1
|
Kojja V, Kumar D, Kalavagunta PK, Bhukya B, Tangutur AD, Nayak PK. 2-(Diarylalkyl)aminobenzothiazole derivatives induce autophagy and apoptotic death through SIRT inhibition and P53 activation In MCF7 breast cancer cells. Comput Biol Chem 2025; 116:108395. [PMID: 39987744 DOI: 10.1016/j.compbiolchem.2025.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Sirtuins (SIRTs) are multifunctional proteins that exhibit a wide range of substrate preferences and cellular localizations. They are reliant on NAD+ and are essential for the regulation of several cellular functions. The SIRT proteins play important role towards tumor survival and resistance mechanisms in tumor cells. Therefore, molecules targeting SIRT proteins gained significant recognition in cancer research. In this work, we explored the anticancer property, potential and mode of action of 2-(diarylalkyl)aminobenzothiazole derivatives on MCF7 human breast cancer cells. Our studies established that 2-(diarylalkyl)aminobenzothiazole derivatives 1-((6-chlorobenzo[d]thiazol-2-ylamino)(3,4-dichlorophenyl)methyl)naphthalen-2-ol (7ab) and 1-((6-chlorobenzo[d]thiazol-2-ylamino)(4-bromophenyl)methyl)naphthalen-2-ol (7ba) treatment in a dose dependent manner drastically lowered the cell proliferation in MCF7 cells and the IC50 values of 7ab and 7ba was found to be 11.4 µM and 9.6 µM at 24 hr in these cells. Docking and molecular dynamic simulation studies further revealed that 7ab and 7ba show significant binding with SIRT1 protein. Consistently, treatment with 7ab and 7ba reduced the expression levels of SIRT1 protein while increasing acetylation of p53, a known SIRT protein target in MCF-7 cells. We observed that SIRT1inhibition was associated with activation of p53, an essential protein for apoptotic cell death, in MCF-7 cell lines. Furthermore, 7ab and 7ba treatment induced LC3-II expression and vacuole formation in the cytoplasm leading to autophagic cell death. Our findings together reveal the plausible cellular targets and specificity of these new small molecules as SIRT inhibitors, which increase p53 acetylation and suppress the proliferation of MCF-7 human breast cancer cells by triggering autophagic and apoptotic cell death.
Collapse
Affiliation(s)
- Venkateswarlu Kojja
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Dinesh Kumar
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Praveen Kumar Kalavagunta
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007, India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, Telangana State 500007, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Prasad K, Kaul SC, Wadhwa R, Guruprasad KP, Satyamoorthy K. Cellular oxidative stress and sirtuins mediate regulation of senescence and neuronal differentiation by withaferin A. Free Radic Biol Med 2025; 233:174-185. [PMID: 40154756 DOI: 10.1016/j.freeradbiomed.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Withaferin A (WA) and Withanone (WN), the steroidal lactones are pharmacologically established for anticancer and chemopreventive effects in certain cancers. However, their effects on redox modulations, mechanisms stimulating senescence and neuronal differentiation in neuroblastoma cells are less understood. Here we examined the influence of WA on perturbations in the molecular architecture of growth, differentiation and senescence of human brain cancer cell SH SY5Y in vitro and test its efficacy in mouse tumor models. We found senescence induction amplified by WA as determined by a senescence-associated β-galactosidase assay. This led us to evaluate DNA damage which was enhanced as measured by phospho-γH2AX foci formation, directed by reactive oxygen species (ROS) production as determined by flow cytometry and confocal imaging. Furthermore, we assessed the influence of DNA damage on cell cycle arrest and DNA repair. Neurosphere formation assay was performed to demonstrate the stem cell inhibitory potential of WA. Subcutaneous xenograft of neuroblastoma cells in athymic Balb/c mice was performed followed by treatment with WA and tumor growth inhibition was established. Withania somnifera (WS) extract and WA induced alterations in ROS, triggering DNA damage and concomitantly regulated SIRTs expression leading to activation of senescence in SH SY5Y cells. Upon prolonged incubation, differentiation into neuronal lineages was confirmed by using differentiation markers such as neurofilament medium, nestin, MAP2 and synaptophysin as measured by immunofluorescence and flow cytometry. The results suggest a complex interplay between the induction of senescence and concurrent neuronal differentiation of SH SY5Y cells mediated by early alterations in SIRT1 and SIRT3. Thus, we report the senescence and differentiation potential of WS extracts and WA through ROS that are mediated via modulation of SIRT1, SIRT3 and mitochondria function.
Collapse
Affiliation(s)
- Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Kanive P Guruprasad
- Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- SDM Centre for Cellular and Molecular Sciences, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India.
| |
Collapse
|
3
|
Li J, Liu T, Xian M, Wei J. Therapeutic applications of exercise in neurodegenerative diseases: focusing on the mechanism of SIRT1. Mol Cell Biochem 2025:10.1007/s11010-025-05299-8. [PMID: 40358811 DOI: 10.1007/s11010-025-05299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Neurodegenerative diseases comprise a group of central nervous system disorders marked by progressive neuronal degeneration and dysfunction. Their pathogenesis is multifactorial, involving oxidative stress, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. Recent research has highlighted the potential of exercise as a non-pharmacological intervention for both the prevention and treatment of these disorders. In particular, exercise has received growing attention for its capacity to upregulate the expression and activity of SIRT1, a critical mediator of neuroprotection via downstream signaling pathways. SIRT1, a key member of the Sirtuin family, is a nicotinamide adenine dinucleotide (NAD +)-dependent class III histone deacetylase. It plays an essential role in regulating cellular metabolism, energy homeostasis, gene expression, and cellular longevity. In the context of neurodegenerative diseases, SIRT1 confers neuroprotection by modulating multiple signaling cascades through deacetylation, suppressing neuronal apoptosis, and promoting neural repair and regeneration. Exercise enhances SIRT1 expression and activity by increasing NAD + synthesis and utilization, improving intracellular redox balance, alleviating oxidative stress-induced inhibition of SIRT1, and thereby promoting its activation. Moreover, exercise may indirectly modulate SIRT1 function by influencing interacting molecular networks. This review summarizes recent advances in the therapeutic application of exercise for neurodegenerative diseases, with a focus on SIRT1 as a central mechanism. It examines how exercise mediates neuroprotection through the regulation of SIRT1 and its associated molecular mechanisms and signaling pathways. Finally, the paper discusses the potential applications and challenges of integrating exercise and SIRT1-targeted strategies in the management of neurodegenerative diseases, offering novel perspectives for the development of innovative treatments and improvements in patients' quality of life.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, 475004, Henan, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jianshe Wei
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, 475004, Henan, China.
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Wang Z, Guo W, Zhang X, Wei Y, Zhang W, Du N, Li C, Wu X, Yi F, Zhou T, Dong X, Guo Q, Xu H, Wang E, Li N, Cheng R, Li Z, Song X, Sun Y, Sun X, Cao L. Tumor microenvironment-associated oxidative stress impairs SIRT1 secretion to suppress anti-tumor immune response. Cell Rep 2025; 44:115679. [PMID: 40343797 DOI: 10.1016/j.celrep.2025.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/10/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Sirtuin-1 (SIRT1) is a classical histone deacetylase well known for its roles in intracellular pathways such as energy metabolism, DNA damage response, and genome stability maintenance. We report that SIRT1 can be secreted into the tumor microenvironment (TME) through an unconventional protein secretion pathway, effectively inhibiting tumor growth. However, under the stressful conditions of the TME, SIRT1 undergoes increased methylation, which impedes its secretion. Consequently, tumor-infiltrating M2 macrophages are unable to acquire sufficient SIRT1 from the TME, resulting in a significant decrease in SIRT1 levels within these cells. This SIRT1 decline leads to elevated expression of programmed cell death ligand 1 (PD-L1) on M2 macrophages, which in turn contributes to CD8+ T cell exhaustion through the programmed cell death protein 1/PD-L1 interaction pathway. These findings unveil the multifaceted roles and regulatory mechanisms of SIRT1 within the complex TME, providing deeper insights that significantly enhance our understanding of tumor immune-evasion strategies.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Wendong Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaowen Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Yufei Wei
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning 110122, China
| | - Wanying Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Ning Du
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Chunlu Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Xuan Wu
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Tingting Zhou
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiang Dong
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiqiang Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Hongde Xu
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Erli Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Na Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Rong Cheng
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning 110122, China.
| | - Xun Sun
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning 110122, China.
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Poojary KK, Kunhiraman JP, Madhvacharya VV, Kumari S, Krishna N, S SP, K RG, Mutalik S, Ghani NK, Kabekkodu SP, Prasad TSK, Adiga SK, Kalthur G. Bromodomain and extraterminal protein inhibitor JQ1 induces maturation arrest and disrupts the cytoplasmic organization in mouse oocytes under in vitro conditions. Sci Rep 2025; 15:13448. [PMID: 40251236 PMCID: PMC12008386 DOI: 10.1038/s41598-025-96687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
JQ1, a small cell-permeable molecule is known for its potent inhibitory action on bromodomain and extraterminal (BET) proteins. Although earlier studies have shown its inhibitory effect on male gametogenesis, limited information is available about its influence on oocyte development. Since BET genes are known to exhibit regulatory functions on oocyte development and maturation, the present study aimed to investigate the effect of JQ1 on oocyte developmental competence under in vitro conditions. Germinal vesicle (GV) stage oocytes were collected from adult Swiss albino mice and subjected to in vitro maturation (IVM) in the presence of various concentrations of JQ1 (25, 50, and 100 μM). The metaphase II (MII) stage oocytes were assessed for cytoplasmic organization and functional competence at 24 h after IVM. A significant decrease in nuclear maturation (at 50 and 100 μM), symmetric cytokinesis, altered distribution of mitochondria and cortical granules, poorly organized actin and meiotic spindle, misaligned chromosomes, and elevated endoplasmic reticulum (ER) stress and oxidative stress was observed in JQ1-exposed oocytes. Presence of N-acetyl cysteine (NAC), in IVM medium resulted in significant reduction in JQ1-induced oxidative stress and symmetric cytokinesis. Administration of JQ1 (50 mg/kg, intra peritoneal) to adult Swiss albino mice primed with pregnant mare serum gonadotrophin (PMSG) and human chorionic gonadotrophin (hCG) did not affect the ovulation. However, a high degree of oocyte degeneration, elevated intracellular reactive oxygen species (ROS), and GRP78 expression was observed in JQ1-administered mice. In conclusion, our study reveals that BET inhibitor JQ1 has detrimental effects on oocyte function and development.
Collapse
Affiliation(s)
- Keerthana Karunakar Poojary
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jyolsna Ponnaratta Kunhiraman
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vanishree Vasave Madhvacharya
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Navami Krishna
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, 673601, Kerala, India
| | - Suresh P S
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, 673601, Kerala, India
| | - Rajanikant G K
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, 673601, Kerala, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nadeem Khan Ghani
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shama Prasada Kabekkodu
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine [An ICMR-Collaborating Centre of Excellence (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
6
|
Chen L, Li D, Zhan Z, Quan J, Peng J, Huang Z, Yi B. Sirtuin 2 exacerbates renal tubule injury and inflammation in diabetic mice via deacetylation of c-Jun/c-Fos. Cell Mol Life Sci 2025; 82:45. [PMID: 39833479 PMCID: PMC11747030 DOI: 10.1007/s00018-024-05567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes, and inflammation plays a crucial role. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, which is involved in the regulation of cell metabolism, proliferation and longevity through deacetylation. Our previous research showed a positive correlation between urinary SIRT2 levels and renal injury markers in DN patients. Therefore, this study explored the specific role of SIRT2 in DN and its regulatory relationship with inflammatory response. Increased expression of SIRT2 was observed in kidney tissues of DN mice and in HK2 cells induced by HG/PA. SIRT2 knockout mice alleviated microalbuminuria, inflammatory responses, and kidney damage induced by HFD/STZ. In HK2 cells, reducing SIRT2 expression or inhibiting its acetylase activity alleviated the inflammatory response induced by HG/PA, whereas overexpression of SIRT2 exacerbated this response. Further investigation revealed that SIRT2 directly interacts with c-Jun/c-Fos, promoting their deacetylation. And inhibitors of c-Jun/c-Fos partially reversed the upregulation of inflammatory factors caused by SIRT2 overexpression. Meanwhile, disrupting SIRT2 reduced the binding activity between AP-1 and the MCP-1 promoter, while overexpressing SIRT2 further increased their binding activity in HK2 cells. Interestingly, SIRT2 increased its phosphorylation while deacetylating c-Jun, leading to nuclear accumulation of p-c-Jun. In conclusion, SIRT2 knockout can alleviate kidney injury and inflammatory response in HFD/STZ mice. The mechanism is related to the increased acetylation of c-Jun/c-Fos in renal tubular epithelial cells, accompanied by crosstalk between c-Jun phosphorylation and acetylation. Blocking SIRT2 could therefore be a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Li Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Zishun Zhan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Jingjing Quan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Juan Peng
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Zhijun Huang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China.
| |
Collapse
|
7
|
Prabhakar AT, Morgan IM. A new role for human papillomavirus 16 E2: Mitotic activation of the DNA damage response to promote viral genome segregation. Tumour Virus Res 2024; 18:200291. [PMID: 39245413 PMCID: PMC11416546 DOI: 10.1016/j.tvr.2024.200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024] Open
Abstract
Human papillomaviruses (HPV) are causative agents in around 5% of all human cancers. To identify and develop new targeted HPV therapeutics we must enhance our understanding of the viral life cycle and how it interacts with the host. The HPV E2 protein dimerizes and binds to 12bp target sequences in the viral genome and segregates the viral genome during mitosis. In this function, E2 binds to the viral genome and the host chromatin simultaneously, ensuring viral genomes reside in daughter nuclei following cell division. We have demonstrated that a mitotic interaction between E2 and the DNA damage response (DDR) protein TOPBP1 is required for E2 segregation function. In non-infected cells, following DNA damage, TOPBP1 is recruited to the mitotic host genome via interaction with MDC1 and this interaction protects DNA integrity during mitosis. Recently we demonstrated that the E2-TOPBP1 interaction activates the DNA damage response (DDR) during mitosis independently from external stimuli, promoting TOPBP1 interaction with mitotic chromatin and therefore segregation of the viral genome. Therefore, the virus has hijacked an existing host mechanism in order to segregate the viral genome. This intricate E2 function will be described and discussed.
Collapse
Affiliation(s)
- Apurva T Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA.
| | - Iain M Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA; VCU Massey Cancer Center, Richmond, VA, 23298, USA.
| |
Collapse
|
8
|
Bose GS, Kalakoti G, Kulkarni AP, Mittal S. AP-1/C-FOS and AP-1/FRA2 differentially regulate early and late adipogenic differentiation of mesenchymal stem cells. J Cell Biochem 2024; 125:e30543. [PMID: 38440920 DOI: 10.1002/jcb.30543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Obesity is defined as an abnormal accumulation of adipose tissue in the body and is a major global health problem due to increased morbidity and mortality. Adipose tissue is made up of adipocytes, which are fat-storing cells, and the differentiation of these fat cells is known as adipogenesis. Several transcription factors (TFs) such as CEBPβ, CEBPα, PPARγ, GATA, and KLF have been reported to play a key role in adipogenesis. In this study, we report one more TF AP-1, which is found to be involved in adipogenesis. Human mesenchymal stem cells were differentiated into adipocytes, and the expression pattern of different subunits of AP-1 was examined during adipogenesis. It was observed that C-FOS was predominantly expressed at an early stage (Day 2), whereas FRA2 expression peaked at later stages (Days 6 and 8) of adipogenesis. Chromatin immunoprecipitation-sequencing analysis revealed that C-FOS binds mainly to the promoters of WNT1, miR-30a, and ANAPC7 and regulates their expression during mitotic clonal expansion. In contrast, FRA2 binds to the promoters of CIDEA, NOTCH1, ARAF, and MYLK, regulating their expression and lipid metabolism. Data obtained clearly indicate that the differential expression of C-FOS and FRA2 is crucial for different stages of adipogenesis. This also raises the possibility of considering AP-1 as a therapeutic target for treating obesity and related disorders.
Collapse
Affiliation(s)
- Ganesh Suraj Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Garima Kalakoti
- Bioinformatics Center, Savitribai Phule Pune University, Pune, India
| | | | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
9
|
Daneshgar N, Lan R, Regnier M, Mackintosh SG, Venkatasubramanian R, Dai DF. Klotho enhances diastolic function in aged hearts through Sirt1-mediated pathways. GeroScience 2024; 46:4729-4741. [PMID: 38976132 PMCID: PMC11336011 DOI: 10.1007/s11357-024-01209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Aging leads to a progressive decline in cardiac function, increasing the risk of heart failure with preserved ejection fraction (HFpEF). This study elucidates the impact of α-Klotho, an anti-aging hormone, on cardiac diastolic dysfunction and explore its downstream mechanisms. Aged wild-type and heterozygous Klotho-deficient mice received daily injection of soluble α-Klotho (sKL) for 10 weeks, followed by a comprehensive assessment of heart function by echocardiography, intracardiac pressure catheter, exercise tolerance, and cardiac pathology. Our findings show that klotho deficiency accentuated cardiac hypertrophy, diastolic dysfunction, and exercise intolerance, while sKL treatment ameliorates these abnormalities and improves cardiac capillary densities. Downstream of klotho, we focused on the Sirtuin1 (Sirt1) signaling pathway to elucidate the potential underlying mechanism by which Klotho improves diastolic function. We found that decreased Klotho levels were linked with Sirt1 deficiency, whereas sKL treatment restored Sirt1 expression in aged hearts and mitigated the DNA damage response pathway activation. Through tandem mass tag proteomics and unbiased acetylomics analysis, we identified 220 significantly hyperacetylated lysine sites in critical cardiac proteins of aged hearts. We found that sKL supplementation attenuated age-dependent DNA damage and cardiac diastolic dysfunction. In contrast, Klotho deficiency significantly increased hyperacetylation of several crucial cardiac contractile proteins, potentially impairing ventricular relaxation and diastolic function, thus predisposing to HFpEF. These results suggest the potential benefit of sKL supplementation as a promising therapeutic strategy for combating HFpEF in aging.
Collapse
Affiliation(s)
- Nastaran Daneshgar
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Renny Lan
- UAMS, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Dao-Fu Dai
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Nevoral J, Drutovic D, Vaskovicova M, Benc M, Liska F, Valentova I, Stachovicova S, Kubovciak J, Havrankova J, Shavit M, Monsef L, Iniesta-Cuerda M, Zalmanova T, Hosek P, Strejcek F, Kralickova M, Petr J. Dynamics and necessity of SIRT1 for maternal-zygotic transition. Sci Rep 2024; 14:21598. [PMID: 39285243 PMCID: PMC11405870 DOI: 10.1038/s41598-024-72595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Dynamic changes in maternal‒zygotic transition (MZT) require complex regulation of zygote formation, maternal transcript decay, embryonic genome activation (EGA), and cell cycle progression. Although these changes are well described, some key regulatory factors are still elusive. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, is a versatile driver of MZT via its epigenetic and nonepigenetic substrates. This study focused on the dynamics of SIRT1 in early embryos and its contribution to MZT. A conditional SIRT1-deficient knockout mouse model was used, accompanied by porcine and human embryos. Embryos across mammalian species showed the prominent localization of SIRT1 in the nucleus throughout early embryonic development. Accordingly, SIRT1 interacts with histone H4 on lysine K16 (H4K16) in both mouse and human blastocysts. While maternal SIRT1 is dispensable for MZT, at least one allele of embryonic Sirt1 is required for early embryonic development around the time of EGA. This role of SIRT1 is surprisingly mediated via a transcription-independent mode of action.
Collapse
Affiliation(s)
- Jan Nevoral
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic.
- Faculty of Medicine in Pilsen, Department of Histology and Embryology, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic.
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Michal Benc
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie Mladeze 91, 94974, Nitra, Slovakia
| | - Frantisek Liska
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Kateřinská 1660/32, 121 08, Prague, Czech Republic
| | - Iveta Valentova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
- Pronatal Sanatorium, Na Dlouhé Mezi 12/4, 147 00, Prague 4, Czech Republic
| | - Sara Stachovicova
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie Mladeze 91, 94974, Nitra, Slovakia
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, INRAE, BREED, Jouy-en-Josas, France
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, 142 20, Prague 4, Czech Republic
| | - Jirina Havrankova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
- Faculty of Medicine in Pilsen, Department of Histology and Embryology, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Miki Shavit
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Ladan Monsef
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Maria Iniesta-Cuerda
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Tereza Zalmanova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
- Institute of Animal Science, Přátelství 815, Uhříněves, 104 00, Prague, Czech Republic
| | - Petr Hosek
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Frantisek Strejcek
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie Mladeze 91, 94974, Nitra, Slovakia
| | - Milena Kralickova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
- Faculty of Medicine in Pilsen, Department of Histology and Embryology, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, Přátelství 815, Uhříněves, 104 00, Prague, Czech Republic
| |
Collapse
|
11
|
An Z, Xie C, Lu H, Wang S, Zhang X, Yu W, Guo X, Liu Z, Shang D, Wang X. Mitochondrial Morphology and Function Abnormality in Ovarian Granulosa Cells of Patients with Diminished Ovarian Reserve. Reprod Sci 2024; 31:2009-2020. [PMID: 38294667 DOI: 10.1007/s43032-024-01459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
In this study, we examined the changes in the mitochondrial structure and function in cumulus granulosa cells of patients with diminished ovarian reserve (DOR) to explore the causes and mechanisms of decreased mitochondrial quality. The mitochondrial ultrastructure was observed by transmission electron microscope, and the function was determined by detecting the ATP content, reactive oxygen species (ROS) levels, the number of mitochondria, and the mitochondrial membrane potential. The expression of ATP synthases in relation to mitochondrial function was analyzed. Additionally, protein immunoblotting was used to compare the expression levels of mitochondrial kinetic protein, the related channel protein in the two groups. Patients with DOR had abnormal granulosa cell morphology, increased mitochondrial abnormalities, decreased mitochondrial function, and disturbed mitochondrial dynamics. Additionally, the silent information regulator 1 (SIRT1)/phospho-AMP-activated protein kinase (P-AMPK)-peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) pathway expression was decreased, which was speculated to be associated with the decreased mitochondrial mass in the DOR group. The mitochondrial mass was decreased in granulosa cells of patients in the DOR group. The mitochondrial dysfunction observed in granulosa cells of patients in the DOR group may be associated with dysregulation of the SIRT1/P-AMPK-PGC-1α-mitochondrial transcription factor A (TFAM) pathway.
Collapse
Affiliation(s)
- Zhuo An
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
- Hebei Medical University, No. 361 Zhongshan Road, Chang'An District, Shijiazhuang, 050017, China
| | - Congcong Xie
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Hui Lu
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Xiujia Zhang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Wenbo Yu
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Xiaoli Guo
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Zehao Liu
- Hebei Children's Hospital, Shijiazhuang, 050031, China
| | - Dandan Shang
- Hebei Medical University, No. 361 Zhongshan Road, Chang'An District, Shijiazhuang, 050017, China.
| | - Xueying Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China.
| |
Collapse
|
12
|
Ma Q, Shen M, Wu J, Ye C, Tan Y. Mechanism Research of DHEA Treatment Improving Diminished Ovarian Reserve by Attenuating the AMPK-SIRT1 Signaling and Mitophagy. Reprod Sci 2024; 31:2059-2072. [PMID: 38453773 DOI: 10.1007/s43032-024-01473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
This study aims to investigate the effect and mechanism of dehydroepiandrosterone (DHEA) on diminished ovarian reserve (DOR) by modulating the AMPK-SIRT1 signaling and mitophagy in rats. Three-month-old female Sprague-Dawley (SD) rats were randomized and injected intraperitoneally with sesame oil as the control or deoxyvinylcyclohexene (VCD) to induce DOR. The VCD-injected rats were randomized and injected subcutaneously with vehicle as the model group or with DHEA for 21 days as the DHEA group. After being identified in proestrus, rat blood samples were collected to prepare serum samples, and their ovarian tissues were dissected. Compared with the controls, significantly lower serum estradiol (E2), anti-Müllerian hormone (AMH), and inhibin B (IHNB) and higher follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were detected in the model group (DOR rats). The model group of rats displayed an increase in follicular atresia and a decrease in ovarian volume and the number of growing follicles and corpus luteum, accompanied by increased frequency of oocyte apoptosis and reduced levels of mitochondrial function. Furthermore, significantly higher levels of the AMPK-SIRT1 signaling and mitophagy were observed in the ovaries of rats in the model group. In contrast, treatment with DHEA significantly ameliorated the hormone disorder and morphological changes in the ovaries, reduced the frequency of apoptotic oocytes, and improved mitochondrial function in the ovaries of DOR rats. Mechanistically, DHEA treatment significantly attenuated the AMPK-SIRT1 signaling and mitophagy in the ovaries of DOR rats. DHEA treatment reduced the severity of DOR and enhanced ovarian reserve function by attenuating the AMPK-SIRT1 signaling and mitophagy in the ovaries of rats.
Collapse
Affiliation(s)
- Qianwen Ma
- TCM Department, Hangzhou Ninth People's Hospital, Number 98, Yilong Road, Yipeng Street, Qiantang District, Hangzhou, 311225, Zhejiang, China.
| | - Mingxia Shen
- TCM Department, Hangzhou Ninth People's Hospital, Number 98, Yilong Road, Yipeng Street, Qiantang District, Hangzhou, 311225, Zhejiang, China
| | - Jianfei Wu
- TCM Department, Hangzhou Ninth People's Hospital, Number 98, Yilong Road, Yipeng Street, Qiantang District, Hangzhou, 311225, Zhejiang, China
| | - Chenshu Ye
- TCM Department, Hangzhou Ninth People's Hospital, Number 98, Yilong Road, Yipeng Street, Qiantang District, Hangzhou, 311225, Zhejiang, China
| | - Yong Tan
- Reproductive Medicine Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Prabhakar AT, James CD, Youssef AH, Hossain RA, Hill RD, Bristol ML, Wang X, Dubey A, Karimi E, Morgan IM. A human papillomavirus 16 E2-TopBP1 dependent SIRT1-p300 acetylation switch regulates mitotic viral and human protein levels and activates the DNA damage response. mBio 2024; 15:e0067624. [PMID: 38722185 PMCID: PMC11237546 DOI: 10.1128/mbio.00676-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 05/21/2024] Open
Abstract
An interaction between human papillomavirus 16 (HPV16) E2 and the cellular proteins TopBP1 and BRD4 is required for E2 plasmid segregation function. The E2-TopBP1 interaction promotes increased mitotic E2 protein levels in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes immortalized by HPV16 (HFK + HPV16). SIRT1 deacetylation reduces E2 protein stability and here we demonstrate that increased E2 acetylation occurs during mitosis in a TopBP1 interacting-dependent manner, promoting E2 mitotic stabilization. p300 mediates E2 acetylation and acetylation is increased due to E2 switching off SIRT1 function during mitosis in a TopBP1 interacting-dependent manner, confirmed by increased p53 stability and acetylation on lysine 382, a known target for SIRT1 deacetylation. SIRT1 can complex with E2 in growing cells but is unable to do so during mitosis due to the E2-TopBP1 interaction; SIRT1 is also unable to complex with p53 in mitotic E2 wild-type cells but can complex with p53 outside of mitosis. E2 lysines 111 and 112 are highly conserved residues across all E2 proteins and we demonstrate that K111 hyper-acetylation occurs during mitosis, promoting E2 interaction with Topoisomerase 1 (Top1). We demonstrate that K112 ubiquitination promotes E2 proteasomal degradation during mitosis. E2-TopBP1 interaction promotes mitotic acetylation of CHK2, promoting phosphorylation and activation of the DNA damage response (DDR). The results present a new model in which the E2-TopBP1 complex inactivates SIRT1 during mitosis, and activates the DDR. This is a novel mechanism of HPV16 activation of the DDR, a requirement for the viral life cycle. IMPORTANCE Human papillomaviruses (HPVs) are causative agents in around 5% of all human cancers. While there are prophylactic vaccines that will significantly alleviate HPV disease burden on future generations, there are currently no anti-viral strategies available for the treatment of HPV cancers. To generate such reagents, we must understand more about the HPV life cycle, and in particular about viral-host interactions. Here, we describe a novel mitotic complex generated by the HPV16 E2 protein interacting with the host protein TopBP1 that controls the function of the deacetylase SIRT1. The E2-TopBP1 interaction disrupts SIRT1 function during mitosis in order to enhance acetylation and stability of viral and host proteins. We also demonstrate that the E2-TopBP1 interaction activates the DDR. This novel complex is essential for the HPV16 life cycle and represents a novel anti-viral therapeutic target.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Aya H. Youssef
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Reafa A. Hossain
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Ronald D. Hill
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Viginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Aanchal Dubey
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Elmira Karimi
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Viginia, USA
| |
Collapse
|
14
|
Jiang YZ, Huang XR, Chang J, Zhou Y, Huang XT. SIRT1: An Intermediator of Key Pathways Regulating Pulmonary Diseases. J Transl Med 2024; 104:102044. [PMID: 38452903 DOI: 10.1016/j.labinv.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Silent information regulator type-1 (SIRT1), a nicotinamide adenine dinucleotide+-dependent deacetylase, is a member of the sirtuins family and has unique protein deacetylase activity. SIRT1 participates in physiological as well as pathophysiological processes by targeting a wide range of protein substrates and signalings. In this review, we described the latest progress of SIRT1 in pulmonary diseases. We have introduced the basic information and summarized the prominent role of SIRT1 in several lung diseases, such as acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung cancer, and aging-related diseases.
Collapse
Affiliation(s)
- Yi-Zhu Jiang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xin-Ran Huang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Chang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, China.
| |
Collapse
|
15
|
Khameneh SC, Sari S, Razi S, Yousefi AM, Bashash D. Inhibition of PI3K/AKT signaling using BKM120 reduced the proliferation and migration potentials of colorectal cancer cells and enhanced cisplatin-induced cytotoxicity. Mol Biol Rep 2024; 51:420. [PMID: 38483663 DOI: 10.1007/s11033-024-09339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Although extensive efforts have been made to improve the treatment of colorectal cancer (CRC) patients, the prognosis for these patients remains poor. A wide range of anti-cancer agents has been applied to ameliorate the clinical management of CRC patients; however, drug resistance develops in nearly all patients. Based on the prominent role of PI3K/AKT signaling in the development of CRC and current interest in the application of PI3K inhibitors, we aimed to disclose the exact mechanism underlying the efficacy of BKM120, a well-known pan-class I PI3K inhibitor, in CRC-derived SW480 cells. MATERIALS AND METHODS The effects of BKM120 on SW480 cells were studied using MTT assay, cell cycle assay, Annexin V/PI apoptosis tests, and scratch assay. In the next step, qRT-PCR was used to investigate the underlying molecular mechanisms by which the PI3K inhibitor could suppress the survival of SW480 cells. RESULT The results of the MTT assay showed that BKM120 could decrease the metabolic activity of SW480 cells in a concentration and time-dependent manner. Investigating the exact mechanism of BKM120 showed that this PI3K inhibitor induces its anti-survival effects through a G2/M cell cycle arrest and apoptosis-mediated cell death. Moreover, the scratch assay demonstrated that PI3K inhibition led to the inhibition of cancer invasion and inhibition of PI3K/AKT signaling remarkably sensitized SW480 cells to Cisplatin. CONCLUSION Based on our results, inhibition of PI3K/AKT signaling can be a promising approach, either as a single modality or in combination with Cisplatin. However, further clinical studies should be performed to improve our understanding.
Collapse
Affiliation(s)
- Sepideh Chodary Khameneh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Razi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Simon S, Gottlieb J, Burchert I, Abu Isneineh R, Fuehner T. Outcomes and Functional Deterioration in Hospital Admissions with Acute Hypoxemia. Adv Respir Med 2024; 92:145-155. [PMID: 38525775 PMCID: PMC10961684 DOI: 10.3390/arm92020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Many hospitalized patients decline in functional status after discharge, but functional decline in emergency admissions with hypoxemia is unknown. The primary aim of this study was to study functional outcomes as a clinical endpoint in a cohort of patients with acute hypoxemia. METHODS A multicenter prospective observational study was conducted in patients with new-onset hypoxemia emergently admitted to two respiratory departments at a university hospital and an academic teaching hospital. Using the WHO scale, the patients' functional status 4 weeks before admission and at hospital discharge was assessed. The type and duration of oxygen therapy, hospital length of stay and survival and risk of hypercapnic failure were recorded. RESULTS A total of 151 patients with a median age of 74 were included. Two-thirds declined in functional status by at least one grade at discharge. A good functional status (OR 4.849 (95% CI 2.209-10.647)) and progressive cancer (OR 6.079 (1.197-30.881)) were more associated with functional decline. Most patients were treated with conventional oxygen therapy (n = 95, 62%). The rates of in-hospital mortality and need for intubation were both 8%. CONCLUSIONS Patients with acute hypoxemia in the emergency room have a poorer functional status after hospital discharge. This decline may be of multifactorial origin.
Collapse
Affiliation(s)
- Susanne Simon
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany;
| | - Jens Gottlieb
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany;
- German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Ina Burchert
- Department of Respiratory Medicine, Siloah Hospital, 30459 Hannover, Germany; (I.B.); (T.F.)
| | - René Abu Isneineh
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Fuehner
- Department of Respiratory Medicine, Siloah Hospital, 30459 Hannover, Germany; (I.B.); (T.F.)
| |
Collapse
|
17
|
Jung M, Jung JS, Pfeifer J, Hartmann C, Ehrhardt T, Abid CL, Kintzel J, Puls A, Navarrete Santos A, Hollemann T, Riemann D, Rujescu D. Neuronal Stem Cells from Late-Onset Alzheimer Patients Show Altered Regulation of Sirtuin 1 Depending on Apolipoprotein E Indicating Disturbed Stem Cell Plasticity. Mol Neurobiol 2024; 61:1562-1579. [PMID: 37728850 PMCID: PMC10896791 DOI: 10.1007/s12035-023-03633-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Late-onset Alzheimer's disease (AD) is a complex multifactorial disease. The greatest known risk factor for late-onset AD is the E4 allele of the apolipoprotein E (APOE), while increasing age is the greatest known non-genetic risk factor. The cell type-specific functions of neural stem cells (NSCs), in particular their stem cell plasticity, remain poorly explored in the context of AD pathology. Here, we describe a new model that employs late-onset AD patient-derived induced pluripotent stem cells (iPSCs) to generate NSCs and to examine the role played by APOE4 in the expression of aging markers such as sirtuin 1 (SIRT1) in comparison to healthy subjects carrying APOE3. The effect of aging was investigated by using iPSC-derived NSCs from old age subjects as healthy matched controls. Transcript and protein analysis revealed that genes were expressed differently in NSCs from late-onset AD patients, e.g., exhibiting reduced autophagy-related protein 7 (ATG7), phosphatase and tensin homolog (PTEN), and fibroblast growth factor 2 (FGF2). Since SIRT1 expression differed between APOE3 and APOE4 NSCs, the suppression of APOE function in NSCs also repressed the expression of SIRT1. However, the forced expression of APOE3 by plasmids did not recover differently expressed genes. The altered aging markers indicate decreased plasticity of NSCs. Our study provides a suitable in vitro model to investigate changes in human NSCs associated with aging, APOE4, and late-onset AD.
Collapse
Affiliation(s)
- Matthias Jung
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany.
| | - Juliane-Susanne Jung
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Jenny Pfeifer
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Carla Hartmann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Toni Ehrhardt
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Chaudhry Luqman Abid
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Jenny Kintzel
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Puls
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Dagmar Riemann
- Department Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 2, 06112, Halle (Saale), Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
18
|
Liu R, Li L, Wang Z, Zhu J, Ji Y. Acetylated Histone Modifications: Intersection of Diabetes and Atherosclerosis. J Cardiovasc Pharmacol 2024; 83:207-219. [PMID: 37989137 DOI: 10.1097/fjc.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT Worldwide, type 2 diabetes is predominant form of diabetes, and it is mainly affected by the environment. Furthermore, the offspring of patients with type 2 diabetes and metabolic disorder syndrome may have a higher risk of diabetes and cardiovascular disease, which indicates that the environmental impact on diabetes prevalence can be transmitted across generations. In the process of diabetes onset and intergenerational transmission, the genetic structure of the individual is not directly changed but is regulated by epigenetics. In this process, genes or histones are modified, resulting in selective expression of proteins. This modification will affect not only the onset of diabetes but also the related onset of atherosclerosis. Acetylation and deacetylation may be important regulatory factors for the above lesions. Therefore, in this review, based on the whole process of atherosclerosis evolution, we explored the possible existence of acetylation/deacetylation caused by diabetes. However, because of the lack of atherosclerosis-related acetylation studies directly based on diabetic models, we also used a small number of experiments involving nondiabetic models of related molecular mechanisms.
Collapse
Affiliation(s)
| | | | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; and
| | - Jie Zhu
- Department of Cardiology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu' an People's Hospital, Lu'an, China
| | | |
Collapse
|
19
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
20
|
Betsinger CN, Justice JL, Tyl MD, Edgar JE, Budayeva HG, Abu YF, Cristea IM. Sirtuin 2 promotes human cytomegalovirus replication by regulating cell cycle progression. mSystems 2023; 8:e0051023. [PMID: 37916830 PMCID: PMC10734535 DOI: 10.1128/msystems.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.
Collapse
Affiliation(s)
- Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Julia E. Edgar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Hanna G. Budayeva
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Yaa F. Abu
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| |
Collapse
|
21
|
Zhang X, Wu X, Yao W, Wang YH. A tumor-suppressing role of TSPYL2 in thyroid cancer: Through interacting with SIRT1 and repressing SIRT1/AKT pathway. Exp Cell Res 2023; 432:113777. [PMID: 37696385 DOI: 10.1016/j.yexcr.2023.113777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Thyroid cancer is one of the most common endocrine cancers. Testis-specific protein, Y-encoded-like 2 (TSPYL2) belongs to the TSPY family. Studies show that TSPYL2 plays as a cancer suppressor in several cancers. However, the role of TSPYL2 in thyroid cancer remains elusive. In the present study, the expression of TSPYL2 in human central papillary thyroid cancer (PTC) tissues and corresponding para-cancer tissues was detected by qPCR and Western blot. The gain- and loss-of-function studies for TSPYL2 were performed in TPC-1 cells and IHH-4 cells. The results showed that TSPYL2 expression was decreased in PTC tissues, and the low TSPYL2 expression was associated with more lymph node metastasis. Moreover, the results showed that knockdown of TSPYL2 promoted proliferation and enhanced the ability of migration and invasion of TPC-1 cells and IHH-4 cells, while TSPYL2 overexpression reversed it. TSPYL2 overexpression arrested cell cycle. We found that TSPYL2 silencing suppressed cell apoptosis, while overexpression of TSPYL2 reversed it. Co-IP results illustrated that TSPYL2 interacted with SIRT1. Knockdown of TSPYL2 increased the association between SIRT1 and AKT. Moreover, TSPYL2 expression inhibited AKT activation by upregulating the AKT acetylation level. In vivo, tumor xenograft experiments indicated that TSPYL2 suppressed the tumorigenic ability of thyroid cancer cells. Western blot results suggested that knockdown of TSPYL2 enhanced the phosphorylation level of AKT, while TSPYL2 overexpression reversed it. Taken together, our study suggested TSPYL2 could be a tumor suppressor in thyroid cancer by regulating SIRT1/AKT pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Wei Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yi-Hui Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
22
|
Han J, Wang S, Wang H, Zhang T, Yang Y, Zhao T, Chen Z, Xia G, Wang C. SIRT1 reduction contributes to doxorubicin-induced oxidative stress and meiotic failure in mouse oocytes. Toxicol Appl Pharmacol 2023; 476:116671. [PMID: 37633598 DOI: 10.1016/j.taap.2023.116671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Impaired fertility is the major side effect of chemotherapy for female cancer patients, accumulated evidence indicates this is associated with damage on oocyte quality, but the underlying mechanisms remain unclear. Previously we reported that doxorubicin (DXR) exposure, one of the most widely used chemotherapy drugs, disrupted mouse oocyte meiotic maturation in vitro. In the current study, we identified that SIRT1 expression was remarkably reduced in DXR exposure oocytes. Next, we found that increasing SIRT1 expression by resveratrol partially alleviated the effects of DXR exposure on oocyte maturation, which was counteracted by SIRT1 inhibition. Furthermore, we revealed that increasing SIRT1 expression mitigated DXR induced oocyte damage through reducing ROS levels, increasing antioxidant enzyme MnSOD expression, and preventing spindle and chromosome disorganization, lowering the incidence of aneuploidy. Importantly, by performing in vitro fertilization and embryo transfer assays, we demonstrated that increasing SIRT1 expression significantly improved the fertilization ability, developmental competence of oocytes and early embryos. In summary, our data uncover that SIRT1 reduction represents one mechanism that mediates the effects of DXR exposure on oocyte quality.
Collapse
Affiliation(s)
- Jun Han
- Jiangsu Academy of Agricultural Sciences, Nanjing 21000, China; State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuo Wang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huarong Wang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ye Yang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ting Zhao
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Ningxia University, Ningxia 750021, China
| | - Chao Wang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Dwivedi D, Harry D, Meraldi P. Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR-Chk1. Nat Commun 2023; 14:6088. [PMID: 37773176 PMCID: PMC10541884 DOI: 10.1038/s41467-023-41753-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
A tight synchrony between the DNA and centrosome cycle is essential for genomic integrity. Centriole disengagement, which licenses centrosomes for duplication, occurs normally during mitotic exit. We recently demonstrated that mild DNA replication stress typically seen in cancer cells causes premature centriole disengagement in untransformed mitotic human cells, leading to transient multipolar spindles that favour chromosome missegregation. How mild replication stress accelerates the centrosome cycle at the molecular level remained, however, unclear. Using ultrastructure expansion microscopy, we show that mild replication stress induces premature centriole disengagement already in G2 via the ATR-Chk1 axis of the DNA damage repair pathway. This results in a sub-critical Plk1 kinase activity that primes the pericentriolar matrix for Separase-dependent disassembly but is insufficient for rapid mitotic entry, causing premature centriole disengagement in G2. We postulate that the differential requirement of Plk1 activity for the DNA and centrosome cycles explains how mild replication stress disrupts the synchrony between both processes and contributes to genomic instability.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
| |
Collapse
|
24
|
Yao K, Mou Q, Lou X, Ye M, Zhao B, Hu Y, Luo J, Zhang H, Li X, Zhao Y. Microglial SIRT1 activation attenuates synapse loss in retinal inner plexiform layer via mTORC1 inhibition. J Neuroinflammation 2023; 20:202. [PMID: 37670386 PMCID: PMC10481494 DOI: 10.1186/s12974-023-02886-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Optic nerve injury (ONI) is a key cause of irreversible blindness and triggers retinal ganglion cells (RGCs) change and synapse loss. Microglia is the resistant immune cell in brain and retina and has been demonstrated to be highly related with neuron and synapse injury. However, the function of Sirtuin 1 (SIRT1), a neuroprotective molecule, in mediating microglial activation, retinal synapse loss and subsequent retinal ganglion cells death in optic nerve injury model as well as the regulatory mechanism remain unclear. METHOD To this end, optic nerve crush (ONC) model was conducted to mimic optic nerve injury. Resveratrol and EX527, highly specific activator and inhibitor of SIRT1, respectively, were used to explore the function of SIRT1 in vivo and vitro. Cx3Cr1-CreERT2/RaptorF/F mice were used to delete Raptor for inhibiting mammalian target of rapamycin complex 1 (mTORC1) activity in microglia. HEK293 and BV2 cells were transfected with plasmids to explore the regulatory mechanism of SIRT1. RESULTS We discovered that microglial activation and synapse loss in retinal inner plexiform layer (IPL) occurred after optic nerve crush, with later-development retinal ganglion cells death. SIRT1 activation induced by resveratrol inhibited microglial activation and attenuated synapse loss and retinal ganglion cells injury. After injury, microglial phagocytosed synapse and SIRT1 inhibited this process to protect synapse and retinal ganglion cells. Moreover, SIRT1 exhibited neuron protective effects via activating tuberous sclerosis complex 2 (TSC2) through deacetylation, and enhancing the inhibition effect of tuberous sclerosis complex 2 on mammalian target of rapamycin complex 1 activity. CONCLUSION Our research provides novel insights into microglial SIRT1 in optic nerve injury and suggests a potential strategy for neuroprotective treatment of optic nerve injury disease.
Collapse
Affiliation(s)
- Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xing Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Lee SH, Yang JH, Park UH, Choi H, Kim YS, Yoon BE, Han HJ, Kim HT, Um SJ, Kim EJ. SIRT1 ubiquitination is regulated by opposing activities of APC/C-Cdh1 and AROS during stress-induced premature senescence. Exp Mol Med 2023; 55:1232-1246. [PMID: 37258580 PMCID: PMC10318011 DOI: 10.1038/s12276-023-01012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
SIRT1, a member of the mammalian sirtuin family, is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase with key roles in aging-related diseases and cellular senescence. However, the mechanism by which SIRT1 protein homeostasis is controlled under senescent conditions remains elusive. Here, we revealed that SIRT1 protein is significantly downregulated due to ubiquitin-mediated proteasomal degradation during stress-induced premature senescence (SIPS) and that SIRT1 physically associates with anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase. Ubiquitin-dependent SIRT1 degradation is stimulated by the APC/C coactivator Cdh1 and not by the coactivator Cdc20. We found that Cdh1 depletion impaired the SIPS-promoted downregulation of SIRT1 expression and reduced cellular senescence, likely through SIRT1-driven p53 inactivation. In contrast, AROS, a SIRT1 activator, reversed the SIRT1 degradation induced by diverse stressors and antagonized Cdh1 function through competitive interactions with SIRT1. Furthermore, our data indicate opposite roles for Cdh1 and AROS in the epigenetic regulation of the senescence-associated secretory phenotype genes IL-6 and IL-8. Finally, we demonstrated that pinosylvin restores downregulated AROS (and SIRT1) expression levels in bleomycin-induced mouse pulmonary senescent tissue while repressing bleomycin-promoted Cdh1 expression. Overall, our study provides the first evidence of the reciprocal regulation of SIRT1 stability by APC/C-Cdh1 and AROS during stress-induced premature senescence, and our findings suggest pinosylvin as a potential senolytic agent for pulmonary fibrosis.
Collapse
Affiliation(s)
- Sang Hyup Lee
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Ji-Hye Yang
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Ui-Hyun Park
- Department of Integrative Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul, 143-747, Korea
| | - Hanbyeul Choi
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Hye-Jeong Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul, 143-747, Korea.
| | - Eun-Joo Kim
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea.
| |
Collapse
|
26
|
Schumann A, Brutsche M, Havermans M, Grünert SC, Kölker S, Groß O, Hannibal L, Spiekerkoetter U. The impact of metabolic stressors on mitochondrial homeostasis in a renal epithelial cell model of methylmalonic aciduria. Sci Rep 2023; 13:7677. [PMID: 37169781 PMCID: PMC10175303 DOI: 10.1038/s41598-023-34373-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
Methylmalonic aciduria (MMA-uria) is caused by deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT). MUT deficiency hampers energy generation from specific amino acids, odd-chain fatty acids and cholesterol. Chronic kidney disease (CKD) is a well-known long-term complication. We exposed human renal epithelial cells from healthy controls and MMA-uria patients to different culture conditions (normal treatment (NT), high protein (HP) and isoleucine/valine (I/V)) to test the effect of metabolic stressors on renal mitochondrial energy metabolism. Creatinine levels were increased and antioxidant stress defense was severely comprised in MMA-uria cells. Alterations in mitochondrial homeostasis were observed. Changes in tricarboxylic acid cycle metabolites and impaired energy generation from fatty acid oxidation were detected. Methylcitrate as potentially toxic, disease-specific metabolite was increased by HP and I/V load. Mitophagy was disabled in MMA-uria cells, while autophagy was highly active particularly under HP and I/V conditions. Mitochondrial dynamics were shifted towards fission. Sirtuin1, a stress-resistance protein, was down-regulated by HP and I/V exposure in MMA-uria cells. Taken together, both interventions aggravated metabolic fingerprints observed in MMA-uria cells at baseline. The results point to protein toxicity in MMA-uria and lead to a better understanding, how the accumulating, potentially toxic organic acids might trigger CKD.
Collapse
Affiliation(s)
- Anke Schumann
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Mathildenstr. 1, 79106, Freiburg, Germany.
| | - Marion Brutsche
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Mathildenstr. 1, 79106, Freiburg, Germany
| | - Monique Havermans
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Mathildenstr. 1, 79106, Freiburg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Laboratory of Clinical Biochemistry and Metabolism, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Mathildenstr. 1, 79106, Freiburg, Germany
| |
Collapse
|
27
|
Wang Z, Yan Y, Lou Y, Huang X, Liu L, Weng Z, Cui Y, Wu X, Cai H, Chen X, Ji Y. Diallyl trisulfide alleviates chemotherapy sensitivity of ovarian cancer via the AMPK/SIRT1/PGC1α pathway. Cancer Sci 2022; 114:357-369. [PMID: 36309839 PMCID: PMC9899624 DOI: 10.1111/cas.15627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Platinum-based chemotherapy promotes drug resistance in ovarian cancer. We investigated the antichemoresistance characteristics of diallyl trisulfide (DATS) in cisplatin-resistant ovarian cancer cells, in vitro and in vivo. Previous preclinical studies have revealed that DATS regulates distinct hallmark cancer-signaling pathways. The cell cycle pathway is the most investigated signaling pathway in DATS. Additionally, post-DATS treatment has been found to promote proapoptotic capacity through the regulation of intrinsic and extrinsic apoptotic pathway components. In the present study, we found that treating cisplatin-sensitive and cisplatin-resistant ovarian cell lines with DATS inhibited their proliferation and reduced their IC50. It induced cell apoptosis and promoted oxidative phosphorylation through the regulation of the AMPK/SIRT1/PGC1α pathway, OXPHOS, and enhanced chemotherapy sensitivity. DATS treatment alleviated glutamine consumption in cisplatin-resistant cells. Our findings highlight the role of DATS in overcoming drug resistance in ovarian cancer in vitro and in vivo. In addition, we elucidated the role of the AMPK/SIRT1/PGC1α signaling pathway as a potential target for the treatment of drug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Zhaojun Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yi Yan
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yijie Lou
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina,Key Laboratory of Digestive Pathophysiology of Zhejiang ProvinceHangzhouChina
| | - Xiaoyan Huang
- Department of Spleen and Gastric DiseasesThe First Affiliated Hospital of Guangxi University of Chinese MedicineGuangxiChina
| | - Lijian Liu
- Department of Spleen and Gastric DiseasesThe First Affiliated Hospital of Guangxi University of Chinese MedicineGuangxiChina
| | - Zhuofan Weng
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yusheng Cui
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinyue Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Huijun Cai
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaohui Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunxi Ji
- Department of General PracticeThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
28
|
He Z, Wang J, Xu J, Jiang X, Liu X, Jiang J. Dynamic regulation of KIF15 phosphorylation and acetylation promotes focal adhesions disassembly in pancreatic cancer. Cell Death Dis 2022; 13:896. [PMID: 36280663 PMCID: PMC9592618 DOI: 10.1038/s41419-022-05338-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Pancreatic cancer (PC) is prone to distant metastasis in the early stage, which is attributed to the strong migration ability of tumor cells. Focal adhesion turnover is essential for cancer cell metastasis, and the integrin recycling process is a key activation pathway for focal adhesion depolymerization. To identify the key motor protein involving in the integrin β1 recycling, we screened kinesin proteins involved in integrin β1 recycling using a kinesin family siRNA library and identified kinesin family 15 (KIF15) as a key regulator. KIF15 was upregulated in metastasis PC tissues and promoted PC cell migration and invasion. We identified KIF15 as a key component mediating integrin β1/FAK signaling that accelerated FA disassembly in a FAK-Y397-dependent manner. KIF15 recruited PI3K-C2α to promote integrin β1/FAK signaling and FA disassembly in a RAB11A-dependent manner. The C-terminal tail of KIF15 is required for the PI3K-C2α interaction and RAB11A activation. In addition, we also found that SIRT1-mediated acetylation of KIF15 is essential for KIF15 phosphorylation, which is the key activation event in motor protein function. Together, these findings indicate that KIF15 interacts with PI3K-C2α to promote FA turnover in PC cells by controlling the endosome recycling of integrin β1 in a SIRT1 acetylation modification-dependent manner, eventually promoting focal adhesions turnover and distant metastasis in PC.
Collapse
Affiliation(s)
- Zhiwei He
- grid.412632.00000 0004 1758 2270Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Jie Wang
- grid.412632.00000 0004 1758 2270Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Jian Xu
- grid.412632.00000 0004 1758 2270Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xueyi Jiang
- grid.412632.00000 0004 1758 2270Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xinyuan Liu
- grid.412632.00000 0004 1758 2270Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Jianxin Jiang
- grid.412632.00000 0004 1758 2270Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| |
Collapse
|
29
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
30
|
Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne) 2022; 13:972312. [PMID: 36171897 PMCID: PMC9510633 DOI: 10.3389/fendo.2022.972312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Protein acetylation is a reversible post-translational modification, and is involved in many biological processes in cells, such as transcriptional regulation, DNA damage repair, and energy metabolism, which is an important molecular event and is associated with a wide range of diseases such as cancers. Protein acetylation is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis. The abnormal acetylation level might lead to the occurrence and deterioration of a cancer, and is closely related to various pathophysiological characteristics of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt to tumor microenvironment. Therapeutic modalities targeting protein acetylation are a potential therapeutic strategy. This article discussed the roles of protein acetylation in tumor pathology and therapeutic drugs targeting protein acetylation, which offers the contributions of protein acetylation in clarification of carcinogenesis, and discovery of therapeutic drugs for cancers, and lays the foundation for precision medicine in oncology.
Collapse
Affiliation(s)
- Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
31
|
Zhao S, Huang Z, Jiang H, Xiu J, Zhang L, Long Q, Yang Y, Yu L, Lu L, Gu H. Sirtuin 1 Induces Choroidal Neovascularization and Triggers Age-Related Macular Degeneration by Promoting LCN2 through SOX9 Deacetylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1671438. [PMID: 35720180 PMCID: PMC9203240 DOI: 10.1155/2022/1671438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022]
Abstract
Increasing studies have identified the function of sirtuin-1 (SIRT1) in ocular diseases. Hence, this study is aimed at exploring the potential role of SIRT1 in choroidal neovascularization- (CNV-) induced age-related macular degeneration (AMD) development and the associated mechanism. Expression of SIRT1/SOX9/LCN2 in the hypoxic cells was determined, and their interactions were predicted by bioinformatics websites and followed by the verification by luciferase assay and chromatin immunoprecipitation (ChIP). Their in vitro effects on hypoxic cells concerning cell viability, apoptosis, migration, and angiogenesis were detected through gain- and loss-of-function assays. Besides, their in vivo effect was explored using the established CNV mouse models. Highly expressed LCN2, SOX9, and SIRT1 were observed in hypoxic cells. LCN2 was increased by SOX9 and SIRT1 deacetylated SOX9 to promote its nuclear translocation, which further inhibited the viability of human retinal pigment epithelial cells and promoted cell apoptosis and angiogenesis as well as CNV-induced AMD formation. The relieving role of LCN2 inhibition on CNV-induced AMD without toxicity for mice was also demonstrated by in vivo experiments. Overall, SIRT1 promoted the formation of CNV-induced AMD through SOX9 deacetylation-caused LCN2 upregulation, representing a promising target for CNV-induced AMD management.
Collapse
Affiliation(s)
- Su Zhao
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550002, China
| | - Zhi Huang
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Hao Jiang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Jiangfan Xiu
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Liying Zhang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Qiurong Long
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Yuhan Yang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Lu Yu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Lu Lu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen 5180403, China
| | - Hao Gu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| |
Collapse
|
32
|
Wang S, Osgood AO, Chatterjee A. Uncovering post-translational modification-associated protein-protein interactions. Curr Opin Struct Biol 2022; 74:102352. [PMID: 35334254 PMCID: PMC9464464 DOI: 10.1016/j.sbi.2022.102352] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023]
Abstract
In living systems, the chemical space and functional repertoire of proteins are dramatically expanded through the post-translational modification (PTM) of various amino acid residues. These modifications frequently trigger unique protein-protein interactions (PPIs) - for example with reader proteins that directly bind the modified amino acid residue - which leads to downstream functional outcomes. The modification of a protein can also perturb its PPI network indirectly, for example, through altering its conformation or subcellular localization. Uncovering the network of unique PTM-triggered PPIs is essential to fully understand the roles of an ever-expanding list of PTMs in our biology. In this review, we discuss established strategies and current challenges associated with this endeavor.
Collapse
Affiliation(s)
- Shu Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Arianna O Osgood
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
33
|
Su PP, Liu DW, Zhou SJ, Chen H, Wu XM, Liu ZS. Down-regulation of Risa improves podocyte injury by enhancing autophagy in diabetic nephropathy. Mil Med Res 2022; 9:23. [PMID: 35614465 PMCID: PMC9134699 DOI: 10.1186/s40779-022-00385-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LncRNA AK044604 (regulator of insulin sensitivity and autophagy, Risa) and autophagy-related factors Sirt1 and GSK3β play important roles in diabetic nephropathy (DN). In this study, we sought to explore the effect of Risa on Sirt1/GSK3β-induced podocyte injury. METHODS Diabetic db/db mice received Risa-inhibition adeno-associated virus (AAV) via tail vein injection, and intraperitoneal injection of lithium chloride (LiCl). Blood, urine, and kidney tissue samples were collected and analyzed at different time points. Immortalized mouse podocyte cells (MPCs) were cultured and treated with Risa-inhibition lentivirus (LV), EX-527, and LiCl. MPCs were collected under different stimulations as noted. The effects of Risa on podocyte autophagy were examined by qRT-PCR, Western blotting analysis, transmission electron microscopy, Periodic Acid-Schiff staining, and immunofluorescence staining. RESULTS Risa and activated GSK3β were overexpressed, but Sirt1 was downregulated in DN mice and high glucose-treated MPCs (P < 0.001, db/m vs. db/db, NG or HM vs. HG), which was correlated with poor prognosis. Risa overexpression attenuated Sirt1-mediated downstream autophagy levels and aggravated podocyte injury by inhibiting the expression of Sirt1 (P < 0.001, db/m vs. db/db, NG or HM vs. HG). In contrast, Risa suppression enhanced Sirt1-induced autophagy and attenuated podocyte injury, which could be abrogated by EX-527 (P < 0.001, db/db + Risa-AAV vs. db/db, HG + Risa-LV vs. HG). Furthermore, LiCl treatment could restore GSK3β-mediated autophagy of podocytes (P < 0.001, db/db + LiCl vs. db/db, HG + LiCl vs. HG), suggesting that Risa overexpression aggravated podocyte injury by decreasing autophagy. CONCLUSION Risa could inhibit autophagy by regulating the Sirt1/GSK3β axis, thereby aggravating podocyte injury in DN. Risa may serve as a therapeutic target for the treatment of DN.
Collapse
Affiliation(s)
- Pei-Pei Su
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institutes of Nephropathy, Zhengzhou University, Zhengzhou, 450052, China.,Department of Nephrology and Rheumatology, the Third People's Hospital of Zhengzhou, Zhengzhou, 450002, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450002, China
| | - Dong-Wei Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institutes of Nephropathy, Zhengzhou University, Zhengzhou, 450052, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450002, China
| | - Si-Jie Zhou
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institutes of Nephropathy, Zhengzhou University, Zhengzhou, 450052, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450002, China
| | - Hang Chen
- Department of Nephrology and Rheumatology, the Third People's Hospital of Zhengzhou, Zhengzhou, 450002, China
| | - Xian-Ming Wu
- Department of Nephrology and Rheumatology, the Third People's Hospital of Zhengzhou, Zhengzhou, 450002, China
| | - Zhang-Suo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institutes of Nephropathy, Zhengzhou University, Zhengzhou, 450052, China. .,Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China. .,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450002, China.
| |
Collapse
|
34
|
Zhou S, Zhao A, Wu Y, Bao T, Mi Y, Zhang C. Protective Effect of Follicle-Stimulating Hormone on DNA Damage of Chicken Follicular Granulosa Cells by Inhibiting CHK2/p53. Cells 2022; 11:1291. [PMID: 35455970 PMCID: PMC9031212 DOI: 10.3390/cells11081291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
The increase in follicular atresia and the decrease in the fecundity of laying hens occur with the aging process. Therefore, the key measure for maintaining high laying performance is to alleviate follicular atresia in the aging poultry. Follicle-stimulating hormone (FSH), as an important pituitary hormone to promote follicle development and maturation, plays an important role in preventing reproductive aging in diverse animals. In this study, the physiological state of the prehierarchical small white follicles (SWFs) and atretic SWFs (ASWFs) were compared, followed by an exploration of the possible capacity of FSH to delay ASWFs' progression in the hens. The results showed that the DNA damage within follicles increased with aging, along with Golgi complex disintegration, cell cycle arrest, increased apoptosis and autophagy in the ASWFs. Subsequently, the ACNU-induced follicular atresia model was established to evaluate the enhancing capacity of FSH on increasing cell proliferation and attenuating apoptosis in ASWFs. FSH inhibited DNA damage and promoted DNA repair by regulating the CHK2/p53 pathway. Furthermore, FSH inhibited CHK2/p53, thus, suppressing the disintegration of the Golgi complex, cell cycle arrest, and increased autophagy in the atretic follicles. Moreover, these effects from FSH treatment in ACNU-induced granulosa cells were similar to the treatment by a DNA repair agent AV-153. These results indicate that FSH protects aging-resulted DNA damage in granulosa cells by inhibiting CHK2/p53 in chicken prehierarchical follicles.
Collapse
Affiliation(s)
| | | | | | | | | | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.Z.); (Y.W.); (T.B.); (Y.M.)
| |
Collapse
|
35
|
Chen Y, Liu Z, Chen H, Huang X, Huang X, Lei Y, Liang Q, Wei J, Zhang Q, Guo X, Huang Q. p53 SUMOylation Mediates AOPP-Induced Endothelial Senescence and Apoptosis Evasion. Front Cardiovasc Med 2022; 8:795747. [PMID: 35187108 PMCID: PMC8850781 DOI: 10.3389/fcvm.2021.795747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
The aging of endothelial cells plays a critical role in the development of age-related vascular disease. We established a model of endothelial premature senescence by application of Advanced oxidation protein products (AOPPs) modified bovine serum albumin (AOPP-BSA) in human umbilical vein endothelial cells (HUVECs). This cellular senescence was accompanied with endothelial barrier dysfunction and angiogenesis impairment. It was further revealed that these senescent HUVECs underwent apoptosis evasion and the receptor for advanced glycation endproducts (RAGE) played a role in these processes. The AOPP-induced senescence was regulated by the state of autophagy in HUVECs. We further proved that AOPP-BSA attenuated the autophagy of HUVECs, led to p53 SUMOylation at K386, resulting in endothelial senescence. We also established the animal model of vascular senescence by using ApoE−/− mice fed with high-fat diet plus daily injection of AOPP-BSA to verify the role of p53 SUMOylation in vascular senescence. Combined with intraperitoneal injection of rapamycin, the effect of autophagy on AOPP-induced p53 SUMOylation was also confirmed in vivo. Our data indicates that p53 SUMOylation at K386 plays an important role in AOPP-induced endothelial senescence and apoptosis evasion, suggesting that p53 K386 SUMOylation may serve as a potential therapeutic target in protecting against vascular senescence.
Collapse
Affiliation(s)
- Yanjia Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuanhua Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongyu Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xingfu Huang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yang Lei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qing Liang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiayi Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qin Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaohua Guo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Qiaobing Huang
| |
Collapse
|
36
|
Figarola-Centurión I, Escoto-Delgadillo M, González-Enríquez GV, Gutiérrez-Sevilla JE, Vázquez-Valls E, Torres-Mendoza BM. Sirtuins Modulation: A Promising Strategy for HIV-Associated Neurocognitive Impairments. Int J Mol Sci 2022; 23:643. [PMID: 35054829 PMCID: PMC8775450 DOI: 10.3390/ijms23020643] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023] Open
Abstract
HIV-Associated neurocognitive disorder (HAND) is one of the major concerns since it persists in 40% of this population. Nowadays, HAND neuropathogenesis is considered to be caused by the infected cells that cross the brain-blood barrier and produce viral proteins that can be secreted and internalized into neurons leading to disruption of cellular processes. The evidence points to viral proteins such as Tat as the causal agent for neuronal alteration and thus HAND. The hallmarks in Tat-induced neurodegeneration are endoplasmic reticulum stress and mitochondrial dysfunction. Sirtuins (SIRTs) are NAD+-dependent deacetylases involved in mitochondria biogenesis, unfolded protein response, and intrinsic apoptosis pathway. Tat interaction with these deacetylases causes inhibition of SIRT1 and SIRT3. Studies revealed that SIRTs activation promotes neuroprotection in neurodegenerative diseases such Alzheimer's and Parkinson's disease. Therefore, this review focuses on Tat-induced neurotoxicity mechanisms that involve SIRTs as key regulators and their modulation as a therapeutic strategy for tackling HAND and thereby improving the quality of life of people living with HIV.
Collapse
Affiliation(s)
- Izchel Figarola-Centurión
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
| | - Martha Escoto-Delgadillo
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44600, Mexico
| | - Gracia Viviana González-Enríquez
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Ernesto Gutiérrez-Sevilla
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Microbiología Médica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Eduardo Vázquez-Valls
- Generación de Recursos Profesionales, Investigación y Desarrollo, Secretaria de Salud, Jalisco, Guadalajara 44100, Mexico;
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
37
|
Lin Z, Ding Q, Li X, Feng Y, He H, Huang C, Zhu Y. Targeting Epigenetic Mechanisms in Vascular Aging. Front Cardiovasc Med 2022; 8:806988. [PMID: 35059451 PMCID: PMC8764463 DOI: 10.3389/fcvm.2021.806988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Environment, diseases, lack of exercise, and aged tendency of population have becoming crucial factors that induce vascular aging. Vascular aging is unmodifiable risk factor for diseases like diabetes, hypertension, atherosclerosis, and hyperlipidemia. Effective interventions to combat this vascular function decline is becoming increasingly urgent as the rising hospitalization rate caused by vascular aging-related diseases. Fortunately, recent transformative omics approaches have enabled us to examine vascular aging mechanisms at unprecedented levels and precision, which make our understanding of slowing down or reversing vascular aging become possible. Epigenetic viz. DNA methylation, histone modifications, and non-coding RNA-based mechanisms, is a hallmark of vascular aging, its deregulation leads to aberrant transcription changes in tissues. Epigenetics mechanisms by mediating covalent modifications to DNA and histone proteins, consequently, influence the sensitivity and activities of signaling pathways in cells and tissues. A growing body of evidence supports correlations between epigenetic changes and vascular aging. In this article, we will provide a comprehensive overview of epigenetic changes associated with vascular aging based on the recent findings with a focus on molecular mechanisms of action, strategies to reverse epigenetic changes, and future perspectives.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Xinzhi Li
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Chuoji Huang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - YiZhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Wu J, Liu Y, Song Y, Wang L, Ai J, Li K. Aging conundrum: A perspective for ovarian aging. Front Endocrinol (Lausanne) 2022; 13:952471. [PMID: 36060963 PMCID: PMC9437485 DOI: 10.3389/fendo.2022.952471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive loss of physiological integrity and accumulation of degenerative changes leading to functional impairment and increased susceptibility to diseases are the main features of aging. The ovary, the key organ that maintains female reproductive and endocrine function, enters aging earlier and faster than other organs and has attracted extensive attention from society. Ovarian aging is mainly characterized by the progressive decline in the number and quality of oocytes, the regulatory mechanisms of which have yet to be systematically elucidated. This review discusses the hallmarks of aging to further highlight the main characteristics of ovarian aging and attempt to explore its clinical symptoms and underlying mechanisms. Finally, the intervention strategies related to aging are elaborated, especially the potential role of stem cells and cryopreservation of embryos, oocytes, or ovarian tissue in the delay of ovarian aging.
Collapse
Affiliation(s)
| | | | | | - Lingjuan Wang
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Jihui Ai
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Kezhen Li
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| |
Collapse
|
39
|
Gupta R, Kumar P. CREB1 K292 and HINFP K330 as Putative Common Therapeutic Targets in Alzheimer's and Parkinson's Disease. ACS OMEGA 2021; 6:35780-35798. [PMID: 34984308 PMCID: PMC8717564 DOI: 10.1021/acsomega.1c05827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 05/16/2023]
Abstract
Integration of omics data and deciphering the mechanism of a biological regulatory network could be a promising approach to reveal the molecular mechanism involved in the progression of complex diseases, including Alzheimer's and Parkinson's. Despite having an overlapping mechanism in the etiology of Alzheimer's disease (AD) and Parkinson's disease (PD), the exact mechanism and signaling molecules behind them are still unknown. Further, the acetylation mechanism and histone deacetylase (HDAC) enzymes provide a positive direction toward studying the shared phenomenon between AD and PD pathogenesis. For instance, increased expression of HDACs causes a decrease in protein acetylation status, resulting in decreased cognitive and memory function. Herein, we employed an integrative approach to analyze the transcriptomics data that established a potential relationship between AD and PD. Data preprocessing and analysis of four publicly available microarray datasets revealed 10 HUB proteins, namely, CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B, ARHGEF9, USP5, INPP5D, and NUP93, that may be involved in the shared mechanism of AD and PD pathogenesis. Further, we identified the relationship between the HUB proteins and transcription factors that could be involved in the overlapping mechanism of AD and PD. CREB1 and HINFP were the crucial regulatory transcription factors that were involved in the AD and PD crosstalk. Further, lysine acetylation sites and HDAC enzyme prediction revealed the involvement of 15 and 27 potential lysine residues of CREB1 and HINFP, respectively. Our results highlighted the importance of HDAC1(K292) and HDAC6(K330) association with CREB1 and HINFP, respectively, in the AD and PD crosstalk. However, different datasets with a large number of samples and wet lab experimentation are required to validate and pinpoint the exact role of CREB1 and HINFP in the AD and PD crosstalk. It is also possible that the different datasets may or may not affect the results due to analysis parameters. In conclusion, our study potentially highlighted the crucial proteins, transcription factors, biological pathways, lysine residues, and HDAC enzymes shared between AD and PD at the molecular level. The findings can be used to study molecular studies to identify the possible relationship in the AD-PD crosstalk.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and
Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and
Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| |
Collapse
|
40
|
Wang XW, Guo QQ, Yu Y, Zhou TT, Zhang SY, Wang Z, Liu JW, Tang J, Jiang XY, Wang SS, Guo WD, Xu HD, Sun HY, Li ZW, Song XY, Zhao JG, Cao L. The deacetylation of Foxk2 by Sirt1 reduces chemosensitivity to cisplatin. J Cell Mol Med 2021; 26:491-506. [PMID: 34866322 PMCID: PMC8743664 DOI: 10.1111/jcmm.17107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/16/2023] Open
Abstract
In multiple types of cancer, decreased tumour cell apoptosis during chemotherapy is indicative of decreased chemosensitivity. Forkhead box K2 (FOXK2), which is essential for cell fate, regulates cancer cell apoptosis through several post‐translational modifications. However, FOXK2 acetylation has not been extensively studied. Here, we evaluated the effects of sirtiun 1 (SIRT1) on FOXK2 deacetylation. Our findings demonstrated that SIRT1 inhibition increased FOXK2‐induced chemosensitivity to cisplatin and that K223 in FOXK2 was acetylated. Furthermore, FOXK2 K223 deacetylation reduced chemosensitivity to cisplatin in vitro and in vivo. Mechanistically, FOXK2 was acetylated by the acetyltransferase cAMP response element binding protein and deacetylated by SIRT1. Furthermore, cisplatin attenuated the interaction between FOXK2 and SIRT1. Cisplatin or SIRT1 inhibition enhanced FOXK2 acetylation, thereby reducing the nuclear distribution of FOXK2. Additionally, FOXK2 K223 acetylation significantly affected the expression of cell cycle–related and apoptosis‐related genes in cisplatin‐stimulated cancer cells, and FOXK2 K223 hyperacetylation promoted mitotic catastrophe, which enhanced chemosensitivity to cisplatin. Overall, our results provided insights into the mechanisms of SIRT1‐mediated FOXK2 deacetylation, which was involved in chemosensitivity to cisplatin.
Collapse
Affiliation(s)
- Xi-Wen Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China.,Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi-Qiang Guo
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Yang Yu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Ting-Ting Zhou
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Si-Yi Zhang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Zhuo Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Jing-Wei Liu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiao-You Jiang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Shan-Shan Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Wen-Dong Guo
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Hong-de Xu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Hua-Yi Sun
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Zi-Wei Li
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Xiao-Yu Song
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| | - Jun-Gang Zhao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Key Laboratory of Liaoning Province, China Medical University, Shenyang, China
| |
Collapse
|
41
|
Liu F, Pan R, Ding H, Gu L, Yang Y, Li C, Xu Y, Hu R, Chen H, Zhang X, Nie Y. UBQLN4 is an ATM substrate that stabilizes the anti-apoptotic proteins BCL2A1 and BCL2L10 in mesothelioma. Mol Oncol 2021; 15:3738-3752. [PMID: 34245648 PMCID: PMC8637560 DOI: 10.1002/1878-0261.13058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
ATM serine/threonine kinase (ATM; previously known as ataxia-telangiectasia mutated) plays a critical role in maintaining genomic stability and regulates multiple downstream pathways, such as DNA repair, cell cycle arrest, and apoptosis. As a serine/threonine kinase, ATM has an array of downstream phosphorylation substrates, including checkpoint effector checkpoint kinase 2 (CHK2). ATM inhibits cell cycle progression by phosphorylating and activating CHK2, which plays an important role in the formation and development of tumors and participates in DNA repair responses after double-stranded DNA breaks. In this study, we used a recently developed mammalian functional genetic screening system to explore a series of ATM substrates and their role in DNA damage to enhance our understanding of the DNA damage response. Ubiquilin 4 (UBQLN4), which belongs to the ubiquilin family characterized by its ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains, was identified as a new substrate for ATM. UBQLN4 is involved in various intracellular processes, such as autophagosome maturation, p21 regulation, and motor axon morphogenesis. However, the biological function of UBQLN4 remains to be elucidated. In this study, we not only identified UBQLN4 as a substrate for ATM, but also found that UBQLN4 interacts with and stabilizes the anti-apoptotic proteins Bcl-2-related protein A1 (BCL2A1) and Bcl-2-like protein 10 (BCL2L10) and prevents mesothelioma cell apoptosis in response to DNA damage. These findings expand our understanding of the role of UBQLN4 in mesothelioma and provide new insights into potential mesothelioma treatments targeting substrates for ATM.
Collapse
Affiliation(s)
- Fang Liu
- Medical CollegeGuizhou UniversityGuiyangChina
| | - RunSang Pan
- GuiYang Maternal and Child HospitalGuiyangChina
| | - HongYu Ding
- State Key Laboratory of Systems BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - LiLing Gu
- Medical CollegeGuizhou UniversityGuiyangChina
- Department of RehabilitationGuizhou Provincial People’s HospitalGuiyangChina
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| | - Yun Yang
- Medical CollegeGuizhou UniversityGuiyangChina
| | - ChuanYin Li
- State Key Laboratory of Systems BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - YongJie Xu
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| | - Ronggui Hu
- State Key Laboratory of Systems BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Hui Chen
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| | - XiangYan Zhang
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| | - YingJie Nie
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| |
Collapse
|
42
|
Ubiquitin-Specific Protease 29 Exacerbates Cerebral Ischemia-Reperfusion Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6955628. [PMID: 34824671 PMCID: PMC8610700 DOI: 10.1155/2021/6955628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022]
Abstract
Oxidative stress and apoptosis contribute to the progression of cerebral ischemia/reperfusion (I/R) injury. Ubiquitin-specific protease 29 (USP29) is abundantly expressed in the brain and plays critical roles in regulating oxidative stress and cell apoptosis. The purpose of the present study is to investigate the role and underlying mechanisms of USP29 in cerebral I/R injury. Neuron-specific USP29 knockout mice were generated and subjected to cerebral I/R surgery. For USP29 overexpression, mice were stereotactically injected with the adenoassociated virus serotype 9 vectors carrying USP29 for 4 weeks before cerebral I/R. And primary cortical neurons were isolated and exposed to oxygen glucose deprivation/reperfusion (OGD/R) stimulation to imitate cerebral I/R injury in vitro. USP29 expression was elevated in the brain and primary cortical neurons upon I/R injury. Neuron-specific USP29 knockout significantly diminished, whereas USP29 overexpression aggravated cerebral I/R-induced oxidative stress, apoptosis, and neurological dysfunction in mice. In addition, OGD/R-induced oxidative stress and neuronal apoptosis were also attenuated by USP29 silence but exacerbated by USP29 overexpression in vitro. Mechanistically, neuronal USP29 enhanced p53/miR-34a-mediated silent information regulator 1 downregulation and then promoted the acetylation and suppression of brain and muscle ARNT-like protein, thereby aggravating oxidative stress and apoptosis upon cerebral I/R injury. Our findings for the first time identify that USP29 upregulation during cerebral I/R may contribute to oxidative stress, neuronal apoptosis, and the progression of cerebral I/R injury and that inhibition of USP29 may help to develop novel therapeutic strategies to treat cerebral I/R injury.
Collapse
|
43
|
Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021; 285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases (NDDs) are the most common life-threatening disease of the central nervous system and it cause the progressive loss of neuronal cells. The exact mechanism of the disease's progression is not clear and thus line of treatment for NDDs is a baffling issue. During the progression of NDDs, oxidative stress and DNA damage play an important regulatory function, and ultimately induces neurodegeneration. Recently, aberrant cell cycle events have been demonstrated in the progression of different NDDs. However, the pertinent role of signaling mechanism, for instance, post-translational modifications, oxidative stress, DNA damage response pathway, JNK/p38 MAPK, MEK/ERK cascade, actively participated in the aberrant cell cycle reentry induced neuronal cell death. Mounting evidence has demonstrated that aberrant cell cycle re-entry is a major contributing factor in the pathogenesis of NDDs rather than a secondary phenomenon. In the brain of AD patients with mild cognitive impairment, post miotic cell division can be seen in the early stage of the disease. However, in the brain of PD patients, response to various neurotoxic signals, the cell cycle re-entry has been observed that causes neuronal apoptosis. On contrary, the contributing factors that leads to the induction of cell cycle events in mature neurons in HD and ALS brain pathology is remain unclear. Various pharmacological drugs have been developed to reduce the pathogenesis of NDDs, but they are still not helpful in eliminating the cause of these NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
44
|
Yin S, Yang S, Luo Y, Lu J, Hu G, Wang K, Shao Y, Zhou S, Koo S, Qiu Y, Wang T, Yu H. Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma. Biochem Pharmacol 2021; 193:114806. [PMID: 34673013 DOI: 10.1016/j.bcp.2021.114806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The pathological changes and possible underlying molecular mechanisms of hepatocellular carcinoma (HCC) are currently unclear. Effective treatment of this pathological state remains a challenge. The purpose of this study is to obtain some key genes with diagnostic and prognostic meaning and to identify potential therapeutic agents for HCC treatment. Here, CDK1, CCNB1 and CCNB2 were found to be highly expressed in HCC patients and accompanied by poor prognosis, and knockdown of them by siRNA drastically induced autophagy and senescence in hepatoma cells. Simultaneously, the anti-HCC effect of lycorine was comparable to that of interfering with these three genes, and lycorine significantly promoted the decrease both in protein and mRNA expression of CDK1. Molecular validation mechanistically demonstrated that lycorine might attenuate the degradation rate of CDK1 via interaction with it, which had been confirmed by cellular thermal shift assay and drug affinity responsive targets stability assay. Taken together, these findings suggested that CDK1, CCNB1 and CCNB2 could be regarded as potential diagnostic and prognostic biomarkers for HCC, and CDK1 might serve as a promising therapeutic target for lycorine against HCC.
Collapse
Affiliation(s)
- Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shenshen Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanming Luo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Gaoyong Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kailong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yingying Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Sangho Koo
- Department of Chemistry, Myongji University, Yongin, Gyeonggi-Do 17058, South Korea
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
45
|
Xu Y, Yu T, Ma G, Zheng L, Jiang X, Yang F, Wang Z, Li N, He Z, Song X, Wen D, Kong J, Yu Y, Cao L. Berberine modulates deacetylation of PPARγ to promote adipose tissue remodeling and thermogenesis via AMPK/SIRT1 pathway. Int J Biol Sci 2021; 17:3173-3187. [PMID: 34421358 PMCID: PMC8375237 DOI: 10.7150/ijbs.62556] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Pharmacological stimulation of adipose tissue remodeling and thermogenesis to increase energy expenditure is expected to be a viable therapeutic strategy for obesity. Berberine has been reported to have pharmacological activity in adipose tissue to anti-obesity, while the mechanism remains unclear. Here, we observed that berberine significantly reduced the body weight and insulin resistance of high-fat diet mice by promoting the distribution of brown adipose tissue and thermogenesis. We have further demonstrated that berberine activated energy metabolic sensing pathway AMPK/SIRT1 axis to increase the level of PPARγ deacetylation, which leads to promoting adipose tissue remodeling and increasing the expression of the thermogenic protein UCP-1. These findings suggest that berberine that enhances the AMPK/SIRT1 pathway can act as a selective PPARγ activator to promote adipose tissue remodeling and thermogenesis. This study proposes a new mechanism for the regulation of berberine in adipose tissue and offers a great prospect for berberine in obesity treatment
Collapse
Affiliation(s)
- Yingxi Xu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, China
| | - Guojing Ma
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Lixia Zheng
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xuehan Jiang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Fan Yang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Zhuo Wang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Na Li
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Zheng He
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Yu
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122.,Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| |
Collapse
|
46
|
Zhao L, Liu D, Ma W, Gu H, Wei X, Luo W, Yuan Z. Bhlhe40/Sirt1 Axis-Regulated Mitophagy Is Implicated in All- Trans Retinoic Acid-Induced Spina Bifida Aperta. Front Cell Dev Biol 2021; 9:644346. [PMID: 33987177 PMCID: PMC8111003 DOI: 10.3389/fcell.2021.644346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Neural tube defects (NTDs) are the most severe congenital malformations that result from failure of neural tube closure during early embryonic development, and the underlying molecular mechanisms remain elusive. Mitophagy is the best-known way of mitochondrial quality control. However, the role and regulation of mitophagy in NTDs have not yet been elucidated. In this study, we used an all-trans retinoic acid (ATRA)-induced rat model to investigate mitophagy and its underlying mechanism in spina bifida aperta (SBA). The results of western blot, immunofluorescence and RT-qPCR analyses indicated that mitophagy was impaired and Sirt1 was downregulated in SBA. Administration of resveratrol-a strong specific Sirt1 activator-activated Sirt1, thus attenuating autophagy suppression and ameliorating SBA. RNA-sequencing and bioinformatics analysis results indicated that transcriptional regulation played an important role in NTDs. A luciferase reporter assay was performed to demonstrate that the transcription factor Bhlhe40 directly bound to and negatively regulated Sirt1 expression. Further, we discovered that the Bhlhe40/Sirt1 axis regulated mitophagy in neural stem cells. Collectively, our results for the first time demonstrate that Bhlhe40/Sirt1 axis regulated mitophagy is implicated in ATRA-induced SBA. Our findings provide new insights into pathogenesis of NTDs and a basis for potential therapeutic targets for NTDs.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
47
|
Arlow T, Kim J, Haye-Bertolozzi JE, Martínez CB, Fay C, Zorensky E, Rose MD, Gammie AE. MutSα mismatch repair protein stability is governed by subunit interaction, acetylation, and ubiquitination. G3 (BETHESDA, MD.) 2021; 11:jkaa065. [PMID: 33793773 PMCID: PMC8063085 DOI: 10.1093/g3journal/jkaa065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022]
Abstract
In eukaryotes, DNA mismatch recognition is accomplished by the highly conserved MutSα (Msh2/Msh6) and MutSβ (Msh2/Msh3) complexes. Previously, in the yeast Saccharomyces cerevisiae, we determined that deleting MSH6 caused wild-type Msh2 levels to drop by ∼50%. In this work, we determined that Msh6 steady-state levels are coupled to increasing or decreasing levels of Msh2. Although Msh6 and Msh2 are reciprocally regulated, Msh3 and Msh2 are not. Msh2 missense variants that are able to interact with Msh6 were destabilized when Msh6 was deleted; in contrast, variants that fail to dimerize were not further destabilized in cells lacking Msh6. In the absence of Msh6, Msh2 is turned over at a faster rate and degradation is mediated by the ubiquitin-proteasome pathway. Mutagenesis of certain conserved lysines near the dimer interface restored the levels of Msh2 in the absence of Msh6, further supporting a dimer stabilization mechanism. We identified two alternative forms of regulation both with the potential to act via lysine residues, including acetylation by Gcn5 and ubiquitination by the Not4 ligase. In the absence of Gcn5, Msh2 levels were significantly decreased; in contrast, deleting Not4 stabilized Msh2 and Msh2 missense variants with partial function. The stabilizing effect on Msh2 by either the presence of Msh6 or the absence of Not4 are dependent on Gcn5. Taken together, the results suggest that the wild-type MutSα mismatch repair protein stability is governed by subunit interaction, acetylation, and ubiquitination.
Collapse
Affiliation(s)
- Tim Arlow
- Ophthalmic Associates, Johnstown, PA
| | | | | | | | | | | | - Mark D. Rose
- Georgetown University, Georgetown, Washington D.C
| | | |
Collapse
|
48
|
Xiang J, Chen C, Liu R, Gou D, Chang L, Deng H, Gao Q, Zhang W, Tuo L, Pan X, Liang L, Xia J, Huang L, Yao K, Wang B, Hu Z, Huang A, Wang K, Tang N. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Invest 2021; 131:144703. [PMID: 33690219 DOI: 10.1172/jci144703] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Although cancer cells are frequently faced with a nutrient- and oxygen-poor microenvironment, elevated hexosamine-biosynthesis pathway (HBP) activity and protein O-GlcNAcylation (a nutrient sensor) contribute to rapid growth of tumor and are emerging hallmarks of cancer. Inhibiting O-GlcNAcylation could be a promising anticancer strategy. The gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) is downregulated in hepatocellular carcinoma (HCC). However, little is known about the potential role of PCK1 in enhanced HBP activity and HCC carcinogenesis under glucose-limited conditions. In this study, PCK1 knockout markedly enhanced the global O-GlcNAcylation levels under low-glucose conditions. Mechanistically, metabolic reprogramming in PCK1-loss hepatoma cells led to oxaloacetate accumulation and increased de novo uridine triphosphate synthesis contributing to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis. Meanwhile, deletion of PCK1 also resulted in AMPK-GFAT1 axis inactivation, promoting UDP-GlcNAc synthesis for elevated O-GlcNAcylation. Notably, lower expression of PCK1 promoted CHK2 threonine 378 O-GlcNAcylation, counteracting its stability and dimer formation, increasing CHK2-dependent Rb phosphorylation and HCC cell proliferation. Moreover, aminooxyacetic acid hemihydrochloride and 6-diazo-5-oxo-L-norleucine blocked HBP-mediated O-GlcNAcylation and suppressed tumor progression in liver-specific Pck1-knockout mice. We reveal a link between PCK1 depletion and hyper-O-GlcNAcylation that underlies HCC oncogenesis and suggest therapeutic targets for HCC that act by inhibiting O-GlcNAcylation.
Collapse
Affiliation(s)
- Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Dongmei Gou
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lin Tuo
- Sichuan Provincial People's Hospital, Sichuan, China
| | - Xuanming Pan
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Bohong Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| |
Collapse
|
49
|
Vrzáčková N, Ruml T, Zelenka J. Postbiotics, Metabolic Signaling, and Cancer. Molecules 2021; 26:molecules26061528. [PMID: 33799580 PMCID: PMC8000401 DOI: 10.3390/molecules26061528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and β-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.
Collapse
|
50
|
Vinchure OS, Whittemore K, Kushwah D, Blasco MA, Kulshreshtha R. miR-490 suppresses telomere maintenance program and associated hallmarks in glioblastoma. Cell Mol Life Sci 2021; 78:2299-2314. [PMID: 32970185 PMCID: PMC11073096 DOI: 10.1007/s00018-020-03644-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 01/15/2023]
Abstract
Glioblastoma (GBM) is the most aggressive cancer of central nervous system with worst patient outcome. Telomere maintenance is a crucial mechanism governing GBM initiation and progression making it an attractive target. microRNAs (miRNAs) have shown therapeutic potential in GBM. Earlier, we showed miR-490 is downregulated in GBM patients and plays a tumor suppressive role. Here, we show that miR-490 regulates telomere maintenance program in GBM by directly targeting Telomeric Repeat-binding Factor 2 (TERF2) of the shelterin complex, Tankyrase 2 (TNKS2) and Serine/Threonine-protein kinase, SMG1. Overexpression of miR-490 resulted in effects characteristic to hampered telomere maintenance via TERF2 inhibition. These include induction of telomere dysfunction-induced foci and global DNA damage (53BP1 foci), along with an increase in p-γH2AX levels. Further, it led to inhibition of telomere maintenance hallmarks via reduced stemness (SOX2 and SOX4 downregulation) and induction of senescence (H3K9me3 marks gain and SIRT1 downregulation). It also initiated downstream DNA damage response (DDR) leading to p53 pathway activation. Moreover, microarray data analysis highlighted an overlap between miR-490 expression and REST-inhibition responses in GBM. Thus, miR-490-mediated targeting of telomere maintenance could be therapeutically important in GBM.
Collapse
Affiliation(s)
- Omkar Suhas Vinchure
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Kurt Whittemore
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Deependra Kushwah
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Maria A Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|