1
|
Xu X, Li Z, Liu H, Huang Z, Xiong T, Tang Y. Gene prediction of the relationship between iron deficiency anemia and immune cells. Hematology 2025; 30:2462857. [PMID: 39957075 DOI: 10.1080/16078454.2025.2462857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Observational studies have shown a potential link between immune factors and the risk of iron deficiency anemia (IDA), yet the causal relationship between immune cells and IDA remains enigmatic. Herein, we used Mendelian randomization (MR) to assess whether this association is causal. METHODS We selected IDA genetic variants, including 8376 samples and 9810691 single nucleotide polymorphisms, and immune cells from a large open genome-wide association study (GWAS) for a bidirectional MR study. The primary method was inverse variance weighting (IVW), and auxiliary analyses were MR-Egger, weighted median, simple mode and weighted mode. The reliability of the results was subsequently verified by heterogeneity and sensitivity analysis. RESULTS IVW method showed that 19 types of immune cells may be the risk factors of IDA, whereas 15 types of immune cells are the protective factors of IDA. Reverse MR analysis suggested that immune cells from upstream etiology of IDA are not involved in follow-up immune activities. Next, we selected 731 immune cell types as the results. The research revealed that IDA may result in a rise in 23 kinds of immune cells and a reduction in 12 kinds of immune cells. In addition, sensitivity analysis demonstrated no evidence of heterogeneity or horizontal pleiotropy. CONCLUSIONS From a genetic standpoint, our study suggests that specific immune cells may be involved in the occurrence of IDA. Inversely, IDA may also contribute to immune dysfunction, thus guiding future clinical investigations.
Collapse
Affiliation(s)
- Xuanxuan Xu
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Zhixia Li
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Huimin Liu
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Zhiping Huang
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Tao Xiong
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Yuanyan Tang
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| |
Collapse
|
2
|
Alim T, Yang B, Zhang Y, Huang W, Deng H, Zhang J, Zhang Q, Yang Z, Yi W, Tsao BP, Tang X, Feng X, Sun L. Elevated transferrin receptor 1 promoting B-cell autoimmunity in systemic lupus erythematosus. Int Immunopharmacol 2025; 158:114804. [PMID: 40373595 DOI: 10.1016/j.intimp.2025.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/24/2025] [Accepted: 05/03/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND Transferrin receptor 1 (TFR1), a major iron receptor for immune cells, could impair T cell metabolism and function in systemic lupus erythematosus (SLE), leading us to investigate the effects of TFR1 and possible mechanisms on lupus B cells. METHODS B cells from lupus mouse models and systemic lupus erythematosus (SLE) patients were evaluated using flow cytometry (FCM) for levels of TFR1, intracellular iron deposition, reactive oxygen species (ROS), lipid peroxidation, and B-cell subsets. Transcript levels of TFR1 were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and upstream regulatory molecules were identified by in vitro gene silencing. RESULTS An agonist of toll-like receptor 7 (TLR7), R848 treatment significantly increased TFR1 expression in B cells from C57BL/6 (B6) mice but not those from MRL/lpr mice. In in vitro cultures of mouse splenocytes, TLR7 dose-dependently promoted TFR1 expression, and its effect was probably mediated by P53. Anti-TFR1 antibody effectively inhibited intracellular iron deposition in lupus B cells, reduced ROS and lipid peroxidation, and prevented the production of plasmablasts and autoantibodies. Among different B cell subsets, TFR1 was predominantly expressed in double negative (DN) B cells, with a more pronounced effect on DN2 B cells, which could be normalized by ROS inhibitors. Similarly, in human studies, TFR1 was highly expressed in B cells of SLE patients and closely correlated with TLR7 expression and disease activity scores, as well as iron deposition and ROS production. A significant reduction in ROS production was observed after blocking TFR1. CONCLUSIONS TLR7-regulated TFR1 may drive B-cell autoimmunity by promoting ROS production, thus contributing to SLE pathogenesis.
Collapse
Affiliation(s)
- Tohtihan Alim
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bin Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yaqi Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Hanying Deng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingjing Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qingfeng Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zirui Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqian Yi
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Betty P Tsao
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Liu H, Zhang X, Ding F, Pan J, Zhu H, Zhou Z, Sun M. YTHDF1-targeting nanoassembly reverses tumoral immune evasion through epigenetics and cell cycle modulation. J Control Release 2025; 381:113574. [PMID: 40010410 DOI: 10.1016/j.jconrel.2025.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
YTHDF1, as a key m6A reader protein, is believed to be one of the key mechanisms leading to tumor cell immune evasion and resistance via promoting MHC-I degradation. We explore therapeutic strategies that combine iron metabolism regulation with epigenetic regulation. Here, a nanoassembly that integrates Deferasirox (DFX, an FDA-approved iron chelator) and YTHDF1 siRNA (known as PPD/siYTHDF1) has been developed, which jointly promotes cell cycle arrest in tumor cells by interfering with iron metabolism and knocking down YTHDF1 protein. At the same time, YTHDF1 deficiency inhibits the mRNA translation of lysosome-related proteins, upregulates MHC-I molecule expression (2.5-fold), reduces the degradation of internalized antigens, enhances T cell-mediated immune response, and ultimately restores tumor immune surveillance and triggers powerful anti-tumor immune efficacy. After treatment, CD8+ T cells in the tumor site increased by 2.2-fold, and effector memory T cells in the spleen increased by 2.1-fold. It demonstrates a highly effective anti-tumor effect in breast cancer treatment, as well as in postoperative anti-recurrence and anti-metastasis models.
Collapse
Affiliation(s)
- Hongting Liu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xichu Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Fangchun Ding
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jingfang Pan
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hanxiang Zhu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Liao P, Zhou Y, Qiu Y, Hu R, Li H, Sun H, Li Y. Metal-modulated T cell antitumor immunity and emerging metalloimmunotherapy. Cancer Metastasis Rev 2025; 44:49. [PMID: 40301229 DOI: 10.1007/s10555-025-10266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
In recent years, increasing evidence has shown that metals play important roles in both innate and adaptive immunity. An emerging concept of metalloimmunotherapy has been proposed, which may accelerate the development of immunotherapy for cancers. Here, we discuss how metals affect T cell function through different signaling pathways. Metals impact the fate of T cells, including their activation, proliferation, cytotoxicity, and differentiation. Most importantly, metals also participate in mitochondrial operation by regulating energy production and reactive oxygen species homeostasis in T cells. We also identified the metal-based mutual effects between tumor cells and T cells in the tumor microenvironment. Overall, the antitumor effect of T cells can be improved by targeting metal metabolism and metalloimmunotherapy, which will be a step forward in the treatment of cancers.
Collapse
Affiliation(s)
- Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Zhujiang Hospital, No. 253, Gongye Road, Guangzhou, China.
| |
Collapse
|
5
|
Yin Y, Liu Y, Du L, Wu S. Compromised B-cell homeostasis: Unraveling the link between major depression, infection and autoimmune disorders. J Affect Disord 2025; 374:565-578. [PMID: 39842671 DOI: 10.1016/j.jad.2025.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Major depression can increase susceptibility to viral infections and autoimmune diseases. B cell responses are crucial for immune defense against infections but can trigger autoimmunity when deregulated. However, it remains unclear whether compromised B-cell homeostasis in major depression contributes to an increased risk of infection and autoimmunity. METHODS Chronic unpredictable mild stress (CUMS) procedure was applied to adult C57BL/6 J mice to generate a reliable depression model. Mice were immunized with (4-hydroxy-3-nitrophenyl) acetyl (NP) keyhole limpet hemocyanin (NP-KLH) to elicit B-cell-mediated humoral immune responses. CUMS mice were subjected to a collagen-induced arthritis model or a Bm12-induced systemic lupus erythematosus model to assess the contribution of major depression to autoimmunity. RNA sequencing was performed to understand the effects of CUMS on B-cell homeostasis at the transcriptomic level. RESULTS CUMS mice exhibited an impaired humoral immune response, as evidenced by reduced germinal centers (GCs), plasma cells, and antigen-specific antibodies. Unimmunized CUMS mice displayed aberrant spontaneous expansion of GC B cells, plasma cells, age-associated B cells and autoantibody production. CUMS mice also demonstrated a greater exacerbation of autoimmune manifestations. RNA sequencing revealed that genes involved in B-cell-mediated immune response were downregulated in B cells from CUMS mice, while the pathways related to autoimmunity seem to be upregulated. LIMITATIONS Further research is needed to understand the specific targets, mechanisms, and role of B cell dysfunction in major depression. CONCLUSIONS Our results provide novel insights into B-cell-dependent mechanisms that involve the association of increased susceptibility to infections and autoimmunity in major depression.
Collapse
Affiliation(s)
- Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
6
|
Li F, Tang H, Wang Y, Wu Q, Dong L, Kitoko JZ, Huang J, Chen H, Jia R, Liu Z, Zhang C, Du X, Li W, Chen Z, Shen H, Ying S. Iron Drives Eosinophil Differentiation in Allergic Airway Inflammation Through Mitochondrial Metabolic Adaptation. Adv Healthc Mater 2025; 14:e2405085. [PMID: 39853900 DOI: 10.1002/adhm.202405085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Eosinophils play a crucial role as effector cells in asthma pathogenesis, with their differentiation being tightly regulated by metabolic mechanisms. While the involvement of iron in various cellular processes is well known, its specific role in eosinophil differentiation has largely remained unexplored. This study demonstrates that iron levels are increased during the differentiation process from eosinophil progenitors to mature and activated eosinophils in the context of allergic airway inflammation. Through experiments involving iron chelators, supplements, and iron-deficient or iron-enriched diets, the indispensable role of iron in eosinophil lineage commitment both in vitro and in vivo is demonstrated. Remarkably, iron chelation effectively suppresses eosinophil differentiation and alleviates airway inflammation in a house dust mite(HDM)-induced mouse model of allergic asthma. Mechanistically, iron promotes the expression of transcription factors that enforce eosinophil differentiation, and maintains mitochondrial metabolic activities, leading to specific metabolic shifts within the tricarboxylic acid (TCA) cycle, with succinate promoting eosinophil differentiation. Overall, this study highlights the function of iron and underlying metabolic mechanisms in eosinophil differentiation, providing potential therapeutic strategies for asthma control.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Haoyu Tang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, 322000, China
| | - Yuejue Wang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qian Wu
- Department of Pharmacy, Center for Regeneration and Aging Medicine, Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, 322000, China
| | - Lingling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jamil Z Kitoko
- Inflammation Lab, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Jiaqi Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Haixia Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ruixin Jia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhengyuan Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xufei Du
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Pharmacy, Center for Regeneration and Aging Medicine, Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, 322000, China
| |
Collapse
|
7
|
Wang Z, Guo Z, Zhang Q, Yang C, Shi X, Wen Q, Xue Y, Zhang Z, Wang J. Relationship between iron deficiency and severity of tuberculosis: Influence on T cell subsets. iScience 2025; 28:111709. [PMID: 39898042 PMCID: PMC11783395 DOI: 10.1016/j.isci.2024.111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Tuberculosis (TB) remains a leading cause of death globally, with nearly half of TB patients experiencing iron deficiency. The role of iron supplementation as an adjunct therapy remains controversial. This study examines the impact of iron deficiency on TB progression and immune function. We conducted a case-control study involving 808 pulmonary TB patients recruited from Changzhou Third People's Hospital (2018-2022) to investigate the association between serum iron levels and TB severity. Additionally, we evaluated the relationship between baseline serum iron levels and pulmonary lesion characteristics during antituberculosis treatment using a cohort study of 89 patients. We observed that low serum iron was associated with more severe lung symptoms, decreased MAIT, Vδ2+, and Treg cell percentages, and increased interleukin-1β (IL-1β) and IL-7 levels. Findings suggest that iron deficiency may exacerbate lung lesions by altering T cell subsets and cytokine profiles.
Collapse
Affiliation(s)
- Zheyue Wang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing 211166, China
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Zhenpeng Guo
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
| | - Qiang Zhang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenchen Yang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinling Shi
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qin Wen
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Xue
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
| | - Zhixin Zhang
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
- Department of Pulmonary Diseases, The Third People’s Hospital of Changzhou, Changzhou 213001, China
| | - Jianming Wang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing 211166, China
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Napiórkowska-Baran K, Treichel P, Dardzińska A, Majcherczak A, Pilichowicz A, Szota M, Szymczak B, Alska E, Przybyszewska J, Bartuzi Z. Immunomodulatory Effects of Selected Non-Nutritive Bioactive Compounds and Their Role in Optimal Nutrition. Curr Issues Mol Biol 2025; 47:89. [PMID: 39996810 PMCID: PMC11854453 DOI: 10.3390/cimb47020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The contemporary approach to nutrition increasingly considers the role of non-nutritive bioactive compounds in modulating the immune system and maintaining health. This article provides up-to-date insight into the immunomodulatory effects of selected bioactive compounds, including micro- and macronutrients, vitamins, as well as other health-promoting substances, such as omega-3 fatty acids, probiotics, prebiotics, postbiotics (including butyric acid and sodium butyrate), coenzyme Q10, lipoic acid, and plant-derived components such as phenolic acids, flavonoids, coumarins, alkaloids, polyacetylenes, saponins, carotenoids, and terpenoids. Micro- and macronutrients, such as zinc, selenium, magnesium, and iron, play a pivotal role in regulating the immune response and protecting against oxidative stress. Vitamins, especially vitamins C, D, E, and B, are vital for the optimal functioning of the immune system as they facilitate the production of cytokines, the differentiation of immunological cells, and the neutralization of free radicals, among other functions. Omega-3 fatty acids exhibit strong anti-inflammatory effects and enhance immune cell function. Probiotics, prebiotics, and postbiotics modulate the intestinal microbiota, thereby promoting the integrity of the intestinal barrier and communication between the microbiota and the immune system. Coenzyme Q10, renowned for its antioxidant attributes, participates in the protection of cells from oxidative stress and promotes energy processes essential for immune function. Sodium butyrate and lipoic acid exhibit anti-inflammatory effects and facilitate the regeneration of the intestinal epithelium, which is crucial for the maintenance of immune homeostasis. This article emphasizes the necessity of an integrative approach to optimal nutrition that considers not only nutritional but also non-nutritional bioactive compounds to provide adequate support for immune function. Without them, the immune system will never function properly, because it has been adapted to this in the course of evolution. The data presented in this article may serve as a foundation for further research into the potential applications of bioactive components in the prevention and treatment of diseases associated with immune dysfunction.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anita Dardzińska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Agata Majcherczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anastazja Pilichowicz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Maciej Szota
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Ewa Alska
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Justyna Przybyszewska
- Department of Nutrition and Dietetics, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| |
Collapse
|
9
|
Badran O, Cohen I, Bar-Sela G. The Impact of Iron on Cancer-Related Immune Functions in Oncology: Molecular Mechanisms and Clinical Evidence. Cancers (Basel) 2024; 16:4156. [PMID: 39766056 PMCID: PMC11674619 DOI: 10.3390/cancers16244156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Iron metabolism plays a dual role in cancer, serving as an essential nutrient for cellular functions and a potential catalyst for tumor growth and immune evasion. Here, we cover the complex interplay between iron levels within the serum or in the microenvironment and cancer therapy, focusing on how iron deficiency and overload can impact immune function, tumor progression, and treatment efficacy. On the one hand, we highlight iron deficiency as a factor of primary immune responses and its adverse effects on anti-cancer immunotherapy efficacy. On the other hand, we also stress the impact of iron overload as an essential factor contributing to tumor growth, creating a suppressive tumor microenvironment that hinders immune checkpoint inhibitor immunotherapy. Overall, we emphasize the necessity of the personalized management of iron levels in oncology patients as a critical element in treatment optimization to achieve favorable outcomes. Based on these considerations, we believe that close and careful monitoring and the tailored balancing of iron supplementation strategies should be the subject of further clinical studies, and routine iron management should be implemented in oncology clinical practice and integrated into cancer therapy protocols.
Collapse
Affiliation(s)
- Omar Badran
- Department of Oncology, Emek Medical Center, Afula 1834111, Israel; (O.B.); (I.C.)
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Haifa 3525422, Israel
| | - Idan Cohen
- Department of Oncology, Emek Medical Center, Afula 1834111, Israel; (O.B.); (I.C.)
| | - Gil Bar-Sela
- Department of Oncology, Emek Medical Center, Afula 1834111, Israel; (O.B.); (I.C.)
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Haifa 3525422, Israel
| |
Collapse
|
10
|
Teh MR, Armitage AE, Drakesmith H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol Metab 2024; 35:1026-1049. [PMID: 38760200 PMCID: PMC11616622 DOI: 10.1016/j.tem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.
Collapse
Affiliation(s)
- Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Zheng XJ, Chen Y, Yao L, Li XL, Sun D, Li YQ. Identification of new hub- ferroptosis-related genes in Lupus Nephritis. Autoimmunity 2024; 57:2319204. [PMID: 38409788 DOI: 10.1080/08916934.2024.2319204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
Background: Lupus Nephritis (LN) is the primary causation of kidney injury in systemic lupus erythematosus (SLE). Ferroptosis is a programmed cell death. Therefore, understanding the crosstalk between LN and ferroptosis is still a significant challenge. Methods: We obtained the expression profile of LN kidney biopsy samples from the Gene Expression Omnibus database and utilised the R-project software to identify differentially expressed genes (DEGs). Then, we conducted a functional correlation analysis. Ferroptosis-related genes (FRGs) and differentially expressed genes (DEGs) crossover to select FRGs with LN. Afterwards, we used CIBERSORT to assess the infiltration of immune cells in both LN tissues and healthy control samples. Finally, we performed immunohistochemistry on LN human renal tissue. Results: 10619 DEGs screened from the LN biopsy tissue were identified. 22 hub-ferroptosis-related genes with LN (FRGs-LN) were screened out. The CIBERSORT findings revealed that there were significant statistical differences in immune cells between healthy control samples and LN tissues. Immunohistochemistry further demonstrated a significant difference in HRAS, TFRC, ATM, and SRC expression in renal tissue between normal and control groups. Conclusion: We developed a signature that allowed us to identify 22 new biomarkers associated with FRGs-LN. These findings suggest new insights into the pathology and therapeutic potential of LN ferroptosis inhibitors and iron chelators.
Collapse
Affiliation(s)
- Xiao-Jie Zheng
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Chen
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Li Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Da Sun
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan-Qiu Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Wu B. Genetically Predicted Iron Status Is a Causal Risk of Rheumatoid Arthritis: A Mendelian Randomization Study. Glob Med Genet 2024; 11:270-277. [PMID: 39211802 PMCID: PMC11361779 DOI: 10.1055/s-0044-1789259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background Current knowledge on iron's role in rheumatoid arthritis (RA) development is very limited, with studies yielding inconsistent findings. We conducted a two-sample Mendelian randomization study to assess the associations of iron status with the risk of RA. Methods This study leveraged genetic data from a large genome-wide association study (GWAS) of 257,953 individuals to identify single nucleotide polymorphisms (SNPs) associated with iron status. We then analyzed these data in conjunction with summary-level data on RA from the IEU open GWAS project, which included 5,427 RA cases and 479,171 controls. An inverse-variance weighted method with random effects was employed, along with sensitivity analyses, to assess the relationship between iron status and RA risk. Results Genetic predisposition to high ferritin and serum iron status was causally associated with lower odds of RA. Ferritin had an odds ratio (OR) of 0.997 (95% confidence interval [CI]: 0.995-0.997; p = 0.010), indicating that a one-unit increase in ferritin is associated with a 0.3% decrease in the odds of RA. Similarly, serum iron had an OR of 0.997 (95% CI: 0.995-0.999; p = 0.014). However, MR analyses found no significant causal associations between total iron-binding capacity (OR = 1.0, 95% CI: 0.999-1.002; p = 0.592) or transferrin saturation percentage (OR = 0.998, 95% CI: 0.996-1.000; p = 0.080) and risk of developing RA. Conclusions This study suggests that individuals with genes linked to higher iron levels may have a lower risk of developing RA. Our findings indicate that the total amount of iron in the body, rather than how it is distributed, might be more important for RA. This raises the intriguing possibility that iron supplementation could be a preventative strategy, but further research is necessary.
Collapse
Affiliation(s)
- Boyuan Wu
- School of Global Public Health New York University, New York, New York, United States
| |
Collapse
|
13
|
Zhang K, Liu K, Hu B, Du G, Chen X, Xiao L, Zhang Y, Jiang L, Jing N, Cheng C, Wang J, Xu P, Wang Y, Ma P, Zhuang G, Zhao H, Sun Y, Wang D, Wang Q, Xue W, Gao WQ, Zhang P, Zhu HH. Iron-loaded cancer-associated fibroblasts induce immunosuppression in prostate cancer. Nat Commun 2024; 15:9050. [PMID: 39426954 PMCID: PMC11490570 DOI: 10.1038/s41467-024-53233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Iron is an essential biomineral in the human body. Here, we describe a subset of iron-loaded cancer-associated fibroblasts, termed as FerroCAFs, that utilize iron to induce immunosuppression in prostate cancer and predict an unfavorable clinical outcome. FerroCAFs secrete myeloid cell-associated proteins, including CCL2, CSF1 and CXCL1, to recruit immunosuppressive myeloid cells. We report the presence of FerroCAFs in prostate cancer from both mice and human, as well as in human lung and ovarian cancers, and identify a conserved cell surface marker, the poliovirus receptor. Mechanistically, the accumulated iron in FerroCAFs is caused by Hmox1-mediated iron release from heme degradation. The intracellular iron activates the Kdm6b, an iron-dependent epigenetic enzyme, to induce an accessible chromatin state and transcription of myeloid cell-associated protein genes. Targeting the FerroCAFs by inhibiting the Hmox1/iron/Kdm6b signaling axis incurs anti-tumor immunity and tumor suppression. Collectively, we report an iron-loaded FerroCAF cluster that drives immunosuppression through an iron-dependent epigenetic reprogramming mechanism and reveal promising therapeutic targets to boost anti-tumor immunity.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyuan Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benxia Hu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Genyu Du
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Xiao
- Department of Emergency Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingchao Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyao Jiang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaping Cheng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinming Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynaecology, Shanghai Key Laboratory of Gynaecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Ma
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- Department of Obstetrics and Gynaecology, Shanghai Key Laboratory of Gynaecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xue
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Zhang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Xiao Z, He R, Zhao Z, Chen T, Ying Z. Dysregulation of epigenetic modifications in inborn errors of immunity. Epigenomics 2024; 16:1301-1313. [PMID: 39404224 PMCID: PMC11534118 DOI: 10.1080/17501911.2024.2410695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Inborn errors of immunity (IEIs) are a group of typically monogenic disorders characterized by dysfunction in the immune system. Individuals with these disorders experience increased susceptibility to infections, autoimmunity and malignancies due to abnormal immune responses. Epigenetic modifications, including DNA methylation, histone modifications and chromatin remodeling, have been well explored in the regulation of immune cell development and effector function. Aberrant epigenetic modifications can disrupt gene expression profiles crucial for immune responses, resulting in impaired immune cell differentiation and function. Dysregulation of these processes caused by mutations in genes involving in epigenetic modifications has been associated with various IEIs. In this review article, we focus on IEIs that are caused by mutations in 13 genes involved in the regulation of DNA methylation, histone modification and chromatin remodeling.
Collapse
Affiliation(s)
- Zhongyao Xiao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Rongjing He
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zihan Zhao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Taiping Chen
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Zhengzhou Ying
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
15
|
Reid BM. Early life stress and iron metabolism in developmental psychoneuroimmunology. Brain Behav Immun Health 2024; 40:100824. [PMID: 39161875 PMCID: PMC11331713 DOI: 10.1016/j.bbih.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
An estimated 250 million children face adverse health outcomes from early life exposure to severe or chronic social, economic, and nutritional adversity, highlighting/emphasizing the pressing concern about the link between ELS and long-term implications on mental and physical health. There is significant overlap between populations experiencing high levels of chronic stress and those experiencing iron deficiency, spotlighting the potential role of iron as a key mediator in this association. Iron, an essential micronutrient for brain development and immune function, is often depleted in stress conditions. Iron deficiency among the most common nutrient deficiencies in the world. Fetal and infant iron status may thus serve as a crucial intermediary between early chronic psychological stress and subsequent immune system changes to impact neurodevelopment. The review presents a hypothesized pathway between early life stress (ELS), iron deficiency, and neurodevelopment through the hypothalamic-pituitary-adrenocortical (HPA) axis and the IL-6-hepcidin axis. This hypothesis is derived from (1) evidence that stress impacts iron status (2) long-term neurodevelopmental outcomes that are shared by ELS and iron deficiency exposure, and (3) possible mechanisms for how iron may mediate the relation between ELS and iron deficiency through alterations in the developing immune system. The article concludes by proposing future research directions, emphasizing the need for rigorous studies to elucidate how stress and iron metabolism interact to modify the developing immune system. Understanding these mechanisms could open new avenues for improving human health and neurodevelopment for women and children globally, making it a timely and vital area of study in psychoneuroimmunology research.
Collapse
Affiliation(s)
- Brie M. Reid
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, USA
- Center for Behavioral and Preventive Medicine, The Miriam Hospital, USA
- Department of Psychology, Department of Health Sciences, Northeastern University, USA
| |
Collapse
|
16
|
Wu B. Ferritin and Iron Levels Inversely Associated With Lymphoma Risk: A Mendelian Randomization Study. J Hematol 2024; 13:179-185. [PMID: 39493607 PMCID: PMC11526578 DOI: 10.14740/jh1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024] Open
Abstract
Background Current knowledge on iron's role in lymphoma development is very limited, with studies yielding inconsistent findings. To address this gap, we conducted a rigorous two-sample mendelian randomization study, aiming to elucidate the potential associations between iron storage and the risk of developing lymphoma. Methods This study leveraged extensive genetic data derived from a comprehensive genome-wide association study (GWAS) comprising 257,953 individuals. The primary objective was to pinpoint single-nucleotide polymorphisms (SNPs) that are significantly associated with iron storage. Subsequently, this genetic information was analyzed in conjunction with summary-level data pertaining to lymphoma cases and controls, sourced from the IEU open GWAS project, which included a sample size of 3,546 lymphoma cases and 487,257 controls. To evaluate the relationship between iron storage and lymphoma risk, an inverse variance-weighted method with random effects was employed, complemented by rigorous sensitivity analyses. Results Genetic predisposition to high ferritin and serum iron status was causally associated with lower odds of lymphoma. Ferritin exhibited an odds ratio (OR) of 0.777 (95% confidence interval (CI): 0.628 - 0.961, P = 0.020), indicating 22.3% reduced odds of lymphoma associated with a one standard deviation increase in ferritin levels. Similarly, serum iron demonstrated an OR of 0.776 (95% CI: 0.609 - 0.989, P = 0.040), corresponding to 22.4% decreased odds of lymphoma for a one standard deviation increase in serum iron. Conclusions This study suggests that individuals with genes linked to higher iron storage levels have a lower risk of developing lymphoma, but further research is necessary before making any clinical recommendations.
Collapse
Affiliation(s)
- Boyuan Wu
- Division of Biostatistics, School of Global Public Health, New York University, New York, NY 10003, USA.
| |
Collapse
|
17
|
Xing Z, Gao S, Zheng A, Tong C, Fang Y, Xiang Z, Chen S, Wang W, Hua C. Promising roles of combined therapy based on immune response and iron metabolism in systemic lupus erythematosus. Int Immunopharmacol 2024; 138:112481. [PMID: 38917527 DOI: 10.1016/j.intimp.2024.112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Systemic lupus erythematosus (SLE) is an intricate autoimmune disease with diverse manifestations. Immunometabolism reprogramming contributes to the progression of SLE by regulating the phenotype and function of immune cells. Dysregulated iron metabolism is implicated in SLE pathogenesis, affecting both systemic and immune cell-specific iron homeostasis. This review explores the systemic and cellular iron handling and regulation. Additionally, the advancements regarding iron metabolism in SLE with a focus on the distinct subsets of immune cells are highlighted. By gaining insight into the interplay between iron dysregulation and immune dysfunction, the potential therapeutic avenues may be unveiled. However, challenges remain in elucidating cell-specific iron metabolic reprogramming and its contribution to SLE pathogenesis needs further research for personalized therapeutic interventions and biomarker discovery. This review provides an in-depth understanding of immune cell-specific regulatory mechanisms of iron metabolism and new insights in current challenges as well as possible clinical applications.
Collapse
Affiliation(s)
- Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Anzhe Zheng
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Chuyan Tong
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yuan Fang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zheng Xiang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
18
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Sperling D, Rodríguez M, Guerra N, Karembe H, Diesing AK, Manso A, de Frutos L, Morales J. Simultaneous Use of Iron/Anticoccidial Treatment and Vaccination against Oedema Disease: Impact on the Development of Serum-Neutralising Antibodies, Hematinic and Anticoccidial Activities in Piglets. Vaccines (Basel) 2024; 12:1004. [PMID: 39340034 PMCID: PMC11435768 DOI: 10.3390/vaccines12091004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Oedema disease (OD) in weaned piglets is caused by shigatoxigenic Escherichia coli (STEC), which produces the Stx2e toxin. The disease is controlled by early vaccination (for example, with Ecoporc Shiga®). Iron-deficiency anaemia (IDA) and cystoisosporosis are the most common clinical conditions in piglets. These conditions are managed mainly by the intramuscular injection of iron and application of toltrazuril (for example, Forceris®). In the present study, we sought to evaluate any effect on the efficacy of OD vaccination and iron/anticoccidial treatment resulting from a simultaneous application. An evaluation was carried out by measuring the development of neutralising antibodies against the Stx2e toxin, hematinic indices and oocysts shedding. Six litters from Stx2e-antibody-negative sows were included in the study, with 12 piglets in each litter. The piglets were randomly allocated into two groups on their second day of life (DOL): (T1) iron/anticoccidial treatment and vaccine were administered on different days, and (T2) products were administered simultaneously. Blood samples were collected to determine the levels of serum-neutralising antibodies, haemoglobin and haematocrit. Faecal matter was examined for the presence of oocysts of Cystoisospora suis. No differences were found between the two groups in terms of the development of neutralising antibodies. The levels of haemoglobin and haematocrit were lower (p < 0.05 and p = 0.08, respectively) when iron/anticoccidial treatment and vaccine were applied simultaneously but within the optimal range, based on current interpretive criteria for IDA. Oocysts were not detected in the faecal samples from the animals in either group. In conclusion, we found that, under the conditions of our study, the efficacy of OD vaccination and iron/anticoccidial treatment was not affected by the simultaneous use.
Collapse
Affiliation(s)
- Daniel Sperling
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - María Rodríguez
- Animal Data Analytics S.L., C/Dámaso Alonso 14, 40006 Segovia, Spain
| | - Nicolás Guerra
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - Hamadi Karembe
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | | | - Alberto Manso
- Animal Data Analytics S.L., C/Dámaso Alonso 14, 40006 Segovia, Spain
| | - Laura de Frutos
- Animal Data Analytics S.L., C/Dámaso Alonso 14, 40006 Segovia, Spain
| | - Joaquín Morales
- Animal Data Analytics S.L., C/Dámaso Alonso 14, 40006 Segovia, Spain
| |
Collapse
|
20
|
Oh S, Janknecht R. Versatile JMJD proteins: juggling histones and much more. Trends Biochem Sci 2024; 49:804-818. [PMID: 38926050 PMCID: PMC11380596 DOI: 10.1016/j.tibs.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Jumonji C domain-containing (JMJD) proteins are found in bacteria, fungi, animals, and plants. They belong to the 2-oxoglutarate-dependent oxygenase superfamily and are endowed with various enzymatic activities, including demethylation of histones and hydroxylation of non-histone proteins. Many JMJD proteins are involved in the epigenetic control of gene expression, yet they also modulate a myriad other cellular processes. In this review we focus on the 33 human JMJD proteins and their established and controversial catalytic properties, survey their epigenetic and non-epigenetic functions, emphasize their contribution to sex-specific disease differences, and highlight how they sense metabolic changes. All this underlines not only their key roles in development and homeostasis, but also that JMJD proteins are destined to become drug targets in multiple diseases.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
21
|
Xie Z, Che Y, Huang G, Su Z, Lin J, Zheng G, Ye G, Yu W, Li J, Wu Y, Shen H. Iron-dependent KDM4D activity controls the quiescence-activity balance of MSCs via the PI3K-Akt-Foxo1 pathway. Cell Mol Life Sci 2024; 81:360. [PMID: 39158700 PMCID: PMC11335281 DOI: 10.1007/s00018-024-05376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Iron deficiency is a prevalent nutritional deficit associated with organ damage and dysfunction. Recent research increasingly associates iron deficiency with bone metabolism dysfunction, although the precise underlying mechanisms remain unclear. Some studies have proposed that iron-dependent methylation-erasing enzyme activity regulates cell proliferation and differentiation under physiological or pathological conditions. However, it remains uncertain whether iron deficiency inhibits the activation of quiescent mesenchymal stem cells (MSCs) by affecting histone demethylase activity. In our study, we identified KDM4D as a key player in the activation of quiescent MSCs. Under conditions of iron deficiency, the H3K9me3 demethylase activity of KDM4D significantly decreased. This alteration resulted in increased heterochromatin with H3K9me3 near the PIK3R3 promoter, suppressing PIK3R3 expression and subsequently inhibiting the activation of quiescent MSCs via the PI3K-Akt-Foxo1 pathway. Iron-deficient mice displayed significantly impaired bone marrow MSCs activation and decreased bone mass compared to normal mice. Modulating the PI3K-Akt-Foxo1 pathway could reverse iron deficiency-induced bone loss.
Collapse
Affiliation(s)
- Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Guo Huang
- Department of Rheumatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| |
Collapse
|
22
|
Liu Y, Wu A, Yu B, He J, Yu J, Mao X, Zheng P, Luo Y, Luo J, Pu J, Yan H, Chen D. The influence of iron nutrition on the development of intestine and immune cell divergency in neonatal pigs. J Anim Sci Biotechnol 2024; 15:111. [PMID: 39127747 DOI: 10.1186/s40104-024-01068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Appropriate iron supplementation is essential for neonatal growth and development. However, there are few reports on the effects of iron overload on neonatal growth and immune homeostasis. Thus, the aim of this study was to investigate the effects of iron nutrition on neonatal growth and intestinal immunity by administering different levels of iron to neonatal pigs. RESULTS We found that iron deficiency and iron overload resulted in slow growth in neonatal pigs. Iron deficiency and iron overload led to down-regulation of jejunum intestinal barrier and antioxidant marker genes, and promoted CD8+ T cell differentiation in jejunum and mesenteric lymph nodes (MLN) of pigs, disrupting intestinal health. Moreover, iron levels altered serum iron and tissue iron status leading to disturbances in redox state, affecting host innate and adaptive immunity. CONCLUSIONS These findings emphasized the effect of iron nutrition on host health and elucidated the importance of iron in regulating redox state and immunity development. This study provided valuable insights into the regulation of redox state and immune function by iron metabolism in early life, thus contributing to the development of targeted interventions and nutritional strategies to optimize iron nutrition in neonates.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
23
|
Huang S, Wei X, Qin F, Yuan Z, Mo C, Kang Y, Huang C, Jiang J, Ye L. Assessing causal association of circulating micronutrients and systemic lupus erythematosus susceptibility: a Mendelian randomization study. Front Nutr 2024; 11:1359697. [PMID: 39161911 PMCID: PMC11333035 DOI: 10.3389/fnut.2024.1359697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024] Open
Abstract
Background Previous studies showed the conflicting associations between circulating micronutrient levels and systemic lupus erythematosus (SLE). Therefore, we aimed to clarify the causal association between circulating micronutrient levels and the risk of SLE by two-sample Mendelian randomization (MR) analysis. Methods 56 single nucleotide polymorphisms (SNPs) significantly associated with 14 circulating micronutrients (vitamin A, B6, B9, B12, C, D and E, phosphorus, calcium, magnesium, copper, iron, zinc, and selenium) in published genome-wide association studies (GWAS) were used as instrumental variables (IVs). And summary statistics related to SLE were obtained from the IEU OpenGWAS database. We used the MR Steiger test to estimate the possible causal direction between circulating micronutrients and SLE. In the MR analysis, inverse variance weighting (IVW) method and the Wald ratio was as the main methods., Moreover, the MR-Pleiotropy residuals and outliers method (MR-PRESSO), Cochrane's Q-test, MR-Egger intercept method and leave-one-out analyses were applied as sensitivity analyses. Additionally, we conducted a retrospective analysis involving the 20,045 participants from the Third National Health and Nutritional Examination Survey (NHANES III). Weight variables were provided in the NHANES data files. Univariate and multivariate logistic regression analyses were performed to determine the associations between circulating micronutrients and SLE. Results The MR estimates obtained from the IVW method revealed potential negative correlations between circulating calcium (OR: 0.06, 95% CI: 0.01-0.49, P = 0.009), iron levels (OR: 0.63, 95% CI: 0.43-0.92, P = 0.016) and the risk of SLE. The results remained robust, even under various pairs of sensitivity analyses. Our retrospective analysis demonstrated that the levels of vitamin D, serum total calcium, and serum iron were significantly lower in SLE patients (N = 40) when compared to the control group (N = 20,005). Multivariate logistic regression analysis further established that increased levels of vitamin D and serum total calcium served as protective factors against SLE. Conclusion Our results provided genetic evidence supporting the potential protective role of increasing circulating calcium in the risk of SLE. Maintaining adequate levels of calcium may help reduce the risk of SLE.
Collapse
Affiliation(s)
- Shihui Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuemei Wei
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Chuye Mo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yiwen Kang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Chunlin Huang
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Bradley MC, Gray J, Carpia FL, Idzikowski E, Guyer R, Pethe K, Hod EA, Connors TJ. Dietary iron deficiency impairs effector function of memory T cells following influenza infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604599. [PMID: 39211133 PMCID: PMC11361010 DOI: 10.1101/2024.07.22.604599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The establishment of memory T cell responses is critical to protection against pathogens and is influenced by the conditions under which memory formation occurs. Iron is an essential micronutrient for multiple immunologic processes and nutritional deficiency is a common problem worldwide. Despite its prevalence, the impact of nutritional iron deficiency on the establishment of memory T cell responses is not fully understood. In this study we investigate the impact of nutritional iron deficiency on the generation, phenotype, and function of memory T cell responses using a murine model of dietary iron modulation in the context of influenza infection. Iron deficient mice have decreased systemic iron levels and develop significant anemia. Increased T cell expression of the transferrin receptor (CD71) is seen in iron deficient mice at baseline. During primary influenza infection, iron deficient mice experience increased weight loss and phenotypic evidence of impairments in T cell activation. Following recovery from infection, iron deficient mice generate increased influenza specific memory T cells which exhibit impaired ability to produce IFNγ, most notably within the lung. Importantly, the ability to produce IFNγ and TNFα is not recovered by co-culture with iron replete dendritic cells, suggesting a T cell intrinsic alteration in functional memory formation. Altogether, these results isolate a critical effect of nutritional iron deficiency on T cell memory development and function.
Collapse
|
25
|
Zhou Y, Li H, Tse E, Sun H. Metal-detection based techniques and their applications in metallobiology. Chem Sci 2024; 15:10264-10280. [PMID: 38994399 PMCID: PMC11234822 DOI: 10.1039/d4sc00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Metals are essential for human health and play a crucial role in numerous biological processes and pathways. Gaining a deeper insight into these biological events will facilitate novel strategies for disease prevention, early detection, and personalized treatment. In recent years, there has been significant progress in the development of metal-detection based techniques from single cell metallome and proteome profiling to multiplex imaging, which greatly enhance our comprehension of the intricate roles played by metals in complex biological systems. This perspective summarizes the recent progress in advanced metal-detection based techniques and highlights successful applications in elucidating the roles of metals in biology and medicine. Technologies including machine learning that couple with single-cell analysis such as mass cytometry and their application in metallobiology, cancer biology and immunology are also emphasized. Finally, we provide insights into future prospects and challenges involved in metal-detection based techniques, with the aim of inspiring further methodological advancements and applications that are accessible to chemists, biologists, and clinicians.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Eric Tse
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
26
|
Chen L, Zhang M, Yang X, Wang Y, Huang T, Li X, Ban Y, Li Q, Yang Q, Zhang Y, Zheng Y, Wang D, Wang X, Shi X, Zhang M, Sun Y, Wu J. Methyl-CpG-binding 2 K271 lactylation-mediated M2 macrophage polarization inhibits atherosclerosis. Theranostics 2024; 14:4256-4277. [PMID: 39113793 PMCID: PMC11303070 DOI: 10.7150/thno.94738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: Posttranslational modifications of proteins have not been addressed in studies aimed at elucidating the cardioprotective effect of exercise in atherosclerotic cardiovascular disease (ASCVD). In this study, we reveal a novel mechanism by which exercise ameliorates atherosclerosis via lactylation. Methods: Using ApoE-/- mice in an exercise model, proteomics analysis was used to identify exercise-induced specific lactylation of MeCP2 at lysine 271 (K271). Mutation of the MeCP2 K271 lactylation site in aortic plaque macrophages was achieved by recombinant adenoviral transfection. Explore the molecular mechanisms by which motility drives MeCP2 K271 lactylation to improve plaque stability using ATAC-Seq, CUT &Tag and molecular biology. Validation of the potential target RUNX1 for exercise therapy using Ro5-3335 pharmacological inhibition. Results: we showed that in ApoE-/- mice, methyl-CpG-binding protein 2 (MeCP2) K271 lactylation was observed in aortic root plaque macrophages, promoting pro-repair M2 macrophage polarization, reducing the plaque area, shrinking necrotic cores, reducing plaque lipid deposition, and increasing collagen content. Adenoviral transfection, by introducing a mutant at lysine 271, overexpressed MeCP2 K271 lactylation, which enhanced exercise-induced M2 macrophage polarization and increased plaque stability. Mechanistically, the exercise-induced atheroprotective effect requires an interaction between MeCP2 K271 lactylation and H3K36me3, leading to increased chromatin accessibility and transcriptional repression of RUNX1. In addition, the pharmacological inhibition of the transcription factor RUNX1 exerts atheroprotective effects by promoting the polarization of plaque macrophages towards the pro-repair M2 phenotype. Conclusions: These findings reveal a novel mechanism by which exercise ameliorates atherosclerosis via MeCP2 K271 lactylation-H3K36me3/RUNX1. Interventions that enhance MeCP2 K271 lactylation have been shown to increase pro-repair M2 macrophage infiltration, thereby promoting plaque stabilization and reducing the risk of atherosclerotic cardiovascular disease. We also established RUNX1 as a potential drug target for exercise therapy, thereby providing guidance for the discovery of new targets.
Collapse
Affiliation(s)
- Liangqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Meiju Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xueyan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yanan Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Tuo Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xin Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yunting Ban
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Qifeng Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Qingyuan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yongxiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yang Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Di Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xiaoqi Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xiujie Shi
- The Clinical Skills Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yong Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
- Cardiac Rehabilitation Center, Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Ma H, Zhang T. Histone demethylase KDM3B mediates matrix stiffness-induced osteogenic differentiation of adipose-derived stem cells. Arch Biochem Biophys 2024; 757:110028. [PMID: 38768746 DOI: 10.1016/j.abb.2024.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Biomechanical signals in the extracellular niche are considered promising for programming the lineage specification of stem cells. Recent studies have reported that biomechanics, such as the microstructure of nanomaterials, can induce adipose-derived stem cells (ASCs) to differentiate into osteoblasts, mediating gene regulation at the epigenetic level. Therefore, in this study, transcriptome expression levels of histone demethylases in ASCs were screened after treatment with different matrix stiffnesses, and histone lysine demethylase 3B (KDM3B) was found to promote osteogenic differentiation of ASCs in response to matrix stiffness, indicating a positive modulatory effect on this biological process. ASCs exhibited widespread and polygonal shapes with a distinct bundle-like expression of vinculin parallel to the axial cytoskeleton along the cell margins on the stiff matrix rather than round shapes with a smeared and shorter expression on the soft matrix. Comparatively rigid polydimethylsiloxane material directed ASCs into an osteogenic phenotype in inductive culture media via the upregulation of osteocalcin, alkaline phosphatase, and runt-related transcription factor 2. Treatment with KDM3B-siRNA decreased the expression of osteogenic differentiation markers and impaired mitochondrial dynamics and mitochondrial membrane potential. These results illustrate the critical role of KDM3B in the biomechanics-induced osteogenic commitment of ASCs and provide new avenues for the further application of stem cells as potential therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Huangshui Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
28
|
Droege F, König J, Lang KS, Jablonska J, Pylaeva E, Huckenbeck C, Wrobeln A, Duerig I, Thangavelu K, Lang S, Geisthoff U. Increased Risk for Infections and Allergic Disease in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2024; 13:3752. [PMID: 38999318 PMCID: PMC11242906 DOI: 10.3390/jcm13133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: Hereditary hemorrhagic telangiectasia (HHT) is a rare disorder characterized by dilated blood vessels. Different immunological changes have been described in these patients. In this study, the predisposition of patients with HHT to infections and allergic diseases was assessed. Methods: Patients with HHT completed an online survey in English or German. Their data were compared to non-affected partners or friends. Results: A total of 430 out of 588 respondents with HHT answered our questions about infections and allergies. Patients with HHT suffered significantly more often from various types of allergies than their partners, especially type I allergies (n = 226/276, 82%), and had a higher risk for sinusitis, urinary tract infections, pulmonary infections, and abscesses. A total of 38% of the patients took antibiotics prior to dental or surgical procedures (n = 57/152), and, in 10% of these patients, pulmonary arteriovenous malformations (PAVMs) were not detected. On the other hand, 51% of patients with PAVM did not report a prophylactic antibiotic intake (n = 40/79). The patients who needed iron supplementations suffered more often from sepsis (OR: 9.00, 95%CI: 0.92-88.16). Conclusions: Compared to their non-affected controls, patients with HHT showed an increased risk for infections in different organs and allergic diseases. There is a need for campaigns raising greater awareness recommending prophylactic antibiotic intake in patients with PAVM.
Collapse
Affiliation(s)
- Freya Droege
- Department of Otorhinolaryngology, Head and Neck Surgery and VASCERN HHT Reference Centre, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (J.J.); (E.P.); (C.H.); (I.D.); (S.L.)
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, 55101 Mainz, Germany;
| | - Karl S. Lang
- Institute of Immunology, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany;
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, Head and Neck Surgery and VASCERN HHT Reference Centre, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (J.J.); (E.P.); (C.H.); (I.D.); (S.L.)
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, Head and Neck Surgery and VASCERN HHT Reference Centre, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (J.J.); (E.P.); (C.H.); (I.D.); (S.L.)
| | - Carolin Huckenbeck
- Department of Otorhinolaryngology, Head and Neck Surgery and VASCERN HHT Reference Centre, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (J.J.); (E.P.); (C.H.); (I.D.); (S.L.)
| | - Anna Wrobeln
- Institute of Physiology, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany;
| | - Inga Duerig
- Department of Otorhinolaryngology, Head and Neck Surgery and VASCERN HHT Reference Centre, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (J.J.); (E.P.); (C.H.); (I.D.); (S.L.)
| | - Kruthika Thangavelu
- Department of Otorhinolaryngology, Head and Neck Surgery and VASCERN HHT Reference Centre, University Hospital of Marburg, Philipps-University of Marburg, Baldingerstrasse, 35042 Marburg, Germany; (K.T.); (U.G.)
| | - Stephan Lang
- Department of Otorhinolaryngology, Head and Neck Surgery and VASCERN HHT Reference Centre, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (J.J.); (E.P.); (C.H.); (I.D.); (S.L.)
| | - Urban Geisthoff
- Department of Otorhinolaryngology, Head and Neck Surgery and VASCERN HHT Reference Centre, University Hospital of Marburg, Philipps-University of Marburg, Baldingerstrasse, 35042 Marburg, Germany; (K.T.); (U.G.)
| |
Collapse
|
29
|
Wu S, Yin Y, Du L. The bidirectional relationship of depression and disturbances in B cell homeostasis: Double trouble. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110993. [PMID: 38490433 DOI: 10.1016/j.pnpbp.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Major depressive disorder (MDD) is a recurrent, persistent, and debilitating neuropsychiatric syndrome with an increasing morbidity and mortality, representing the leading cause of disability worldwide. The dysregulation of immune systems (including innate and adaptive immune systems) has been identified as one of the key contributing factors in the progression of MDD. As the main force of the humoral immunity, B cells have an essential role in the defense against infections, antitumor immunity and autoimmune diseases. Several recent studies have suggested an intriguing connection between disturbances in B cell homeostasis and the pathogenesis of MDD, however, the B-cell-dependent mechanism of MDD remains largely unexplored compared to other immune cells. In this review, we provide an overview of how B cell abnormality regulates the progression of MMD and the potential consequence of the disruption of B cell homeostasis in patients with MDD. Abnormalities of B-cell homeostasis not only promote susceptibility to MDD, but also lead to an increased risk of developing infection, malignancy and autoimmune diseases in patients with MDD. A better understanding of the contribution of B cells underlying MDD would provide opportunities for identification of more targeted treatment approaches and might provide an overall therapeutic benefit to improve the long-term outcomes of patients with MDD.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
30
|
Lee NH. Iron deficiency in children with a focus on inflammatory conditions. Clin Exp Pediatr 2024; 67:283-293. [PMID: 38772411 DOI: 10.3345/cep.2023.00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/03/2023] [Indexed: 05/23/2024] Open
Abstract
Iron deficiency (ID) tends to be overlooked compared with anemia. However, its prevalence is estimated to be twice as high as that of ID anemia, and ID without anemia can be accompanied by clinical and functional impairments. The symptoms of ID are nonspecific, such as fatigue and lethargy, but can lead to neurodevelopmental disorders in children, restless legs syndrome, and recurrent infections due to immune system dysregulation. In particular, the risk of ID is high in the context of chronic inflammatory diseases (CIDs) due to the reaction of various cytokines and the resulting increase in hepcidin levels; ID further exacerbates these diseases and increases mortality. Therefore, the diagnosis of ID should not be overlooked through ID screening especially in high-risk groups. Ferritin and transferrin saturation levels are the primary laboratory parameters used to diagnose ID. However, as ferritin levels respond to inflammation, the diagnostic criteria differ among guidelines. Therefore, new tools and criteria for accurately diagnosing ID should be developed. Treatment can be initiated only with an accurate diagnosis. Oral iron is typically the first-line treatment for ID; however, the efficacy and safety of intravenous iron have recently been recognized. Symptoms improve quickly after treatment, and the prognosis of accompanying diseases can also be improved. This review highlights the need to improve global awareness of ID diagnosis and treatment, even in the absence of anemia, to improve the quality of life of affected children, especially those with CIDs.
Collapse
Affiliation(s)
- Na Hee Lee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
31
|
Stoffel NU, Drakesmith H. Effects of Iron Status on Adaptive Immunity and Vaccine Efficacy: A Review. Adv Nutr 2024; 15:100238. [PMID: 38729263 PMCID: PMC11251406 DOI: 10.1016/j.advnut.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Vaccines can prevent infectious diseases, but their efficacy varies, and factors impacting vaccine effectiveness remain unclear. Iron deficiency is the most common nutrient deficiency, affecting >2 billion individuals. It is particularly common in areas with high infectious disease burden and in groups that are routinely vaccinated, such as infants, pregnant women, and the elderly. Recent evidence suggests that iron deficiency and low serum iron (hypoferremia) not only cause anemia but also may impair adaptive immunity and vaccine efficacy. A report of human immunodeficiency caused by defective iron transport underscored the necessity of iron for adaptive immune responses and spurred research in this area. Sufficient iron is essential for optimal production of plasmablasts and IgG responses by human B-cells in vitro and in vivo. The increased metabolism of activated lymphocytes depends on the high-iron acquisition, and hypoferremia, especially when occurring during lymphocyte expansion, adversely affects multiple facets of adaptive immunity, and may lead to prolonged inhibition of T-cell memory. In mice, hypoferremia suppresses the adaptive immune response to influenza infection, resulting in more severe pulmonary disease. In African infants, anemia and/or iron deficiency at the time of vaccination predict decreased response to diphtheria, pertussis, and pneumococcal vaccines, and response to measles vaccine may be increased by iron supplementation. In this review, we examine the emerging evidence that iron deficiency may limit adaptive immunity and vaccine responses. We discuss the molecular mechanisms and evidence from animal and human studies, highlight important unknowns, and propose a framework of key research questions to better understand iron-vaccine interactions.
Collapse
Affiliation(s)
- Nicole U Stoffel
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - Hal Drakesmith
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Hurrell BP, Sakano Y, Shen S, Helou DG, Li M, Shafiei-Jahani P, Kazemi MH, Sakano K, Li X, Quach C, Barbers R, Akbari O. Iron controls the development of airway hyperreactivity by regulating ILC2 metabolism and effector function. Sci Transl Med 2024; 16:eadk4728. [PMID: 38718131 DOI: 10.1126/scitranslmed.adk4728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/09/2024] [Indexed: 11/06/2024]
Abstract
Group 2 innate lymphoid cells (ILC2s) rapidly induce a type 2 inflammation in the lungs in response to allergens. Here, we focused on the role of iron, a critical nutritional trace element, on ILC2 function and asthma pathogenesis. We found that transferrin receptor 1 (TfR1) is rapidly up-regulated and functional during ILC2 activation in the lungs, and blocking transferrin uptake reduces ILC2 expansion and activation. Iron deprivation reprogrammed ILC2 metabolism, inducing a HIF-1α-driven up-regulation of glycolysis and inhibition of oxidative mitochondrial activity. Consequently, we observed that in vivo iron chelation or induction of hypoferremia reduced the development of airway hyperreactivity in experimental models of ILC2-driven allergic asthma. Human circulating ILC2s rapidly induced TfR1 during activation, whereas inhibition of iron uptake or iron deprivation reduced effector functions. Last, we found a negative relationship between circulating ILC2 TfR1 expression and airway function in cohorts of patients with asthma. Collectively, our studies define cellular iron as a critical regulator of ILC2 function.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Meng Li
- USC Libraries Bioinformatics Service, University of Southern California, Los Angeles, CA 90033, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Richard Barbers
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
33
|
Morel L, Scindia Y. Functional consequence of Iron dyshomeostasis and ferroptosis in systemic lupus erythematosus and lupus nephritis. Clin Immunol 2024; 262:110181. [PMID: 38458303 PMCID: PMC11672638 DOI: 10.1016/j.clim.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Systemic lupus erythematosus (SLE) and its renal manifestation Lupus nephritis (LN) are characterized by a dysregulated immune system, autoantibodies, and injury to the renal parenchyma. Iron accumulation and ferroptosis in the immune effectors and renal tubules are recently identified pathological features in SLE and LN. Ferroptosis is an iron dependent non-apoptotic form of regulated cell death and ferroptosis inhibitors have improved disease outcomes in murine models of SLE, identifying it as a novel druggable target. In this review, we discuss novel mechanisms by which iron accumulation and ferroptosis perpetuate immune cell mediated pathology in SLE/LN. We highlight intra-renal dysregulation of iron metabolism and ferroptosis as an underlying pathogenic mechanism of renal tubular injury. The basic concepts of iron biology and ferroptosis are also discussed to expose the links between iron, cell metabolism and ferroptosis, that identify intracellular pro-ferroptotic enzymes and their protein conjugates as potential targets to improve SLE/LN outcomes.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Tywanek E, Michalak A, Świrska J, Zwolak A. Autoimmunity, New Potential Biomarkers and the Thyroid Gland-The Perspective of Hashimoto's Thyroiditis and Its Treatment. Int J Mol Sci 2024; 25:4703. [PMID: 38731922 PMCID: PMC11083198 DOI: 10.3390/ijms25094703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Autoimmune thyroid disease (AITD) is the most common organic specific illness of the thyroid gland. It may manifest as the overproduction or the decline of thyroxine and triiodothyronine. Hyperthyroidism develops due to the overproduction of hormones as an answer to the presence of stimulatory antibodies against the TSH receptor. Hashimoto's thyroiditis (HT) is generally characterized by the presence of thyroid peroxidase and thyroglobulin antibodies, with a concomitant infiltration of lymphocytes in the thyroid. Due to the progressive destruction of cells, AITD can lead to subclinical or overt hypothyroidism. Pathophysiology of AITD is extremely complicated and still not fully understood, with genetic, environmental and epigenetic factors involved in its development. Due to increasing incidence and social awareness of this pathology, there is an urgent need to expand the background concerning AITD. A growing body of evidence suggests possible ways of treatment apart from traditional approaches. Simultaneously, the role of potential new biomarkers in the diagnosis and monitoring of AITD has been highlighted recently, too. Therefore, we decided to review therapeutic trends in the course of AITD based on its pathophysiological mechanisms, mainly focusing on HT. Another aim was to summarize the state of knowledge regarding the role of new biomarkers in this condition.
Collapse
Affiliation(s)
- Ewa Tywanek
- Department of Internal Medicine and Internal Medicine in Nursing, Medical University of Lublin, Witold Chodźki Street 7, 20-093 Lublin, Poland; (E.T.); (A.Z.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland
- Endocrinology Department with Nuclear Medicine Department, Center of Oncology of the Lublin Region St. Jana z Dukli, Kazimierz Jaczewski Street 7, 20-090 Lublin, Poland;
| | - Agata Michalak
- Department of Gastroenterology, Medical University of Lublin, Poland, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Joanna Świrska
- Endocrinology Department with Nuclear Medicine Department, Center of Oncology of the Lublin Region St. Jana z Dukli, Kazimierz Jaczewski Street 7, 20-090 Lublin, Poland;
| | - Agnieszka Zwolak
- Department of Internal Medicine and Internal Medicine in Nursing, Medical University of Lublin, Witold Chodźki Street 7, 20-093 Lublin, Poland; (E.T.); (A.Z.)
- Endocrinology Department with Nuclear Medicine Department, Center of Oncology of the Lublin Region St. Jana z Dukli, Kazimierz Jaczewski Street 7, 20-090 Lublin, Poland;
| |
Collapse
|
35
|
Liu Y, Zhao J, Huang B, Liang Y, Jiang G, Zhou X, Chen Y, He T, Zheng M, Huang Z. Identification and validation of an immunotherapeutic signature for colon cancer based on the regulatory patterns of ferroptosis and their association with the tumor microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119698. [PMID: 38387508 DOI: 10.1016/j.bbamcr.2024.119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The integrated landscape of ferroptosis regulatory patterns and their association with colon microenvironment have been demonstrated in recent studies. However, the ferroptosis-related immunotherapeutic signature for colon cancer (CC) remains unclear. We comprehensively evaluated 1623 CC samples, identified patterns of ferroptosis modification based on ferroptosis-associated genes, and systematically correlated these patterns with tumor microenvironment (TME) cell infiltration characteristics. In addition, the ferroptosis-regulated gene score (FRG-score) was constructed to quantify the pattern of ferroptosis alterations in individual tumors. Three distinct patterns of ferroptosis modification were identified, including antioxidant defense, iron toxicity, and lipid peroxidation. The characteristics of TME cell infiltration under these three patterns were highly consistent with the three immune phenotypes of tumors, including immune-inflamed, immune-excluded and immune-desert phenotypes. We also demonstrated that evaluation of ferroptosis regulatory patterns within individual tumors can predict tumor inflammatory status, tumor subtype, TME stromal activity, genetic variation, and clinical outcome. Immunotherapy cohorts confirmed that patients with low FRG-scores showed remarkable therapeutic and clinical benefits. Furthermore, the hub gene apolipoprotein L6 (APOL6), a drug-sensitive target associated with cancer cell ferroptosis, was identified through our proposed novel key gene screening process and validated in CC cell lines and scRNA-seq.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China
| | - Junzhang Zhao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, PR China
| | - Baoxiang Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China
| | - Youcheng Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Guanming Jiang
- Dongguan Institute of Clinical Oncology Research in Dongguan People's Hospital, Dongguan 523018, Guangdong, PR China
| | - Xinglin Zhou
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China
| | - Yilin Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China
| | - Tao He
- School of Basic Medicine, Guangdong Medical University, Dongguan 523018, Guangdong, PR China
| | - Mingbin Zheng
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong, PR China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China.
| |
Collapse
|
36
|
Wu Q, Carlos AR, Braza F, Bergman ML, Kitoko JZ, Bastos-Amador P, Cuadrado E, Martins R, Oliveira BS, Martins VC, Scicluna BP, Landry JJ, Jung FE, Ademolue TW, Peitzsch M, Almeida-Santos J, Thompson J, Cardoso S, Ventura P, Slot M, Rontogianni S, Ribeiro V, Domingues VDS, Cabral IA, Weis S, Groth M, Ameneiro C, Fidalgo M, Wang F, Demengeot J, Amsen D, Soares MP. Ferritin heavy chain supports stability and function of the regulatory T cell lineage. EMBO J 2024; 43:1445-1483. [PMID: 38499786 PMCID: PMC11021483 DOI: 10.1038/s44318-024-00064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.
Collapse
Affiliation(s)
- Qian Wu
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, Zhejiang, China
| | - Ana Rita Carlos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Faouzi Braza
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | - Eloy Cuadrado
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Jonathan Jm Landry
- Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ferris E Jung
- Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | | | | | | | - Manon Slot
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Stamatia Rontogianni
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Vanessa Ribeiro
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Sebastian Weis
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Cristina Ameneiro
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Miguel Fidalgo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | | | - Derk Amsen
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
37
|
Cozer AWD, Souza FCV, Santiago LD, Lima MR, Pimenta SJ, Fernandes BL, Enes BN, Gama RS, Gomides TAR. Effects of Iron-Fortified Foods on the Nutritional Status of Children Residing in Regions Vulnerable to Parasitic Diseases: A Systematic Review. Prev Nutr Food Sci 2024; 29:8-17. [PMID: 38576884 PMCID: PMC10987379 DOI: 10.3746/pnf.2024.29.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Parasitic infections (PIs) remain a public health concern among school-age children living in areas of greater socioeconomic vulnerability, especially in Brazil, Russia, India, China, and South Africa. PIs can promote nutritional deficiencies, increasing the risk of anemia and impaired physical and cognitive development. Thus, fortified foods have been considered as a promising strategy for improving the nutritional status of children and preventing PI complications. This systematic review aimed to present the effects of iron-fortified foods for deworming and improving blood parameters in schoolchildren residing in areas that are vulnerable to PIs. This review is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines of randomized clinical trials addressing the use of fortified foods and micronutrients in children living in areas endemic for PIs. The PubMed, LILACS, Scopus, and Cochrane databases were searched to identify articles published between 2000 and 2020. A total of 153 records were retrieved from the databases, 10 of which were considered eligible for this study. On the basis of our analysis, most of the selected studies showed that the inclusion of fortified foods in the diet improved blood and infectious parameters. Therefore, fortified foods can be used as an important tool for controlling the adverse outcomes of PIs among children living in areas of greater vulnerability. However, more studies on this topic are needed to provide more evidence and consolidate strategies using iron-fortified food.
Collapse
Affiliation(s)
| | | | | | - Marlucy Rodrigues Lima
- Department of Pharmacy, Vale do Rio Doce University, Governador Valadares - MG 35020-220, Brazil
| | - Sabrina Julie Pimenta
- Department of Dentistry, Vale do Rio Doce University, Governador Valadares - MG 35020-220, Brazil
| | - Bárbara Leles Fernandes
- Department of Pharmacy, Vale do Rio Doce University, Governador Valadares - MG 35020-220, Brazil
| | - Barbara Nery Enes
- Department of Nutrition, Vale do Rio Doce University, Governador Valadares - MG 35020-220, Brazil
| | - Rafael Silva Gama
- Department of Pharmacy, Vale do Rio Doce University, Governador Valadares - MG 35020-220, Brazil
| | | |
Collapse
|
38
|
Xi D, Garg K, Lambert JS, Rajput-Ray M, Madigan A, Avramovic G, Gilbert L. Scrutinizing Clinical Biomarkers in a Large Cohort of Patients with Lyme Disease and Other Tick-Borne Infections. Microorganisms 2024; 12:380. [PMID: 38399784 PMCID: PMC10893018 DOI: 10.3390/microorganisms12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Standard clinical markers can improve tick-borne infection (TBI) diagnoses. We investigated immune and other clinical biomarkers in 110 patients clinically diagnosed with TBIs before (T0) and after antibiotic treatment (T2). At T0, both the initial observation group and patients without seroconversion for tick-borne pathogens exhibited notably low percentages and counts of CD3 percentage (CD3%), CD3+ cells, CD8+ suppressors, CD4 percentage (CD4%), and CD4+ helper cells, with the latter group showing reductions in CD3%, CD3+, and CD8+ counts in approximately 15-22% of cases. Following treatment at the T2 follow-up, patients typically experienced enhancements in their previously low CD3%, CD3+ counts, CD4%, and CD4+ counts; however, there was no notable progress in their low CD8+ counts, and a higher number of patients presented with insufficient transferrin levels. Moreover, among those with negative serology for tick-borne infections, there was an improvement in low CD3% and CD3+ counts, which was more pronounced in patients with deficient transferrin amounts. Among those with CD57+ (n = 37) and CD19+ (n = 101) lymphocyte analysis, 59.46% of patients had a low CD57+ count, 14.85% had a low CD19 count, and 36.63% had a low CD19 percentage (CD19%). Similar findings were observed concerning low CD57+, CD19+, and CD19% markers for negative TBI serology patients. Overall, this study demonstrates that routine standard clinical markers could assist in a TBI diagnosis.
Collapse
Affiliation(s)
- David Xi
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | | | - John S. Lambert
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
- Infectious Diseases Department, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Infectious Diseases Department, The Rotunda Hospital, D01 P5W9 Dublin, Ireland
| | - Minha Rajput-Ray
- Curaidh Clinic: Innovative Solutions for Pain, Chronic Disease and Work Health, Perth PH2 8EH, UK;
| | - Anne Madigan
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | - Gordana Avramovic
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | | |
Collapse
|
39
|
Zhang YY, Han Y, Li WN, Xu RH, Ju HQ. Tumor iron homeostasis and immune regulation. Trends Pharmacol Sci 2024; 45:145-156. [PMID: 38212195 DOI: 10.1016/j.tips.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Abnormal iron metabolism has long been regarded as a key metabolic hallmark of cancer. As a critical cofactor, iron contributes to tumor progression by participating in various processes such as mitochondrial electron transport, gene regulation, and DNA synthesis or repair. Although the role of iron in tumor cells has been widely studied, recent studies have uncovered the interplay of iron metabolism between tumor cells and immune cells, which may affect both innate and adaptive immune responses. In this review, we discuss the current understanding of the regulatory networks of iron metabolism between cancer cells and immune cells and how they contribute to antitumor immunity, and we analyze potential therapeutics targeting iron metabolism. Also, we highlight several key challenges and describe potential therapeutic approaches for future investigations.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yi Han
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wen-Ning Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| |
Collapse
|
40
|
Vinke JSJ, Kremer D, Knobbe TJ, Grote Beverborg N, Berger SP, Bakker SJ, de Borst MH, Eisenga MF. Iron Status and Cause-Specific Mortality After Kidney Transplantation. Kidney Med 2024; 6:100766. [PMID: 38375423 PMCID: PMC10874991 DOI: 10.1016/j.xkme.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Affiliation(s)
- Joanna Sophia J. Vinke
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Daan Kremer
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Tim J. Knobbe
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen; Groningen, the Netherlands
| | - Stefan P. Berger
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Stephan J.L. Bakker
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Martin H. de Borst
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| | - Michele F. Eisenga
- Department of Nephrology, University Medical Center Groningen; Groningen, the Netherlands
| |
Collapse
|
41
|
Bai Q, Liu R, Quan C, Han X, Wang D, Wang C, Wang Z, Li L, Li L, Piao H, Song Y, Yan G. DEK deficiency suppresses mitophagy to protect against house dust mite-induced asthma. Front Immunol 2024; 14:1289774. [PMID: 38274803 PMCID: PMC10808738 DOI: 10.3389/fimmu.2023.1289774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
DEK protein is highly expressed in asthma. However, the mechanism of DEK on mitophagy in asthma has not been fully understood. This study aims to investigate the role and mechanism of DEK in asthmatic airway inflammation and in regulating PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. PINK1-Parkin mitophagy, NLRP3 inflammasome, and apoptosis were examined after gene silencing or treatment with specific inhibitors (MitoTEMPO, MCC950, and Ac-DEVD-CHO) in house dust mite (HDM) or recombinant DEK (rmDEK)-induced WT and DEK-/- asthmatic mice and BEAS-2B cells. The regulatory role of DEK on ATAD3A was detected using ChIP-sequence and co-immunoprecipitation. rmDEK promoted eosinophil recruitment, and co-localization of TOM20 and LC3B, MFN1 and mitochondria, LC3B and VDAC, and ROS generation, reduced protein level of MnSOD in HDM induced-asthmatic mice. Moreover, rmDEK also increased DRP1 expression, PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. These effects were partially reversed in DEK-/- mice. In BEAS-2B cells, siDEK diminished the Parkin, LC3B, and DRP1 translocation to mitochondria, mtROS, TOM20, and mtDNA. ChIP-sequence analysis showed that DEK was enriched on the ATAD3A promoter and could positively regulate ATAD3A expression. Additionally, ATAD3A was highly expressed in HDM-induced asthma models and interacted with DRP1, and siATAD3A could down-regulate DRP1 and mtDNA-mediated mitochondrial oxidative damage. Conclusively, DEK deficiency alleviates airway inflammation in asthma by down-regulating PINK1-Parkin mitophagy, NLRP3 inflammasome activation, and apoptosis. The mechanism may be through the DEK/ATAD3A/DRP1 signaling axis. Our findings may provide new potential therapeutic targets for asthma treatment.
Collapse
Affiliation(s)
- Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Ruobai Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Changlin Quan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Xue Han
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Dandan Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
42
|
Chellini L, Scarfò M, Bonvissuto D, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 orchestrates the KDM2B-mediated transcriptional regulation of YAP1 in Ewing sarcoma. Oncogene 2024; 43:225-234. [PMID: 38017132 DOI: 10.1038/s41388-023-02894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Ewing sarcomas (ES) are aggressive paediatric tumours of bone and soft tissues. Resistance to chemotherapy and high propensity to metastasize remain the main causes of treatment failure. Thus, identifying novel targets for alternative therapeutic approaches is urgently needed. DNA/RNA helicases are emerging as crucial regulators of many cellular processes often deregulated in cancer. Among them, DHX9 is up-regulated in ES and collaborates with EWS-FLI1 in ES transformation. We report that DHX9 silencing profoundly impacts on the oncogenic properties of ES cells. Transcriptome profiling combined to bioinformatic analyses disclosed a gene signature commonly regulated by DHX9 and the Lysine Demethylase KDM2B, with the Hippo pathway regulator YAP1 as a prominent target. Mechanistically, we found that DHX9 enhances H3K9 chromatin demethylation by KDM2B and favours RNA Polymerase II recruitment, thus promoting YAP1 expression. Conversely, EWS-FLI1 binding to the promoter represses YAP1 expression. These findings identify the DHX9/KDM2B complex as a new druggable target to counteract ES malignancy.
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Marzia Scarfò
- Plaisant Polo Tecnologico s.r.l, Castel Romano, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- GSTeP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
43
|
Nettelfield S, Yu D, Cañete PF. Systemic immunometabolism and responses to vaccines: insights from T and B cell perspectives. Int Immunol 2023; 35:571-582. [PMID: 37330692 DOI: 10.1093/intimm/dxad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Vaccination stands as the cornerstone in the battle against infectious diseases, and its efficacy hinges on several host-related factors like genetics, age, and metabolic status. Vulnerable populations, such as malnourished individuals, the obese, and the elderly, commonly exhibit diminished vaccine responses and efficacy. While the specific factors contributing to this impairment may vary, these individuals typically display a degree of metabolic dysregulation, thereby underscoring its potential significance as a fundamental determinant of suboptimal vaccine responses. The emerging field of immunometabolism aims to unravel the intricate interplay between immune regulation and metabolic pathways, and recent research has revealed diverse metabolic signatures linked to various vaccine responses and outcomes. In this review, we summarize the major metabolic pathways utilized by B and T cells during vaccine responses, their complex and varied metabolic requirements, and the impact of micronutrients and metabolic hormones on vaccine outcomes. Furthermore, we examine how systemic metabolism influences vaccine responses and the evidence suggesting that metabolic dysregulation in vulnerable populations can lead to impaired vaccine responses. Lastly, we reflect on the challenge of proving causality with respect to the contribution of metabolic dysregulation to poor vaccine outcomes, and highlight the need for a systems biology approach that combines multimodal profiling and mathematical modelling to reveal the underlying mechanisms of such complex interactions.
Collapse
Affiliation(s)
- Sam Nettelfield
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pablo F Cañete
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
44
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
45
|
Brittenham GM, Moir-Meyer G, Abuga KM, Datta-Mitra A, Cerami C, Green R, Pasricha SR, Atkinson SH. Biology of Anemia: A Public Health Perspective. J Nutr 2023; 153 Suppl 1:S7-S28. [PMID: 37778889 DOI: 10.1016/j.tjnut.2023.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
Our goal is to present recent progress in understanding the biological mechanisms underlying anemia from a public health perspective. We describe important advances in understanding common causes of anemia and their interactions, including iron deficiency (ID), lack of other micronutrients, infection, inflammation, and genetic conditions. ID develops if the iron circulating in the blood cannot provide the amounts required for red blood cell production and tissue needs. ID anemia develops as iron-limited red blood cell production fails to maintain the hemoglobin concentration above the threshold used to define anemia. Globally, absolute ID (absent or reduced body iron stores that do not meet the need for iron of an individual but may respond to iron supplementation) contributes to only a limited proportion of anemia. Functional ID (adequate or increased iron stores that cannot meet the need for iron because of the effects of infection or inflammation and does not respond to iron supplementation) is frequently responsible for anemia in low- and middle-income countries. Absolute and functional ID may coexist. We highlight continued improvement in understanding the roles of infections and inflammation in causing a large proportion of anemia. Deficiencies of nutrients other than iron are less common but important in some settings. The importance of genetic conditions as causes of anemia depends upon the specific inherited red blood cell abnormalities and their prevalence in the settings examined. From a public health perspective, each setting has a distinctive composition of components underlying the common causes of anemia. We emphasize the coincidence between regions with a high prevalence of anemia attributed to ID (both absolute and functional), those with endemic infections, and those with widespread genetic conditions affecting red blood cells, especially in sub-Saharan Africa and regions in Asia and Oceania.
Collapse
Affiliation(s)
- Gary M Brittenham
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Gemma Moir-Meyer
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Kelvin Mokaya Abuga
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Ananya Datta-Mitra
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, United States
| | - Carla Cerami
- The Medical Research Council Unit, The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, United States
| | - Sant-Rayn Pasricha
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia; Diagnostic Haematology, The Royal Melbourne Hospital; and Clinical Haematology at the Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, VIC Australia
| | - Sarah H Atkinson
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Yu B, Tamargo C, Brennan DC, Kant S. Measures to Increase Immunogenicity of SARS-CoV-2 Vaccines in Solid Organ Transplant Recipients: A Narrative Review. Vaccines (Basel) 2023; 11:1755. [PMID: 38140160 PMCID: PMC10748337 DOI: 10.3390/vaccines11121755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Purpose of review: To review the data on the immunogenicity of COVID-19 vaccines, administered by different strategies, in solid organ transplant recipients (SOTRs). Recent findings: COVID-19 booster vaccines were given to SOTRs as a widespread practice in many transplant centers, mostly as the third and/or fourth dose in an extended vaccine series, with a significantly improved humoral response compared with the initial two-dose scheme. However, one-third of SOTRs remained unresponsive, despite these boosters. Next steps: Vaccination with standard dosing remains the most feasible strategy for attaining protection against COVID-19. Additional booster doses and temporarily holding or reducing mycophenolate mofetil/mycophenolic acid may provide immunogenicity to vaccines, according to recent studies demonstrating some efficacy with these measures. Preexposure prophylaxis with monoclonal antibodies showed benefit in immunocompromised patients but is no longer recommended by the National Institutes of Health (NIH) due to diminished efficacy against Omicron and recent variants. Screening for the presence and titers of SARS-CoV-2-specific antibodies in SOTRs is not recommended in most clinical settings. T cell-based techniques are needed to evaluate vaccine efficacy and risk of infection. As SARS-CoV-2 continues to evolve, new vaccines based on conservative protein component/complexes of the COVID virus, in addition to its spike protein, are warranted to offer prolonged protection.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, MD 21201, USA;
| | - Christina Tamargo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sam Kant
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Che Y, Li J, Wang P, Yu W, Lin J, Su Z, Ye F, Zhang Z, Xu P, Xie Z, Wu Y, Shen H. Iron deficiency-induced ferritinophagy impairs skeletal muscle regeneration through RNF20-mediated H2Bub1 modification. SCIENCE ADVANCES 2023; 9:eadf4345. [PMID: 37976359 PMCID: PMC10656073 DOI: 10.1126/sciadv.adf4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Iron deficiency (ID) is a widespread condition concomitant with disease and results in systemic dysfunction of target tissues including skeletal muscle. Activated by ID, ferritinophagy is a recently found type of selective autophagy, which plays an important role in various physiological and pathological conditions. In this study, we demonstrated that ID-mediated ferritinophagy impeded myogenic differentiation. Mechanistically, ferritinophagy induced RNF20 degradation through the autophagy-lysosomal pathway and then negatively regulated histone H2B monoubiquitination at lysine-120 in the promoters of the myogenic markers MyoD and MyoG, which inhibited myogenic differentiation and regeneration. Conditional knockout of NCOA4 in satellite cells, overexpression of RNF20 or treatment with 3-methyladenine restored skeletal muscle regenerative potential under ID conditions. In patients with ID, RNF20 and H2Bub1 protein expression is downregulated in skeletal muscle. In conclusion, our study indicated that the ferritinophagy-RNF20-H2Bub1 axis is a pathological molecular mechanism underlying ID-induced skeletal muscle impairment, suggesting potential therapeutic prospects.
Collapse
Affiliation(s)
- Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Feng Ye
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Zhaoqiang Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Peitao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| |
Collapse
|
48
|
Zhao X, Sun Y, Xu Z, Cai L, Hu Y, Wang H. Targeting PRMT1 prevents acute and chronic graft-versus-host disease. Mol Ther 2023; 31:3259-3276. [PMID: 37735873 PMCID: PMC10638063 DOI: 10.1016/j.ymthe.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a common complication after allogeneic hematopoietic stem cell transplantation. Recent studies have reported that protein arginine methyltransferase 1 (PRMT1) is essential for the differentiation and proliferation of T and B cells. Therefore, it is possible that PRMT1 may play a critical role in GVHD. In this study, we observed that PRMT1 expression was upregulated in CD4+ T and B cells from chronic GVHD (cGVHD) patients and mice. However, the prophylactic use of a PRMT1 inhibitor significantly prevented cGVHD in mice by reducing the percentage of T helper (Th)17 cells, germinal center B cells, and plasma cells. The PRMT1 inhibitor also controlled acute GVHD (aGVHD) in mice by decreasing the percentage of Th17 cells. Moreover, inhibiting PRMT1 also weakened Th17 cell differentiation, B cell proliferation, and antibody production in cells from cGVHD patients. Additionally, further studies revealed that PRMT1 regulated B cell proliferation and antibody secretion by methylating isocitrate dehydrogenase 2 (IDH2). We observed asymmetric di-methylation of IDH2 by PRMT1 at arginine 353 promoted IDH2 homodimerization, which enhanced IDH2 activity, further increasing B cell proliferation and antibody production. Collectively, this study provides a rationale for the application of PRMT1 inhibitors in the prevention of aGVHD and cGVHD.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ziwei Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Cai
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Huafang Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
49
|
Chen Q, Xiang M, Gao Z, Lvu F, Sun Z, Wang Y, Shi X, Xu J, Wang J, Liang J. The role of B-cell ferroptosis in the pathogenesis of systemic lupus erythematosus. Clin Immunol 2023; 256:109778. [PMID: 37730009 DOI: 10.1016/j.clim.2023.109778] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the dysregulation of B cell subpopulation and function. Recent studies have suggested a potential role of ferroptosis, an iron-dependent form of regulated cell death, in the pathogenesis of SLE. Here, we demonstrate that B-cell ferroptosis occurs both in lupus patients and MRL/lpr mice. Treatment with liproxstatin-1, a potent ferroptosis inhibitor, could reduce autoantibody production, improve renal damage, and alleviate lupus symptoms in vivo. Furthermore, our results suggest that ferroptosis may regulate B cell differentiation and plasma cell formation, indicating a potential mechanism for its involvement in SLE. Taken together, targeting ferroptosis in B cells may be a promising therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Qian Chen
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Mengmeng Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Zhanyan Gao
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Fan Lvu
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Zhan Sun
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Yilun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, PR China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Jie Wang
- Department of Dermatology, Huashan Hospital, Fudan University, PR China.
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, PR China.
| |
Collapse
|
50
|
Huang Y, Li X, Zhang Z, Xiong L, Wang Y, Wen Y. Photodynamic Therapy Combined with Ferroptosis Is a Synergistic Antitumor Therapy Strategy. Cancers (Basel) 2023; 15:5043. [PMID: 37894410 PMCID: PMC10604985 DOI: 10.3390/cancers15205043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ferroptosis is a programmed death mode that regulates redox homeostasis in cells, and recent studies suggest that it is a promising mode of tumor cell death. Ferroptosis is regulated by iron metabolism, lipid metabolism, and intracellular reducing substances, which is the mechanism basis of its combination with photodynamic therapy (PDT). PDT generates reactive oxygen species (ROS) and 1O2 through type I and type II photochemical reactions, and subsequently induces ferroptosis through the Fenton reaction and the peroxidation of cell membrane lipids. PDT kills tumor cells by generating excessive cytotoxic ROS. Due to the limited laser depth and photosensitizer enrichment, the systemic treatment effect of PDT is not good. Combining PDT with ferroptosis can compensate for these shortcomings. Nanoparticles constructed by photosensitizers and ferroptosis agonists are widely used in the field of combination therapy, and their targeting and biological safety can be improved through modification. These nanoparticles not only directly kill tumor cells but also further exert the synergistic effect of PDT and ferroptosis by activating antitumor immunity, improving the hypoxia microenvironment, and inhibiting the tumor angiogenesis. Ferroptosis-agonist-induced chemotherapy and PDT-induced ablation also have good clinical application prospects. In this review, we summarize the current research progress on PDT and ferroptosis and how PDT and ferroptosis promote each other.
Collapse
Affiliation(s)
- Yunpeng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yongxiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| |
Collapse
|