1
|
Hasegawa R, Poulin R, Salloum PM. Testing for Consistency in Co-occurrence Patterns Among Bacterial Taxa Across the Microbiomes of Four Different Trematode Parasites. MICROBIAL ECOLOGY 2025; 88:45. [PMID: 40382531 DOI: 10.1007/s00248-025-02545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Elucidating the specific processes and drivers of community assembly in the host microbiome is essential to fully understand host biology. Toward this goal, an important first step is to describe co-occurrence patterns among different microbial taxa, which can be driven by numerous factors, such as host identity. While host identity can be an important influential factor on co-occurrence patterns, a limited number of studies have explored the relative importance of host identity after controlling for other environmental factors. Here, we examined microbial co-occurrence patterns in four phylogenetically distinct trematode species living within the same snail species, collected concomitantly from the same habitat. Our previous study determined that all these trematodes shared some bacterial taxa, and the relative abundance of microbial taxa differed among trematodes, possibly due to differences in their eco-physiological traits. Here, we specifically predict that pairwise microbial co-occurrence patterns also vary among trematode host species. Our results showed that co-occurrence patterns among eight microbial families varied greatly among the four trematode hosts, with some microbial families co-occurring in some trematode species, whereas no such patterns were observed in other trematodes. Our study suggests that the habitat identity (trematode species) and its associated biotic characteristics, such as physiological and ecological traits, can determine co-occurrence patterns among microbial taxa, with substantial effects on local community composition.
Collapse
Affiliation(s)
- Ryota Hasegawa
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Priscila M Salloum
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
2
|
Xu C, Guo X, Li L. Metagenomic Comparison of Gut Microbes of Lemur catta in Captive and Semi-Free-Range Environments. Animals (Basel) 2025; 15:1442. [PMID: 40427319 PMCID: PMC12108194 DOI: 10.3390/ani15101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
In order to protect endangered species, many zoos adopt diverse rearing models to achieve optimal conservation outcomes. This study employed metagenomic approaches to assess differences in the fecal microbiome of captive and semi-free-ranging ring-tailed lemurs (Lemur catta). The results show that captivity significantly altered the microbial community structure. The inter-individual variability in the microbial community within the captive-bred (CB) group was lower than that in the semi-free-ranging (FR) group, yet these individuals harbored a higher abundance of potential pathogens (Treponema_D). In contrast, microbial genera associated with fiber degradation and short-chain fatty acid production in the FR group were significantly elevated (Faecalibacterium, Roseburia, and Megamonas) as compared to the CB group. Environmental variations between the two rearing systems led to distinct profiles in microbial functions and carbohydrate-active enzyme gene composition. Notably, the FR group of lemurs exhibited an increased abundance of enzyme genes associated with the degradation of complex polysaccharides (cellulose, hemicellulose, and pectin), suggesting that their diet, rich in natural plant fibers, enhances the capacity of their gut microbiota to extract essential energy and nutrients. Conversely, the CB group displayed a more homogeneous microbial community with a higher prevalence of potential pathogens, implying that a captive lifestyle may negatively impact gastrointestinal health. These findings offer valuable insights into the influence of rearing conditions on gut microbial ecology and its potential implications for the health management of ring-tailed lemurs.
Collapse
Affiliation(s)
- Chunzhong Xu
- Shanghai Wild Animal Park, Shanghai 201399, China;
| | - Xinzi Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
3
|
Wright RJ, Langille MGI. PICRUSt2-SC: an update to the reference database used for functional prediction within PICRUSt2. Bioinformatics 2025; 41:btaf269. [PMID: 40293718 PMCID: PMC12089645 DOI: 10.1093/bioinformatics/btaf269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025] Open
Abstract
SUMMARY PICRUSt2 is a bioinformatic tool that predicts microbial functions in amplicon sequencing data using a database of annotated reference genomes. We have constructed an updated database for PICRUSt2 that has substantially increased the number of bacterial (19,493 to 26,868) and archaeal (406 to 1,002) genomes as well as the number of functional annotations present. The previous PICRUSt2 database relied on many timely and computationally intensive manual processes that made it difficult to update. We constructed a new streamlined process to allow regular upgrades to the PICRUSt2 database on an ongoing basis, and used this process to create a new database, PICRUSt2-SC (Sugar-Coated). Additionally, we have shown that this updated database contains genomes that more closely match study sequences from a range of different environments. The genomes contained in the database therefore better represent these environments and this leads to an improvement in the predicted functional annotations obtained from PICRUSt2. AVAILABILITY AND IMPLEMENTATION PICRUSt2 source code is freely available at https://github.com/picrust/picrust2 and at https://anaconda.org/bioconda/picrust2. The latest version of PICRUSt2 at the time of writing is also archived: https://doi.org/10.5281/zenodo.15119781. The PICRUSt2-SC database comes pre-installed with PICRUSt2 from version 2.6.0 onwards. Step-by-step instructions for making the updated database are at https://github.com/picrust/picrust2/wiki/Updating-the-PICRUSt2-database. All code used for the analyses and figures in this manuscript is at https://github.com/R-Wright-1/PICRUSt2-SC_application_note and https://doi.org/10.5281/zenodo.15119770.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Morgan G I Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
4
|
Wang Y, Shi M, Wu J, Han X, Li M, Wu Y, Jiang Y, Zhang H, Liu S, Hu D. Variations in Intestinal Microbiota Among Three Species in the Cervidae Family Under the Same Feeding Conditions. Vet Sci 2025; 12:438. [PMID: 40431531 PMCID: PMC12115930 DOI: 10.3390/vetsci12050438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
The breeding of large animals in the family Cervidae in China contributes to achieving two tasks: restoring the provenance of wild populations and providing raw materials for traditional Chinese medicine. Currently, red deer (Cervus elaphus), sika deer (C. nippon), and white-lipped deer (C. albirostris) maintain a large number of breeding populations. Some studies on the relationship between the intestinal microbiota and the feed of these deer have been conducted; however, owing to differences in feeding conditions between studies, it has been impossible to compare the intestinal microecology and related adaptability between species. Therefore, the present study is aiming to investigate whether the differences in intestinal microbiota of the three deer species are related to the distance of phylogenetic relationships under the same feeding environment. On this basis, we discuss whether there are differences in the adaptability of the intestinal microbiota of the three deer species to feed nutrients, deepen the understanding of the relationship between the three deer intestinal microbiota and feed nutrition, and provide basic data for improving the scientific feeding of the three deer species. In this study, 16S rRNA high-throughput sequencing technology was utilized to analyze the intestinal microbiota in feces of the abovementioned healthy deer species. The results of this study indicated that the intestinal microbiota diversity and relative abundance in female white-lipped deer (FWLD) were significantly lower than those in female sika deer (FSD) and female red deer (FRD; p < 0.05); however, there was no significant difference between the latter two groups (p > 0.05). The community compositions of the intestinal microbiota in FSD and FRD were more similar, whereas that of FWLD was significantly different from those of the first two groups. Firmicutes and Bacteroidetes were the most abundant phyla in the intestinal microbiota of all three deer species, and Ruminococcceae_UCG-005 was the most abundant genus. No known obligatory pathogenic bacteria were observed in any sample. The relative abundance of the operational taxonomic units Christensenellaceae_R-7_group, Treponema_2, and Akkermansia exhibited significant differences among FSD, FRD, and FWLD, respectively. Therefore, the phylogenetic relatedness of the three deer species appears to play a major role in their intestinal microecology under the same feeding conditions-the greater the phylogenetic relatedness between hosts, the more similar is their intestinal microbiota. In addition, the PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) function prediction results indicated that FSD were less capable than FRD and FWLD in the functional category of nutrient metabolism, and FWLD were less capable than FSD and FRD in the functional category of intestinal absorption. These results indicated that there may be differences in the nutritional adaptation abilities of the three deer species under different feeding conditions. In summary, these results revealed the differences in intestinal microbiota among the three deer species under the same food conditions, indicating that the intestinal microbiota of the three deer species had significant differences in food adaptation. Based on this, the nutritional supply of feed for the three deer should consider the species differences.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China (S.L.)
| |
Collapse
|
5
|
Greene LK, Andriatiavina T, Foss ED, Andriantsalohimisantatra A, Rivoharison TV, Rakotoarison F, Randriamboavonjy T, Yoder AD, Ratsoavina F, Blanco MB. The gut microbiome of Madagascar's lemurs from forest fragments in the central highlands. Primates 2025; 66:313-325. [PMID: 39976822 DOI: 10.1007/s10329-025-01182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/03/2025] [Indexed: 04/23/2025]
Abstract
The gut microbiome is now understood to play essential roles in host nutrition and health and has become a dominant research focus in primatology. Over the past decade, research has clarified the evolutionary traits that govern gut microbiome structure across species and the ecological traits that further influence consortia within them. Nevertheless, we stand to gain resolution by sampling hosts in understudied habitats. We focus on the lemurs of Madagascar's central highlands. Madagascar's highlands have a deep history as heterogeneous grassland-forest mosaics, but due to significant anthropogenic modification, have long been overlooked as lemur habitat. We collected fecal samples from Verreaux's sifakas (Propithecus verreauxi), common brown lemurs (Eulemur fulvus), and Goodman's mouse lemurs (Microcebus lehilahytsara) inhabiting two protected areas in the highlands and used amplicon sequencing to determine gut microbiome diversity and membership. As expected, the lemurs harbored distinct gut consortia tuned to their feeding strategies. Mouse lemurs harbored abundant Bifidobacterium and Alloprevotella that are implicated in gum metabolism, sifakas harbored abundant Lachnospiraceae that are implicated in leaf-fiber metabolism, and brown lemurs harbored diverse consortia with abundant WCBH1-41 that could be associated with frugivory in harsh seasons and habitats. Within brown lemurs, a suite of bacteria varied between seed-packed and leaf-packed feces, a proxy for dietary intakes, collected from the same group over days. Our results underscore the evolutionary and ecological factors that govern primate gut microbiomes. More broadly, we showcase the forests of Madagascar's central highlands as rich habitat for future research of lemur ecology and evolution.
Collapse
Affiliation(s)
- Lydia K Greene
- Department of Biology, Duke University, Durham, NC, USA.
- Duke Lemur Center, Duke University, Durham, NC, USA.
| | - Tsinjo Andriatiavina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Elissa D Foss
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | | | | | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | - Fanomezana Ratsoavina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Marina B Blanco
- Department of Biology, Duke University, Durham, NC, USA
- Duke Lemur Center, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Maaskant A, Lee D, Ngo H, Montijn RC, Bakker J, Langermans JAM, Levin E. AI for rapid identification of major butyrate-producing bacteria in rhesus macaques (Macaca mulatta). Anim Microbiome 2025; 7:39. [PMID: 40275402 PMCID: PMC12020216 DOI: 10.1186/s42523-025-00410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND The gut microbiome plays a crucial role in health and disease, influencing digestion, metabolism, and immune function. Traditional microbiome analysis methods are often expensive, time-consuming, and require specialized expertise, limiting their practical application in clinical settings. Evolving artificial intelligence (AI) technologies present opportunities for developing alternative methods. However, the lack of transparency in these technologies limits the ability of clinicians to incorporate AI-driven diagnostic tools into their healthcare systems. The aim of this study was to investigate an AI approach that rapidly predicts different bacterial genera and bacterial groups, specifically butyrate producers, from digital images of fecal smears of rhesus macaques (Macaca mulatta). In addition, to improve transparency, we employed explainability analysis to uncover the image features influencing the model's predictions. RESULTS By integrating fecal image data with corresponding metagenomic sequencing information, the deep learning (DL) and machine learning (ML) algorithms successfully predicted 16 individual bacterial genera (area under the curve (AUC) > 0.7) among the 50 most abundant genera in rhesus macaques (Macaca mulatta). The model was successful in predicting functional groups, major butyrate producers (AUC 0.75) and a mixed group including fermenters and short-chain fatty acid (SCFA) producers (AUC 0.81). For both models of butyrate producers and mixed fermenters, the explainability experiments revealed no decline in the AUC when random noise was added to the images. Increased blurring led to a gradual decline in the AUC. The model's performance was robust against the impact of fecal shape from smearing, with a stable AUC maintained until patch 4 for all groups, as assessed through scrambling. No significant correlation was detected between the prediction probabilities and the total fecal weight used in the smear; r = 0.30 ± 0.3 (p > 0.1) and r = 0.04 ± 0.36 (p > 0.8) for the butyrate producers and mixed fermenters, respectively. CONCLUSION Our approach demonstrated the ability to predict a wide range of clinically relevant microbial genera and microbial groups in the gut microbiome based on digital images from a fecal smear. The models proved to be robust to the smearing method, random noise and the amount of fecal matter. This study introduces a rapid, non-invasive, and cost-effective method for microbiome profiling, with potential applications in veterinary diagnostics.
Collapse
Affiliation(s)
- Annemiek Maaskant
- Biomedical Primate Research Centre, Lange Kleiweg 161, Rijswijk, 2288 GJ, Netherlands.
- Department Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, Utrecht, 3584 CM, Netherlands.
| | - Donghyeok Lee
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, Netherlands
| | - Huy Ngo
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, Netherlands
| | - Roy C Montijn
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, Netherlands
| | - Jaco Bakker
- Biomedical Primate Research Centre, Lange Kleiweg 161, Rijswijk, 2288 GJ, Netherlands
| | - Jan A M Langermans
- Biomedical Primate Research Centre, Lange Kleiweg 161, Rijswijk, 2288 GJ, Netherlands
- Department Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, Utrecht, 3584 CM, Netherlands
| | - Evgeni Levin
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, Netherlands.
| |
Collapse
|
7
|
Degregori S, Wang X, Kommala A, Schulhof N, Moradi S, MacDonald A, Eblen K, Jukovich S, Smith E, Kelleher E, Suzuki K, Hall Z, Knight R, Amato KR. Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices. Biol Rev Camb Philos Soc 2025; 100:748-763. [PMID: 39530277 PMCID: PMC11885713 DOI: 10.1111/brv.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Comparative approaches in animal gut microbiome research have revealed patterns of phylosymbiosis, dietary and physiological convergences, and environment-host interactions. However, most large-scale comparative studies, especially those that are highly cited, have focused on mammals, and efforts to integrate comparative approaches with existing ecological frameworks are lacking. While mammals serve as useful model organisms, developing generalised principles of how animal gut microbiomes are shaped and how these microbiomes interact bidirectionally with host ecology and evolution requires a more complete sampling of the animal kingdom. Here, we provide an overview of what past comparative studies have taught us about the gut microbiome, and how community ecology theory may help resolve certain contradictions in comparative gut microbiome research. We explore whether certain hypotheses are supported across clades, and how the disproportionate focus on mammals has introduced potential bias into gut microbiome theory. We then introduce a methodological solution by which public gut microbiome data of understudied hosts can be compiled and analysed in a comparative context. Our aggregation and analysis of 179 studies shows that generating data sets with rich host diversity is possible with public data and that key gut microbes associated with mammals are widespread across the animal kingdom. We also show the effects that sample size and taxonomic rank have on comparative gut microbiome studies and that results of multivariate analyses can vary significantly with these two parameters. While challenges remain in developing a universal model of the animal gut microbiome, we show that existing ecological frameworks can help bring us one step closer to integrating the gut microbiome into animal ecology and evolution.
Collapse
Affiliation(s)
- Samuel Degregori
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Xiaolin Wang
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Akhil Kommala
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Noah Schulhof
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Sadaf Moradi
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Allison MacDonald
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kaitlin Eblen
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Sophia Jukovich
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emma Smith
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emily Kelleher
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kota Suzuki
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Zoey Hall
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Rob Knight
- Department of PediatricsUniversity of CaliforniaSan DiegoLa JollaCA92093USA
| | - Katherine Ryan Amato
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| |
Collapse
|
8
|
Zubillaga-Martín D, Solórzano-García B, Yanez-Montalvo A, de León-Lorenzana A, Falcón LI, Vázquez-Domínguez E. Gut microbiota signatures of the three Mexican primate species, including hybrid populations. PLoS One 2025; 20:e0317657. [PMID: 40100798 PMCID: PMC11918351 DOI: 10.1371/journal.pone.0317657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/02/2025] [Indexed: 03/20/2025] Open
Abstract
Diversity of the gut microbiota has proven to be related with host physiology, health and behavior, influencing host ecology and evolution. Gut microbial community relationships often recapitulate primate phylogeny, suggesting phylosymbiotic associations. Howler monkeys (Alouatta) have been a model for the study of host-gut microbiota relationships, showing the influence of different host related and environmental factors. Differences in life-history traits and feeding behavior with other atelids, like spider monkeys, may reveal distinct patterns of bacterial gut communities, yet few wild populations have been studied; likewise, gut microbiota studies of hybrid populations are mostly lacking. We analyzed diversity and abundance patterns of the gut microbiota of wild populations of the three Mexican primates Ateles geoffroyi, Alouatta palliata and A. pigra from different regions across its distribution in the country, including sympatric localities and the Alouatta hybrid zone. Interspecific differences in gut microbial diversity were higher than intraspecific differences, concordant with phylosymbiosis. Ateles harbored the more differentiated diversity with a major presence of rare taxa, while differences were less strong between Alouatta species. Hybrids had a microbial diversity in-between their parental species, yet also showing unique microbe taxa. Genetic distances between Alouatta individuals correlated positively with their gut microbial dissimilarities. Results show that interspecific and intraspecific overall diversity, abundance and composition patterns are affected by environment, geographic distribution and host genetics. Our study provides the first comprehensive study of gut microbiota of the three Mexican primates and hybrid populations.
Collapse
Affiliation(s)
- Diego Zubillaga-Martín
- Laboratorio de Genética y Ecología, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Brenda Solórzano-García
- Laboratorio de Parasitología y Medicina de la Conservación, ENES-Mérida U.N.A.M., Ucú, Yucatán, México
| | - Alfredo Yanez-Montalvo
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Arit de León-Lorenzana
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Luisa I. Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Ella Vázquez-Domínguez
- Laboratorio de Genética y Ecología, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
9
|
Dias BDC, Lamarca AP, Machado DT, Kloh VP, de Carvalho FM, Vasconcelos ATR. Metabolic pathways associated with Firmicutes prevalence in the gut of multiple livestock animals and humans. Anim Microbiome 2025; 7:20. [PMID: 40033444 PMCID: PMC11874851 DOI: 10.1186/s42523-025-00379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Dynamic interspecific interactions and environmental factors deeply impact the composition of microbiotic communities in the gut. These factors intertwined with the host's genetic background and social habits cooperate synergistically as a hidden force modulating the host's physiological and health determinants, with certain bacterial species being maintained from generation to generation. Firmicutes, one of the dominant bacterial phyla present across vertebrate classes, exhibits a wide range of functional capabilities and colonization strategies. While ecological scenarios involving microbial specialization and metabolic functions have been hypothesized, the specific mechanisms that sustain the persistence of its microbial taxa in a high diversity of hosts remain elusive. This study fills this gap by investigating the Firmicutes metabolic mechanisms contributing to their prevalence and heritability in the host gut on metagenomes-assembled bacterial genomes collected from 351 vertebrate samples, covering 18 food-producing animals and humans, specific breeds and closely-related species. We observed that taxa belonging to Acetivibrionaceae, Clostridiaceae, Lachnospiraceae, Ruminococcaceae, and the not well understood CAG-74 family were evolutionarily shared across all hosts. These prevalent taxa exhibit metabolic pathways significantly correlated with extra-host survival mechanisms, cell adhesion, colonization and host transmission, highlighted by sporulation, glycan biosynthesis, bile acid metabolism, and short-chain fatty acid encoded genes. Our findings provide a deeper understanding of the ecological foundations governing distinct transmission modes, effective colonization establishment, and maintenance of Firmicutes, offering new perspectives on both well-known and poorly characterized species.
Collapse
Affiliation(s)
- Beatriz do Carmo Dias
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Alessandra Pavan Lamarca
- Laboratório de Bioinformática e Evolução Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Vinicius Prata Kloh
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | | | | |
Collapse
|
10
|
Hu Y, Wang ML, Yang RL, Shao ZK, Du YH, Kang Y, Zhu YX, Xue XF. Symbiotic bacteria play crucial roles in a herbivorous mite host suitability. PEST MANAGEMENT SCIENCE 2025; 81:1657-1668. [PMID: 39623774 DOI: 10.1002/ps.8571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND The tomato russet mite (TRM), Aculops lycopersici, is a strictly herbivorous and economically significant pest that infests Solanaceae plants, but its host suitability varies, showing high performance on tomatoes. Although symbiotic bacteria have been suggested to play crucial roles in the host adaptation of herbivores, their effects on TRM remain unclear. RESULTS In this study, using next generation high-throughput sequencing of the bacterial 16S rRNA data, we identified the bacterial diversity and community composition of TRM feeding on tomato, eggplant, and chili. Our results show no significant difference in the bacterial community composition of TRM across three host plants. However, the relative density of Escherichia coli (TRM_Escherichia) showed 9.36-fold higher on tomato than on eggplant and chili. These results align with the observed TRM performance among three host plants. When TRM_Escherichia was reduced using antibiotics, the treated TRM decreased the population density on tomato. However, when we transferred TRM from eggplant to tomato, the population density of TRM increased, coinciding with an increase of the TRM_Escherichia density. These results indicate that TRM_Escherichia may affect the host suitability of TRM. Our fluorescence in situ hybridization (FISH) results further showed that TRM_Escherichia is primarily distributed in the salivary glands. Metagenomic data results suggest that TRM_Escherichia functions in food digestion and energy metabolism. CONCLUSION We provided the first comprehensive analysis of TRM bacterial communities. Our findings demonstrate that the symbiotic bacterium TRM_Escherichia may play crucial roles in the suitability of TRM feeding on different Solanaceae hosts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Mei-Ling Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ruo-Lan Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Zi-Kai Shao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yun-Hao Du
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yi Kang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Lan LY, Liu TC, Gao SM, Li Q, Yang L, Fei HL, Zhong XK, Wang YX, Zhu CY, Abel C, Kappeler PM, Huang LN, Fan PF. Comparative study of gut microbiota reveals the adaptive strategies of gibbons living in suboptimal habitats. NPJ Biofilms Microbiomes 2025; 11:29. [PMID: 39953051 PMCID: PMC11828964 DOI: 10.1038/s41522-025-00653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025] Open
Abstract
Wild animals face numerous challenges in less ideal habitats, including the lack of food as well as changes in diet. Understanding how the gut microbiomes of wild animals adapt to changes in food resources within suboptimal habitats is critical for their survival. Therefore, we conducted a longitudinal sampling of three gibbon species living in high-quality (Nomascus hainanus) and suboptimal (Nomascus concolor and Hoolock tianxing) habitats to address the dynamics of gut microbiome assembly over one year. The three gibbon species exhibited significantly different gut microbial diversity and composition. N. hainanus showed the lowest alpha diversity and highest nestedness, suggesting a more specialized and potentially stable microbial community in terms of composition, while H. tianxing displayed high species turnover and low nestedness, reflecting a more dynamic microbial ecosystem, which may indicate greater sensitivity to environmental changes or a flexible response to habitat variability. The gut microbial community of N. concolor was influenced by homogeneous selection in the deterministic process, primarily driven by Prevotellaceae. In contrast, the gut microbial communities of H. tianxing and N. hainanus were influenced by dispersal limitation in the stochastic process, driven by Acholeplasmataceae and Fibrobacterota, respectively. Further, the microbial response patterns to leaf feeding in N. hainanus differed from those of the other two gibbon species. In conclusion, this first cross-species comparative study provides initial insights into the different ecological adaptive strategies of gut microbiomes from a point of community assembly, which could contribute to the long-term conservation of wild primates. In this study, we conducted longitudinal sampling of three gibbon species living in high-quality (Nomascus hainanus) and suboptimal (Nomascus concolor and Hoolock tianxing) habitats to address the dynamics of gut microbiome (composition, alpha diversity, beta diversity and assembly process) over one year.
Collapse
Affiliation(s)
- Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tai-Cong Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Li Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Han-Lan Fei
- College of Life Sciences, China West Normal University, Nanchong, P.R. China
| | - Xu-Kai Zhong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yu-Xin Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chang-Yue Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Christoph Abel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
12
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2025; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Ma F, Ma R, Zhao L. Effects of Antimicrobial Peptides on Antioxidant Properties, Non-specific Immune Response and Gut Microbes of Tsinling Lenok Trout (Brachymystax lenok tsinlingensis). Biochem Genet 2025; 63:85-103. [PMID: 38411941 DOI: 10.1007/s10528-024-10708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Antimicrobial peptides (AMPs) are an important part of non-specific immunity and play a key role in the cellular host defense against pathogens and tissue injury infections. We investigated the effects of AMP supplementation on the antioxidant capacity, non-specific immunity, and gut microbiota of tsinling lenok trout. 240 fish were fed diets (CT, A120, A240 and A480) containing different amounts of AMP peptides (0, 120 mg kg-1, 240 mg kg-1, 480 mg kg-1) for 8 weeks. Our results showed that the activity of total antioxidant capacity (T-SOD) and glutathione peroxidase (GSH-Px), lysozyme (LZM), catalase (CAT) and acid phosphatase (ACP) in the A240 and A480 group were higher than that in the CT group (P < 0.05). The content of malondialdehyde (MDA) in AMP group was significantly lower than that in CT group (P < 0.05). Furthermore, we harvested the mid-gut and applied next-generation sequencing of 16S rDNA. The results showed that the abundance of Halomonas in AMP group was significantly lower than that in CT group. Functional analysis showed that the abundance of chloroalkane and chloroalkene degradation pathway increased significantly in AMP group. In conclusion, AMP enhanced the antioxidant capacity, non-specific immunity, and intestinal health of tsinling lenok trout.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China.
| | - Ruilin Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| | - Lei Zhao
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| |
Collapse
|
14
|
Donohue ME, Lamb A, Absangba AE, Noromalala E, Weisenbeck DR, Stumpf RM, Wright PC. Why Didn't the Sifaka Cross the Road? Divergence of Propithecus edwardsi Gut Microbiomes Across Geographic Barriers in Ranomafana National Park, Madagascar. Am J Primatol 2025; 87:e23732. [PMID: 39905243 PMCID: PMC11794673 DOI: 10.1002/ajp.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
This study uses a biogeographic framework to identify patterns of gut microbiome divergence in an endangered lemur species endemic to Madagascar's southeastern rainforests, the Milne-Edwards's sifaka (Propithecus edwardsi). Specifically, we tested the effects of (1) geographic barriers, (2) habitat disturbance, and (3) geographic distance on gut microbiome alpha and beta diversity. We selected 10 social groups from 4 sites in Ranomafana National Park with varied histories of selective logging. Sites were spaced between 4 and 17 km apart falling on either side of two parallel barriers to animal movement: the Namorona River and the RN25 highway. Using 16S rRNA metabarcoding, we found the greatest beta diversity differentiation to occur between social groups, with significant divisions on opposite sides of geographic barriers (road/river). Habitat disturbance had the most significant effect on alpha diversity, though, contrary to many other studies, disturbance was associated with higher microbial species richness. Without biomedical context, it is unclear whether microbiome differences observed herein are neutral, adaptive, or maladaptive. However, microbiome divergence associated with the road/river may be a symptom of reduced host gene flow, warranting further investigation and perhaps conservation action (e.g., construction of wildlife bridges). Finally, this work demonstrates that significant microbiome variation can accrue over small sampling areas, lending new insight into host-microbe-environmental interactions.
Collapse
Affiliation(s)
- Mariah E. Donohue
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Biological SciencesBinghamton UniversityBinghamtonNew YorkUSA
| | - Alicia Lamb
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNew YorkUSA
- The Wild CenterTupper LakeNew YorkUSA
| | - Abigail E. Absangba
- Department of AnthropologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of AnthropologyNew York UniversityNew YorkNew YorkUSA
| | - Eliette Noromalala
- Anthropobiologie et Développement DurableUniversité AntananarivoAntananarivoMarylandUSA
- Department of AnthropologyThe University of Texas at AustinAustinTexasUSA
| | | | - Rebecca M. Stumpf
- Department of AnthropologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Patricia C. Wright
- Centre ValBio Research StationFianarantsoaMarylandUSA
- Department of AnthropologyStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
15
|
Zhang C, Yu Y, Yue L, Chen Y, Chen Y, Liu Y, Guo C, Su Q, Xiang Z. Gut microbiota profiles of sympatric snub-nosed monkeys and macaques in Qinghai-Tibetan Plateau show influence of phylogeny over diet. Commun Biol 2025; 8:95. [PMID: 39833341 PMCID: PMC11747120 DOI: 10.1038/s42003-025-07538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The unique environment of the Qinghai-Tibetan Plateau provides a great opportunity to study how primate intestinal microorganisms adapt to ecosystems. The 16S rRNA gene amplicon and metagenome analysis were conducted to investigate the correlation between gut microbiota in primates and other sympatric animal species living between 3600 and 4500 m asl. Results showed that within the same geographical environment, Macaca mulatta and Rhinopithecus bieti exhibited a gut microbiome composition similar to that of Tibetan people, influenced by genetic evolution of host, while significantly differing from other distantly related animals. The gut microbiota of plateau species has developed similar strategies to facilitate their hosts' adaptation to specific environments, including broadening its dietary niche and enhancing energy absorption. These findings will enhance our comprehension of the significance of primate gut microbiota in adapting to specific habitats.
Collapse
Affiliation(s)
- Chen Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Yu
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ling Yue
- Panzhihua Animal Disease Prevention and Control Center, Panzhihua, Sichuan, China
| | - Yi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yixin Chen
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Liu
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Cheng Guo
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qianqian Su
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Zuofu Xiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| |
Collapse
|
16
|
Neha SA, Hanson JD, Wilkinson JE, Bradley RD, Phillips CD. Impacts of host phylogeny, diet, and geography on the gut microbiome of rodents. PLoS One 2025; 20:e0316101. [PMID: 39820176 PMCID: PMC11737772 DOI: 10.1371/journal.pone.0316101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Mammalian gut microbial communities are thought to play a variety of important roles in health and fitness, including digestion, metabolism, nutrition, immune response, behavior, and pathogen protection. Gut microbiota diversity among hosts is strongly shaped by diet as well as phylogenetic relationships among hosts. Although various host factors may influence microbial community structure, the relative contribution may vary depending on several variables, such as taxonomic scales of the species studied, dietary patterns, geographic location, and gut physiology. The present study focused on 12 species of rodents representing 3 rodent families and 3 dietary guilds (herbivores, granivores, and omnivores) to evaluate the influence of host phylogeny, dietary guild and geography on microbial diversity and community composition. Colon samples were examined from rodents that were collected from 7 different localities in Texas and Oklahoma which were characterized using 16S rRNA gene amplicon sequencing targeting the V1-V3 variable regions. The microbiota of colon samples was largely dominated by the family Porphyromonadaceae (Parabacteriodes, Coprobacter) and herbivorous hosts harbored richer gut microbial communities than granivores and omnivores. Differential abundance analysis showed significant trends in the abundance of several bacterial families when comparing herbivores and granivores to omnivores, however, there were no significant differences observed between herbivores and granivores. The gut microbiotas displayed patterns consistent with phylosymbiosis as host phylogeny explained more variation in gut microbiotas (34%) than host dietary guilds (10%), and geography (3%). Overall, results indicate that among this rodent assemblage, evolutionary relatedness is the major determinant of microbiome compositional variation, but diet and to a lesser extent geographic provenance are also influential.
Collapse
Affiliation(s)
- Sufia Akter Neha
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - John D. Hanson
- Blackhawk Genomics, Lubbock, Texas, United States of America
| | | | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, Texas, United States of America
| | - Caleb D. Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
17
|
Dib L, da Silva B, Correa L, Pissinatti A, Moreira S, Tavares MC, Teixeira R, da Costa AL, Muniz JA, Junglos A, Hirano ZM, Dada A, da Silva S, Amendoeira MR, Barbosa A. Diversity of the Amoebozoa and Ciliophora Groups in Non-Human Primates Kept Ex Situ and in Their Handlers in Different Institutions in Brazil. Pathogens 2025; 14:56. [PMID: 39861017 PMCID: PMC11769305 DOI: 10.3390/pathogens14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Parasitic infections in non-human primates (NHPs) kept ex situ can be caused by zoonotic protists like Balantioides coli and Entamoeba histolytica. In Brazil, little is known about these infections in neotropical species. This study aimed to identify Amoebozoa and Ciliophora groups in fecal samples through in vitro isolation and molecular analysis, mapping their distribution in Brazil. Among 511 NHP and 74 handler's fecal samples, Amoebozoa were found in 61 (11.9%) NHP samples, and Ciliophora in 6 (1.2%). Amoebic cysts were present in 12 (16.2%) human samples. Iodamoeba sp. from S. xanthosternos, E. coli from a handler, and B. coli from P. troglodytes and A. guariba were isolated in vitro. Molecular techniques identified E. dispar (34.2%), E. histolytica (5.1%), E. hartmanni (26.6%), E. coli (15.2%), Iodamoeba sp. (12.6%), E. nana (8.9%), and B. coli (7.6%). Greater protist diversity occurred in northern and southeastern regions, with E. histolytica and B. coli detected in endangered species, such as Saguinus bicolor and Alouatta guariba. Protist overlap between humans and NHPs underscores zoonotic risks. This study presents the first molecular characterization of Amoebozoa and Ciliophora in neotropical NHPs kept ex situ in Brazil, highlighting the need for improved hygiene and management protocols in primate institutions.
Collapse
Affiliation(s)
- Laís Dib
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Rio de Janeiro 21040-360, RJ, Brazil; (L.D.); (M.R.A.)
- Campos School of Medicine (FMC), Av. Alberto Torres, 217, Campos dos Goytacazes 28035-581, RJ, Brazil
| | - Breno da Silva
- Laboratory of Parasitology, Fluminense Federal University, Alameda Barros Terra Blvd., no number, Niterói 24020-150, RJ, Brazil; (B.d.S.); (L.C.)
| | - Lais Correa
- Laboratory of Parasitology, Fluminense Federal University, Alameda Barros Terra Blvd., no number, Niterói 24020-150, RJ, Brazil; (B.d.S.); (L.C.)
| | - Alcides Pissinatti
- Rio de Janeiro Primatology Center—CPRJ/INEA, Paraíso St., no number, Guapimirim 25940-000, RJ, Brazil; (A.P.); (S.M.)
| | - Silvia Moreira
- Rio de Janeiro Primatology Center—CPRJ/INEA, Paraíso St., no number, Guapimirim 25940-000, RJ, Brazil; (A.P.); (S.M.)
| | - Maria Clotilde Tavares
- Primatology Center, University of Brasília, Park Way, no number, Brasília 71750-000, DF, Brazil;
| | - Rodrigo Teixeira
- Quinzinho de Barros Municipal Zoo (Zoo Sorocaba), Teodoro Kaisel St., 883, Sorocaba 18020-268, SP, Brazil; (R.T.); (A.L.d.C.)
- Graduate Program in Wild Animals, Paulista State University “Julio de Mesquita Filho” (UNESP), Av. Prof. Mário Rubens Guimarães Montenegro, no number, Botucatu 18618-687, SP, Brazil
- Department of Wildlife Medicine, University of Sorocaba (UNISO), Raposo Tavares Rd., km 92.5, Sorocaba 18023-000, SP, Brazil
| | - André Luíz da Costa
- Quinzinho de Barros Municipal Zoo (Zoo Sorocaba), Teodoro Kaisel St., 883, Sorocaba 18020-268, SP, Brazil; (R.T.); (A.L.d.C.)
| | - José Augusto Muniz
- National Primate Center, BR-316 Hwy., no number, Ananindeua 67033-009, PA, Brazil; (J.A.M.); (A.J.)
| | - Amauri Junglos
- National Primate Center, BR-316 Hwy., no number, Ananindeua 67033-009, PA, Brazil; (J.A.M.); (A.J.)
| | - Zelinda Maria Hirano
- Bugio Project, Regional University of Blumenau, Rio de Janeiro St., 401, Indaial 89086-000, SC, Brazil; (Z.M.H.); (A.D.)
| | - Aline Dada
- Bugio Project, Regional University of Blumenau, Rio de Janeiro St., 401, Indaial 89086-000, SC, Brazil; (Z.M.H.); (A.D.)
| | - Sidnei da Silva
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Maria Regina Amendoeira
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Rio de Janeiro 21040-360, RJ, Brazil; (L.D.); (M.R.A.)
| | - Alynne Barbosa
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Rio de Janeiro 21040-360, RJ, Brazil; (L.D.); (M.R.A.)
- Laboratory of Parasitology, Fluminense Federal University, Alameda Barros Terra Blvd., no number, Niterói 24020-150, RJ, Brazil; (B.d.S.); (L.C.)
| |
Collapse
|
18
|
Mallott EK, Kuthyar S, Lee W, Reiman D, Jiang H, Chitta S, Waters EA, Layden BT, Sumagin R, Manzanares LD, Yang GY, Sardaro MLS, Gray S, Williams LE, Dai Y, Curley JP, Haney CR, Liechty ER, Kuzawa CW, Amato KR. The primate gut microbiota contributes to interspecific differences in host metabolism. Microb Genom 2024; 10:001322. [PMID: 39620695 PMCID: PMC11893272 DOI: 10.1099/mgen.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/15/2024] [Indexed: 03/14/2025] Open
Abstract
Because large brains are energetically expensive, they are associated with metabolic traits that facilitate energy availability across vertebrates. However, the biological underpinnings driving these traits are not known. Given its role in regulating host metabolism in disease studies, we hypothesized that the gut microbiome contributes to variation in normal cross-vertebrate species differences in metabolism, including those associated with the brain's energetic requirements. By inoculating germ-free mice with the gut microbiota (GM) of three primate species - two with relatively larger brains and one with a smaller brain - we demonstrated that the GM of larger-brained primates shifts host metabolism towards energy use and production, while that of smaller-brained primates stimulates energy storage in adipose tissues. Our findings establish a causal role of the GM in normal cross-host species differences in metabolism associated with relative brain size and suggest that the GM may have been an important facilitator of metabolic changes during human evolution that supported encephalization.
Collapse
Affiliation(s)
- Elizabeth K. Mallott
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Sahana Kuthyar
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Department of Biological Sciences, University of California, San Diego, CA, USA
| | - Won Lee
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, CA, USA
| | - Derek Reiman
- Department of Bioengineering, University of Illinois, Chicago, IL, USA
- Toyota Technological Institute, Chicago, IL 60637, USA
| | - Hongmei Jiang
- Department of Statistics and Data Science, Northwestern University, Evanston, IL, USA
| | - Sriram Chitta
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - E. Alexandria Waters
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA
| | - Brian T. Layden
- Department of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Laura D. Manzanares
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Guan-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Stanton Gray
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Lawrence E. Williams
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Yang Dai
- Department of Bioengineering, University of Illinois, Chicago, IL, USA
| | - James P. Curley
- Department of Psychology, University of Texas, Austin, TX, USA
| | - Chad R. Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA
| | - Emma R. Liechty
- Center for Comparative Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
19
|
Manus MB, Lucore J, Kuthyar S, Moy M, Savo Sardaro ML, Amato KR. Technical note: A biological anthropologist's guide for applying microbiome science to studies of human and non-human primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25020. [PMID: 39222382 DOI: 10.1002/ajpa.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
A central goal of biological anthropology is connecting environmental variation to differences in host physiology, biology, health, and evolution. The microbiome represents a valuable pathway for studying how variation in host environments impacts health outcomes. While there are many resources for learning about methods related to microbiome sample collection, laboratory analyses, and genetic sequencing, there are fewer dedicated to helping researchers navigate the dense portfolio of bioinformatics and statistical approaches for analyzing microbiome data. Those that do exist are rarely related to questions in biological anthropology and instead are often focused on human biomedicine. To address this gap, we expand on existing tutorials and provide a "road map" to aid biological anthropologists in understanding, selecting, and deploying the data analysis and visualization methods that are most appropriate for their specific research questions. Leveraging an existing dataset of fecal samples and survey data collected from wild geladas living in Simien Mountains National Park in Ethiopia (Baniel et al., 2021), this paper guides researchers toward answering three questions related to variation in the gut microbiome across host and environmental factors. By providing explanations, examples, and a reproducible workflow for different analytic methods, we move beyond the theoretical benefits of considering the microbiome within anthropological research and instead present researchers with a guide for applying microbiome science to their work. This paper makes microbiome science more accessible to biological anthropologists and paves the way for continued research into the microbiome's role in the ecology, evolution, and health of human and non-human primates.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Jordan Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Madelyn Moy
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
20
|
Rogowska-van der Molen MA, Savova HV, Janssen EAT, van Alen T, Coolen S, Jansen RS, Welte CU. Unveiling detoxifying symbiosis and dietary influence on the Southern green shield bug microbiota. FEMS Microbiol Ecol 2024; 100:fiae150. [PMID: 39510962 PMCID: PMC11585277 DOI: 10.1093/femsec/fiae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024] Open
Abstract
The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crops and poses a threat to global food production. Insects live in close relationships with microorganisms providing their host with unique capabilities, such as resistance to toxic plant metabolites. In this study, we investigated the resistance to and detoxification of the plant metabolite 3-nitropropionic acid (NPA) by core and transient members of the N. viridula microbial community. Microbial community members showed a different tolerance to the toxin and we determined that six out of eight strains detoxified NPA. Additionally, we determined that NPA might interfere with the biosynthesis and transport of l-leucine. Moreover, our study explored the influence of diet on the gut microbial composition of N. viridula, demonstrating that switching to a single-plant diet shifts the abundance of core microbes. In line with this, testing pairwise microbial interactions revealed that core microbiota members support each other and repress the growth of transient microorganisms. With this work, we provide novel insights into the factors shaping the insect gut microbial communities and demonstrate that N. viridula harbours many toxin-degrading bacteria that could support its resistance to plant defences.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Hristina V Savova
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Elke A T Janssen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Theo van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
- Translational Plant Biology, Department of Biology, Faculty of Science, Utrecht University, P.Box 800.56, 3508 TB Utrecht, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
21
|
Sariyati NH, Othman N, Abdullah-Fauzi NAF, Chan E, Md-Zain BM, Karuppannan KV, Abdul-Latiff MAB. Characterizing the gastrointestinal microbiome diversity in endangered Malayan Siamang (Symphalangus syndactylus): Insights into group composition, age variability and sex-related patterns. J Med Primatol 2024; 53:e12730. [PMID: 39148344 DOI: 10.1111/jmp.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The gut morphology of Symphalangus syndactylus exhibits an intermediate structure that aligns with its consumption of fruit and ability to supplement its diet with leaves. The Siamang relies on its gut microbiome for energy extraction, immune system development, and the synthesis of micronutrients. Gut microbiome composition may be structured based on several factors such as age, sex, and habitat. No study has yet been carried out on the gut microbiota of the Hylobatidae members in Malaysia especially S. syndactylus. METHODS This study aims to resolve the gut microbiome composition of S. syndactylus by using a fecal sample as DNA source, adapting high-throughput sequencing, and 16S rRNA as the targeted region. RESULTS A total of 1 272 903 operational taxonomic units (OTUs) reads were assigned to 22 phyla, 139 families, and 210 genera of microbes. The {Unknown Phylum} Bacteria-2 is the dominant phyla found across all samples. Meanwhile, {Unknown Phylum} Bacteria-2 and Firmicutes are genera that have the highest relative abundance found in the Siamang gut. CONCLUSIONS This study yields nonsignificance relationship between Siamang gut microbiome composition with these three factors: group, sex, and age.
Collapse
Affiliation(s)
- Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nurfatiha Akmal Fawwazah Abdullah-Fauzi
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Eddie Chan
- Treks Event Sdn Bhd, Lot AW/G5.00, GF, Awana Hotel Genting Highlands Resort, Genting Highlands, Pahang, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN), Kuala Lumpur, Malaysia
| | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
22
|
Ma R, Ma S, Liu H, Hu L, Li Y, He K, Zhu Y. Seasonal changes in invertebrate diet of breeding black-necked cranes ( Grus nigricollis). Ecol Evol 2024; 14:e70234. [PMID: 39219571 PMCID: PMC11362503 DOI: 10.1002/ece3.70234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Invertebrates greatly support the growth, development, and reproduction of insectivorous birds. However, the influence of human activity (e.g., pesticide use, deforestation, and urbanization) inevitably leads to a decrease in global arthropods. The diversity and variation in invertebrate diet influence the food composition of birds, especially species living in rapidly changing environments, such as the Tibetan Plateau. However, little is known of the seasonal variation in invertebrate diet in response to environmental changes. Here, we characterized the invertebrate diet composition in pre- and post-breeding black-necked crane (Grus nigricollis) using fecal metabarcoding. We identified 38 invertebrate genera; the top three were Tipula (82.1% of relative abundance), Ceramica (3.0%), and unclassified_Hymenoptera (2.5%), with Tipula predominated the diet in both seasons. We also observed 20 and 16 unique genera in the pre- and post-breeding periods, and the genera composition was distinct between seasons (R = .036, p = .024). In pre-breeding, black-necked cranes tended to consume more diverse foods, and individual cranes exhibited greater heterogeneity at the genus level. At the genera and species level, pre-breeding black-necked cranes showed a wider dietary niche than post-breeding cranes. We observed season-specific features, with Tipula (common crane fly) and Stethophyma (grasshoppers) being enriched in the post-breeding period and Ceramica (moth) being more abundant in the pre-breeding period. Three Tipula species had the greatest importance in discriminating between seasonal diets. This study demonstrated a seasonal pattern of invertebrate diet in the black-necked crane, suggesting diet composition in response to resource and species availability. These results elaborate on the foraging ecology of highland birds and can inform the management of black-necked crane conservation.
Collapse
Affiliation(s)
- Ruifeng Ma
- College of Grassland Resources, Institute of Qinghai‐Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai‐Tibetan PlateauSouthwest Minzu UniversityChengduSichuanChina
| | - Shujuan Ma
- College of Grassland Resources, Institute of Qinghai‐Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai‐Tibetan PlateauSouthwest Minzu UniversityChengduSichuanChina
| | - Hongyi Liu
- The Co‐Innovation Center for Sustainable Forestry in Southern China, College of Life SciencesNanjing Forestry UniversityNanjingChina
| | - Lei Hu
- College of Grassland Resources, Institute of Qinghai‐Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai‐Tibetan PlateauSouthwest Minzu UniversityChengduSichuanChina
| | - Yudong Li
- Sichuan Province Laboratory for Natural Resources Protection and Sustainable UtilizationSichuan Provincial Academy of Natural Resource SciencesChengduChina
| | - Ke He
- College of Animal Science and Technology, College of Veterinary MedicineZhejiang A&F UniversityHangzhouChina
| | - Ying Zhu
- College of Grassland Resources, Institute of Qinghai‐Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai‐Tibetan PlateauSouthwest Minzu UniversityChengduSichuanChina
| |
Collapse
|
23
|
Storm MB, Arfaoui EMR, Simelane P, Denlinger J, Dias CA, da Conceição AG, Monadjem A, Bohmann K, Poulsen M, Bodawatta KH. Diet components associated with specific bacterial taxa shape overall gut community compositions in omnivorous African viverrids. Ecol Evol 2024; 14:e11486. [PMID: 39005885 PMCID: PMC11239323 DOI: 10.1002/ece3.11486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Gut bacterial communities provide flexibility to hosts during dietary changes. Despite the increasing number of studies exploring the associations between broader dietary guilds of mammalian hosts and their gut bacteria, it is generally unclear how diversity and variability in consumed diets link to gut bacterial taxa in wild non-primate mammals, particularly in omnivores. Here, we contribute to filling this gap by exploring consumed diets and gut bacterial community compositions with metabarcoding of faecal samples for two African mammals, Civettictis civetta and Genetta spp., from the family Viverridae. For each individual sample, we characterised bacterial communities and identified dietary taxa by sequencing vertebrate, invertebrate and plant markers. This led us to establish diet compositions that diverged from what has previously been found from visual identification methods. Specifically, while the two genera have been categorised into the same dietary guild, we detected more animal dietary items than plant items in C. civetta, while in Genetta spp., we observed the opposite. We further found that individuals with similar diets have similar gut bacterial communities within both genera. This association tended to be driven by specific links between dietary items and gut bacterial genera, rather than communities as a whole, implying diet-driven selection for specific gut microbes in individual wild hosts. Our findings underline the importance of molecular tools for improving characterisations of omnivorous mammalian diets and highlight the opportunities for simultaneously disentangling links between diets and gut symbionts. Such insights can inform robustness and flexibility in host-microbe symbioses to dietary change associated with seasonal and habitat changes.
Collapse
Affiliation(s)
- Malou B. Storm
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Emilia M. R. Arfaoui
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Phumlile Simelane
- Department of Biological SciencesUniversity of EswatiniKwaluseniEswatini
| | | | | | | | - Ara Monadjem
- Department of Biological SciencesUniversity of EswatiniKwaluseniEswatini
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaHatfield, PretoriaSouth Africa
| | - Kristine Bohmann
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kasun H. Bodawatta
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
24
|
Jose L, Lee W, Hanya G, Tuuga A, Goossens B, Tangah J, Matsuda I, Kumar VS. Gut microbial community in proboscis monkeys ( Nasalis larvatus): implications for effects of geographical and social factors. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231756. [PMID: 39050721 PMCID: PMC11265907 DOI: 10.1098/rsos.231756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Recent technological advances have enabled comprehensive analyses of the previously uncharacterized microbial community in the gastrointestinal tracts of numerous animal species; however, the gut microbiota of several species, such as the endangered proboscis monkey (Nasalis larvatus) examined in this study, remains poorly understood. Our study sought to establish the first comprehensive data on the gut microbiota of free-ranging foregut-fermenting proboscis monkeys and to determine how their microbiota are affected locally by environmental factors, i.e. geographical distance, and social factors, i.e. the number of adult females within harem groups and the number of adults and subadults within non-harem groups, in a riverine forest in Sabah, Malaysian Borneo. Using 16S rRNA gene sequencing of 264 faecal samples collected from free-ranging proboscis monkeys, we demonstrated the trend that their microbial community composition is not particularly distinctive compared with other foregut- and hindgut-fermenting primates. The microbial alpha diversity was higher in larger groups and individuals inhabiting diverse vegetation (i.e. presumed to have a diverse diet). For microbial beta diversity, some measures were significant, showing higher values with larger geographical distances between samples. These results suggest that social factors such as increased inter-individual interactions, which can occur with larger groups, as well as physical distances between individuals or differences in dietary patterns, may affect the gut microbial communities.
Collapse
Affiliation(s)
- Lilian Jose
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| | - Wanyi Lee
- National Taiwan University, Taipei10617, Taiwan
- Center for Ecological Research, Kyoto University, Inuyama484-8506, Japan
| | - Goro Hanya
- Center for Ecological Research, Kyoto University, Inuyama484-8506, Japan
| | - Augustine Tuuga
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
| | - Benoit Goossens
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
- Danau Girang Field Centre, Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| | - Joseph Tangah
- Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto606-8203, Japan
- Chubu Institute for Advanced Studies, Chubu University, 1200, Matsumoto-cho, Kasugai-shi, Aichi487-8501, Japan
- Chubu University Academy of Emerging Sciences, 1200, Matsumoto-cho, Kasugai-shi, Aichi487-8501, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| | - Vijay Subbiah Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| |
Collapse
|
25
|
Zhu W, Chang L, Zhang M, Chen Q, Sui L, Shen C, Jiang J. Microbial diversity in mountain-dwelling amphibians: The combined effects of host and climatic factors. iScience 2024; 27:109907. [PMID: 38812552 PMCID: PMC11135016 DOI: 10.1016/j.isci.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Comprehending the determinants of host-associated microbiota is pivotal in microbial ecology. Yet, the links between climatic factors and variations in host-associated microbiota necessitate further clarification. Mountain-dwelling amphibians, with limited dispersal abilities, serve as valuable models for addressing these questions. Our study, using 126 amphibian-associated microbial samples (64 gut and 62 skin) and 101 environmental microbial samples (51 soil and 50 water) from the eastern Tibetan Plateau, revealed host factors as primary drivers of the variations in host-associated microbiota. However, climatic factors contributed to additional variations in gut microbial beta-diversity and skin microbial function. Water microbiota were identified as a significant contributor to the amphibian-associated microbiomes, with their climate-driven variations mediating an indirect association between the variations in climatic factors and host-associated microbiota. These findings extend our understanding of the assembly of host-associated microbiota in amphibians, emphasizing the significance of microbiota in evaluating the impact of climate change on animals.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Sui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Shen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Hong Y, Shen H, Chen X, Li G. Gender differences in the association between dietary protein intake and constipation: findings from NHANES. Front Nutr 2024; 11:1393596. [PMID: 38962434 PMCID: PMC11220262 DOI: 10.3389/fnut.2024.1393596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Purpose Dietary factors play a crucial role in the development and management of chronic constipation, yet the relationship between dietary protein intake and constipation remains underexplored. This study aims to investigate the association between dietary protein intake and the prevalence of constipation among American adults, with a focus on potential gender differences, using large-scale national data. Materials and methods Data from 14,048 participants aged 20 and above (7,072 men and 6,976 women) from the National Health and Nutrition Examination Survey (NHANES) 2005-2010 were analyzed. The Bristol Stool Form Scale's types 1 (separate hard lumps, resembling nuts) and 2 (sausage-shaped, but lumpy) were used to define constipation. A 24-h dietary recall technique was used to measure dietary protein intake. After controlling for covariates, the association between protein consumption and constipation risk was examined using multivariable logistic regression, smooth curve fitting, and testing for gender interaction effects. We then further determined the threshold effect between dietary protein intake and constipation risk. Results Constipation was present in 7.49% of people overall, with a higher proportion among women (10.19%) than among males (4.82%). In men, higher protein intake was significantly associated with a lower rate of constipation. However, in women, higher protein intake correlated with an increased risk of constipation, and the interaction between gender was significant (P for interaction = 0.0298). These results were corroborated by smooth curve fits, which also demonstrated a dose-response effect. Further threshold effect analysis showed that the turning points of dietary protein intake differed between male and female participants (119.42 gm/day for men; 40.79 gm/day for women). Conclusion The association between dietary protein intake and constipation was different in different genders with threshold effect. For men, moderately increasing protein intake could be beneficial, while for women, exceeding a certain level may increase the risk of constipation. These insights are crucial for guiding dietary protein recommendations for different genders and have significant clinical implications.
Collapse
Affiliation(s)
- Yongping Hong
- Department of Anorectal Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| | - Hongchen Shen
- The Second Department of Medicine, Renji College of Wenzhou Medical University, Wenzhou, China
| | - Xingxing Chen
- Department of Clinical Research, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| | - Guofeng Li
- Department of Anorectal Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| |
Collapse
|
27
|
Härer A, Frazier CJ, Rennison DJ. Host ecotype and rearing environment are the main drivers of threespine stickleback gut microbiota diversity in a naturalistic experiment. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240649. [PMID: 39100190 PMCID: PMC11296155 DOI: 10.1098/rsos.240649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 08/06/2024]
Abstract
Host-microbiota interactions play a critical role in the hosts' biology, and thus, it is crucial to elucidate the mechanisms that shape gut microbial communities. We leveraged threespine stickleback fish (Gasterosteus aculeatus) as a model system to investigate the contribution of host and environmental factors to gut microbiota variation. These fish offer a unique opportunity for experiments in naturalistic conditions; we reared benthic and limnetic ecotypes from three different lakes in experimental ponds, allowing us to assess the relative effects of shared environment (pond), geographic origin (lake-of-origin), trophic ecology and genetics (ecotype) and biological sex on gut microbiota α- and β-diversity. Host ecotype had the strongest influence on α-diversity, with benthic fish exhibiting higher diversity than limnetic fish, followed by the rearing environment. β-diversity was primarily shaped by rearing environment, followed by host ecotype, indicating that environmental factors play a crucial role in determining gut microbiota composition. Furthermore, numerous bacterial orders were differentially abundant across ponds, underlining the substantial contribution of environmental factors to gut microbiota variation. Our study illustrates the complex interplay between environmental and host ecological or genetic factors in shaping the stickleback gut microbiota and highlights the value of experiments conducted under naturalistic conditions for understanding gut microbiota dynamics.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - Christine J. Frazier
- School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Víquez-R L, Henrich M, Riegel V, Bader M, Wilhelm K, Heurich M, Sommer S. A taste of wilderness: supplementary feeding of red deer (Cervus elaphus) increases individual bacterial microbiota diversity but lowers abundance of important gut symbionts. Anim Microbiome 2024; 6:28. [PMID: 38745212 PMCID: PMC11094858 DOI: 10.1186/s42523-024-00315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays a crucial role in the health and well-being of animals. It is especially critical for ruminants that depend on this bacterial community for digesting their food. In this study, we investigated the effects of management conditions and supplemental feeding on the gut bacterial microbiota of red deer (Cervus elaphus) in the Bavarian Forest National Park, Germany. Fecal samples were collected from free-ranging deer, deer within winter enclosures, and deer in permanent enclosures. The samples were analyzed by high-throughput sequencing of the 16 S rRNA gene. The results showed that the gut bacterial microbiota differed in diversity, abundance, and heterogeneity within and between the various management groups. Free-ranging deer exhibited lower alpha diversity compared with deer in enclosures, probably because of the food supplementation available to the animals within the enclosures. Free-living individuals also showed the highest beta diversity, indicating greater variability in foraging grounds and plant species selection. Moreover, free-ranging deer had the lowest abundance of potentially pathogenic bacterial taxa, suggesting a healthier gut microbiome. Winter-gated deer, which spent some time in enclosures, exhibited intermediate characteristics between free-ranging and all-year-gated deer. These findings suggest that the winter enclosure management strategy, including supplementary feeding with processed plants and crops, has a significant impact on the gut microbiome composition of red deer. Overall, this study provides important insights into the effects of management conditions, particularly winter enclosure practices, on the gut microbiome of red deer. Understanding these effects is crucial for assessing the potential health implications of management strategies and highlights the value of microbiota investigations as health marker.
Collapse
Affiliation(s)
- Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
- Department of Biology, Bucknell University, Lewisburg, PA, USA.
| | - Maik Henrich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Vanessa Riegel
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marvin Bader
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
- Albert-Ludwigs University, Freiburg, Baden-Württemberg, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marco Heurich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
- Institute for Forest and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, NO-34, Norway
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
| |
Collapse
|
29
|
Ma ZS, Shi P. Critical complex network structures in animal gastrointestinal tract microbiomes. Anim Microbiome 2024; 6:23. [PMID: 38702785 PMCID: PMC11067214 DOI: 10.1186/s42523-024-00291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 01/21/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Living things from microbes to their hosts (plants, animals and humans) interact with each other, and their relationships may be described with complex network models. The present study focuses on the critical network structures, specifically the core/periphery nodes and backbones (paths of high-salience skeletons) in animal gastrointestinal microbiomes (AGMs) networks. The core/periphery network (CPN) mirrors nearly ubiquitous nestedness in ecological communities, particularly dividing the network as densely interconnected core-species and periphery-species that only sparsely linked to the core. Complementarily, the high-salience skeleton network (HSN) mirrors the pervasive asymmetrical species interactions (strictly microbial species correlations), particularly forming heterogenous pathways in AGM networks with both "backbones" and "rural roads" (regular or weak links). While the cores and backbones can act as critical functional structures, the periphery nodes and weak links may stabilize network functionalities through redundancy. RESULTS Here, we build and analyze 36 pairs of CPN/HSN for the AGMs based on 4903 gastrointestinal-microbiome samples containing 473,359 microbial species collected from 318 animal species covering all vertebrate and four major invertebrate classes. The network analyses were performed at host species, order, class, phylum, kingdom scales and diet types with selected and comparative taxon pairs. Besides diet types, the influence of host phylogeny, measured with phylogenetic (evolutionary) timeline or "age", were integrated into the analyses. For example, it was found that the evolutionary trends of three primary microbial phyla (Bacteroidetes/Firmicutes/Proteobacteria) and their pairwise abundance-ratios in animals do not mirror the patterns in modern humans phylogenetically, although they are consistent in terms of diet types. CONCLUSIONS Overall, the critical network structures of AGMs are qualitatively and structurally similar to those of the human gut microbiomes. Nevertheless, it appears that the critical composition (the three phyla of Bacteroidetes, Firmicutes, and Proteobacteria) in human gut microbiomes has broken the evolutionary trend from animals to humans, possibly attributable to the Anthropocene epoch and reflecting the far-reaching influences of agriculture and industrial revolution on the human gut microbiomes. The influences may have led to the deviations between modern humans and our hunter-gather ancestors and animals.
Collapse
Affiliation(s)
- Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
- Faculty of Arts and Science, Harvard Forest, Harvard University, Cambridge, MA, 02138, USA.
| | - Peng Shi
- Evolutionary and Functional Genomics Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
30
|
Apalowo OE, Adegoye GA, Mbogori T, Kandiah J, Obuotor TM. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods 2024; 13:1026. [PMID: 38611332 PMCID: PMC11011999 DOI: 10.3390/foods13071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A global epidemiological shift has been observed in recent decades, characterized by an increase in age-related disorders, notably non-communicable chronic diseases, such as type 2 diabetes mellitus, cardiovascular and neurodegenerative diseases, and cancer. An appreciable causal link between changes in the gut microbiota and the onset of these maladies has been recognized, offering an avenue for effective management. Kefir, a probiotic-enriched fermented food, has gained significance in this setting due to its promising resource for the development of functional or value-added food formulations and its ability to reshape gut microbial composition. This has led to increasing commercial interest worldwide as it presents a natural beverage replete with health-promoting microbes and several bioactive compounds. Given the substantial role of the gut microbiota in human health and the etiology of several diseases, we conducted a comprehensive synthesis covering a total of 33 investigations involving experimental animal models, aimed to elucidate the regulatory influence of bioactive compounds present in kefir on gut microbiota and their potential in promoting optimal health. This review underscores the outstanding nutritional properties of kefir as a central repository of bioactive compounds encompassing micronutrients and amino acids and delineates their regulatory effects at deficient, adequate, and supra-nutritional intakes on the gut microbiota and their broader physiological consequences. Furthermore, an investigation of putative mechanisms that govern the regulatory effects of kefir on the gut microbiota and its connections with various human diseases was discussed, along with potential applications in the food industry.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
| | - Grace Adeola Adegoye
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Teresia Mbogori
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Jayanthi Kandiah
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | | |
Collapse
|
31
|
Blázquez M, Ortiz-Álvarez R, Gasulla F, Pérez-Vargas I, Pérez-Ortega S. Bacterial communities associated with an island radiation of lichen-forming fungi. PLoS One 2024; 19:e0298599. [PMID: 38498492 PMCID: PMC10947700 DOI: 10.1371/journal.pone.0298599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/28/2024] [Indexed: 03/20/2024] Open
Abstract
Evolutionary radiations are one of the most striking processes biologists have studied in islands. A radiation is often sparked by the appearance of ecological opportunity, which can originate in processes like trophic niche segregation or the evolution of key innovations. Another recently proposed mechanism is facilitation mediated by the bacterial communities associated with the radiating species. Here we explore the role of the bacterial communities in a radiation of lichen-forming fungi endemic to Macaronesia. Bacterial diversity was quantified by high throughput sequencing of the V1-V2 hyper-variable region of 172 specimens. We characterized the taxonomic and phylogenetic diversity of the bacterial communities associated with the different species, tested for compositional differences between these communities, carried out a functional prediction, explored the relative importance of different factors in bacterial community structure, searched for phylosymbiosis and tried to identify the origin of this pattern. The species of the radiation differed in the composition of their bacterial communities, which were mostly comprised of Alphaproteobacteria and Acidobacteriia, but not in the functionality of those communities. A phylosimbiotic pattern was detected, but it was probably caused by environmental filtering. These findings are congruent with the combined effect of secondary chemistry and mycobiont identity being the main driver of bacterial community structure. Altogether, our results suggest that the associated bacterial communities are not the radiation's main driver. There is one possible exception, however, a species that has an abnormally diverse core microbiome and whose bacterial communities could be subject to a specific environmental filter at the functional level.
Collapse
Affiliation(s)
| | | | - Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Israel Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | |
Collapse
|
32
|
González A, Fullaondo A, Odriozola A. Impact of evolution on lifestyle in microbiome. ADVANCES IN GENETICS 2024; 111:149-198. [PMID: 38908899 DOI: 10.1016/bs.adgen.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter analyses the interaction between microbiota and humans from an evolutionary point of view. Long-term interactions between gut microbiota and host have been generated as a result of dietary choices through coevolutionary processes, where mutuality of advantage is essential. Likewise, the characteristics of the intestinal environment have made it possible to describe different intrahost evolutionary mechanisms affecting microbiota. For its part, the intestinal microbiota has been of great importance in the evolution of mammals, allowing the diversification of dietary niches, phenotypic plasticity and the selection of host phenotypes. Although the origin of the human intestinal microbial community is still not known with certainty, mother-offspring transmission plays a key role, and it seems that transmissibility between individuals in adulthood also has important implications. Finally, it should be noted that certain aspects inherent to modern lifestyle, including refined diets, antibiotic intake, exposure to air pollutants, microplastics, and stress, could negatively affect the diversity and composition of our gut microbiota. This chapter aims to combine current knowledge to provide a comprehensive view of the interaction between microbiota and humans throughout evolution.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
33
|
Moraïs S, Winkler S, Zorea A, Levin L, Nagies FSP, Kapust N, Lamed E, Artan-Furman A, Bolam DN, Yadav MP, Bayer EA, Martin WF, Mizrahi I. Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans. Science 2024; 383:eadj9223. [PMID: 38484069 PMCID: PMC7615765 DOI: 10.1126/science.adj9223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.
Collapse
Affiliation(s)
- Sarah Moraïs
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sarah Winkler
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alvah Zorea
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Falk S. P. Nagies
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Nils Kapust
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Eva Lamed
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - Avital Artan-Furman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - David N. Bolam
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Madhav P. Yadav
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Edward A. Bayer
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - William F. Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Itzhak Mizrahi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
34
|
Ludmir J, Suero-Abreu GA, Gonzalez de la Nuez A, Robles M, Wood MJ, Del Carmen MG, Wasfy JH. Building a post-myocardial infarction discharge intervention program for Hispanic patients. HEALTHCARE (AMSTERDAM, NETHERLANDS) 2024; 12:100730. [PMID: 38087744 DOI: 10.1016/j.hjdsi.2023.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/08/2023] [Accepted: 12/03/2023] [Indexed: 03/12/2024]
Abstract
Hispanic patients disproportionally suffer from disparities in care delivery in the setting of acute myocardial infarction (AMI). More specifically, Hispanic patients have higher 30-day readmission rates post-AMI and are less likely to be referred to cardiac rehab. Because of the challenges Hispanic patients face with post-AMI care, the Hispanic Acute Myocardial Infarction Discharge Intervention Study (HAMIDI) was launched to provide a culturally sensitive discharge framework to improve readmission and mortality rates in this population. Patients enrolled in this study participate in a comprehensive post-discharge program involving follow-up with a Spanish-speaking cardiologist, a two-part educational virtual group visit program, and access to support throughout the study. During the initial year of the study, 35 patients enrolled and successfully participated in the program. This case study reviews the implementation process, initial outcomes, challenges, and future plans of the program.
Collapse
Affiliation(s)
- Jonathan Ludmir
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Giselle A Suero-Abreu
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, USA
| | | | - Martin Robles
- Department of Internal Medicine, University of California, San Francisco, Fresno, USA
| | - Malissa J Wood
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, USA
| | - Marcela G Del Carmen
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Jason H Wasfy
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
35
|
Gao SM, Fei HL, Li Q, Lan LY, Huang LN, Fan PF. Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations. Nat Commun 2024; 15:1254. [PMID: 38341424 PMCID: PMC10858875 DOI: 10.1038/s41467-024-45663-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
- College of Life Science, China West Normal University, Nanchong, 637002, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
36
|
Liu X, Yu J, Huan Z, Xu M, Song T, Yang R, Zhu W, Jiang J. Comparing the gut microbiota of Sichuan golden monkeys across multiple captive and wild settings: roles of anthropogenic activities and host factors. BMC Genomics 2024; 25:148. [PMID: 38321370 PMCID: PMC10848473 DOI: 10.1186/s12864-024-10041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Captivity and artificial food provision are common conservation strategies for the endangered golden snub-nosed monkey (Rhinopithecus roxellana). Anthropogenic activities have been reported to impact the fitness of R. roxellana by altering their gut microbiota, a crucial indicator of animal health. Nevertheless, the degree of divergence in gut microbiota between different anthropogenically-disturbed (AD) R. roxellana and their counterparts in the wild has yet to be elucidated. Here, we conducted a comparative analysis of the gut microbiota across nine populations of R. roxellana spanning China, which included seven captive populations, one wild population, and another wild population subject to artificial food provision. RESULTS Both captivity and food provision significantly altered the gut microbiota. AD populations exhibited common variations, such as increased Bacteroidetes and decreased Firmicutes (e.g., Ruminococcus), Actinobacteria (e.g., Parvibacter), Verrucomicrobia (e.g., Akkermansia), and Tenericutes. Additionally, a reduced Firmicutes/Bacteroidetes ratiosuggested diminished capacity for complex carbohydrate degradation in captive individuals. The results of microbial functional prediction suggested that AD populations displayed heightened microbial genes linked to vitamin and amino acid metabolism, alongside decreased genes associated antibiotics biosynthesis (e.g., penicillin, cephalosporin, macrolides, and clavulanic acid) and secondary metabolite degradation (e.g., naphthalene and atrazine). These microbial alterations implied potential disparities in the health status between AD and wild individuals. AD populations exhibited varying degrees of microbial changes compared to the wild group, implying that the extent of these variations might serve as a metric for assessing the health status of AD populations. Furthermore, utilizing the individual information of captive individuals, we identified associations between variations in the gut microbiota of R. roxellana and host age, as well as pedigree. Older individuals exhibited higher microbial diversity, while a closer genetic relatedness reflected a more similar gut microbiota. CONCLUSIONS Our aim was to assess how anthropogenic activities and host factors influence the gut microbiota of R. roxellana. Anthropogenic activities led to consistent changes in gut microbial diversity and function, while host age and genetic relatedness contributed to interindividual variations in the gut microbiota. These findings may contribute to the establishment of health assessment standards and the optimization of breeding conditions for captive R. roxellana populations.
Collapse
Affiliation(s)
- Xuanzhen Liu
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Jianqiu Yu
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Zongjin Huan
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Mei Xu
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Ting Song
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Ruilin Yang
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China.
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| |
Collapse
|
37
|
Härer A, Rennison DJ. The effects of host ecology and phylogeny on gut microbiota (non)parallelism across birds and mammals. mSphere 2023; 8:e0044223. [PMID: 38038446 PMCID: PMC10732045 DOI: 10.1128/msphere.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE What are the roles of determinism and contingency in evolution? The paleontologist and evolutionary biologist Stephen J. Gould raised this question in his famous thought experiment of "replaying life's tape." Settings where independent lineages have repeatedly adapted to similar ecological niches (i.e., parallel evolution) are well suited to address this question. Here, we quantified whether repeated ecological shifts across 53 mammalian and 50 avian host species are associated with parallel gut microbiota changes. Our results indicate that parallel shifts in host diet are associated with greater gut microbiota parallelism (i.e., more deterministic). While further research will be necessary to obtain a comprehensive picture of the circumstances under which deterministic gut microbiota changes might be expected, our study can be instrumental in motivating the use of more quantitative methods in microbiota research. This, in turn, can help us better understand microbiota dynamics during adaptive evolution of their hosts.
Collapse
Affiliation(s)
- Andreas Härer
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| | - Diana J. Rennison
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| |
Collapse
|
38
|
Bensch HM, Lundin D, Tolf C, Waldenström J, Zöttl M. Environmental effects rather than relatedness determine gut microbiome similarity in a social mammal. J Evol Biol 2023; 36:1753-1760. [PMID: 37584218 DOI: 10.1111/jeb.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/27/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
In social species, group members commonly show substantial similarity in gut microbiome composition. Such similarities have been hypothesized to arise either by shared environmental effects or by host relatedness. However, disentangling these factors is difficult, because group members are often related, and social groups typically share similar environmental conditions. In this study, we conducted a cross-foster experiment under controlled laboratory conditions in group-living Damaraland mole-rats (Fukomys damarensis) and used 16S amplicon sequencing to disentangle the effects of the environment and relatedness on gut microbiome similarity and diversity. Our results show that a shared environment is the main factor explaining gut microbiome similarity, overshadowing any effect of host relatedness. Together with studies in wild animal populations, our results suggest that among conspecifics environmental factors are more powerful drivers of gut microbiome composition similarity than host genetics.
Collapse
Affiliation(s)
- Hanna M Bensch
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| | - Daniel Lundin
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
| | - Conny Tolf
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
| | - Markus Zöttl
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| |
Collapse
|
39
|
Zeng SY, Liu YF, Liu JH, Zeng ZL, Xie H, Liu JH. Potential Effects of Akkermansia Muciniphila in Aging and Aging-Related Diseases: Current Evidence and Perspectives. Aging Dis 2023; 14:2015-2027. [PMID: 37199577 PMCID: PMC10676789 DOI: 10.14336/ad.2023.0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/25/2023] [Indexed: 05/19/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is an anaerobic bacterium that widely colonizes the mucus layer of the human and animal gut. The role of this symbiotic bacterium in host metabolism, inflammation, and cancer immunotherapy has been extensively investigated over the past 20 years. Recently, a growing number of studies have revealed a link between A. muciniphila, and aging and aging-related diseases (ARDs). Research in this area is gradually shifting from correlation analysis to exploration of causal relationships. Here, we systematically reviewed the association of A. muciniphila with aging and ARDs (including vascular degeneration, neurodegenerative diseases, osteoporosis, chronic kidney disease, and type 2 diabetes). Furthermore, we summarize the potential mechanisms of action of A. muciniphila and offer perspectives for future studies.
Collapse
Affiliation(s)
- Shi-Yu Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Jiang-Hua Liu
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhao-Lin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
40
|
Lee W, Hayakawa T, Kiyono M, Yamabata N, Enari H, Enari HS, Fujita S, Kawazoe T, Asai T, Oi T, Kondo T, Uno T, Seki K, Shimada M, Tsuji Y, Langgeng A, MacIntosh A, Suzuki K, Yamada K, Onishi K, Ueno M, Kubo K, Hanya G. Diet-related factors strongly shaped the gut microbiota of Japanese macaques. Am J Primatol 2023; 85:e23555. [PMID: 37766673 DOI: 10.1002/ajp.23555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/08/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Although knowledge of the functions of the gut microbiome has increased greatly over the past few decades, our understanding of the mechanisms governing its ecology and evolution remains obscure. While host genetic distance is a strong predictor of the gut microbiome in large-scale studies and captive settings, its influence has not always been evident at finer taxonomic scales, especially when considering among the recently diverged animals in natural settings. Comparing the gut microbiome of 19 populations of Japanese macaques Macaca fuscata across the Japanese archipelago, we assessed the relative roles of host genetic distance, geographic distance and dietary factors in influencing the macaque gut microbiome. Our results suggested that the macaques may maintain a core gut microbiome, while each population may have acquired some microbes from its specific habitat/diet. Diet-related factors such as season, forest, and reliance on anthropogenic foods played a stronger role in shaping the macaque gut microbiome. Among closely related mammalian hosts, host genetics may have limited effects on the gut microbiome since the hosts generally have smaller physiological differences. This study contributes to our understanding of the relative roles of host phylogeography and dietary factors in shaping the gut microbiome of closely related mammalian hosts.
Collapse
Affiliation(s)
- Wanyi Lee
- Center for Ecological Research, Kyoto University, Inuyama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mieko Kiyono
- Graduate School of Human Development and Environment, Kobe University, Kobe, Hyogo, Japan
| | - Naoto Yamabata
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Hyogo, Japan
| | - Hiroto Enari
- Faculty of Agriculture, Yamagata University, Wakabamachi, Tsuruoka, Yamagata, Japan
| | - Haruka S Enari
- Faculty of Agriculture, Yamagata University, Wakabamachi, Tsuruoka, Yamagata, Japan
| | - Shiho Fujita
- Department of Behavioral Physiology and Ecology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsuro Kawazoe
- Research Institute for Languages and Cultures of Asia and Africa, Tokyo University of Foreign Studies, Tokyo, Japan
| | - Takayuki Asai
- South Kyushu Wildlife Management Center, Kagoshima, Japan
| | - Toru Oi
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | | | - Takeharu Uno
- Tohoku Monkey and Mammal Management Center, Sendai, Miyagi, Japan
| | - Kentaro Seki
- Tohoku Monkey and Mammal Management Center, Sendai, Miyagi, Japan
| | - Masaki Shimada
- Department of Animal Sciences, Teikyo University of Science, Uenohara, Yamanashi, Japan
| | - Yamato Tsuji
- Department of Science and Engineering, Ishinomaki Senshu University, Ishinomaki, Miyagi, Japan
| | - Abdullah Langgeng
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Wildlife Research Center, Kyoto University, Kanrin, Inuyama, Japan
| | - Andrew MacIntosh
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Wildlife Research Center, Kyoto University, Kanrin, Inuyama, Japan
| | | | - Kazunori Yamada
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Kenji Onishi
- Department of Early Childhood Education, Nara University of Education, Nara, Japan
| | - Masataka Ueno
- Faculty of Applied Sociology, Kindai University, Higashiosaka, Osaka, Japan
| | - Kentaro Kubo
- Cultural Asset Management Division, Board of Education, Oita-City, Japan
| | - Goro Hanya
- Center for Ecological Research, Kyoto University, Inuyama, Japan
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
41
|
Du C, Xu R, Zhao X, Liu Y, Zhou X, Zhang W, Zhou X, Hu N, Zhang Y, Sun Z, Wang Z. Association between host nitrogen absorption and root-associated microbial community in field-grown wheat. Appl Microbiol Biotechnol 2023; 107:7347-7364. [PMID: 37747613 DOI: 10.1007/s00253-023-12787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.
Collapse
Affiliation(s)
- Chenghang Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runlai Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaohan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanqing Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
42
|
Sun Y, Yu Y, Wu A, Zhang C, Liu X, Qian C, Li J, Ran J. The composition and function of the gut microbiota of Francois' langurs ( Trachypithecus francoisi) depend on the environment and diet. Front Microbiol 2023; 14:1269492. [PMID: 38033571 PMCID: PMC10687571 DOI: 10.3389/fmicb.2023.1269492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
The microbiota is essential for the extraction of energy and nutrition from plant-based diets and may have facilitated primate adaptation to new dietary niches in response to rapid environmental shifts. In this study, metagenomic sequencing technology was used to analyze the compositional structure and functional differences of the gut microbial community of Francois' langurs (Trachypithecus francoisi) under different environmental and dietary conditions. The results showed that in terms of the composition of the gut microbial community, there were significant differences among the gut microbiota of Francois' langurs (anthropogenic disturbed populations, wild populations, and captive populations) under different environmental and dietary conditions. The microbial communities with the highest abundance in Francois' langurs were Firmicutes and Bacteroidetes. Firmicutes was the most abundant phylum in anthropogenic disturbed Francois' langurs and the least abundant in captive Francois' langurs. The abundance of Bacteroidetes was highest in captive Francois' langurs. In the analysis and comparison of alpha diversity, the diversity of the gut microbiota of Francois' langurs affected by anthropogenic disturbance was the highest. The significant differences in gut microbiota between Francois' langurs in different environments and different diets were further supported by principal coordinate analysis (PCoA), with the disturbance group having a gut microbiota more similar to the wild group. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation analysis indicated a high abundance of functional genes involved in carbohydrate metabolism, amino acid metabolism, replication and repair, cofactor and vitamin metabolism, and other amino acid metabolism pathways. Additionally, the functional genes involved in carbohydrate metabolism pathways were significantly enriched in the gut microbial community of Francois' langurs that were anthropogenic disturbed and captive. The gut microbiota of the Francois' langurs exhibited potential plasticity for dietary flexibility, and long-term food availability in captive populations leads to changes in gut microbiota composition and function. This study explored the composition and function of the gut microbiota of Francois' langurs and provided a scientific basis for understanding the physiological and health status of Francois' langurs, effectively protecting the population of wild Francois' langurs and reintroducing captive Francois' langurs into the wild.
Collapse
Affiliation(s)
- Yue Sun
- School of Biological Sciences, Guizhou Education University, Guiyang, China
- Guizhou Fanjingshan Observation and Research Station for Forest Ecosystem, Tongren, China
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, Bijie, China
| | - Yanze Yu
- Wildlife Institute of Heilongjiang Province, Harbin, China
| | - Ankang Wu
- Mayanghe National Nature Reserve Administration, Tongren, China
| | - Chao Zhang
- Guizhou Forest Wildlife Park, Guiyang, China
| | - Xun Liu
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Changjiang Qian
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Jianfeng Li
- School of Biological Sciences, Guizhou Education University, Guiyang, China
- Key Laboratory of Biological Resources Exploitation and Utilization in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, China
| | - Jingcheng Ran
- Guizhou Fanjingshan Observation and Research Station for Forest Ecosystem, Tongren, China
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, Bijie, China
- Guizhou Academy of Forestry Sciences, Guiyang, China
| |
Collapse
|
43
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
44
|
Yue Y, Read TD, Fedirko V, Satten GA, Hu YJ. Integrative analysis of microbial 16S gene and shotgun metagenomic sequencing data improves statistical efficiency. RESEARCH SQUARE 2023:rs.3.rs-3376801. [PMID: 37886529 PMCID: PMC10602108 DOI: 10.21203/rs.3.rs-3376801/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background The most widely used technologies for profiling microbial communities are 16S marker-gene sequencing and shotgun metagenomic sequencing. Interestingly, many microbiome studies have performed both sequencing experiments on the same cohort of samples. The two sequencing datasets often reveal consistent patterns of microbial signatures, highlighting the potential for an integrative analysis to improve power of testing these signatures. However, differential experimental biases, partially overlapping samples, and differential library sizes pose tremendous challenges when combining the two datasets. Currently, researchers either discard one dataset entirely or use different datasets for different objectives. Methods In this article, we introduce the first method of this kind, named Com-2seq, that combines the two sequencing datasets for testing differential abundance at the genus and community levels while overcoming these difficulties. The new method is based on our LOCOM model (Hu et al., 2022), which employs logistic regression for testing taxon differential abundance while remaining robust to experimental bias. To benchmark the performance of Com-2seq, we introduce two ad hoc approaches: applying LOCOM to pooled taxa count data and combining LOCOM p-values from analyzing each dataset separately. Results Our simulation studies indicate that Com-2seq substantially improves statistical efficiency over analysis of either dataset alone and works better than the two ad hoc approaches. An application of Com-2seq to two real microbiome studies uncovered scientifically plausible findings that would have been missed by analyzing individual datasets. Conclusions Com-2seq performs integrative analysis of 16S and metagenomic sequencing data, which improves statistical efficiency and has the potential to accelerate the search of microbial communities and taxa that are involved in human health and diseases.
Collapse
Affiliation(s)
- Ye Yue
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA
| | - Timothy D. Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Veronika Fedirko
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Epidemiology, Emory University, Atlanta, GA, 30322, USA
| | - Glen A. Satten
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
45
|
Donohue ME, Hert ZL, Karrick CE, Rowe AK, Wright PC, Randriamanandaza LJ, Zakamanana F, Nomenjanahary ES, Everson KM, Weisrock DW. Lemur Gut Microeukaryotic Community Variation Is Not Associated with Host Phylogeny, Diet, or Habitat. MICROBIAL ECOLOGY 2023; 86:2149-2160. [PMID: 37133496 DOI: 10.1007/s00248-023-02233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Identifying the major forces driving variation in gut microbiomes enhances our understanding of how and why symbioses between hosts and microbes evolved. Gut prokaryotic community variation is often closely associated with host evolutionary and ecological variables. Whether these same factors drive variation in other microbial taxa occupying the animal gut remains largely untested. Here, we present a one-to-one comparison of gut prokaryotic (16S rRNA metabarcoding) and microeukaryotic (18S rRNA metabarcoding) community patterning among 12 species of wild lemurs. Lemurs were sampled from dry forests and rainforests of southeastern Madagascar and display a range of phylogenetic and ecological niche diversity. We found that while lemur gut prokaryotic community diversity and composition vary with host taxonomy, diet, and habitat, gut microeukaryotic communities have no detectable association with any of these factors. We conclude that gut microeukaryotic community composition is largely random, while gut prokaryotic communities are conserved among host species. It is likely that a greater proportion of gut microeukaryotic communities comprise taxa with commensal, transient, and/or parasitic symbioses compared with gut prokaryotes, many of which form long-term relationships with the host and perform important biological functions. Our study highlights the importance of greater specificity in microbiome research; the gut microbiome contains many "omes" (e.g., prokaryome, eukaryome), each comprising different microbial taxa shaped by unique selective pressures.
Collapse
Affiliation(s)
- Mariah E Donohue
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA.
| | - Zoe L Hert
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carly E Karrick
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Amanda K Rowe
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Patricia C Wright
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Centre ValBio Research Station, Ranomafana, MD, USA
| | | | | | | | - Kathryn M Everson
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| |
Collapse
|
46
|
Xi L, Han J, Wen X, Zhao L, Qin X, Luo S, Lv D, Song S. Species variations in the gut microbiota of captive snub-nosed monkeys. Front Endocrinol (Lausanne) 2023; 14:1250865. [PMID: 37780618 PMCID: PMC10534982 DOI: 10.3389/fendo.2023.1250865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Snub-nosed monkeys are species in danger of extinction due to habitat fragmentation and human activities. Captivity has been suggested as an Auxiliary Conservation Area (ASA) strategy. However, little is known about the adaptation of different species of snub-nosed monkeys to captive environments. Methods This study compared the gut microbiota between Rhinopithecus bieti, R. brelichi, and R. roxellana under identical captive conditions to provide insights for improving captive conservation strategies. Results The results showed that these three Rhinopithecus species shared 80.94% of their Operational Taxonomic Unit (OTU), indicating high similarity in gut microbiota composition. The predominant phyla were Firmicutes and Bacteroidetes for all three Rhinopithecus species, but differences were observed in diversity, characteristic bacterial communities, and predicted function. Significant enrichment of cellulolytic families, including Ruminococcaceae, Clostridiales vadinBB60 group, Christensenellaceae, and Erysipelotrichaceae, and pathways involved in propionate and butyrate metabolism in the gut of R. bieti suggested that it may have a superior dietary fiber utilization capacity. In contrast, Bacteroidetes, Ruminoccaceae, and Trichospiraceae were more abundant in R. brelichi and R. roxellana, and were associated with saccharide and glycan metabolic pathways. Moreover, R. brelichi and R. roxellana also had higher similarity in microbiota composition and predicted function. Discussion In conclusion, the results demonstrate that host species are associated with the composition and function of the gut microbiota in snub-nosed monkeys. Thus, host species should be considered when formulating nutritional strategies and disease surveillance in captive snub-nosed monkeys.
Collapse
Affiliation(s)
- Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Xiaohui Wen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Longfei Zhao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Xinxi Qin
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shengjun Luo
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dianhong Lv
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
47
|
Rios Galicia B, Sáenz JS, Yergaliyev T, Camarinha-Silva A, Seifert J. Host specific adaptations of Ligilactobacillus aviarius to poultry. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100199. [PMID: 37727231 PMCID: PMC10505982 DOI: 10.1016/j.crmicr.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The genus Ligilactobacillus encompasses species adapted to vertebrate hosts and fermented food. Their genomes encode adaptations to the host lifestyle. Reports of gut microbiota from chicken and turkey gastrointestinal tract have shown a high persistence of Ligilactobacillus aviarius along the digestive system compared to other species found in the same host. However, its adaptations to poultry as a host has not yet been described. In this work, the pan-genome of Ligilactobacillus aviarius was explored to describe the functional adaptability to the gastrointestinal environment. The core genome is composed of 1179 gene clusters that are present at least in one copy that codifies to structural, ribosomal and biogenesis proteins. The rest of the identified regions were classified into three different functional clusters of orthologous groups (clusters) that codify carbohydrate metabolism, envelope biogenesis, viral defence mechanisms, and mobilome inclusions. The pan-genome of Ligilactobacillus aviarius is a closed pan-genome, frequently found in poultry and highly prevalent across chicken faecal samples. The genome of L. aviarius codifies different clusters of glycoside hydrolases and glycosyltransferases that mediate interactions with the host cells. Accessory features, such as antiviral mechanisms and prophage inclusions, variate amongst strains from different GIT sections. This information provides hints about the interaction of this species with viral particles and other bacterial species. This work highlights functional adaptability traits present in L. aviarius that make it a dominant key member of the poultry gut microbiota and enlightens the convergent ecological relation of this species to the poultry gut environment.
Collapse
Affiliation(s)
- Bibiana Rios Galicia
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Johan Sebastian Sáenz
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Timur Yergaliyev
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| |
Collapse
|
48
|
Muhammad R, Klomkliew P, Chanchaem P, Sawaswong V, Kaikaew T, Payungporn S, Malaivijitnond S. Comparative analysis of gut microbiota between common (Macaca fascicularis fascicularis) and Burmese (M. f. aurea) long-tailed macaques in different habitats. Sci Rep 2023; 13:14950. [PMID: 37696929 PMCID: PMC10495367 DOI: 10.1038/s41598-023-42220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The environment has an important effect on the gut microbiota-an essential part of the host's health-and is strongly influenced by the dietary pattern of the host as these together shape the composition and functionality of the gut microbiota in humans and other animals. This study compared the gut microbiota of Macaca fascicularis fascicularis and M. f. aurea in mangrove and island populations using 16S rRNA gene sequencing on a nanopore platform to investigate the effect of the environment and/or diet. The results revealed that the M. f. fascicularis populations that received anthropogenic food exhibited a higher richness and evenness of gut microbiota than the M. f. aurea populations in different habitats. Firmicutes and Bacteroidetes were the two most abundant bacterial phyla in the gut microbiota of both these subspecies; however, the relative abundance of these phyla was significantly higher in M. f. aurea than in M. f. fascicularis. This variation in the gut microbiota between the two subspecies in different habitats mostly resulted from the differences in their diets. Moreover, the specific adaptation of M. f. aurea to different environments with a different food availability had a significant effect on their microbial composition.
Collapse
Affiliation(s)
- Raza Muhammad
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Titiporn Kaikaew
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand.
| |
Collapse
|
49
|
Liu H, Li Y, Liang J, Nong D, Li Y, Huang Z. Evaluation of Gut Microbiota Stability and Flexibility as a Response to Seasonal Variation in the Wild François' Langurs (Trachypithecus francoisi) in Limestone Forest. Microbiol Spectr 2023; 11:e0509122. [PMID: 37404157 PMCID: PMC10433995 DOI: 10.1128/spectrum.05091-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
The coevolution between gut microbiota and the host markedly influences the digestive strategies of animals to cope with changes in food sources. We have explored the compositional structure and seasonal variation in the gut microbiota of François' langur in a limestone forest in Guangxi, southwest China, using 16S rRNA sequencing. Our results demonstrated that Firmicutes and Bacteroidetes were the dominant phyla in langurs, followed by Oscillospiraceae, Christensenellaceae, and Lachnospiraceae at the family level. The top five dominant phyla did not show significant seasonal variations, and only 21 bacterial taxa differed at the family level, indicating stability in gut the microbiota possibly with respect to foraging for several dominant plants and high-leaf feeding by the langurs. Moreover, rainfall and minimum humidity are important factors affecting the gut microbiota of the langurs, but they explain few changes in bacterial taxa. The activity budget and thyroid hormone levels of the langurs did not differ significantly between seasons, indicating that these langurs did not respond to seasonal changes in food by regulating behavior or reducing metabolism. The present study indicates that the gut microbiota's structure is related to digestion and energy absorption of these langurs, providing new perspectives on their adaptation to limestone forests. IMPORTANCE François' langur is a primate that particularly lives in karst regions. The adaptation of wild animals to karst habitats has been a hot topic in behavioral ecology and conservation biology. In this study, gut microbiota, behavior, and thyroid hormone data were integrated to understand the interaction of the langurs and limestone forests from the physiological response, providing basic data for assessing the adaptation of the langurs to the habitats. The responses of the langurs to environmental changes were explored from the seasonal variations in gut microbiota, which would help to further understand the adaptive strategies of species to environmental changes.
Collapse
Affiliation(s)
- Hongying Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Jipeng Liang
- Administration Center of Guangxi Chongzuo White-Headed Langur National Nature Reserve, Chongzuo, China
| | - Dengpan Nong
- Administration Center of Guangxi Chongzuo White-Headed Langur National Nature Reserve, Chongzuo, China
| | - Youbang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Zhonghao Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
50
|
Xi L, Wen X, Jia T, Han J, Qin X, Zhang Y, Wang Z. Comparative study of the gut microbiota in three captive Rhinopithecus species. BMC Genomics 2023; 24:398. [PMID: 37452294 PMCID: PMC10349479 DOI: 10.1186/s12864-023-09440-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Snub-nosed monkeys are highly endangered primates and their population continues to decline with the habitat fragmentation. Artificial feeding and breeding is an important auxiliary conservation strategy. Studies have shown that changes and imbalances in the gut microbiota often cause gastrointestinal problems in captive snub-nosed monkeys. Here, we compare the gut microbiota composition, diversity, and predicted metabolic function of three endangered species of snub-nosed monkeys (Rhinopithecus bieti, R. brelichi, and R. roxellana) under the same captive conditions to further our understanding of the microbiota of these endangered primates and inform captive conservation strategies. 16 S rRNA gene sequencing was performed on fecal samples from 15 individuals (R. bieti N = 5, R. brelichi N = 5, R. roxellana N = 5). RESULTS The results showed that the three Rhinopithecus species shared 24.70% of their amplicon sequence variants (ASVs), indicating that the composition of the gut microbiota varied among the three Rhinopithecus species. The phyla Firmicutes and Bacteroidetes represented 69.74% and 18.45% of the core microbiota. In particular, analysis of microbiota diversity and predicted metabolic function revealed a profound impact of host species on the gut microbiota. At the genus level, significant enrichment of cellulolytic genera including Rikenellaceae RC9 gut group, Ruminococcus, Christensenellaceae R7 group, UCG 004 from Erysipelatoclostridiaceae, and UCG 002 and UCG 005 from Oscillospiraceae, and carbohydrate metabolism including propionate and butyrate metabolic pathways in the gut of R. bieti indicated that R. bieti potentially has a stronger ability to use plant fibers as energy substances. Bacteroides, unclassified Muribaculaceae, Treponema, and unclassified Eubacterium coprostanoligenes group were significantly enriched in R. brelichi. Prevotella 9, unclassified Lachnospiraceae, and unclassified UCG 010 from Oscillospirales UCG 010 were significantly enriched in R. roxellana. Among the predicted secondary metabolic pathways, the glycan biosynthesis and metabolism had significantly higher relative abundance in the gut of R. brelichi and R. roxellana than in the gut of R. bieti. The above results suggest that different Rhinopithecus species may have different strategies for carbohydrate metabolism. The Principal coordinate analysis (PCoA) and Unweighted pair-group method with arithmetic mean (UPGMA) clustering tree revealed fewer differences between the gut microbiota of R. brelichi and R. roxellana. Correspondingly, no differences were detected in the relative abundances of functional genes between the two Rhinopithecus species. CONCLUSION Taken together, the study highlights that host species have an effect on the composition and function of the gut microbiota of snub-nosed monkeys. Therefore, the host species should be considered when developing nutritional strategies and investigating the effects of niche on the gut microbiota of snub-nosed monkeys.
Collapse
Affiliation(s)
- Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu Normal University, Shangqiu, China
| | - Xiaohui Wen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu Normal University, Shangqiu, China.
| | - Xinxi Qin
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Yanzhen Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Zihan Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| |
Collapse
|