1
|
Sánchez-Pérez M, Andrade A, Flores-Maldonado O, de Anda-Mora K, García-Contreras R, Maeda T, Becerril-García MA, Tavares-Carreón F. Genomic insights into pigmented Serratia marcescens strains isolated from patients in northeast Mexico. Microb Pathog 2025; 203:107456. [PMID: 40081676 DOI: 10.1016/j.micpath.2025.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Serratia marcescens (SM) is an opportunistic pathogen associated with outbreaks in immunocompromised hosts. While SM is commonly isolated from clinical and environmental sources, prodigiosin production is typically associated with environmental strains rather than clinical isolates. Here, we report the genome sequences of three pigmented SM clinical isolates -HU1848, HU2225, and HU2228- and examine their genomic and phenotypic characteristics. Phylogenetic analysis using 1103 finished public SM genomes revealed that these isolates cluster more closely with environmental SM strains than with those typically associated with clinical settings. Notably, despite their environmental-like genomic background, these isolates harbor multiple virulence genes implicated in colonization and resistance to fertilizers, as well as antimicrobial resistance genes for chloramphenicol, fosfomycin, and tetracycline. MIC determination showed susceptibility to aminoglycosides and fluoroquinolones. Additionally, we observed that the phenolic compound methyl gallate modulates pigment production and motility. The absence of AHL biosynthetic genes in these pigmented strains challenges previous associations between quorum sensing and prodigiosin biosynthesis. These findings suggest that certain SM strains with environmental-like genetic features can persist in clinical settings, underscoring the need to further investigate their potential role in nosocomial infections.
Collapse
Affiliation(s)
- Mishael Sánchez-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Mexico; División de Materiales Avanzados, Grupo de Ciencia e Ingeniería Computacionales, Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, Mexico
| | - Angel Andrade
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León. México, Nuevo León, Mexico
| | - Orlando Flores-Maldonado
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León. México, Nuevo León, Mexico
| | - Karla de Anda-Mora
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León. México, Nuevo León, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Japan
| | - Miguel A Becerril-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León. México, Nuevo León, Mexico
| | | |
Collapse
|
2
|
Kyndt JA. Vibrio cholerae genome isolated from the Nebraska salt marshes contains several antibiotic resistance markers. Microbiol Resour Announc 2025; 14:e0000725. [PMID: 40145811 PMCID: PMC12060689 DOI: 10.1128/mra.00007-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
A new strain of Vibrio cholerae was isolated from the Nebraska Salt Marshes and its genome sequenced. The genome shows several potential virulence factors and antibiotic resistance markers, which illustrates that multidrug-resistant pathogenic V. cholerae can be found in remote environments.
Collapse
Affiliation(s)
- John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, Nebraska, USA
| |
Collapse
|
3
|
Buddle S, Torres O, Morfopoulou S, Breuer J, Brown JR. The use of metagenomics to enhance diagnosis of encephalitis. Expert Rev Mol Diagn 2025:1-18. [PMID: 40329854 DOI: 10.1080/14737159.2025.2500655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Encephalitis has a broad etiology, including infectious and auto-immune causes. In infectious encephalitis, the breadth of causative organisms results in incomplete testing and low diagnostic yields.Metagenomics sequences all DNA and RNA allowing untargeted detection of all organisms in a single specimen; this is of particular use in diagnosis of encephalitis with a broad etiology. AREAS COVERED We review the literature and discuss metagenomics workflows, host depletion and pathogen enrichment methods, bioinformatics analysis and potential analysis of the host transcriptome to aid diagnosis. We discuss the clinical use of metagenomics for diagnosis of neurological infection including time to result, cost, quality assurance, patient cohorts in whom metagenomics adds the most value, recommended specimen types, limitations and review published cases in which metagenomics has been used to diagnose encephalitis. EXPERT OPINION There is good evidence for the utility of metagenomics to diagnose infection in encephalitis. Due to infections with rare, unexpected or novel pathogens, metagenomics adds most value to diagnosis in immunocompromised patients and the greatest diagnostic yield is in brain biopsies. Technical advances are needed to reduce the complexity, cost and time to result which will enable wider adoption in clinical laboratories and use as a first-line test.
Collapse
Affiliation(s)
- Sarah Buddle
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Oscar Torres
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sofia Morfopoulou
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Julianne R Brown
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Ribeiro S, Alves K, Nourikyan J, Lavergne JP, de Bernard S, Buffat L. Identifying potential novel widespread determinants of bacterial pathogenicity using phylogenetic-based orthology analysis. Front Microbiol 2025; 16:1494490. [PMID: 40376455 PMCID: PMC12078273 DOI: 10.3389/fmicb.2025.1494490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction The global rise in antibiotic resistance and emergence of new bacterial pathogens pose a significant threat to public health. Novel approaches to uncover potential novel diagnostic and therapeutic targets for these pathogens are needed. Methods In this study, we conducted a large-scale, phylogenetic-based orthology analysis (OA) to compare the proteomes of pathogenic to humans (HP) and non-pathogenic to humans (NHP) bacterial strains across 734 strains from 514 species and 91 families. Results Using a dedicated workflow, we identified 4,383 hierarchical orthologous groups (HOGs) significantly associated with the HP label, many of which are linked to critical factors such as stress tolerance, metabolic versatility, and antibiotic resistance. Both known virulence factors (VFs) and potential novel widespread pathogenicity determinants were uncovered, supported by both statistical testing and complementary protein domain analysis. Discussion By integrating curated strain-level pathogenicity annotations from BacSPaD with phylogeny-based OA, we introduce a novel approach and provide a novel resource for bacterial pathogenicity research.
Collapse
Affiliation(s)
- Sara Ribeiro
- AltraBio SAS, Lyon, France
- Molecular Microbiology and Structural Biochemistry, Université de Lyon, CNRS, Lyon, France
| | | | | | - Jean-Pierre Lavergne
- Molecular Microbiology and Structural Biochemistry, Université de Lyon, CNRS, Lyon, France
| | | | | |
Collapse
|
5
|
Hou F, Qiao Y, Qiao Y, Shi Y, Chen M, Kong M, Hu X, Jiang L, Liu X. A retrospective analysis comparing metagenomic next-generation sequencing with conventional microbiology testing for the identification of pathogens in patients with severe infections. Front Cell Infect Microbiol 2025; 15:1530486. [PMID: 40264936 PMCID: PMC12011730 DOI: 10.3389/fcimb.2025.1530486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction The application value of metagenomic next-generation sequencing (mNGS) in detecting pathogenic bacteria was evaluated to promote the rational and accurate use of antibiotics. A total of 180 patients with severe infections were included in this study. Methods Based on their different symptoms, bronchoalveolar lavage fluid (BALF) or blood samples were collected for conventional microbiological testing (CMT) and mNGS. Results The results indicated that the etiological diagnosis rate of mNGS (78.89%) was significantly higher than that of CMT (20%) (p<0.001). Notably, mNGS exhibited greater sensitivity towards rare pathogens such as Chlamydia pneumoniae, Mycobacterium tuberculosis complex, and Legionella pneumophila, which were undetectable by CMT. Additionally, 64 cases underwent blood culture, BALF culture, and mNGS testing. Analysis revealed that the positive rate of blood culture (3.1%) was lower than that of BALF (25%), and the positive rate of CMT from both types was significantly lower than that of mNGS (89.1%) (p<0.001). In this study, 168 mNGS results were accepted, and 116 patients had their antibiotic therapy adjustment based on mNGS. Paired analysis indicated that white blood cell count (WBC), procalcitonin (PCT), C-reactive protein (CRP), and neutrophil (NEU) percentage provided valuable therapeutic guidance. The survival rate of patients was 55.36%, influenced by patient physical condition and age. Discussion Our data indicated that mNGS had significant auxiliary value in the clinical diagnosis and treatment for critically ill patients, especially for those with negative CMT results and clinically undefined infections. mNGS could broaden the detection scope, especially for special pathogens, and improve the detection rate, providing powerful assistance for early clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Fei Hou
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Clinical Laboratory, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yanting Qiao
- Department of Critical Care Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yuanyuan Qiao
- Department of Critical Care Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ya Shi
- Department of Critical Care Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Mingrui Chen
- Department of Critical Care Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Min Kong
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Clinical Laboratory, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiaohang Hu
- Department of Clinical Laboratory, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Liqing Jiang
- Department of Clinical Laboratory, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiaowei Liu
- Department of Critical Care Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
6
|
González-Sánchez A, Lozano-Aguirre L, Jiménez-Flores G, López-Sámano M, García-de Los Santos A, Cevallos MA, Le Borgne S. Physiology, Heavy Metal Resistance, and Genome Analysis of Two Cupriavidus gilardii Strains Isolated from the Naica Mine (Mexico). Microorganisms 2025; 13:809. [PMID: 40284645 PMCID: PMC12029693 DOI: 10.3390/microorganisms13040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Here, we report the characterization of two Cupriavidus strains, NOV2-1 and OV2-1, isolated from an iron-oxide deposit in an underground tunnel of the Naica mine in Mexico. This unique biotope, characterized by its high temperature (≈50 °C) and the presence of heavy metals, is no longer available for sampling at this time. The genomes of NOV2-1 and OV2-1 comprised two replicons: a chromosome of 3.58 and 3.53 Mb, respectively, and a chromid of 2.1 Mb in both strains. No plasmids were found. The average nucleotide identity and the core genome phylogeny showed that NOV2-1 and OV2-1 belonged to the Cupriavidus gilardii species. NOV2-1 and OV2-1 grew up to 48 °C, with an optimal temperature of 42 °C. Discrete differences were observed between C. gilardii CCUG38401T, NOV2-1, and OV2-1 in the biochemical tests. NOV2-1 and OV2-1 presented resistance to zinc, lead, copper, cadmium, nickel, and cobalt. Several complete and incomplete gene clusters related to the resistance to these heavy metals (ars, czc, cop 1, sil-cop 2, cup, mmf, and mer) were detected in the genome of these strains. Although further studies are needed to determine the origin and role of the detected gene clusters, it is suggested that the czc system may have been mobilized by horizontal gene transfer. This study expands the extreme biotopes where Cupriavidus strains can be retrieved.
Collapse
Affiliation(s)
- Antonio González-Sánchez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Ciudad de México 05348, Mexico;
| | - Luis Lozano-Aguirre
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Guadalupe Jiménez-Flores
- Laboratorio Clínico, Área de Microbiología, Hospital Regional Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Puebla 72570, Mexico;
| | - Mariana López-Sámano
- Programa de Ingeniería Genética, Centro de Ciencias Genómicas, Universidad Nacional Autonoma de México, Cuernavaca 62210, Mexico; (M.L.-S.); (A.G.-d.L.S.)
| | - Alejandro García-de Los Santos
- Programa de Ingeniería Genética, Centro de Ciencias Genómicas, Universidad Nacional Autonoma de México, Cuernavaca 62210, Mexico; (M.L.-S.); (A.G.-d.L.S.)
| | - Miguel A. Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Sylvie Le Borgne
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Ciudad de México 05348, Mexico;
| |
Collapse
|
7
|
Laufer Halpin A, Mathers AJ, Walsh TR, Zingg W, Okeke IN, McDonald LC, Elkins CA, Harbarth S, Peacock SJ, Srinivasan A, Bell M, Pittet D, Cardo D. A framework towards implementation of sequencing for antimicrobial-resistant and other health-care-associated pathogens. THE LANCET. INFECTIOUS DISEASES 2025; 25:e235-e244. [PMID: 39832513 DOI: 10.1016/s1473-3099(24)00729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 01/22/2025]
Abstract
Antimicrobial resistance continues to be a growing threat globally, specifically in health-care settings in which antimicrobial-resistant pathogens cause a substantial proportion of health-care-associated infections (HAIs). Next-generation sequencing (NGS) and the analysis of the data produced therein (ie, bioinformatics) represent an opportunity to enhance our capacity to address these threats. The 3rd Geneva Infection Prevention and Control Think Tank brought together experts to identify gaps, propose solutions, and set priorities for the use of NGS for HAIs and antimicrobial-resistant pathogens. The major deliverable recommendation from this meeting was a proposed framework for implementing the sequencing of HAI pathogens, specifically those harbouring antimicrobial-resistance mechanisms. The key components of the proposed framework relate to wet laboratory quality, sequence data quality, database and tool selection, bioinformatic analyses, data sharing, and NGS data integration, to support public health and actions for infection prevention and control. In this Personal View we detail and discuss the framework in the context of global implementation, specifically in low-income and middle-income countries.
Collapse
Affiliation(s)
- Alison Laufer Halpin
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA; US Public Health Service, Rockville, MD, USA.
| | | | - Timothy R Walsh
- Department of Zoology, Ineos Oxford Institute for Antimicrobial Resistance, Oxford, UK
| | - Walter Zingg
- Division of Infectious Diseases and Hospital Hygiene, Universitätsspital Zürich, Zürich, Switzerland
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - L Clifford McDonald
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christopher A Elkins
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Sharon J Peacock
- Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Arjun Srinivasan
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael Bell
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Didier Pittet
- Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Denise Cardo
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
8
|
Lin TS, Zhu Z, Lin X, Huang HY, Li LP, Li J, Ni J, Li P, Chen L, Tang W, Liu H, Se X, Xie M, Long C, Chiu CM, Fang SH, Zhao J, Lin YCD, Yu X, Huang HD. Enhancing bloodstream infection diagnostics: a novel filtration and targeted next-generation sequencing approach for precise pathogen identification. Front Microbiol 2025; 16:1538265. [PMID: 40182288 PMCID: PMC11965694 DOI: 10.3389/fmicb.2025.1538265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Bloodstream infections (BSIs) pose a significant diagnostic challenge, largely due to the limitations of traditional methods such as blood cultures. These methods often yield low positive rates, have lengthy processing times that delay treatment, and are limited in detecting only a narrow range of pathogens. Such delays and inaccuracies can critically impede timely clinical interventions, potentially compromising patient outcomes. Next-generation sequencing (NGS) is a powerful tool for rapid, precise pathogen identification. While metagenomic NGS (mNGS) offers broad pathogen coverage, it is often costly and complex. Targeted NGS (tNGS), however, focuses on key regions of clinically relevant pathogens, reducing costs and simplifying workflows while maintaining high sensitivity, making it more practical for routine diagnostics. In this study, we introduce a novel approach combining a human cell-specific filtration membrane with a multiplex tNGS panel to overcome these challenges. The filtration membrane, designed with surface charge properties to be electrostatically attractive to leukocytes for the selective capture of specific cells, demonstrated high efficiency in removing host cells and nucleic acids, achieving over a 98% reduction in host DNA and thereby minimizing background interference in pathogen detection. Additionally, we developed an effective multiplex tNGS panel targeting over 330 clinically relevant pathogens and verified its consistency with mNGS and blood culture results, demonstrating a significant improvement in detection sensitivity. By integrating these two methods, we achieved a synergistic enhancement in diagnostic capability, boosting pathogen reads by 6- to 8-fold, which enabled reliable identification even in cases of low-abundance pathogens. This approach provides faster, more accurate, and more sensitive detection of BSIs, enabling earlier identification of infections. This facilitates timely and targeted treatment, ultimately improving patient outcomes in critical care settings. Given the unique properties of the filtration membrane and the strengths of the tNGS panel, this approach shows promising applications in prenatal and genetic health support, as well as in advancing early cancer screening strategies.
Collapse
Affiliation(s)
- Ting-Syuan Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - ZiHao Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - XiaoHong Lin
- Department of Critical Care Medicine, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li-Ping Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jing Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jie Ni
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - PeiZhi Li
- Shanya life-tech Co. Ltd., Guangzhou, Guangdong, China
| | - LanChun Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - WeiXin Tang
- Department of Critical Care Medicine, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - HuiXin Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - XiaoLong Se
- Department of Critical Care Medicine, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - MingFei Xie
- Department of Critical Care Medicine, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Chih-Min Chiu
- Health SwifTech Co. Ltd., Shenzhen, Guangdong, China
| | - Szu-Han Fang
- Health SwifTech Co. Ltd., Shenzhen, Guangdong, China
| | - JiaMing Zhao
- Health SwifTech Co. Ltd., Shenzhen, Guangdong, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - XueTao Yu
- Department of Critical Care Medicine, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Bouzek H, Srinivasan S, Jones DS, McMahon EF, Strenk SM, Fiedler TL, Fredricks DN, Johnston CD. A Syntenic Pangenome for Gardnerella Reveals Taxonomic Boundaries and Stratification of Metabolic and Virulence Potential across Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.636902. [PMID: 40027674 PMCID: PMC11870614 DOI: 10.1101/2025.02.19.636902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bacterial vaginosis (BV) is a prevalent condition associated with an imbalance in the vaginal microbiota, often involving species of Gardnerella . The taxonomic complexity and inconsistent nomenclature of Gardnerella have impeded progress in understanding the role of specific species in health and disease. In this study, we conducted a comprehensive genomic and pangenomic analysis to resolve taxonomic ambiguities and elucidate metabolic and virulence potential across Gardnerella species. We obtained complete, closed genomes for 42 Gardnerella isolates from women with BV and curated publicly available genome sequences (n = 291). Average nucleotide identity (ANI) analysis, digital DNA-DNA hybridization (dDDH), and the cpn60 gene sequences identified nine species and eleven subspecies within Gardnerella , for which we refined species and subspecies boundaries and proposed updated nomenclature. Pangenome analysis revealed species-specific gene clusters linked to metabolic pathways, virulence factors, and niche adaptations, distinguishing species specialized for mucin degradation in the vaginal environment from those potentially adapted to urinary tract colonization. Notably, we identified lineage-specific evolutionary divergence in gene clusters associated with biofilm formation, carbohydrate metabolism, and antimicrobial resistance. We further discovered the first cryptic plasmids naturally present within the Gardnerella genus. Our findings provide a unified framework for Gardnerella taxonomy and nomenclature, and enhance our understanding of species-specific functional capabilities, with implications for Gardnerella research, diagnostics, and targeted therapeutics in BV.
Collapse
|
10
|
Katz LS, Griswold T, Lindsey RL, Lauer AC, Im MS, Williams G, Halpin JL, Gómez GA, Kucerova Z, Morrison S, Page A, Den Bakker HC, Carleton HA. Kalamari: a representative set of genomes of public health concern. Microbiol Resour Announc 2025; 14:e0096324. [PMID: 39853105 PMCID: PMC11812380 DOI: 10.1128/mra.00963-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Kalamari is a resource that supports genomic epidemiology and pathogen surveillance. It consists of representative genomes and common contaminants. Kalamari also contains a custom taxonomy and software for downloading and formatting the data.
Collapse
Affiliation(s)
- Lee S. Katz
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
- Center for Food Safety, University of Georgia (UGA), Griffin, Georgia, USA
| | - Taylor Griswold
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Rebecca L. Lindsey
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - A. C. Lauer
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Monica S. Im
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Grant Williams
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Jessica L. Halpin
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Gerardo A. Gómez
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Zuzana Kucerova
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Shatavia Morrison
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Andrew Page
- Theiagen Genomics, Highlands Ranch, Colorado, USA
| | - Henk C. Den Bakker
- Center for Food Safety, University of Georgia (UGA), Griffin, Georgia, USA
| | - Heather A. Carleton
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| |
Collapse
|
11
|
Ghaddar BC, Blaser MJ, De S. Revisiting the cancer microbiome using PRISM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634087. [PMID: 39896561 PMCID: PMC11785023 DOI: 10.1101/2025.01.21.634087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Recent controversy around the cancer microbiome highlights the need for improved microbial analysis methods for human genomics data. We developed PRISM, a computational approach for precise microorganism identification and decontamination from low-biomass sequencing data. PRISM removes spurious signals and achieves excellent performance when benchmarked on a curated dataset of 62,006 known true- and false-positive taxa. We then use PRISM to detect microbes in 8 cancer types from the CPTAC and TCGA datasets. We identify rich microbiomes in gastrointestinal tract tumors in CPTAC and identify bacteria in a subset of pancreatic tumors that are associated with altered glycoproteomes, more extensive smoking histories, and higher tumor recurrence risk. We find relatively sparse microbes in other cancer types and in TCGA, which we demonstrate may reflect differing sequencing parameters. Overall, PRISM does not replace gold-standard controls, but it enables higher-confidence analyses and reveals tumor-associated microorganisms with potential molecular and clinical significance.
Collapse
Affiliation(s)
- Bassel C. Ghaddar
- Center for Systems and Computational Biology, Rutgers Cancer Institute, Rutgers University; 195 Albany St., New Brunswick, New Jersey 08901
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University; 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Subhajyoti De
- Center for Systems and Computational Biology, Rutgers Cancer Institute, Rutgers University; 195 Albany St., New Brunswick, New Jersey 08901
| |
Collapse
|
12
|
Guccione C, Patel L, Tomofuji Y, McDonald D, Gonzalez A, Sepich-Poore GD, Sonehara K, Zakeri M, Chen Y, Dilmore AH, Damle N, Baranzini SE, Hightower G, Nakatsuji T, Gallo RL, Langmead B, Okada Y, Curtius K, Knight R. Incomplete human reference genomes can drive false sex biases and expose patient-identifying information in metagenomic data. Nat Commun 2025; 16:825. [PMID: 39827261 PMCID: PMC11742726 DOI: 10.1038/s41467-025-56077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
As next-generation sequencing technologies produce deeper genome coverages at lower costs, there is a critical need for reliable computational host DNA removal in metagenomic data. We find that insufficient host filtration using prior human genome references can introduce false sex biases and inadvertently permit flow-through of host-specific DNA during bioinformatic analyses, which could be exploited for individual identification. To address these issues, we introduce and benchmark three host filtration methods of varying throughput, with concomitant applications across low biomass samples such as skin and high microbial biomass datasets including fecal samples. We find that these methods are important for obtaining accurate results in low biomass samples (e.g., tissue, skin). Overall, we demonstrate that rigorous host filtration is a key component of privacy-minded analyses of patient microbiomes and provide computationally efficient pipelines for accomplishing this task on large-scale datasets.
Collapse
Affiliation(s)
- Caitlin Guccione
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Lucas Patel
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Yoshihiko Tomofuji
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Gregory D Sepich-Poore
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kyuto Sonehara
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Mohsen Zakeri
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Yang Chen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
| | - Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Neil Damle
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Sergio E Baranzini
- Weill Institute for Neurosciences. Department of Neurology. University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - George Hightower
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, 565-0871, Japan
| | - Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Angel NZ, Sullivan MJ, Alsheikh-Hussain A, Fang L, MacDonald S, Pribyl A, Wills B, Tyson GW, Hugenholtz P, Parks DH, Griffin P, Wood DLA. Metagenomics: a new frontier for routine pathology testing of gastrointestinal pathogens. Gut Pathog 2025; 17:4. [PMID: 39827146 PMCID: PMC11742996 DOI: 10.1186/s13099-024-00673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Accurate and comprehensive identification of enteropathogens, causing infectious gastroenteritis, is essential for optimal patient treatment and effective isolation processes in health care systems. Traditional diagnostic techniques are well established and optimised in low-cost formats. However, thorough testing for a wider range of causal agents is time consuming and remains limited to a subset of pathogenic organisms. Metagenomic next-generation sequencing (mNGS) allows the identification of all pathogens in a sample in a single test, without a reliance on culture or introduction of target selection bias. This study aims to determine the ability to routinely apply mNGS testing, in comparison to traditional culture or polymerase chain reaction (PCR) based tests, for the identification of causal pathogens for gastrointestinal infections. RESULTS The performance of mNGS, PCR and microscopy, culture and sensitivity (MCS) assays was established using 2,619 prospectively collected faecal samples from patients with symptomology indicative of infectious gastroenteritiss. Commonly experienced pathogens including Aeromonas spp, Campylobacter spp, Salmonella spp and Giardia spp, in single and co-infected patients, were used to establish test outcomes. When testing for these organisms, using the combined result from either or both PCR and MCS testing as the comparator, the mNGS assay had clinically acceptable sensitivity (89.2-100%). Further, the mNGS assay detected 14 additional enteropathogens, that were either not detected or not tested, by initial PCR/MCS testing. CONCLUSIONS The advantage of mNGS compared to other syndromic testing systems is the broad range of detectable targets and the ability to interrogate samples without clinician informed or assay specific bias. With the development of newer sequencing assays, it is now feasible to test for a wide range of target organisms in a sample using a single mNGS test. Overall, the mNGS based approach enabled pathogen detection that was comparable to conventional diagnostics and was shown to have the potential to be extended for the detection of many pathogens and genes of clinical interest. In conclusion, the mNGS assay offers an easy, sample to answer workflow with rapid detection of enteropathogens and has the potential to improve diagnosis, therapy and infection control precautions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gene W Tyson
- Microba Pty Ltd, Brisbane, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Philip Hugenholtz
- Microba Pty Ltd, Brisbane, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Paul Griffin
- Microba Pty Ltd, Brisbane, Australia
- Department of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Mater Research Raymond Terrace, South Brisbane, Australia
| | | |
Collapse
|
14
|
Ríos Sosa A, Prado Barragán LA, Ríos Reyes A, Aréchiga Carvajal ET. Genomic analysis and potential polyhydroxybutyrate (PHB) production from Bacillus strains isolated from extreme environments in Mexico. BMC Microbiol 2025; 25:15. [PMID: 39799315 PMCID: PMC11724563 DOI: 10.1186/s12866-024-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Plastic pollution is a significant environmental problem caused by its high resistance to degradation. One potential solution is polyhydroxybutyrate (PHB), a microbial biodegradable polymer. Mexico has great uncovered microbial diversity with high potential for biotechnological applications. The best polymer producers tend to be isolated from environments that require survival adaptations from microorganisms, the high-producing Bacillus cereus strain saba.zh comes from refinery wastewater, the costs of production have been a limiting factor for biopolymer production, and one of the focuses of interest has been finding novel strains with better production or singular traits that help in industrial processes. RESULTS The isolates were taxonomically classified as Bacillus cereus MSF4 and Bacillus inaquosorum MSD1 from Mina, Nuevo Leon; B. cereus S07C; and Paenibacillis dendritiformis from the active volcano "El Chichonal" on Chiapas. The strains had growth temperatures ranging from 35 to 50 °C and pH tolerance values ranging from 3 to 9. The best PHB-producing strain, B. cereus MSF4, produced 0.43 g/kg PHB on orange peels, followed by B. inaquosorum MSD1 at 0.40 g/kg, B. cereus S07C at 0.23 g/kg and P. dendritiformis at 0.26 g/kg. CONCLUSIONS The findings of this study affirm the potential of the Mexican isolated strains as PHB-producing organisms, enabling further studies to test their viability as industrial producers. The ability of P. dendritiformis and B. inaquosorum to synthetize PHB was also confirmed by the observations made providing novel evidence to consider these species as potential producers.
Collapse
Affiliation(s)
- Alvaro Ríos Sosa
- Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Lilia A Prado Barragán
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Ciencias Biológicas y de la Salud, Ciudad de, México
| | - Alvaro Ríos Reyes
- Facultad de Ciencias Biológicas, Departamento de Biología Vegetal, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Elva T Aréchiga Carvajal
- Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| |
Collapse
|
15
|
Tran TH, F Escapa I, Roberts AQ, Gao W, Obawemimo AC, Segre JA, Kong HH, Conlan S, Kelly MS, Lemon KP. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. mSystems 2024; 9:e0113224. [PMID: 39508593 DOI: 10.1128/msystems.01132-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the United States. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two Corynebacterium species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the U.S. clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches. IMPORTANCE Pangenomic analysis with estimation of functional capabilities facilitates our understanding of the full biologic diversity of bacterial species. We performed systematic genomic, phylogenomic, and pangenomic analyses with qualitative estimation of the metabolic capabilities of four common human nasal Corynebacterium species, along with focused experimental validations, generating a foundational resource. The prevalence of each species in human nasal microbiota is consistent with the common coexistence of at least two species. We identified a notably high level of metabolic conservation within and among species indicating limited options for species to occupy distinct metabolic niches, highlighting the importance of investigating interactions among nasal Corynebacterium species. Comparing strains from two continents, C. pseudodiphtheriticum had restricted geographic strain distribution characterized by an evolutionarily recent loss of assimilatory sulfate reduction in U.S. strains. Our findings contribute to understanding the functions of Corynebacterium within human nasal microbiota and to evaluating their potential for future use as biotherapeutics.
Collapse
Affiliation(s)
- Tommy H Tran
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel F Escapa
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ari Q Roberts
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Gao
- The Forsyth Institute (Microbiology), Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Abiola C Obawemimo
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew S Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherine P Lemon
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Fida M, Tande AJ. State-of-the-Art Metagenomic Sequencing and Its Role in the Diagnosis of Periprosthetic Joint Infections. Infect Dis Clin North Am 2024; 38:813-825. [PMID: 39277504 DOI: 10.1016/j.idc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Metagenomic next-generation sequencing (mNGS) is increasingly being recognized as a valuable diagnostic tool for periprosthetic joint infections (PJIs). This study reviews the diagnostic utility of mNGS, highlighting its improved sensitivity in detecting pathogens, particularly in culture-negative and polymicrobial infections. However, the clinical application of this method is hindered by challenges such as the prevalence of host DNA, the necessity for extensive bioinformatic analysis, and the potential for contamination, which can lead to misinterpretation of results. As mNGS continues to evolve, it holds significant potential to improve the management of PJI and enhance the application of precision medicine in orthopedic infections.
Collapse
Affiliation(s)
- Madiha Fida
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Aaron J Tande
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Tan JK, Servellita V, Stryke D, Kelly E, Streithorst J, Sumimoto N, Foresythe A, Huh HJ, Nguyen J, Oseguera M, Brazer N, Tang J, Ingebrigtsen D, Fung B, Reyes H, Hillberg M, Chen A, Guevara H, Yagi S, Morales C, Wadford DA, Mourani PM, Langelier CR, de Lorenzi-Tognon M, Benoit P, Chiu CY. Laboratory validation of a clinical metagenomic next-generation sequencing assay for respiratory virus detection and discovery. Nat Commun 2024; 15:9016. [PMID: 39532844 PMCID: PMC11558004 DOI: 10.1038/s41467-024-51470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024] Open
Abstract
Tools for rapid identification of novel and/or emerging viruses are urgently needed for clinical diagnosis of unexplained infections and pandemic preparedness. Here we developed and clinically validated a largely automated metagenomic next-generation sequencing (mNGS) assay for agnostic detection of respiratory viral pathogens from upper respiratory swab and bronchoalveolar lavage samples in <24 h. The mNGS assay achieved mean limits of detection of 543 copies/mL, viral load quantification with 100% linearity, and 93.6% sensitivity, 93.8% specificity, and 93.7% accuracy compared to gold-standard clinical multiplex RT-PCR testing. Performance increased to 97.9% overall predictive agreement after discrepancy testing and clinical adjudication, which was superior to that of RT-PCR (95.0% agreement). To enable discovery of novel, sequence-divergent human viruses with pandemic potential, de novo assembly and translated nucleotide algorithms were incorporated into the automated SURPI+ computational pipeline used by the mNGS assay for pathogen detection. Using in silico analysis, we showed that after removal of all human viral sequences from the reference database, 70 (100%) of 70 representative human viral pathogens could still be identified based on homology to related animal or plant viruses. Our assay, which was granted breakthrough device designation from the US Food and Drug Administration (FDA) in August of 2023, demonstrates the feasibility of routine mNGS testing in clinical and public health laboratories, thus facilitating a robust and rapid response to the next viral pandemic.
Collapse
Affiliation(s)
- Jessica Karielle Tan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Doug Stryke
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Emily Kelly
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Streithorst
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nanami Sumimoto
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Abiodun Foresythe
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Hee Jae Huh
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jenny Nguyen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Miriam Oseguera
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Noah Brazer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Jack Tang
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Danielle Ingebrigtsen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Becky Fung
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Helen Reyes
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Melissa Hillberg
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alice Chen
- Viral and Rickettsial Disease Laboratory, Center for Laboratory Sciences, California Department of Public Health, Richmond, CA, USA
| | - Hugo Guevara
- Viral and Rickettsial Disease Laboratory, Center for Laboratory Sciences, California Department of Public Health, Richmond, CA, USA
| | - Shigeo Yagi
- Viral and Rickettsial Disease Laboratory, Center for Laboratory Sciences, California Department of Public Health, Richmond, CA, USA
| | - Christina Morales
- Viral and Rickettsial Disease Laboratory, Center for Laboratory Sciences, California Department of Public Health, Richmond, CA, USA
| | - Debra A Wadford
- Viral and Rickettsial Disease Laboratory, Center for Laboratory Sciences, California Department of Public Health, Richmond, CA, USA
| | - Peter M Mourani
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Mikael de Lorenzi-Tognon
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Patrick Benoit
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA.
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
19
|
Guccione C, Patel L, Tomofuji Y, McDonald D, Gonzalez A, Sepich-Poore GD, Sonehara K, Zakeri M, Chen Y, Dilmore AH, Damle N, Baranzini SE, Nakatsuji T, Gallo RL, Langmead B, Okada Y, Curtius K, Knight R. Incomplete human reference genomes can drive false sex biases and expose patient-identifying information in metagenomic data. RESEARCH SQUARE 2024:rs.3.rs-4721159. [PMID: 39502785 PMCID: PMC11537348 DOI: 10.21203/rs.3.rs-4721159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
As next-generation sequencing technologies produce deeper genome coverages at lower costs, there is a critical need for reliable computational host DNA removal in metagenomic data. We find that insufficient host filtration using prior human genome references can introduce false sex biases and inadvertently permit flow-through of host-specific DNA during bioinformatic analyses, which could be exploited for individual identification. To address these issues, we introduce and benchmark three host filtration methods of varying throughput, with concomitant applications across low biomass samples such as skin and high microbial biomass datasets including fecal samples. We find that these methods are important for obtaining accurate results in low biomass samples (e.g., tissue, skin). Overall, we demonstrate that rigorous host filtration is a key component of privacy-minded analyses of patient microbiomes and provide computationally efficient pipelines for accomplishing this task on large-scale datasets.
Collapse
Affiliation(s)
- Caitlin Guccione
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Lucas Patel
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, California, USA
| | - Yoshihiko Tomofuji
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | - Kyuto Sonehara
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Mohsen Zakeri
- Department of Computer Science, Johns Hopkins University
| | - Yang Chen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Neil Damle
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Sergio E. Baranzini
- Weill Institute for Neurosciences. Department of Neurology. University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University
| | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita 565-0871, Japan
| | - Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Souza TGVD, Santana JA, Claudino MMS, Pereira ST, Xavier RGC, do Amarante VS, de Castro YG, Dorneles EMS, Aburjaile FF, de Carvalho VA, Brenig B, Silva ROS. Occurrence, genetic diversity, and antimicrobial resistance of methicillin-resistant Staphylococcus spp. in hospitalized and non-hospitalized cats in Brazil. PLoS One 2024; 19:e0309711. [PMID: 39361625 PMCID: PMC11449366 DOI: 10.1371/journal.pone.0309711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Methicillin-resistant Staphylococci (MRS) cause infections at various sites and exhibit multidrug resistance. Despite their importance in veterinary medicine, only little is known about Staphylococcus spp. colonizing and infecting cats. Therefore, in this study, we aimed to isolate and identify Staphylococcus spp. colonizing hospitalized and non-hospitalized domestic cats and analyze their antimicrobial resistance profiles, genetic diversity, and risk factors associated with MRS colonization. A total of 218 oral and axillary swabs were obtained from 109 cats, including 77 non-hospitalized and 32 hospitalized cats. After plating on selective media, the isolates were identified via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and rpoB and 16S rRNA gene sequencing. Subsequently, antimicrobial sensitivity of the strains was assessed, and they were screened for mecA gene. Methicillin-resistant S. haemolyticus (MRSH) isolates were subjected to multilocus sequence typing, whereas methicillin-resistant S. pseudintermedius (MRSP) and S. felis isolates were subjected to whole genome sequencing. S. felis was most commonly isolated from non-hospitalized cats (28.1%), whereas S. pseudintermedius and MRS were commonly isolated from hospitalized cats (25%). MRSH isolates from hospitalized animals were classified as ST3. The identified MRSP strains belonged to two well-known sequence types, ST551 and ST71. Moreover, antimicrobial use (p = 0.0001), hospitalization (p = 0.0141), and comorbidities (p = 0.002) were associated with increased MRS prevalence in cats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
21
|
Gerasimova Y, Ali H, Nadeem U. Challenges for pathologists in implementing clinical microbiome diagnostic testing. J Pathol Clin Res 2024; 10:e70002. [PMID: 39289163 PMCID: PMC11407905 DOI: 10.1002/2056-4538.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
Recent research has established that the microbiome plays potential roles in the pathogenesis of numerous chronic diseases, including carcinomas. This discovery has led to significant interest in clinical microbiome testing among physicians, translational investigators, and the lay public. As novel, inexpensive methodologies to interrogate the microbiota become available, research labs and commercial vendors have offered microbial assays. However, these tests still have not infiltrated the clinical laboratory space. Here, we provide an overview of the challenges of implementing microbiome testing in clinical pathology. We discuss challenges associated with preanalytical and analytic sample handling and collection that can influence results, choosing the appropriate testing methodology for the clinical context, establishing reference ranges, interpreting the data generated by testing and its value in making patient care decisions, regulation, and cost considerations of testing. Additionally, we suggest potential solutions for these problems to expedite the establishment of microbiome testing in the clinical laboratory.
Collapse
Affiliation(s)
- Yulia Gerasimova
- Department of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haroon Ali
- Department of Medicine, Woodland Heights Medical Center, Lufkin, TX, USA
| | - Urooba Nadeem
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
22
|
Batovska J, Brohier ND, Mee PT, Constable FE, Rodoni BC, Lynch SE. The Australian Biosecurity Genomic Database: a new resource for high-throughput sequencing analysis based on the National Notifiable Disease List of Terrestrial Animals. Database (Oxford) 2024; 2024:baae084. [PMID: 39197058 PMCID: PMC11352597 DOI: 10.1093/database/baae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 08/30/2024]
Abstract
The Australian Biosecurity Genomic Database (ABGD) is a curated collection of reference viral genome sequences based on the Australian National Notifiable Disease List of Terrestrial Animals. It was created to facilitate the screening of high-throughput sequencing (HTS) data for the potential presence of viruses associated with notifiable disease. The database includes a single verified sequence (the exemplar species sequence, where relevant) for each of the 60 virus species across 21 viral families that are associated with or cause these notifiable diseases, as recognized by the World Organisation for Animal Health. The open-source ABGD on GitHub provides usage guidance documents and is intended to support building a culture in Australian HTS communities that promotes the use of quality-assured, standardized, and verified databases for Australia's national biosecurity interests. Future expansion of the database will include the addition of more strains or subtypes for highly variable viruses, viruses causing diseases of aquatic animals, and genomes of other types of pathogens associated with notifiable diseases, such as bacteria. Database URL: https://github.com/ausbiopathgenDB/AustralianBiosecurityGenomicDatabase.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Natasha D Brohier
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
- School of Applied Systems Biology (SASB), La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| | - Fiona E Constable
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
- School of Applied Systems Biology (SASB), La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
- School of Applied Systems Biology (SASB), La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| |
Collapse
|
23
|
Tran TH, Escapa IF, Roberts AQ, Gao W, Obawemimo AC, Segre JA, Kong HH, Conlan S, Kelly MS, Lemon KP. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.05.543719. [PMID: 37333201 PMCID: PMC10274666 DOI: 10.1101/2023.06.05.543719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the USA. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two Corynebacterium species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the USA clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches.
Collapse
Affiliation(s)
- Tommy H. Tran
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel F. Escapa
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ari Q. Roberts
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Gao
- The Forsyth Institute (Microbiology), Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Abiola C. Obawemimo
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heidi H. Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew S. Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Katherine P. Lemon
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
24
|
Ribeiro S, Chaumet G, Alves K, Nourikyan J, Shi L, Lavergne JP, Mijakovic I, de Bernard S, Buffat L. BacSPaD: A Robust Bacterial Strains' Pathogenicity Resource Based on Integrated and Curated Genomic Metadata. Pathogens 2024; 13:672. [PMID: 39204272 PMCID: PMC11357117 DOI: 10.3390/pathogens13080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The vast array of omics data in microbiology presents significant opportunities for studying bacterial pathogenesis and creating computational tools for predicting pathogenic potential. However, the field lacks a comprehensive, curated resource that catalogs bacterial strains and their ability to cause human infections. Current methods for identifying pathogenicity determinants often introduce biases and miss critical aspects of bacterial pathogenesis. In response to this gap, we introduce BacSPaD (Bacterial Strains' Pathogenicity Database), a thoroughly curated database focusing on pathogenicity annotations for a wide range of high-quality, complete bacterial genomes. Our rule-based annotation workflow combines metadata from trusted sources with automated keyword matching, extensive manual curation, and detailed literature review. Our analysis classified 5502 genomes as pathogenic to humans (HP) and 490 as non-pathogenic to humans (NHP), encompassing 532 species, 193 genera, and 96 families. Statistical analysis demonstrated a significant but moderate correlation between virulence factors and HP classification, highlighting the complexity of bacterial pathogenicity and the need for ongoing research. This resource is poised to enhance our understanding of bacterial pathogenicity mechanisms and aid in the development of predictive models. To improve accessibility and provide key visualization statistics, we developed a user-friendly web interface.
Collapse
Affiliation(s)
- Sara Ribeiro
- AltraBio SAS, 69007 Lyon, France (L.B.)
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, 69007 Lyon, France
| | | | | | | | - Lei Shi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Jean-Pierre Lavergne
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, 69007 Lyon, France
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | |
Collapse
|
25
|
Feodorova VA, Zaitsev SS, Khizhnyakova MA, Lavrukhin MS, Saltykov YV, Zaberezhny AD, Larionova OS. Complete genome of the Listeria monocytogenes strain AUF, used as a live listeriosis veterinary vaccine. Sci Data 2024; 11:643. [PMID: 38886393 PMCID: PMC11183264 DOI: 10.1038/s41597-024-03440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Listeria monocytogenes (Lm) is a highly pathogenic bacterium that can cause listeriosis, a relatively rare food-borne infectious disease that affects farm, domestic, wild animals and humans as well. The infected livestock is the frequent sources of Lm. Vaccination is one of the methods of controlling listeriosis in target farm animals to prevent Lm-associated food contamination. Here we report the complete sequence of the Lm strain AUF attenuated from a fully-virulent Lm strain by ultraviolet irradiation, successfully used since the 1960s as a live whole-cell veterinary vaccine. The de novo assembled genome consists of a circular chromosome of 2,942,932 bp length, including more than 2,800 CDSs, 17 pseudogenes, 5 antibiotic resistance genes, and 56/92 virulence genes. Two wild Lm strains, the EGD and the 10403S that is also used in cancer Immunotherapy, were the closest homologs for the Lm strain AUF. Although all three strains belonged to different sequence types (ST), namely ST12, ST85, and ST1538, they were placed in the same genetic lineage II, CC7.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
| | - Sergey S Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Mariya A Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Maxim S Lavrukhin
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Yury V Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Alexey D Zaberezhny
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow, Russia
| | - Olga S Larionova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| |
Collapse
|
26
|
Geller AM, Shalom M, Zlotkin D, Blum N, Levy A. Identification of type VI secretion system effector-immunity pairs using structural bioinformatics. Mol Syst Biol 2024; 20:702-718. [PMID: 38658795 PMCID: PMC11148199 DOI: 10.1038/s44320-024-00035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The type VI secretion system (T6SS) is an important mediator of microbe-microbe and microbe-host interactions. Gram-negative bacteria use the T6SS to inject T6SS effectors (T6Es), which are usually proteins with toxic activity, into neighboring cells. Antibacterial effectors have cognate immunity proteins that neutralize self-intoxication. Here, we applied novel structural bioinformatic tools to perform systematic discovery and functional annotation of T6Es and their cognate immunity proteins from a dataset of 17,920 T6SS-encoding bacterial genomes. Using structural clustering, we identified 517 putative T6E families, outperforming sequence-based clustering. We developed a logistic regression model to reliably quantify protein-protein interaction of new T6E-immunity pairs, yielding candidate immunity proteins for 231 out of the 517 T6E families. We used sensitive structure-based annotation which yielded functional annotations for 51% of the T6E families, again outperforming sequence-based annotation. Next, we validated four novel T6E-immunity pairs using basic experiments in E. coli. In particular, we showed that the Pfam domain DUF3289 is a homolog of Colicin M and that DUF943 acts as its cognate immunity protein. Furthermore, we discovered a novel T6E that is a structural homolog of SleB, a lytic transglycosylase, and identified a specific glutamate that acts as its putative catalytic residue. Overall, this study applies novel structural bioinformatic tools to T6E-immunity pair discovery, and provides an extensive database of annotated T6E-immunity pairs.
Collapse
Affiliation(s)
- Alexander M Geller
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Shalom
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Zlotkin
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Blum
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
27
|
Spatz S, Afonso CL. Non-Targeted RNA Sequencing: Towards the Development of Universal Clinical Diagnosis Methods for Human and Veterinary Infectious Diseases. Vet Sci 2024; 11:239. [PMID: 38921986 PMCID: PMC11209166 DOI: 10.3390/vetsci11060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Metagenomics offers the potential to replace and simplify classical methods used in the clinical diagnosis of human and veterinary infectious diseases. Metagenomics boasts a high pathogen discovery rate and high specificity, advantages absent in most classical approaches. However, its widespread adoption in clinical settings is still pending, with a slow transition from research to routine use. While longer turnaround times and higher costs were once concerns, these issues are currently being addressed by automation, better chemistries, improved sequencing platforms, better databases, and automated bioinformatics analysis. However, many technical options and steps, each producing highly variable outcomes, have reduced the technology's operational value, discouraging its implementation in diagnostic labs. We present a case for utilizing non-targeted RNA sequencing (NT-RNA-seq) as an ideal metagenomics method for the detection of infectious disease-causing agents in humans and animals. Additionally, to create operational value, we propose to identify best practices for the "core" of steps that are invariably shared among many human and veterinary protocols. Reference materials, sequencing procedures, and bioinformatics standards should accelerate the validation processes necessary for the widespread adoption of this technology. Best practices could be determined through "implementation research" by a consortium of interested institutions working on common samples.
Collapse
Affiliation(s)
- Stephen Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA;
| | | |
Collapse
|
28
|
Shan KJ, Wu C, Tang X, Lu R, Hu Y, Tan W, Lu J. Molecular Evolution of Protein Sequences and Codon Usage in Monkeypox Viruses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad003. [PMID: 38862422 PMCID: PMC11425058 DOI: 10.1093/gpbjnl/qzad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 06/13/2024]
Abstract
The monkeypox virus (mpox virus, MPXV) epidemic in 2022 has posed a significant public health risk. Yet, the evolutionary principles of MPXV remain largely unknown. Here, we examined the evolutionary patterns of protein sequences and codon usage in MPXV. We first demonstrated the signal of positive selection in OPG027, specifically in the Clade I lineage of MPXV. Subsequently, we discovered accelerated protein sequence evolution over time in the variants responsible for the 2022 outbreak. Furthermore, we showed strong epistasis between amino acid substitutions located in different genes. The codon adaptation index (CAI) analysis revealed that MPXV genes tended to use more non-preferred codons compared to human genes, and the CAI decreased over time and diverged between clades, with Clade I > IIa and IIb-A > IIb-B. While the decrease in fatality rate among the three groups aligned with the CAI pattern, it remains unclear whether this correlation was coincidental or if the deoptimization of codon usage in MPXV led to a reduction in fatality rates. This study sheds new light on the mechanisms that govern the evolution of MPXV in human populations.
Collapse
Affiliation(s)
- Ke-Jia Shan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yaling Hu
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Paniz-Mondolfi AE, Ramírez JD. FDA's proposed rule and its regulatory impact on emerging and reemerging neglected tropical diseases in the United States. PLoS Negl Trop Dis 2024; 18:e0012116. [PMID: 38722919 PMCID: PMC11081280 DOI: 10.1371/journal.pntd.0012116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
Diagnosing infectious diseases significantly influences patient care, aiding in outbreak identification, response, and public health monitoring. However, the range of FDA-approved molecular tests remains notably limited, especially concerning neglected tropical diseases (NTDs). Drawing upon our experience as one of the largest healthcare networks in the greater New York metropolitan area, this viewpoint manuscript aims to spotlight the existing diagnostic landscape and unmet clinical needs for 4 emerging NTDs increasingly prevalent in the United States, additionally, it delves into the possible adverse effects of the FDA's Proposed Rule on Laboratory-Developed Tests for these clinical conditions and the broader spectrum of NTDs.
Collapse
Affiliation(s)
- Alberto E. Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Juan David Ramírez
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
30
|
Sabat AJ, Durfee T, Baldwin S, Akkerboom V, Voss A, Friedrich AW, Bathoorn E. The complete genome sequence of unculturable Mycoplasma faucium obtained through clinical metagenomic next-generation sequencing. Front Cell Infect Microbiol 2024; 14:1368923. [PMID: 38694516 PMCID: PMC11062135 DOI: 10.3389/fcimb.2024.1368923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Diagnosing Mycoplasma faucium poses challenges, and it's unclear if its rare isolation is due to infrequent occurrence or its fastidious nutritional requirements. Methods This study analyzes the complete genome sequence of M. faucium, obtained directly from the pus of a sternum infection in a lung transplant patient using metagenomic sequencing. Results Genome analysis revealed limited therapeutic options for the M. faucium infection, primarily susceptibility to tetracyclines. Three classes of mobile genetic elements were identified: two new insertion sequences, a new prophage (phiUMCG-1), and a species-specific variant of a mycoplasma integrative and conjugative element (MICE). Additionally, a Type I Restriction-Modification system was identified, featuring 5'-terminally truncated hsdS pseudogenes with overlapping repeats, indicating the potential for forming alternative hsdS variants through recombination. Conclusion This study represents the first-ever acquisition of a complete circularized bacterial genome directly from a patient sample obtained from invasive infection of a primary sterile site using culture-independent, PCR-free clinical metagenomics.
Collapse
Affiliation(s)
- Artur J. Sabat
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tim Durfee
- DNASTAR, Inc., Madison, WI, United States
| | | | - Viktoria Akkerboom
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Kan CM, Tsang HF, Pei XM, Ng SSM, Yim AKY, Yu ACS, Wong SCC. Enhancing Clinical Utility: Utilization of International Standards and Guidelines for Metagenomic Sequencing in Infectious Disease Diagnosis. Int J Mol Sci 2024; 25:3333. [PMID: 38542307 PMCID: PMC10970082 DOI: 10.3390/ijms25063333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Metagenomic sequencing has emerged as a transformative tool in infectious disease diagnosis, offering a comprehensive and unbiased approach to pathogen detection. Leveraging international standards and guidelines is essential for ensuring the quality and reliability of metagenomic sequencing in clinical practice. This review explores the implications of international standards and guidelines for the application of metagenomic sequencing in infectious disease diagnosis. By adhering to established standards, such as those outlined by regulatory bodies and expert consensus, healthcare providers can enhance the accuracy and clinical utility of metagenomic sequencing. The integration of international standards and guidelines into metagenomic sequencing workflows can streamline diagnostic processes, improve pathogen identification, and optimize patient care. Strategies in implementing these standards for infectious disease diagnosis using metagenomic sequencing are discussed, highlighting the importance of standardized approaches in advancing precision infectious disease diagnosis initiatives.
Collapse
Affiliation(s)
- Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (C.-M.K.); (H.F.T.)
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (C.-M.K.); (H.F.T.)
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | | | - Allen Chi-Shing Yu
- Codex Genetics Limited, Shatin, Hong Kong, China; (A.K.-Y.Y.); (A.C.-S.Y.)
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
32
|
Chorlton SD. Ten common issues with reference sequence databases and how to mitigate them. FRONTIERS IN BIOINFORMATICS 2024; 4:1278228. [PMID: 38560517 PMCID: PMC10978663 DOI: 10.3389/fbinf.2024.1278228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Metagenomic sequencing has revolutionized our understanding of microbiology. While metagenomic tools and approaches have been extensively evaluated and benchmarked, far less attention has been given to the reference sequence database used in metagenomic classification. Issues with reference sequence databases are pervasive. Database contamination is the most recognized issue in the literature; however, it remains relatively unmitigated in most analyses. Other common issues with reference sequence databases include taxonomic errors, inappropriate inclusion and exclusion criteria, and sequence content errors. This review covers ten common issues with reference sequence databases and the potential downstream consequences of these issues. Mitigation measures are discussed for each issue, including bioinformatic tools and database curation strategies. Together, these strategies present a path towards more accurate, reproducible and translatable metagenomic sequencing.
Collapse
|
33
|
Craney A, Miller S. Present and Future Non-Culture-Based Diagnostics: Stewardship Potentials and Considerations. Clin Lab Med 2024; 44:109-122. [PMID: 38280793 DOI: 10.1016/j.cll.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The medical microbiologist plays a key role in the transition from culture-based to molecular test methods for diagnosis of infectious diseases. They must understand the scientific and technical bases underlying these tests along with their associated benefits and limitations and be able to educate administrators and patient providers on their proper use. Coordination of testing practices between clinical departments and the spectrum of public health and research laboratories is essential to optimize health care delivery.
Collapse
Affiliation(s)
- Arryn Craney
- Center for Infectious Disease Diagnostics and Research, Diagnostic Medicine Institute, Geisinger Health System, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Steve Miller
- Delve Bio, Inc. and Department of Laboratory Medicine, University of California San Francisco, 953 Indiana Street, San Francisco, CA 94107, USA.
| |
Collapse
|
34
|
Mandal PK, Cleanthous A, Rigas V, Kleinecke M, Lawrence K, Leach AJ, Smith-Vaughan H, Morris PS, Beissbarth J, Marsh RL. Complete genome sequence of Oligella urethralis MSHR-50412PR, isolated from an ear discharge swab of a child with chronic suppurative otitis media. Microbiol Resour Announc 2024; 13:e0107123. [PMID: 38275301 PMCID: PMC10868213 DOI: 10.1128/mra.01071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Oligella urethralis are opportunistic pathogens typically associated with genitourinary infections. Here, we report the complete genome for an Oligella urethralis isolate recovered from ear discharge of a child with chronic suppurative otitis media (strain MSHR-50412PR). The genome comprises 2.58 Mb, with 2,448 coding sequences and 46.26% average GC content.
Collapse
Affiliation(s)
- Pappu K. Mandal
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Alexander Cleanthous
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Vanessa Rigas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mariana Kleinecke
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Katrina Lawrence
- Health and Human Science, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Amanda J. Leach
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Heidi Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Peter S. Morris
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Robyn L. Marsh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
35
|
Mizzi R, Plain KM, Timms VJ, Marsh I, Whittington RJ. Characterisation of IS1311 in Mycobacterium avium subspecies paratuberculosis genomes: Typing, continental clustering, microbial evolution and host adaptation. PLoS One 2024; 19:e0294570. [PMID: 38349924 PMCID: PMC10863896 DOI: 10.1371/journal.pone.0294570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/04/2023] [Indexed: 02/15/2024] Open
Abstract
Johne's disease (JD), caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a global burden for livestock producers and has an association with Crohn's disease in humans. Within MAP there are two major lineages, S/Type I/TypeIII and C/Type II, that vary in phenotype including culturability, host preference and virulence. These lineages have been identified using the IS1311 element, which contains a conserved, single nucleotide polymorphism. IS1311 and the closely related IS1245 element belong to the IS256 family of insertion sequences, are dispersed throughout M. avium taxa but remain poorly characterised. To investigate the distribution and diversity of IS1311 in MAP, 805 MAP genomes were collated from public databases. IS1245 was absent, while IS1311 sequence, copy number and insertion loci were conserved between MAP S lineages and varied within the MAP C lineage. One locus was specific to the S strains, which contained nine IS1311 copies. In contrast, C strains contained either seven or eight IS1311 loci. Most insertion loci were associated with the boundaries of homologous regions that had undergone genome rearrangement between the MAP lineages, suggesting that this sequence may be a driver of recombination. Phylogenomic geographic clustering of MAP subtypes was demonstrated for the first time, at continental scale, and indicated that there may have been recent MAP transmission between Europe and North America, in contrast to Australia where importation of live ruminants is generally prohibited. This investigation confirmed the utility of IS1311 typing in epidemiological studies and resolved anomalies in past studies. The results shed light on potential mechanisms of niche/host adaptation, virulence of MAP and global transmission dynamics.
Collapse
Affiliation(s)
- Rachel Mizzi
- School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Karren M. Plain
- School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Verlaine J. Timms
- Neilan Laboratory of Microbial and Molecular Diversity, College of Engineering, Science and Environment, The University of Newcastle, New South Wales, Australia
| | - Ian Marsh
- Microbiology and Parasitology Research, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - Richard J. Whittington
- School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Reding C, Satapoomin N, Avison MB. Hound: a novel tool for automated mapping of genotype to phenotype in bacterial genomes assembled de novo. Brief Bioinform 2024; 25:bbae057. [PMID: 38385882 PMCID: PMC10883467 DOI: 10.1093/bib/bbae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Increasing evidence suggests that microbial species have a strong within species genetic heterogeneity. This can be problematic for the analysis of prokaryote genomes, which commonly relies on a reference genome to guide the assembly process. Differences between reference and sample genomes will therefore introduce errors in final assembly, jeopardizing the detection from structural variations to point mutations-critical for genomic surveillance of antibiotic resistance. Here we present Hound, a pipeline that integrates publicly available tools to assemble prokaryote genomes de novo, detect user-given genes by similarity to report mutations found in the coding sequence, promoter, as well as relative gene copy number within the assembly. Importantly, Hound can use the query sequence as a guide to merge contigs, and reconstruct genes that were fragmented by the assembler. To showcase Hound, we screened through 5032 bacterial whole-genome sequences isolated from farmed animals and human infections, using the amino acid sequence encoded by blaTEM-1, to detect and predict resistance to amoxicillin/clavulanate which is driven by over-expression of this gene. We believe this tool can facilitate the analysis of prokaryote species that currently lack a reference genome, and can be scaled either up to build automated systems for genomic surveillance or down to integrate into antibiotic susceptibility point-of-care diagnostics.
Collapse
Affiliation(s)
- Carlos Reding
- University of Bristol School of Cellular and Molecular Medicine, University Walk, Bristol, BS8 1TD Bristol, UK
| | - Naphat Satapoomin
- University of Bristol School of Cellular and Molecular Medicine, University Walk, Bristol, BS8 1TD Bristol, UK
| | - Matthew B Avison
- University of Bristol School of Cellular and Molecular Medicine, University Walk, Bristol, BS8 1TD Bristol, UK
| |
Collapse
|
37
|
Charalampous T, Alcolea-Medina A, Snell LB, Alder C, Tan M, Williams TGS, Al-Yaakoubi N, Humayun G, Meadows CIS, Wyncoll DLA, Paul R, Hemsley CJ, Jeyaratnam D, Newsholme W, Goldenberg S, Patel A, Tucker F, Nebbia G, Wilks M, Chand M, Cliff PR, Batra R, O'Grady J, Barrett NA, Edgeworth JD. Routine Metagenomics Service for ICU Patients with Respiratory Infection. Am J Respir Crit Care Med 2024; 209:164-174. [PMID: 37938162 PMCID: PMC10806431 DOI: 10.1164/rccm.202305-0901oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023] Open
Abstract
Rationale: Respiratory metagenomics (RMg) needs evaluation in a pilot service setting to determine utility and inform implementation into routine clinical practice. Objectives: Feasibility, performance, and clinical impacts on antimicrobial prescribing and infection control were recorded during a pilot RMg service. Methods: RMg was performed on 128 samples from 87 patients with suspected lower respiratory tract infection (LRTI) on two general and one specialist respiratory ICUs at Guy's and St Thomas' NHS Foundation Trust, London. Measurements and Main Results: During the first 15 weeks, RMg provided same-day results for 110 samples (86%), with a median turnaround time of 6.7 hours (interquartile range = 6.1-7.5 h). RMg was 93% sensitive and 81% specific for clinically relevant pathogens compared with routine testing. Forty-eight percent of RMg results informed antimicrobial prescribing changes (22% escalation; 26% deescalation) with escalation based on speciation in 20 out of 24 cases and detection of acquired-resistance genes in 4 out of 24 cases. Fastidious or unexpected organisms were reported in 21 samples, including anaerobes (n = 12), Mycobacterium tuberculosis, Tropheryma whipplei, cytomegalovirus, and Legionella pneumophila ST1326, which was subsequently isolated from the bedside water outlet. Application to consecutive severe community-acquired LRTI cases identified Staphylococcus aureus (two with SCCmec and three with luk F/S virulence determinants), Streptococcus pyogenes (emm1-M1uk clone), S. dysgalactiae subspecies equisimilis (STG62647A), and Aspergillus fumigatus with multiple treatments and public health impacts. Conclusions: This pilot study illustrates the potential of RMg testing to provide benefits for antimicrobial treatment, infection control, and public health when provided in a real-world critical care setting. Multicenter studies are now required to inform future translation into routine service.
Collapse
Affiliation(s)
- Themoula Charalampous
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
| | - Adela Alcolea-Medina
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Infection Sciences, Synnovis, London, United Kingdom
| | - Luke B Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| | - Christopher Alder
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| | - Mark Tan
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
| | | | - Noor Al-Yaakoubi
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
| | - Gul Humayun
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
| | - Christopher I S Meadows
- Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Critical Care Directorate, Guy's and St Thomas' NHS Foundation Trust, London, England
| | - Duncan L A Wyncoll
- Critical Care Directorate, Guy's and St Thomas' NHS Foundation Trust, London, England
| | - Richard Paul
- Critical Care Directorate, Guy's and St Thomas' NHS Foundation Trust, London, England
| | | | | | | | | | - Amita Patel
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| | | | | | - Mark Wilks
- London School of Medicine and Dentistry, Queen Mary University, London, United Kingdom
| | - Meera Chand
- UK Health Security Agency, London, United Kingdom; and
| | | | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| | | | - Nicholas A Barrett
- Critical Care Directorate, Guy's and St Thomas' NHS Foundation Trust, London, England
| | - Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| |
Collapse
|
38
|
Isidro J, Escudero R, Luque-Larena JJ, Pinto M, Borges V, González-Martín-Niño R, Duarte S, Vieira L, Mougeot F, Vidal D, Herrera-Rodríguez D, Rodríguez-Pastor R, Herrero-Cófreces S, Jubete-Tazo F, Gomes JP, Lopes de Carvalho I. Strengthening the genomic surveillance of Francisella tularensis by using culture-free whole-genome sequencing from biological samples. Front Microbiol 2024; 14:1277468. [PMID: 38249473 PMCID: PMC10797068 DOI: 10.3389/fmicb.2023.1277468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Francisella tularensis is a highly infectious bacterium that causes the zoonotic disease tularemia. The development of genotyping methods, especially those based on whole-genome sequencing (WGS), has recently increased the knowledge on the epidemiology of this disease. However, due to the difficulties associated with the growth and isolation of this fastidious pathogen in culture, the availability of strains and subsequently WGS data is still limited. Methods To surpass these constraints, we aimed to implement a culture-free approach to capture and sequence F. tularensis genomes directly from complex samples. Biological samples obtained from 50 common voles and 13 Iberian hares collected in Spain were confirmed as positive for F. tularensis subsp. holarctica and subjected to a WGS target capture and enrichment protocol, using RNA oligonucleotide baits designed to cover F. tularensis genomic diversity. Results We obtained full genome sequences of F. tularensis from 13 animals (20.6%), two of which had mixed infections with distinct genotypes, and achieved a higher success rate when compared with culture-dependent WGS (only successful for two animals). The new genomes belonged to different clades commonly identified in Europe (B.49, B.51 and B.262) and subclades. Despite being phylogenetically closely related to other genomes from Spain, the detected clusters were often found in other countries. A comprehensive phylogenetic analysis, integrating 599 F. tularensis subsp. holarctica genomes, showed that most (sub)clades are found in both humans and animals and that closely related strains are found in different, and often geographically distant, countries. Discussion Overall, we show that the implemented culture-free WGS methodology yields timely, complete and high-quality genomic data of F. tularensis, being a highly valuable approach to promote and potentiate the genomic surveillance of F. tularensis and ultimately increase the knowledge on the genomics, ecology and epidemiology of this highly infectious pathogen.
Collapse
Affiliation(s)
- Joana Isidro
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Raquel Escudero
- Reference and Research Laboratory on Special Pathogens, National Centre for Microbiology (CNM), Carlos II Health Institute (ISCIII), Madrid, Spain
| | - Juan José Luque-Larena
- Departamento de Ciencias Agroforestales, Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rosa González-Martín-Niño
- Reference and Research Laboratory on Special Pathogens, National Centre for Microbiology (CNM), Carlos II Health Institute (ISCIII), Madrid, Spain
| | - Sílvia Duarte
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Dolors Vidal
- Área de Microbiología, Facultad de Medicina, Universidad de Catilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Daniel Herrera-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM), Ciudad Real, Spain
- Área de Microbiología, Facultad de Medicina, Universidad de Catilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Ruth Rodríguez-Pastor
- Department of Parasitology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain, Zaragoza, Spain
- Departamento de Parasitología, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Silvia Herrero-Cófreces
- Departamento de Ciencias Agroforestales, Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - Fernando Jubete-Tazo
- Departamento de Ciencias Agroforestales, Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Veterinary and Animal Research Center (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Isabel Lopes de Carvalho
- Emergency and Biopreparedness Unit, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
39
|
Hauser S, Lazarevic V, Tournoud M, Ruppé E, Santiago Allexant E, Guigon G, Schicklin S, Lanet V, Girard M, Mirande C, Gervasi G, Schrenzel J. A metagenomics method for the quantitative detection of bacterial pathogens causing hospital-associated and ventilator-associated pneumonia. Microbiol Spectr 2023; 11:e0129423. [PMID: 37889000 PMCID: PMC10715005 DOI: 10.1128/spectrum.01294-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE The management of ventilator-associated pneumonia and hospital-acquired pneumonia requires rapid and accurate quantitative detection of the infecting pathogen. To this end, we propose a metagenomic sequencing assay that includes the use of an internal sample processing control for the quantitative detection of 20 relevant bacterial species from bronchoalveolar lavage samples.
Collapse
Affiliation(s)
| | - V. Lazarevic
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | | | - E. Ruppé
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | - V. Lanet
- bioMérieux, Marcy-l'Étoile, France
| | - M. Girard
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - C. Mirande
- bioMérieux, La Balme-les-Grottes, France
| | | | - J. Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
40
|
Constantinides B, Hunt M, Crook DW. Hostile: accurate decontamination of microbial host sequences. Bioinformatics 2023; 39:btad728. [PMID: 38039142 PMCID: PMC10749771 DOI: 10.1093/bioinformatics/btad728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
MOTIVATION Microbial sequences generated from clinical samples are often contaminated with human host sequences that must be removed for ethical and legal reasons. Care must be taken to excise host sequences without inadvertently removing target microbial sequences to the detriment of downstream analyses such as variant calling and de novo assembly. RESULTS To facilitate accurate host decontamination of both short and long sequencing reads, we developed Hostile, a tool capable of accurate host read removal using a laptop. We demonstrate that our approach removes at least 99.6% of real human reads and retains at least 99.989% of simulated bacterial reads. Using Hostile with a masked reference genome further increases bacterial read retention (≥99.997%) with negligible (≤0.001%) reduction in human read removal performance. Compared with an existing tool, Hostile removes 21%-23% more human short reads and 21-43 times fewer bacterial reads, typically in less time. AVAILABILITY AND IMPLEMENTATION Hostile is implemented as an MIT-licensed Python package available from https://github.com/bede/hostile together with supplementary material.
Collapse
Affiliation(s)
- Bede Constantinides
- NDM Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
| | - Martin Hunt
- NDM Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
- EMBL-EBI, Wellcome Genome Campus, Cambridgeshire CB10 1SD, United Kingdom
| | - Derrick W Crook
- NDM Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
| |
Collapse
|
41
|
Morlino MS, Serna García R, Savio F, Zampieri G, Morosinotto T, Treu L, Campanaro S. Cupriavidus necator as a platform for polyhydroxyalkanoate production: An overview of strains, metabolism, and modeling approaches. Biotechnol Adv 2023; 69:108264. [PMID: 37775073 DOI: 10.1016/j.biotechadv.2023.108264] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Cupriavidus necator is a bacterium with a high phenotypic diversity and versatile metabolic capabilities. It has been extensively studied as a model hydrogen oxidizer, as well as a producer of polyhydroxyalkanoates (PHA), plastic-like biopolymers with a high potential to substitute petroleum-based materials. Thanks to its adaptability to diverse metabolic lifestyles and to the ability to accumulate large amounts of PHA, C. necator is employed in many biotechnological processes, with particular focus on PHA production from waste carbon sources. The large availability of genomic information has enabled a characterization of C. necator's metabolism, leading to the establishment of metabolic models which are used to devise and optimize culture conditions and genetic engineering approaches. In this work, the characteristics of available C. necator strains and genomes are reviewed, underlining how a thorough comprehension of the genetic variability of C. necator is lacking and it could be instrumental for wider application of this microorganism. The metabolic paradigms of C. necator and how they are connected to PHA production and accumulation are described, also recapitulating the variety of carbon substrates used for PHA accumulation, highlighting the most promising strategies to increase the yield. Finally, the review describes and critically analyzes currently available genome-scale metabolic models and reduced metabolic network applications commonly employed in the optimization of PHA production. Overall, it appears that the capacity of C. necator of performing CO2 bioconversion to PHA is still underexplored, both in biotechnological applications and in metabolic modeling. However, the accurate characterization of this organism and the efforts in using it for gas fermentation can help tackle this challenging perspective in the future.
Collapse
Affiliation(s)
- Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Rebecca Serna García
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Filippo Savio
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Guido Zampieri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
42
|
Heitz M, Levrat A, Lazarevic V, Barraud O, Bland S, Santiago-Allexant E, Louis K, Schrenzel J, Hauser S. Metagenomics for the microbiological diagnosis of hospital-acquired pneumonia and ventilator-associated pneumonia (HAP/VAP) in intensive care unit (ICU): a proof-of-concept study. Respir Res 2023; 24:285. [PMID: 37968636 PMCID: PMC10648381 DOI: 10.1186/s12931-023-02597-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Hospital-acquired and ventilator-associated-pneumonia (HAP/VAP) are one of the most prevalent health-care associated infections in the intensive care unit (ICU). Culture-independent methods were therefore developed to provide faster route to diagnosis and treatment. Among these, metagenomic next-generation sequencing (mNGS) has shown considerable promise. METHODS This proof-of-concept study describes the technical feasibility and evaluates the clinical validity of the mNGS for the detection and characterization of the etiologic agents causing hospital-acquired and ventilator-associated pneumonia. We performed a prospective study of all patients with HAP/VAP hospitalized in our intensive care unit for whom a bronchoalveolar lavage (BAL) was performed between July 2017 and November 2018. We compared BAL fluid culture and mNGS results of these patients. RESULTS A total of 32 BAL fluids were fully analyzed. Of these, 22 (69%) were positive by culture and all pathogens identified were also reported by mNGS. Among the culture-positive BAL samples, additional bacterial species were revealed by mNGS for 12 patients, raising the issue of their pathogenic role (colonization versus coinfection). Among BALF with culture-negative test, 5 were positive in mNGS test. CONCLUSIONS This study revealed concordant results for pneumonia panel pathogens between mNGS and culture-positive tests and identified additional pathogens potentially implicated in pneumonia without etiologic diagnosis by culture. mNGS has emerged as a promising methodology for infectious disease diagnoses to support conventional methods. Prospective studies with real-time mNGS are warranted to examine the impact on antimicrobial decision-making and clinical outcome.
Collapse
Affiliation(s)
- Morgane Heitz
- Intensive Care Unit, Annecy-Genevois Hospital, Site d'Annecy, 1 Avenue de L'hôpital, 74370, Metz Tessy, France.
| | - Albrice Levrat
- Intensive Care Unit, Annecy-Genevois Hospital, Site d'Annecy, 1 Avenue de L'hôpital, 74370, Metz Tessy, France
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Barraud
- Genomic Research Laboratory, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Bland
- Bacteriology Laboratory, Annecy-Genevois Hospital, Metz Tessy, France
| | | | - Karen Louis
- BIOASTER Microbiology Technology Institute, 40 Avenue Tony Garnier, 69007, Lyon, France
| | - Jacques Schrenzel
- Genomic Research Laboratory, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Bacteriology Laboratory, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sébastien Hauser
- bioMérieux Grenoble, Centre Christophe Mérieux, 5 Rue Des Berges, 38024, Grenoble Cedex 01, France
| |
Collapse
|
43
|
Ma J, Zhao H, Mo S, Li J, Ma X, Tang Y, Li H, Liu Z. Acquisition of Type I methyltransferase via horizontal gene transfer increases the drug resistance of Aeromonas veronii. Microb Genom 2023; 9:001107. [PMID: 37754275 PMCID: PMC10569733 DOI: 10.1099/mgen.0.001107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Aeromonas veronii is an opportunistic pathogen that affects both fish and mammals, including humans, leading to bacteraemia, sepsis, meningitis and even death. The increasing virulence and drug resistance of A. veronii are of significant concern and pose a severe risk to public safety. The Type I restriction-modification (RM) system, which functions as a bacterial defence mechanism, can influence gene expression through DNA methylation. However, little research has been conducted to explore its origin, evolutionary path, and relationship to virulence and drug resistance in A. veronii. In this study, we analysed the pan-genome of 233 A. veronii strains, and the results indicated that it was 'open', meaning that A. veronii has acquired additional genes from other species. This suggested that A. veronii had the potential to adapt and evolve rapidly, which might have contributed to its drug resistance. One Type I methyltransferase (MTase) and two complete Type I RM systems were identified, namely AveC4I, AveC4II and AveC4III in A. veronii strain C4, respectively. Notably, AveC4I was exclusive to A. veronii C4. Phylogenetic analysis revealed that AveC4I was derived from horizontal gene transfer from Thiocystis violascens and exchanged genes with the human pathogen Comamonas kerstersii. Single molecule real-time sequencing was applied to identify the motif methylated by AveC4I, which was unique and not recognized by any reported MTases in the REBASE database. We also annotated the functions and pathways of the genes containing the motif, revealing that AveC4I may control drug resistance in A. veronii C4. Our findings provide new insight on the mechanisms underlying drug resistance in pathogenic bacteria. By identifying the specific genes and pathways affected by AveC4I, this study may aid in the development of new therapeutic approaches to combat A. veronii infections.
Collapse
Affiliation(s)
- Jiayue Ma
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Honghao Zhao
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Shuangyi Mo
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, PR China
| |
Collapse
|
44
|
Scott NE, Edwin Erayil S, Kline SE, Selmecki A. Rapid Evolution of Multidrug Resistance in a Candida lusitaniae Infection during Micafungin Monotherapy. Antimicrob Agents Chemother 2023; 67:e0054323. [PMID: 37428075 PMCID: PMC10433866 DOI: 10.1128/aac.00543-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Candida (Clavispora) lusitaniae is a rare, emerging non-albicans Candida species that can cause life-threatening invasive infections, spread within hospital settings, and rapidly acquire antifungal drug resistance, including multidrug resistance. The frequency and spectrum of mutations causing antifungal drug resistance in C. lusitaniae are poorly understood. Analyses of serial clinical isolates of any Candida species are uncommon and often analyze a limited number of samples collected over months of antifungal therapy with multiple drug classes, limiting the ability to understand relationships between drug classes and specific mutations. Here, we performed comparative genomic and phenotypic analysis of 20 serial C. lusitaniae bloodstream isolates collected daily from an individual patient treated with micafungin monotherapy during a single 11-day hospital admission. We identified isolates with decreased micafungin susceptibility 4 days after initiation of antifungal therapy and a single isolate with increased cross-resistance to micafungin and fluconazole, despite no history of azole therapy in this patient. Only 14 unique single nucleotide polymorphisms (SNPs) were identified between all 20 samples, including three different FKS1 alleles among isolates with decreased micafungin susceptibility and an ERG3 missense mutation found only in the isolate with increased cross-resistance to both micafungin and fluconazole. This is the first clinical evidence of an ERG3 mutation in C. lusitaniae that occurred during echinocandin monotherapy and is associated with cross-resistance to multiple drug classes. Overall, the evolution of multidrug resistance in C. lusitaniae is rapid and can emerge during treatment with only first-line antifungal therapy.
Collapse
Affiliation(s)
- Nancy E. Scott
- University of Minnesota, Bioinformatics and Computational Biology Program, Minneapolis, Minnesota, USA
- University of Minnesota, Department of Microbiology and Immunology, Minneapolis, Minnesota, USA
| | - Serin Edwin Erayil
- University of Minnesota Medical School, Department of Medicine, Division of Infectious Diseases and International Medicine, Minneapolis, Minnesota, USA
| | - Susan E. Kline
- University of Minnesota Medical School, Department of Medicine, Division of Infectious Diseases and International Medicine, Minneapolis, Minnesota, USA
| | - Anna Selmecki
- University of Minnesota, Bioinformatics and Computational Biology Program, Minneapolis, Minnesota, USA
- University of Minnesota, Department of Microbiology and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
45
|
Qiu J, Shi Y, Zhao F, Xu Y, Xu H, Dai Y, Cao Y. The Pan-Genomic Analysis of Corynebacterium striatum Revealed its Genetic Characteristics as an Emerging Multidrug-Resistant Pathogen. Evol Bioinform Online 2023; 19:11769343231191481. [PMID: 37576785 PMCID: PMC10422898 DOI: 10.1177/11769343231191481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Corynebacterium striatum is a Gram-positive bacterium that is straight or slightly curved and non-spore-forming. Although it was originally believed to be a part of the normal microbiome of human skin, a growing number of studies have identified it as a cause of various chronic diseases, bacteremia, and respiratory infections. However, despite its increasing importance as a pathogen, the genetic characteristics of the pathogen population, such as genomic characteristics and differences, the types of resistance genes and virulence factors carried by the pathogen and their distribution in the population are poorly understood. To address these knowledge gaps, we conducted a pan-genomic analysis of 314 strains of C. striatum isolated from various tissues and geographic locations. Our analysis revealed that C. striatum has an open pan-genome, comprising 5692 gene families, including 1845 core gene families, 2362 accessory gene families, and 1485 unique gene families. We also found that C. striatum exhibits a high degree of diversity across different sources, but strains isolated from skin tissue are more conserved. Furthermore, we identified 53 drug resistance genes and 42 virulence factors by comparing the strains to the drug resistance gene database (CARD) and the pathogen virulence factor database (VFDB), respectively. We found that these genes and factors are widely distributed among C. striatum, with 77.7% of strains carrying 2 or more resistance genes and displaying primary resistance to aminoglycosides, tetracyclines, lincomycin, macrolides, and streptomycin. The virulence factors are primarily associated with pathogen survival within the host, iron uptake, pili, and early biofilm formation. In summary, our study provides insights into the population diversity, resistance genes, and virulence factors ofC. striatum from different sources. Our findings could inform future research and clinical practices in the diagnosis, prevention, and treatment of C. striatum-associated diseases.
Collapse
Affiliation(s)
- Junhui Qiu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Yulan Shi
- Wound Treatment Center of West China Hospital of Sichuan University, West China College of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Fei Zhao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Yan Dai
- Wound Treatment Center of West China Hospital of Sichuan University, West China College of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Lewis JM, Mphasa M, Banda R, Beale MA, Mallewa J, Anscome C, Zuza A, Roberts AP, Heinz E, Thomson NR, Feasey NA. Genomic analysis of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli colonising adults in Blantyre, Malawi reveals previously undescribed diversity. Microb Genom 2023; 9:mgen001035. [PMID: 37314322 PMCID: PMC10327512 DOI: 10.1099/mgen.0.001035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/15/2023] [Indexed: 06/15/2023] Open
Abstract
Escherichia coli is one of the most prevalent Gram-negative species associated with drug resistant infections. Strains that produce extended-spectrum beta-lactamases (ESBLs) or carbapenemases are both particularly problematic and disproportionately impact resource limited healthcare settings where last-line antimicrobials may not be available. A large number of E. coli genomes are now available and have allowed insights into pathogenesis and epidemiology of ESBL E. coli but genomes from sub-Saharan Africa (sSA) are significantly underrepresented. To reduce this gap, we investigated ESBL-producing E. coli colonising adults in Blantyre, Malawi to assess bacterial diversity and AMR determinants and to place these isolates in the context of the wider population structure. We performed short-read whole-genome sequencing of 473 colonising ESBL E. coli isolated from human stool and contextualised the genomes with a previously curated multi-country collection of 10 146 E. coli genomes and sequence type (ST)-specific collections for our three most commonly identified STs. These were the globally successful ST131, ST410 and ST167, and the dominant ESBL genes were bla CTX-M, mirroring global trends. However, 37 % of Malawian isolates did not cluster with any isolates in the curated multicountry collection and phylogenies were consistent with locally spreading monophyletic clades, including within the globally distributed, carbapenemase-associated B4/H24RxC ST410 lineage. A single ST2083 isolate in this collection harboured a carbapenemase gene. Long read sequencing demonstrated the presence of a globally distributed ST410-associated carbapenemase carrying plasmid in this isolate, which was absent from the ST410 strains in our collection. We conclude there is a risk that carbapenem resistance in E. coli could proliferate rapidly in Malawi under increasing selection pressure, and that both ongoing antimicrobial stewardship and genomic surveillance are critical as local carbapenem use increases.
Collapse
Affiliation(s)
- Joseph M. Lewis
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Jane Mallewa
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Catherine Anscome
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Allan Zuza
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A. Feasey
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
47
|
Everhart J, Henshaw NG. Updates in Molecular Diagnostics in Solid Organ Transplantation Recipients. Infect Dis Clin North Am 2023:S0891-5520(23)00038-7. [PMID: 37244805 DOI: 10.1016/j.idc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Advances in molecular diagnostics have the potential to improve patient care among solid organ transplant recipients by reducing time to pathogen identification and informing directed therapy. Although cultures remain the cornerstone of traditional microbiology, advanced molecular diagnostics, such as metagenomic next-generation sequencing (mNGS), may increase detection of pathogens. This is particularly true in the settings of prior antibiotic exposure, and when causative organisms are fastidious. mNGS also offers a hypothesis-free diagnostic method of testing. This is useful in situations whereby the differential is broad or when the infectious agent is unlikely to be detected by routine methods.
Collapse
Affiliation(s)
- James Everhart
- Duke University Medical Center, 2351 Erwin Road, Wadsworth Building, Room 0170, Durham, NC 27705, USA.
| | - Nancy G Henshaw
- Duke University Medical Center, 2351 Erwin Road, Wadsworth Building, Room 0170, Durham, NC 27705, USA
| |
Collapse
|
48
|
Botts RT, Page DM, Bravo JA, Brown ML, Castilleja CC, Guzman VL, Hall S, Henderson JD, Kenney SM, Lensink ME, Paternoster MV, Pyle SL, Ustick L, Walters-Laird CJ, Top EM, Cummings DE. Polluted wetlands contain multidrug-resistance plasmids encoding CTX-M-type extended-spectrum β-lactamases. Plasmid 2023; 126:102682. [PMID: 37023995 PMCID: PMC10213127 DOI: 10.1016/j.plasmid.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
While most detailed analyses of antibiotic resistance plasmids focus on those found in clinical isolates, less is known about the vast environmental reservoir of mobile genetic elements and the resistance and virulence factors they encode. We selectively isolated three strains of cefotaxime-resistant Escherichia coli from a wastewater-impacted coastal wetland. The cefotaxime-resistant phenotype was transmissible to a lab strain of E. coli after one hour, with frequencies as high as 10-3 transconjugants per recipient. Two of the plasmids also transferred cefotaxime resistance to Pseudomonas putida, but these were unable to back-transfer this resistance from P. putida to E. coli. In addition to the cephalosporins, E. coli transconjugants inherited resistance to at least seven distinct classes of antibiotics. Complete nucleotide sequences revealed large IncF-type plasmids with globally distributed replicon sequence types F31:A4:B1 and F18:B1:C4 carrying diverse antibiotic resistance and virulence genes. The plasmids encoded extended-spectrum β-lactamases blaCTX-M-15 or blaCTX-M-55, each associated with the insertion sequence ISEc9, although in different local arrangements. Despite similar resistance profiles, the plasmids shared only one resistance gene in common, the aminoglycoside acetyltransferase aac(3)-IIe. Plasmid accessory cargo also included virulence factors involved in iron acquisition and defense against host immunity. Despite their sequence similarities, several large-scale recombination events were detected, including rearrangements and inversions. In conclusion, selection with a single antibiotic, cefotaxime, yielded conjugative plasmids conferring multiple resistance and virulence factors. Clearly, efforts to limit the spread of antibiotic resistance and virulence among bacteria must include a greater understanding of mobile elements in the natural and human-impacted environments.
Collapse
Affiliation(s)
- Ryan T Botts
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Dawne M Page
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Joseph A Bravo
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Madelaine L Brown
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Claudia C Castilleja
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Victoria L Guzman
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Samantha Hall
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Jacob D Henderson
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Shelby M Kenney
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Mariele E Lensink
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Megan V Paternoster
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Sarah L Pyle
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Lucas Ustick
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America; Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Chara J Walters-Laird
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Eva M Top
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, United States of America
| | - David E Cummings
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America.
| |
Collapse
|
49
|
Gauthier NPG, Chorlton SD, Krajden M, Manges AR. Agnostic Sequencing for Detection of Viral Pathogens. Clin Microbiol Rev 2023; 36:e0011922. [PMID: 36847515 PMCID: PMC10035330 DOI: 10.1128/cmr.00119-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The advent of next-generation sequencing (NGS) technologies has expanded our ability to detect and analyze microbial genomes and has yielded novel molecular approaches for infectious disease diagnostics. While several targeted multiplex PCR and NGS-based assays have been widely used in public health settings in recent years, these targeted approaches are limited in that they still rely on a priori knowledge of a pathogen's genome, and an untargeted or unknown pathogen will not be detected. Recent public health crises have emphasized the need to prepare for a wide and rapid deployment of an agnostic diagnostic assay at the start of an outbreak to ensure an effective response to emerging viral pathogens. Metagenomic techniques can nonspecifically sequence all detectable nucleic acids in a sample and therefore do not rely on prior knowledge of a pathogen's genome. While this technology has been reviewed for bacterial diagnostics and adopted in research settings for the detection and characterization of viruses, viral metagenomics has yet to be widely deployed as a diagnostic tool in clinical laboratories. In this review, we highlight recent improvements to the performance of metagenomic viral sequencing, the current applications of metagenomic sequencing in clinical laboratories, as well as the challenges that impede the widespread adoption of this technology.
Collapse
Affiliation(s)
- Nick P. G. Gauthier
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Amee R. Manges
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Qin G, Ai X, Xu J, Yang Y. Dual RNA-seq of spleens extracted from channel catfish infected with Aeromonas veronii reveals novel insights into host-pathogen interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114609. [PMID: 36739739 DOI: 10.1016/j.ecoenv.2023.114609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Interactions between host and pathogen are involving various dynamic changes in transcript expression and critical for understanding host immunity against infections and its associated pathogenesis. Herein, we established a model of channel catfish infected with Aeromonas veronii. The infected fish had prominent body surface bleeding, and the spleen showed hyperemia and swelling. Then, the spleen of channel catfish infected with A. veronii was analyzed by dual RNA sequencing (RNA-seq), and the transcriptome data were compared with uninfected channel catfish spleen or bacteria cultured in vitro. The transcript expression profile of pathogen-host interaction between A. veronii and channel catfish was successfully studied. During infection, the host was enriched for multiple immune-related signaling pathways, such as the Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and T cell receptor signaling pathway; and significantly upregulated for many innate immune-related genes, including IL-8. At the same time, we found that A. veronii mainly harmed the host spleen through hemolysin. Our current findings are of great significance in clarifying the pathogenesis of channel catfish induced by A. veronii and provide gene targets for developing preventive measures.
Collapse
Affiliation(s)
- Gaixiao Qin
- College of Animal Science and Technology, Henan university of animal husbandry and Economy, Zhengzhou 450046, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jin Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|