1
|
Leung KK, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Sinclair P, Dhanjal NS, Towers EB, Lynch WJ, Kabbani N. Proteomic analysis of plasma proteins during fentanyl withdrawal in ovariectomized female rats with and without estradiol. J Neuroendocrinol 2025:e70033. [PMID: 40254411 DOI: 10.1111/jne.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Evidence from both clinical and preclinical studies indicates that females experience a faster progression to drug addiction and more severe addiction-related health effects compared with males. Estradiol (E2) plays a critical role in these sex differences. Recently, we demonstrated that E2 significantly exacerbates adverse health effects, such as respiratory distress and weight loss, in ovariectomized (OVX) female rats during withdrawal from extended-access fentanyl self-administration. To uncover the mechanisms behind E2-enhanced toxicity, we investigated proteomic changes in the plasma of fentanyl-withdrawn OVX rats under both E2 and non-E2 presentation conditions.Plasma samples were collected following extended-access fentanyl self-administration during protracted withdrawal, when adverse health effects were most pronounced. Using liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) we conducted proteomic analysis in OVX rats comparing the effect of fentanyl withdrawal, with or without E2, to drug-naïve control rats.We found a significant effect of fentanyl withdrawal on plasma proteomes within OVX rats. Fentanyl withdrawal was associated with a significant change in 15 plasma proteins including B-factor, properdin (Cfb), apolipoprotein E (ApoE), complement 4, precursor (C4), C-reactive protein (Crp), zinc-alpha-2-glycoprotein precursor (Azgp1), and serine peptidase inhibitor 3L (Serinpa3l). The addition of E2 was associated with enhanced proteomic changes. Bioinformatic gene ontology enrichment analysis indicates that fentanyl withdrawal can disrupt the expression of proteins associated with immunity, lipid transport, and components of the extracellular matrix. We identify protein changes in plasma that may contribute to adverse health outcomes in females, with and without E2, during fentanyl withdrawal. These findings support the development of targeted strategies addressing health risks during opioid use disorder in women.
Collapse
Affiliation(s)
- Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, USA
| | - Navdeep S Dhanjal
- Bioinformatics and Computational Biology Program, George Mason University, Manassas, Virginia, USA
| | - E Blair Towers
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, Virginia, USA
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, USA
- Bioinformatics and Computational Biology Program, George Mason University, Manassas, Virginia, USA
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
3
|
Li W, Liu Z. Advances in glycan-specific biomimetic molecular recognition and its biomedical applications. Chem Commun (Camb) 2025. [PMID: 40243224 DOI: 10.1039/d5cc01003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Glycan-mediated recognition is critically involved in a variety of pathophysiological events, so strategies targeting unique glycosylation could offer opportunities for novel disease diagnostics and therapeutics. Herein, we survey the current progress in glycan-binding entities and their biomedical applications. Particularly focusing on biologically promising artificial receptors, including boronate affinity-based molecularly imprinted polymers (MIPs) and anti-glycan aptamers, we summarize significant efforts in the recognition of glycans by MIPs and aptamers with high affinity and exquisite specificity. Furthermore, we highlight successful examples in biomedical fields of antiviral treatment, cancer diagnostics and targeted therapeutics. Finally, we briefly sketch the remaining challenges and future perspectives. Collectively, this review provides significant insights for further exploration of glycan-specific biomimetic materials in the broad biomedical area.
Collapse
Affiliation(s)
- Wei Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Min Z, Wang X, Yang X, Zhang Q, Zheng Q. Analysis of O-Glycans by Oxidative Release Combined with 3-Nitrophenylhydrazine Derivatization. ACS OMEGA 2025; 10:14403-14412. [PMID: 40256550 PMCID: PMC12004196 DOI: 10.1021/acsomega.5c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/22/2025]
Abstract
Glycosylation profiling is an effective methodology for achieving a comprehensive understanding of glycoproteins and their alterations in a multitude of pathological conditions. However, in comparison to N-glycosylation, O-glycosylation presents significant challenges in terms of both qualitative and quantitative mass spectrometric analyses. A recently developed oxidative release protocol enables the selective formation of O-glycans containing a carboxyl group derived from the amino acid residue. In this study, 3-nitrophenylhydrazine was used to derivatize the common carboxyl group in a mild hydrophilic solution. Derivatization resulted in the generation of a series of report ions for serine, threonine, sialic acid, and O-acetylated sialic acid residues, thereby facilitating the identification of O-glycans and their attached amino acid residues, as well as the determination of the number of O-acetyl groups. A total of 65 O-glycans can be identified from bovine mucin. Furthermore, the analytical strategy revealed that O-acetylated N-acetylneuraminic acid (Neu5Ac)-containing O-glycans from horse serum exhibited distinctive fragmentation patterns in comparison to those from bovine mucin. Additionally, the presence of deaminoneuraminic acid (KDN)-containing O-glycans was successfully confirmed in fish intestinal tissue. These findings suggest that this method provides an economical and potentially valuable tool for large-scale O-glycosylation studies in complex biological samples.
Collapse
Affiliation(s)
- Zhenghu Min
- School
of Environment and Health, Jianghan University, Wuhan 430056, Hubei, People’s
Republic of China
| | - Xingdan Wang
- School
of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, People’s Republic of China
| | - Xiaoqiu Yang
- School
of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, People’s Republic of China
| | - Qiwei Zhang
- School
of Environment and Health, Jianghan University, Wuhan 430056, Hubei, People’s
Republic of China
- School
of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, People’s Republic of China
| | - Qi Zheng
- School
of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, People’s Republic of China
| |
Collapse
|
5
|
Ren M, Liu D, Qin F, Chen X, Ma W, Tian R, Weng T, Wang D, Astruc D, Liang L. Single-molecule resolution of macromolecules with nanopore devices. Adv Colloid Interface Sci 2025; 338:103417. [PMID: 39889505 DOI: 10.1016/j.cis.2025.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Nanopore-based electrical detection technology holds single-molecule resolution and combines the advantages of high sensitivity, high throughput, rapid analysis, and label-free detection. It is widely applied in the determination of organic and biological macromolecules, small molecules, and nanomaterials, as well as in nucleic acid and protein sequencing. There are a wide variety of organic polymers and biopolymers, and their chemical structures, and conformation in solution directly affect their ensemble properties. Currently, there is limited approach available for the analysis of single-molecule conformation and self-assembled topologies of polymers, dendrimers and biopolymers. Nanopore single-molecule platform offers unique advantages over other sensing technologies, particularly in molecular size differentiation of macromolecules and complex conformation analysis. In this review, the classification of nanopore devices, including solid-state nanopores (SSNs), biological nanopores, and hybrid nanopores is introduced. The recent developments and applications of nanopore devices are summarized, with a focus on the applications of nanopore platform in the resolution of the structures of synthetic polymer, including dendritic, star-shaped, block copolymers, as well as biopolymers, including polysaccharides, nucleic acids and proteins. The future prospects of nanopore sensing technique are ultimately discussed.
Collapse
Affiliation(s)
- Meili Ren
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China; Chongqing Jiaotong University, Chongqing 400014, PR China
| | - Daixin Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Xun Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Wenhao Ma
- Chongqing University, Chongqing 400044, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Ting Weng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Deqang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Didier Astruc
- University of Bordeaux, ISM UMR CNRS 5255, 33405 Talence Cedex, France.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China.
| |
Collapse
|
6
|
Teng C, Ma W, Liu J, Hou J, Zhang Y, Meng X, Xue Y, Wang Z, Wang J, Chen D, Sui Q, Gao Q, Li X, Li T, Zong C. Chemoenzymatic liquid-phase synthesis and immunogenic assessment of tumor-associated complex MUC1 glycopeptide variants. Int J Biol Macromol 2025; 302:140525. [PMID: 39892541 DOI: 10.1016/j.ijbiomac.2025.140525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Aberrantly glycosylated Mucin 1 (MUC1) is frequently over-expressed in epithelial cancers, making it an attractive target for cancer vaccines. Over the past two decades, multiple MUC1-based vaccines have been investigated clinically, yet they have generally shown limited efficacy due to challenges such as low immunogenicity, difficulty in overcoming immune tolerance, and potential issues related to glycosylation effects and antigen presentations. To advance the understanding of MUC1 vaccines, we report an efficient chemo-enzymatic approach for the preparation of four MUC1 antigen variants with different glycoforms through liquid-phase glycopeptide synthesis. These antigen were conjugated with CRM197 to generate various glycopeptide-protein conjugate vaccines, and their immunogenicity was evaluated based on total and subtype antibody titers, binding affinity, complement-dependent cytotoxicity (CDC) activity, and antibody-dependent cellular phagocytosis (ADCP). The combination of MPL and QS21 adjuvants with STn-MUC1-CRM197 conjugate induced a potent Th1-biased immune response, evidenced by elevating IgG2a titers and stronger antibody binding to MCF-7 cells. This formulation demonstrated superior CDC activity, ADCP activity and binding affinity to human breast cancer tissues in immuno-histochemical assays. The synergistic effect of specific adjuvants and glycosylated MUC1 conjugates offers a strategic avenue for MUC1 cancer vaccine development.
Collapse
Affiliation(s)
- Changcai Teng
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng 475004, China
| | - Juan Hou
- Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Yalong Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Xiongyan Meng
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Yannan Xue
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Zhen Wang
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng 475004, China
| | - Dexiang Chen
- Maxvax Biotechnology Co., LTD, Chengdu 610200, China
| | - Qiang Sui
- Maxvax Biotechnology Co., LTD, Chengdu 610200, China
| | - Qi Gao
- Maxvax Biotechnology Co., LTD, Chengdu 610200, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng 475004, China.
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Chengli Zong
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Ahuja P, Singh M, Ujjain SK. Advancements in Electrochemical Biosensors for Comprehensive Glycosylation Assessment of Biotherapeutics. SENSORS (BASEL, SWITZERLAND) 2025; 25:2064. [PMID: 40218579 PMCID: PMC11991509 DOI: 10.3390/s25072064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
Proteins represent a significant portion of the global therapeutics market, surpassing hundreds of billions of dollars annually. Among the various post-translational modifications, glycosylation plays a crucial role in influencing protein structure, stability, and function. This modification is especially important in biotherapeutics, where the precise characterization of glycans is vital for ensuring product efficacy and safety. Although mass spectrometry-based techniques have become essential tools for glycomic analysis due to their high sensitivity and resolution, their complexity and lengthy processing times limit their practical application. In contrast, electrochemical methods provide a rapid, cost-effective, and sensitive alternative for glycosylation assessment, enabling the real-time analysis of glycan structures on biotherapeutic proteins. These electrochemical techniques, often used in conjunction with complementary methods, offer valuable insights into the glycosylation profiles of both isolated glycoproteins and intact cells. This review examines the latest advancements in electrochemical biosensors for glycosylation analysis, highlighting their potential in enhancing the characterization of biotherapeutics and advancing the field of precision medicine.
Collapse
Affiliation(s)
- Preety Ahuja
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| | - Manpreet Singh
- Department of Mechanical Engineering, College of Engineering and Information Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| | - Sanjeev Kumar Ujjain
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| |
Collapse
|
8
|
Ju HJ, Song WH, Shin JH, Lee JH, Bae JM, Lee YB, Lee M. Characterization of Gut Microbiota in Patients with Active Spreading Vitiligo Based on Whole-Genome Shotgun Sequencing. Int J Mol Sci 2025; 26:2939. [PMID: 40243573 PMCID: PMC11988336 DOI: 10.3390/ijms26072939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Vitiligo is an autoimmune skin disease with a significant psychological burden and complex pathogenesis. While genetic factors contribute approximately 30% to its development, recent evidence suggests a crucial role of the gut microbiome in autoimmune diseases. This study investigated differences in gut microbiome composition and metabolic pathways between active spreading vitiligo patients and healthy controls using shotgun whole-genome sequencing in a Korean cohort. Taxonomic profiling reveals distinct characteristics in microbial community structure, with vitiligo patients showing an imbalanced proportion dominated by Actinomycetota and Bacteroidota. The vitiligo group exhibited significantly reduced abundance of specific species including Faecalibacterium prausnitzii, Faecalibacteriumduncaniae, and Meamonas funiformis, and increased Bifidobacterium bifidum compared to healthy controls. Metabolic pathway analysis identified significant enrichment in O-glycan biosynthesis pathways in vitiligo patients, while healthy controls showed enrichment in riboflavin metabolism and bacterial chemotaxis pathways. These findings provide new insights into the gut-skin axis in vitiligo pathogenesis and suggest potential therapeutic targets through microbiota modulation.
Collapse
Affiliation(s)
- Hyun Jeong Ju
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Woo Hyun Song
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| | - Ji Hae Shin
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Ji Hae Lee
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Jung Min Bae
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Young Bok Lee
- Department of Dermatology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| |
Collapse
|
9
|
Lei L, Zheng Q, Yang Q, Wang J, Tu Q, Long X, Wang J, Chen X, Huang D, Yang Y, Chen X, Zhang C, Chu L. Rapid and sensitive detection of cell surface N-glycans in live cancer cells using a novel acid-activated concanavalin A nanosensor. Int J Biol Macromol 2025; 308:142207. [PMID: 40120900 DOI: 10.1016/j.ijbiomac.2025.142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/02/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Glycans on the surface of cells play critical roles in various biological processes, including cell communication, the immune response, infection, development, and differentiation. The presence of glycans is closely related to cancer growth and metastasis. This study presents a biosensor based on an acid-activated nanoplatform for glycan detection on live cancer cells. Using human breast cancer cells (MCF-7 cells) and N-glycans as the target, concanavalin A (ConA)-modified magnetic nanoparticles (ConA-Cu(II)-MNPs) serve as the loading interface. Specifically, the nanoprobe consists of ConA with active N-glycan binding sites, glucose, and 5(6)-carboxytetramethylrhodamine (TAMRA) conjugated to pH-sensitive PDPA polymeric micelles, and these elements are used to prepare the acid-activated biosensor. In this strategy, the magnetic nanoparticle interface increases the loading capacity of ConA, and the active mannose binding sites allow ConA to capture the target cells. Therefore, the presence of glycans on the cell surface is reflected by the number of cells captured on the interface. Upon the addition of the specific nanoprobe to the captured cells at pH < 6.0, TAMRA is released from the micelles, generating a fluorescence signal. Additionally, the ConA on the nanoprobe specifically recognizes MCF-7 cells. The increase in the number of target cells captured on the ConA-Cu(II)-MNP interface leads to the loading of more TAMRA nanoprobes, and subsequently, a stronger fluorescence signal. The nanoprobe exhibits a substantial response to MCF-7 cells, detecting them at concentrations as low as 10 cells/mL. This biosensor can also selectively monitor changes in mannose levels on the cell surface after treatment with an N-glycan inhibitor. Using A549 and MRC-5 cells as models, the developed strategy demonstrates a low detection limit (down to three cells) and a wide linear detection range (from 10 to 1 × 106 cells/mL). Therefore, this acid-activated biosensor shows great potential for analyzing glycosylation on the surfaces of different cell types.
Collapse
Affiliation(s)
- Li Lei
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China; Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China
| | - Qian Zheng
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Qingqing Yang
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China
| | - Jifen Wang
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Qiuxia Tu
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China
| | - Xinchen Long
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China
| | - Jiaojiao Wang
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China
| | - Xiuli Chen
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China
| | - Dan Huang
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China
| | - Yushi Yang
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Xiaozhong Chen
- The Jinyang Hospital Affiliated to Guizhou Medical University: The Second People's Hospital of Guiyang, Guiyang 550025, China.
| | - Chunlin Zhang
- Engineering Research Center for Molecular Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China.
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China.
| |
Collapse
|
10
|
Binkowski B, Klamer Z, Gao C, Staal B, Repesh A, Tran HL, Brass DM, Bartlett P, Gallinger S, Blomqvist M, Morrow JB, Allen P, Shi C, Singhi A, Brand R, Huang Y, Hostetter G, Haab BB. Multiplexed glycan immunofluorescence identification of pancreatic cancer cell subpopulations in both tumor and blood samples. SCIENCE ADVANCES 2025; 11:eadt0029. [PMID: 40053601 PMCID: PMC11917494 DOI: 10.1126/sciadv.adt0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumor heterogeneity impedes the development of biomarker assays for early disease detection. We hypothesized that PDAC cell subpopulations could be identified by aberrant glycan signatures in both tumor tissue and blood samples. We used multiplexed glycan immunofluorescence to distinguish between PDAC and noncancer cell subpopulations within tumor tissue, and we developed hybrid glycan sandwich assays to determine whether the aberrant glycan signatures could be detected in blood samples. We found that PDAC cells were identified by signatures of glycans detected by four glycan-binding proteins (VVL, CA19-9, sTRA, and GM2) and that there are three types of glycan-defined PDAC tumors: sTRA type, CA19-9 type, and intermixed. In patient-matched tumor and blood samples, the PDAC tumor type could be determined by the aberrant glycans in the blood. As a result, the combined assays of aberrant glycan signatures were more sensitive and specific than any individual assay. Our results demonstrate a methodology to detect and stratify PDAC.
Collapse
Affiliation(s)
| | | | | | - Ben Staal
- Van Andel Institute, Grand Rapids, MI, USA
| | | | | | | | | | | | - Maria Blomqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Peter Allen
- Duke University School of Medicine, Durham, NC, USA
| | - Chanjuan Shi
- Duke University School of Medicine, Durham, NC, USA
| | - Aatur Singhi
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Randall Brand
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ying Huang
- Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| | | | | |
Collapse
|
11
|
Lee TA, Tsai EY, Liu SH, Chou WC, Hsu Hung SD, Chang CY, Chao CH, Yamaguchi H, Lai YJ, Chen HL, Li CW. Regulation of PD-L1 glycosylation and advances in cancer immunotherapy. Cancer Lett 2025; 612:217498. [PMID: 39855377 DOI: 10.1016/j.canlet.2025.217498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Protein glycosylation plays a versatile role in regulating homeostasis, such as cell migration, protein sorting, and the immune response. Drugs aimed at targeting glycosylation have strong implications for immunity enhancement, diagnosis, and cancer regression. Programmed death-ligand 1 (PD-L1), expressed in cancer or antigen-presenting cells, binds to programmed cell death protein 1 (PD-1) and suppresses T cells. Glycosylation of PD-L1 at N35, N192, N200, and N219 stabilizes PD-L1 on the cancer cell surface, which contributes to immune evasion by inhibiting T cell activity. To date, at least six glycosyltransferases and four associate proteins are known to regulate PD-L1 glycosylation. Terminal modifications such as poly-N-acetyl-lactosamine (poly-LacNAC), sulfation, and sialylation are commonly found on PD-L1, acting as an immune recognition ligand and regulating certain immune responses. Studies have identified many mechanisms and potential therapeutic targets within the glycosylation pathways of PD-L1, revealing their involvement in cancer pathology, immune evasion, and resistance to immunotherapy. In this review, we covered the glycoforms, terminal moiety, binding lectin, glycosyltransferase, as well as sugar analogs focusing on glycosylated PD-L1. We present a mechanism that originates from the endoplasmic reticulum (ER)-Golgi apparatus (Golgi) and its subsequent translocation to the cell membrane. This pathway determines the immune suppression function of PD-L1 and therefore regulates the immune response such as T cells, monocytes, and macrophages. This collection of findings underscores the significance of glycosylation in the role of PD-L1 in cancer and highlights multiple potential targets and strategies for improving therapeutic intervention and diagnostic techniques.
Collapse
Affiliation(s)
- Te-An Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - En-Yun Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Hou Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Shih-Duo Hsu Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chen-Yu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Hong Chao
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Graduate Institute of Cell Biology, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Yun-Ju Lai
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 113 Wilder Street, Lowell, MA, 01854, USA
| | - Hung-Lin Chen
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
12
|
Svecla M, Li-Gao R, Falck D, Bonacina F. N-glycosylation signature and its relevance in cardiovascular immunometabolism. Vascul Pharmacol 2025; 159:107474. [PMID: 39988310 DOI: 10.1016/j.vph.2025.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Glycosylation is a post-translational modification in which complex, branched carbohydrates (glycans) are covalently attached to proteins or lipids. Asparagine-link protein (N-) glycosylation is among the most common types of glycosylation. This process is essential for many biological and cellular functions, and impaired N-glycosylation has been widely implicated in inflammation and cardiovascular diseases. Different technical approaches have been used to increase the coverage of the N-glycome, revealing a high level of complexity of glycans, regarding their structure and attachment site on a protein. In this context, new insights from genomic studies have revealed a genetic regulation of glycosylation, linking genetic variants to total plasma N-glycosylation and N-glycosylation of immunoglobulin G (IgG). In addition, RNAseq approaches have revealed a degree of transcriptional regulation for the glycoenzymes involved in glycan structure. However, our understanding of the association between cardiovascular risk and glycosylation, determined by a complex overlay of genetic and environmental factors, remains limited. Mostly, plasma N-glycosylation profiling in different human cohorts or experimental investigations of specific enzyme functions in models of atherosclerosis have been reported. Most of the uncovered glycosylation associations with pathological mechanisms revolve around the recruitment of inflammatory cells to the vessel wall and lipoprotein metabolism. This review aims to summarise insights from omics studies into the immune and metabolic regulation of N-glycosylation and its association with cardiovascular and metabolic disease risk and to provide mechanistic insights from experimental models. The combination of emerging techniques for glycomics and glycoproteomics with already achieved omics approaches to map the transcriptomic, epigenomic, and metabolomic profile at single-cell resolution will deepen our understanding of the molecular regulation of glycosylation as well as identify novel biomarkers and targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Svecla
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - David Falck
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Glycomics Group, Leiden, the Netherlands
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy.
| |
Collapse
|
13
|
Little MJ, Mason JM, Mehrban N. Evolution of branched peptides as novel biomaterials. J Mater Chem B 2025; 13:2226-2241. [PMID: 39835399 PMCID: PMC11747965 DOI: 10.1039/d4tb01897d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Branched peptide-based materials draw inspiration from dendritic structures to emulate the complex architecture of native tissues, aiming to enhance the performance of biomaterials in medical applications. These innovative materials benefit from several key features: they exhibit slower degradation rates, greater stiffness, and the ability to self-assemble. These properties are crucial for maintaining the structural integrity and functionality of the materials over time. By integrating bioactive peptides and natural polymers within their branched frameworks, these materials offer modularity and tunability and can accommodate a range of mechanical properties, degradation rates, and biological functions making them suitable for biomedical applications, including drug delivery systems, wound healing scaffolds, and tissue engineering constructs. In drug delivery, these materials can be engineered to release therapeutic agents in a controlled manner, enhancing the efficacy and safety of treatments. In wound healing, they provide a supportive environment which promotes rapid and efficient tissue repair. The combination of biomimetic design and functional adaptability makes branched peptide-based materials a promising candidate for the development of next-generation biomaterials, paving the way for significant advancements in healthcare.
Collapse
Affiliation(s)
| | - Jody M Mason
- University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Nazia Mehrban
- University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
14
|
Estevinho MM, Midya V, Cohen-Mekelburg S, Allin KH, Fumery M, Pinho SS, Colombel JF, Agrawal M. Emerging role of environmental pollutants in inflammatory bowel disease risk, outcomes and underlying mechanisms. Gut 2025; 74:477-486. [PMID: 39179372 PMCID: PMC11802320 DOI: 10.1136/gutjnl-2024-332523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Epidemiological and translational data increasingly implicate environmental pollutants in inflammatory bowel disease (IBD). Indeed, the global incidence of IBD has been rising, particularly in developing countries, in parallel with the increased use of chemicals and synthetic materials in daily life and escalating pollution levels. Recent nationwide and ecological studies have reported associations between agricultural pesticides and IBD, particularly Crohn's disease. Exposure to other chemical categories has also been linked with an increased risk of IBD. To synthesise available data and identify knowledge gaps, we conducted a systematic review of human studies that reported on the impact of environmental pollutants on IBD risk and outcomes. Furthermore, we summarised in vitro data and animal studies investigating mechanisms underlying these associations. The 32 included human studies corroborate that heavy and transition metals, except zinc, air pollutants, per- and polyfluorinated substances, and pesticides are associated with an increased risk of IBD, with exposure to air pollutants being associated with disease-related adverse outcomes as well. The narrative review of preclinical studies suggests several overlapping mechanisms underlying these associations, including increased intestinal permeability, systemic inflammation and dysbiosis. A consolidated understanding of the impact of environmental exposures on IBD risk and outcomes is key to the identification of potentially modifiable risk factors and to inform strategies towards prediction, prevention and mitigation of IBD.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Unidade Local de Saúde Gaia Espinho, Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirley Cohen-Mekelburg
- Division of Gastroenterology and Hepatology, University of Michigan Medicine, Ann Arbor, Michigan, USA
- VA Center for Clinical Management Research, VA Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Kristine Højgaard Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Mathurin Fumery
- Department of Gastroenterology, CHU Amiens and PériTox, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Salome S Pinho
- i3S, Institute for Research and Innovation in Health, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
15
|
Dou Y, Niu Y, Shen H, Wang L, Lv Y, Liu S, Xie X, Feng A, Liu X. Identification of disease-specific gut microbial markers in vitiligo. Front Microbiol 2025; 16:1499035. [PMID: 39967732 PMCID: PMC11833150 DOI: 10.3389/fmicb.2025.1499035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
There is a potential correlation between vitiligo and gut microbiota, although research in this area is currently limited. The research employed high-throughput sequencing of 16S rRNA to examine the gut microbiome in the stool samples of 49 individuals with vitiligo and 49 without the condition. The study encompassed four comparison groups: (1) DI (disease) group vs. HC (healthy control) group; (2) DI_m group (disease group of minors) vs. HC_m group (healthy control group of minors); (3) DI_a group (adult disease group) vs. HC_a group (adult healthy control group); (4) DI_m group vs. DI_a group. Research findings have indicated the presence of spatial heterogeneity in the gut microbiota composition between individuals with vitiligo and healthy controls. A significant reduction in gut microbiota diversity has been observed in vitiligo patients across both minors and adult groups. However, variations have been noted in the composition of disease-related differential microbial markers among different age groups. Specifically, Bacteroides and Parabacteroides have been identified as specific markers of the intestinal microbiota of vitiligo patients in both minor and adult groups. Correlative analyses have revealed a positive correlation of these two genera with the Vitiligo Area Scoring Index (VASI) and disease duration. It is noteworthy that there are no significant differences in diversity between the DI_m group and the DI_a group, with similarities in microbiota composition and functional characteristics. Nevertheless, correlative analyses suggest a declining trend in Bacteroides and Parabacteroides with increasing age. Individuals with vitiligo exhibit distinct features in their gut microbiome when contrasted with those in the healthy control group. Additionally, the microbial marker genera that show variances between patients and healthy controls vary among different age groups. Disease-specific microbial marker genera (Bacteroides and Parabacteroides) are associated with VASI, duration of the condition, and age. These findings are essential for improving early diagnosis and developing potential treatment strategies for individuals with vitiligo.
Collapse
Affiliation(s)
- Yimin Dou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hexiao Shen
- School of Life Science, Hubei University, Wuhan, China
| | - Lan Wang
- School of Life Science, Hubei University, Wuhan, China
| | - Yongling Lv
- School of Life Science, Hubei University, Wuhan, China
| | - Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiafei Xie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiping Feng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Liu G, Zhou X, Zhu Y, Zhou Z, Chen M, Lai S, Gu W, Tao H. C, N-Diaryl Glycosyl Imidates for Catalytic Glycosylation. Org Lett 2025. [PMID: 39901669 DOI: 10.1021/acs.orglett.5c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
We report the development of a novel class of glycosyl donors, C,N-diaryl imidates, distinguished by the presence of two identical aryl groups. These DAIs are efficiently synthesized from imidoyl fluorides, which are derived from symmetrical benzophenone precursors. Among the DAIs evaluated, the donor featuring two para-fluorophenyl groups exhibits exceptional versatility and efficiency, enabling high-yield glycosylation reactions across a wide range of acceptors. Key intermediates, including imidoyl fluorides and DAI donors, strike an ideal balance between storage stability and reactivity, underscoring their promise for the streamlined synthesis of complex saccharides.
Collapse
Affiliation(s)
- Guangyao Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Zhou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yulong Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zijie Zhou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming Chen
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Guangxi, 546318, China
| | - Shusheng Lai
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Guangxi, 546318, China
| | - Weiliang Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
17
|
Lee S, Ono T, Masaaki S, Fujita A, Matsubara M, Zappa A, Yamada I, Aoki-Kinoshita KF. Updates implemented in version 4 of the GlyCosmos Glycoscience Portal. Anal Bioanal Chem 2025; 417:907-919. [PMID: 39690313 PMCID: PMC11782317 DOI: 10.1007/s00216-024-05692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Glycosylation, characterized by its complexity and diversity, is a common system across all domains of life. The glycosylation of proteins or lipids imparts them with structural and functional roles, ranging from development to infectious or Mendelian disease. The high-throughput-based omics data has revealed that glycans are involved in important cellular processes. Comprehensive knowledge of glycosylation has contributed not only to the fundamental concepts in glycoscience but also to its applications, including the development of molecular markers for diagnosis and therapeutic tools for treating diseases. The GlyCosmos Glycoscience Portal (GlyCosmos) has undergone significant updates to better support the scientific community in studying glycosylation-related phenomena. Key enhancements include the integration of expanded datasets linking glycans to other omics fields, improved tools for glycan structure prediction and analysis, and upgraded visualization capabilities to streamline data interpretation. A strengthened focus on data standardization has also been introduced, fostering interoperability between glycoscience resources and external databases. Since its release in 2019, the portal has seen a fivefold increase in user engagement, reflecting its growing relevance. These recent advancements aim to provide researchers with a more comprehensive and user-friendly platform, enabling deeper insights into glycan roles in cellular processes and disease mechanisms. GlyCosmos will continue to evolve, prioritizing community needs and advancing the integration of glycoscience with broader biological and biomedical research.
Collapse
Affiliation(s)
- Sunmyoung Lee
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Tamiko Ono
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Shiota Masaaki
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Akihiro Fujita
- Institute for Glyco-Core Research, Nagoya University, Nagoya, Japan
| | | | - Achille Zappa
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | | | - Kiyoko F Aoki-Kinoshita
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan.
- Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan.
- Institute for Glyco-Core Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
18
|
Blom SE, Behan-Bush RM, Ankrum JA, Yang L, Stephens SB. Proinflammatory cytokines mediate pancreatic β-cell specific alterations to Golgi morphology via iNOS-dependent mitochondrial inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635550. [PMID: 39975379 PMCID: PMC11838340 DOI: 10.1101/2025.01.29.635550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type 1 diabetes (T1D) is caused by the selective autoimmune ablation of pancreatic β-cells. Emerging evidence reveals β-cell secretory dysfunction arises early in T1D development and may contribute to diseases etiology; however, the underlying mechanisms are not well understood. Our data reveal that proinflammatory cytokines elicit a complex change in the β-cell's Golgi structure and function. The structural modifications include Golgi compaction and loss of the inter-connecting ribbon resulting in Golgi fragmentation. Our data demonstrate that iNOS generated nitric oxide (NO) is necessary and sufficient for β-cell Golgi re-structuring. Moreover, the unique sensitivity of the β-cell to NO-dependent mitochondrial inhibition results in β-cell specific Golgi alterations that are absent in other cell types, including α-cells. Collectively, our studies provide critical clues as to how β-cell secretory functions are specifically impacted by cytokines and NO that may contribute to the development of β-cell autoantigens relevant to T1D.
Collapse
|
19
|
Keys AM, Kastner DW, Kiessling LL, Kulik HJ. The energetic landscape of CH-π interactions in protein-carbohydrate binding. Chem Sci 2025; 16:1746-1761. [PMID: 39669175 PMCID: PMC11632809 DOI: 10.1039/d4sc06246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
CH-π interactions between carbohydrates and aromatic amino acids play an essential role in biological systems that span all domains of life. Quantifying the strength and importance of these CH-π interactions is challenging because these interactions involve several atoms and can exist in many distinct orientations. To identify an orientational landscape of CH-π interactions, we constructed a dataset of close contacts formed between β-d-galactose residues and the aromatic amino acids, tryptophan, tyrosine, and phenylalanine, across crystallographic structures deposited in the Protein Data Bank. We carried out quantum mechanical calculations to quantify their interaction strengths. The data indicate that tryptophan-containing CH-π interactions have more favorable interaction energies than those formed by tyrosine or phenylalanine. The energetic differences between these amino acids are caused by the aromatic ring system electronics and size. We use individual distance and angle features to train random forest models to successfully predict the first-principles computed energetics of CH-π interactions. Using insights from our models, we define a tradeoff in CH-π interaction strength arising from the proximity of galactose carbons 1 and 2 versus carbons 4 and 6 to the aromatic amino acid. Our work demonstrates that a feature of CH-π stacking interactions is that numerous orientations allow for highly favorable interaction strengths.
Collapse
Affiliation(s)
- Allison M Keys
- Computational and Systems Biology Program, Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering, MIT Cambridge MA 02139 USA
- Department of Chemistry, MIT Cambridge MA 02139 USA
| | - David W Kastner
- Department of Chemical Engineering, MIT Cambridge MA 02139 USA
- Department of Chemistry, MIT Cambridge MA 02139 USA
- Department of Biological Engineering, MIT Cambridge MA 02139 USA
| | - Laura L Kiessling
- Department of Chemistry, MIT Cambridge MA 02139 USA
- The Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Koch Institute for Integrative Cancer Research, MIT Cambridge MA 02142 USA
| | - Heather J Kulik
- Department of Chemical Engineering, MIT Cambridge MA 02139 USA
- Department of Chemistry, MIT Cambridge MA 02139 USA
- The Broad Institute of MIT and Harvard Cambridge MA 02142 USA
| |
Collapse
|
20
|
Jiang P, Hakim MA, Saffarian Delkhosh A, Ahmadi P, Li Y, Mechref Y. 4-plex quantitative glycoproteomics using glycan/protein-stable isotope labeling in cell culture. J Proteomics 2025; 310:105333. [PMID: 39426592 PMCID: PMC11834166 DOI: 10.1016/j.jprot.2024.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Alterations in glycoprotein abundance and glycan structures are closely linked to numerous diseases. The quantitative exploration of glycoproteomics is pivotal for biomarker discovery, but comprehensive analysis within biological samples remains challenging due to low abundance, complexity, and lack of universal technology. We developed a multiplex glycoproteomic approach using an LC-ESI-MS platform for direct comparison of glycoproteomic quantitation. Glycopeptides were isotopically labeled during cell culture, achieving high labeling efficiency (≥ 95 %) for both glycans and peptides. Quantitation was validated by mixing the same cell line in a 1:1:1:1 ratio, with mathematical correction applied to deconvolute the ratios. This method proved reliable and was applied to a comparative glycoproteomic study of three breast cancer cell lines (HTB22, MDA-MB-231, MDA-MB-231BR) and one brain cancer cell line (CRL-1620), quantifying glycopeptides from three replicates. The expression of glycopeptides was relatively quantified, and up/down-regulation between cell lines was investigated. This approach provided insights into glycosylation microheterogeneity, crucial for breast cancer brain metastasis research. Benefits include eliminating fluctuations from nano electrospray ionization and reducing analysis time, enabling up to 4-plex profiling in a single injection. Metabolic labeling introduced mass differences at the MS1 level, ensuring increased sensitivity and higher resolution for accurate quantitation. SIGNIFICANCE: Alternations in glycoprotein abundance, changes in glycosylation levels, and variations in glycan structures are closely linked to numerous diseases. The quantitative exploration of glycoproteomics has emerged as a popular area of research for biomarker discovery. However, conducting a comprehensive quantitative analysis of the glycoproteome within biological samples remains challenging due to low abundance, inherent complexities, and the absence of universal quantitative technology. Here, we developed a multiplex glycoproteomic approach using an LC-ESI-MS platform to facilitate direct comparison of glycoproteomic quantitation and enhance throughput. This approach offers benefits such as eliminating quantitative fluctuations arising from nano electrospray ionization (ESI) and reducing analysis time, enabling up to 4-plex glycoproteomic profiling in a single injection. Glycopeptides were stable isotopic labeled during cell culture procedure, attaching to monosaccharides, amino acids, or both. We achieved a high labeling efficiency (≥ 95 %) for both glycans and peptides. Quantitation validation was tested on glycopeptides by mixing the same cell line with 1:1:1:1 ratio. Due to the overlapped isotopes, a mathematical correction was applied to deconvolute the ratio of 4-plex glycopeptides. This method demonstrated quantitative reliability and was successfully applied to a comparative glycoproteomic study of three breast cancer cells (HTB22, MDA-MB-231, and MDA-MB-231BR) and one brain cancer cell (CRL-1620), identifying a total of 264 glycopeptides from three replicates. The expression of glycopeptides among these four cells was relatively quantified and up/down-regulation between two cell lines was investigated. The exploration of glycosylation microheterogeneity through glycopeptide quantification may offer valuable insights for further investigation into breast cancer brain metastasis. Conclusion: The primary advantage of our presented work lies in the multiplexing offered by combining two established labeling techniques, SILAC and IDAWG, both of which have been effectively used and widely cited in the scientific community. This combination enhances the applicability and accuracy of our method, as demonstrated by the extensive citations and successful use of these techniques independently. We believe that this multiplexing approach significantly advances the field, despite the method's current limitation to cell systems.
Collapse
Affiliation(s)
- Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Arvin Saffarian Delkhosh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Yunxiang Li
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
21
|
Ismaya WT, Karsono AH, Tandrasasmita OM, Tjandrawinata RR, Rachmawati H. Agaricus bisporus Mannose-Binding Protein Stimulates the Innate Immune Cells. Adv Pharm Bull 2024; 14:944-950. [PMID: 40190680 PMCID: PMC11970490 DOI: 10.34172/apb.43767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose A lectin-like protein from the mushroom Agaricus bisporus has been shown to slightly increase the proliferation of RAW 264.7 cells. Following its identification as a mannose-binding lectin, henceforth called A. bisporus mannose-binding protein (Abmb), the protein is hypothesized to stimulate the innate immune cells response. The present work was aimed to substantiate that hypothesis. Furthermore, this study complements Abmb exploration as a potential agent for anti-breast cancer, which its treatment is hampered with compromised immunity of patient receiving chemotherapy. Methods Abmb's effect on the phagocytic activity of the macrophage was measured with FACS. Nitric oxide (NO) production was checked using Griess test while expression of the cytokines in the RAW 264.7 cells was analysed at gene and protein level using polymerase chain reaction (PCR) and FACS, respectively. Abmb's effect on the expression of surface markers of the human immune cells in the peripheral blood mononuclear cells (PBMCs) was checked with specific antibodies for targeted cluster differentiation (CD) and analysed using FACS. Results Abmb increased the phagocytic activity of the macrophage and NO production. Abmb increased the expression of cytokines i.e. tumour necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10. With the PBMCs, Abmb activated dendritic and natural killer (NK) cells, but not the B- or T-cells. Conclusion Abmb increased the activity of the macrophage cells and activated the immune cells that are related to the innate immune system, particularly the cellular immunity.
Collapse
Affiliation(s)
- Wangsa Tirta Ismaya
- Dexa Laboratories of Biomolecular Sciences, Industri Selatan V Blok PP-7, Jababeka II Industrial Estate, Cikarang 17559, West Java, Indonesia
| | - Agung Heru Karsono
- Dexa Laboratories of Biomolecular Sciences, Industri Selatan V Blok PP-7, Jababeka II Industrial Estate, Cikarang 17559, West Java, Indonesia
| | - Olivia Mayasari Tandrasasmita
- Dexa Laboratories of Biomolecular Sciences, Industri Selatan V Blok PP-7, Jababeka II Industrial Estate, Cikarang 17559, West Java, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, Industri Selatan V Blok PP-7, Jababeka II Industrial Estate, Cikarang 17559, West Java, Indonesia
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jl. Raya Cisauk-Lapan 10, Tangerang 15345, Banten, Indonesia
| | - Heni Rachmawati
- Research Group of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Ganesa 10, Bandung 40132, West Java, Indonesia
- Research Centre for Nanosciences and Nanotechnology, Bandung Institute of Technology, Ganesa 10, Bandung 40132, West Java, Indonesia
| |
Collapse
|
22
|
Qi Y, Ma Y, Duan G. Pharmacological Mechanisms of Bile Acids Targeting the Farnesoid X Receptor. Int J Mol Sci 2024; 25:13656. [PMID: 39769418 PMCID: PMC11727972 DOI: 10.3390/ijms252413656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Bile acids (BAs), a category of amphiphilic metabolites synthesized by liver cells and released into the intestine via the bile duct, serve a vital role in the emulsification of ingested fats during the digestive process. Beyond their conventional emulsifying function, BAs, with their diverse structures, also act as significant hormones within the body. They are pivotal in facilitating nutrient absorption by interacting with the farnesoid X receptor (FXR), and they serve as key regulators of lipid and glucose metabolism, as well as immune system balance. Consequently, BAs contribute to the metabolism of glucose and lipids, enhance the digestion and absorption of lipids, and maintain the equilibrium of the bile pool. Their actions are instrumental in addressing obesity, managing cholestasis, and treating diabetes, and are involved in the onset and progression of cancer. This paper presents an updated systematic review of the pharmacological mechanisms by which BAs target the FXR, incorporating recent findings and discussing their signaling pathways in the context of novel research, including their distinct roles in various disease states and populations. The aim is to provide a theoretical foundation for the continued research and clinical application of BAs.
Collapse
Affiliation(s)
- Youchao Qi
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining 810016, China
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai Tibetan Plateau, Qinghai Normal University, Xining 810008, China;
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Yonggui Ma
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai Tibetan Plateau, Qinghai Normal University, Xining 810008, China;
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Guozhen Duan
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining 810016, China
| |
Collapse
|
23
|
Mahanti M, Gummesson S, Sundin A, Leffler H, Zetterberg F, Nilsson UJ. Sulfonamide-derivatized galactosides selectively target an unexplored binding site in the galectin-9N-terminal domain. Bioorg Med Chem 2024; 116:117989. [PMID: 39549501 DOI: 10.1016/j.bmc.2024.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Four directional and positional variants of sulfonamide-derivatized galactopyranosides were synthesized and evaluated against human galectin-1, -3, -4C (C-terminal), -7, -8N (N-terminal), -8C (C-terminal), -9N (N-terminal), and -9C (C-terminal), which revealed that one of the sulfonamide positions and directionalities (methyl 3-{4-[2-(phenylsulfonylamino)-phenyl]-triazolyl}-3-deoxy-α-d-galactopyranosides) bound with 6-15 fold higher affinity than the corresponding phenyltriazole (lacking the phenylsulfonamide moiety) for galectin-9N. Molecular dynamic simulations suggested that inhibitor adopted a conformation that is complementary to the galectin-9N binding site and where the sulfonamide moiety protrudes into an unexplored and non-conserved binding site perpendicular to and below the A-B subsite to interact with a His61 NH proton. This resulted in the discovery of galectin-9N inhibitors with unprecedented selectivity over other galectins, thus constituting valuable tools for studies of the biological functions of galectin-9.
Collapse
Affiliation(s)
- Mukul Mahanti
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Sofi Gummesson
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Anders Sundin
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, BMC-C1228b, Klinikgatan 28, SE-221 84 Lund, Sweden
| | - Fredrik Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46 Gothenburg, Sweden
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
24
|
Ninagawa S, Matsuo M, Ying D, Oshita S, Aso S, Matsushita K, Taniguchi M, Fueki A, Yamashiro M, Sugasawa K, Saito S, Imami K, Kizuka Y, Sakuma T, Yamamoto T, Yagi H, Kato K, Mori K. UGGT1-mediated reglucosylation of N-glycan competes with ER-associated degradation of unstable and misfolded glycoproteins. eLife 2024; 12:RP93117. [PMID: 39654396 PMCID: PMC11630818 DOI: 10.7554/elife.93117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Biosignal Research Center, Kobe UniversityKobeJapan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Masaki Matsuo
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Deng Ying
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Shuichiro Oshita
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Shinya Aso
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Kazutoshi Matsushita
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Mai Taniguchi
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Akane Fueki
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Moe Yamashiro
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe UniversityKobeJapan
- Graduate School of Science, Kobe UniversityKobeJapan
| | - Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yasuhiko Kizuka
- Laboratory of Glycobiochemistry, Institute for Glyco-core Research (iGCORE), Gifu UniversityGifuJapan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima UniversityHiroshimaJapan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima UniversityHiroshimaJapan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
- Institute for Molecular Science (IMS), National Institutes of Natural SciencesOkazakiJapan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
- Institute for Advanced Study, Kyoto UniversityKyotoJapan
| |
Collapse
|
25
|
Zhu Z, Heng X, Shan F, Yang H, Wang Y, Zhang H, Chen G, Chen H. Customizable Glycopolymers as Adjuvants for Cancer Immunotherapy: From Branching Degree Optimization to Cell Surface Engineering. Biomacromolecules 2024; 25:7975-7984. [PMID: 39534984 DOI: 10.1021/acs.biomac.4c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Engineering dendritic cell (DC) maturation is paramount for robust T-cell responses and immunological memory, critical for cancer immunotherapy. This work unveils a novel strategy using precisely controlled branching in synthetic glycopolymers to optimize DC activation. Using the distinct copolymerization kinetics of 2-(methacrylamido) glucopyranose (MAG) and diethylene glycol dimethacrylate (DEGDMA) in a RAFT polymerization, unique glycopolymers with varying branching degrees are created. These strategically produced gradient branched glycopolymers with sugar moieties on the outer chain potently promote DC maturation. Strikingly, low-branched glycopolymers demonstrate superior activity, both in pure form and when engineered on tumor cell surfaces. Quartz crystal microbalance and theoretical simulations elucidate the crucial role of branching in modulating glycopolymer-DC receptor interactions. Low-branched gradient glycopolymers have shown a notable advantage and are promising adjuvants in DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Zhichen Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Xingyu Heng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Fangjian Shan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Hengyuan Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
26
|
Han Y, Zhou Y, Pan J, Sun M, Yang J. MAN2B1 in immune system-related diseases, neurodegenerative disorders and cancers: functions beyond α-mannosidosis. Expert Rev Mol Med 2024; 27:e4. [PMID: 39628046 PMCID: PMC11707832 DOI: 10.1017/erm.2024.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 01/07/2025]
Abstract
Glycosylation modifications of proteins and glycan hydrolysis are critical for protein function in biological processes. Aberrations in glycosylation enzymes are linked to lysosomal storage disorders (LSDs), immune interactions, congenital disorders and tumour progression. Mannosidase alpha class 2B member 1 (MAN2B1) is a lysosomal hydrolase from the α-mannosidase family. Dysfunction of MAN2B1 has been implicated as causative factors in mannosidosis, a lysosomal storage disorder characterised by cognitive impairment, hearing loss and immune system and skeletal anomalies. Despite decades of research, its role in pathogenic infections, autoimmune conditions, cancers and neurodegenerative pathologies is highly ambiguous. Future studies are required to shed more light on the intricate functioning of MAN2B1. To this end, we review the biological functions, expression patterns, enzymatic roles and potential implications of MAN2B1 across various cell types and disease contexts. Additionally, the novel insights presented in this review may aid in understanding the role of MAN2B1 in immune cells, thereby paving the way for targeted therapeutic interventions in immune-related disorders.
Collapse
Affiliation(s)
- Yuwen Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou215163, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou215163, China
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou215163, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou215163, China
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China
| |
Collapse
|
27
|
Zhen X, Betti MJ, Kars ME, Patterson AR, Medina-Torres EA, Scheffler Mendoza SC, Herrera Sánchez DA, Lopez-Herrera G, Svyryd Y, Mutchinick OM, Gamazon ER, Rathmell JC, Itan Y, Markle J, O'Farrill Romanillos P, Lugo-Reyes SO, Martinez-Barricarte R. Molecular and Clinical Characterization of a Founder Mutation Causing G6PC3 Deficiency. J Clin Immunol 2024; 45:53. [PMID: 39630167 PMCID: PMC11618172 DOI: 10.1007/s10875-024-01836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
G6PC3 deficiency is a monogenic immunometabolic disorder that causes severe congenital neutropenia type 4. Patients display heterogeneous extra-hematological manifestations, contributing to delayed diagnosis. Here, we investigated the origin and functional consequence of the G6PC3 c.210delC variant found in patients of Mexican descent. Based on the shared haplotypes amongst mutation carriers, we estimated that this variant originated from a founder effect in a common ancestor. Furthermore, by ancestry analysis, we concluded that it appeared in the indigenous Mexican population. At the protein level, we showed that this frameshift mutation leads to an aberrant protein expression in overexpression and patient-derived Epstein-Barr Virus-immortalized B (EBV-B) cells. The neutropenia observed in G6PC3-deficient patients is driven by the intracellular accumulation of the metabolite 1,5-anhydroglucitol-6-phosphate (1,5-AG6P) that inhibits glycolysis. We characterized how the c.210delC variant impacts glycolysis by performing extracellular flux assays on patient-derived EBV-B cells. When treated with 1,5-anhydroglucitol (1,5-AG), the precursor to 1,5-AG6P, patient cells exhibited markedly reduced engagement of glycolysis. Finally, we compared the clinical presentation of patients with the mutation c.210delC and all other G6PC3-deficient patients reported in the literature, and we found that the c.210delC carriers display all prominent clinical features observed in prior patients. In conclusion, G6PC3 c.210delC is a loss-of-function mutation that arose from a founder effect in the indigenous Mexican population. These findings may facilitate the diagnosis of additional patients in this geographical area. Moreover, the in vitro 1,5-AG-dependent functional assay used in our study could be employed to assess the pathogenicity of additional G6PC3 variants.
Collapse
Affiliation(s)
- Xin Zhen
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael J Betti
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meltem Ece Kars
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew R Patterson
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
| | | | | | | | - Gabriela Lopez-Herrera
- Immune deficiencies laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | - Yevgeniya Svyryd
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janet Markle
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | | | - Saul Oswaldo Lugo-Reyes
- Immune deficiencies laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico.
| | - Ruben Martinez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA.
| |
Collapse
|
28
|
Kendler J, Wӧls F, Thapliyal S, Arcalis E, Gabriel H, Kubitschek S, Malzl D, Strobl MR, Palmberger D, Luber T, Unverzagt C, Paschinger K, Glauser DA, Wilson IBH, Yan S. N-glycan core tri-fucosylation requires Golgi α-mannosidase III activity that impacts nematode growth and behavior. J Biol Chem 2024; 300:107944. [PMID: 39481603 PMCID: PMC11697051 DOI: 10.1016/j.jbc.2024.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
N-glycans with complex core chitobiose modifications are observed in various free-living and parasitic nematodes but are absent in mammals. Using Caenorhabditis elegans as a model, we demonstrated that the core N-acetylglucosamine (GlcNAc) residues are modified by three fucosyltransferases (FUTs), namely FUT-1, FUT-6, and FUT-8. Interestingly, FUT-6 can only fucosylate N-glycans lacking the α1,6-mannose upper arm, indicating that a specific α-mannosidase is required to generate substrates for subsequent FUT-6 activity. By analyzing the N-glycomes of aman-3 KOs using offline HPLC-MALDI-TOF MS/MS, we observed that the absence of aman-3 abolishes α1,3-fucosylation of the distal GlcNAc of N-glycans, which suggests that AMAN-3 is the relevant mannosidase on whose action FUT-6 depends. Enzymatic characterization of recombinant AMAN-3 and confocal microscopy studies using a knock-in strain (aman-3::eGFP) demonstrated a Golgi localization. In contrast to the classical Golgi α-mannosidase II (AMAN-2), AMAN-3 displayed a cobalt-dependent α1,6-mannosidase activity toward N-glycans. Using AMAN-3 and other C. elegans glycoenzymes, we were able to mimic nematode N-glycan biosynthesis in vitro by remodeling a fluorescein conjugated-glycan and generate a tri-fucosylated structure. In addition, using a high-content computer-assisted C. elegans analysis platform, we observed that aman-3 deficient worms display significant developmental delays, morphological, and behavioral alterations in comparison to the WT. Our data demonstrated that AMAN-3 is a Golgi α-mannosidase required for core fucosylation of the distal GlcNAc of N-glycans. This enzyme is essential for the formation of the unusual tri-fucosylated chitobiose modifications in nematodes, which may play important roles in nematode development and behavior.
Collapse
Affiliation(s)
- Jonatan Kendler
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Florian Wӧls
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Saurabh Thapliyal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Elsa Arcalis
- Department für angewandte Genetik und Zellbiologie, Universität für Bodenkultur, Wien, Austria
| | - Hanna Gabriel
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Sascha Kubitschek
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Maria R Strobl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Dieter Palmberger
- Department für Biotechnologie, Universität für Bodenkultur, Wien, Austria
| | - Thomas Luber
- Bioorganic Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Bayreuth, Germany
| | | | | | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria.
| |
Collapse
|
29
|
Nieves C, Victoria da Costa Ghignatti P, Aji N, Bertagnolli M. Immune Cells and Infectious Diseases in Preeclampsia Susceptibility. Can J Cardiol 2024; 40:2340-2355. [PMID: 39304126 DOI: 10.1016/j.cjca.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Preeclampsia is a severe pregnancy disorder, affecting approximately 10% of pregnancies worldwide, characterised by hypertension and proteinuria after the 20th week of gestation. The condition poses significant risks to both maternal and fetal health, including cardiovascular complications and impaired fetal development. Recent trends indicate a rising incidence of preeclampsia, correlating with factors such as advanced maternal age and cardiovascular comorbidities. Emerging evidence also highlights a notable increase in the association between autoimmune and infectious diseases with preeclampsia. Autoimmune conditions, such as type 1 diabetes and systemic lupus erythematosus, and infections triggered by global health challenges, including leptospirosis, Zika, toxoplasmosis, and Chagas disease, are now recognised as significant contributors to preeclampsia susceptibility by affecting placental formation and function. This review focuses on the immunologic mechanisms underpinning preeclampsia, exploring how immune system dysregulation and infectious triggers exacerbate the condition. It also discusses the pathologic mechanisms, including galectins, that preeclampsia shares with autoimmune and infectious diseases, and their significant risk for adverse pregnancy outcomes. We emphasise the necessity for accurate diagnosis and vigilant monitoring of immune and infectious diseases during pregnancy to optimise management and reduce risks. By raising awareness about these evolving risks and their impact on pregnancy, we aim to enhance diagnostic practices and preventive strategies, ultimately improving outcomes for pregnant women, especially in regions affected by environmental changes and endemic diseases.
Collapse
Affiliation(s)
- Cecilia Nieves
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| | - Paola Victoria da Costa Ghignatti
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Narjiss Aji
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Mariane Bertagnolli
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
30
|
Zhang X, Hao P, Mo J, Wang PY, Wang G, Li L, Zheng XJ, Yuan X, Yao W, Jin N, Li C, Ye XS. Local and Noninvasive Glyco-Virus Checkpoint Nanoblockades Restrict Sialylation for Prolonged Broad-Spectrum Epidemic Virus Therapy. ACS NANO 2024; 18:32910-32923. [PMID: 39536146 DOI: 10.1021/acsnano.4c12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has driven major advances in virus research. The role of glycans in viral infection has been revealed, with research demonstrating that terminal sialic acids are key receptors during viral attachment and infection into host cells. However, there is an urgent demand for universal tools to study the mechanism of sialic acids in viral infections, as well as to develop therapeutic agents against epidemic viruses through the downregulation of terminal sialic acid residues on glycans acting as a glyco-virus checkpoint to accelerate virus clearance. In this study, we developed a robust sialic acids blockade tool termed local and noninvasive glyco-virus checkpoint nanoblockades (LONG NBs), which blocked cell surface sialic acids by endogenously and continuously inhibiting the de novo sialic acids biosynthesis pathway. Furthermore, LONG NBs could accurately characterize the sialic acid-dependent profiles of multiple virus variants and protected the host against partial SARS-CoV-2, rotavirus, and influenza A virus infections after local and noninvasive administration. Our results suggest that LONG NBs represent a promising tool to facilitate in-depth research on the mechanism of viral infection, and serve as a broad-spectrum protectant against existing and emerging viral variants via glyco-virus checkpoint blockade.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Pengfei Hao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130000, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Juan Mo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Guoqing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130000, China
| | - Letian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| |
Collapse
|
31
|
Homan K, Tokuhiro T, Onodera T, Hanamatsu H, Furukawa JI, Ebata T, Matsuoka M, Kadoya K, Terkawi MA, Iwasaki N. Associations between glycan signature alterations and the cellular antigenic properties of passaged chondrocytes. Front Immunol 2024; 15:1475473. [PMID: 39654889 PMCID: PMC11625746 DOI: 10.3389/fimmu.2024.1475473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Background Cartilage repair is a significant clinical challenge because of the limited intrinsic healing capacity. Current therapeutic strategies, such as cell transplantation therapy, aim to overcome this challenge by replacing damaged tissue with healthy cells. However, the long-term survival and functionality of transplanted cells remain major hurdles. Objective This study investigated the impact of chondrocyte passaging on glycan profiles and their antigenic properties. We hypothesized that alterations in glycan composition due to passaging may contribute to the enhanced ability to activate macrophages, thereby affecting the outcome of cell transplantation therapy. Methods Peritoneal macrophages and primary articular chondrocytes were isolated from C57BL/6 mice to establish direct and indirect coculture models. Macrophage activation was assessed by measuring the concentrations of IL-6 and nitric oxide in the culture supernatants or their gene expression. Glycome analysis of various glycoconjugates was performed by glycoblotting methods combined with the SALSA procedure for N-glycans and GSLs and the BEP method for O-glycans. Results Our results revealed that direct coculture of macrophages with passaged chondrocytes increased the production of proinflammatory cytokines, including IL-6 and NO, as the number of passages increased. With increasing passage number, the expression of GD3 substantially decreased, and the expression of GM3, especially GD1a, significantly increased. Coculturing passaged GM3S knockout chondrocytes with macrophages significantly suppressed IL-6 expression, implying reduced macrophage activation. Conclusion The observed activation of macrophages due to alterations in the glycan profile of chondrocytes provides a possible explanation for the antigenicity and immune rejection of transplanted cells.
Collapse
Affiliation(s)
- Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Medicine for Locomotor System, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Biomaterial Function Regeneration Field, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido University, Sapporo, Japan
| | - Taiki Tokuhiro
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatoshi Hanamatsu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Jun-ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Taku Ebata
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masatake Matsuoka
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Kadoya
- Department of Advanced Medicine for Locomotor System, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - M. Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Medicine for Locomotor System, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Biomaterial Function Regeneration Field, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4421-4448. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
33
|
Nardini E, Rodriguez E, van Kooyk Y. The tissue glycome as regulator of immune activation and tolerance mediated by C-type lectins and Siglecs. Semin Immunol 2024; 76:101913. [PMID: 39602867 DOI: 10.1016/j.smim.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The immune system is a complex network of highly specialized microenvironments, denominated niches, which arise from dynamic interactions between immune and parenchymal cells as well as acellular components such as structural elements and local molecular signals. A critical, yet underexplored, layer shaping these niches is the glycome, the complete repertoire of glycans and glycoconjugates produced by cells. The glycome is prevalent in the outer membrane of cells and their secreted components, and can be sensed by glycan binding receptors on immune cells. These receptors detect changes in glycosylation and consequently modulate immune cell activity, trafficking, and signalling, altering homeostasis. Tissues like the brain and the placenta are prone to accommodate tolerance, while the gut and the thymus are sensitive to inflammation. We provide here an overview of current literature that shows the impact of altered glycosylation of tissues on host immune cells and how interference in this process may lead to new diagnostics and immune therapeutics, aiming to restore the immune balance in autoimmunity and cancer.
Collapse
Affiliation(s)
- Eleonora Nardini
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, Amsterdam 1117, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, Amsterdam 1117, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, Amsterdam 1117, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Li XJ, Xiao SJ, Xie YH, Chen J, Xu HR, Yin Y, Zhang R, Yang T, Zhou TY, Zhang SY, Hu P, Gao LM, Peng HP. Structural characterization and immune activity evaluation of a polysaccharide from Lyophyllum Decastes. Int J Biol Macromol 2024; 278:134628. [PMID: 39128736 DOI: 10.1016/j.ijbiomac.2024.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
An innovative acidic hydrolysate fingerprinting workflow was proposed for the characterization of Lyophyllum Decastes polysaccharide (LDP) by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). The crude polysaccharides were firstly separated and purified by using DE-52 column and the BRT GPC purification system, respectively. The molecular weight and monosaccharide content of homogeneous polysaccharides were ascertained by utilizing HPGPC and ion chromatography separately. Secondly, the linkage of LDP was identified by methylation analysis and 1D/2D NMR spectra. The UPLC-MS/MS was used to scan and identify the acidic hydrolysate products of LDP using the PGC column. The oligosaccharides were collected by chromatography and identified by mass spectrometry. Thirdly, the expression of IL-1β, IL-6, iNOS, TNF-α and IFNAR-I was measured in order to assess the immunological activity of LDP. Besides, the targeted receptors identification of polysaccharides was performed by screening the expression of TLRs family protein. The results showed that oligosaccharide fragments with different molecular weights can be obtained by partial hydrolysis, which further verified that the structures of LDP polysaccharides was a 1-6-linked β-glucan. Moreover, the LDP polysaccharide can up-regulate the content of IL-1β, IL-6, iNOS, TNF-α and IFNAR-I and plays an important immunoregulation role through TLRs family.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China.
| | - Shi-Jun Xiao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Yi Heng Xie
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Jiang Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Hai-Rong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Yuan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Rui Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Tong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Tong-Yu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Si-Yan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Pei Hu
- Jiangzhong Pharmaceutical Co., Ltd., No.1899 Meiling Road, Nanchang 330103, PR China
| | - Li-Ming Gao
- Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University Department of Gastroenterology, PR China
| | - Hui-Ping Peng
- Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University Department of Gastroenterology, PR China.
| |
Collapse
|
35
|
Almeida P, Fernandes Â, Alves I, Pinho SS. "Glycans in Trained Immunity: Educators of innate immune memory in homeostasis and disease". Carbohydr Res 2024; 544:109245. [PMID: 39208605 DOI: 10.1016/j.carres.2024.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Trained Immunity is defined as a biological process normally induced by exogenous or endogenous insults that triggers epigenetic and metabolic reprogramming events associated with long-term adaptation of innate immune cells. This trained phenotype confers enhanced responsiveness to subsequent triggers, resulting in an innate immune "memory" effect. Trained Immunity, in the past decade, has revealed important benefits for host defense and homeostasis, but can also induce potentially harmful outcomes associated with chronic inflammatory disorders or autoimmune diseases. Interestingly, evidence suggest that the "trainers" prompting trained immunity are frequently glycans structures. In fact, the exposure of different types of glycans at the surface of pathogens is a key driver of the training phenotype, leading to the reprogramming of innate immune cells through the recognition of those glycan-triggers by a variety of glycan-binding proteins (GBPs) expressed by the immune cells. β-glucan or mannose-enriched structures in Candida albicans are some of the examples that highlight the potential of glycans in trained immunity, both in homeostasis and in disease. In this review, we will discuss the relevance of glycans exposed by pathogens in establishing key immunological hubs with glycan-recognizing receptors expressed in immune cells, highlighting how this glycan-GBP network can impact trained immunity. Finally, we discuss the power of glycans and GBPs as potential targets in trained immunity, envisioning potential therapeutic applications.
Collapse
Affiliation(s)
- Pedro Almeida
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Ângela Fernandes
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Inês Alves
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Salomé S Pinho
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
36
|
Goodson H, Kawahara R, Fehring J, Purcell AW, Croft NP, Thaysen-Andersen M. α-Mannosylated HLA-II glycopeptide antigens dominate the immunopeptidome of immortalised cells and tumour tissues. Glycobiology 2024; 34:cwae057. [PMID: 39088576 PMCID: PMC11441994 DOI: 10.1093/glycob/cwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/03/2024] Open
Abstract
Immunopeptides are cell surface-located protein fragments that aid our immune system to recognise and respond to pathogenic insult and malignant transformation. In this two-part communication, we firstly summarise and reflect on our recent discovery documenting that MHC-II-bound immunopeptides from immortalised cell lines prevalently carry N-glycans that differ from the cellular glycoproteome (Goodson, Front Immunol, 2023). These findings are important as immunopeptide glycosylation remains poorly understood in immunosurveillance. The study also opened up new technical and biological questions that we address in the second part of this communication. Our study highlighted that the performance of the search engines used to detect glycosylated immunopeptides from LC-MS/MS data remains untested and, importantly, that little biochemical in vivo evidence is available to document the nature of glycopeptide antigens in tumour tissues. To this end, we compared the N-glycosylated MHC-II-bound immunopeptides that were reported from tumour tissues of 14 meningioma patients in the MSFragger-HLA-Glyco database (Bedran, Nat Commun, 2023) to those we identified with the commercial Byonic software. Encouragingly, the search engines produced similar outputs supporting that N-glycosylated MHC-II-bound immunopeptides are prevalent in meningioma tumour tissues. Consistent also with in vitro findings, the tissue-derived MHC-II-bound immunopeptides were found to predominantly carry hyper-processed (paucimannosidic- and chitobiose core-type) and hypo-processed (oligomannosidic-type) N-glycans that varied in prevalence and distribution between patients. Taken together, evidence is emerging suggesting that α-mannosidic glycoepitopes abundantly decorate MHC-II-bound immunopeptides presented in both immortalised cells and tumour tissues warranting further research into their functional roles in immunosurveillance.
Collapse
Affiliation(s)
- Hayley Goodson
- School of Natural Sciences, Macquarie University, 4 Wally's Walk, NSW-2109, Macquarie Park, Sydney, Australia
| | - Rebeca Kawahara
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furocho, Chikusa Ward, Nagoya, 464-8601, Aichi, Japan
| | - Joshua Fehring
- Department of Biochemistry and Molecular Biology & Biomedicine Discovery Institute, Monash University, Innovation Walk, VIC-3800, Clayton, Melbourne, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology & Biomedicine Discovery Institute, Monash University, Innovation Walk, VIC-3800, Clayton, Melbourne, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology & Biomedicine Discovery Institute, Monash University, Innovation Walk, VIC-3800, Clayton, Melbourne, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, 4 Wally's Walk, NSW-2109, Macquarie Park, Sydney, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furocho, Chikusa Ward, Nagoya, 464-8601, Aichi, Japan
| |
Collapse
|
37
|
Sugiura S, Ikeda M. Supramolecular materials constructed from synthetic glycopeptides via aqueous self-assembly and their bioapplications in immunotherapy. Org Biomol Chem 2024; 22:7287-7306. [PMID: 39189690 DOI: 10.1039/d4ob01116c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Synthetic glycopeptides capable of self-assembly in aqueous environments form a range of supramolecular nanostructures, such as nanoparticles and nanofibers, owing to their amphiphilic nature and the diverse structures of the saccharides introduced. These glycopeptide-based supramolecular materials are promising for immunotherapy applications because of their biocompatibility and multivalent saccharide display, which enhances lectin-saccharide interactions. This review highlights recent advances in the molecular design of synthetic glycopeptide-based supramolecular materials and their use as immunomodulatory agents.
Collapse
Affiliation(s)
- Shintaro Sugiura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
38
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
39
|
Wang X, Jing Y, Zheng C, Huang C, Yao H, Guo Z, Wu Y, Wang Z, Wu Z, Ge R, Cheng W, Yan Y, Jiang S, Sun J, Li J, Xie Q, Li X, Wang H. Using integrated transcriptomics and metabolomics to explore the effects of infant formula on the growth and development of small intestinal organoids. Food Funct 2024; 15:9191-9209. [PMID: 39158038 DOI: 10.1039/d4fo01723d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Infant formulas are designed to provide sufficient energy and the necessary nutrients to support the growth and development of newborns. Currently, research on the functions of formula milk powder focuses on clinical research and cell experiments, and there were many cell experiments that investigated the effect of infant formulas on cellular growth. However, most of the cells used are tumor cell lines, which are unable to simulate the real digestion process of an infant. In this study, we innovatively proposed a method that integrates human small intestinal organoids (SIOs) with transcriptomics and metabolomics analysis. We induced directed differentiation of human embryonic stem cells into SIOs and simulated the intestinal environment of newborns with them. Then, three kinds of 1-stage infant formulas from the same brand were introduced to simulate the digestion, absorption, and metabolism of the infant intestine. The nutritional value of each formula milk powder was examined by multi-omics sequencing methods, including transcriptomics and metabolomics analysis. Results showed that there were significant alterations in gene expression and metabolites in the three groups of SIOs after absorbing different infant formulas. By analyzing transcriptome and metabolome data, combined with GO, KEGG, and GSEA analysis, we demonstrated the ability of SIOs to model the different aspects of the developing process of the intestine and discovered the correlation between formula components and their effects, including Lactobacillus lactis and lactoferrin. The study reveals the effect and mechanisms of formula milk powder on the growth and development of infant intestines and the formation of immune function. Furthermore, our method can help to construct a multi-level assessment model, detect the effects of nutrients, and evaluate the interactions between nutrients, which is helpful for future research and development of infant powders.
Collapse
Affiliation(s)
- Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxin Jing
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengdong Zheng
- Heilongjiang Feihe Dairy Co., Ltd, C-16, 10A Jiuxianqiao Rd, Chaoyang, Beijing 100015, China
| | - Chenxuan Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyang Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zimo Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yilun Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zening Wang
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Zhengyang Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Co., Ltd, C-16, 10A Jiuxianqiao Rd, Chaoyang, Beijing 100015, China
| | - Jianguo Sun
- Heilongjiang Feihe Dairy Co., Ltd, C-16, 10A Jiuxianqiao Rd, Chaoyang, Beijing 100015, China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd, C-16, 10A Jiuxianqiao Rd, Chaoyang, Beijing 100015, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
40
|
Chen J, Wu T, Yang Y. Sialylation-associated long non-coding RNA signature predicts the prognosis, tumor microenvironment, and immunotherapy and chemotherapy options in uterine corpus endometrial carcinoma. Cancer Cell Int 2024; 24:314. [PMID: 39261877 PMCID: PMC11391619 DOI: 10.1186/s12935-024-03486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Sialylation in uterine corpus endometrial carcinoma (UCEC) differs significantly from apoptotic and ferroptosis pathways. It plays a crucial role in cancer progression and immune response modulation. Exploring how sialylation affects tumor behavior and its link with long non-coding RNAs (lncRNAs) may provide new insights into UCEC prognosis and treatment. METHODS We obtained RNA transcriptome, clinical, and mutation data of UCEC samples from the TCGA database. Our approach involved developing a risk model based on the co-expression patterns of sialylation genes and lncRNAs. Prognostic lncRNAs were identified through Cox regression and further refined using LASSO analysis. To understand the biological functions and pathways of model-associated differentially expressed genes (MADEGs), we conducted enrichment analyses. We also assessed the immune infiltration status of MADEGs using eight different algorithms, which helped in evaluating the potential for immunotherapy. Additionally, we validated the expression of these lncRNAs in UCEC using cell lines and clinical samples. RESULTS We developed a UCEC risk model using five sialylation-related lncRNAs (AC004884.2, AC026202.2, LINC01579, LINC00942, SLC16A1-AS1). This model, confirmed through Cox analysis and clinical evaluation, effectively predicted patient outcomes. Survival data analysis across entire cohort, as well as within training and test groups, indicated better survival in low-risk UCEC patients. Enrichment analyses linked MADEGs to sialylation functions and cancer pathways. High-risk patients showed increased responsiveness to immune checkpoint inhibitors (ICIs), as indicated by immunological assessments. Subgroup C2 patients showed superior outcomes and a robust response to immunotherapy and chemotherapy. Notably, LINC01579, LINC00942, and SLC16A1-AS1 were significantly overexpressed in UCEC clinical tumor samples as well as in Ishikawa and HEC-1-B cell lines, compared to the normal groups. CONCLUSIONS This lncRNA signature associated with sialylation could guide prognosis, enhance the understanding of molecular mechanisms, and inform treatment strategies in UCEC. It highlights the potential for the use of ICIs and chemotherapy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Wu
- Department of Cardiovasology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongwen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, P. R. China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
41
|
Qiao J, Xu M, Xu F, Che Z, Han P, Dai X, Miao N, Zhu M. Identification of SNPs and Candidate Genes Associated with Monocyte/Lymphocyte Ratio and Neutrophil/Lymphocyte Ratio in Duroc × Erhualian F 2 Population. Int J Mol Sci 2024; 25:9745. [PMID: 39273692 PMCID: PMC11396299 DOI: 10.3390/ijms25179745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the pig immune function is crucial for disease-resistant breeding and potentially for human health research due to shared immune system features. Immune cell ratios, like monocyte/lymphocyte ratio (MLR) and neutrophil/lymphocyte ratio (NLR), offer a more comprehensive view of immune status compared to individual cell counts. However, research on pig immune cell ratios remains limited. This study investigated MLR and NLR in a Duroc × Erhualian F2 resource population. Heritability analysis revealed high values (0.649 and 0.688 for MLR and NLR, respectively), suggesting a strong genetic component. Furthermore, we employed an ensemble-like GWAS (E-GWAS) strategy and functional annotation analysis to identify 11 MLR-associated and 6 NLR-associated candidate genes. These genes were significantly enriched in immune-related biological processes. These findings provide novel genetic markers and candidate genes associated with porcine immunity, thereby providing valuable insights for addressing biosecurity and animal welfare concerns in the pig industry.
Collapse
Affiliation(s)
- Jiakun Qiao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Minghang Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangjun Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxuan Che
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pingping Han
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyu Dai
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Miao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Gaifem J, Rodrigues CS, Petralia F, Alves I, Leite-Gomes E, Cavadas B, Dias AM, Moreira-Barbosa C, Revés J, Laird RM, Novokmet M, Štambuk J, Habazin S, Turhan B, Gümüş ZH, Ungaro R, Torres J, Lauc G, Colombel JF, Porter CK, Pinho SS. A unique serum IgG glycosylation signature predicts development of Crohn's disease and is associated with pathogenic antibodies to mannose glycan. Nat Immunol 2024; 25:1692-1703. [PMID: 39080486 PMCID: PMC11362009 DOI: 10.1038/s41590-024-01916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gut. There is growing evidence in Crohn's disease (CD) of the existence of a preclinical period characterized by immunological changes preceding symptom onset that starts years before diagnosis. Gaining insight into this preclinical phase will allow disease prediction and prevention. Analysis of preclinical serum samples, up to 6 years before IBD diagnosis (from the PREDICTS cohort), revealed the identification of a unique glycosylation signature on circulating antibodies (IgGs) characterized by lower galactosylation levels of the IgG fragment crystallizable (Fc) domain that remained stable until disease diagnosis. This specific IgG2 Fc glycan trait correlated with increased levels of antimicrobial antibodies, specifically anti-Saccharomyces cerevisiae (ASCA), pinpointing a glycome-ASCA hub detected in serum that predates by years the development of CD. Mechanistically, we demonstrated that this agalactosylated glycoform of ASCA IgG, detected in the preclinical phase, elicits a proinflammatory immune pathway through the activation and reprogramming of innate immune cells, such as dendritic cells and natural killer cells, via an FcγR-dependent mechanism, triggering NF-κB and CARD9 signaling and leading to inflammasome activation. This proinflammatory role of ASCA was demonstrated to be dependent on mannose glycan recognition and galactosylation levels in the IgG Fc domain. The pathogenic properties of (anti-mannose) ASCA IgG were validated in vivo. Adoptive transfer of antibodies to mannan (ASCA) to recipient wild-type mice resulted in increased susceptibility to intestinal inflammation that was recovered in recipient FcγR-deficient mice. Here we identify a glycosylation signature in circulating IgGs that precedes CD onset and pinpoint a specific glycome-ASCA pathway as a central player in the initiation of inflammation many years before CD diagnosis. This pathogenic glyco-hub may constitute a promising new serum biomarker for CD prediction and a potential target for disease prevention.
Collapse
Affiliation(s)
- Joana Gaifem
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Cláudia S Rodrigues
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inês Alves
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Eduarda Leite-Gomes
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Joana Revés
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Renee M Laird
- Operationally Relevant Infections Department, Naval Medical Research Command, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Military Medicine, Inc., Bethesda, MD, USA
| | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Berk Turhan
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Ungaro
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića, Zagreb, Croatia
| | - Jean-Frederic Colombel
- Department of Medicine, Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chad K Porter
- Translational and Clinical Research Department, Naval Medical Research Command, Silver Spring, MD, USA
| | - Salomé S Pinho
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
43
|
Binkowski B, Klamer Z, Gao C, Staal B, Repesh A, Tran HL, Brass DM, Bartlett P, Gallinger S, Blomqvist M, Morrow JB, Allen P, Shi C, Singhi A, Brand R, Huang Y, Hostetter G, Haab BB. Multiplexed Glycan Immunofluorescence Identification of Pancreatic Cancer Cell Subpopulations in Both Tumor and Blood Samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609143. [PMID: 39229066 PMCID: PMC11370594 DOI: 10.1101/2024.08.22.609143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumor heterogeneity impedes the development of biomarker assays suitable for early disease detection that would improve patient outcomes. The CA19-9 glycan is currently used as a standalone biomarker for PDAC. Furthermore, previous studies have shown that cancer cells may display aberrant membrane-associated glycans. We therefore hypothesized that PDAC cancer cell subpopulations could be distinguished by aberrant glycan signatures. We used multiplexed glycan immunofluorescence combined with pathologist annotation and automated image processing to distinguish between PDAC cancer cell subpopulations within tumor tissue. Using a training-set/test-set approach, we found that PDAC cancer cells may be identified by signatures comprising 4 aberrant glycans (VVL, CA19-9, sTRA, and GM2) and that there are three glycan-defined PDAC tumor types: sTRA type, CA19-9 type, and intermixed. To determine whether the aberrant glycan signatures could be detected in blood samples, we developed hybrid glycan sandwich assays for membrane-associated glycans. In both patient-matched tumor and blood samples, the proportion of aberrant glycans detected was consistent. Furthermore, our multiplexed glycan immunofluorescent approach proved to be more sensitive and more specific than CA19-9 alone. Our results provide proof of concept for a novel methodology to improve early PDAC detection and patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Ben Staal
- Van Andel Institute, Grand Rapids, Michigan, USA
| | - Anna Repesh
- Van Andel Institute, Grand Rapids, Michigan, USA
| | | | | | | | | | - Maria Blomqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Peter Allen
- Duke University School of Medicine, Durham, NC, USA
| | - Chanjuan Shi
- Duke University School of Medicine, Durham, NC, USA
| | - Aatur Singhi
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Randall Brand
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ying Huang
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
44
|
Benucci B, Spinello Z, Calvaresi V, Viviani V, Perrotta A, Faleri A, Utrio Lanfaloni S, Pansegrau W, d’Alterio L, Bartolini E, Pinzuti I, Sampieri K, Giordano A, Rappuoli R, Pizza M, Masignani V, Norais N, Maione D, Merola M. Neisserial adhesin A (NadA) binds human Siglec-5 and Siglec-14 with high affinity and promotes bacterial adhesion/invasion. mBio 2024; 15:e0110724. [PMID: 39041817 PMCID: PMC11323535 DOI: 10.1128/mbio.01107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024] Open
Abstract
Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.
Collapse
MESH Headings
- Humans
- Adhesins, Bacterial/metabolism
- Adhesins, Bacterial/genetics
- Bacterial Adhesion
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins/metabolism
- Lectins/genetics
- Lectins/immunology
- Animals
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Host-Pathogen Interactions
- Protein Binding
- Mice
- CHO Cells
- Cricetulus
- Neisseria meningitidis/genetics
- Neisseria meningitidis/metabolism
- Neisseria meningitidis/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- Epithelial Cells/microbiology
- Epithelial Cells/metabolism
- Epithelial Cells/immunology
- Meningococcal Infections/microbiology
- Meningococcal Infections/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
Collapse
Affiliation(s)
| | | | - Valeria Calvaresi
- GSK, Siena, Italy
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marcello Merola
- GSK, Siena, Italy
- Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
45
|
Mohideen FI, Mahal LK. Infection and the Glycome─New Insights into Host Response. ACS Infect Dis 2024; 10:2540-2550. [PMID: 38990078 PMCID: PMC11320568 DOI: 10.1021/acsinfecdis.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Glycans play critical roles in the host-pathogen interactions leading to infection. However, we still understand very little about the dynamic nature of glycosylation in response to infection and its function in modulating host immunity. Many of the host proteins involved in immune defense are glycoproteins. Furthermore, the innate immune system recognizes glycans. The glycoform of a protein can impact proteolytic stability, receptor interactions, serum half-life, and other aspects. New, cutting-edge chemical biology tools are shedding light on the interplay between infection and the host glycome. In this review, we highlight new work on the importance of dynamic glycosylation of host proteins in the innate and adaptive immune pathways in response to infection. These include recent findings on altered glycoprofiles of mucins, complement components, and antibodies.
Collapse
Affiliation(s)
- F. Ifthiha Mohideen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
46
|
Milanesi F, Burrini N, Corti G, Roelens S, Francesconi O. A Macrocyclic Tweezers-Shaped Receptor for the Biomimetic Recognition of the Gal(α1-3)Gal Disaccharide of the α-Gal Antigen. Chemistry 2024; 30:e202401771. [PMID: 38818641 DOI: 10.1002/chem.202401771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The Gal(α1-3)Gal is the terminal disaccharide unit of the α-Gal epitope [Gal(α1-3)Gal(β1-4)GlcNAc], an exogenous antigenic determinant with several clinical implications, found in all non-primate mammals and in several dangerous pathogens, including certain protozoa and mycobacteria. Its absence in humans makes the α-Gal epitope an interesting target for several infectious diseases. Here we present the development of a macrocyclic tweezers-shaped receptor, resulting from the combination of the structural features of two predecessors belonging to the family of diaminocarbazole receptors, which exhibits binding properties in the low millimolar range toward the Gal(α1-3)Gal disaccharide of the α-Gal antigen.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff", DICUS, Università degli Studi di Firenze, Campus Sesto, 50019 Sesto Fiorentino, Firenze, Italy
| | - Nastassja Burrini
- Department of Chemistry "Ugo Schiff", DICUS, Università degli Studi di Firenze, Campus Sesto, 50019 Sesto Fiorentino, Firenze, Italy
| | - Giona Corti
- Department of Chemistry "Ugo Schiff", DICUS, Università degli Studi di Firenze, Campus Sesto, 50019 Sesto Fiorentino, Firenze, Italy
| | - Stefano Roelens
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Department of Chemistry "Ugo Schiff", DICUS, Campus Sesto, 50019 Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff", DICUS, Università degli Studi di Firenze, Campus Sesto, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
47
|
Santisteban Celis IC, Matoba N. Lectibodies as antivirals. Antiviral Res 2024; 227:105901. [PMID: 38734211 DOI: 10.1016/j.antiviral.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Growing concerns regarding the emergence of highly transmissible viral diseases highlight the urgent need to expand the repertoire of antiviral therapeutics. For this reason, new strategies for neutralizing and inhibiting these viruses are necessary. A promising approach involves targeting the glycans present on the surfaces of enveloped viruses. Lectins, known for their ability to recognize specific carbohydrate molecules, offer the potential for glycan-targeted antiviral strategies. Indeed, numerous studies have reported the antiviral effects of various lectins of both endogenous and exogenous origins. However, many lectins in their natural forms, are not suitable for use as antiviral therapeutics due to toxicity, other unfavorable pharmacological effects, and/or unreliable manufacturing sources. Therefore, improvements are crucial for employing lectins as effective antiviral therapeutics. A novel approach to enhance lectins' suitability as pharmaceuticals could be the generation of recombinant lectin-Fc fusion proteins, termed "lectibodies." In this review, we discuss the scientific rationale behind lectin-based antiviral strategies and explore how lectibodies could facilitate the development of new antiviral therapeutics. We will also share our perspective on the potential of these molecules to transcend their potential use as antiviral agents.
Collapse
Affiliation(s)
- Ian Carlosalberto Santisteban Celis
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
48
|
Arthur CM, Hollenhorst M, Wu SC, Jajosky R, Nakahara H, Jan HM, Zheng L, Covington M, Rakoff-Nahoum S, Yeung M, Lane W, Josephson C, Cummings RD, Stowell SR. ABO blood groups and galectins: Implications in transfusion medicine and innate immunity. Semin Immunol 2024; 74-75:101892. [PMID: 39405833 PMCID: PMC11808837 DOI: 10.1016/j.smim.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/18/2024]
Abstract
ABO blood group antigens, which are complex carbohydrate moieties, and the first human polymorphisms identified, are critical in transfusion medicine and transplantation. Despite their discovery over a century ago, significant questions remain about the development of anti-ABO antibodies and the structural features of ABO antigens that cause hemolytic transfusion reactions. Anti-ABO antibodies develop naturally during the first few months of life, in contrast to other red blood cell (RBC) alloantibodies which form after allogeneic RBC exposure. Anti-ABO antibodies are the most common immune barrier to transfusion and transplantation, but the factors driving their formation are incompletely understood. Some studies suggest that microbes that express glycans similar in structure to the blood group antigens could play a role in anti-blood group antibody formation. While the role of these microbes in clinically relevant anti-blood group antibody formation remains to be defined, the presence of these microbes raises questions about how blood group-positive individuals protect themselves against blood group molecular mimicry. Recent studies suggest that galectins can bind and kill microbes that mimic blood group antigens, suggesting a unique host defense mechanism against microbial molecular mimicry. However, new models are needed to fully define the impact of microbes, galectins, or other factors on the development of clinically relevant naturally occurring anti-blood group antibodies.
Collapse
Affiliation(s)
- Connie M Arthur
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School Center for Glycosciences, USA
| | - Marie Hollenhorst
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hau-Ming Jan
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leon Zheng
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mischa Covington
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Melissa Yeung
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William Lane
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Richard D Cummings
- Harvard Medical School Center for Glycosciences, USA; Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School Center for Glycosciences, USA.
| |
Collapse
|
49
|
Schattner M, Psaila B, Rabinovich GA. Shaping hematopoietic cell ecosystems through galectin-glycan interactions. Semin Immunol 2024; 74-75:101889. [PMID: 39405834 DOI: 10.1016/j.smim.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 11/18/2024]
Abstract
Hematopoiesis- the formation of blood cell components- continually replenishes the blood system during embryonic development and postnatal lifespans. This coordinated process requires the synchronized action of a broad range of cell surface associated proteins and soluble mediators, including growth factors, cytokines and lectins. Collectively, these mediators control cellular communication, signalling, commitment, proliferation, survival and differentiation. Here we discuss the role of galectins - an evolutionarily conserved family of glycan-binding proteins - in the establishment and dynamic remodelling of hematopoietic niches. We focus on the contribution of galectins to B and T lymphocyte development and selection, as well as studies highlighting the role of these proteins in myelopoiesis, with particular emphasis on erythropoiesis and megakaryopoiesis. Finally, we also highlight recent findings suggesting the role of galectin-1, a prototype member of this protein family, as a key pathogenic factor and therapeutic target in myelofibrosis. Through extracellular or intracellular mechanisms, galectins can influence the fate and function of distinct hematopoietic progenitors and fine-tune the final repertoire of blood cells, with critical implications in a wide range of physiologically vital processes including innate and adaptive immunity, immune tolerance programs, tissue repair, regeneration, angiogenesis, inflammation, coagulation and oxygen delivery. Additionally, positive or negative regulation of galectin-driven circuits may contribute to a broad range of blood cell disorders.
Collapse
Affiliation(s)
- Mirta Schattner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Laboratorio de Trombosis Experimental e Inmunobiología de la Inflamación, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Ciudad de Buenos Aires 1425, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina.
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine and Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina.
| |
Collapse
|
50
|
Akune-Taylor Y, Kon A, Aoki-Kinoshita KF. In silico simulation of glycosylation and related pathways. Anal Bioanal Chem 2024; 416:3687-3696. [PMID: 38748247 PMCID: PMC11180631 DOI: 10.1007/s00216-024-05331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Glycans participate in a vast number of recognition systems in diverse organisms in health and in disease. However, glycans cannot be sequenced because there is no sequencer technology that can fully characterize them. There is no "template" for replicating glycans as there are for amino acids and nucleic acids. Instead, glycans are synthesized by a complicated orchestration of multitudes of glycosyltransferases and glycosidases. Thus glycans can vary greatly in structure, but they are not genetically reproducible and are usually isolated in minute amounts. To characterize (sequence) the glycome (defined as the glycans in a particular organism, tissue, cell, or protein), glycosylation pathway prediction using in silico methods based on glycogene expression data, and glycosylation simulations have been attempted. Since many of the mammalian glycogenes have been identified and cloned, it has become possible to predict the glycan biosynthesis pathway in these systems. By then incorporating systems biology and bioprocessing technologies to these pathway models, given the right enzymatic parameters including enzyme and substrate concentrations and kinetic reaction parameters, it is possible to predict the potentially synthesized glycans in the pathway. This review presents information on the data resources that are currently available to enable in silico simulations of glycosylation and related pathways. Then some of the software tools that have been developed in the past to simulate and analyze glycosylation pathways will be described, followed by a summary and vision for the future developments and research directions in this area.
Collapse
Affiliation(s)
- Yukie Akune-Taylor
- Glycan and Life Systems Integration Center, Soka University, Tokyo, Japan
| | - Akane Kon
- Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| | - Kiyoko F Aoki-Kinoshita
- Glycan and Life Systems Integration Center, Soka University, Tokyo, Japan.
- Graduate School of Science and Engineering, Soka University, Tokyo, Japan.
- iGCORE, Nagoya University, Nagoya, Japan.
| |
Collapse
|