1
|
Miura D, Kato Y, Yasunaga M, Kumagai I, Asano R. Design of a prodrug bispecific antibody masked by a functional molecule for lymphocyte activation for cancer therapy. J Biol Eng 2025; 19:45. [PMID: 40375288 PMCID: PMC12079947 DOI: 10.1186/s13036-025-00517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
Although T cells engaging bispecific antibodies (T-bsAbs) have shown great benefits, their use in treating solid tumors is challenging because of the minimal infiltration of T-cells. We fused an agonistic single-chain variable fragment (scFv) that induces a T cell co-stimulatory signal to the T cell-binding domain of T-bsAb via a linker containing a cancer-specific protease recognition site. With this antibody format, unexpected cytotoxicity to the surrounding normal tissue would be reduced and tumor-specific T cell activation would occur. The scFv-masked T-bsAb was cleaved by collagenase with intrinsic cancer-specific protease activity, releasing agonistic scFv without unwanted fragmentation and restoring the binding ability of the scFv-masked bsAbs to T cells. Compared to the original bsAb, a detectable enhancement of the T cell proliferation and cancer cytotoxicity was observed after the incubation with collagenase or protease-secretory cancer cells, which was suggested to be due to the modest co-stimulation by the released agonistic scFv. Our results provide important insights into an ideal T-bsAb prodrug format, precisely engineered to reduce side effects and exert high cancer cytotoxicity for solid tumor precision medicine.
Collapse
Affiliation(s)
- Daimei Miura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Yuki Kato
- Department of Industrial Technology and Innovation, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Chiba, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan.
| |
Collapse
|
2
|
Naldi L, Peri A, Fibbi B. Apelin/APJ: Another Player in the Cancer Biology Network. Int J Mol Sci 2025; 26:2986. [PMID: 40243599 PMCID: PMC11988549 DOI: 10.3390/ijms26072986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The apelinergic system exerts multiple biological activities in human pathologies, including cancer. Overactivation of apelin/APJ, which has been detected in many malignant tumors, and the strong correlation with progression-free and overall survival, suggested the role of an oncogene for the apelin gene. Emerging evidence sheds new light on the effects of apelin on cellular functions and homeostasis in cancer cells and supports a direct role for this pathway on different hallmarks of cancer: "sustaining proliferative signaling", "resisting cell death", "activating invasion and metastasis", "inducing/accessing vasculature", "reprogramming cellular metabolism", "avoiding immune destruction" and "tumor-promoting inflammation", and "enabling replicative immortality". This article reviews the currently available literature on the intracellular processes regulated by apelin/APJ, focusing on those pathways correlated with tumor development and progression. Furthermore, the association between the activity of the apelinergic axis and the resistance of cancer cells to oncologic treatments (chemotherapy, immunotherapy, radiation) suggests apelin/APJ as a possible target to potentiate traditional therapies, as well as to develop diagnostic and prognostic applications. This issue will be also covered in the review.
Collapse
Affiliation(s)
- Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
3
|
Wan Z, Cui M, Yang J, Liao D, Chen J, Li F, Xiang Y, Cui Z, Yang Y. Prognostic significance of programmed cell death 1 expression on CD8+T cells in various cancers: a systematic review and meta-analysis. Front Oncol 2025; 14:1531219. [PMID: 39876901 PMCID: PMC11772205 DOI: 10.3389/fonc.2024.1531219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Background Increased PD-1 expression on CD8+ T cells is considered as a hallmark for T-cell exhaustion, and is thought to be related to the prognosis of cancer patients. However, discrepant results have made it difficult to apply PD-1+CD8+T cells and tumor prognosis to clinical practice. Therefore, we conducted a meta-analysis to evaluate its prognostic value in human cancers. Methods PRISMA reporting guidelines were strictly followed for conducting the current meta-analysis. The PubMed, Web of Science, Embase databases were searched from inception to November 2024. The pooled Hazard Ratio (HR) along with 95% confidence intervals (CIs) of each article were combined for the associations of PD-1+CD8+ T cells with overall survival (OS), progression- free survival (PFS) and disease-free survival(DFS). Subgroup analyses were performed for area, specimen type, cancer type, treatment, detected method and cancer stage. Results A total of 20 studies (23 cohorts, 3086 cancer patients) were included in our study. The expression PD-1+CD8+ T cells in cancer patients tended to predict poor overall survival (OS) (HR: 1.379, 95%CI: 1.084-1.753, p= 0.009), and unfavorable disease-free survival(DFS) (HR: 1.468, 95%CI: 0.931-2.316, p=0.099), though it did not reach statistical significance. Begg's and Egger's test demonstrated that no obvious publication bias was exist. Conclusions High PD-1 expression on CD8+ T cells is associated with worse survival outcomes, which can be potentially used as a prognostic marker of malignant tumor.
Collapse
Affiliation(s)
- Zhiyong Wan
- Department of General Practice, People’s Hospital of Leshan, Leshan, China
| | - Meng Cui
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Jia Yang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Dan Liao
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Junliang Chen
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Fanmin Li
- Department of General Practice, People’s Hospital of Leshan, Leshan, China
| | - Yin Xiang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Zhiwei Cui
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Yang Yang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| |
Collapse
|
4
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
5
|
Gerashchenko T, Frolova A, Patysheva M, Fedorov A, Stakheyeva M, Denisov E, Cherdyntseva N. Breast Cancer Immune Landscape: Interplay Between Systemic and Local Immunity. Adv Biol (Weinh) 2024; 8:e2400140. [PMID: 38727796 DOI: 10.1002/adbi.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is one of the most common malignancies in women worldwide. Numerous studies in immuno-oncology and successful trials of immunotherapy have demonstrated the causal role of the immune system in cancer pathogenesis. The interaction between the tumor and the immune system is known to have a dual nature. Despite cytotoxic lymphocyte activity against transformed cells, a tumor can escape immune surveillance and leverage chronic inflammation to maintain its own development. Research on antitumor immunity primarily focuses on the role of the tumor microenvironment, whereas the systemic immune response beyond the tumor site is described less thoroughly. Here, a comprehensive review of the formation of the immune profile in breast cancer patients is offered. The interplay between systemic and local immune reactions as self-sustaining mechanism of tumor progression is described and the functional activity of the main cell populations related to innate and adaptive immunity is discussed. Additionally, the interaction between different functional levels of the immune system and their contribution to the development of the pro- or anti-tumor immune response in BC is highlighted. The presented data can potentially inform the development of new immunotherapy strategies in the treatment of patients with BC.
Collapse
Affiliation(s)
- Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anastasia Frolova
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| | - Marina Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anton Fedorov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Marina Stakheyeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Nadezda Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| |
Collapse
|
6
|
Mélique S, Vadel A, Rouquié N, Yang C, Bories C, Cotineau C, Saoudi A, Fazilleau N, Lesourne R. THEMIS promotes T cell development and maintenance by rising the signaling threshold of the inhibitory receptor BTLA. Proc Natl Acad Sci U S A 2024; 121:e2318773121. [PMID: 38713628 PMCID: PMC11098085 DOI: 10.1073/pnas.2318773121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
The current paradigm about the function of T cell immune checkpoints is that these receptors switch on inhibitory signals upon cognate ligand interaction. We here revisit this simple switch model and provide evidence that the T cell lineage protein THEMIS enhances the signaling threshold at which the immune checkpoint BTLA (B- and T-lymphocyte attenuator) represses T cell responses. THEMIS is recruited to the cytoplasmic domain of BTLA and blocks its signaling capacity by promoting/stabilizing the oxidation of the catalytic cysteine of the tyrosine phosphatase SHP-1. In contrast, THEMIS has no detectable effect on signaling pathways regulated by PD-1 (Programmed cell death protein 1), which depend mainly on the tyrosine phosphatase SHP-2. BTLA inhibitory signaling is tuned according to the THEMIS expression level, making CD8+ T cells more resistant to BTLA-mediated inhibition than CD4+ T cells. In the absence of THEMIS, the signaling capacity of BTLA is exacerbated, which results in the attenuation of signals driven by the T cell antigen receptor and by receptors for IL-2 and IL-15, consequently hampering thymocyte positive selection and peripheral CD8+ T cell maintenance. By characterizing the pivotal role of THEMIS in restricting the transmission of BTLA signals, our study suggests that immune checkpoint operability is conditioned by intracellular signal attenuators.
Collapse
Affiliation(s)
- Suzanne Mélique
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Aurélie Vadel
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Nelly Rouquié
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Cui Yang
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Cyrielle Bories
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Coline Cotineau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Renaud Lesourne
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| |
Collapse
|
7
|
Bruss C, Albert V, Seitz S, Blaimer S, Kellner K, Pohl F, Ortmann O, Brockhoff G, Wege AK. Neoadjuvant radiotherapy in ER +, HER2 +, and triple-negative -specific breast cancer based humanized tumor mice enhances anti-PD-L1 treatment efficacy. Front Immunol 2024; 15:1355130. [PMID: 38742103 PMCID: PMC11089195 DOI: 10.3389/fimmu.2024.1355130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.
Collapse
Affiliation(s)
- Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Stephanie Blaimer
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Kerstin Kellner
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Fabian Pohl
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Department of Radiotherapy, University Medical Center Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Anja K. Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| |
Collapse
|
8
|
Oltmanns F, Vieira Antão A, Irrgang P, Viherlehto V, Jörg L, Schmidt A, Wagner JT, Rückert M, Flohr AS, Geppert CI, Frey B, Bayer W, Gravekamp C, Tenbusch M, Gaipl U, Lapuente D. Mucosal tumor vaccination delivering endogenous tumor antigens protects against pulmonary breast cancer metastases. J Immunother Cancer 2024; 12:e008652. [PMID: 38458636 PMCID: PMC10921546 DOI: 10.1136/jitc-2023-008652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Generally, early-stage breast cancer has a good prognosis. However, if it spreads systemically, especially with pulmonary involvement, prospects worsen dramatically. Importantly, tumor-infiltrating T cells contribute to tumor control, particularly intratumoral T cells with a tissue-resident memory phenotype are associated with an improved clinical outcome. METHODS Here, we use an adenoviral vector vaccine encoding endogenous tumor-associated antigens adjuvanted with interleukin-1β to induce tumor-specific tissue-resident memory T cells (TRM) in the lung for the prevention and treatment of pulmonary metastases in the murine 4T1 breast cancer model. RESULTS The mucosal delivery of the vaccine was highly efficient in establishing tumor-specific TRM in the lung. Concomitantly, a single mucosal vaccination reduced the growth of pulmonary metastases and improved the survival in a prophylactic treatment. Vaccine-induced TRM contributed to these protective effects. In a therapeutic setting, the vaccination induced a pronounced T cell infiltration into metastases but resulted in only a minor restriction of the disease progression. However, in combination with stereotactic radiotherapy, the vaccine increased the survival time and rate of tumor-bearing mice. CONCLUSION In summary, our study demonstrates that mucosal vaccination is a promising strategy to harness the power of antitumor TRM and its potential combination with state-of-the-art treatments.
Collapse
Affiliation(s)
- Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Vera Viherlehto
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Leticia Jörg
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ann-Sophie Flohr
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carol Imanuel Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Claudia Gravekamp
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Udo Gaipl
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Nicolini A, Ferrari P, Silvestri R, Gemignani F. The breast cancer tumor microenvironment and precision medicine: immunogenicity and conditions favoring response to immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:14-24. [PMID: 39036381 PMCID: PMC11256721 DOI: 10.1016/j.jncc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 07/23/2024] Open
Abstract
Some main recent researches that have dissected tumor microenvironment (TME) by imaging mass cytometry (IMC) in different subtypes of primary breast cancer samples were considered. The many phenotypic variants, clusters of epithelial tumor and immune cells, their structural features as well as the main genetic aberrations, sub-clonal heterogeneity and their systematic classification also have been examined. Mutational evolution has been assessed in primary and metastatic breast cancer samples. Overall, based on these findings the current concept of precision medicine is questioned and challenged by alternative therapeutic strategies. In the last two decades, immunotherapy as a powerful and harmless tool to fight cancer has received huge attention. Thus, the tumor immune microenvironment (TIME) composition, its prognostic role for clinical course as well as a novel definition of immunogenicity in breast cancer are proposed. Investigational clinical trials carried out by us and other findings suggest that G0-G1 state induced in endocrine-dependent metastatic breast cancer is more suitable for successful immune manipulation. Residual micro-metastatic disease seems to be another specific condition that can significantly favor the immune response in breast and other solid tumors.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
10
|
Tan J, Egelston CA, Guo W, Stark JM, Lee PP. STING signalling compensates for low tumour mutation burden to drive anti-tumour immunity. EBioMedicine 2024; 101:105035. [PMID: 38401418 PMCID: PMC10904200 DOI: 10.1016/j.ebiom.2024.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND While mutation-derived neoantigens are well recognized in generating anti-tumour T cell response, increasing evidences highlight the complex association between tumour mutation burden (TMB) and tumour infiltrating lymphocytes (TILs). The exploration of non-TMB determinants of active immune response could improve the prognosis prediction and provide guidance for current immunotherapy. METHODS The transcriptomic and whole exome sequence data in The Cancer Genome Atlas were used to examine the relationship between TMB and exhausted CD8+ T cells (Tex), as an indicator of tumour antigen-specific T cells across nine major cancer types. Computational clustering analysis was performed on 4510 tumours to identify different immune profiles. NanoString gene expression analysis and single cell RNA-seq analysis using fresh human breast cancer were performed for finding validation. FINDINGS TMB was found to be poorly correlated with active immune response in various cancer types. Patient clustering analysis revealed a group of tumours with abundant Tex but low TMB. In those tumours, we observed significantly higher expression of the stimulator of interferon genes (STING) signalling. Dendritic cells, particularly those of BATF3+ lineage, were also found to be essential for accumulation of Tex within tumours. Mechanistically, loss of genomic and cellular integrity, marked by decreased DNA damage repair, defective replication stress response, and increased apoptosis were shown to drive STING activation. INTERPRETATION These results highlight that TMB alone does not fully predict tumour immune profiles, with STING signalling compensating for low TMB in non-hypermutated tumours to enhance anti-tumour immunity. Translating these results, STING agonists may benefit patients with non-hypermutated tumours. STING activation may serve as an additional biomarker to predict response to immune checkpoint blockades alongside TMB. Our research also unravelled the interplay between genomic instability and STING activation, informing potential combined chemotherapy targeting the axis of genomic integrity and immunotherapy. FUNDING City of Hope Christopher Family Endowed Innovation Fund for Alzheimer's Disease and Breast Cancer Research in honor of Vineta Christopher; Breast Cancer Alliance Early Career Investigator Award; National Cancer Institute of the National Institutes of Health under award number R01CA256989 and R01CA240392.
Collapse
Affiliation(s)
- Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
11
|
Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y, Pu P, Shang T, Tang P, Zhou Y, Yang Y, Su J, Liu J. Biomarkers and experimental models for cancer immunology investigation. MedComm (Beijing) 2023; 4:e437. [PMID: 38045830 PMCID: PMC10693314 DOI: 10.1002/mco2.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.
Collapse
Affiliation(s)
- Hengyi Xu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Jia
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fengshuo Liu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiayi Li
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yansong Huang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiwen Jiang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengming Pu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tongxuan Shang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengrui Tang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongxin Zhou
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yufan Yang
- School of MedicineTsinghua UniversityBeijingChina
| | - Jianzhong Su
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Wei L, Zhang Y, Wang R, Liu S, Luo J, Ma Y, Wang H, Liu Y, Chen Y. Heteroantigen-assembled nanovaccine enhances the polyfunctionality of TILs against tumor growth and metastasis. Biomaterials 2023; 302:122297. [PMID: 37666102 DOI: 10.1016/j.biomaterials.2023.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
The dysfunction of tumor infiltrating lymphocytes (TILs) directly correlates with out of control of tumor growth and metastasis. New approaches and insightful clarity for rescuing TILs dysfunction are urgently needed. Here, we design two heterogenous antigens based on MHC-I epitope and MHC-II epitope from tumor, and assemble heterogenous antigens by electrostatic interactions and π-π stacking into heteroantigen-assembled nanovaccine (HANV). HANV not only significantly increases the abundance of CD8+ and CD4+ TILs, but also elicits stronger polyfunctionality of CD8+ and CD4+ TILs in vivo. Enhanced polyfunctionality of CD8+ and CD4+ TILs positively correlate to suppression of tumor growth and metastasis in melanoma-bearing mouse models. We also validate that nucleotide-binding oligomerization domain-containing protein 2 (NOD2) dominantly enhances anti-tumor capacity of TILs in a temporal immunoregulation manner. This work presents a new insight in developing HANV as a rational strategy to shape TILs polyfunctionality for tumor growth and metastasis.
Collapse
Affiliation(s)
- Liangnian Wei
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China; State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Ye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Ruixin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Shuai Liu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Yunfei Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100190, China; Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, 100190, China.
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
13
|
Cao Z, Xu D, Harding J, Chen W, Liu X, Wang Z, Wang L, Qi T, Chen S, Guo X, Chen ISY, Guo J, Lu Y, Wen J. Lactate oxidase nanocapsules boost T cell immunity and efficacy of cancer immunotherapy. Sci Transl Med 2023; 15:eadd2712. [PMID: 37820006 PMCID: PMC10720694 DOI: 10.1126/scitranslmed.add2712] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cancer immunotherapy has reshaped the landscape of cancer treatment. However, its efficacy is still limited by tumor immunosuppression associated with the excessive production of lactate by cancer cells. Although extensive efforts have been made to reduce lactate concentrations through inhibition of lactate dehydrogenase, such inhibitors disrupt the metabolism of healthy cells, causing severe nonspecific toxicity. We report herein a nanocapsule enzyme therapeutic based on lactate oxidase, which reduces lactate concentrations and releases immunostimulatory hydrogen peroxide, averting tumor immunosuppression and improving the efficacy of immune checkpoint blockade treatment. As demonstrated in a murine melanoma model and a humanized mouse model of triple-negative breast cancer, this enzyme therapeutic affords an effective tool toward more effective cancer immunotherapy.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Duo Xu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Jeffrey Harding
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Wenting Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Division of Nanomedicine, Department of Medicine, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Zi Wang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Tong Qi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Shilin Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Xinheng Guo
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Irvin SY Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Jimin Guo
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine; UCLA AIDS Institute, University of California Los Angeles; Los Angeles, CA 90095, USA CA 90095, USA
| |
Collapse
|
14
|
Baritaki S, Zaravinos A. Cross-Talks between RKIP and YY1 through a Multilevel Bioinformatics Pan-Cancer Analysis. Cancers (Basel) 2023; 15:4932. [PMID: 37894300 PMCID: PMC10605344 DOI: 10.3390/cancers15204932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies suggest that PEBP1 (also known as RKIP) and YY1, despite having distinct molecular functions, may interact and mutually influence each other's activity. They exhibit reciprocal control over each other's expression through regulatory loops, prompting the hypothesis that their interplay could be pivotal in cancer advancement and resistance to drugs. To delve into this interplay's functional characteristics, we conducted a comprehensive analysis using bioinformatics tools across a range of cancers. Our results confirm the association between elevated YY1 mRNA levels and varying survival outcomes in diverse tumors. Furthermore, we observed differing degrees of inhibitory or activating effects of these two genes in apoptosis, cell cycle, DNA damage, and other cancer pathways, along with correlations between their mRNA expression and immune infiltration. Additionally, YY1/PEBP1 expression and methylation displayed connections with genomic alterations across different cancer types. Notably, we uncovered links between the two genes and different indicators of immunosuppression, such as immune checkpoint blockade response and T-cell dysfunction/exclusion levels, across different patient groups. Overall, our findings underscore the significant role of the interplay between YY1 and PEBP1 in cancer progression, influencing genomic changes, tumor immunity, or the tumor microenvironment. Additionally, these two gene products appear to impact the sensitivity of anticancer drugs, opening new avenues for cancer therapy.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus
| |
Collapse
|
15
|
Zareinejad M, Mehdipour F, Roshan-Zamir M, Faghih Z, Ghaderi A. Dual Functions of T Lymphocytes in Breast Carcinoma: From Immune Protection to Orchestrating Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4771. [PMID: 37835465 PMCID: PMC10571747 DOI: 10.3390/cancers15194771] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type in women and the second leading cause of death. Despite recent advances, the mortality rate of BC is still high, highlighting a need to develop new treatment strategies including the modulation of the immune system and immunotherapies. In this regard, understanding the complex function of the involved immune cells and their crosstalk with tumor cells is of great importance. T-cells are recognized as the most important cells in the tumor microenvironment and are divided into several subtypes including helper, cytotoxic, and regulatory T-cells according to their transcription factors, markers, and functions. This article attempts to provide a comprehensive review of the role of T-cell subsets in the prognosis and treatment of patients with BC, and crosstalk between tumor cells and T-cells. The literature overwhelmingly contains controversial findings mainly due to the plasticity of T-cell subsets within the inflammatory conditions and the use of different panels for their phenotyping. However, investigating the role of T-cells in BC immunity depends on a variety of factors including tumor types or subtypes, the stage of the disease, the localization of the cells in the tumor tissue and the presence of different cells or cytokines.
Collapse
Affiliation(s)
| | | | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| |
Collapse
|
16
|
Qiu Y, Liao P, Wang H, Chen J, Hu Y, Hu R, Zhang H, Li Z, Cao M, Yang Y, Li M, Xie X, Li Y. Enhanced tumor immunotherapy by polyfunctional CD19-CAR T cells engineered to secrete anti-CD47 single-chain variable fragment. Int J Biol Sci 2023; 19:4948-4966. [PMID: 37781520 PMCID: PMC10539696 DOI: 10.7150/ijbs.86632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023] Open
Abstract
A high recurrence rate of non-Hodgkin's lymphoma (NHL) following chimeric antigen receptor T (CAR T) cell treatment remains a bottleneck, and immunosuppressive tumor microenvironment (TME) compromising CAR T cell efficacy in NHL is the primary cause of relapse. Accordingly, modifying the structure of CAR T cells to attenuate the inhibitory effect of TME thus reducing recurrence rate is a valuable research topic. CD47 has been proved to be a promising therapeutic target and is crucial in regulating macrophage function. Herein, we engineered CD19-CAR T cells to secrete an anti-CD47 single-chain variable fragment (scFv) and validated their function in enhancing antitumor efficacy, regulating T cells differentiation, modifying phagocytosis and polarization of macrophages by in vitro and in vivo researches. The efficacy was analogous or preferable to the combination of CAR T cells and CD47 antibody. Of note, anti-CD47 scFv secreting CAR T cells exert a more potent immune response following specific antigen stimulation compared with parental CAR T cells, characterized by more efficient degranulation and cytokine production with polyfunctionality. Furthermore, locally delivering anti-CD47 by CAR T cells potentially limits toxicities relevant to systemic antibody treatment. Collectively, our research provides a more effective and safer CAR T cell transformation method for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Zhongwei Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Manxiong Cao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Yulu Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, P. R. China
| |
Collapse
|
17
|
Leung ELH, Li RZ, Fan XX, Wang LY, Wang Y, Jiang Z, Huang J, Pan HD, Fan Y, Xu H, Wang F, Rui H, Wong P, Sumatoh H, Fehlings M, Nardin A, Gavine P, Zhou L, Cao Y, Liu L. Longitudinal high-dimensional analysis identifies immune features associating with response to anti-PD-1 immunotherapy. Nat Commun 2023; 14:5115. [PMID: 37607911 PMCID: PMC10444872 DOI: 10.1038/s41467-023-40631-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Response to immunotherapy widely varies among cancer patients and identification of parameters associating with favourable outcome is of great interest. Here we show longitudinal monitoring of peripheral blood samples of non-small cell lung cancer (NSCLC) patients undergoing anti-PD1 therapy by high-dimensional cytometry by time of flight (CyTOF) and Meso Scale Discovery (MSD) multi-cytokines measurements. We find that higher proportions of circulating CD8+ and of CD8+CD101hiTIM3+ (CCT T) subsets significantly correlate with poor clinical response to immune therapy. Consistently, CD8+ T cells and CCT T cell frequencies remain low in most responders during the entire multi-cycle treatment regimen; and higher killer cell lectin-like receptor subfamily G, member 1 (KLRG1) expression in CCT T cells at baseline associates with prolonged progression free survival. Upon in vitro stimulation, CCT T cells of responders produce significantly higher levels of cytokines, including IL-1β, IL-2, IL-8, IL-22 and MCP-1, than of non-responders. Overall, our results provide insights into the longitudinal immunological landscape underpinning favourable response to immune checkpoint blockade therapy in lung cancer patients.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China.
| | - Run-Ze Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong, China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa Macau (SAR), China
| | | | - Yan Wang
- Merck Sharp & Dohme, Shanghai, China
| | - Zebo Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa Macau (SAR), China
| | - Jumin Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa Macau (SAR), China
| | - Hu-Dan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong, China
| | - Yue Fan
- Janssen Research & Development, Shanghai, China
| | - Hongmei Xu
- Janssen Research & Development, Shanghai, China
| | - Feng Wang
- Janssen Research & Development, Shanghai, China
| | - Haopeng Rui
- Janssen Research & Development, Shanghai, China
| | - Piu Wong
- HiFiBio Therapeutics, Hongkong, China
| | | | | | | | - Paul Gavine
- Janssen Research & Development, Shanghai, China
| | - Longen Zhou
- Janssen Research & Development, Shanghai, China
| | | | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong, China.
| |
Collapse
|
18
|
Shen J, Du M, Liang S, Wang L, Bi J. Construction of a cuproptosis-associated lncRNA prognostic signature for bladder cancer and experimental validation of cuproptosis-related lncRNA UBE2Q1-AS1. Front Med (Lausanne) 2023; 10:1222543. [PMID: 37614950 PMCID: PMC10442536 DOI: 10.3389/fmed.2023.1222543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Bladder cancer (BLCA) is the ninth most common malignancy worldwide and the fourth most common cancer in men. Copper levels are significantly altered in patients with thyroid, breast, lung, cervical, ovarian, pancreatic, oral, gastric, bladder, and prostate cancers. Outcomes can be predicted by constructing signatures using lncRNA-related genes associated with outcomes. Methods We identified lncRNAs related to outcomes, those differentially expressed in bladder cancer, and cuproptosis-related lncRNAs from TCGA. We identified the intersection to obtain 12 genes and established a prognostic risk signature consisting of eight genes using LASSO-penalized multivariate Cox analysis. We constructed a training set, performed survival analysis on the high-and low-risk groups, and performed validation in the test and full sets. There existed a substantial contrast in the likelihood of survival among the cohorts of high and low risk. An in-depth analysis of the gene mutations associated with tumors was conducted to evaluate the risk of developing cancer. We also performed gene analysis on neoadjuvant chemotherapy. We conducted experimental validation on the key gene UBE2Q1-AS1 in our prognostic signature. Results The risk signature we constructed shows significant differences between the high-risk group and the low-risk group. Univariate survival analysis of the eight genes in our signature showed that each gene distinguished between high- and low-risk groups. Sub-group analysis revealed that our risk score differed significantly in tumor stage, age, and gender. The analysis results of the tumor mutation burden (TMB) showed a significant difference in the TMB between the low- and high-risk groups, which had a direct impact on the outcomes. These findings highlight the importance of TMB as a potential prognostic marker in cancer detection and prevention. We analyzed the immune microenvironment and found significant differences in immune function, validation responses, immunotherapy-related positive markers, and critical steps in the tumor immunity cycle between the high- and low-risk groups. We found that the effect of anti-CTLA4 and PD-1 was higher in the high-risk group than in the low-risk group.Gene analysis of neoadjuvant chemotherapy revealed that the treatment effect in the high-risk group was better than in the low-risk group. The key gene UBE2Q1-AS1 in our prognostic signature can significantly influence the cell viability, migration, and proliferation of cancer cells. Discussion We established a signature consisting of eight genes constructed from cuproptosis-related lncRNAs that have potential clinical applications for outcomes prediction, diagnosis, and treatment.
Collapse
Affiliation(s)
- Junlin Shen
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuang Liang
- Pharmacy Department, Hebei Medical University Third Hospital, Shijiazhuang, China
| | - Linhui Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Shin K, Kim J, Park SJ, Kim H, Lee MA, Kim O, Park J, Kang N, Kim IH. Early Increase in Circulating PD-1 +CD8 + T Cells Predicts Favorable Survival in Patients with Advanced Gastric Cancer Receiving Chemotherapy. Cancers (Basel) 2023; 15:3955. [PMID: 37568771 PMCID: PMC10417033 DOI: 10.3390/cancers15153955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The clinical significance of PD-1 expression in circulating CD8+ T cells in patients with gastric cancer (GC) receiving chemotherapy remains unelucidated. Therefore, we aimed to examine its prognostic significance in blood samples of 68 patients with advanced GC who received platinum-based chemotherapy. The correlation between peripheral blood mononuclear cells, measured using fluorescence-activated cell sorting, was evaluated. Patients were divided into two groups according to the changes in PD-1+CD8+ T-cell frequencies between day 0 and 7. They were categorized as increased or decreased PD-1+CD8+ T-cell groups. The increased PD-1+CD8+ T-cell group showed longer progression-free survival (PFS) and overall survival (OS) than the decreased PD-1+CD8+ T-cell group (PFS: 8.7 months vs. 6.1 months, p = 0.007; OS: 20.7 months vs. 10.8 months, p = 0.003). The mean duration of response was significantly different between the groups (5.7 months vs. 2.5 months, p = 0.041). Multivariate analysis revealed that an increase in PD-1+CD8+ T-cell frequency was an independent prognostic factor. We concluded that the early increase in PD-1+CD8+ T-cell frequency is a potential predictor of favorable prognoses and durable responses in patients with advanced GC receiving chemotherapy.
Collapse
Affiliation(s)
- Kabsoo Shin
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Joori Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Se Jun Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Hyunho Kim
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Myung Ah Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Okran Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Juyeon Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Nahyeon Kang
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| |
Collapse
|
20
|
Shibamiya A, Miyamoto-Nagai Y, Koide S, Oshima M, Rizq O, Aoyama K, Nakajima-Takagi Y, Kato R, Kayamori K, Isshiki Y, Oshima-Hasegawa N, Muto T, Tsukamoto S, Takeda Y, Koyama-Nasu R, Chiba T, Honda H, Yokote K, Iwama A, Sakaida E, Mimura N. The pathogenetic significance of exhausted T cells in a mouse model of mature B cell neoplasms. Cancer Immunol Immunother 2023; 72:2635-2648. [PMID: 37069353 DOI: 10.1007/s00262-023-03447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Dysfunctional anti-tumor immunity has been implicated in the pathogenesis of mature B cell neoplasms, such as multiple myeloma and B cell lymphoma; however, the impact of exhausted T cells on disease development remains unclear. Therefore, the present study investigated the features and pathogenetic significance of exhausted T cells using a mouse model of de novo mature B cell neoplasms, which is likely to show immune escape similar to human patients. The results revealed a significant increase in PD-1+ Tim-3- and PD-1+ Tim-3+ T cells in sick mice. Furthermore, PD-1+ Tim-3+ T cells exhibited direct cytotoxicity with a short lifespan, showing transcriptional similarities to terminally exhausted T cells. On the other hand, PD-1+ Tim-3- T cells not only exhibited immunological responsiveness but also retained stem-like transcriptional features, suggesting that they play a role in the long-term maintenance of anti-tumor immunity. In PD-1+ Tim-3- and PD-1+ Tim-3+ T cells, the transcription factors Tox and Nr4a2, which reportedly contribute to the progression of T cell exhaustion, were up-regulated in vivo. These transcription factors were down-regulated by IMiDs in our in vitro T cell exhaustion analyses. The prevention of excessive T cell exhaustion may maintain effective anti-tumor immunity to cure mature B cell neoplasms.
Collapse
Affiliation(s)
- Asuka Shibamiya
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ola Rizq
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazumasa Aoyama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rei Kato
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Kensuke Kayamori
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Yusuke Isshiki
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Nagisa Oshima-Hasegawa
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Tomoya Muto
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | | | - Yusuke Takeda
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Ryo Koyama-Nasu
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Experimental-Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Naoya Mimura
- Department of Hematology, Chiba University Hospital, Chiba, Japan.
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan.
| |
Collapse
|
21
|
Liu W, Deng W, Chen M, Dong Z, Zhu B, Yu Z, Tang D, Sauler M, Lin C, Wain LV, Cho MH, Kaminski N, Zhao H. A statistical framework to identify cell types whose genetically regulated proportions are associated with complex diseases. PLoS Genet 2023; 19:e1010825. [PMID: 37523391 PMCID: PMC10414598 DOI: 10.1371/journal.pgen.1010825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/10/2023] [Accepted: 06/12/2023] [Indexed: 08/02/2023] Open
Abstract
Finding disease-relevant tissues and cell types can facilitate the identification and investigation of functional genes and variants. In particular, cell type proportions can serve as potential disease predictive biomarkers. In this manuscript, we introduce a novel statistical framework, cell-type Wide Association Study (cWAS), that integrates genetic data with transcriptomics data to identify cell types whose genetically regulated proportions (GRPs) are disease/trait-associated. On simulated and real GWAS data, cWAS showed good statistical power with newly identified significant GRP associations in disease-associated tissues. More specifically, GRPs of endothelial and myofibroblasts in lung tissue were associated with Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease, respectively. For breast cancer, the GRP of blood CD8+ T cells was negatively associated with breast cancer (BC) risk as well as survival. Overall, cWAS is a powerful tool to reveal cell types associated with complex diseases mediated by GRPs.
Collapse
Affiliation(s)
- Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Wenxuan Deng
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Ming Chen
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Zihan Dong
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Zhaolong Yu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Daiwei Tang
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Chen Lin
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
22
|
Hu G, Xiao Y, Ma C, Wang J, Qian X, Wu X, Zhu F, Sun S, Qian J. Lumican is a potential predictor on the efficacy of concurrent chemoradiotherapy in cervical squamous cell carcinoma. Heliyon 2023; 9:e18011. [PMID: 37483824 PMCID: PMC10362307 DOI: 10.1016/j.heliyon.2023.e18011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose To identify new novel biomarkers for predicting the efficacy of concurrent chemoradiotherapy(CCRT) in cervical squamous cell carcinoma(CESC). Methods Gene expression datasets GSE56363, GSE5787, and GSE168009 were analyzed to identify candidate genes to predict the efficacy of CCRT in CESC. Single-cell RNA sequencing (scRNA-seq) data from GSE168652 and CESC patients in The Cancer Genome Atlas(TCGA) were systematically analyzed to explore possible molecular mechanisms. Kaplan-Meier evaluated the correlation between LUM (Lumican) and prognostic significance. The expression of LUM protein in biopsy tissues before CCRT was detected by immunohistochemistry in 15 CESC patients. Results LUM mRNA levels were significantly upregulated in nonresponders of CESC.patients receiving CCRT and positively correlated with poor therapeutic effect. Furthermore, high expression of LUM influenced the immune microenvironment in CESC patient-derived organoids treated with CCRT. LUM overexpression in CESC cells induced resistance to CCRT, potentially via immune landscape modulation. Gene Set Enrichment Analysis (GSEA) revealed that possible mechanisms underlying resistance to CCRT might involve the PARs and IL1 signaling pathway affecting the immune landscape. Conclusions High LUM expression is correlated with poor efficacy in CESC patients receiving CCRT, possibly through the PARs and IL1 signaling pathway affecting the immune landscape.
Collapse
Affiliation(s)
- Ge Hu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Ying Xiao
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, PR China
| | - Chanchan Ma
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230031, PR China
| | - Jinyun Wang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Xiaotao Qian
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Xiaowei Wu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Fengqin Zhu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Shiying Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230031, PR China
| | - Junchao Qian
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| |
Collapse
|
23
|
Song F, Wang CG, Mao JZ, Wang TL, Liang XL, Hu CW, Zhang Y, Han L, Chen Z. PANoptosis-based molecular subtyping and HPAN-index predicts therapeutic response and survival in hepatocellular carcinoma. Front Immunol 2023; 14:1197152. [PMID: 37398672 PMCID: PMC10311484 DOI: 10.3389/fimmu.2023.1197152] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly prevalent and fatal cancer. The role of PANoptosis, a novel form of programmed cell death, in HCC is yet to be fully understood. This study focuses on identifying and analyzing PANoptosis-associated differentially expressed genes in HCC (HPAN_DEGs), aiming to enhance our understanding of HCC pathogenesis and potential treatment strategies. Methods We analyzed HCC differentially expressed genes from TCGA and IGCG databases and mapped them to the PANoptosis gene set, identifying 69 HPAN_DEGs. These genes underwent enrichment analyses, and consensus clustering analysis was used to determine three distinct HCC subgroups based on their expression profiles. The immune characteristics and mutation landscape of these subgroups were evaluated, and drug sensitivity was predicted using the HPAN-index and relevant databases. Results The HPAN_DEGs were mainly enriched in pathways associated with the cell cycle, DNA damage, Drug metabolism, Cytokines, and Immune receptors. We identified three HCC subtypes (Cluster_1, SFN+PDK4-; Cluster_2, SFN-PDK4+; Cluster_3, SFN/PDK4 intermediate expression) based on the expression profiles of the 69 HPAN_DEGs. These subtypes exhibited distinct clinical outcomes, immune characteristics, and mutation landscapes. The HPAN-index, generated by machine learning using the expression levels of 69 HPAN_DEGs, was identified as an independent prognostic factor for HCC. Moreover, the high HPAN-index group exhibited a high response to immunotherapy, while the low HPAN-index group showed sensitivity to small molecule targeted drugs. Notably, we observed that the YWHAB gene plays a significant role in Sorafenib resistance. Conclusion This study identified 69 HPAN_DEGs crucial to tumor growth, immune infiltration, and drug resistance in HCC. Additionally, we discovered three distinct HCC subtypes and constructed an HPAN-index to predict immunotherapeutic response and drug sensitivity. Our findings underscore the role of YWHAB in Sorafenib resistance, presenting valuable insights for personalized therapeutic strategy development in HCC.
Collapse
Affiliation(s)
- Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Cheng-Gui Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jia-Zhen Mao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Tian-Lun Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiao-Liang Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen-Wei Hu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Lu Han
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
24
|
Mabrouk N, Racoeur C, Shan J, Massot A, Ghione S, Privat M, Dondaine L, Ballot E, Truntzer C, Boidot R, Hermetet F, Derangère V, Bruchard M, Végran F, Chouchane L, Ghiringhelli F, Bettaieb A, Paul C. GTN Enhances Antitumor Effects of Doxorubicin in TNBC by Targeting the Immunosuppressive Activity of PMN-MDSC. Cancers (Basel) 2023; 15:3129. [PMID: 37370739 DOI: 10.3390/cancers15123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Immunosuppression is a key barrier to effective anti-cancer therapies, particularly in triple-negative breast cancer (TNBC), an aggressive and difficult to treat form of breast cancer. We investigated here whether the combination of doxorubicin, a standard chemotherapy in TNBC with glyceryltrinitrate (GTN), a nitric oxide (NO) donor, could overcome chemotherapy resistance and highlight the mechanisms involved in a mouse model of TNBC. (2) Methods: Balb/C-bearing subcutaneous 4T1 (TNBC) tumors were treated with doxorubicin (8 mg/Kg) and GTN (5 mg/kg) and monitored for tumor growth and tumor-infiltrating immune cells. The effect of treatments on MDSCs reprogramming was investigated ex vivo and in vitro. (3) Results: GTN improved the anti-tumor efficacy of doxorubicin in TNBC tumors. This combination increases the intra-tumor recruitment and activation of CD8+ lymphocytes and dampens the immunosuppressive function of PMN-MDSCs PD-L1low. Mechanistically, in PMN-MDSC, the doxorubicin/GTN combination reduced STAT5 phosphorylation, while GTN +/- doxorubicin induced a ROS-dependent cleavage of STAT5 associated with a decrease in FATP2. (4) Conclusion: We have identified a new combination enhancing the immune-mediated anticancer therapy in a TNBC mouse model through the reprograming of PMN-MDSCs towards a less immunosuppressive phenotype. These findings prompt the testing of GTN combined with chemotherapies as an adjuvant in TNBC patients experiencing treatment failure.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Cindy Racoeur
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Aurélie Massot
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Malorie Privat
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Lucile Dondaine
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Elise Ballot
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
| | - Caroline Truntzer
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Georges-François Leclerc Cancer Center-UNICANCER, CNRS UMR 6302, 21000 Dijon, France
| | | | - Valentin Derangère
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Mélanie Bruchard
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Frédérique Végran
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Lotfi Chouchane
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - François Ghiringhelli
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| |
Collapse
|
25
|
Onkar S, Cui J, Zou J, Cardello C, Cillo AR, Uddin MR, Sagan A, Joy M, Osmanbeyoglu HU, Pogue-Geile KL, McAuliffe PF, Lucas PC, Tseng GC, Lee AV, Bruno TC, Oesterreich S, Vignali DAA. Immune landscape in invasive ductal and lobular breast cancer reveals a divergent macrophage-driven microenvironment. NATURE CANCER 2023; 4:516-534. [PMID: 36927792 PMCID: PMC11194444 DOI: 10.1038/s43018-023-00527-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
T cell-centric immunotherapies have shown modest clinical benefit thus far for estrogen receptor-positive (ER+) breast cancer. Despite accounting for 70% of all breast cancers, relatively little is known about the immunobiology of ER+ breast cancer in women with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). To investigate this, we performed phenotypic, transcriptional and functional analyses for a cohort of treatment-naive IDC (n = 94) and ILC (n = 87) tumors. We show that macrophages, and not T cells, are the predominant immune cells infiltrating the tumor bed and the most transcriptionally diverse cell subset between IDC and ILC. Analysis of cellular neighborhoods revealed an interplay between macrophages and T cells associated with longer disease-free survival in IDC but not ILC. Our datasets provide a rich resource for further interrogation into immune cell dynamics in ER+ IDC and ILC and highlight macrophages as a potential target for ER+ breast cancer.
Collapse
Affiliation(s)
- Sayali Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jian Zou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mostofa Rafid Uddin
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - April Sagan
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Marion Joy
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- NSABP Foundation, Pittsburgh, PA, USA
| | - Hatice U Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Priscilla F McAuliffe
- Section of Breast Surgery, Division of Surgical Oncology, Department of Surgery, University of Pittsburgh College of Medicine, Magee Women's Hospital of UPMC, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter C Lucas
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- NSABP Foundation, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
30-color full spectrum flow cytometry panel for deep immunophenotyping of T cell subsets in murine tumor tissue. J Immunol Methods 2023; 516:113459. [PMID: 36931458 DOI: 10.1016/j.jim.2023.113459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
This 30-color full spectrum flow cytometry panel was developed and optimized for in-depth analysis T cells immunophenotype in tumor microenvironment and peripheral lymphoid organs. The panel presented here first identify the main cell subsets including myeloid cells, B cells, NKT cells, γδ T cells, CD4+ T cells and CD8+ T cells. For CD4+ T cells or CD8+ T cells, the panel includes markers for further characterization by including a selection of activation status(CD44, CD62L, CD69, Ki67, CD127, KLRG1 and CXCR3), costimulatory/co-inhibitory molecules (ICOS, OX-40, PD-1, LAG3, TIM-3, CTLA-4 and TIGIT), pro-inflammatory/anti-inflammatory cytokines (IFN-γ, TNF-α and IL-10) and cytotoxic molecules (Perforin, Granzymes B and CD107a). The panel has been tested on the tumor infiltrating T cells and corresponding spleen T cells in B16-F10 murine melanoma models.
Collapse
|
27
|
Post CM, Myers JR, Winans B, Lawrence BP. Postnatal administration of S-adenosylmethionine restores developmental AHR activation-induced deficits in CD8+ T cell function during influenza A virus infection. Toxicol Sci 2023; 192:kfad019. [PMID: 36847456 PMCID: PMC10109536 DOI: 10.1093/toxsci/kfad019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Developmental exposures can influence life-long health; yet, counteracting negative consequences is challenging due to poor understanding of cellular mechanisms. The aryl hydrocarbon receptor (AHR) binds many small molecules, including numerous pollutants. Developmental exposure to the signature environmental AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) significantly dampens adaptive immune responses to influenza A virus (IAV) in adult offspring. CD8+ cytotoxic T lymphocytes (CTL) are crucial for successful infection resolution, which depends on the number generated and the complexity of their functionality. Prior studies showed developmental AHR activation significantly reduced the number of virus-specific CD8+ T cells, but impact on their functions is less clear. Other studies showed developmental exposure was associated with differences in DNA methylation in CD8+ T cells. Yet, empirical evidence that differences in DNA methylation are causally related to altered CD8+ T cell function is lacking. The two objectives were to ascertain whether developmental AHR activation affects CTL function, and whether differences in methylation contribute to reduced CD8+ T cell responses to infection. Developmental AHR triggering significantly reduced CTL polyfunctionality, and modified the transcriptional program of CD8+ T cells. S-adenosylmethionine (SAM), which increases DNA methylation, but not Zebularine, which diminishes DNA methylation, restored polyfunctionality and boosted the number of virus-specific CD8+ T cells. These findings suggest that diminished methylation, initiated by developmental exposure to an AHR-binding chemical, contributes to durable changes in antiviral CD8+ CTL functions later in life. Thus, deleterious consequence of development exposure to environmental chemicals are not permanently fixed, opening the door for interventional strategies to improve health.
Collapse
Affiliation(s)
- Christina M Post
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
28
|
Dean JW, Helm EY, Fu Z, Xiong L, Sun N, Oliff KN, Muehlbauer M, Avram D, Zhou L. The aryl hydrocarbon receptor cell intrinsically promotes resident memory CD8 + T cell differentiation and function. Cell Rep 2023; 42:111963. [PMID: 36640340 PMCID: PMC9940759 DOI: 10.1016/j.celrep.2022.111963] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
The Aryl hydrocarbon receptor (Ahr) regulates the differentiation and function of CD4+ T cells; however, its cell-intrinsic role in CD8+ T cells remains elusive. Herein we show that Ahr acts as a promoter of resident memory CD8+ T cell (TRM) differentiation and function. Genetic ablation of Ahr in mouse CD8+ T cells leads to increased CD127-KLRG1+ short-lived effector cells and CD44+CD62L+ T central memory cells but reduced granzyme-B-producing CD69+CD103+ TRM cells. Genome-wide analyses reveal that Ahr suppresses the circulating while promoting the resident memory core gene program. A tumor resident polyfunctional CD8+ T cell population, revealed by single-cell RNA-seq, is diminished upon Ahr deletion, compromising anti-tumor immunity. Human intestinal intraepithelial CD8+ T cells also highly express AHR that regulates in vitro TRM differentiation and granzyme B production. Collectively, these data suggest that Ahr is an important cell-intrinsic factor for CD8+ T cell immunity.
Collapse
Affiliation(s)
- Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Zheng Fu
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Na Sun
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Kristen N Oliff
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Marcus Muehlbauer
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Dorina Avram
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
29
|
Shi L, Lu J, Zhong D, Song M, Liu J, You W, Li WH, Lin L, Shi D, Chen Y. Clinicopathological and predictive value of MAIT cells in non-small cell lung cancer for immunotherapy. J Immunother Cancer 2023; 11:jitc-2022-005902. [PMID: 36657812 PMCID: PMC9853268 DOI: 10.1136/jitc-2022-005902] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Immune-checkpoint inhibitors (ICIs) remain ineffective in a large group of non-small cell lung cancer (NSCLC) patients. Mucosal-associated invariant T (MAIT) cells, a population of unconventional innate-like T lymphocytes abundant in the human body, play important roles in human malignancies. Little is known about the immune characteristics of MAIT cells in NSCLC and correlation with prognosis and response rate of ICIs treatment. METHODS To investigate the distribution, activation status, and function of MAIT cells in NSCLC patients and their correlations with anti-PD-1 immunotherapy, MAIT cells in peripheral blood, tumor and paratumor samples from NSCLC patients with or without anti-PD-1 immunotherapy were analyzed using flow cytometry and single-cell RNA-sequencing. RESULTS MAIT cells were enriched in the tumor lesions of NSCLC patients migrating from peripheral blood via the CCR6-CCL20 axis. Both peripheral and tumor-infiltrating MAIT cells displayed an exhausted phenotype with upregulated PD-1, TIM-3, and IL-17A while less IFN-γ. Anti-PD-1 therapy reversed the function of circulating MAIT cells with higher expression of IFN-γ and granzyme B. Subcluster MAIT-17s (defined as cells highly expressing exhausted and Th17-related genes) mainly infiltrated in the non-responsive tissues, while the subcluster MAIT-IFNGRs (cells expressing genes related to cytotoxic function) were mainly enriched in responsive tissues. Moreover, we found predictive value of circulating MAIT cells for anti-PD-1 immunotherapy in NSCLC patients. CONCLUSIONS MAIT cells shifted to an exhausted tumor-promoting phenotype in NSCLC patients and the circulating MAIT subset could be a predictor for patients who respond to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Lin Shi
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China,Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jinying Lu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Da Zhong
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Meijuan Song
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Liu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhua You
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wen-Hui Li
- Department of Hepatobiliary Surgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, The Third People’s Hospital of Yancheng, Yancheng, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongyan Shi
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China,Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Hudson WH, Wieland A. Technology meets TILs: Deciphering T cell function in the -omics era. Cancer Cell 2023; 41:41-57. [PMID: 36206755 PMCID: PMC9839604 DOI: 10.1016/j.ccell.2022.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
T cells are at the center of cancer immunology because of their ability to recognize mutations in tumor cells and directly mediate cancer cell killing. Immunotherapies to rejuvenate exhausted T cell responses have transformed the clinical management of several malignancies. In parallel, the development of novel multidimensional analysis platforms, such as single-cell RNA sequencing and high-dimensional flow cytometry, has yielded unprecedented insights into immune cell biology. This convergence has revealed substantial heterogeneity of tumor-infiltrating immune cells in single tumors, across tumor types, and among individuals with cancer. Here we discuss the opportunities and challenges of studying the complex tumor microenvironment with -omics technologies that generate vast amounts of data, highlighting the opportunities and limitations of these technologies with a particular focus on interpreting high-dimensional studies of CD8+ T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- William H Hudson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Tietscher S, Wagner J, Anzeneder T, Langwieder C, Rees M, Sobottka B, de Souza N, Bodenmiller B. A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer. Nat Commun 2023; 14:98. [PMID: 36609566 PMCID: PMC9822999 DOI: 10.1038/s41467-022-35238-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/24/2022] [Indexed: 01/09/2023] Open
Abstract
Immune checkpoint therapy in breast cancer remains restricted to triple negative patients, and long-term clinical benefit is rare. The primary aim of immune checkpoint blockade is to prevent or reverse exhausted T cell states, but T cell exhaustion in breast tumors is not well understood. Here, we use single-cell transcriptomics combined with imaging mass cytometry to systematically study immune environments of human breast tumors that either do or do not contain exhausted T cells, with a focus on luminal subtypes. We find that the presence of a PD-1high exhaustion-like T cell phenotype is associated with an inflammatory immune environment with a characteristic cytotoxic profile, increased myeloid cell activation, evidence for elevated immunomodulatory, chemotactic, and cytokine signaling, and accumulation of natural killer T cells. Tumors harboring exhausted-like T cells show increased expression of MHC-I on tumor cells and of CXCL13 on T cells, as well as altered spatial organization with more immature rather than mature tertiary lymphoid structures. Our data reveal fundamental differences between immune environments with and without exhausted T cells within luminal breast cancer, and show that expression of PD-1 and CXCL13 on T cells, and MHC-I - but not PD-L1 - on tumor cells are strong distinguishing features between these environments.
Collapse
Affiliation(s)
- Sandra Tietscher
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Johanna Wagner
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | | | | | | | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland. .,Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Castoldi A, Lee J, de Siqueira Carvalho D, Souto FO. CD8 + T cell metabolic changes in breast cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166565. [PMID: 36220587 DOI: 10.1016/j.bbadis.2022.166565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Immunometabolism has advanced our understanding of how the cellular environment and nutrient availability regulates immune cell fate. Not only are metabolic pathways closely tied to cell signaling and differentiation, but can induce different subsets of immune cells to adopt unique metabolic programs, influencing disease progression. Dysregulation of immune cell metabolism plays an essential role in the progression of several diseases including breast cancer (BC). Metabolic reprogramming plays a critical role in regulating T cell functions. CD8+ T cells are an essential cell type within the tumor microenvironment (TME). To induce antitumor responses, CD8+ T cells need to adapt their metabolism to fulfill their energy requirement for effective function. However, different markers and immunologic techniques have made identifying specific CD8+ T cells subtypes in BC a challenge to the field. This review discusses the immunometabolic processes of CD8+ T cell in the TME in the context of BC and highlights the role of CD8+ T cell metabolic changes in tumor progression.
Collapse
Affiliation(s)
- Angela Castoldi
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Brazil; Programa de Pós-Graduação em Biologia Aplicada à Saúde, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | - Fabrício Oliveira Souto
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Brazil; Programa de Pós-Graduação em Biologia Aplicada à Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
33
|
Mokhtari Z, Rezaei M, Sanei MH, Dehghanian A, Faghih Z, Heidari Z, Tavana S. Tim3 and PD-1 as a therapeutic and prognostic targets in colorectal cancer: Relationship with sidedness, clinicopathological parameters, and survival. Front Oncol 2023; 13:1069696. [PMID: 37035199 PMCID: PMC10076872 DOI: 10.3389/fonc.2023.1069696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous disease that complicates predicting patients' prognosis and their response to treatment. CRC prognosis is influenced by the tumor microenvironment (TME). The immune system is a critical component of the TME. Programmed cell death receptor 1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (Tim3) are inhibitory immune checkpoints that regulate immune response and may provide prognostic power. However, the effect of their expressions and co-expressions on the CRC prognosis remains unclear. Accordingly, this study aimed to investigate the prognostic value of the CD8, CD3, PD-1, Tim3 expression, and PD-1/Tim3 co-expression in patients with CRC. Materials and Methods One hundred and thirty six patients with CRC who underwent curative surgery were enrolled in the study. Immunohistochemical staining was performed for PD-1, Tim3, CD8, and CD3, and the expression of each marker was evaluated in the center of the tumor (CT), invasive margin (IM), and adjacent normal-like tissue. Result Our results indicated that high expression of PD-1 in IM was significantly associated with lower TNM stage, T-stage, M-stage, lack of metastasis, the presence of tertiary lymphoid structure (TLS), lack of recurrence (in the left-sided tumors), and larger tumor size (in right-sided tumors) (P<0.05). High expression of PD-1 in IM was also associated with improved overall survival (OS) in a subgroup of patients with high CD8 expression. High Tim3 expression in CT was associated with higher M-stage (M1) (in left-sided CRCs) (P<0.05). It was also associated with decreased OS in total cohort and left-sided CRCs and represented an independent prognostic factor for CRC patients in multivariate analysis. PD-1 and Tim3 co-expression had no synergistic effects on predicting OS. Conclusion Our findings suggest that the clinicopathological and prognostic significance of immune system-related markers such as CD8, PD-1, and Tim3 depends on the primary tumor sides. We also showed that Tim3 could act as a prognostic factor and therapeutic target in CRC. This marker is probably a more preferred target for immunotherapy than PD-1, especially in left-sided CRCs.
Collapse
Affiliation(s)
- Zahra Mokhtari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Marzieh Rezaei,
| | - Mohammad Hossein Sanei
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirreza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Zahra Faghih
- Institute for Cancer Research (ICR), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Heidari
- Department of Biostatistics & Epidemiologyt, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Tavana
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Ma Y, Su H, Wang X, Niu X, Che Y, Hambly BD, Bao S, Wang X. The role of IL-35 and IL-37 in breast cancer - potential therapeutic targets for precision medicine. Front Oncol 2022; 12:1051282. [PMID: 36483045 PMCID: PMC9723453 DOI: 10.3389/fonc.2022.1051282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023] Open
Abstract
Breast cancer is still a major concern due to its relatively poor prognosis in women, although there are many approaches being developed for the management of breast cancer. Extensive studies demonstrate that the development of breast cancer is determined by pro versus anti tumorigenesis factors, which are closely related to host immunity. IL-35 and IL-37, anti-inflammatory cytokines, play an important role in the maintenance of immune homeostasis. The current review focuses on the correlation between clinical presentations and the expression of IL-35 and IL-37, as well as the potential underlying mechanism during the development of breast cancer in vitro and in vivo. IL-35 is inversely correlated the differentiation and prognosis in breast cancer patients; whereas IL-37 shows dual roles during the development of breast cancer, and may be breast cancer stage dependent. Such information might be useful for both basic scientists and medical practitioners in the management of breast cancer patients.
Collapse
Affiliation(s)
- Yuntao Ma
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - He Su
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xuyun Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiangdong Niu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yang Che
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Brett D Hambly
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Shisan Bao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaopeng Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
35
|
Vlaming M, Bilemjian V, Freile JÁ, Melo V, Plat A, Huls G, Nijman H, de Bruyn M, Bremer E. Tumor infiltrating CD8/CD103/TIM-3-expressing lymphocytes in epithelial ovarian cancer co-express CXCL13 and associate with improved survival. Front Immunol 2022; 13:1031746. [DOI: 10.3389/fimmu.2022.1031746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Reactivation of tumor infiltrating T lymphocytes (TILs) with immune checkpoint inhibitors or co-stimulators has proven to be an effective anti-cancer strategy for a broad range of malignancies. However, epithelial ovarian cancer (EOC) remains largely refractory to current T cell-targeting immunotherapeutics. Therefore, identification of novel immune checkpoint targets and biomarkers with prognostic value for EOC is warranted. Combining multicolor immunofluorescent staining’s with single cell RNA-sequencing analysis, we here identified a TIM-3/CXCL13-positive tissue-resident memory (CD8/CD103-positive) T cell (Trm) population in EOC. Analysis of a cohort of ~175 patients with high-grade serous EOC revealed TIM-3-positive Trm were significantly associated with improved patient survival. As CXCL13-positive CD8-positive T cells have been strongly linked to patient response to anti-PD1 immune checkpoint blockade, combinatorial TIM-3 and PD-1 blockade therapy may be of interest for the (re)activation of anti-cancer immunity in EOC.
Collapse
|
36
|
Wong HY, Sheng Q, Hesterberg AB, Croessmann S, Rios BL, Giri K, Jackson J, Miranda AX, Watkins E, Schaffer KR, Donahue M, Winkler E, Penson DF, Smith JA, Herrell SD, Luckenbaugh AN, Barocas DA, Kim YJ, Graves D, Giannico GA, Rathmell JC, Park BH, Gordetsky JB, Hurley PJ. Single cell analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental pathways of aggressive disease. Nat Commun 2022; 13:6036. [PMID: 36229464 PMCID: PMC9562361 DOI: 10.1038/s41467-022-33780-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Cribriform prostate cancer, found in both invasive cribriform carcinoma (ICC) and intraductal carcinoma (IDC), is an aggressive histological subtype that is associated with progression to lethal disease. To delineate the molecular and cellular underpinnings of ICC/IDC aggressiveness, this study examines paired ICC/IDC and benign prostate surgical samples by single-cell RNA-sequencing, TCR sequencing, and histology. ICC/IDC cancer cells express genes associated with metastasis and targets with potential for therapeutic intervention. Pathway analyses and ligand/receptor status model cellular interactions among ICC/IDC and the tumor microenvironment (TME) including JAG1/NOTCH. The ICC/IDC TME is hallmarked by increased angiogenesis and immunosuppressive fibroblasts (CTHRC1+ASPN+FAP+ENG+) along with fewer T cells, elevated T cell dysfunction, and increased C1QB+TREM2+APOE+-M2 macrophages. These findings support that cancer cell intrinsic pathways and a complex immunosuppressive TME contribute to the aggressive phenotype of ICC/IDC. These data highlight potential therapeutic opportunities to restore immune signaling in patients with ICC/IDC that may afford better outcomes.
Collapse
Affiliation(s)
- Hong Yuen Wong
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda B Hesterberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Croessmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brenda L Rios
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Khem Giri
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jorgen Jackson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam X Miranda
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan Watkins
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kerry R Schaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Meredith Donahue
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Winkler
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David F Penson
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph A Smith
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Duke Herrell
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy N Luckenbaugh
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel A Barocas
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young J Kim
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Diana Graves
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giovanna A Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
| | - Ben H Park
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Jennifer B Gordetsky
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paula J Hurley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
37
|
Pomatto-Watson LCD, Bodogai M, Carpenter M, Chowdhury D, Krishna P, Ng S, Bosompra O, Kato J, Wong S, Reyes-Sepulveda C, Bernier M, Price NL, Biragyn A, de Cabo R. Replenishment of myeloid-derived suppressor cells (MDSCs) overrides CR-mediated protection against tumor growth in a murine model of triple-negative breast cancer. GeroScience 2022; 44:2471-2490. [PMID: 35996062 PMCID: PMC9768076 DOI: 10.1007/s11357-022-00635-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 01/06/2023] Open
Abstract
Caloric restriction (CR) is the leading non-pharmacological intervention to delay induced and spontaneous tumors in pre-clinical models. These effects of CR are largely attributed to canonical inhibition of pro-growth pathways. However, our recent data suggest that CR impairs primary tumor growth and cancer progression in the murine 4T1 model of triple negative breast cancer (TNBC), at least in part, through reduced frequency of the myeloid-derived suppressor cells (MDSC). In the present study, we sought to determine whether injection of excess MDSCs could block regression in 4T1 tumor growth and metastatic spread in BALB/cJ female mice undergoing daily CR. Our findings show that MDSC injection impeded CR-mediated protection against tumor growth without increasing lung metastatic burden. Overall, these results reveal that CR can slow cancer progression by affecting immune suppressive cells.Impact statement: Inoculation of MDSCs from donor mice effectively impedes the ability of calorie restriction to protect against primary tumor growth without impacting lung metastatic burden in recipient animals.
Collapse
Affiliation(s)
- Laura C D Pomatto-Watson
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Melissa Carpenter
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Dolly Chowdhury
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Priya Krishna
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sandy Ng
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Oye Bosompra
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sarah Wong
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Carlos Reyes-Sepulveda
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
38
|
Franzén AS, Raftery MJ, Pecher G. Implications for Immunotherapy of Breast Cancer by Understanding the Microenvironment of a Solid Tumor. Cancers (Basel) 2022; 14:3178. [PMID: 35804950 PMCID: PMC9264853 DOI: 10.3390/cancers14133178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is poorly immunogenic due to immunosuppressive mechanisms produced in part by the tumor microenvironment (TME). The TME is a peritumoral area containing significant quantities of (1) cancer-associated fibroblasts (CAF), (2) tumor-infiltrating lymphocytes (TIL) and (3) tumor-associated macrophages (TAM). This combination protects the tumor from effective immune responses. How these protective cell types are generated and how the changes in the developing tumor relate to these subsets is only partially understood. Immunotherapies targeting solid tumors have proven ineffective largely due to this protective TME barrier. Therefore, a better understanding of the interplay between the tumor, the tumor microenvironment and immune cells would both advance immunotherapeutic research and lead to more effective immunotherapies. This review will summarize the current understanding of the microenvironment of breast cancer giving implications for future immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - Gabriele Pecher
- Competence Center of Immuno-Oncology and Translational Cell Therapy, Department of Hematology, Oncology and Tumorimmunology, CCM, Charité-Universitätsmedizin Berlin, Berlin Institute of Health @ Charité, 10117 Berlin, Germany; (A.S.F.); (M.J.R.)
| |
Collapse
|
39
|
Najibi AJ, Shih TY, Zhang DKY, Lou J, Sobral MC, Wang H, Dellacherie MO, Adu-Berchie K, Mooney DJ. Targeting tumor extracellular matrix activates the tumor-draining lymph nodes. Cancer Immunol Immunother 2022; 71:2957-2968. [PMID: 35524791 DOI: 10.1007/s00262-022-03212-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
Disruption of the tumor extracellular matrix (ECM) may alter immune cell infiltration into the tumor and antitumor T cell priming in the tumor-draining lymph nodes (tdLNs). Here, we explore how intratumoral enzyme treatment (ET) of B16 melanoma tumors with ECM-depleting enzyme hyaluronidase alters adaptive and innate immune populations, including T cells, DCs, and macrophages, in the tumors and tdLNs. ET increased CD103+ DC abundance in the tdLNs, as well as antigen presentation of a model tumor antigen ovalbumin (OVA), eliciting local OVA-specific CD8+ T cell responses. Delivered in combination with a distant cryogel-based cancer vaccine, ET increased the systemic antigen-specific CD8+ T cell response. By enhancing activity within the tdLN, ET may broadly support immunotherapies in generating tumor-specific immunity.
Collapse
Affiliation(s)
- Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - David K Y Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Junzhe Lou
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Hua Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Pizzolla A, Keam SP, Vergara IA, Caramia F, Thio N, Wang M, Kocovski N, Tantalo D, Jabbari J, Au-Yeung G, Sandhu S, Gyorki DE, Weppler A, Perdicchio M, McArthur GA, Papenfuss AT, Neeson PJ. Tissue-resident memory T cells from a metastatic vaginal melanoma patient are tumor-responsive T cells and increase after anti-PD-1 treatment. J Immunother Cancer 2022; 10:jitc-2022-004574. [PMID: 35550554 PMCID: PMC9109124 DOI: 10.1136/jitc-2022-004574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Vaginal melanoma (VM) is a rare cancer and has a poor response to immune checkpoint blockade (ICB). CD8+Tissue Resident Memory (TRM) T cells proliferate in response to ICB and correlate with longer survival in metastatic cutaneous melanoma. However, their capacity to respond to VM and their neoantigens is not known. Methods Using longitudinal samples, we explored the evolution of VM mutations by whole-exome sequencing and RNAseq, we also defined the immune context using multiplex immunohistochemistry and nanostring pan cancer immune profile. Then using fresh single cell suspensions of the metastatic samples, we explored VM T cells via mass cytometry and single cell RNAseq and T cell receptor sequencing (TCRseq). Finally, we investigated TRM, pre-TRM and exhausted T cell function against melanoma neo-antigens and melanoma differentiation antigens in vitro. Results Primary VM was non-inflamed and devoid of CD8+ TRM cells. In contrast, both metastases showed proliferating CD8+ TRM were clustered at the tumor margin, with increased numbers in the second ICB-refractory metastasis. The first metastasis showed dense infiltration of CD8+ T cells, the second showed immune exclusion with loss of melanoma cell Major histocompatibility complex (MHC)-I expression associated with downregulation of antigen presentation pathway gene expression. CD8+ TRM from both metastases responded to autologous melanoma cells more robustly than all other CD8+ T cell subsets. In addition, CD8+ TRM shared TCR clones across metastases, suggesting a response to common antigens, which was supported by recognition of the same neoantigen by expanded tumor infiltrating lymphocytes. Conclusions In this study, we identified TRM clusters in VM metastases from a patient, but not primary disease. We showed TRM location at the tumor margin, and their superior functional response to autologous tumor cells, predicted neoantigens and melanoma differentiation antigens. These CD8+ TRM exhibited the highest tumor-responsive potential and shared their TCR with tumor-infiltrating effector memory T cells. This suggests VM metastases from this patient retain strong antitumor T cell functional responses; however, this response is suppressed in vivo. The loss of VG MHC-I expression is a common immune escape mechanism which was not addressed by anti-PD-1 monotherapy; rather an additional targeted approach to upregulate MHC-I expression is required.
Collapse
Affiliation(s)
- Angela Pizzolla
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia .,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simon Paul Keam
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ismael A Vergara
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Melanoma Institute Australia, Camperdown, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Franco Caramia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Minyu Wang
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nikolce Kocovski
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniela Tantalo
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jafar Jabbari
- Australian Genome Research Facility Ltd, Melbourne, Victoria, Australia
| | - George Au-Yeung
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David E Gyorki
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Alison Weppler
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Grant A McArthur
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Anthony T Papenfuss
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Joseph Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia .,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Tan Q, Yin S, Zhou D, Chi Y, Man X, Li H. Potential Predictive and Prognostic Value of Biomarkers Related to Immune Checkpoint Inhibitor Therapy of Triple-Negative Breast Cancer. Front Oncol 2022; 12:779786. [PMID: 35646659 PMCID: PMC9134495 DOI: 10.3389/fonc.2022.779786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
As an aggressive subtype of breast cancer, triple-negative breast cancer (TNBC) is associated with poor prognosis and lack of effective therapy, except chemotherapy. In recent years, immunotherapy based on immune checkpoint (IC) inhibition has emerged as a promising therapeutic strategy in TNBC. TNBC has more tumor-infiltrating lymphocytes (TILs) and higher rate of mutation and programmed cell death ligand-1 (PD-L1) expression than other subtypes of breast cancer have. However, previous studies have shown that monotherapy has little efficacy and only some TNBC patients can benefit from immunotherapy. Therefore, it is important to identify biomarkers that can predict the efficacy of IC inhibitors (ICIs) in TNBC. Recently, various biomarkers have been extensively explored, such as PD-L1, TILs and tumor mutational burden (TMB). Clinical trials have shown that PD-L1-positive patients with advanced TNBC benefit from ICIs plus chemotherapy. However, in patients with early TNBC receiving neoadjuvant therapy, PD-L1 cannot predict the efficacy of ICIs. These inconsistent conclusions suggest that PD-L1 is the best to date but an imperfect predictive biomarker for efficacy of ICIs. Other studies have shown that advanced TNBC patients with TMB ≥10 mutations/Mb can achieve clinical benefits from pembrolizumab. TILs also have potential predictive value in TNBC. Here, we select some biomarkers related to ICIs and discuss their potential predictive and prognostic value in TNBC. We hope these biomarkers could help to identify suitable patients and realize precision immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Huihui Li
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
42
|
Chiang EY, Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004711. [PMID: 35379739 PMCID: PMC8981293 DOI: 10.1136/jitc-2022-004711] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Recent advances in understanding the roles of immune checkpoints in allowing tumors to circumvent the immune system have led to successful therapeutic strategies that have fundamentally changed oncology practice. Thus far, immunotherapies against only two checkpoint targets have been approved, CTLA-4 and PD-L1/PD-1. Antibody blockade of these targets enhances the function of antitumor T cells at least in part by relieving inhibition of the T cell costimulatory receptor CD28. These successes have stimulated considerable interest in identifying other pathways that may bte targeted alone or together with existing immunotherapies. One such immune checkpoint axis is comprised of members of the PVR/nectin family that includes the inhibitory receptor T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory domains (TIGIT). Interestingly, TIGIT acts to regulate the activity of a second costimulatory receptor CD226 that works in parallel to CD28. There are currently over two dozen TIGIT-directed blocking antibodies in various phases of clinical development, testament to the promise of modulating this pathway to enhance antitumor immune responses. In this review, we discuss the role of TIGIT as a checkpoint inhibitor, its interplay with the activating counter-receptor CD226, and its status as the next advance in cancer immunotherapy.
Collapse
Affiliation(s)
- Eugene Y Chiang
- Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| | - Ira Mellman
- Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| |
Collapse
|
43
|
Niemiro GM, Coletta AM, Agha NH, Mylabathula PL, Baker FL, Brewster AM, Bevers TB, Fuentes-Mattei E, Basen-Engquist K, Katsanis E, Gilchrist SC, Simpson RJ. Salutary effects of moderate but not high intensity aerobic exercise training on the frequency of peripheral T-cells associated with immunosenescence in older women at high risk of breast cancer: a randomized controlled trial. Immun Ageing 2022; 19:17. [PMID: 35321743 PMCID: PMC8941789 DOI: 10.1186/s12979-022-00266-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
Abstract
Background Immunosenescence is described as age-associated changes within the immune system that are responsible for decreased immunity and increased cancer risk. Physically active individuals have fewer ‘senescent’ and more naïve T-cells compared to their sedentary counterparts, but it is not known if exercise training can rejuvenate ‘older looking’ T-cell profiles. We determined the effects of 12-weeks supervised exercise training on the frequency of T-cell subtypes in peripheral blood and their relationships with circulating levels of the muscle-derived cytokines (i.e. ‘myokines’) IL-6, IL-7, IL-15 and osteonectin in older women at high risk of breast cancer. The intervention involved 3 sessions/week of either high intensity interval exercise (HIIT) or moderate intensity continuous exercise (MICT) and were compared to an untrained control (UC) group. Results HIIT decreased total granulocytes, CD4+ T-cells, CD4+ naïve T-cells, CD4+ recent thymic emigrants (RTE) and the CD4:CD8 ratio after training, whereas MICT increased total lymphocytes and CD8 effector memory (EM) T-cells. The change in total T-cells, CD4+ naïve T-cells, CD4+ central memory (CM) T-cells and CD4+ RTE was elevated after MICT compared to HIIT. Changes in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{\mathrm{V}}{\mathrm{O}}_{2\max } $$\end{document}V˙O2max after training, regardless of exercise prescription, was inversely related to the change in highly differentiated CD8+ EMRA T-cells and positively related to changes in β2-adrenergic receptor (β2-AR) expression on CM CD4+ and CM CD8+ T-cells. Plasma myokine levels did not change significantly among the groups after training, but individual changes in IL-7 were positively related to changes in the number of β2-AR expressing CD4 naïve T cells in both exercise groups but not controls. Further, CD4 T-cells and CD4 naive T-cells were negatively related to changes in IL-6 and osteonectin after HIIT but not MICT, whereas CD8 EMRA T-cells were inversely related to changes in IL-15 after MICT but not HIIT. Conclusions Aerobic exercise training alters the frequency of peripheral T-cells associated with immunosenescence in middle aged/older women at high risk of breast cancer, with HIIT (pro-senescent) and MICT (anti-senescent) evoking divergent effects. Identifying the underlying mechanisms and establishing whether exercise-induced changes in peripheral T-cell numbers can alter the risk of developing breast cancer warrants investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00266-z.
Collapse
Affiliation(s)
- Grace M Niemiro
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Adriana M Coletta
- Department of Health and Kinesiology, The University of Utah, Salt Lake City, Utah, USA.,Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Nadia H Agha
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Preteesh Leo Mylabathula
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,Department of Health and Human Performance, University of Houston, Houston, Texas, USA.,School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Forrest L Baker
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,Department of Health and Human Performance, University of Houston, Houston, Texas, USA.,School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Abenaa M Brewster
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Therese B Bevers
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Enrique Fuentes-Mattei
- Department of Radiation Oncology Clinical Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Basen-Engquist
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,The University of Arizona Cancer Center, Tucson, Arizona, USA.,Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA
| | - Susan C Gilchrist
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard J Simpson
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA. .,The University of Arizona Cancer Center, Tucson, Arizona, USA. .,Department of Health and Human Performance, University of Houston, Houston, Texas, USA. .,School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA. .,Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. .,Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
44
|
Egelston CA, Guo W, Tan J, Avalos C, Simons DL, Lim MH, Huang YJ, Nelson MS, Chowdhury A, Schmolze DB, Yim JH, Kruper L, Melstrom L, Margolin K, Mortimer JE, Yuan Y, Waisman JR, Lee PP. Tumor-infiltrating exhausted CD8+ T cells dictate reduced survival in premenopausal estrogen receptor-positive breast cancer. JCI Insight 2022; 7:153963. [PMID: 35132960 PMCID: PMC8855819 DOI: 10.1172/jci.insight.153963] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
CD8+ tumor-infiltrating lymphocytes (TILs) are associated with improved survival in triple-negative breast cancer (TNBC) yet have no association with survival in estrogen receptor–positive (ER+) BC. The basis for these contrasting findings remains elusive. We identified subsets of BC tumors infiltrated by CD8+ T cells with characteristic features of exhausted T cells (TEX). Tumors with abundant CD8+ TEX exhibited a distinct tumor microenvironment marked by amplified interferon-γ signaling–related pathways and higher programmed death ligand 1 expression. Paradoxically, higher levels of tumor-infiltrating CD8+ TEX associated with decreased overall survival of patients with ER+ BC but not patients with TNBC. Moreover, high tumor expression of a CD8+ TEX signature identified dramatically reduced survival in premenopausal, but not postmenopausal, patients with ER+ BC. Finally, we demonstrated the value of a tumor TEX signature score in identifying high-risk premenopausal ER+ BC patients among those with intermediate Oncotype DX Breast Recurrence Scores. Our data highlight the complex relationship between CD8+ TILs, interferon-γ signaling, and ER status in BC patient survival. This work identifies tumor-infiltrating CD8+ TEX as a key feature of reduced survival outcomes in premenopausal patients with early-stage ER+ BC.
Collapse
Affiliation(s)
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute
| | - Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute
| | | | - Diana L Simons
- Department of Immuno-Oncology, Beckman Research Institute
| | - Min Hui Lim
- Department of Immuno-Oncology, Beckman Research Institute
| | | | - Michael S Nelson
- Light Microscopy Digital Imaging Core, Beckman Research Institute
| | - Arnab Chowdhury
- Division of Biostatistics, Department of Computational and Quantitative Medicine, Beckman Research Institute; and
| | | | | | | | | | - Kim Margolin
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California, USA
| | - Joanne E Mortimer
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California, USA
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California, USA
| | - James R Waisman
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute
| |
Collapse
|
45
|
Sung BY, Lin YH, Kong Q, Shah PD, Glick Bieler J, Palmer S, Weinhold KJ, Chang HR, Huang H, Avery RK, Schneck J, Chiu YL. Wnt activation promotes memory T cell polyfunctionality via epigenetic regulator PRMT1. J Clin Invest 2022; 132:e140508. [PMID: 35040433 PMCID: PMC8759796 DOI: 10.1172/jci140508] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
T cell polyfunctionality is a hallmark of protective immunity against pathogens and cancer, yet the molecular mechanism governing it remains mostly elusive. We found that canonical Wnt agonists inhibited human memory CD8+ T cell differentiation while simultaneously promoting the generation of highly polyfunctional cells. Downstream effects of Wnt activation persisted after removal of the drug, and T cells remained polyfunctional following subsequent cell division, indicating the effect is epigenetically regulated. Wnt activation induced a gene expression pattern that is enriched with stem cell-specific gene signatures and upregulation of protein arginine methyltransferase 1 (PRMT1), a known epigenetic regulator. PRMT1+CD8+ T cells are associated with enhanced polyfunctionality, especially the ability to produce IL-2. In contrast, inhibition of PRMT1 ameliorated the effects of Wnt on polyfunctionality. Chromatin immunoprecipitation revealed that H4R3me2a, a permissive transcription marker mediated by PRMT1, increased at the IL-2 promoter loci following Wnt activation. In vivo, Wnt-treated T cells exhibited superior polyfunctionality and persistence. When applied to cytomegalovirus (CMV) donor-seropositive, recipient-seronegative patients (D+/R-) lung transplant patient samples, Wnt activation enhanced CMV-specific T cell polyfunctionality, which is important in controlling CMV diseases. These findings reveal a molecular mechanism governing T cell polyfunctionality and identify PRMT1 as a potential target for T cell immunotherapy.
Collapse
Affiliation(s)
- Bo-Yi Sung
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Microbiology and Immunology
- Department of Biomedical Engineering, and
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, and
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Pali D. Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joan Glick Bieler
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Kent J. Weinhold
- Department of Surgery, and Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan Schneck
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland. USA
| | - Yen-Ling Chiu
- Institute of Cell Engineering and
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
46
|
Saatci O, Huynh-Dam KT, Sahin O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. J Mol Med (Berl) 2021; 99:1691-1710. [PMID: 34623477 PMCID: PMC8611518 DOI: 10.1007/s00109-021-02136-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022]
Abstract
Estrogen receptor-positive (ER +) breast cancer accounts for approximately 75% of all breast cancers. Endocrine therapies, including selective ER modulators (SERMs), aromatase inhibitors (AIs), and selective ER down-regulators (SERDs) provide substantial clinical benefit by reducing the risk of disease recurrence and mortality. However, resistance to endocrine therapies represents a major challenge, limiting the success of ER + breast cancer treatment. Mechanisms of endocrine resistance involve alterations in ER signaling via modulation of ER (e.g., ER downregulation, ESR1 mutations or fusions); alterations in ER coactivators/corepressors, transcription factors (TFs), nuclear receptors and epigenetic modulators; regulation of signaling pathways; modulation of cell cycle regulators; stress signaling; and alterations in tumor microenvironment, nutrient stress, and metabolic regulation. Current therapeutic strategies to improve outcome of endocrine-resistant patients in clinics include inhibitors against mechanistic target of rapamycin (mTOR), cyclin-dependent kinase (CDK) 4/6, and the phosphoinositide 3-kinase (PI3K) subunit, p110α. Preclinical studies reveal novel therapeutic targets, some of which are currently tested in clinical trials as single agents or in combination with endocrine therapies, such as ER partial agonists, ER proteolysis targeting chimeras (PROTACs), next-generation SERDs, AKT inhibitors, epidermal growth factor receptor 1 and 2 (EGFR/HER2) dual inhibitors, HER2 targeting antibody-drug conjugates (ADCs) and histone deacetylase (HDAC) inhibitors. In this review, we summarize the established and emerging mechanisms of endocrine resistance, alterations during metastatic recurrence, and discuss the approved therapies and ongoing clinical trials testing the combination of novel targeted therapies with endocrine therapy in endocrine-resistant ER + breast cancer patients.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Kim-Tuyen Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA.
| |
Collapse
|
47
|
Zhang W, Kong X, Ai B, Wang Z, Wang X, Wang N, Zheng S, Fang Y, Wang J. Research Progresses in Immunological Checkpoint Inhibitors for Breast Cancer Immunotherapy. Front Oncol 2021; 11:582664. [PMID: 34631507 PMCID: PMC8495193 DOI: 10.3389/fonc.2021.582664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immune escape refers to the phenomenon in which tumor cells escape the recognition and attack of the body’s immune system through various mechanisms so that they can survive and proliferate in vivo. The imbalance of immune checkpoint protein expression is the primary mechanism for breast cancer to achieve immune escape. Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD-1)/programmed cell death protein-ligand 1 (PD-L1) are critical immune checkpoints for breast cancer. Immune checkpoint inhibitors block the checkpoint and relieve its inhibition effect on immune cells, reactivate T-cells and destroy cancer cells and restore the body’s ability to resist tumors. At present, immunological checkpoint inhibitors have made significant progress in breast cancer immunotherapy, and it is expected to become a new treatment for breast cancer.
Collapse
Affiliation(s)
- Wenxiang Zhang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Bolun Ai
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Cancer Prevention, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Shan Zheng
- Department of Pathology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Lee SW, Choi HY, Lee GW, Kim T, Cho HJ, Oh IJ, Song SY, Yang DH, Cho JH. CD8 + TILs in NSCLC differentiate into TEMRA via a bifurcated trajectory: deciphering immunogenicity of tumor antigens. J Immunother Cancer 2021; 9:jitc-2021-002709. [PMID: 34593620 PMCID: PMC8487216 DOI: 10.1136/jitc-2021-002709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 01/21/2023] Open
Abstract
Background CD8+ tumor-infiltrating lymphocytes (TILs) comprise phenotypically and functionally heterogeneous subpopulations. Of these, effector memory CD45RA re-expressing CD8+ T cells (Temra) have been discovered and characterized as the most terminally differentiated subset. However, their exact ontogeny and physiological importance in association with tumor progression remain poorly understood. Methods We analyzed primary tumors and peripheral blood samples from 26 patients with non-small cell lung cancer and analyzed their phenotypes and functional characteristics using flow cytometry, RNA-sequencing, and bioinformatics. Results We found that tumor-infiltrating Temra (tilTemra) cells largely differ from peripheral blood Temra (pTemra), with distinct transcriptomes and functional properties. Notably, although majority of the pTemra was CD27−CD28− double-negative (DN), a large fraction of tilTemra population was CD27+CD28+ double-positive (DP), a characteristic of early-stage, less differentiated effector cells. Trajectory analysis revealed that CD8+ TILs undergo a divergent sequence of events for differentiation into either DP or DN tilTemra. Such a differentiation toward DP tilTemra relied on persistent expression of CD27 and CD28 and was associated with weak T cell receptor engagement. Thus, a higher proportion of DP Temra was correlated with lower immunogenicity of tumor antigens and consequently lower accumulation of CD8+ TILs. Conclusions These data suggest a complex interplay between CD8+ T cells and tumors and define DP Temra as a unique subset of tumor-specific CD8+ TILs that are produced in patients with relatively low immunogenic cancer types, predicting immunogenicity of tumor antigens and CD8+ TIL counts, a reliable biomarker for successful cancer immunotherapy.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo, Republic of Korea
| | - He Yun Choi
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Gil-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo, Republic of Korea
| | - Therasa Kim
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Sang Yun Song
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Deok Hwan Yang
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea .,Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea.,BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea
| |
Collapse
|
49
|
Single-cell profiling defines the prognostic benefit of CD39 high tissue resident memory CD8+ T cells in luminal-like breast cancer. Commun Biol 2021; 4:1117. [PMID: 34552178 PMCID: PMC8458450 DOI: 10.1038/s42003-021-02595-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
Luminal-like breast cancer (BC) constitutes the majority of BC subtypes, but, differently from highly aggressive triple negative BC, is poorly infiltrated by the immune system. The quality of the immune infiltrate in luminal-like BCs has been poorly studied, thereby limiting further investigation of immunotherapeutic strategies. By using high-dimensional single-cell technologies, we identify heterogeneous behavior within the tissue-resident memory CD8+ T (Trm) cells infiltrating luminal-like tumors. A subset of CD127- CD39hi Trm cells, preferentially present in the tumor compared to the adjacent normal breast tissue or peripheral blood, retains enhanced degranulation capacity compared to the CD127+ CD39lo Trm counterpart ex vivo, and is specifically associated with positive prognosis. Nevertheless, such prognostic benefit is lost in the presence of highly-suppressive CCR8hi ICOShi IRF4+ effector Tregs. Thus, combinatorial strategies aiming at boosting Trm function and infiltration while relieving from Treg-mediated immunosuppression should be investigated to achieve proper tumor control in luminal-like BCs.
Collapse
|
50
|
Tran NL, Lee IK, Choi J, Kim SH, Oh SJ. Acetate decreases PVR/CD155 expression via PI3K/AKT pathway in cancer cells. BMB Rep 2021. [PMID: 34353426 PMCID: PMC8411046 DOI: 10.5483/bmbrep.2021.54.8.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In recent years, restoring anti-tumor immunity has garnered a growing interest in cancer treatment. As potential therapeutics, immune checkpoint inhibitors have demonstrated benefits in many clinical studies. Although various methods have been applied to suppress immune checkpoints to boost anti-tumor immunity, including the use of immune checkpoint inhibitors, there are still unmet clinical needs to improve the response rate of cancer treatment. Here, we show that acetate can suppress the expression of poliovirus receptor (PVR/CD155), a ligand for immune checkpoint, in colon cancer cells. We demonstrated that acetate treatment could enhance effector responses of CD8+ T cells by decreasing the expression of PVR/CD155 in cancer cells. We also found that acetate could reduce the expression of PVR/CD155 by deactivating the PI3K/AKT pathway. These results demonstrate that acetate-mediated expression of PVR/CD155 in cancer cells might potentiate the anti-tumor immunity in the microenvironment of cancer. Our findings indicate that maintaining particular acetate concentrations could be a complementary strategy in current cancer treatment.
Collapse
Affiliation(s)
- Na Ly Tran
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST school, Korea University of Science and Technology (UST), Daejeon 02792, Korea
| | - In Kyu Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jungkyun Choi
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST school, Korea University of Science and Technology (UST), Daejeon 02792, Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST school, Korea University of Science and Technology (UST), Daejeon 02792, Korea
| | - Seung Ja Oh
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST school, Korea University of Science and Technology (UST), Daejeon 02792, Korea
| |
Collapse
|