1
|
Wang H, Cheng P, Wang J, Lv H, Han J, Hou Z, Xu R, Chen W. Advances in spatial transcriptomics and its application in the musculoskeletal system. Bone Res 2025; 13:54. [PMID: 40379648 DOI: 10.1038/s41413-025-00429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/19/2025] Open
Abstract
While bulk RNA sequencing and single-cell RNA sequencing have shed light on cellular heterogeneity and potential molecular mechanisms in the musculoskeletal system in both physiological and various pathological states, the spatial localization of cells and molecules and intercellular interactions within the tissue context require further elucidation. Spatial transcriptomics has revolutionized biological research by simultaneously capturing gene expression profiles and in situ spatial information of tissues, gradually finding applications in musculoskeletal research. This review provides a summary of recent advances in spatial transcriptomics and its application to the musculoskeletal system. The classification and characteristics of data acquisition techniques in spatial transcriptomics are briefly outlined, with an emphasis on widely-adopted representative technologies and the latest technological breakthroughs, accompanied by a concise workflow for incorporating spatial transcriptomics into musculoskeletal system research. The role of spatial transcriptomics in revealing physiological mechanisms of the musculoskeletal system, particularly during developmental processes, is thoroughly summarized. Furthermore, recent discoveries and achievements of this emerging omics tool in addressing inflammatory, traumatic, degenerative, and tumorous diseases of the musculoskeletal system are compiled. Finally, challenges and potential future directions for spatial transcriptomics, both as a field and in its applications in the musculoskeletal system, are discussed.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China
| | - Peng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Wang
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China
| | - Hongzhi Lv
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China
| | - Jie Han
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhiyong Hou
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Wei Chen
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China.
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China.
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Vicanolo T, Özcan A, Li JL, Huerta-López C, Ballesteros I, Rubio-Ponce A, Dumitru AC, Nicolás-Ávila JÁ, Molina-Moreno M, Reyes-Gutierrez P, Johnston AD, Martone C, Greto E, Quílez-Alvarez A, Calvo E, Bonzon-Kulichenko E, Álvarez-Velez R, Chooi MY, Kwok I, González-Bermúdez B, Malleret B, Espinosa FM, Zhang M, Wang YL, Sun D, Zhen Chong S, El-Armouche A, Kim KK, Udalova IA, Greco V, Garcia R, Vázquez J, Dopazo A, Plaza GR, Alegre-Cebollada J, Uderhardt S, Ng LG, Hidalgo A. Matrix-producing neutrophils populate and shield the skin. Nature 2025; 641:740-748. [PMID: 40108463 PMCID: PMC12074881 DOI: 10.1038/s41586-025-08741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/04/2025] [Indexed: 03/22/2025]
Abstract
Defence from environmental threats is provided by physical barriers that confer mechanical protection and prevent the entry of microorganisms1. If microorganisms overcome those barriers, however, innate immune cells use toxic chemicals to kill the invading cells2,3. Here we examine immune diversity across tissues and identify a population of neutrophils in the skin that expresses a broad repertoire of proteins and enzymes needed to build the extracellular matrix. In the naive skin, these matrix-producing neutrophils contribute to the composition and structure of the extracellular matrix, reinforce its mechanical properties and promote barrier function. After injury, these neutrophils build 'rings' of matrix around wounds, which shield against foreign molecules and bacteria. This structural program relies on TGFβ signalling; disabling the TGFβ receptor in neutrophils impaired ring formation around wounds and facilitated bacterial invasion. We infer that the innate immune system has evolved diverse strategies for defence, including one that physically shields the host from the outside world.
Collapse
Affiliation(s)
- Tommaso Vicanolo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Alaz Özcan
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jackson LiangYao Li
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Iván Ballesteros
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Department of Neuroscience and Biomedical Sciences, Universidad Carlos III de Madrid, Madrid, Spain
| | - Andrea Rubio-Ponce
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Andra C Dumitru
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Miguel Molina-Moreno
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Pablo Reyes-Gutierrez
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew D Johnston
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Catherine Martone
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Greto
- Department of Internal Medicine 3-Rheumatology and Immunology, Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elena Bonzon-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | | | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dasheng Sun
- OPO and Organ Transplantation Leading Group, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gustavo R Plaza
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain
| | | | - Stefan Uderhardt
- Department of Internal Medicine 3-Rheumatology and Immunology, Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Agas D, Sabbieti MG. Untangling Ariadne's Thread Within the Bone Marrow Maze: A Close-Up View of Stem/Progenitor Cells' Interactome and Secretome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40035957 DOI: 10.1007/5584_2024_847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The bone marrow (BM) is a multifactorial, highly dynamic, still not fully "mapped," reservoir. The BM labyrinthine landscape is subject to a relentless debate on the specialized and stem/progenitor cells' scattering within designated microareas. Certainly, BM tissue plays a watchdog role in bone modeling and remodeling, hematopoiesis, immune surveillance, and endocrine response integration. Parameters like tissue topographical distinctiveness, stiffness and porosity grade, and cells' behavioral idiosyncrasies in terms of stem/progenitor cell housing, activation, and motility represent a knotty problem not easily solved. Given that the disruption of BM microdomains has been associated with a number of severe pathological disorders, the comprehension and preservation of the BM workspace at multiple levels have become mandatory. Solid evidence has showed the existence of an intricate and tightly regulated cross-talk between the BM cellular occupants. Direct physical cell-cell connections and soluble mediators, including cytokines, chemokines, growth factors, exosomes and microvesicles, orchestrate composite intracellular signaling routes. The spatiotemporal action of definite biofactors ensures a functional blood-producing organ with a physiological bone turnover and prompts the action of multipotent stromal/hematopoietic cells. Recently, significant research efforts have been addressed to build bioengineered niche-mimic models based on biofunctionalized scaffolds and organoid-like constructs. These artificial BM niches combine and transduce various aspects of bioinformatics and tissue engineering to unravel the complexities of BM organization. This chapter aims to unfold the recent breakthroughs in the understanding of a BM intramural cell-cell dialogue in a physiological and, in some cases, within an inflammatory background. BM maze is gradually being discovered, but there is still a long way to go.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| | | |
Collapse
|
4
|
Yip RKH, Hawkins ED, Bowden R, Rogers KL. Towards deciphering the bone marrow microenvironment with spatial multi-omics. Semin Cell Dev Biol 2025; 167:10-21. [PMID: 39889539 DOI: 10.1016/j.semcdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
The tissue microenvironment refers to a localised tissue area where a complex combination of cells, structural components, and signalling molecules work together to support specific biological activities. A prime example is the bone marrow microenvironment, particularly the hematopoietic stem cell (HSC) niche, which is of immense interest due to its critical role in supporting lifelong blood cell production and the growth of malignant cells. In this review, we summarise the current understanding of HSC niche biology, highlighting insights gained from advanced imaging and genomic techniques. We also discuss the potential of emerging technologies such as spatial multi-omics to unravel bone marrow architecture in unprecedented detail.
Collapse
Affiliation(s)
- Raymond K H Yip
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| | - Edwin D Hawkins
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rory Bowden
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelly L Rogers
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Kuo YP, Hu J, Carja O. Clonal interference, genetic variation and the speed of evolution in structured populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639636. [PMID: 40027632 PMCID: PMC11870626 DOI: 10.1101/2025.02.22.639636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
When it comes to understanding the role that population structure plays in shaping rates of evolution, it is commonly accepted that interference between evolutionary innovations is more prevalent in structured populations compared to well-mixed, and that population structure reduces the rate of evolution, while simultaneously promoting maintenance of genetic variation. Prior models usually represent population structure using two or more connected demes or lattices with periodic boundary conditions. Fundamentally, the observed spatial evolutionary slow-down is rooted in the fact that these types of structures increase the time it takes for a selective sweep and therefore, increase the probability that multiple beneficial mutations will coexist and interfere. Here we show that systematically introducing more heterogeneity in population structure can reshape these prior conclusions and lead to a much wider range of observed evolutionary outcome, including increased rates of evolution. At a big picture level, our results showcase that the evolutionary effects of population structure crucially depend on the properties of the topology considered. Understanding these spatial properties is therefore requisite for making meaningful evolutionary comparisons across different topologies, for forming sensible null expectations about experimental or observational data or for developing an intuition for when well-mixed approximations, or approximations done using spatial models with a high degree of symmetry, might not apply.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jiewen Hu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Look T, Sankowski R, Bouzereau M, Fazio S, Sun M, Buck A, Binder N, Mastall M, Prisco F, Seehusen F, Frei J, Wyss C, Snijder B, Nombela Arrieta C, Weller M, Pascolo S, Weiss T. CAR T cells, CAR NK cells, and CAR macrophages exhibit distinct traits in glioma models but are similarly enhanced when combined with cytokines. Cell Rep Med 2025; 6:101931. [PMID: 39889712 PMCID: PMC11866521 DOI: 10.1016/j.xcrm.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/17/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising immunotherapy against cancer. Although there is a growing interest in other cell types, a comparison of CAR immune effector cells in challenging solid tumor contexts is lacking. Here, we compare mouse and human NKG2D-CAR-expressing T cells, natural killer (NK) cells, and macrophages against glioblastoma, the most aggressive primary brain tumor. In vitro we show that T cell cancer killing is CAR dependent, whereas intrinsic cytotoxicity overrules CAR dependence for NK cells, and CAR macrophages reduce glioma cells in co-culture assays. In orthotopic immunocompetent glioma mouse models, systemically administered CAR T cells demonstrate superior accumulation in the tumor, and each immune cell type induces distinct changes in the tumor microenvironment. An otherwise low therapeutic efficacy is significantly enhanced by co-expression of pro-inflammatory cytokines in all CAR immune effector cells, underscoring the necessity for multifaceted cell engineering strategies to overcome the immunosuppressive solid tumor microenvironment.
Collapse
Affiliation(s)
- Thomas Look
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Manon Bouzereau
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Serena Fazio
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Miaomiao Sun
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Niklas Binder
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Maximilian Mastall
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Francesco Prisco
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Julia Frei
- Department of Dermatology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Conrad Wyss
- Department of Dermatology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Cesar Nombela Arrieta
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
8
|
Svedlund Eriksson E, Lantero Rodriguez M, Halvorsen B, Johansson I, Mårtensson AKF, Wilhelmson AS, Huse C, Ueland T, Aukrust P, Broch K, Gullestad L, Amundsen BH, Andersen GØ, Karlsson MCI, Hagberg Thulin M, Camponeschi A, Trompet D, Hammarsten O, Redfors B, Borén J, Omerovic E, Levin MC, Chagin AS, Dahl TB, Tivesten Å. Testosterone exacerbates neutrophilia and cardiac injury in myocardial infarction via actions in bone marrow. Nat Commun 2025; 16:1142. [PMID: 39910039 PMCID: PMC11799197 DOI: 10.1038/s41467-025-56217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Men develop larger infarct sizes than women after a myocardial infarction (MI), but the mechanism underlying this sex difference is unknown. Here, we demonstrated that blood neutrophil counts post-MI were higher in male than female mice. Castration-induced testosterone deficiency reduced blood neutrophil counts to the level in females and increased survival post-MI. These effects were mimicked by Osterix-directed ablation of the androgen receptor in bone marrow (BM). Mechanistically, androgens downregulated the leukocyte retention factor CXCL12 in BM stromal cells. Post-hoc analysis of clinical trial data showed that neutrophilia was greater in men than women after reperfusion of first-time ST-elevation MI, and tocilizumab, an interleukin-6 receptor inhibitor, reduced blood neutrophil counts and infarct size to a greater extent in men than women. Our work reveals a previously unknown mechanism connecting testosterone with neutrophilia and MI injury via BM and identifies the importance of considering sex when developing anti-inflammatory strategies to treat MI.
Collapse
Affiliation(s)
- Elin Svedlund Eriksson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marta Lantero Rodriguez
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Inger Johansson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna K F Mårtensson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna S Wilhelmson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Lars Gullestad
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Brage Høyem Amundsen
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Mikael C I Karlsson
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dana Trompet
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Ola Hammarsten
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Björn Redfors
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elmir Omerovic
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin C Levin
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Åsa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Endocrinology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| |
Collapse
|
9
|
Boueya IL, Sandhow L, Albuquerque JRP, Znaidi R, Passaro D. Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia. Leukemia 2025; 39:8-24. [PMID: 39528790 PMCID: PMC11717709 DOI: 10.1038/s41375-024-02453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The central role of the endothelial microenvironment in orchestrating bone marrow (BM) homeostasis and hematopoietic support has been confirmed at various developmental stages and in adult life. The BM vasculature is crucial in mediating communication between BM parenchyma and circulating blood, displaying remarkable heterogeneity in structure and function. While vascular cell diversity in other tissues has long been recognized, the molecular basis of this phenomenon in BM is just now emerging. Over the past decade, single-cell approaches and microscopic observations have expanded our understanding of BM vasculature. While solely characterized for their paracrine properties in the past, recent advances have revolutionized our perception of endothelial function, revealing distinct anatomical locations associated with diverse endothelial cell states. The identification of phenotypic differences between normal and pathological conditions has therefore deepened our understanding of vascular dynamics and their impact on hematopoiesis in health and disease. In this review, we highlight key milestones and recent advances in understanding vascular heterogeneity within BM microenvironment during development, adulthood and aging. We also explore how leukemia affects this heterogeneity and how we can take this knowledge forward to improve clinical practices. By synthesizing existing literature, we aim to address unresolved questions and outline future research directions.
Collapse
Affiliation(s)
- I L Boueya
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - L Sandhow
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - J R P Albuquerque
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - R Znaidi
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - D Passaro
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
10
|
De Jonghe J, Opzoomer JW, Vilas-Zornoza A, Nilges BS, Crane P, Vicari M, Lee H, Lara-Astiaso D, Gross T, Morf J, Schneider K, Cudini J, Ramos-Mucci L, Mooijman D, Tiklová K, Salas SM, Langseth CM, Kashikar ND, Schapiro D, Lundeberg J, Nilsson M, Shalek AK, Cribbs AP, Taylor-King JP. scTrends: A living review of commercial single-cell and spatial 'omic technologies. CELL GENOMICS 2024; 4:100723. [PMID: 39667347 PMCID: PMC11701258 DOI: 10.1016/j.xgen.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Understanding the rapidly evolving landscape of single-cell and spatial omic technologies is crucial for advancing biomedical research and drug development. We provide a living review of both mature and emerging commercial platforms, highlighting key methodologies and trends shaping the field. This review spans from foundational single-cell technologies such as microfluidics and plate-based methods to newer approaches like combinatorial indexing; on the spatial side, we consider next-generation sequencing and imaging-based spatial transcriptomics. Finally, we highlight emerging methodologies that may fundamentally expand the scope for data generation within pharmaceutical research, creating opportunities to discover and validate novel drug mechanisms. Overall, this review serves as a critical resource for navigating the commercialization and application of single-cell and spatial omic technologies in pharmaceutical and academic research.
Collapse
Affiliation(s)
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, UK; Relation Therapeutics, London, UK
| | | | | | | | - Marco Vicari
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Hower Lee
- spatialist AB, Stockholm, Sweden; Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - David Lara-Astiaso
- Department of Hematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Jörg Morf
- Skyhawk Therapeutics, Basel, Switzerland
| | | | | | | | | | - Katarína Tiklová
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Sergio Marco Salas
- spatialist AB, Stockholm, Sweden; Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Christoffer Mattsson Langseth
- spatialist AB, Stockholm, Sweden; Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | | | - Denis Schapiro
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Alex K Shalek
- Relation Therapeutics, London, UK; Institute for Medical Engineering and Science, Department of Chemistry and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Adam P Cribbs
- Caeruleus Genomics, Oxford, UK; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, UK.
| | | |
Collapse
|
11
|
Jackett KN, Browne AT, Aber ER, Clements M, Kaplan RN. How the bone microenvironment shapes the pre-metastatic niche and metastasis. NATURE CANCER 2024; 5:1800-1814. [PMID: 39672975 DOI: 10.1038/s43018-024-00854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/04/2024] [Indexed: 12/15/2024]
Abstract
The bone is a frequent metastatic site, with changes in the mineralized bone and the bone marrow milieu that can also prime other sites for metastasis by educating progenitor cells to support metastatic spread. Stromal and immune populations cooperatively maintain the organizationally complex bone niches and are dysregulated in the presence of a distant primary tumor and metastatic disease. Interrogating the bone niches that facilitate metastatic spread using innovative technologies holds the potential to aid in preventing metastasis in and mediated by the bone. Here, we review recent advances in bone niche biology and its adaptations in the context of cancer.
Collapse
Affiliation(s)
- Kailey N Jackett
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice T Browne
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Etan R Aber
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miranda Clements
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Panda M, Das B, Bantun F, Panda AK, Wahid M, Mandal RK, Qusty NF, Haque S, Ravindran B. Differential differentiation of B cell lymphopoiesis in lethal and non-lethal murine malaria models. Biotechnol Genet Eng Rev 2024; 40:4120-4137. [PMID: 37144664 DOI: 10.1080/02648725.2023.2205200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
B cells in protection against malaria and need of experiencing many episodes in humans to achieve a state of immunity is largely unknown. The cellular basis of such defects in terms of B cell generation, maturation and trafficking was studied by taking Plasmodium chabaudi, a non-lethal and Plasmodium berghei, a lethal murine model. A flow cytometry (FCF) based evaluation was used to study alterations in generation and maintenance of B cells in patients with Plasmodium falciparum malaria as well as in murine malaria models. A significant accumulation of mature B cells in bone marrow and immature B cells in circulation was a feature observed only in lethal malaria. At peak parasitaemia, both the models induce a significant decrease in T2 (transitional) B cells with expansion of T1B cells. Studies in patients with acute Pf malaria showed a significant expansion of memory B cells and TB cells with a concomitant decrease in naive2 B cells as compared with healthy controls. This study clearly demonstrates that acute malarial infection induces major disturbances in B cell development in lymphoid organs and trafficking in periphery.
Collapse
Affiliation(s)
- Madhumita Panda
- Infectious Disease Biology Group, DBT-Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bidyut Das
- Department of Internal Medicine, SCB Medical College, Cuttack, Odisha, India
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aditya K Panda
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, India
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Naeem F Qusty
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Balachandran Ravindran
- Infectious Disease Biology Group, DBT-Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Atkin-Smith GK, Santavanond JP, Light A, Rimes JS, Samson AL, Er J, Liu J, Johnson DN, Le Page M, Rajasekhar P, Yip RKH, Geoghegan ND, Rogers KL, Chang C, Bryant VL, Margetts M, Keightley MC, Kilpatrick TJ, Binder MD, Tran S, Lee EF, Fairlie WD, Ozkocak DC, Wei AH, Hawkins ED, Poon IKH. In situ visualization of endothelial cell-derived extracellular vesicle formation in steady state and malignant conditions. Nat Commun 2024; 15:8802. [PMID: 39438460 PMCID: PMC11496675 DOI: 10.1038/s41467-024-52867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Endothelial cells are integral components of all vasculature within complex organisms. As they line the blood vessel wall, endothelial cells are constantly exposed to a variety of molecular factors and shear force that can induce cellular damage and stress. However, how endothelial cells are removed or eliminate unwanted cellular contents, remains unclear. The generation of large extracellular vesicles (EVs) has emerged as a key mechanism for the removal of cellular waste from cells that are dying or stressed. Here, we used intravital microscopy of the bone marrow to directly measure the kinetics of EV formation from endothelial cells in vivo under homoeostatic and malignant conditions. These large EVs are mitochondria-rich, expose the 'eat me' signal phosphatidylserine, and can interact with immune cell populations as a potential clearance mechanism. Elevated levels of circulating EVs correlates with degradation of the bone marrow vasculature caused by acute myeloid leukaemia. Together, our study provides in vivo spatio-temporal characterization of EV formation in the murine vasculature and suggests that circulating, large endothelial cell-derived EVs can provide a snapshot of vascular damage at distal sites.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| | - Jascinta P Santavanond
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andre L Samson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy Er
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joy Liu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Darryl N Johnson
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Mélanie Le Page
- ARAFlowCore, Alfred Research Alliance, Monash University, Melbourne, VIC, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Raymond K H Yip
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine Chang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mai Margetts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - M Cristina Keightley
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Walter D Fairlie
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Ludwig-Husemann A, Schertl P, Shrivastava A, Geckle U, Hafner J, Schaarschmidt F, Willenbacher N, Freudenberg U, Werner C, Lee-Thedieck C. A Multifunctional Nanostructured Hydrogel as a Platform for Deciphering Niche Interactions of Hematopoietic Stem and Progenitor Cells. Adv Healthc Mater 2024; 13:e2304157. [PMID: 38870600 DOI: 10.1002/adhm.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/10/2024] [Indexed: 06/15/2024]
Abstract
For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4β1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.
Collapse
Affiliation(s)
- Anita Ludwig-Husemann
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Schertl
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ananya Shrivastava
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Udo Geckle
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Johanna Hafner
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Frank Schaarschmidt
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technical University Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
15
|
Schyrr F, Alonso-Calleja A, Vijaykumar A, Sordet-Dessimoz J, Gebhard S, Sarkis R, Bataclan C, Ferreira Lopes S, Oggier A, de Leval L, Nombela-Arrieta C, Naveiras O. Inducible CXCL12/CXCR4-dependent extramedullary hematopoietic niches in the adrenal gland. Blood 2024; 144:964-976. [PMID: 38728427 DOI: 10.1182/blood.2023020875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) hematopoietic niche, which regulates HSPC quiescence, self-renewal, and commitment in a demand-adapted manner. Although the complex BM niche is responsible for adult hematopoiesis, evidence exists for simpler, albeit functional and more accessible, extramedullary hematopoietic niches. Inspired by the anecdotal description of retroperitoneal hematopoietic masses occurring at higher frequency upon hormonal dysregulation within the adrenal gland, we hypothesized that the adult adrenal gland could be induced into a hematopoietic-supportive environment in a systematic manner, thus revealing mechanisms underlying de novo niche formation in the adult. Here, we show that upon splenectomy and hormonal stimulation, the adult adrenal gland of mice can be induced to recruit and host functional HSPCs, capable of serial transplantation, and that this phenomenon is associated with de novo formation of platelet-derived growth factor receptor α/leptin receptor (PDGFRα+/LEPR+/-)-expressing stromal nodules. We further show in CXCL12-green fluorescent protein reporter mice that adrenal glands contain a stromal population reminiscent of the CXCL12-abundant reticular cells, which compose the BM HSPC niche. Mechanistically, HSPC homing to hormonally induced adrenal glands was found dependent on the CXCR4-CXCL12 axis. Mirroring our findings in mice, we found reticular CXCL12+ cells coexpressing master niche regulator FOXC1 in primary samples from human adrenal myelolipomas, a benign tumor composed of adipose and hematopoietic tissue. Our findings reignite long-standing questions regarding hormonal regulation of hematopoiesis and provide a novel model to facilitate the study of adult-specific inducible hematopoietic niches, which may pave the way to therapeutic applications.
Collapse
Affiliation(s)
- Frédérica Schyrr
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alejandro Alonso-Calleja
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anjali Vijaykumar
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center, University of Zürich and University Hospital Zürich, Zürich, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandra Gebhard
- Centre vaudois anorexie boulimie, Espace CHUV Service de psychiatrie de liaison, Département de psychiatrie, Lausanne University Hospital, Lausanne, Switzerland
| | - Rita Sarkis
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Charles Bataclan
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Silvia Ferreira Lopes
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Aurélien Oggier
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center, University of Zürich and University Hospital Zürich, Zürich, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Pereira AL, Galli S, Nombela‐Arrieta C. Bone marrow niches for hematopoietic stem cells. Hemasphere 2024; 8:e133. [PMID: 39086665 PMCID: PMC11289431 DOI: 10.1002/hem3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 08/02/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are the cornerstone of the hematopoietic system. HSCs sustain the continuous generation of mature blood derivatives while self-renewing to preserve a relatively constant pool of progenitors throughout life. Yet, long-term maintenance of functional HSCs exclusively takes place in association with their native tissue microenvironment of the bone marrow (BM). HSCs have been long proposed to reside in fixed and identifiable anatomical units found in the complex BM tissue landscape, which control their identity and fate in a deterministic manner. In the last decades, tremendous progress has been made in the dissection of the cellular and molecular fabric of the BM, the structural organization governing tissue function, and the plethora of interactions established by HSCs. Nonetheless, a holistic model of the mechanisms controlling HSC regulation in their niche is lacking to date. Here, we provide an overview of our current understanding of BM anatomy, HSC localization, and crosstalk within local cellular neighborhoods in murine and human tissues, and highlight fundamental open questions on how HSCs functionally integrate in the BM microenvironment.
Collapse
Affiliation(s)
- Ana Luísa Pereira
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - Serena Galli
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - César Nombela‐Arrieta
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| |
Collapse
|
17
|
Calderon-Espinosa E, De Ridder K, Benoot T, Jansen Y, Vanhonacker D, Heestermans R, De Becker A, Van Riet I, Decoster L, Goyvaerts C. The crosstalk between lung cancer and the bone marrow niche fuels emergency myelopoiesis. Front Immunol 2024; 15:1397469. [PMID: 39148724 PMCID: PMC11324509 DOI: 10.3389/fimmu.2024.1397469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Modest response rates to immunotherapy observed in advanced lung cancer patients underscore the need to identify reliable biomarkers and targets, enhancing both treatment decision-making and efficacy. Factors such as PD-L1 expression, tumor mutation burden, and a 'hot' tumor microenvironment with heightened effector T cell infiltration have consistently been associated with positive responses. In contrast, the predictive role of the abundantly present tumor-infiltrating myeloid cell (TIMs) fraction remains somewhat uncertain, partly explained by their towering variety in terms of ontogeny, phenotype, location, and function. Nevertheless, numerous preclinical and clinical studies established a clear link between lung cancer progression and alterations in intra- and extramedullary hematopoiesis, leading to emergency myelopoiesis at the expense of megakaryocyte/erythroid and lymphoid differentiation. These observations affirm that a continuous crosstalk between solid cancers such as lung cancer and the bone marrow niche (BMN) must take place. However, the BMN, encompassing hematopoietic stem and progenitor cells, differentiated immune and stromal cells, remains inadequately explored in solid cancer patients. Subsequently, no clear consensus has been reached on the exact breadth of tumor installed hematopoiesis perturbing cues nor their predictive power for immunotherapy. As the current era of single-cell omics is reshaping our understanding of the hematopoietic process and the subcluster landscape of lung TIMs, we aim to present an updated overview of the hierarchical differentiation process of TIMs within the BMN of solid cancer bearing subjects. Our comprehensive overview underscores that lung cancer should be regarded as a systemic disease in which the cues governing the lung tumor-BMN crosstalk might bolster the definition of new biomarkers and druggable targets, potentially mitigating the high attrition rate of leading immunotherapies for NSCLC.
Collapse
Affiliation(s)
- Evelyn Calderon-Espinosa
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemistry, University of Warwick, Warwick, United Kingdom
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Benoot
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Yanina Jansen
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Domien Vanhonacker
- Department of Anesthesiology, Perioperative and Pain Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Robbe Heestermans
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Lore Decoster
- Department of Medical Oncology, Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Hofmann J, Kokkaliaris KD. Bone marrow niches for hematopoietic stem cells: life span dynamics and adaptation to acute stress. Blood 2024; 144:21-34. [PMID: 38579285 DOI: 10.1182/blood.2023023788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) are instrumental for organismal survival because they are responsible for lifelong production of mature blood lineages in homeostasis and response to external stress. To fulfill their function, HSCs rely on reciprocal interactions with specialized tissue microenvironments, termed HSC niches. From embryonic development to advanced aging, HSCs transition through several hematopoietic organs in which they are supported by distinct extrinsic cues. Here, we describe recent discoveries on how HSC niches collectively adapt to ensure robust hematopoietic function during biological aging and after exposure to acute stress. We also discuss the latest strategies leveraging niche-derived signals to revert aging-associated phenotypes and enhance hematopoietic recovery after myeloablation.
Collapse
Affiliation(s)
- Johanna Hofmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department 15, Biosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- University Cancer Center, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Kuo YP, Carja O. Evolutionary graph theory beyond single mutation dynamics: on how network-structured populations cross fitness landscapes. Genetics 2024; 227:iyae055. [PMID: 38639307 PMCID: PMC11151934 DOI: 10.1093/genetics/iyae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Spatially resolved datasets are revolutionizing knowledge in molecular biology, yet are under-utilized for questions in evolutionary biology. To gain insight from these large-scale datasets of spatial organization, we need mathematical representations and modeling techniques that can both capture their complexity, but also allow for mathematical tractability. Evolutionary graph theory utilizes the mathematical representation of networks as a proxy for heterogeneous population structure and has started to reshape our understanding of how spatial structure can direct evolutionary dynamics. However, previous results are derived for the case of a single new mutation appearing in the population and the role of network structure in shaping fitness landscape crossing is still poorly understood. Here we study how network-structured populations cross fitness landscapes and show that even a simple extension to a two-mutational landscape can exhibit complex evolutionary dynamics that cannot be predicted using previous single-mutation results. We show how our results can be intuitively understood through the lens of how the two main evolutionary properties of a network, the amplification and acceleration factors, change the expected fate of the intermediate mutant in the population and further discuss how to link these models to spatially resolved datasets of cellular organization.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA
| |
Collapse
|
20
|
Kuo YP, Nombela-Arrieta C, Carja O. A theory of evolutionary dynamics on any complex population structure reveals stem cell niche architecture as a spatial suppressor of selection. Nat Commun 2024; 15:4666. [PMID: 38821923 PMCID: PMC11143212 DOI: 10.1038/s41467-024-48617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
How the spatial arrangement of a population shapes its evolutionary dynamics has been of long-standing interest in population genetics. Most previous studies assume a small number of demes or symmetrical structures that, most often, act as well-mixed populations. Other studies use network theory to study more heterogeneous spatial structures, however they usually assume small, regular networks, or strong constraints on the strength of selection considered. Here we build network generation algorithms, conduct evolutionary simulations and derive general analytic approximations for probabilities of fixation in populations with complex spatial structure. We build a unifying evolutionary theory across network families and derive the relevant selective parameter, which is a combination of network statistics, predictive of evolutionary dynamics. We also illustrate how to link this theory with novel datasets of spatial organization and use recent imaging data to build the cellular spatial networks of the stem cell niches of the bone marrow. Across a wide variety of parameters, we find these networks to be strong suppressors of selection, delaying mutation accumulation in this tissue. We also find that decreases in stem cell population size also decrease the suppression strength of the tissue spatial structure.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Mendes M, Monteiro AC, Neto E, Barrias CC, Sobrinho-Simões MA, Duarte D, Caires HR. Transforming the Niche: The Emerging Role of Extracellular Vesicles in Acute Myeloid Leukaemia Progression. Int J Mol Sci 2024; 25:4430. [PMID: 38674015 PMCID: PMC11050723 DOI: 10.3390/ijms25084430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.
Collapse
Affiliation(s)
- Manuel Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Manuel A. Sobrinho-Simões
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Clinical Haematology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
- Clinical Haematology, Department of Medicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Delfim Duarte
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- Unit of Biochemistry, Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, Instituto Português de Oncologia (IPO)-Porto, 4200-072 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
| |
Collapse
|
22
|
Kayvanjoo AH, Splichalova I, Bejarano DA, Huang H, Mauel K, Makdissi N, Heider D, Tew HM, Balzer NR, Greto E, Osei-Sarpong C, Baßler K, Schultze JL, Uderhardt S, Kiermaier E, Beyer M, Schlitzer A, Mass E. Fetal liver macrophages contribute to the hematopoietic stem cell niche by controlling granulopoiesis. eLife 2024; 13:e86493. [PMID: 38526524 PMCID: PMC11006421 DOI: 10.7554/elife.86493] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/23/2024] [Indexed: 03/26/2024] Open
Abstract
During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.
Collapse
Affiliation(s)
- Amir Hossein Kayvanjoo
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Iva Splichalova
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - David Alejandro Bejarano
- Quantitative Systems Biology, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Hao Huang
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Katharina Mauel
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Nikola Makdissi
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - David Heider
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Hui Ming Tew
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Nora Reka Balzer
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Eric Greto
- Department of Internal Medicine 3-Rheumatology and Immunology, Deutsches Zentrum für Immuntherapie (DZI) and FAU Profile Center Immunomedicine (FAU I-MED), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum ErlangenErlangenGermany
- Exploratory Research Unit, Optical Imaging Centre ErlangenErlangenGermany
| | - Collins Osei-Sarpong
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
| | - Kevin Baßler
- Genomics & Immunoregulation, LIMES Institute, University of BonnBonnGermany
| | - Joachim L Schultze
- Genomics & Immunoregulation, LIMES Institute, University of BonnBonnGermany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of BonnBonnGermany
| | - Stefan Uderhardt
- Department of Internal Medicine 3-Rheumatology and Immunology, Deutsches Zentrum für Immuntherapie (DZI) and FAU Profile Center Immunomedicine (FAU I-MED), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum ErlangenErlangenGermany
- Exploratory Research Unit, Optical Imaging Centre ErlangenErlangenGermany
| | - Eva Kiermaier
- Immune and Tumor Biology, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Marc Beyer
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of BonnBonnGermany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| |
Collapse
|
23
|
Hagos YB, Lecat CS, Patel D, Mikolajczak A, Castillo SP, Lyon EJ, Foster K, Tran TA, Lee LS, Rodriguez-Justo M, Yong KL, Yuan Y. Deep Learning Enables Spatial Mapping of the Mosaic Microenvironment of Myeloma Bone Marrow Trephine Biopsies. Cancer Res 2024; 84:493-508. [PMID: 37963212 PMCID: PMC10831337 DOI: 10.1158/0008-5472.can-22-2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Bone marrow trephine biopsy is crucial for the diagnosis of multiple myeloma. However, the complexity of bone marrow cellular, morphologic, and spatial architecture preserved in trephine samples hinders comprehensive evaluation. To dissect the diverse cellular communities and mosaic tissue habitats, we developed a superpixel-inspired deep learning method (MoSaicNet) that adapts to complex tissue architectures and a cell imbalance aware deep learning pipeline (AwareNet) to enable accurate detection and classification of rare cell types in multiplex immunohistochemistry images. MoSaicNet and AwareNet achieved an AUC of >0.98 for tissue and cellular classification on separate test datasets. Application of MoSaicNet and AwareNet enabled investigation of bone heterogeneity and thickness as well as spatial histology analysis of bone marrow trephine samples from monoclonal gammopathies of undetermined significance (MGUS) and from paired newly diagnosed and posttreatment multiple myeloma. The most significant difference between MGUS and newly diagnosed multiple myeloma (NDMM) samples was not related to cell density but to spatial heterogeneity, with reduced spatial proximity of BLIMP1+ tumor cells to CD8+ cells in MGUS compared with NDMM samples. Following treatment of patients with multiple myeloma, there was a reduction in the density of BLIMP1+ tumor cells, effector CD8+ T cells, and regulatory T cells, indicative of an altered immune microenvironment. Finally, bone heterogeneity decreased following treatment of patients with multiple myeloma. In summary, deep learning-based spatial mapping of bone marrow trephine biopsies can provide insights into the cellular topography of the myeloma marrow microenvironment and complement aspirate-based techniques. SIGNIFICANCE Spatial analysis of bone marrow trephine biopsies using histology, deep learning, and tailored algorithms reveals the bone marrow architectural heterogeneity and evolution during myeloma progression and treatment.
Collapse
Affiliation(s)
- Yeman Brhane Hagos
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Catherine S.Y. Lecat
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Dominic Patel
- Research Department of Pathology, University College London Cancer Institute, London, United Kingdom
| | - Anna Mikolajczak
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Simon P. Castillo
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Emma J. Lyon
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Kane Foster
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Thien-An Tran
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lydia S.H. Lee
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Research Department of Pathology, University College London Cancer Institute, London, United Kingdom
| | - Kwee L. Yong
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Yinyin Yuan
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Centre for Molecular Pathology, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
24
|
Toni R, Barbaro F, Di Conza G, Zini N, Remaggi G, Elviri L, Spaletta G, Quarantini E, Quarantini M, Mosca S, Caravelli S, Mosca M, Ravanetti F, Sprio S, Tampieri A. A bioartificial and vasculomorphic bone matrix-based organoid mimicking microanatomy of flat and short bones. J Biomed Mater Res B Appl Biomater 2024; 112:e35329. [PMID: 37898921 DOI: 10.1002/jbm.b.35329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
We engineered an in vitro model of bioartificial 3D bone organoid consistent with an anatomical and vascular microenvironment common to mammalian flat and short bones. To achieve this, we chose the decellularized-decalcified matrix of the adult male rat scapula, implemented with the reconstruction of its intrinsic vessels, obtained through an original intravascular perfusion with polylevolactic (PLLA), followed by coating of the PLLA-fabricated vascularization with rat tail collagen. As a result, the 3D bone and vascular geometry of the native bone cortical and cancellous compartments was reproduced, and the rat tail collagen-PLLA biomaterial could in vitro act as a surrogate of the perivascular extracellular matrix (ECM) around the wall of the biomaterial-reconstituted cancellous vessels. As a proof-of-concept of cell compatibility and site-dependent osteoinductive properties of this bioartificial 3D construct, we show that it in vitro leads to a time-dependent microtopographic positioning of rat mesenchymal stromal cells (MSCs), initiating an osteogenic fate in relation to the bone compartment. In addition, coating of PLLA-reconstructed vessels with rat tail collagen favored perivascular attachment and survival of MSC-like cells (mouse embryonic fibroblasts), confirming its potentiality as a perivascular stroma for triggering competence of seeded MSCs. Finally, in vivo radiographic topography of bone lesions in the human jaw and foot tarsus of subjects with primary osteoporosis revealed selective bone cortical versus cancellous involvement, suggesting usefulness of a human 3D bone organoid engineered with the same principles of our rat organoid, to in vitro investigate compartment-dependent activities of human MSC in flat and short bones under experimental osteoporotic challenge. We conclude that our 3D bioartificial construct offers a reliable replica of flat and short bones microanatomy, and promises to help in building a compartment-dependent mechanistic perspective of bone remodeling, including the microtopographic dysregulation of osteoporosis.
Collapse
Affiliation(s)
- Roberto Toni
- ISSMC, CNR, Faenza, Italy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center-Tufts University School of Medicine, Boston, Massachusetts, USA
- Academy of Sciences of the Institute of Bologna, Section IV-Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery-DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine-BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery-DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine-BIOMED, University of Parma, Parma, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Remaggi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| | - Giulia Spaletta
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Enrico Quarantini
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Marco Quarantini
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Ravanetti
- Department of Veterinary Medical Sciences, Section of Anatomy, University of Parma, Parma, Italy
| | | | | |
Collapse
|
25
|
Bianchini M, Möller-Ramon Z, Weber C, Megens RTA, Duchêne J. Short-Term Western Diet Causes Rapid and Lasting Alterations of Bone Marrow Physiology. Thromb Haemost 2023; 123:1100-1104. [PMID: 37549687 PMCID: PMC11321714 DOI: 10.1055/a-2149-4431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Affiliation(s)
- Mariaelvy Bianchini
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
| | - Zoe Möller-Ramon
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Remco T. A. Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Johan Duchêne
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
26
|
Bräunig S, Karmhag I, Li H, Enoksson J, Hultquist A, Scheding S. Three-dimensional spatial mapping of the human hematopoietic microenvironment in healthy and diseased bone marrow. Cytometry A 2023; 103:763-776. [PMID: 37421296 DOI: 10.1002/cyto.a.24775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
The bone marrow hematopoietic microenvironment (HME) plays a pivotal role in regulating normal and diseased hematopoiesis. However, the spatial organization of the human HME has not been thoroughly investigated yet. Therefore, we developed a three-dimensional (3D) immunofluorescence model to analyze changes in the cellular architecture in control and diseased bone marrows (BMs). BM biopsies from patients with myeloproliferative neoplasms (MPNs) were stained sequentially for CD31, CD34, CD45, and CD271 with repetitive bleaching steps to realize five color images with DAPI as a nuclear stain. Hematopoietically normal age-matched BM biopsies served as controls. Twelve subsequent slides per sample were stacked to create three-dimensional bone marrow reconstructions with the imaging program Arivis Visions 4D. Iso-surfaces for niche cells and structures were created and exported as mesh objects for spatial distribution analysis in the 3D creation suite Blender. We recapitulated the bone marrow architecture using this approach and produced comprehensive 3D models of endosteal and perivascular BM niches. MPN bone marrows displayed apparent differences compared to the controls, especially concerning CD271 staining density, megakaryocyte (MK) morphology, and distribution. Furthermore, measurements of the spatial relationships of MKs and hematopoietic stem and progenitor cells with vessels and bone structures in their corresponding niche environments revealed the most pronounced differences in the vascular nice in polycythemia vera. Taken together, using a repetitive staining and bleaching approach allowed us to establish a 5-color analysis of human BM biopsies, which is difficult to achieve with conventional staining approaches. Based on this, we generated 3D BM models which recapitulated key pathological features and, importantly, allowed us to define the spatial relationships between different bone marrow cell types. We, therefore, believe that our method can provide new and valuable insights into bone marrow cellular interaction research.
Collapse
Affiliation(s)
- Sandro Bräunig
- Division of Molecular Hematology and Stem Cell Center, Lund University, Lund, Sweden
| | - Isak Karmhag
- Division of Molecular Hematology and Stem Cell Center, Lund University, Lund, Sweden
| | - Hongzhe Li
- Division of Molecular Hematology and Stem Cell Center, Lund University, Lund, Sweden
| | - Jens Enoksson
- Department of Pathology, Skane University Hospital, Lund University, Lund, Sweden
| | - Anne Hultquist
- Department of Pathology, Skane University Hospital, Lund University, Lund, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology and Stem Cell Center, Lund University, Lund, Sweden
- Department of Hematology, Skane University Hospital, Lund, Sweden
| |
Collapse
|
27
|
Chen L, Pronk E, van Dijk C, Bian Y, Feyen J, van Tienhoven T, Yildirim M, Pisterzi P, de Jong MM, Bastidas A, Hoogenboezem RM, Wevers C, Bindels EM, Löwenberg B, Cupedo T, Sanders MA, Raaijmakers MH. A Single-Cell Taxonomy Predicts Inflammatory Niche Remodeling to Drive Tissue Failure and Outcome in Human AML. Blood Cancer Discov 2023; 4:394-417. [PMID: 37470778 PMCID: PMC10472197 DOI: 10.1158/2643-3230.bcd-23-0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/09/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer initiation is orchestrated by an interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPC) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR+ stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow. Inflammatory niche remodeling and the resulting deprivation of critical HSPC regulatory factors are predicted to repress high-output hematopoietic stem cell subsets in NPM1-mutated acute myeloid leukemia (AML), with relative resistance of clonal cells. Stromal gene signatures reflective of niche remodeling are associated with reduced relapse rates and favorable outcomes after chemotherapy across all genetic risk categories. Elucidation of the intercellular signaling defining human AML, thus, predicts that inflammatory remodeling of stem cell niches drives tissue repression and clonal selection but may pose a vulnerability for relapse-initiating cells in the context of chemotherapeutic treatment. SIGNIFICANCE Tumor-promoting inflammation is considered an enabling characteristic of tumorigenesis, but mechanisms remain incompletely understood. By deciphering the predicted signaling between tissue-resident stem cells and their neoplastic counterparts with their environment, we identify inflammatory remodeling of stromal niches as a determinant of normal tissue repression and clinical outcomes in human AML. See related commentary by Lisi-Vega and Méndez-Ferrer, p. 349. This article is featured in Selected Articles from This Issue, p. 337.
Collapse
Affiliation(s)
- Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eline Pronk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Claire van Dijk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Yujie Bian
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jacqueline Feyen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tim van Tienhoven
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Meltem Yildirim
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Paola Pisterzi
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Madelon M.E. de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Alejandro Bastidas
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Chiel Wevers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | |
Collapse
|
28
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Mikhailova L, Minchenko A, Soroko I, Khlusov I, Litvinova L. Adipocyte- and Monocyte-Mediated Vicious Circle of Inflammation and Obesity (Review of Cellular and Molecular Mechanisms). Int J Mol Sci 2023; 24:12259. [PMID: 37569635 PMCID: PMC10418857 DOI: 10.3390/ijms241512259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Monocytes play a key role in the development of metabolic syndrome, and especially obesity. Given the complex features of their development from progenitor cells, whose regulation is mediated by their interactions with bone marrow adipocytes, the importance of a detailed study of the heterogeneous composition of monocytes at the molecular and systemic levels becomes clear. Research argues for monocytes as indicators of changes in the body's metabolism and the possibility of developing therapeutic strategies to combat obesity and components of metabolic syndrome based on manipulations of the monocyte compound of the immune response. An in-depth study of the heterogeneity of bone-marrow-derived monocytes and adipocytes could provide answers to many questions about the pathogenesis of obesity and reveal their therapeutic potential.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Larisa Mikhailova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Anastasia Minchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Irina Soroko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
29
|
Yang F, Nourse C, Helgason GV, Kirschner K. Unraveling Heterogeneity in the Aging Hematopoietic Stem Cell Compartment: An Insight From Single-cell Approaches. Hemasphere 2023; 7:e895. [PMID: 37304939 PMCID: PMC10256339 DOI: 10.1097/hs9.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Specific cell types and, therefore, organs respond differently during aging. This is also true for the hematopoietic system, where it has been demonstrated that hematopoietic stem cells alter a variety of features, such as their metabolism, and accumulate DNA damage, which can lead to clonal outgrowth over time. In addition, profound changes in the bone marrow microenvironment upon aging lead to senescence in certain cell types such as mesenchymal stem cells and result in increased inflammation. This heterogeneity makes it difficult to pinpoint the molecular drivers of organismal aging gained from bulk approaches, such as RNA sequencing. A better understanding of the heterogeneity underlying the aging process in the hematopoietic compartment is, therefore, needed. With the advances of single-cell technologies in recent years, it is now possible to address fundamental questions of aging. In this review, we discuss how single-cell approaches can and indeed are already being used to understand changes observed during aging in the hematopoietic compartment. We will touch on established and novel methods for flow cytometric detection, single-cell culture approaches, and single-cell omics.
Collapse
Affiliation(s)
- Fei Yang
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Craig Nourse
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - G. Vignir Helgason
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kristina Kirschner
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
30
|
Melgrati S, Radice E, Ameti R, Hub E, Thelen S, Pelczar P, Jarrossay D, Rot A, Thelen M. Atlas of the anatomical localization of atypical chemokine receptors in healthy mice. PLoS Biol 2023; 21:e3002111. [PMID: 37159457 PMCID: PMC10198502 DOI: 10.1371/journal.pbio.3002111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/19/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Atypical chemokine receptors (ACKRs) scavenge chemokines and can contribute to gradient formation by binding, internalizing, and delivering chemokines for lysosomal degradation. ACKRs do not couple to G-proteins and fail to induce typical signaling induced by chemokine receptors. ACKR3, which binds and scavenges CXCL12 and CXCL11, is known to be expressed in vascular endothelium, where it has immediate access to circulating chemokines. ACKR4, which binds and scavenges CCL19, CCL20, CCL21, CCL22, and CCL25, has also been detected in lymphatic and blood vessels of secondary lymphoid organs, where it clears chemokines to facilitate cell migration. Recently, GPR182, a novel ACKR-like scavenger receptor, has been identified and partially deorphanized. Multiple studies point towards the potential coexpression of these 3 ACKRs, which all interact with homeostatic chemokines, in defined cellular microenvironments of several organs. However, an extensive map of ACKR3, ACKR4, and GPR182 expression in mice has been missing. In order to reliably detect ACKR expression and coexpression, in the absence of specific anti-ACKR antibodies, we generated fluorescent reporter mice, ACKR3GFP/+, ACKR4GFP/+, GPR182mCherry/+, and engineered fluorescently labeled ACKR-selective chimeric chemokines for in vivo uptake. Our study on young healthy mice revealed unique and common expression patterns of ACKRs in primary and secondary lymphoid organs, small intestine, colon, liver, and kidney. Furthermore, using chimeric chemokines, we were able to detect distinct zonal expression and activity of ACKR4 and GPR182 in the liver, which suggests their cooperative relationship. This study provides a broad comparative view and a solid stepping stone for future functional explorations of ACKRs based on the microanatomical localization and distinct and cooperative roles of these powerful chemokine scavengers.
Collapse
Affiliation(s)
- Serena Melgrati
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Egle Radice
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rafet Ameti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Elin Hub
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Pawel Pelczar
- University of Basel, Center for Transgenic Models, Basel, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Antal Rot
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, London, United Kingdom
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
31
|
Li W, Liang H, Ao Y, Tang B, Li J, Li N, Wang J, Du Y. Biophysical cues of bone marrow-inspired scaffolds regulate hematopoiesis of hematopoietic stem and progenitor cells. Biomaterials 2023; 298:122111. [PMID: 37141647 DOI: 10.1016/j.biomaterials.2023.122111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Hematopoietic stem cells (HSCs) are adult multipotential stem cells with the capacity to differentiate into all blood cells and immune cells, which are essential for maintaining hematopoietic homeostasis throughout the lifespan and reconstituting damaged hematopoietic system after myeloablation. However, the clinical application of HSCs is hindered by the imbalance of its self-renewal and differentiation during in vitro culture. Considering the fact that HSC fate is uniquely determined by natural bone marrow microenvironment, various elaborate cues in this hematopoietic micro-niche provide an excellent reference for the regulation of HSCs. Inspired by the bone marrow extracellular matrix (ECM) network, we designed degradable scaffolds by orchestrating the physical parameters to investigate the decoupling effects of Young's modulus and pore size of three-dimensional (3D) matrix materials on the fate of hematopoietic stem and progenitor cells (HSPCs). We ascertained that the scaffold with larger pore size (80 μm) and higher Young's modulus (70 kPa) was more favorable for HSPCs proliferation and the maintenance of stemness related phenotypes. Through in vivo transplantation, we further validated that scaffolds with higher Young's modulus were more propitious in maintaining the hematopoietic function of HSPCs. We systematically screened an optimized scaffold for HSPC culture which could significantly improve the cell function and self-renewal ability compared with traditional two-dimensional (2D) culture. Together, these results indicate the important role of biophysical cues in regulating HSC fate and pave the way for the parameter design of 3D HSC culture system.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiwei Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanxiao Ao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Junyang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ning Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
32
|
Li Y, He M, Zhang W, Liu W, Xu H, Yang M, Zhang H, Liang H, Li W, Wu Z, Fu W, Xu S, Liu X, Fan S, Zhou L, Wang C, Zhang L, Li Y, Gu J, Yin J, Zhang Y, Xia Y, Mao X, Cheng T, Shi J, Du Y, Gao Y. Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche. Nat Commun 2023; 14:2207. [PMID: 37072407 PMCID: PMC10113370 DOI: 10.1038/s41467-023-37954-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Limited numbers of available hematopoietic stem cells (HSCs) limit the widespread use of HSC-based therapies. Expansion systems for functional heterogenous HSCs remain to be optimized. Here, we present a convenient strategy for human HSC expansion based on a biomimetic Microniche. After demonstrating the expansion of HSC from different sources, we find that our Microniche-based system expands the therapeutically attractive megakaryocyte-biased HSC. We demonstrate scalable HSC expansion by applying this strategy in a stirred bioreactor. Moreover, we identify that the functional human megakaryocyte-biased HSCs are enriched in the CD34+CD38-CD45RA-CD90+CD49f lowCD62L-CD133+ subpopulation. Specifically, the expansion of megakaryocyte-biased HSCs is supported by a biomimetic niche-like microenvironment, which generates a suitable cytokine milieu and supplies the appropriate physical scaffolding. Thus, beyond clarifying the existence and immuno-phenotype of human megakaryocyte-biased HSC, our study demonstrates a flexible human HSC expansion strategy that could help realize the strong clinical promise of HSC-based therapies.
Collapse
Affiliation(s)
- Yinghui Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mei He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing CytoNiche Biotechnology Co. Ltd., 100195, Beijing, China
| | - Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hexiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Haiwei Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhaozhao Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Weichao Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shiqi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaolei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Sibin Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Liwei Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lele Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yafang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jiali Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jingjing Yin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yonghui Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xuemei Mao
- Nankai Hospital, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing CytoNiche Biotechnology Co. Ltd., 100195, Beijing, China.
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
33
|
Patterson SD, Copland M. The Bone Marrow Immune Microenvironment in CML: Treatment Responses, Treatment-Free Remission, and Therapeutic Vulnerabilities. Curr Hematol Malig Rep 2023; 18:19-32. [PMID: 36780103 PMCID: PMC9995533 DOI: 10.1007/s11899-023-00688-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/14/2023]
Abstract
PURPOSE OF REVIEW Tyrosine kinase inhibitors (TKIs) are very successful for the treatment of chronic myeloid leukaemia (CML) but are not curative in most patients due to persistence of TKI-resistant leukaemia stem cells (LSCs). The bone marrow immune microenvironment (BME) provides protection to the LSC through multidimensional interactions, driving therapy resistance, and highlighting the need to circumvent these protective niches therapeutically. This review updates the evidence for interactions between CML cells and the immune microenvironment with a view to identifying targetable therapeutic vulnerabilities and describes what is known about the role of immune regulation in treatment-free remission (TFR). RECENT FINDINGS Intracellular signalling downstream of the chemotactic CXCL12-CXCR4 axis, responsible for disrupted homing in CML, has been elucidated in LSCs, highlighting novel therapeutic opportunities. In addition, LSCs expressing CXCL12-cleaving surface protein CD26 were highly correlated with CML burden, building on existing evidence. Newer findings implicate the adhesion molecule CD44 in TKI resistance, while JAK/STAT-mediated resistance to TKIs may occur downstream of extrinsic signalling in the BME. Exosomal BME-LSC cross-communication has also been explored. Finally, further detail on the phenotypes of natural killer (NK) cells putatively involved in maintaining successful TFR has been published, and NK-based immunotherapies are discussed. Recent studies highlight and build on our understanding of the BME in CML persistence and TKI resistance, pinpointing therapeutically vulnerable interactions. Repurposing existing drugs and/or the development of novel inhibitors targeting these relationships may help to overcome these issues in TKI-resistant CML and be used as adjuvant therapy for sustained TFR.
Collapse
Affiliation(s)
- Shaun David Patterson
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Paul O'Gorman Leukaemia Research Centre, University of Glasgow, 21 Shelley Road, Glasgow, G12 0ZD, UK.
| | - Mhairi Copland
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Paul O'Gorman Leukaemia Research Centre, University of Glasgow, 21 Shelley Road, Glasgow, G12 0ZD, UK.
| |
Collapse
|
34
|
O’Neill HC, Lim HK. Skeletal stem/progenitor cells provide the niche for extramedullary hematopoiesis in spleen. Front Physiol 2023; 14:1148414. [PMID: 37007998 PMCID: PMC10063897 DOI: 10.3389/fphys.2023.1148414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In bone marrow, the niche which supports hematopoiesis and nurtures hematopoietic stem cells (HSCs) contains perivascular reticular cells representing a subset of skeletal stem/progenitor cells (SSPCs). These stromal cells which provide the niche are lost or become inadequate during stress, disease or ageing, such that HSCs leave bone marrow and enter spleen and other peripheral sites to initiate extramedullary hematopoiesis and particularly myelopoiesis. Spleen also maintains niches for HSCs under steady-state conditions, evident since neonatal and adult spleen contain HSCs in low number and provide low-level hematopoiesis. In spleen, HSCs are found in the sinusoidal-rich red pulp region also in the vicinity of perivascular reticular cells. These cells resemble to some extent the known stromal elements reflecting HSC niches in bone marrow, and are investigated here for their characteristics as a subset of SSPCs. The isolation of spleen stromal subsets and the generation of cell lines which support HSCs and myelopoiesis in vitro has led to the identification of perivascular reticular cells which are unique to spleen. Analysis of gene and marker expression, as well as differentiative potential, identifies an osteoprogenitor cell type, reflective of one of several subsets of SSPCs described previously in bone, bone marrow and adipose tissue. The combined information supports a model for HSC niches in spleen involving perivascular reticular cells as SSPCs having osteogenic, stroma-forming capacity. These associate with sinusoids in red pulp to form niches for HSCs and to support the differentiation of hematopoietic progenitors during extramedullary hematopoiesis.
Collapse
|
35
|
Biased IL-2 signals induce Foxp3-rich pulmonary lymphoid structures and facilitate long-term lung allograft acceptance in mice. Nat Commun 2023; 14:1383. [PMID: 36914624 PMCID: PMC10011523 DOI: 10.1038/s41467-023-36924-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Transplantation of solid organs can be life-saving in patients with end-stage organ failure, however, graft rejection remains a major challenge. In this study, by pre-conditioning with interleukin-2 (IL-2)/anti-IL-2 antibody complex treatment biased toward IL-2 receptor α, we achieved acceptance of fully mismatched orthotopic lung allografts that remained morphologically and functionally intact for more than 90 days in immunocompetent mice. These allografts are tolerated by the actions of forkhead box p3 (Foxp3)+ regulatory T (Treg) cells that home to the lung allografts. Although counts of circulating Treg cells rapidly return to baseline following cessation of IL-2 treatment, Foxp3+ Treg cells persist in peribronchial and peribronchiolar areas of the grafted lungs, forming organized clusters reminiscent of inducible tertiary lymphoid structures (iTLS). These iTLS in lung allografts are made of Foxp3+ Treg cells, conventional T cells, and B cells, as evidenced by using microscopy-based distribution and neighborhood analyses. Foxp3-transgenic mice with inducible and selective deletion of Foxp3+ cells are unable to form iTLS in lung allografts, and these mice acutely reject lung allografts. Collectively, we report that short-term, high-intensity and biased IL-2 pre-conditioning facilitates acceptance of vascularized and ventilated lung allografts without the need of immunosuppression, by inducing Foxp3-controlled iTLS formation within allografts.
Collapse
|
36
|
Rai R, Nitin N. Apple-derived 3D scaffold for improving gastrointestinal viability and in-situ growth of probiotics. Food Res Int 2023; 168:112758. [PMID: 37120209 DOI: 10.1016/j.foodres.2023.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
This study develops a novel low-cost microbial delivery system by transforming common food materials such as apple tissue into a 3D scaffold. Apple tissue scaffold was constructed by decellularization of intact tissue using a minimal amount of sodium dodecyl sulfate (0.5 % w/v). Vacuum-assisted infusion of model probiotic Lactobacillus cells led to a high encapsulation yield of probiotic cells (1010 CFU/g of scaffold) in 3D scaffolds on a wet basis. The bio-polymer coated 3D scaffolds with infused cells significantly enhanced the survivability of infused probiotic cells during simulated gastric and intestinal digestions. In addition, imaging and plate counting results validate the growth of the infused cells in the 3D scaffold after 1-2 days of fermentation in MRS media, while cells without infusion in the scaffold had limited attachment with the intact apple tissue. Overall, these results highlight the potential of the apple tissue-derived 3D scaffold to deliver probiotic cells and include the biochemical compositions to support the growth of delivered microbial cells in the colon.
Collapse
|
37
|
Sánchez‐Lanzas R, Kalampalika F, Ganuza M. Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. Br J Haematol 2022; 199:647-664. [PMID: 35837798 PMCID: PMC9796334 DOI: 10.1111/bjh.18355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
Our view on the role and composition of the bone marrow (BM) has dramatically changed over time from a simple nutrient for the bone to a highly complex multicellular tissue that sustains haematopoiesis. Among these cells, multipotent haematopoietic stem cells (HSCs), which are predominantly quiescent, possess unique self-renewal capacity and multilineage differentiation potential and replenish all blood lineages to maintain lifelong haematopoiesis. Adult HSCs reside in specialised BM niches, which support their functions. Much effort has been put into deciphering HSC niches due to their potential clinical relevance. Multiple cell types have been implicated as HSC-niche components including sinusoidal endothelium, perivascular stromal cells, macrophages, megakaryocytes, osteoblasts and sympathetic nerves. In this review we provide a historical perspective on how technical advances, from genetic mouse models to imaging and high-throughput sequencing techniques, are unveiling the plethora of molecular cues and cellular components that shape the niche and regulate HSC functions.
Collapse
Affiliation(s)
- Raúl Sánchez‐Lanzas
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Miguel Ganuza
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
38
|
Injectable bone marrow microniches by co-culture of HSPCs with MSCs in 3D microscaffolds promote hematopoietic reconstitution from acute lethal radiation. Bioact Mater 2022; 22:453-465. [PMID: 36311043 PMCID: PMC9593104 DOI: 10.1016/j.bioactmat.2022.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Hematopoietic syndrome of acute radiation syndrome (h-ARS) is an acute illness resulted from the damage of bone marrow (BM) microenvironment after exposure to radiation. Currently, the clinical management of h-ARS is limited to medication-assisted treatment, while there is still no specific therapy for the hematopoietic injury from high-dose radiation exposure. Our study aimed to assemble biomimetic three-dimensional (3D) BM microniches by co-culture of hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stem cells (MSCs) in porous, injectable and viscoelastic microscaffolds in vitro. The biodegradable BM microniches were then transplanted in vivo into the BM cavity for the treatment of h-ARS. We demonstrated that the maintenance of HSPCs was prolonged by co-culture with MSCs in the porous 3D microscaffolds with 84 μm in pore diameter and 11.2 kPa in Young's modulus compared with 2D co-culture system. Besides, the minimal effective dose and therapeutic effects of the BM microniches were investigated on a murine model of h-ARS, which showed that the intramedullary cavity-injected BM microniches could adequately promote hematopoietic reconstitution and mitigate death from acute lethal radiation with a dose as low as 1000 HSPCs. Furthermore, the mRNA expression of Notch1 and its downstream target gene Hes1 of HSPCs were increased when co-cultured with MSCs, while the Jagged1 expression of the co-cultured MSCs was upregulated, indicating the significance of Notch signaling pathway in maintenance of HSPCs. Collectively, our findings provide evidence that biomimetic and injectable 3D BM microniches could maintain HSPCs, promote hematopoiesis regeneration and alleviate post-radiation injury, which provides a promising approach to renovate conventional HSPCs transplantation for clinical treatment of blood and immune disorders.
Collapse
|
39
|
Yang C, Li Z, Liu Y, Hou R, Lin M, Fu L, Wu D, Liu Q, Li K, Liu C. Single-cell spatiotemporal analysis reveals cell fates and functions of transplanted mesenchymal stromal cells during bone repair. Stem Cell Reports 2022; 17:2318-2333. [PMID: 36150383 PMCID: PMC9561611 DOI: 10.1016/j.stemcr.2022.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) transplantation could enhance bone repair. However, the cell fate of transplanted MSCs, in terms of their local distribution and spatial associations with other types of cells were poorly understood. Here, we developed a single-cell 3D spatial correlation (sc3DSC) method to track transplanted MSCs based on deep tissue microscopy of fluorescent nanoparticles (fNPs) and immunofluorescence of key proteins. Locally delivered fNP-labeled MSCs enhanced tibial defect repair, increased the number of stem cells and vascular maturity in mice. fNP-MSCs persisted in the defect throughout repair. But only a small portion of transplanted cells underwent osteogenic differentiation (OSX+); a significant portion has maintained their expression of mesenchymal stem cell and skeletal stem cell markers (SCA-1 and PRRX1). Our results contribute to the optimization of MSC-based therapies. The sc3DSC method may be useful in studying cell-based therapies for the regeneration of other tissue types or disease models. Transplanted marrow stromal cells associated with vessels during bone defect repair Small proportion of transplanted cells differentiated into osteogenic cells A proportion of transplanted cells maintained expressions of stem cell markers
Collapse
Affiliation(s)
- Chengyu Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zeshun Li
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runpeng Hou
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Linhao Fu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Decheng Wu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Quanying Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kai Li
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
40
|
Lv H, Wang T, Zhai S, Hou Z, Chen S. Dynamic transcriptome changes during osteogenic differentiation of bone marrow-derived mesenchymal stem cells isolated from chicken. Front Cell Dev Biol 2022; 10:940248. [PMID: 36120570 PMCID: PMC9478182 DOI: 10.3389/fcell.2022.940248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoblasts are indispensable for skeletal growth and maintenance. Bone marrow-derived mesenchymal stem cells (BMSCs) are useful in studying osteogenesis. In this study, BMSCs isolated from White Leghorns were differentiated into osteoblasts in vitro. Cells induced for -1, 0, 1, 11, and 22 d were used for transcriptomic analyses using the HISAT2-Stringtie-DESeq2 pipeline. Weighted correlation network analysis was processed to investigate significant modules, including differentially expressed genes (DEGs), correlated with osteogenic differentiation. Gene ontology and pathway enrichment analyses of DEGs were performed to elucidate the mechanisms of osteoblast differentiation. A total of 534, 1,144, 1,077, and 337 DEGs were identified between cells induced for -1 and 0, 0 and 1, 1 and 11, and 11 and 22 d, respectively (|log2FC| > 1.0, FDR <0.05). DEGs were mainly enriched in pathways related to cell proliferation in the early stage of osteogenic differentiation and pathways, such as the TGF-β signaling pathway, in the middle and late stages of osteogenic differentiation. A protein–protein interaction network of the 87 DEGs in the MEturquoise module within top 5-%-degree value was built utilizing the STRING database. This study is the first to elucidate the transcriptomic changes in the osteogenic differentiation of BMSCs isolated from White Leghorns at different times. Our results provide insight into the dynamic transcriptome changes during BMSC differentiation into osteoblasts in chicken.
Collapse
|
41
|
Schürch CM. [Characterization of the tumor microenvironment by highly multiplexed microscopy]. PATHOLOGIE (HEIDELBERG, GERMANY) 2022; 43:21-24. [PMID: 36222923 DOI: 10.1007/s00292-022-01129-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Malignant neoplasms are highly complex ecosystems consisting of tumor cells and the tumor microenvironment (TME), which is composed of structural elements (vessels, fibroblasts, extracellular matrix) and a wide variety of infiltrating immune cell types of the innate and adaptive immune systems. The TME is the main site of tumor cell-immune cell interactions and plays a critical role in antitumoral immunity. Immunotherapies can affect the interactions between immune cell types and tumor cells in the TME, boost immune responses, and lead to tumor elimination. Novel highly multiplexed microscopy techniques, which enable the detection of more than 50 simultaneous markers in tissues, facilitate the in-depth characterization of the TME at single-cell resolution in clinically relevant samples. Detailed knowledge about the cellular and spatial composition of the TME, the specific cell types and their functional properties, and cell-cell interactions-as revealed by highly multiplexed microscopy-will improve our understanding of immunotherapies' mechanisms of action and reveal new potential therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Christian M Schürch
- Institut für Pathologie, Universitätsklinikum Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Deutschland.
| |
Collapse
|
42
|
Fujita S, Morikawa T, Tamaki S, Sezaki M, Takizawa H, Okamoto S, Kataoka K, Takubo K. Quantitative analysis of sympathetic and nociceptive innervation across bone marrow regions in mice. Exp Hematol 2022; 112-113:44-59.e6. [PMID: 35907584 DOI: 10.1016/j.exphem.2022.07.297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Bone marrow (BM) innervation regulates the mobilization of hematopoietic stem and progenitor cells (HSPCs) from BM and stress hematopoiesis by either acting directly on HSPCs or by altering the niche function of mesenchymal and endothelial cells. However, the spatial distribution of BM innervation across bone regions is yet to be fully elucidated. Thus, we aimed to characterize the distribution of sympathetic and nociceptive nerves in each bone and BM region, using three-dimensional quantitative microscopy. We discovered that sympathetic and nociceptive nerves were the major fibers throughout the BM. Compared to other femoral regions, central parts of the femoral BM were more densely innervated by both sympathetic and nociceptive nerves. Each region of the sternum was similarly innervated by sympathetic and nociceptive nerves. Further, the majority of sympathetic and nociceptive nerves in the BM ran parallel with arteries and arterioles, whereas the degree varied according to the bone types or BM regions. In conclusion, this study provides spatial, topological, and functional information on BM innervation in a quantitative manner and demonstrates that sympathetic and nociceptive nerves are two major components in BM innervation, mostly associated with arteries and arterioles.
Collapse
Affiliation(s)
- Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Maiko Sezaki
- Laboratory of Stem Cell Stress; Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | | | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keisuke Kataoka
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| |
Collapse
|
43
|
Aaron TS, Fooksman DR. Dynamic organization of the bone marrow plasma cell niche. FEBS J 2022; 289:4228-4239. [PMID: 35114061 DOI: 10.1111/febs.16385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 01/09/2023]
Abstract
Prophylactic, serological memory relies on maintaining stable reservoirs of plasma cells, capable of constitutively-secreting high-affinity, anti-pathogen antibody for a lifetime. Although antibody titers generated by some vaccines (e.g. measles) can last a lifetime, other vaccinations (e.g. tetanus) need repeated boosting because long-lived plasma cells are not produced or maintained. Moreover, in old age, the ability to generate long-lived humoral responses diminishes. Despite their importance to health, it is unknown how long-lived plasma cells survive over years, whereas most antibody secreting cells die off within weeks after vaccination. In this review, we focus on how known factors regulate the longevity of plasma cell fitness and survival, and how that landscape is shaped by environmental influences, such as inflammation, infection and aging. In addition, we highlight newly discovered cellular dynamics in the bone marrow that may reframe the mechanisms supporting long-lived plasma cell survival and function.
Collapse
Affiliation(s)
- Tonya S Aaron
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
44
|
Scheffler JM, Gustafsson KL, Barrett A, Corciulo C, Drevinge C, Del Carpio Pons AM, Humeniuk P, Engdahl C, Gustafsson J, Ohlsson C, Carlsten H, Lagerquist MK, Islander U. ERα signaling in a subset of CXCL12‐abundant reticular cells regulates trabecular bone in mice. JBMR Plus 2022; 6:e10657. [PMID: 35991530 PMCID: PMC9382863 DOI: 10.1002/jbm4.10657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/22/2022] [Accepted: 05/22/2022] [Indexed: 12/02/2022] Open
Abstract
Estrogen has pronounced effects on the immune system, which also influences bone homeostasis. In recent years, stromal cells in lymphoid organs have gained increasing attention as they not only support the regulation of immune responses but also affect bone remodeling. A conditional knockout mouse model where estrogen receptor alpha (ERα) is deleted in CCL19‐expressing stromal cells (Ccl19‐Cre ERαfl/fl mice) was generated and bone densitometry was performed to analyze the importance of stromal cell–specific ERα signaling on the skeleton. Results showed that female Ccl19‐Cre ERαfl/fl mice display reduced total bone mineral density and detailed X‐ray analyses revealed that ERα expression in CCL19‐expressing stromal cells is important for trabecular but not cortical bone homeostasis. Further analysis showed that the trabecular bone loss is caused by increased osteoclastogenesis. Additionally, the bone formation rate was reduced; however, the expression of osteoprogenitor genes was not altered. Analysis of the bone marrow stromal cell compartment revealed a deletion of ERα in a subgroup of CXCL12‐abundant reticular (CAR) cells resulting in increased secretion of the pro‐osteoclastogenic chemokine CXCL12. In conclusion, this study reveals the importance of ERα signaling in CAR cells for bone health. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Julia M. Scheffler
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Karin L. Gustafsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Aidan Barrett
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Carmen Corciulo
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Christina Drevinge
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Alicia M. Del Carpio Pons
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Piotr Humeniuk
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Cecilia Engdahl
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Jan‐Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry University of Houston Houston Texas USA
- Department of Biosciences and Nutrition Karolinska Institute Huddinge Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
- Department of Drug Treatment Sahlgrenska University Hospital, Region Västra Götaland Gothenburg Sweden
| | - Hans Carlsten
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Marie Kristina Lagerquist
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| | - Ulrika Islander
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Sweden
| |
Collapse
|
45
|
Omatsu Y, Aiba S, Maeta T, Higaki K, Aoki K, Watanabe H, Kondoh G, Nishimura R, Takeda S, Chung UI, Nagasawa T. Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells. Nat Commun 2022; 13:2654. [PMID: 35551452 PMCID: PMC9098511 DOI: 10.1038/s41467-022-30266-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/08/2022] [Indexed: 01/01/2023] Open
Abstract
In bone marrow, special microenvironments, known as niches, are essential for the maintenance of hematopoietic stem cells (HSCs). A population of mesenchymal stem cells, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells or leptin receptor-expressing cells are the major cellular component of HSC niches. The molecular regulation of HSC niche properties is not fully understood. The role of Runx transcription factors, Runx1 and Runx2 in HSC cellular niches remains unclear. Here we show that Runx1 is predominantly expressed in CAR cells and that mice lacking both Runx1 and Runx2 in CAR cells display an increase in fibrosis and bone formation with markedly reduced hematopoietic stem and progenitor cells in bone marrow. In vitro, Runx1 is induced by the transcription factor Foxc1 and decreases fibrotic gene expression in CAR cells. Thus, HSC cellular niches require Runx1 or Runx2 to prevent their fibrotic conversion and maintain HSCs and hematopoiesis in adults. The transcription factors, Runx1 and Runx2 are critical embryonically for generation of HSCs and osteoblasts, respectively. Here the authors show that adult mice lacking Runx1 and Runx2 in HSC-supporting CAR cells displayed an increase in fibrosis with reduced HSCs in bone marrow.
Collapse
Affiliation(s)
- Yoshiki Omatsu
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shota Aiba
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomonori Maeta
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kei Higaki
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazunari Aoki
- Laboratory of Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hitomi Watanabe
- Laboratory of Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Gen Kondoh
- Laboratory of Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shu Takeda
- Endocrinology Division, Toranomon Hospital, Minato-ku, Tokyo, 105-8470, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
46
|
Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials 2022; 286:121568. [DOI: 10.1016/j.biomaterials.2022.121568] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
|
47
|
Watt SM. The long and winding road: homeostatic and disordered haematopoietic microenvironmental niches: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:31-54. [PMID: 35837343 PMCID: PMC9255786 DOI: 10.12336/biomatertransl.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Haematopoietic microenvironmental niches have been described as the 'gatekeepers' for the blood and immune systems. These niches change during ontogeny, with the bone marrow becoming the predominant site of haematopoiesis in post-natal life under steady state conditions. To determine the structure and function of different haematopoietic microenvironmental niches, it is essential to clearly define specific haematopoietic stem and progenitor cell subsets during ontogeny and to understand their temporal appearance and anatomical positioning. A variety of haematopoietic and non-haematopoietic cells contribute to haematopoietic stem and progenitor cell niches. The latter is reported to include endothelial cells and mesenchymal stromal cells (MSCs), skeletal stem cells and/or C-X-C motif chemokine ligand 12-abundant-reticular cell populations, which form crucial components of these microenvironments under homeostatic conditions. Dysregulation or deterioration of such cells contributes to significant clinical disorders and diseases worldwide and is associated with the ageing process. A critical appraisal of these issues and of the roles of MSC/C-X-C motif chemokine ligand 12-abundant-reticular cells and the more recently identified skeletal stem cell subsets in bone marrow haematopoietic niche function under homeostatic conditions and during ageing will form the basis of this research review. In the context of haematopoiesis, clinical translation will deal with lessons learned from the vast experience garnered from the development and use of MSC therapies to treat graft versus host disease in the context of allogeneic haematopoietic transplants, the recent application of these MSC therapies to treating emerging and severe coronavirus disease 2019 (COVID-19) infections, and, given that skeletal stem cell ageing is one proposed driver for haematopoietic ageing, the potential contributions of these stem cells to haematopoiesis in healthy bone marrow and the benefits and challenges of using this knowledge for rejuvenating the age-compromised bone marrow haematopoietic niches and restoring haematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
48
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
49
|
Gomariz A, Portenier T, Nombela-Arrieta C, Goksel O. Probabilistic spatial analysis in quantitative microscopy with uncertainty-aware cell detection using deep Bayesian regression. SCIENCE ADVANCES 2022; 8:eabi8295. [PMID: 35119934 PMCID: PMC8816343 DOI: 10.1126/sciadv.abi8295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The investigation of biological systems with three-dimensional microscopy demands automatic cell identification methods that not only are accurate but also can imply the uncertainty in their predictions. The use of deep learning to regress density maps is a popular successful approach for extracting cell coordinates from local peaks in a postprocessing step, which then, however, hinders any meaningful probabilistic output. We propose a framework that can operate on large microscopy images and output probabilistic predictions (i) by integrating deep Bayesian learning for the regression of uncertainty-aware density maps, where peak detection algorithms generate cell proposals, and (ii) by learning a mapping from prediction proposals to a probabilistic space that accurately represents the chances of a successful prediction. Using these calibrated predictions, we propose a probabilistic spatial analysis with Monte Carlo sampling. We demonstrate this in a bone marrow dataset, where our proposed methods reveal spatial patterns that are otherwise undetectable.
Collapse
Affiliation(s)
- Alvaro Gomariz
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tiziano Portenier
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Orcun Goksel
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
- Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Hematopoiesis, Inflammation and Aging-The Biological Background and Clinical Impact of Anemia and Increased C-Reactive Protein Levels on Elderly Individuals. J Clin Med 2022; 11:jcm11030706. [PMID: 35160156 PMCID: PMC8836692 DOI: 10.3390/jcm11030706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Anemia and systemic signs of inflammation are common in elderly individuals and are associated with decreased survival. The common biological context for these two states is then the hallmarks of aging, i.e., genomic instability, telomere shortening, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Such aging-associated alterations of hematopoietic stem cells are probably caused by complex mechanisms and depend on both the aging of hematopoietic (stem) cells and on the supporting stromal cells. The function of inflammatory or immunocompetent cells is also altered by aging. The intracellular signaling initiated by soluble proinflammatory mediators (e.g., IL1, IL6 and TNFα) is altered during aging and contributes to the development of both the inhibition of erythropoiesis with anemia as well as to the development of the acute-phase reaction as a systemic sign of inflammation with increased CRP levels. Both anemia and increased CRP levels are associated with decreased overall survival and increased cardiovascular mortality. The handling of elderly patients with inflammation and/or anemia should in our opinion be individualized; all of them should have a limited evaluation with regard to the cause of the abnormalities, but the extent of additional and especially invasive diagnostic evaluation should be based on an overall clinical evaluation and the possible therapeutic consequences.
Collapse
|