarily obtained by combining exposome and vaccine-triggered episode features and characteristics and comparing them with similar psoriasis flares unrelated to COVID-19 vaccination.
Collapse
Affiliation(s)
- Emmanouil Karampinis
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece; (E.K.); (K.C.); (A.V.R.S.)
| | | | - Kleoniki Chaidaki
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece; (E.K.); (K.C.); (A.V.R.S.)
| | - Konstantina-Eirini Georgopoulou
- Department of Dermatology, General Hospital of Nikaia Pireus “Agios Panteleimon”—General Hospital of West Attica “Agia Varvara”, 12351 Athens, Greece
| | - Stavroula Magaliou
- Department of Internal Medicine, General Hospital of Trikala, 42100 Trikala, Greece
| | - Angeliki Viktoria Roussaki Schulze
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece; (E.K.); (K.C.); (A.V.R.S.)
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece;
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece; (E.K.); (K.C.); (A.V.R.S.)
| |
Collapse
|
33
|
Haslund-Gourley BS, Hou J, Woloszczuk K, Horn EJ, Dempsey G, Haddad EK, Wigdahl B, Comunale MA. Host glycosylation of immunoglobulins impairs the immune response to acute Lyme disease. EBioMedicine 2024; 100:104979. [PMID: 38266555 PMCID: PMC10818078 DOI: 10.1016/j.ebiom.2024.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Lyme disease is caused by the bacteria Borreliella burgdorferi sensu lato (Bb) transmitted to humans from the bite of an infected Ixodes tick. Current diagnostics for Lyme disease are insensitive at the early disease stage and they cannot differentiate between active infections and people with a recent history of antibiotic-treated Lyme disease. METHODS Machine learning technology was utilized to improve the prediction of acute Lyme disease and identify sialic acid and galactose sugar structures (N-glycans) on immunoglobulins associated specifically at time points during acute Lyme disease time. A plate-based approach was developed to analyze sialylated N-glycans associated with anti-Bb immunoglobulins. This multiplexed approach quantitates the abundance of Bb-specific IgG and the associated sialic acid, yielding an accuracy of 90% in a powered study. FINDINGS It was demonstrated that immunoglobulin sialic acid levels increase during acute Lyme disease and following antibiotic therapy and a 3-month convalescence, the sialic acid level returned to that found in healthy control subjects (p < 0.001). Furthermore, the abundance of sialic acid on Bb-specific IgG during acute Lyme disease impaired the host's ability to combat Lyme disease via lymphocytic receptor FcγRIIIa signaling. After enzymatically removing the sialic acid present on Bb-specific antibodies, the induction of cytotoxicity from acute Lyme disease patient antigen-specific IgG was significantly improved. INTERPRETATION Taken together, Bb-specific immunoglobulins contain increased sialylation which impairs the host immune response during acute Lyme disease. Furthermore, this Bb-specific immunoglobulin sialyation found in acute Lyme disease begins to resolve following antibiotic therapy and convalescence. FUNDING Funding for this study was provided by the Coulter-Drexel Translational Research Partnership Program as well as from a Faculty Development Award from the Drexel University College of Medicine Institute for Molecular Medicine and Infectious Disease and the Department of Microbiology and Immunology.
Collapse
Affiliation(s)
- Benjamin S Haslund-Gourley
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jintong Hou
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyra Woloszczuk
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - George Dempsey
- East Hampton Family Medicine, East Hampton North, New York, USA
| | - Elias K Haddad
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
34
|
Rabdano S, Ruzanova E, Makarov D, Vertyachikh A, Teplykh V, Rudakov G, Pletyukhina I, Saveliev N, Zakharov K, Alpenidze D, Vasilyuk V, Arakelov S, Skvortsova V. Safety and Immunogenicity of the Convacell ® Recombinant N Protein COVID-19 Vaccine. Vaccines (Basel) 2024; 12:100. [PMID: 38276672 PMCID: PMC10821050 DOI: 10.3390/vaccines12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
We have developed Convacell®-a COVID-19 vaccine based on the recombinant nucleocapsid (N) protein of SARS-CoV-2. This paper details Convacell's® combined phase I/II and IIb randomized, double-blind, interventional clinical trials. The primary endpoints were the frequency of adverse effects (AEs) and the titers of specific anti-N IgGs induced by the vaccination; secondary endpoints included the nature of the immune response. Convacell® demonstrated high safety in phase I with no severe AEs detected, 100% seroconversion by day 42 and high and sustained for 350 days anti-N IgG levels in phase II. Convacell® also demonstrated a fused cellular and humoral immune response. Phase IIb results showed significant post-vaccination increases in circulating anti-N IgG and N protein-specific IFNγ+-producing PBMC quantities among 438 volunteers. Convacell® showed same level of immunological efficacy for single and double dose vaccination regimens, including for elderly patients. The clinical studies indicate that Convacell® is safe and highly immunogenic.
Collapse
Affiliation(s)
- Sevastyan Rabdano
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Ellina Ruzanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Denis Makarov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Anastasiya Vertyachikh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Valeriya Teplykh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - German Rudakov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Iuliia Pletyukhina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Nikita Saveliev
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | | | - Diana Alpenidze
- State Budgetary Health Institution “City Polyclinic No. 117”, St. Petersburg 194358, Russia
| | - Vasiliy Vasilyuk
- Department of Toxicology, Extreme and Diving Medicine, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg 191015, Russia
| | - Sergei Arakelov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | | |
Collapse
|
35
|
Sankhala RS, Lal KG, Jensen JL, Dussupt V, Mendez-Rivera L, Bai H, Wieczorek L, Mayer SV, Zemil M, Wagner DA, Townsley SM, Hajduczki A, Chang WC, Chen WH, Donofrio GC, Jian N, King HAD, Lorang CG, Martinez EJ, Rees PA, Peterson CE, Schmidt F, Hart TJ, Duso DK, Kummer LW, Casey SP, Williams JK, Kannan S, Slike BM, Smith L, Swafford I, Thomas PV, Tran U, Currier JR, Bolton DL, Davidson E, Doranz BJ, Hatziioannou T, Bieniasz PD, Paquin-Proulx D, Reiley WW, Rolland M, Sullivan NJ, Vasan S, Collins ND, Modjarrad K, Gromowski GD, Polonis VR, Michael NL, Krebs SJ, Joyce MG. Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques. Nat Commun 2024; 15:200. [PMID: 38172512 PMCID: PMC10764318 DOI: 10.1038/s41467-023-44265-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samantha M Townsley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hannah A D King
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | | | | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lauren Smith
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Diane L Bolton
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Vaccine Research and Development, Pfizer, Pearl River, New York, NY, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
36
|
Najimi N, Kadi C, Elmtili N, Seghrouchni F, Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum Antibodies 2024; 32:85-106. [PMID: 38758995 DOI: 10.3233/hab-230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Following infection and vaccination against SARS-CoV-2, humoral components of the adaptive immune system play a key role in protecting the host. Specifically, B cells generate high-affinity antibodies against various antigens of the virus. In this review, we discuss the mechanisms of immunity initiation through both natural infection and vaccination, shedding light on the activation of B cell subsets in response to SARS-CoV-2 infection and vaccination. The innate immune system serves as the initial line of primary and nonspecific defence against viruses. However, within several days following infection or a vaccine dose, a virus-specific immune response is initiated, primarily by B cells that produce antibodies. These antibodies contribute to the resolution of the disease. Subsequently, these B cells transition into memory B cells, which play a crucial role in providing long-term immunity against the virus. CD4+ T helper cells initiate a cascade, leading to B cell somatic hypermutation, germinal center memory B cells, and the production of neutralizing antibodies. B-cell dysfunction can worsen disease severity and reduce vaccine efficacy. Notably, individuals with B cell immunodeficiency show lower IL-6 production. Furthermore, this review delves into several aspects of immune responses, such as hybrid immunity, which has shown promise in boosting broad-spectrum protection. Cross-reactive immunity is under scrutiny as well, as pre-existing antibodies can offer protection against the disease. We also decipher breakthrough infection mechanisms, especially with the novel variants of the virus. Finally, we discuss some potential therapeutic solutions regarding B cells including convalescent plasma therapy, B-1 cells, B regulatory cell (Breg) modulation, and the use of neutralizing monoclonal antibodies in combating the infection. Ongoing research is crucial to grasp population immunity trends and assess the potential need for booster doses in maintaining effective immune responses against potential viral threats.
Collapse
Affiliation(s)
- Nouhaila Najimi
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Chaimae Kadi
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Noureddine Elmtili
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Fouad Seghrouchni
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
37
|
Ramazi S, Dadzadi M, Sahafnejad Z, Allahverdi A. Epigenetic regulation in lung cancer. MedComm (Beijing) 2023; 4:e401. [PMID: 37901797 PMCID: PMC10600507 DOI: 10.1002/mco2.401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Lung cancer is indeed a major cause of cancer-related deaths worldwide. The development of tumors involves a complex interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, and microRNA expression, play a crucial role in this process. Changes in DNAm patterns can lead to the silencing of important genes involved in cellular functions, contributing to the development and progression of lung cancer. MicroRNAs and exosomes have also emerged as reliable biomarkers for lung cancer. They can provide valuable information about early diagnosis and treatment assessment. In particular, abnormal hypermethylation of gene promoters and its effects on tumorigenesis, as well as its roles in the Wnt signaling pathway, have been extensively studied. Epigenetic drugs have shown promise in the treatment of lung cancer. These drugs target the aberrant epigenetic modifications that are involved in the development and progression of the disease. Several factors have been identified as drug targets in non-small cell lung cancer. Recently, combination therapy has been discussed as a successful strategy for overcoming drug resistance. Overall, understanding the role of epigenetic mechanisms and their targeting through drugs is an important area of research in lung cancer treatment.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Sahafnejad
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
38
|
Vanderven HA, Kent SJ. Fc-mediated functions and the treatment of severe respiratory viral infections with passive immunotherapy - a balancing act. Front Immunol 2023; 14:1307398. [PMID: 38077353 PMCID: PMC10710136 DOI: 10.3389/fimmu.2023.1307398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Passive immunotherapies have been used to treat severe respiratory infections for over a century, with convalescent blood products from recovered individuals given to patients with influenza-related pneumonia as long ago as the Spanish flu pandemic. However, passive immunotherapy with convalescent plasma or hyperimmune intravenous immunoglobulin (hIVIG) has not provided unequivocal evidence of a clinical benefit for severe respiratory infections including influenza and COVID-19. Efficacy trials, primarily conducted in late-stage disease, have demonstrated inconsistent efficacy and clinical benefit for hIVIG treatment of severe respiratory infections. To date, most serological analyses of convalescent plasma and hIVIG trial samples have focused on the measurement of neutralizing antibody titres. There is, however, increasing evidence that baseline antibody levels and extra-neutralizing antibody functions influence the outcome of passive immunotherapy in humans. In this perspective, findings from convalescent plasma and hIVIG trials for severe influenza, COVID-19 and respiratory syncytial virus (RSV) will be described. Clinical trial results will be discussed in the context of the potential beneficial and deleterious roles of antibodies with Fc-mediated effector functions, with a focus on natural killer cells and antibody-dependent cellular cytotoxicity. Overall, we postulate that treating respiratory viral infections with hIVIG represents a delicate balance between protection and immunopathology.
Collapse
Affiliation(s)
- Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, VIC, Australia
| |
Collapse
|
39
|
Balinsky CA, Jiang L, Jani V, Cheng Y, Zhang Z, Belinskaya T, Qiu Q, Long TK, Schilling MA, Jenkins SA, Corson KS, Martin NJ, Letizia AG, Hontz RD, Sun P. Antibodies to S2 domain of SARS-CoV-2 spike protein in Moderna mRNA vaccinated subjects sustain antibody-dependent NK cell-mediated cell cytotoxicity against Omicron BA.1. Front Immunol 2023; 14:1266829. [PMID: 38077368 PMCID: PMC10702584 DOI: 10.3389/fimmu.2023.1266829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination with the primary two-dose series of SARS-CoV-2 mRNA protects against infection with the ancestral strain, and limits the presentation of severe disease after re-infection by multiple variants of concern (VOC), including Omicron, despite the lack of a strong neutralizing response to these variants. We compared antibody responses in serum samples collected from mRNA-1273 (Moderna) vaccinated subjects to identify mechanisms of immune escape and cross-protection. Using pseudovirus constructs containing domain-specific amino acid changes representative of Omicron BA.1, combined with domain competition and RBD-antibody depletion, we showed that RBD antibodies were primarily responsible for virus neutralization and variant escape. Antibodies to NTD played a less significant role in antibody neutralization but acted along with RBD to enhance neutralization. S2 of Omicron BA.1 had no impact on neutralization escape, suggesting it is a less critical domain for antibody neutralization; however, it was as capable as S1 at eliciting IgG3 responses and NK-cell mediated, antibody-dependent cell cytotoxicity (ADCC). Antibody neutralization and ADCC activities to RBD, NTD, and S1 were all prone to BA.1 escape. In contrast, ADCC activities to S2 resisted BA.1 escape. In conclusion, S2 antibodies showed potent ADCC function and resisted Omicron BA.1 escape, suggesting that S2 contributes to cross-protection against Omicron BA.1. In line with its conserved nature, S2 may hold promise as a vaccine target against future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Corey A. Balinsky
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Le Jiang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vihasi Jani
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Zhiwen Zhang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Tatyana Belinskaya
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Qi Qiu
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Megan A. Schilling
- Virology and Emerging Infectious Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Sarah A. Jenkins
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Karen S. Corson
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | | | | | - Robert D. Hontz
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | - Peifang Sun
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| |
Collapse
|
40
|
Lopez-Gomez A, Pelaez-Prestel HF, Juarez I. Approaches to evaluate the specific immune responses to SARS-CoV-2. Vaccine 2023; 41:6434-6443. [PMID: 37770298 DOI: 10.1016/j.vaccine.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
The SARS-CoV-2 pandemic has a huge impact on public health and global economy, meaning an enormous scientific, political, and social challenge. Studying how infection or vaccination triggers both cellular and humoral responses is essential to know the grade and length of protection generated in the population. Nowadays, scientists and authorities around the world are increasingly concerned about the arrival of new variants, which have a greater spread, due to the high mutation rate of this virus. The aim of this review is to summarize the different techniques available for the study of the immune responses after exposure or vaccination against SARS-CoV-2, showing their advantages and limitations, and proposing suitable combinations of different techniques to achieve extensive information in these studies. We wish that the information provided here will helps other scientists in their studies of the immune response against SARS-CoV-2 after vaccination with new vaccine candidates or infection with upcoming variants.
Collapse
Affiliation(s)
- Ana Lopez-Gomez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Hector F Pelaez-Prestel
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| | - Ignacio Juarez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Chen D, Li X, Hao X, Qiu Y, Song Y, Sun H, Liu Y, Du J, Zhang Y, Xiao F, Song C, Yan Y, Song R, Wang X, Zhao X, Jin R. Reduced neutralization and Fc effector function to Omicron subvariants in sera from SARS-CoV-1 survivors after two doses of CoronaVac plus one dose subunit vaccine. J Med Virol 2023; 95:e29136. [PMID: 37804496 DOI: 10.1002/jmv.29136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron harbors more than 30 mutations of the spike protein and exhibits substantial immune evasion. Although previous study indicated that BNT162b2 messenger RNA vaccine induces potent cross-clade pan-sarbecovirus neutralizing antibodies in survivors of the infection by SARS-CoV-1, the neutralization activity and Fc-mediated effector functions of these cross-reactive antibodies elicited in SARS-CoV-1 survivors to Omicron subvariants still remain largely unknown. In this study, the neutralization activity and Fc-mediated effector functions of antibodies boosted by a third dose vaccination were characterized in SARS-CoV-1 convalescents and healthy individuals. Potent cross-clade broadly neutralizing antibodies were observed in SARS-CoV-1 survivors who received a three-dose vaccination regimen consisting of two priming doses of CoronaVac followed by one booster dose of the protein subunit vaccine ZF2001. However, the induced antibodies exhibited both reduced neutralization and impaired Fc effector functions targeting multiple Omicron subvariants. Importantly, the data also support the notion that immune imprints resulted from SARS-CoV-1 infection may exacerbate the impairment of neutralization activity and Fc-mediated effector functions to Omicron subvariants and provided invaluable information to vaccination strategy in future.
Collapse
Affiliation(s)
- Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Xinglin Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Xiaohua Hao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaruo Qiu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- Peking University Ditan Teaching Hospital, Beijing, China
| | - Yanjun Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Hui Sun
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yongmei Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Fan Xiao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yonghong Yan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Rui Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Xuesen Zhao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| |
Collapse
|
42
|
Abstract
Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.
Collapse
Affiliation(s)
- Tawny L. Chandler
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - Agnes Yang
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - Claire E. Otero
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, United States of America
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, United States of America
| | - Sarah L. Caddy
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
43
|
Pereira PDC, Diniz DG, da Costa ER, Magalhães NGDM, da Silva ADJF, Leite JGS, Almeida NIP, Cunha KDN, de Melo MAD, Vasconcelos PFDC, Diniz JAP, Brites D, Anthony DC, Diniz CWP, Guerreiro-Diniz C. Genes, inflammatory response, tolerance, and resistance to virus infections in migratory birds, bats, and rodents. Front Immunol 2023; 14:1239572. [PMID: 37711609 PMCID: PMC10497949 DOI: 10.3389/fimmu.2023.1239572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Emanuel Ramos da Costa
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Nara Gyzely de Morais Magalhães
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Anderson de Jesus Falcão da Silva
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Jéssica Gizele Sousa Leite
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Natan Ibraim Pires Almeida
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Kelle de Nazaré Cunha
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Mauro André Damasceno de Melo
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Pará, Brazil
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - José Antonio Picanço Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristovam Guerreiro-Diniz
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| |
Collapse
|
44
|
Ouyang MJ, Ao Z, Olukitibi TA, Lawrynuik P, Shieh C, Kung SKP, Fowke KR, Kobasa D, Yao X. Oral Immunization with rVSV Bivalent Vaccine Elicits Protective Immune Responses, Including ADCC, against Both SARS-CoV-2 and Influenza A Viruses. Vaccines (Basel) 2023; 11:1404. [PMID: 37766083 PMCID: PMC10534613 DOI: 10.3390/vaccines11091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 and influenza both cause enormous disease burdens, and vaccines are the primary measures for their control. Since these viral diseases are transmitted through the mucosal surface of the respiratory tract, developing an effective and convenient mucosal vaccine should be a high priority. We previously reported a recombinant vesicular stomatitis virus (rVSV)-based bivalent vaccine (v-EM2/SPΔC1Delta) that protects animals from both SARS-CoV-2 and influenza viruses via intramuscular and intranasal immunization. Here, we further investigated the immune response induced by oral immunization with this vaccine and its protective efficacy in mice. The results demonstrated that the oral delivery, like the intranasal route, elicited strong and protective systemic immune responses against SARS-CoV-2 and influenza A virus. This included high levels of neutralizing antibodies (NAbs) against SARS-CoV-2, as well as strong anti-SARS-CoV-2 spike protein (SP) antibody-dependent cellular cytotoxicity (ADCC) and anti-influenza M2 ADCC responses in mice sera. Furthermore, it provided efficient protection against challenge with influenza H1N1 virus in a mouse model, with a 100% survival rate and a significantly low lung viral load of influenza virus. All these findings provide substantial evidence for the effectiveness of oral immunization with the rVSV bivalent vaccine.
Collapse
Affiliation(s)
- Maggie Jing Ouyang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Titus A. Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Peter Lawrynuik
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
| | - Christopher Shieh
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
| | - Sam K. P. Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada;
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Darwyn Kobasa
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| |
Collapse
|
45
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
46
|
Stoddard CI, Sung K, Yaffe ZA, Weight H, Beaudoin-Bussières G, Galloway J, Gantt S, Adhiambo J, Begnel ER, Ojee E, Slyker J, Wamalwa D, Kinuthia J, Finzi A, Matsen FA, Lehman DA, Overbaugh J. Elevated binding and functional antibody responses to SARS-CoV-2 in infants versus mothers. Nat Commun 2023; 14:4864. [PMID: 37567924 PMCID: PMC10421871 DOI: 10.1038/s41467-023-40554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Infant antibody responses to viral infection can differ from those in adults. However, data on the specificity and function of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in infants, and direct comparisons between infants and adults are limited. Here, we characterize antibody binding and functionality against Wuhan-Hu-1 (B lineage) strain SARS-CoV-2 in convalescent plasma from 36 postpartum women and 14 of their infants infected with SARS-CoV-2 from a vaccine-naïve prospective cohort in Nairobi, Kenya. We find significantly higher antibody titers against SARS-CoV-2 Spike, receptor binding domain and N-terminal domain, and Spike-expressing cell-surface staining levels in infants versus mothers. Plasma antibodies from mothers and infants bind to similar regions of the Spike S2 subunit, including the fusion peptide (FP) and stem helix-heptad repeat 2. However, infants display higher antibody levels and more consistent antibody escape pathways in the FP region compared to mothers. Finally, infants have significantly higher levels of antibody-dependent cellular cytotoxicity (ADCC), though, surprisingly, Spike pseudovirus neutralization titers between infants and mothers are similar. These results suggest infants develop distinct SARS-CoV-2 binding and functional antibody activities and reveal age-related differences in humoral immunity to SARS-CoV-2 infection that could be relevant to protection and COVID-19 disease outcomes.
Collapse
Affiliation(s)
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zak A Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Haidyn Weight
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jared Galloway
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Judith Adhiambo
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Emily R Begnel
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ednah Ojee
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Dalton Wamalwa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Dara A Lehman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
47
|
Grant MD, Bentley K, Fielding CA, Hatfield KM, Ings DP, Harnum D, Wang EC, Stanton RJ, Holder KA. Combined anti-S1 and anti-S2 antibodies from hybrid immunity elicit potent cross-variant ADCC against SARS-CoV-2. JCI Insight 2023; 8:e170681. [PMID: 37338994 PMCID: PMC10445686 DOI: 10.1172/jci.insight.170681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Antibodies capable of neutralizing SARS-CoV-2 are well studied, but Fc receptor-dependent antibody activities that can also significantly impact the course of infection have not been studied in such depth. Since most SARS-CoV-2 vaccines induce only anti-spike antibodies, here we investigated spike-specific antibody-dependent cellular cytotoxicity (ADCC). Vaccination produced antibodies that weakly induced ADCC; however, antibodies from individuals who were infected prior to vaccination (hybrid immunity) elicited strong anti-spike ADCC. Quantitative and qualitative aspects of humoral immunity contributed to this capability, with infection skewing IgG antibody production toward S2, vaccination skewing toward S1, and hybrid immunity evoking strong responses against both domains. A combination of antibodies targeting both spike domains support strong antibody-dependent NK cell activation, with 3 regions of antibody reactivity outside the receptor-binding domain (RBD) corresponding with potent anti-spike ADCC. Consequently, ADCC induced by hybrid immunity with ancestral antigen was conserved against variants containing neutralization escape mutations in the RBD. Induction of antibodies recognizing a broad range of spike epitopes and eliciting strong and durable ADCC may partially explain why hybrid immunity provides superior protection against infection and disease compared with vaccination alone, and it demonstrates that spike-only subunit vaccines would benefit from strategies that induce combined anti-S1 and anti-S2 antibody responses.
Collapse
Affiliation(s)
- Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kirsten Bentley
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ceri A. Fielding
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Keeley M. Hatfield
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Danielle P. Ings
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Debbie Harnum
- Eastern Health Regional Health Authority, St. John’s, Newfoundland, Canada
| | - Eddie C.Y. Wang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kayla A. Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
48
|
Gao ZZ, Jiao JY, Zhou YQ, Qi J, Zhu SS, Xu JY, Nie L, Wang HB. A novel monospecific tetravalent IgG1-(scFv) 2 version shown enhanced neutralizing and Fc-mediated effector functions against SARS-CoV-2. 3 Biotech 2023; 13:283. [PMID: 37501919 PMCID: PMC10368608 DOI: 10.1007/s13205-023-03702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Neutralizing monoclonal antibodies (nMABs) have been proved to be effective therapeutics in treating coronavirus disease (COVID-19). To enhance the potency of nMAB 553-15, we generated a novel monospecific tetravalent IgG1-(scFv)2 version. This was achieved by covalently fusing two forms of 553-15-derived single chain variable fragments (scFv) to the C-terminus of the hIgG1 (human Immunoglobulin G1) Fc fragment. We found that the Fc-fused VL-linker-VH format achieved similar binding affinity and neutralizing behavior as 553-15. The tetravalent versions were constructed by fusing the scFv domains to the C-terminus of nMAB 553-15. As a result, the tetravalent version 55,315-VLVH exhibited significantly higher binding activity to target spike protein variants and enhanced neutralization against VOCs (variants of concern) pseudovirus compared to 553-15. We also measured the Fc effector responses of candidates using wild-type Spike-expressing CHOK1 cells. The 55,315-VLVH enhanced the function of ADCP (antibody-dependent cellular phagocytosis) but had similar IL-6 release levels compared to the bivalent 553-15. It seemed that the novel tetravalent version avoids the pro-inflammatory effect induced by macrophage activation. However, the 55,315-VLVH displayed slightly increased potency in ADCC (antibody-dependent cell-mediated cytotoxicity) and CDC (complement-dependent cytotoxicity), which might contribute to higher systemic inflammation. Further investigation is necessary to determine whether the tetravalent version is beneficial to balance efficiency and safety against COVID-19.
Collapse
Affiliation(s)
- Zhang-zhao Gao
- BioRay Biopharmaceutical Co., Ltd., Taizhou, 318000 Zhejiang China
- Hisun Biopharmaceutical Co., Ltd., Hangzhou, 311404 Zhejiang China
| | - Jing-yu Jiao
- BioRay Biopharmaceutical Co., Ltd., Taizhou, 318000 Zhejiang China
- Hisun Biopharmaceutical Co., Ltd., Hangzhou, 311404 Zhejiang China
| | - Ya-qiong Zhou
- BioRay Biopharmaceutical Co., Ltd., Taizhou, 318000 Zhejiang China
- Hisun Biopharmaceutical Co., Ltd., Hangzhou, 311404 Zhejiang China
| | - Jian Qi
- BioRay Biopharmaceutical Co., Ltd., Taizhou, 318000 Zhejiang China
- Hisun Biopharmaceutical Co., Ltd., Hangzhou, 311404 Zhejiang China
| | - Shan-shan Zhu
- BioRay Biopharmaceutical Co., Ltd., Taizhou, 318000 Zhejiang China
- Hisun Biopharmaceutical Co., Ltd., Hangzhou, 311404 Zhejiang China
| | - Jing-ya Xu
- BioRay Biopharmaceutical Co., Ltd., Taizhou, 318000 Zhejiang China
- Hisun Biopharmaceutical Co., Ltd., Hangzhou, 311404 Zhejiang China
| | - Lei Nie
- BioRay Biopharmaceutical Co., Ltd., Taizhou, 318000 Zhejiang China
- Hisun Biopharmaceutical Co., Ltd., Hangzhou, 311404 Zhejiang China
| | - Hai-bin Wang
- BioRay Biopharmaceutical Co., Ltd., Taizhou, 318000 Zhejiang China
- Hisun Biopharmaceutical Co., Ltd., Hangzhou, 311404 Zhejiang China
| |
Collapse
|
49
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|