1
|
Stoljar A, Zarodniuk M, Bichele R, Armulik EH, Haljasorg U, Humeau R, Besnard M, Haljasmägi L, Tserel L, Peltser M, Salumets A, Kekäläinen E, Kisand K, Guillonneau C, Laan M, Peterson P. Impaired Aire-dependent IFN signaling in the thymus precedes the protective autoantibodies to IFNα. J Exp Med 2025; 222:e20241403. [PMID: 40304722 PMCID: PMC12042843 DOI: 10.1084/jem.20241403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/28/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Recent studies have highlighted the role of the thymus in maintaining immune tolerance to type 1 interferons (T1 IFNs). Individuals with thymic abnormalities, such as autoimmune regulator (AIRE) gene mutations, frequently develop neutralizing autoantibodies to interferon-alpha (IFNα). Unlike mice, Aire-deficient rats develop robust autoantibodies to IFNα. Using this rat model, we show that Aire regulates the thymic expression of interferon-stimulated genes (ISGs), which occurs before developing anti-IFNα autoantibodies. In the periphery, we observed a widespread downregulation of ISGs across immune cells and reduced activation of natural killer (NK) cells. Furthermore, the presence of anti-IFNα autoantibodies correlated with reduced peripheral tissue inflammation, suggesting their role in dampening T1 IFN signaling and minimizing tissue infiltration. Our findings reveal that Aire-mediated regulation of thymic T1 IFN signaling is linked to the production of protective anti-IFNα autoantibodies, which inversely correlate with autoimmune pathology in peripheral tissues.
Collapse
Affiliation(s)
- Artur Stoljar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maksym Zarodniuk
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rudolf Bichele
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Elise Helene Armulik
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Uku Haljasorg
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Romain Humeau
- Nantes University, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, CNRS, Nantes, France
| | - Marine Besnard
- Nantes University, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, CNRS, Nantes, France
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liina Tserel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Merili Peltser
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ahto Salumets
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carole Guillonneau
- Nantes University, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, CNRS, Nantes, France
| | - Martti Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Pandey AC, Bezney J, DeAscanis D, Kirsch EB, Ahmed F, Crinklaw A, Choudhary KS, Mandala T, Deason J, Hamidi JS, Siddique A, Ranganathan S, Brown K, Armstrong J, Head S, Ordoukhanian P, Steinmetz LM, Topol EJ. A CRISPR/Cas9-based enhancement of high-throughput single-cell transcriptomics. Nat Commun 2025; 16:4664. [PMID: 40389438 DOI: 10.1038/s41467-025-59880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 05/03/2025] [Indexed: 05/21/2025] Open
Abstract
Single-cell RNA-seq (scRNAseq) struggles to capture the cellular heterogeneity of transcripts within individual cells due to the prevalence of highly abundant and ubiquitous transcripts, which can obscure the detection of biologically distinct transcripts expressed up to several orders of magnitude lower levels. To address this challenge, here we introduce single-cell CRISPRclean (scCLEAN), a molecular method that globally recomposes scRNAseq libraries, providing a benefit that cannot be recapitulated with deeper sequencing. scCLEAN utilizes the programmability of CRISPR/Cas9 to target and remove less than 1% of the transcriptome while redistributing approximately half of reads, shifting the focus toward less abundant transcripts. We experimentally apply scCLEAN to both heterogeneous immune cells and homogenous vascular smooth muscle cells to demonstrate its ability to uncover biological signatures in different biological contexts. We further emphasize scCLEAN's versatility by applying it to a third-generation sequencing method, single-cell MAS-Seq, to increase transcript-level detection and discovery. Here we show the possible utility of scCLEAN across a wide array of human tissues and cell types, indicating which contexts this technology proves beneficial and those in which its application is not advisable.
Collapse
Affiliation(s)
- Amitabh C Pandey
- Section of Cardiology, Tulane Heart and Vascular Institute, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
- Department of Molecular Medicine, Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA, USA.
| | - Jon Bezney
- Genomics Core Facility, The Scripps Research Institute, La Jolla, CA, USA
- Jumpcode Genomics, San Diego, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ethan B Kirsch
- Department of Molecular Medicine, Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Farin Ahmed
- Genomics Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Tony Mandala
- Genomics Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Jasmin S Hamidi
- Department of Molecular Medicine, Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | - Steven Head
- Genomics Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Lars M Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Eric J Topol
- Department of Molecular Medicine, Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
3
|
Lei I, Sicim H, Gao W, Huang W, Noly PE, Pergande MR, Wilson MC, Lee A, Liu L, Abou El Ela A, Jiang M, Saddoughi SA, Pober JS, Platt JL, Cascalho M, Pagani FD, Chen YE, Pitt B, Wang Z, Mortensen RM, Ge Y, Tang PC. Mineralocorticoid receptor phase separation modulates cardiac preservation. NATURE CARDIOVASCULAR RESEARCH 2025:10.1038/s44161-025-00653-x. [PMID: 40389663 DOI: 10.1038/s44161-025-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/11/2025] [Indexed: 05/21/2025]
Abstract
Heart transplantation is the gold standard treatment for patients with end-stage heart failure. However, there is a shortage of donor hearts available. The short tolerable cold ischemic time for delivering donor hearts to matching recipients is closely responsible for this shortage. Here we uncover the phenomenon of mineralocorticoid receptor (MR) phase separation, which exacerbates injury to the murine and human donor heart during cold storage and can be modulated with pharmacological inhibition to improve preservation quality. Interestingly, donor cardiomyocytes strongly expressed MR, which undergoes preservation-related phase separation. The phenomenon of macromolecular phase separation is not limited to the heart or MR during preservation. Cold preservation of the lung, liver and kidney also displays phase separation of other transcriptional regulators including histone deacetylase 1 (HDAC1), bromodomain-containing 4 (BRD4) and MR. Our results reveal an understudied area of preservation biology that may be further exploited to improve the preservation of multiple solid organs.
Collapse
Grants
- HL164416 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL166140 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL159871 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL134569 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL109946 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163672 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL139735 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL109810 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 930124 American Heart Association (American Heart Association, Inc.)
- GM135119 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U01-AI132895 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- AI151588 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- AI173950 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
Collapse
Affiliation(s)
- Ienglam Lei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, USA
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Hüseyin Sicim
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Wenbin Gao
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Wei Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Melissa R Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Mallory C Wilson
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Aurora Lee
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Liu Liu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ashraf Abou El Ela
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Mulan Jiang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sahar A Saddoughi
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Jordan S Pober
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Jeffrey L Platt
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bertram Pitt
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhong Wang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology, Internal Medicine, Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Paul C Tang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, USA.
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA.
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA.
| |
Collapse
|
4
|
Zhang Z, Cai X, Liang J, Liu J, Guo J, Yang W, Wang X, Wu J. Time-resolved single-cell atlas identifies the spatiotemporal transcription dynamics in vernalization response in Brassica rapa. Cell Rep 2025; 44:115725. [PMID: 40378040 DOI: 10.1016/j.celrep.2025.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/06/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
Many temperate plants require vernalization, a prolonged low-temperature period, to accelerate flowering. Vernalization is a quantitative process whereby extended cold exposure establishes a stable transcriptional repression, with the degree of silencing correlating with the length of cold treatment. While much is known about the genes regulating this process, the expression dynamics at the single-cell level remain elusive. Using single-cell RNA sequencing, we analyze the vernalization response in Brassica rapa. Our data show that mesophyll cells exhibit the most significant changes in gene expression at low temperatures, whereas vasculature exhibits higher expression levels of flowering-related genes. Mesophyll trajectory analyses suggest that B. rapa plants undergo a biphasic response to chill stress during vernalization. Tissue-wide BrFLC expression changes result from variations in the proportion of expressing cells, supporting the quantitative nature of vernalization through digital cell responses. This study provides valuable resources and insights into the spatiotemporal regulation of flowering during vernalization.
Collapse
Affiliation(s)
- Zhicheng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xu Cai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiahe Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Guo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Aisenberg WH, O'Brien CA, Sangster M, Yaqoob F, Zhang Y, Temsamrit B, Thom S, Gosse L, Chaluvadi S, Elfayomi B, Lee G, Polam V, Levitt EM, Liu G, Lombroso SI, Nemec KM, Clowry G, Nieves C, Rawat P, Church E, Martinez D, Shoffler C, Kancheva D, Petucci C, Taylor D, Kofler J, Erskine D, Movahedi K, Bennett ML, Bennett FC. Direct microglia replacement reveals pathologic and therapeutic contributions of brain macrophages to a monogenic neurological disease. Immunity 2025; 58:1254-1268.e9. [PMID: 40311614 PMCID: PMC12078009 DOI: 10.1016/j.immuni.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/20/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025]
Abstract
Krabbe disease, also named globoid cell (GC) leukodystrophy (GLD) for its distinct lipid-laden macrophages, is a severe leukodystrophy caused by galactosylceramidase (GALC) mutations. Hematopoietic stem cell transplant (HSCT) ameliorates disease and is associated with central nervous system (CNS) engraftment of GALC+ donor macrophages. Yet, the role of macrophages in GLD pathophysiology and HSCT remains unclear. Using single-cell sequencing, we revealed early interferon response signatures that preceded progressively severe macrophage dyshomeostasis and identified a molecular signature of GCs, which we validated in human brain specimens. Genetic depletion and direct microglia replacement by CNS monocyte injection rapidly replaced >80% of endogenous microglia with healthy macrophages in the twitcher (GalcW355∗) mouse model of GLD. Perinatal microglia replacement completely normalized transcriptional signatures, rescued histopathology, and doubled average survival. Overall, we uncovered distinct forms of microglial dysfunction and evidence that direct, CNS-limited microglia replacement improves a monogenic neurodegenerative disease, identifying a promising therapeutic target.
Collapse
Affiliation(s)
- William H Aisenberg
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison Sangster
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuanchao Zhang
- Department of Biomedical Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian Temsamrit
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Searlait Thom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luca Gosse
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sai Chaluvadi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bilal Elfayomi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gavin Lee
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vidhur Polam
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eli M Levitt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary Liu
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gavin Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Cassaundra Nieves
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Priyanka Rawat
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily Church
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Martinez
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Clarissa Shoffler
- Penn Metabolomics Core, Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daliya Kancheva
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christopher Petucci
- Penn Metabolomics Core, Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deanne Taylor
- Department of Biomedical Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Julia Kofler
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Gharibi B, Inge OCK, Rodriguez-Hernandez I, Driscoll PC, Dubois C, Jiang M, Howell M, Skehel JM, Macrae JI, Santos SDM. Post-gastrulation amnioids as a stem cell-derived model of human extra-embryonic development. Cell 2025:S0092-8674(25)00458-1. [PMID: 40378847 DOI: 10.1016/j.cell.2025.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/25/2025] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
The amnion, an extra-embryonic tissue in mammalian embryos, is thought to provide crucial signaling, structural, and nutritional support during pregnancy. Despite its pivotal importance, studying human amnion formation and function has been hampered by the lack of accurate in vitro models. Here, we present an embryonic stem cell-derived 3D model of the post-gastrulation amnion, post-gastrulation amnioids (PGAs), that faithfully recapitulates extra-embryonic development up to 4 weeks post-fertilization, closely mimicking the functional traits of the human amniotic sac. PGAs self-organize, forming the amnion and the yolk sac, and are surrounded by the extra-embryonic mesoderm. Using PGAs, we show that GATA3 is required and sufficient for amniogenesis and that an autoregulatory feedback loop governs amnion formation, whereby extra-embryonic signals promote amnion specification. The reproducibility and scalability of the PGA system, with its precise cellular, structural, and functional integrity, opens avenues for investigating embryo-amnion interactions beyond gastrulation and offers an ideal platform for large-scale pharmacological and clinical studies.
Collapse
Affiliation(s)
- Borzo Gharibi
- Quantitative Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Oliver C K Inge
- Quantitative Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Paul C Driscoll
- Metabolomics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Ming Jiang
- High-throughput Screening, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael Howell
- High-throughput Screening, The Francis Crick Institute, London NW1 1AT, UK
| | - J Mark Skehel
- Proteomics, The Francis Crick Institute, London NW1 1AT, UK
| | - James I Macrae
- Metabolomics, The Francis Crick Institute, London NW1 1AT, UK
| | - Silvia D M Santos
- Quantitative Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
7
|
Griffiths JI, Chi F, Farmaki E, Medina EF, Cosgrove PA, Karimi KL, Chen J, Grolmusz VK, Adler FR, Khan QJ, Nath A, Chang JT, Bild AH. Blocking cancer-fibroblast mutualism inhibits proliferation of endocrine therapy resistant breast cancer. Mol Syst Biol 2025:10.1038/s44320-025-00104-6. [PMID: 40341770 DOI: 10.1038/s44320-025-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF β signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells.
Collapse
Affiliation(s)
- Jason I Griffiths
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Feng Chi
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Elena Farmaki
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Eric F Medina
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Kimya L Karimi
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jinfeng Chen
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Vince K Grolmusz
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Qamar J Khan
- Division of Medical Oncology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
8
|
Mohammed A, Wang W, Arreola M, Solomon BD, Slepicka PF, Hubka KM, Nguyen HD, Zheng Z, Chavez MG, Yeh CY, Kim DK, Ma MR, Martin E, Li L, Pasca AM, Winn VD, Gifford CA, Kedlian VR, Park JE, Khatri P, Hollander GA, Roncarolo MG, Sebastiano V, Teichmann SA, Gentles AJ, Weinacht KG. Distinct type I and II interferon responses direct cortical and medullary thymic epithelial cell development. Sci Immunol 2025; 10:eado4720. [PMID: 40315299 DOI: 10.1126/sciimmunol.ado4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
Advances in genomics have redefined our understanding of thymic epithelial heterogeneity and architecture, yet signals driving thymic epithelial differentiation remain incompletely understood. Here, we elucidated pathways instructing human thymic epithelial cell development in the context of other anterior foregut-derived organs. Activation of interferon response gene regulatory networks distinguished epithelial cells of the thymus from those of other anterior foregut-derived organs. Thymic cortex and medulla epithelia displayed distinctive interferon-responsive signatures defined by lineage-specific chromatin accessibility. We explored the effects of type I and II interferons on thymic epithelial progenitor differentiation from induced pluripotent stem cells. Type II interferon was essential for expressing proteasome and antigen-presenting molecules, whereas type I or II interferons were essential for inducing different cytokines in thymic epithelial progenitor cells. Our findings suggest that interferons are critical to cortical and medullary thymic epithelial cell differentiation.
Collapse
Affiliation(s)
- Abdulvasey Mohammed
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Wenqing Wang
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Martin Arreola
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Benjamin D Solomon
- Department of Pediatrics, Division of Allergy and Immunology, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Priscila F Slepicka
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Kelsea M Hubka
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Hanh Dan Nguyen
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Zihao Zheng
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Michael G Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Christine Y Yeh
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michael R Ma
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiac Surgery, Stanford University, Stanford, CA 94304, USA
| | - Elisabeth Martin
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiac Surgery, Stanford University, Stanford, CA 94304, USA
| | - Li Li
- Department of Pediatrics, Division of Neonatology, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Anca M Pasca
- Department of Pediatrics, Division of Neonatology, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Casey A Gifford
- Department of Pediatrics, Division of Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | | | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94304, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305, USA
| | - Georg A Hollander
- Department of Pediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Biosystems and Engineering, ETH Zurich, Zurich, Switzerland
- Botnar Institute of Immune Engineering, Basel, Switzerland
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Sarah A Teichmann
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- CIFAR Macmillan Multi-scale Human Programme, CIFAR, Toronto, Canada
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Katja G Weinacht
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
9
|
Hugaboom MB, Wirth LV, Street K, Ruthen N, Jegede OA, Schindler NR, Shah V, Zaemes JP, Ahmar NE, Matar S, Savla V, Choueiri TK, Denize T, West DJ, McDermott DF, Plimack ER, Sosman JA, Haas NB, Stein MN, Alter R, Bilen MA, Hurwitz ME, Hammers H, Signoretti S, Atkins MB, Wu CJ, Braun DA. Presence of Tertiary Lymphoid Structures and Exhausted Tissue-Resident T Cells Determines Clinical Response to PD-1 Blockade in Renal Cell Carcinoma. Cancer Discov 2025; 15:948-968. [PMID: 39992403 PMCID: PMC12048281 DOI: 10.1158/2159-8290.cd-24-0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/08/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
SIGNIFICANCE We describe a paradigm wherein combined high TLS and low tissue-resident exhausted CD8+ T cells are required for optimal response to PD-1 blockade in RCC. This analysis identifies key determinants of response to PD-1 blockade in advanced RCC and suggests avenues for future immune modulation through rational combination therapy strategies.
Collapse
Affiliation(s)
- Miya B. Hugaboom
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Lena V. Wirth
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Street
- Division of Biostatistics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Neil Ruthen
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Opeyemi A. Jegede
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Valisha Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacob P. Zaemes
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Nourhan El Ahmar
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sayed Matar
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Varunika Savla
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas Denize
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Destiny J. West
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - David F. McDermott
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Jeffrey A. Sosman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Naomi B. Haas
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark N. Stein
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Robert Alter
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael E. Hurwitz
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Hans Hammers
- Department of Internal Medicine, Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael B. Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A. Braun
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Merle C, Rodrigues C, Pourkhalili Langeroudi A, Journot R, Rost F, Dang Y, Rulands S, Fre S. Transcriptional landscapes underlying Notch-induced lineage conversion and plasticity of mammary basal cells. EMBO J 2025; 44:2827-2855. [PMID: 40186028 DOI: 10.1038/s44318-025-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
The mammary epithelium derives from multipotent mammary stem cells (MaSCs) that engage into differentiation during embryonic development. However, adult MaSCs maintain the ability to reactivate multipotency in non-physiological contexts. We previously reported that Notch1 activation in committed basal cells triggers a basal-to-luminal cell fate switch in the mouse mammary gland. Here, we report conservation of this mechanism and found that in addition to the mammary gland, constitutive Notch1 signaling induces a basal-to-luminal cell fate switch in adult cells of the lacrimal gland, the salivary gland, and the prostate. Since the lineage transition is progressive in time, we performed single-cell transcriptomic analysis on index-sorted mammary cells at different stages of lineage conversion, generating a temporal map of changes in cell identity. Combining single-cell analyses with organoid assays, we demonstrate that cell proliferation is indispensable for this lineage conversion. We also reveal the individual transcriptional landscapes underlying the cellular plasticity switching of committed mammary cells in vivo with spatial and temporal resolution. Given the roles of Notch signaling in cancer, these results may help to better understand the mechanisms that drive cellular transformation.
Collapse
Affiliation(s)
- Candice Merle
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France
| | - Calvin Rodrigues
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France
| | - Atefeh Pourkhalili Langeroudi
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France
| | - Robin Journot
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France
| | - Fabian Rost
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yiteng Dang
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology, Dresden, Germany
| | - Steffen Rulands
- Ludwig-Maximilians-Universität München, Arnold-Sommerfeld-Center for Theoretical Physics, München, Germany
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France.
| |
Collapse
|
11
|
Slenders L, Wesseling M, Wei S, Boltjes A, Kapteijn DMC, van de Kraak P, Depuydt MAC, Prange KHM, van den Dungen NAM, Benavente ED, de Kleijn DPV, de Borst GJ, de Winther MPJ, den Ruijter HM, Owens GK, Pasterkamp G, Mokry M. Endothelial-to-mesenchymal transition gene signature derived from single-cell transcriptomics of human atherosclerotic tissue associates with stable plaque histological characteristics. Vascul Pharmacol 2025; 159:107498. [PMID: 40318741 DOI: 10.1016/j.vph.2025.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Endothelial cells within atherosclerotic plaques can differentiate into a mesenchymal-like phenotype through endothelial-to-mesenchymal transition (EndoMT). Our understanding of the molecular mechanisms underlying EndoMT in human atherosclerosis remains limited. Current gene expression signatures are often derived from in vitro experiments or animal studies and typically reflect genes upregulated in fully differentiated mesenchymal cell states, while genes upregulated during the process are omitted. To address this knowledge gap, we utilized in silico lineage tracing in single-cell transcriptomic (scRNA-seq) data from human plaque tissues to identify the EndoMT gene expression signature. METHODS AND RESULTS We constructed three candidate EndoMT lineages across subpopulations of ECs and SMCs in human carotid scRNA-seq data (n = 46). We examined gene expression over the course of these lineages and identified a core signature of 73 genes upregulated in EndoMT. Upregulation of those genes was confirmed in EndoMT trajectories of other human datasets derived from plaque tissue and in Cdh5-CreERT2 Rosa-eYFP apoE-/- lineage-traced mice. Analysis of human carotid plaque bulk RNA-seq data (632 patients) found the association of core gene signature with fibrous and more stable histological phenotypes. CONCLUSION This study defines the core gene signature of EndoMT in human atherosclerotic plaques, which can serve as a reference for future studies and gene set enrichment analysis.
Collapse
Affiliation(s)
- Lotte Slenders
- Central Diagnostics Laboratory, Department of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Marian Wesseling
- Central Diagnostics Laboratory, Department of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Siting Wei
- Central Diagnostics Laboratory, Department of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Arjan Boltjes
- Central Diagnostics Laboratory, Department of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Daniek M C Kapteijn
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Petra van de Kraak
- Pathology department, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Leiden, the Netherlands
| | - Koen H M Prange
- Amsterdam University Medical Centers - location AMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Noortje A M van den Dungen
- Central Diagnostics Laboratory, Department of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Ernest D Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Menno P J de Winther
- Amsterdam University Medical Centers - location AMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, USA
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Department of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands.
| | - Michal Mokry
- Central Diagnostics Laboratory, Department of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Azami T, Theeuwes B, Nu Ton ML, Mansfield W, Harland L, Kinoshita M, Gottgens B, Nichols J. STAT3 signaling enhances tissue expansion during postimplantation mouse development. Cell Rep 2025; 44:115506. [PMID: 40188437 DOI: 10.1016/j.celrep.2025.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/08/2025] Open
Abstract
Signal transducer and activator of transcription (STAT)3 signaling has been studied extensively using mouse embryonic stem cells. Zygotic deletion of Stat3 enables embryo implantation, but thereafter, mutants resemble non-affected littermates from the previous day until around mid-gestation. This probably results from the loss of serine-phosphorylated STAT3, the predominant form in early postimplantation embryonic tissues associated with mitochondrial activity. Bulk RNA sequencing of isolated mouse epiblasts confirmed developmental delay transcriptionally. Single-cell RNA sequencing revealed the exclusion of derivatives of Stat3 null embryonic stem cells exclusively from the erythroid lineage of mid-gestation chimeras. We show that Stat3 null embryonic stem cells can differentiate into erythroid and hematopoietic lineages in vitro but become outcompeted when mixed with wild-type cells. Our results implicate a role for STAT3 in the temporal control of embryonic progression, particularly in tissues requiring rapid cell division, such as postimplantation epiblast and hematopoietic lineages. Interestingly, mutations in STAT3 are associated with short stature in humans.
Collapse
Affiliation(s)
- Takuya Azami
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Bart Theeuwes
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Mai-Linh Nu Ton
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - William Mansfield
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Luke Harland
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Masaki Kinoshita
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Berthold Gottgens
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Vukašinović N, Hsu CW, Marconi M, Li S, Zachary C, Shahan R, Szekley P, Aardening Z, Vanhoutte I, Ma Q, Pinto L, Krupař P, German N, Zhang J, Simon-Vezo C, Perez-Sancho J, Quijada PC, Zhou Q, Lee LR, Cai J, Bayer EM, Fendrych M, Truernit E, Zhou Y, Savaldi-Goldstein S, Wabnik K, Nolan TM, Russinova E. Polarity-guided uneven mitotic divisions control brassinosteroid activity in proliferating plant root cells. Cell 2025; 188:2063-2080.e24. [PMID: 40068682 DOI: 10.1016/j.cell.2025.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 04/20/2025]
Abstract
Brassinosteroid hormones are positive regulators of plant organ growth, yet their function in proliferating tissues remains unclear. Here, through integrating single-cell RNA sequencing with long-term live-cell imaging of the Arabidopsis root, we reveal that brassinosteroid activity fluctuates throughout the cell cycle, decreasing during mitotic divisions and increasing during the G1 phase. The post-mitotic recovery of brassinosteroid activity is driven by the intrinsic polarity of the mother cell, resulting in one daughter cell with enhanced brassinosteroid signaling, while the other supports brassinosteroid biosynthesis. The coexistence of these distinct daughter cell states during the G1 phase circumvents a negative feedback loop to facilitate brassinosteroid production while signaling increases. Our findings uncover polarity-guided, uneven mitotic divisions in the meristem, which control brassinosteroid hormone activity to ensure optimal root growth.
Collapse
Affiliation(s)
- Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Marco Marconi
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Shaopeng Li
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Christopher Zachary
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Rachel Shahan
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pablo Szekley
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Ziv Aardening
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Lucrezia Pinto
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Pavel Krupař
- Department of Experimental Plant Biology, Charles University, Prague 12844, Czech Republic; Institute of Experimental Botany of the Czech Academy of Sciences, Prague 16502, Czech Republic
| | - Nathan German
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | | | - Claire Simon-Vezo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Jessica Perez-Sancho
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Pepe Cana Quijada
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Qianzi Zhou
- Department of Biology, Duke University, Durham, NC, USA
| | - Laura R Lee
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Jianghua Cai
- Key Laboratory of Plant Hormone Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague 12844, Czech Republic; Institute of Experimental Botany of the Czech Academy of Sciences, Prague 16502, Czech Republic
| | - Elisabeth Truernit
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | | | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid 28040, Spain
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium.
| |
Collapse
|
14
|
Blaszczyk GJ, Piscopo VEC, Goldsmith TM, Chapleau A, Sirois J, Bernard G, Antel JP, Durcan TM. Single cell RNAseq to identify subpopulations of glial progenitors in iPSC-derived oligodendroglial lineage cultures. NPJ Syst Biol Appl 2025; 11:35. [PMID: 40234453 PMCID: PMC12000351 DOI: 10.1038/s41540-025-00515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Cellular heterogeneity is a common issue in differentiation protocols of oligodendrocytes (OLs) from human induced pluripotent stem cells. Our previous work described a novel method to generate OLs and highlighted the presence of glial progenitors. Here, we unravel the glial heterogeneity and characterize the response of isolated subpopulations to differentiation. This study provides a novel tool for studying the dynamics of glial development in vitro and on a transcriptomic level.
Collapse
Affiliation(s)
- Gabriela J Blaszczyk
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada, QC
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada, QC
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada, QC
| | - Valerio E C Piscopo
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada, QC
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada, QC
| | - Taylor M Goldsmith
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada, QC
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada, QC
| | - Alexandra Chapleau
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada, QC
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada, QC
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada, QC
| | - Julien Sirois
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada, QC
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada, QC
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada, QC
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada, QC
- Department of Pediatrics and Human Genetics, McGill University, Montreal, Canada, QC
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada, QC
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada, QC
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada, QC
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada, QC.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada, QC.
| |
Collapse
|
15
|
Nitz A, Giraldez Chavez JH, Eliason ZG, Payne SH. Are We There Yet? Assessing the Readiness of Single-Cell Proteomics to Answer Biological Hypotheses. J Proteome Res 2025; 24:1482-1492. [PMID: 38981598 PMCID: PMC11976870 DOI: 10.1021/acs.jproteome.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Single-cell analysis is an active area of research in many fields of biology. Measurements at single-cell resolution allow researchers to study diverse populations without losing biologically meaningful information to sample averages. Many technologies have been used to study single cells, including mass spectrometry-based single-cell proteomics (SCP). SCP has seen a lot of growth over the past couple of years through improvements in data acquisition and analysis, leading to greater proteomic depth. Because method development has been the main focus in SCP, biological applications have been sprinkled in only as proof-of-concept. However, SCP methods now provide significant coverage of the proteome and have been implemented in many laboratories. Thus, a primary question to address in our community is whether the current state of technology is ready for widespread adoption for biological inquiry. In this Perspective, we examine the potential for SCP in three thematic areas of biological investigation: cell annotation, developmental trajectories, and spatial mapping. We identify that the primary limitation of SCP is sample throughput. As proteome depth has been the primary target for method development to date, we advocate for a change in focus to facilitate measuring tens of thousands of single-cell proteomes to enable biological applications beyond proof-of-concept.
Collapse
Affiliation(s)
- Alyssa
A. Nitz
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| | | | - Zachary G. Eliason
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel H. Payne
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
16
|
Hadizadeh M, Askari N, Jafarinejad-Farsangi S. A single-cell approach to analyzing vascular endothelial cell contributions in VEGF-driven angiogenesis and LINC02313 in gastric cancer. Comput Biol Chem 2025; 115:108361. [PMID: 39914073 DOI: 10.1016/j.compbiolchem.2025.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Gastric cancer (GC) heterogeneity and lack of suitable molecular markers remain major challenges for this disease. The critical role of long non-coding RNAs (lncRNAs) in cancer biological processes has been increasingly recognized. A novel lncRNA, LINC02313, was identified in GC in this study, and its function was examined bioinformatically. The differential expression of LINC02313 was examined, and its target genes were predicted using RNA-Seq data from TCGA. LINC02313 showed correlation with 272 significant DEGs in GC. The analysis of single-cell transcriptomes revealed 11 unique clusters of cell types, but vascular endothelial cells have the most targets (30 genes). Receiver Operating Characteristic (ROC) analysis illustrated the diagnostic capabilities of LINC02313 and its targets across most cellular clusters, achieving the highest levels of accuracy. Functionally related signaling pathways were classified through cell-cell communication analysis; in the tumorous state, emphasizing the more prominent role of vascular endothelial cells in the Vascular Endothelial Growth Factor (VEGF) signaling pathway compared to the normal state. Trajectory analysis showed vascular endothelial cells are at the start of pseudotime in a normal state, but in a tumorous state, they shift to the middle of pseudotime. The results of this study highlight the critical role of endothelial cells in the advancement of GC and propose novel therapeutic approaches that focus on modulating angiogenic signaling pathways and lncRNA function to enhance treatment efficacy.
Collapse
Affiliation(s)
- Morteza Hadizadeh
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | | |
Collapse
|
17
|
He W, Luo Q, Zhao J, Wang M, Zhao A, Feng L, Reda A, Lindgren E, Stukenborg J, Chen J, Deng Q. X-Linked Gene Dosage and SOX2 Act as Key Roadblocks for Human Germ Cell Specification in Klinefelter Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410533. [PMID: 39996497 PMCID: PMC12005746 DOI: 10.1002/advs.202410533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Klinefelter syndrome (KS), characterized by the presence of at least one extra X-chromosome, is a common cause of male infertility. However, the mechanism underlying the failure of germline specification is not well studied. Intriguingly, the differentiation efficiency of female human pluripotent stem cells (hPSCs) is often lower than that of male. This study investigates how X-linked gene dosage affects human primordial germ cell-like cells (hPGCLCs) specification in both healthy and diseased conditions. This work reveals that X-linked genes play a multifaceted role against the fate competency to hPGCLCs, with escape genes IGSF1 and CHRDL1 inhibiting the TGF-beta/Activin A and BMP pathways, respectively. Notably, this work identifies a previously unrecognized role of SOX2, upregulated by the escape gene USP9X, elucidating a species-specific function in the mammalian germline. The USP9X-SOX2 regulatory axis profoundly influenced cellular metabolism, mitochondrial morphology, and progenitor competence in hPGCLCs specification. Furthermore, the inability to downregulate SOX2 and upregulate SOX17 in response to BMP signaling impedes downstream gene activation due to motif binding competition. These findings shed novel insights into the human germline specification by elucidating the divergent roles of SOX2 versus SOX17 in mammals, influenced by X-linked gene dosage effects. These results offer potential applications for improving the induction efficiency of hPGCLCs, facilitating disease mechanistic studies.
Collapse
Affiliation(s)
- Wenteng He
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Qing Luo
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Jian Zhao
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Department of Oncology‐PathologyKarolinska InstitutetStockholm171 77Sweden
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Allan Zhao
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Luohua Feng
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Ahmed Reda
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Eva Lindgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Jan‐Bernd Stukenborg
- NORDFERTIL Research Lab StockholmChildhood Cancer Research UnitDepartment of Women's and Children's HealthKarolinska InstitutetKarolinska University HospitalStockholm17 165Sweden
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
- Frontier Science Center for Stem Cell ResearchTongji UniversityShanghai200092China
| | - Qiaolin Deng
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UnviersityStockholm11418Sweden
| |
Collapse
|
18
|
May A, Röper K. Single-cell analysis of the early Drosophila salivary gland reveals that morphogenetic control involves both the induction and exclusion of gene expression programs. PLoS Biol 2025; 23:e3003133. [PMID: 40258079 PMCID: PMC12043239 DOI: 10.1371/journal.pbio.3003133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 04/30/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
How tissue shape and therefore function is encoded by the genome remains in many cases unresolved. The tubes of the salivary glands in the Drosophila embryo start from simple epithelial placodes, specified through the homeotic factors Scr/Hth/Exd. Previous work indicated that early morphogenetic changes are prepatterned by transcriptional changes, but an exhaustive transcriptional blueprint driving physical changes was lacking. We performed single-cell-RNAseq-analysis of FACS-isolated early placodal cells, making up less than 0.4% of cells within the embryo. Differential expression analysis in comparison to epidermal cells analyzed in parallel generated a repertoire of genes highly upregulated within placodal cells prior to morphogenetic changes. Furthermore, clustering and pseudotime analysis of single-cell-sequencing data identified dynamic expression changes along the morphogenetic timeline. Our dataset provides a comprehensive resource for future studies of a simple but highly conserved morphogenetic process of tube morphogenesis. Unexpectedly, we identified a subset of genes that, although initially expressed in the very early placode, then became selectively excluded from the placode but not the surrounding epidermis, including hth, grainyhead and tollo/toll-8. We show that maintaining tollo expression severely compromised the tube morphogenesis. We propose tollo is switched off to not interfere with key Tolls/LRRs that are expressed and function in the tube morphogenesis.
Collapse
Affiliation(s)
- Annabel May
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
19
|
Tang Z, Bai Y, Fang Q, Yuan Y, Zeng Q, Chen S, Xu T, Chen J, Tan L, Wang C, Li Q, Lin J, Yang Z, Wu X, Shi G, Wang J, Yin C, Guo J, Liu S, Peng S, Kuang M. Spatial transcriptomics reveals tryptophan metabolism restricting maturation of intratumoral tertiary lymphoid structures. Cancer Cell 2025:S1535-6108(25)00112-6. [PMID: 40185093 DOI: 10.1016/j.ccell.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/22/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates found in numerous cancers, often linked to enhanced immunotherapy responses and better clinical outcomes. However, the factors driving TLS maturation are not fully understood. Using near single-cell spatial transcriptomic mapping, we comprehensively profile TLSs under various maturation stages and their microenvironment in hepatocellular carcinoma (HCC). Based on their developmental trajectories, we classify immature TLSs into two groups: conforming and deviating TLSs. Our findings indicate that conforming TLSs, similar to mature TLSs, possess a niche function for immunotherapy responses, while deviating TLSs do not. We discover that the tryptophan-enriched metabolic microenvironment shaped by malignant cells contributes to the deviation of TLS maturation. Inhibiting tryptophan metabolism promotes intratumoral TLS maturation and enhances tumor control, synergizing with anti-PD-1 treatments. Therefore, promoting TLS maturation represents a potential strategy to improve antitumor responses and immunotherapy outcomes.
Collapse
Affiliation(s)
- Zhonghui Tang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yinqi Bai
- BGI Research, Sanya 572025, China; BGI Research, Hangzhou 310030, China
| | - Qi Fang
- BGI Research, Hangzhou 310030, China
| | - Yuchen Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qianwen Zeng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuling Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tianyi Xu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianyu Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li Tan
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunqing Wang
- BGI Research, Chongqing 401329, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- BGI Research, Sanya 572025, China; BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpei Lin
- BGI Research, Sanya 572025, China; BGI Research, Hangzhou 310030, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Zhuoxuan Yang
- BGI Research, Sanya 572025, China; BGI Research, Hangzhou 310030, China
| | - Xia Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guowei Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changjun Yin
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; Shenzhen Bay Laboratory, Shenzhen 518000, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China; The Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou 510000, China.
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Clinical Trial Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
20
|
Llera-Oyola J, Pérez-Moraga R, Parras M, Rosón B. How to view the female reproductive tract through single-cell looking glasses. Am J Obstet Gynecol 2025; 232:S21-S43. [PMID: 40253081 DOI: 10.1016/j.ajog.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/04/2024] [Accepted: 08/24/2024] [Indexed: 04/21/2025]
Abstract
Single-cell technologies have emerged as an unprecedented tool for biologists and clinicians, allowing them to assess organs and tissues at the level of individual cells. In the field of women's reproductive biology, single-cell studies have provided insights into the cellular and molecular processes that regulate reproductive and obstetrical functions in health and disease. The knowledge that these studies generate is helping clinicians to improve the understanding and diagnosis of infertility related issues or pregnancy complications and to find new avenues for their treatment. However, navigating the expansive landscape of this type of transcriptomic data analysis represents a pivotal challenge in current research. Single cell RNA sequencing involves isolating cells into droplets, reverse transcribing RNA to generate complementary DNA, with each droplet content uniquely labeled by a barcode. Upon sequencing the complementary DNAs, the barcodes enable the reassignment of sequencing reads to individual droplets, facilitating the reconstruction of the cellular landscape of the sample obtained from a tissue or organ and beyond. Researchers, equipped with the metaphorical 'single-cell glasses,' must adequately choose from a plethora of strategies to dissect and interpret cellular information. Sophisticated algorithms and the decision-making process are often underestimated, resulting in artefactual or cumbersome interpreted results. Computational biologists apply and innovate computational tools designed to process, model, and interpret expansive datasets. The ramifications of their work extend far beyond the realm of data processing; they give shape to the outcome of analyses, playing a pivotal role in drawing meaningful conclusions from the wealth of information garnered. In this review, we describe the wide variety of approaches and analytical steps available with enough detail to gain a concise picture of what a complete examination of a single-cell dataset would be. We commence with a discussion on key points in experimental design, highlighting crucial questions one should consider. Following this, we delve into the various preprocessing and quality control steps essential for any single-cell dataset. The subsequent section offers a detailed guide on constructing a single-cell atlas, exploring nuances such as differential characteristics in visualization and clustering techniques, as well as strategies for assigning identity to cell populations through gene marker annotations. Moving beyond the creation of an atlas, we explore methods for investigating pathological conditions. This involves conducting cell population comparison tests between conditions and analyzing specific cell-to-cell communications and cellular differentiation trajectories in both health and disease scenarios. This work aims to furnish a newcomer researcher and/or clinician with essential guidelines to embark on a single-cell adventure without succumbing to common pitfalls. By bridging the gap between theory and practice, it facilitates the translation of single-cell technologies into clinically relevant applications. Throughout the manuscript, practical examples of its usage in women's reproductive health studies are provided. Various sections delve into specific clinical scenarios, demonstrating how these guidelines can be instrumental in unraveling the molecular landscapes of diseases and physiological processes related to women's reproduction.
Collapse
Affiliation(s)
- Jaime Llera-Oyola
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain
| | - Raúl Pérez-Moraga
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain; R&D Department, Igenomix, Valencia, Spain
| | - Marcos Parras
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain
| | - Beatriz Rosón
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain.
| |
Collapse
|
21
|
Troulé K, Petryszak R, Cakir B, Cranley J, Harasty A, Prete M, Tuong ZK, Teichmann SA, Garcia-Alonso L, Vento-Tormo R. CellPhoneDB v5: inferring cell-cell communication from single-cell multiomics data. Nat Protoc 2025:10.1038/s41596-024-01137-1. [PMID: 40133495 DOI: 10.1038/s41596-024-01137-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2024] [Indexed: 03/27/2025]
Abstract
Cell-cell communication is essential for tissue development, function and regeneration. The revolution of single-cell genomics technologies offers an unprecedented opportunity to uncover how cells communicate in vivo within their tissue niches and how disruption of these niches can lead to diseases and developmental abnormalities. CellPhoneDB is a bioinformatics toolkit designed to infer cell-cell communication by combining a curated repository of bona fide ligand-receptor interactions with methods to integrate these interactions with single-cell genomics data. Here we present a protocol for the latest version of CellPhoneDB (v5), offering several new features. First, the repository has been expanded by one-third with the addition of new interactions, including ~1,000 interactions mediated by nonpeptidic ligands such as steroidogenic hormones, neurotransmitters and small G-protein-coupled receptor (GPCR)-binding ligands. Second, we outline a new way of using the database that allows users to tailor queries to their experimental designs. Third, the update incorporates novel strategies to prioritize specific cell-cell interactions, leveraging information from other modalities such as tissue microenvironments derived from spatial transcriptomics technologies or transcription factor activities derived from a single-cell assay for transposase accessible chromatin assays. Finally, we describe the new CellPhoneDBViz module to interactively visualize and share results. Altogether, CellPhoneDB v5 enhances the precision of cell-cell communication inference, offering new insights into tissue biology in physiological microenvironments. This protocol typically takes ~15 min and requires basic knowledge of python.
Collapse
Affiliation(s)
| | | | | | | | - Alicia Harasty
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Cambridge, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Medicine and Cambridge Stem Cell Institute Clinical School, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
22
|
Fu MPY, Merrill SM, Korthauer K, Kobor MS. Examining cellular heterogeneity in human DNA methylation studies: Overview and recommendations. STAR Protoc 2025; 6:103638. [PMID: 39951379 PMCID: PMC11969412 DOI: 10.1016/j.xpro.2025.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Intersample cellular heterogeneity (ISCH) is one of the largest contributors to DNA methylation (DNAme) variability. It is imperative to account for ISCH to accurately interpret analysis results in epigenome-wide association studies. We compiled this primer based on the current literature to guide researchers through the process of estimating and accounting for ISCH in DNA methylation studies. This primer outlines the procedure of bioinformatic ISCH prediction, including using reference-based and reference-free algorithms. It then follows with descriptions of several methods to account for ISCH in downstream analyses, including robust linear regression and principal-component-analysis-based adjustments. Finally, we outlined three methods for estimating differential DNAme signals in a cell-type-specific manner. Throughout the primer, we provided statistical and biological justification for our recommendations, as well as R code examples for ease of implementation.
Collapse
Affiliation(s)
- Maggie Po-Yuan Fu
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Martin Merrill
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Pyschiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Keegan Korthauer
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Michael Steffen Kobor
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Singh A, Chia JJ, Rao DS, Hoffmann A. Population dynamics modeling reveals that myeloid bias involves both HSC differentiation and progenitor proliferation biases. Blood 2025; 145:1293-1308. [PMID: 39791596 PMCID: PMC11952015 DOI: 10.1182/blood.2024025598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Aging and chronic inflammation are associated with overabundant myeloid-primed multipotent progenitors (MPPs) among hematopoietic stem and progenitor cells (HSPCs). Although hematopoietic stem cell (HSC) differentiation bias has been considered a primary cause of myeloid bias, whether it is sufficient has not been quantitatively evaluated. Here, we analyzed bone marrow data from the IκB- (Nfkbia+/-Nfkbib-/-Nfkbie-/-) mouse model of inflammation with elevated NFκB activity, which reveals increased myeloid-biased MPPs. We interpreted these data with differential equation models of population dynamics to identify alterations of HSPC proliferation and differentiation rates. This analysis revealed that short-term HSC differentiation bias alone is likely insufficient to account for the increase in myeloid-biased MPPs. To explore additional mechanisms, we used single-cell RNA sequencing (scRNA-seq) measurements of IκB- and wild-type HSPCs to track the continuous differentiation trajectories from HSCs to erythrocyte/megakaryocyte, myeloid, and lymphoid primed progenitors. Fitting a partial differential equations model of population dynamics to these data revealed not only less lymphoid-fate specification among HSCs but also increased expansion of early myeloid-primed progenitors. Differentially expressed genes along the differentiation trajectories supported increased proliferation among these progenitors. These findings were conserved when wild-type HSPCs were transplanted into IκB- recipients, indicating that an inflamed bone marrow microenvironment is a sufficient driver. We then applied our analysis pipeline to scRNA-seq measurements of HSPCs isolated from aged mice and human patients with myeloid neoplasms. These analyses identified the same myeloid-primed progenitor expansion as in the IκB- models, suggesting that it is a common feature across different settings of myeloid bias.
Collapse
Affiliation(s)
- Apeksha Singh
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| | - Jennifer J. Chia
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA
| |
Collapse
|
24
|
Jeon EY, Kwak Y, Kang H, Kim H, Jin SY, Park S, Kim RG, Ko D, Won JK, Cho A, Jung I, Lee CH, Park J, Kim HY, Chae JH, Choi M. Inhibiting EZH2 complements steroid effects in Duchenne muscular dystrophy. SCIENCE ADVANCES 2025; 11:eadr4443. [PMID: 40085707 PMCID: PMC11908487 DOI: 10.1126/sciadv.adr4443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked disorder caused by dystrophin gene mutations. Despite recent advances in understanding the disease etiology and applying emerging treatment methodologies, glucocorticoid derivatives remain the only general therapeutic option that can slow disease development. However, the precise molecular mechanism of glucocorticoid action remains unclear, and there is still need for additional remedies to complement the treatment. Here, using single-nucleus RNA sequencing and spatial transcriptome analyses of human and mouse muscles, we investigated pathogenic features in patients with DMD and palliative effects of glucocorticoids. Our approach further illuminated the importance of proliferating satellite cells and revealed increased activity of a signal transduction pathway involving EZH2 in the patient cells. Subsequent administration of EZH2 inhibitors to Dmd mutant mice resulted in improved muscle phenotype through maintaining the immune-suppressing effect but overriding the muscle weakness and fibrogenic effects exerted by glucocorticoids. Our analysis reveals pathogenic mechanisms that can be readily targeted by extant therapeutic options for DMD.
Collapse
MESH Headings
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Animals
- Humans
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Mice
- Glucocorticoids/pharmacology
- Glucocorticoids/therapeutic use
- Male
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Disease Models, Animal
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/drug effects
- Signal Transduction/drug effects
- Steroids/pharmacology
Collapse
Affiliation(s)
- Eun Young Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yejin Kwak
- Department of Information Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Hyeji Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hanbyeol Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se Young Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Soojin Park
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ryeo Gyeong Kim
- Department of Pediatrics, Rare Disease Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Dayoung Ko
- Department of Pediatric Surgery, Seoul National University Children’s Hospital, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Anna Cho
- Department of Pediatrics, Rare Disease Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chul-Hwan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeongbin Park
- Department of Information Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Children’s Hospital, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Van den Berge K, Bakalar D, Chou HJ, Kunda D, Risso D, Street K, Purdom E, Dudoit S, Ngai J, Heavner W. A Latent Activated Olfactory Stem Cell State Revealed by Single-Cell Transcriptomic and Epigenomic Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.26.564041. [PMID: 37961539 PMCID: PMC10634988 DOI: 10.1101/2023.10.26.564041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The olfactory epithelium is one of the few regions of the nervous system that sustains neurogenesis throughout life. Its experimental accessibility makes it especially tractable for studying molecular mechanisms that drive neural regeneration in response to injury. In this study, we used single-cell sequencing to identify the transcriptional cascades and epigenetic processes involved in determining olfactory epithelial stem cell fate during injury-induced regeneration. By combining gene expression and accessible chromatin profiles of individual lineage-traced olfactory stem cells, we identified transcriptional heterogeneity among activated stem cells at a stage when cell fates are being specified. We further identified a subset of resting cells that appears poised for activation, characterized by accessible chromatin around wound response and lineage-specific genes prior to their later expression in response to injury. Together these results provide evidence for a latent activated stem cell state, in which a subset of quiescent olfactory epithelial stem cells are epigenetically primed to support injury-induced regeneration.
Collapse
Affiliation(s)
- Koen Van den Berge
- Department of Statistics, University of California, Berkeley, CA
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium
| | - Dana Bakalar
- Molecular Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Hsin-Jung Chou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Divya Kunda
- Molecular Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Kelly Street
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA
| | - Sandrine Dudoit
- Department of Statistics, University of California, Berkeley, CA
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA
| | - John Ngai
- Molecular Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Whitney Heavner
- Molecular Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
26
|
Kgoadi K, Bajpai P, Ibegbu CC, Dkhar HK, Enriquez AB, Dawa S, Cribbs SK, Rengarajan J. Alveolar macrophages from persons with HIV mount impaired TNF signaling networks to M. tuberculosis infection. Nat Commun 2025; 16:2397. [PMID: 40064940 PMCID: PMC11894076 DOI: 10.1038/s41467-025-57668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
People living with HIV (PLWH) have an increased risk for developing tuberculosis after M. tuberculosis infection, despite anti-retroviral therapy (ART). To delineate the underlying mechanisms, we conducted single cell transcriptomics on bronchoalveolar lavage cells from PLWH on ART and HIV uninfected healthy controls infected with M. tuberculosis ex vivo. We identify an M1-like proinflammatory alveolar macrophage subset that sequentially acquires TNF signaling capacity in controls but not in PLWH. Cell-cell communication analyses reveal interactions between M1-like macrophages and effector memory T cells within TNF superfamily, chemokine, and costimulatory networks in the airways of controls. These interaction networks were lacking in PLWH infected with M. tuberculosis, where anti-inflammatory M2-like alveolar macrophages and T regulatory cells dominated along with dysregulated T cell signatures. Our data support a model in which impaired TNF-TNFR signaling, M2-like alveolar macrophages and aberrant macrophage-T cell crosstalk, lead to ineffective immunity to M. tuberculosis in PLWH on ART.
Collapse
Affiliation(s)
- Khanyisile Kgoadi
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Prashant Bajpai
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Chris C Ibegbu
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | | | - Ana Beatriz Enriquez
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Stanzin Dawa
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Sushma K Cribbs
- Division of Pulmonary, Allergy, Critical Care & Sleep, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
27
|
Zhu P, Pfrender EM, Steffeck AWT, Reczek CR, Zhou Y, Thakkar AV, Gupta NR, Kupai A, Willbanks A, Lieber RL, Roy I, Chandel NS, Peek CB. Immunomodulatory role of the stem cell circadian clock in muscle repair. SCIENCE ADVANCES 2025; 11:eadq8538. [PMID: 40043110 PMCID: PMC11881903 DOI: 10.1126/sciadv.adq8538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
Circadian rhythms orchestrate physiological processes such as metabolism, immune function, and tissue regeneration, aligning them with the optimal time of day (TOD). This study identifies an interplay between the circadian clock within muscle stem cells (SCs) and their capacity to modulate the immune microenvironment during muscle regeneration. We reveal that the SC clock triggers TOD-dependent inflammatory gene transcription after injury, particularly genes related to neutrophil activity and chemotaxis. These responses are driven by cytosolic regeneration of the signaling metabolite nicotinamide adenine dinucleotide (oxidized form) (NAD+), as enhancing cytosolic NAD+ regeneration in SCs is sufficient to induce inflammatory responses that influence muscle regeneration. Mononuclear single-cell sequencing of the regenerating muscle niche further implicates the cytokine CCL2 in mediating SC-neutrophil cross-talk in a TOD-dependent manner. Our findings highlight the intersection between SC metabolic shifts and immune responses within the muscle microenvironment, dictated by circadian rhythms, and underscore the potential for targeting circadian and metabolic pathways to enhance tissue regeneration.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric M. Pfrender
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam W. T. Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Colleen R. Reczek
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yalu Zhou
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Abhishek Vijay Thakkar
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Neha R. Gupta
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ariana Kupai
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amber Willbanks
- Shirley Ryan AbilityLab (formerly known as Rehabilitation Institute of Chicago), Chicago, IL, USA
| | - Richard L. Lieber
- Shirley Ryan AbilityLab (formerly known as Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Hines VA Hospital, Maywood, IL, USA
| | - Ishan Roy
- Shirley Ryan AbilityLab (formerly known as Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Clara B. Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
28
|
Komic H, Schmachtel T, Simoes C, Külp M, Yu W, Jolly A, Nilsson MS, Gonzalez C, Prosper F, Bonig H, Paiva B, Thorén FB, Rieger MA. Continuous map of early hematopoietic stem cell differentiation across human lifetime. Nat Commun 2025; 16:2287. [PMID: 40055319 PMCID: PMC11889232 DOI: 10.1038/s41467-025-57096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025] Open
Abstract
Uncovering early gene network changes of human hematopoietic stem cells (HSCs) leading to differentiation induction is of utmost importance for therapeutic manipulation. We employed single cell proteo-transcriptomic sequencing to FACS-enriched bone marrow hematopoietic stem and progenitor cells (HSPCs) from 15 healthy donors. Pseudotime analysis reveals four major differentiation trajectories, which remain consistent upon aging, with an early branching point into megakaryocyte-erythroid progenitors. However, young donors suggest a more productive differentiation from HSPCs to committed progenitors of all lineages. tradeSeq analysis depicts continuous changes in gene expression of HSPC-related genes (DLK1, ADGRG6), and provides a roadmap of gene expression at the earliest branching points. We identify CD273/PD-L2 to be highly expressed in a subfraction of immature multipotent HSPCs with enhanced quiescence. Functional experiments confirm the immune-modulatory function of CD273/PD-L2 on HSPCs in regulating T-cell activation and cytokine release. Here, we present a molecular map of early HSPC differentiation across human life.
Collapse
Affiliation(s)
- Hana Komic
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tessa Schmachtel
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Catia Simoes
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Marius Külp
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Cardio-Pulmonary-Institute, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Weijia Yu
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adrien Jolly
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Malin S Nilsson
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carmen Gonzalez
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Felipe Prosper
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bruno Paiva
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Fredrik B Thorén
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael A Rieger
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Cardio-Pulmonary-Institute, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Peng B, Wang Q, Zhang F, Shen H, Du P. Mouse totipotent blastomere-like cells model embryogenesis from zygotic genome activation to post implantation. Cell Stem Cell 2025; 32:391-408.e11. [PMID: 39826539 DOI: 10.1016/j.stem.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Embryo development begins with zygotic genome activation (ZGA), eventually generating blastocysts for implantation. However, in vitro systems modeling the pre-implantation development are still absent and challenging. Here, we used mouse totipotent blastomere-like cells (TBLCs) to develop spontaneous differentiation and blastoid formation systems, respectively. We found Wnt signaling enabled the rapid expansion of TBLCs and the optimization of their culture medium. We successfully developed a TBLC-spontaneous differentiation system in which mouse TBLCs (mTBLCs) firstly converted into two types of ZGA-like cells (ZLCs) distinguished by Zscan4 expression. Surprisingly, Zscan4-, but not Zscan4+, ZLCs further passed through intermediate 4-cell and then 8-cell/morula stages to produce epiblast, primitive endoderm, and trophectoderm lineages. Significantly, single TBLCs underwent expansion, compaction, and polarization to efficiently generate blastocyst-like structures and even post-implantation egg-cylinder-like structures. Conclusively, we established TBLC-based differentiation and embryo-like structure formation systems to model early embryonic development, offering criteria for evaluating and understanding totipotency.
Collapse
Affiliation(s)
- Bing Peng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qingyi Wang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
Ni G, Li X, Nie W, Zhao Z, Li H, Zang H. Exposing the cellular situation: findings from single cell RNA sequencing in breast cancer. Front Immunol 2025; 16:1539074. [PMID: 40114930 PMCID: PMC11922942 DOI: 10.3389/fimmu.2025.1539074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
Background Breast Cancer (BC) ranks among the top three most prevalent cancers globally and stands as the principal contributor to cancer-related fatalities among women. In spite of the substantial occurrence rate of BC, the early stage of this disease is generally regarded as curable. However, intra-tumor heterogeneity presents a formidable obstacle to the success of effective treatment. Method In this research, single cell RNA sequencing was utilized to dissect the tumor microenvironment within BC. Slingshot, CytoTRACE and Monocle 2 were applied to illustrate the differentiation process of each subpopulation in the pseudotime sequence. To comprehensively comprehend the tumor cells (TCs) in BC, an analysis of upstream transcription factors was carried out via pySCENIC, while downstream pathway enrichment was conducted through KEGG, GO and GSEA. The prognosis model was established based on the bulk data obtained from TCGA and GEO databases. Knock-down experiments were also implemented to explore the function of the transcription factor CEBPD in the TCs. Results Our in-depth analysis identified eight principal cell types. Notably, TCs were predominantly found within epithelial cells. The classification of TCs further uncovered five unique subpopulations, with one subpopulation characterized by high UGDH expression. This subpopulation was shown to possess distinct metabolic features in metabolism-related investigations. The intricate communication modalities among different cell types were effectively demonstrated by means of CellChat. Additionally, a crucial transcription factor, CEBPD, was identified, which demonstrated a pronounced propensity towards tumors and harbored potential tumor-advancing characteristics. Its role in promoting cancer was subsequently verified through in vitro knock-down experiments. Moreover, a prognostic model was also developed, and a risk score was established based on the genes incorporated in the model. Through comparing the prognoses of different UTRS levels, it was determined that the group with a high UTRS had a less favorable prognosis. Conclusion These outcomes contributed to the elucidation of the complex interrelationships within the BC tumor microenvironment. By specifically targeting certain subpopulations of TCs, novel treatment strategies could potentially be devised. This study shed light on the direction that future research in BC should take, furnishing valuable information that can be utilized to enhance treatment regimens.
Collapse
Affiliation(s)
- Gaofeng Ni
- Department of Breast Surgery, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Xinhan Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenyang Nie
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhenzhen Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hua Li
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Hongyan Zang
- Department of Breast Surgery, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| |
Collapse
|
31
|
Chen CM, Yu R. A multi-step completion process model of cell plasticity. Brief Bioinform 2025; 26:bbaf165. [PMID: 40223810 PMCID: PMC11995008 DOI: 10.1093/bib/bbaf165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Plasticity is the potential for cells or cell populations to change their phenotypes and behaviors in response to internal or external cues. Plasticity is fundamental to many complex biological processes, yet to date there remains a lack of mathematical models that can elucidate and predict molecular behaviors in a plasticity program. Here, we report a new mathematical framework that models cell plasticity as a multi-step completion process, where the system moves from the initial state along a path guided by multiple intermediate attractors until the final state (i.e. a new homeostasis) is reached. Using omics time-series data as model input, we show that our method fits data well; identifies attractor states by their timing and molecular markers which are well-aligned with domain knowledge; and can make quantitative and time-resolved predictions such as the molecular outcomes of blocking a plasticity program from reaching completion, to an R2 of 0.53-0.63. We demonstrate that application of our model to primary patient-derived data can provide quantitative insights and predictions that may be useful in guiding further research and potential biomedical interventions.
Collapse
Affiliation(s)
- Chen M Chen
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Geert Grooteplein-Zuid 26-28, Nijmegen, 6525GA, The Netherlands
| | - Rosemary Yu
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Geert Grooteplein-Zuid 26-28, Nijmegen, 6525GA, The Netherlands
| |
Collapse
|
32
|
Wang M, Di Pietro-Torres A, Feregrino C, Luxey M, Moreau C, Fischer S, Fages A, Ritz D, Tschopp P. Distinct gene regulatory dynamics drive skeletogenic cell fate convergence during vertebrate embryogenesis. Nat Commun 2025; 16:2187. [PMID: 40038298 PMCID: PMC11880379 DOI: 10.1038/s41467-025-57480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Cell type repertoires have expanded extensively in metazoan animals, with some clade-specific cells being crucial to evolutionary success. A prime example are the skeletogenic cells of vertebrates. Depending on anatomical location, these cells originate from three different precursor lineages, yet they converge developmentally towards similar cellular phenotypes. Furthermore, their 'skeletogenic competency' arose at distinct evolutionary timepoints, thus questioning to what extent different skeletal body parts rely on truly homologous cell types. Here, we investigate how lineage-specific molecular properties are integrated at the gene regulatory level, to allow for skeletogenic cell fate convergence. Using single-cell functional genomics, we find that distinct transcription factor profiles are inherited from the three precursor states and incorporated at lineage-specific enhancer elements. This lineage-specific regulatory logic suggests that these regionalized skeletogenic cells are distinct cell types, rendering them amenable to individualized selection, to define adaptive morphologies and biomaterial properties in different parts of the vertebrate skeleton.
Collapse
Affiliation(s)
- Menghan Wang
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ana Di Pietro-Torres
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Christian Feregrino
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maëva Luxey
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- MeLis, CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Institut NeuroMyo Gène, Lyon, France
| | - Chloé Moreau
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Sabrina Fischer
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Antoine Fages
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Patrick Tschopp
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
33
|
Laidlaw RF, Briggs EM, Matthews KR, Madany Mamlouk A, McCulloch R, Otto TD. TrAGEDy-trajectory alignment of gene expression dynamics. Bioinformatics 2025; 41:btaf073. [PMID: 40065693 PMCID: PMC11908647 DOI: 10.1093/bioinformatics/btaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/17/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
MOTIVATION Single-cell transcriptomics sequencing is used to compare different biological processes. However, often, those processes are asymmetric which are difficult to integrate. Current approaches often rely on integrating samples from each condition before either cluster-based comparisons or analysis of an inferred shared trajectory. RESULTS We present Trajectory Alignment of Gene Expression Dynamics (TrAGEDy), which allows the alignment of independent trajectories to avoid the need for error-prone integration steps. Across simulated datasets, TrAGEDy returns the correct underlying alignment of the datasets, outperforming current tools which fail to capture the complexity of asymmetric alignments. When applied to real datasets, TrAGEDy captures more biologically relevant genes and processes, which other differential expression methods fail to detect when looking at the developments of T cells and the bloodstream forms of Trypanosoma brucei when affected by genetic knockouts. AVAILABILITY AND IMPLEMENTATION TrAGEDy is freely available at https://github.com/No2Ross/TrAGEDy, and implemented in R.
Collapse
Affiliation(s)
- Ross F Laidlaw
- Centre for Parasitology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Emma M Briggs
- Centre for Parasitology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH8 9YL, United Kingdom
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Keith R Matthews
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH8 9YL, United Kingdom
| | - Amir Madany Mamlouk
- Institute for Neuro- and Bioinformatics, University of Lübeck, Lübeck, 23562, Germany
| | - Richard McCulloch
- Centre for Parasitology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Thomas D Otto
- Centre for Parasitology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
- Laboratory of Pathogens and Host Immunity, Universite de Montpellier, Montpellier, 34090, France
| |
Collapse
|
34
|
Griffiths JI, Cosgrove PA, Medina EF, Nath A, Chen J, Adler FR, Chang JT, Khan QJ, Bild AH. Cellular interactions within the immune microenvironment underpins resistance to cell cycle inhibition in breast cancers. Nat Commun 2025; 16:2132. [PMID: 40032842 PMCID: PMC11876604 DOI: 10.1038/s41467-025-56279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Immune evasion by cancer cells involves reshaping the tumor microenvironment (TME) via communication with non-malignant cells. However, resistance-promoting interactions during treatment remain lesser known. Here we examine the composition, communication, and phenotypes of tumor-associated cells in serial biopsies from stage II and III high-risk estrogen receptor positive (ER+ ) breast cancers of patients receiving endocrine therapy (letrozole) as single agent or in combination with ribociclib, a CDK4/6-targeting cell cycle inhibitor. Single-cell RNA sequencing analyses on longitudinally collected samples show that in tumors overcoming the growth suppressive effects of ribociclib, first cancer cells upregulate cytokines and growth factors that stimulate immune-suppressive myeloid differentiation, resulting in reduced myeloid cell- CD8 + T-cell crosstalk via IL-15/18 signaling. Subsequently, tumors growing during treatment show diminished T-cell activation and recruitment. In vitro, ribociclib does not only inhibit cancer cell growth but also T cell proliferation and activation upon co-culturing. Exogenous IL-15 improves CDK4/6 inhibitor efficacy by augmenting T-cell proliferation and cancer cell killing by T cells. In summary, response to ribociclib in stage II and III high-risk ER + breast cancer depends on the composition, activation phenotypes and communication network of immune cells.
Collapse
Affiliation(s)
- Jason I Griffiths
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA.
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, USA.
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Eric F Medina
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Jinfeng Chen
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah 257 South 1400 East, Salt Lake City, UT, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Sciences Center at Houston, Houston, TX, USA
| | - Qamar J Khan
- Division of Medical Oncology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA.
| |
Collapse
|
35
|
Vannan A, Lyu R, Williams AL, Negretti NM, Mee ED, Hirsh J, Hirsh S, Hadad N, Nichols DS, Calvi CL, Taylor CJ, Polosukhin VV, Serezani APM, McCall AS, Gokey JJ, Shim H, Ware LB, Bacchetta MJ, Shaver CM, Blackwell TS, Walia R, Sucre JMS, Kropski JA, McCarthy DJ, Banovich NE. Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. Nat Genet 2025; 57:647-658. [PMID: 39901013 PMCID: PMC11906353 DOI: 10.1038/s41588-025-02080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Large-scale changes in the structure and cellular makeup of the distal lung are a hallmark of pulmonary fibrosis (PF), but the spatial contexts that contribute to disease pathogenesis have remained uncertain. Using image-based spatial transcriptomics, we analyzed the gene expression of 1.6 million cells from 35 unique lungs. Through complementary cell-based and innovative cell-agnostic analyses, we characterized the localization of PF-emergent cell types, established the cellular and molecular basis of classical PF histopathologic features and identified a diversity of distinct molecularly defined spatial niches in control and PF lungs. Using machine learning and trajectory analysis to segment and rank airspaces on a gradient of remodeling severity, we identified compositional and molecular changes associated with progressive distal lung pathology, beginning with alveolar epithelial dysregulation and culminating with changes in macrophage polarization. Together, these results provide a unique, spatially resolved view of PF and establish methods that could be applied to other spatial transcriptomic studies.
Collapse
Grants
- R01HL145372 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01HL175444 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL158906 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL126176 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL160551 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL092870 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HG011886 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- W81XWH1910415 United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (CDMRP)
- GNT1195595 Department of Health | National Health and Medical Research Council (NHMRC)
- GNT1162829 Department of Health | National Health and Medical Research Council (NHMRC)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
Collapse
Affiliation(s)
- Annika Vannan
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ruqian Lyu
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Arianna L Williams
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicholas M Negretti
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan D Mee
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Joseph Hirsh
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Hirsh
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niran Hadad
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - David S Nichols
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carla L Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chase J Taylor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vasiliy V Polosukhin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ana P M Serezani
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Scott McCall
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason J Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heejung Shim
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew J Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rajat Walia
- Department of Thoracic Disease and Transplantation, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Jennifer M S Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Davis J McCarthy
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas E Banovich
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
36
|
Suo Y, Song Y, Wang Y, Liu Q, Rodriguez H, Zhou H. Advancements in proteogenomics for preclinical targeted cancer therapy research. BIOPHYSICS REPORTS 2025; 11:56-76. [PMID: 40070661 PMCID: PMC11891078 DOI: 10.52601/bpr.2024.240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025] Open
Abstract
Advancements in molecular characterization technologies have accelerated targeted cancer therapy research at unprecedented resolution and dimensionality. Integrating comprehensive multi-omic molecular profiling of a tumor, proteogenomics, marks a transformative milestone for preclinical cancer research. In this paper, we initially provided an overview of proteogenomics in cancer research, spanning genomics, transcriptomics, and proteomics. Subsequently, the applications were introduced and examined from different perspectives, including but not limited to genetic alterations, molecular quantifications, single-cell patterns, different post-translational modification levels, subtype signatures, and immune landscape. We also paid attention to the combined multi-omics data analysis and pan-cancer analysis. This paper highlights the crucial role of proteogenomics in preclinical targeted cancer therapy research, including but not limited to elucidating the mechanisms of tumorigenesis, discovering effective therapeutic targets and promising biomarkers, and developing subtype-specific therapies.
Collapse
Affiliation(s)
- Yuying Suo
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanli Song
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqiu Wang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Qian Liu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
37
|
Pereira WJ, Conde D, Perron N, Schmidt HW, Dervinis C, Venado RE, Ané JM, Kirst M. Investigating biological nitrogen fixation via single-cell transcriptomics. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:931-949. [PMID: 39563004 PMCID: PMC11850973 DOI: 10.1093/jxb/erae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
The extensive use of nitrogen fertilizers has detrimental environmental consequences, and it is essential for society to explore sustainable alternatives. One promising avenue is engineering root nodule symbiosis, a naturally occurring process in certain plant species within the nitrogen-fixing clade, into non-leguminous crops. Advancements in single-cell transcriptomics provide unprecedented opportunities to dissect the molecular mechanisms underlying root nodule symbiosis at the cellular level. This review summarizes key findings from single-cell studies in Medicago truncatula, Lotus japonicus, and Glycine max. We highlight how these studies address fundamental questions about the development of root nodule symbiosis, including the following findings: (i) single-cell transcriptomics has revealed a conserved transcriptional program in root hair and cortical cells during rhizobial infection, suggesting a common infection pathway across legume species; (ii) characterization of determinate and indeterminate nodules using single-cell technologies supports the compartmentalization of nitrogen fixation, assimilation, and transport into distinct cell populations; (iii) single-cell transcriptomics data have enabled the identification of novel root nodule symbiosis genes and provided new approaches for prioritizing candidate genes for functional characterization; and (iv) trajectory inference and RNA velocity analyses of single-cell transcriptomics data have allowed the reconstruction of cellular lineages and dynamic transcriptional states during root nodule symbiosis.
Collapse
Affiliation(s)
- Wendell J Pereira
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28223 Madrid, Spain
| | - Noé Perron
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Henry W Schmidt
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Christopher Dervinis
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rafael E Venado
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Matias Kirst
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
38
|
Dong S, Cui Z, Liu D, Lei J. scRDiT: Generating Single-cell RNA-seq Data by Diffusion Transformers and Accelerating Sampling. Interdiscip Sci 2025:10.1007/s12539-025-00688-5. [PMID: 39982678 DOI: 10.1007/s12539-025-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/22/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a groundbreaking technology extensively utilized in biological research, facilitating the examination of gene expression at the individual cell level within a given tissue sample. While numerous tools have been developed for scRNA-seq data analysis, the challenge persists in capturing the distinct features of such data and replicating virtual datasets that share analogous statistical properties. Our study introduces a generative approach termed scRNA-seq Diffusion Transformer (scRDiT). This method generates virtual scRNA-seq data by leveraging a real dataset. The method is a neural network constructed based on Denoising Diffusion Probabilistic Models (DDPMs) and Diffusion Transformers (DiTs). This involves subjecting Gaussian noises to the real dataset through iterative noise-adding steps and ultimately restoring the noises to form scRNA-seq samples. This scheme allows us to learn data features from actual scRNA-seq samples during model training. Our experiments, conducted on two distinct scRNA-seq datasets, demonstrate superior performance. Additionally, the model sampling process is expedited by incorporating Denoising Diffusion Implicit Models (DDIMs). scRDiT presents a unified methodology empowering users to train neural network models with their unique scRNA-seq datasets, enabling the generation of numerous high-quality scRNA-seq samples.
Collapse
Affiliation(s)
- Shengze Dong
- School of Computer Science and Technology, Tiangong University, Tianjin, 300387, China
| | - Zhuorui Cui
- School of Computer Science and Technology, Tiangong University, Tianjin, 300387, China
| | - Ding Liu
- School of Computer Science and Technology, Tiangong University, Tianjin, 300387, China.
| | - Jinzhi Lei
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
39
|
Matern MS, Heller S. A developmental atlas of mouse vestibular-like inner ear organoids. iScience 2025; 28:111817. [PMID: 39967872 PMCID: PMC11834118 DOI: 10.1016/j.isci.2025.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Inner ear sensory epithelia can be generated in vitro from embryonic stem cells. The resulting inner ear organoids represent a potentially inexhaustible source of otic tissues, including sensory hair cells and supporting cells, for in vitro manipulation. Here, we present a single-cell atlas of whole mouse embryonic stem cell-derived vestibular-like inner ear organoids at six developmental stages. Our analyses trace the genesis and developmental progression of otic progenitor cells to supporting cells and hair cells. By profiling all organoid cells, we also characterize the development of additional cell groups, such as otic mesenchyme. We further utilize our atlas to describe a proliferative phase where otic progenitors produce hair cells and otic neuroblasts, followed by a transition to a non-proliferative state. The resulting map of otic progression reveals specific time windows that can inform future research on cell cycle regulation and cell lineage specification in inner ear organoids.
Collapse
Affiliation(s)
- Maggie S. Matern
- Department of Otolaryngology — Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Stefan Heller
- Department of Otolaryngology — Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
40
|
Ren X, Teng Y, Xie K, He X, Chen G, Zhang K, Liao Q, Zhang J, Zhou X, Zhu Y, Song W, Lin Y, Zhang Y, Xu Z, Maeshige N, Liang X, Su D, Sun P, Ding Y. REG3A secreted by peritumoral acinar cells enhances pancreatic ductal adenocarcinoma progression via activation of EGFR signaling. Cell Commun Signal 2025; 23:96. [PMID: 39966859 PMCID: PMC11837727 DOI: 10.1186/s12964-025-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Regenerating family member 3A (REG3A) is involved in the development of multiple malignant tumors, including pancreatic ductal adenocarcinoma (PDAC). However, any role of REG3A in PDAC remains controversial due to its unclear tissue localization or direct receptors, and complex downstream signal transductions. METHODS Morphological analysis and public multi-omics data retrieval were was utilized to elucidate the tissue localization of REG3A in PDAC. To ascertain the pro-oncogenic role of secreted REG3A, experiments were conducted using in vitro PDAC cell lines and in vivo tumor formation assays in nude mice. A battery of investigative techniques, including RNA sequencing, phospho-kinase arrays, western blot analyses, in silico docking simulations, gene truncation strategies, and co-immunoprecipitation, were employed to delve into the downstream signaling transduction pathways induced by REG3A. RESULTS In this study, we confirmed an association between increased serum levels of REG3A and poor prognosis in patients with PDAC. Morphological staining and bioinformatic analysis showed that REG3A was mainly expressed in peritumoral acinar cells that were spatially close to tumor region, while it was almost negative in PDAC tumor cells. Peritumoral REG3A expression levels, but not tumoral REG3A, were highly correlated with PDAC progression. Further in vitro experiments including RNA sequencing and molecular biological assays revealed that secreted REG3A could directly bind to the epidermal growth factor receptor (EGFR), an important pro-oncogene involved in cellular proliferation, and subsequently activate the downstream mitogen-activated protein kinase (MAPK) signals to promote PDAC tumor cell growth. CONCLUSION Taken together, our data indicated that increased expression of REG3A in peritumoral acinar cells acts as a specific event to indicate PDAC progression, and verified EGFR as a possible target of REG3A, providing mechanistic insights into the role of REG3A, the diagnostic method and therapeutic strategy of PDAC.
Collapse
Affiliation(s)
- Xiaojing Ren
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yunfei Teng
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao He
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gang Chen
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kaini Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qingyi Liao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaohang Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yating Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenyu Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yuege Lin
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Zhang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Ding
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
41
|
Yang S, Seo J, Choi J, Kim SH, Kuk Y, Park KC, Kang M, Byun S, Joo JY. Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies. Mol Cancer 2025; 24:47. [PMID: 39953555 PMCID: PMC11829473 DOI: 10.1186/s12943-025-02250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Delving into cancer dormancy has been an inherent task that may drive the lethal recurrence of cancer after primary tumor relief. Cells in quiescence can survive for a short or long term in silence, may undergo genetic or epigenetic changes, and can initiate relapse through certain contextual cues. The state of dormancy can be induced by multiple conditions including cancer drug treatment, in turn, undergoes a life cycle that generally occurs through dissemination, invasion, intravasation, circulation, immune evasion, extravasation, and colonization. Throughout this cascade, a cellular machinery governs the fate of individual cells, largely affected by gene regulation. Despite its significance, a precise view of cancer dormancy is yet hampered. Revolutionizing advanced single cell and long read sequencing through analysis methodologies and artificial intelligence, the most recent stage in the research tool progress, is expected to provide a holistic view of the diverse aspects of cancer dormancy.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Jieun Seo
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Jeonghyeon Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Yunmin Kuk
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Kyung Chan Park
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Sangwon Byun
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea.
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-ro, Sangnok-gu Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
42
|
Abdelnaby M, Moussa MR. A Benchmarking Study of Random Projections and Principal Components for Dimensionality Reduction Strategies in Single Cell Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636499. [PMID: 39974925 PMCID: PMC11838541 DOI: 10.1101/2025.02.04.636499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Principal Component Analysis (PCA) has long been a cornerstone in dimensionality reduction for high-dimensional data, including single-cell RNA sequencing (scRNA-seq). However, PCA's performance typically degrades with increasing data size, can be sensitive to outliers, and assumes linearity. Recently, Random Projection (RP) methods have emerged as promising alternatives, addressing some of these limitations. This study systematically and comprehensively evaluates PCA and RP approaches, including Singular Value Decomposition (SVD) and randomized SVD, alongside Sparse and Gaussian Random Projection algorithms, with a focus on computational efficiency and downstream analysis effectiveness. We benchmark performance using multiple scRNA-seq datasets including labeled and unlabeled publicly available datasets. We apply Hierarchical Clustering and Spherical K-Means clustering algorithms to assess downstream clustering quality. For labeled datasets, clustering accuracy is measured using the Hungarian algorithm and Mutual Information. For unlabeled datasets, the Dunn Index and Gap Statistic capture cluster separation. Across both dataset types, the Within-Cluster Sum of Squares (WCSS) metric is used to assess variability. Additionally, locality preservation is examined, with RP outperforming PCA in several of the evaluated metrics. Our results demonstrate that RP not only surpasses PCA in computational speed but also rivals and, in some cases, exceeds PCA in preserving data variability and clustering quality. By providing a thorough benchmarking of PCA and RP methods, this work offers valuable insights into selecting optimal dimensionality reduction techniques, balancing computational performance, scalability, and the quality of downstream analyses.
Collapse
Affiliation(s)
| | - Marmar R. Moussa
- School of Computer Science, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
43
|
Agboraw E, Haese-Hill W, Hentzschel F, Briggs E, Aghabi D, Heawood A, Harding CR, Shiels B, Crouch K, Somma D, Otto TD. paraCell: a novel software tool for the interactive analysis and visualization of standard and dual host-parasite single-cell RNA-seq data. Nucleic Acids Res 2025; 53:gkaf091. [PMID: 39988320 PMCID: PMC11840555 DOI: 10.1093/nar/gkaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025] Open
Abstract
Advances in sequencing technology have led to a dramatic increase in the number of single-cell transcriptomic datasets. In the field of parasitology, these datasets typically describe the gene expression patterns of a given parasite species at the single-cell level under experimental conditions, in specific hosts or tissues, or at different life cycle stages. However, while this wealth of available data represents a significant resource, analysing these datasets often requires expert computational skills, preventing a considerable proportion of the parasitology community from meaningfully integrating existing single-cell data into their work. Here, we present paraCell, a novel software tool that allows the user to visualize and analyse pre-loaded single-cell data without requiring any programming ability. The source code is free to allow remote installation. On our web server, we demonstrated how to visualize and re-analyse published Plasmodium and Trypanosoma datasets. We have also generated Toxoplasma-mouse and Theileria-cow scRNA-seq datasets to highlight the functionality of paraCell for pathogen-host interaction. The analysis of the data highlights the impact of the host interferon-γ response and gene expression profiles associated with disease susceptibility by these intracellular parasites, respectively.
Collapse
Affiliation(s)
- Edward Agboraw
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - William Haese-Hill
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
- MVLS SRF, Research Software Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Franziska Hentzschel
- Centre for Infectious Diseases, Heidelberg University Medical Faculty, 69120 Heidelberg, Germany
| | - Emma Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH4 2JP Edinburgh, United Kingdom
| | - Dana Aghabi
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Anna Heawood
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Clare R Harding
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Brian Shiels
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, G61 1QH Glasgow, United Kingdom
| | - Kathryn Crouch
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Domenico Somma
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
- LPHI, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
44
|
Niethamer TK, Planer JD, Morley MP, Babu A, Zhao G, Basil MC, Cantu E, Frank DB, Diamond JM, Nottingham AN, Li S, Sharma A, Hallquist H, Levin LI, Zhou S, Vaughan AE, Morrisey EE. Longitudinal single-cell profiles of lung regeneration after viral infection reveal persistent injury-associated cell states. Cell Stem Cell 2025; 32:302-321.e6. [PMID: 39818203 PMCID: PMC11805657 DOI: 10.1016/j.stem.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
Functional regeneration of the lung's gas exchange surface following injury requires the coordination of a complex series of cell behaviors within the alveolar niche. Using single-cell transcriptomics combined with lineage tracing of proliferating progenitors, we examined mouse lung regeneration after influenza injury, demonstrating an asynchronously phased response across different cellular compartments. This longitudinal atlas of injury responses has produced a catalog of transient and persistent transcriptional alterations in cells as they transit across axes of differentiation. These cell states include an injury-induced capillary endothelial cell (iCAP) that arises after injury, persists indefinitely, and shares hallmarks with developing lung endothelium and endothelial aberrations found in degenerative human lung diseases. This dataset provides a foundational resource to understand the complexity of cellular and molecular responses to injury and correlations to responses found in human development and disease.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Joseph D Planer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gan Zhao
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Cantu
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Frank
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua M Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ana N Nottingham
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnav Sharma
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Hannah Hallquist
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian I Levin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew E Vaughan
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Molla Desta G, Birhanu AG. Advancements in single-cell RNA sequencing and spatial transcriptomics: transforming biomedical research. Acta Biochim Pol 2025; 72:13922. [PMID: 39980637 PMCID: PMC11835515 DOI: 10.3389/abp.2025.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
In recent years, significant advancements in biochemistry, materials science, engineering, and computer-aided testing have driven the development of high-throughput tools for profiling genetic information. Single-cell RNA sequencing (scRNA-seq) technologies have established themselves as key tools for dissecting genetic sequences at the level of single cells. These technologies reveal cellular diversity and allow for the exploration of cell states and transformations with exceptional resolution. Unlike bulk sequencing, which provides population-averaged data, scRNA-seq can detect cell subtypes or gene expression variations that would otherwise be overlooked. However, a key limitation of scRNA-seq is its inability to preserve spatial information about the RNA transcriptome, as the process requires tissue dissociation and cell isolation. Spatial transcriptomics is a pivotal advancement in medical biotechnology, facilitating the identification of molecules such as RNA in their original spatial context within tissue sections at the single-cell level. This capability offers a substantial advantage over traditional single-cell sequencing techniques. Spatial transcriptomics offers valuable insights into a wide range of biomedical fields, including neurology, embryology, cancer research, immunology, and histology. This review highlights single-cell sequencing approaches, recent technological developments, associated challenges, various techniques for expression data analysis, and their applications in disciplines such as cancer research, microbiology, neuroscience, reproductive biology, and immunology. It highlights the critical role of single-cell sequencing tools in characterizing the dynamic nature of individual cells.
Collapse
Affiliation(s)
- Getnet Molla Desta
- College of Veterinary Medicine, Jigjiga University, Jigjiga, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
46
|
Qu R, Cheng X, Sefik E, Stanley Iii JS, Landa B, Strino F, Platt S, Garritano J, Odell ID, Coifman R, Flavell RA, Myung P, Kluger Y. Gene trajectory inference for single-cell data by optimal transport metrics. Nat Biotechnol 2025; 43:258-268. [PMID: 38580861 PMCID: PMC11452571 DOI: 10.1038/s41587-024-02186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
Single-cell RNA sequencing has been widely used to investigate cell state transitions and gene dynamics of biological processes. Current strategies to infer the sequential dynamics of genes in a process typically rely on constructing cell pseudotime through cell trajectory inference. However, the presence of concurrent gene processes in the same group of cells and technical noise can obscure the true progression of the processes studied. To address this challenge, we present GeneTrajectory, an approach that identifies trajectories of genes rather than trajectories of cells. Specifically, optimal transport distances are calculated between gene distributions across the cell-cell graph to extract gene programs and define their gene pseudotemporal order. Here we demonstrate that GeneTrajectory accurately extracts progressive gene dynamics in myeloid lineage maturation. Moreover, we show that GeneTrajectory deconvolves key gene programs underlying mouse skin hair follicle dermal condensate differentiation that could not be resolved by cell trajectory approaches. GeneTrajectory facilitates the discovery of gene programs that control the changes and activities of biological processes.
Collapse
Affiliation(s)
- Rihao Qu
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiuyuan Cheng
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Boris Landa
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | | | - Sarah Platt
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - James Garritano
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Ian D Odell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald Coifman
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
- Department of Mathematics, Yale University, New Haven, CT, USA
- Department of Electrical Engineering, Yale University, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Peggy Myung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Program in Applied Mathematics, Yale University, New Haven, CT, USA.
| |
Collapse
|
47
|
Wen Y, He H, Ma Y, Bao D, Cai LC, Wang H, Li Y, Zhao B, Cai Z. Computing hematopoiesis plasticity in response to genetic mutations and environmental stimulations. Life Sci Alliance 2025; 8:e202402971. [PMID: 39537342 PMCID: PMC11561260 DOI: 10.26508/lsa.202402971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Cell plasticity (CP), describing a dynamic cell state, plays a crucial role in maintaining homeostasis during organ morphogenesis, regeneration, and trauma-to-repair biological process. Single-cell-omics datasets provide an unprecedented resource to empower CP analysis. Hematopoiesis offers fertile opportunities to develop quantitative methods for understanding CP. In this study, we generated high-quality lineage-negative single-cell RNA-sequencing datasets under various conditions and introduced a working pipeline named scPlasticity to interrogate naïve and disturbed plasticity of hematopoietic stem and progenitor cells with mutational or environmental challenges. Using embedding methods UMAP or FA, a continuum of hematopoietic development is visually observed in wild type where the pipeline confirms a low proportion of hybrid cells ( P hc , with bias range: 0.4∼0.6) on a transition trajectory. Upon Tet2 mutation, a driver of leukemia, or treatment of DSS, an inducer of colitis, P hc is increased and plasticity of hematopoietic stem and progenitor cells was enhanced. We prioritized several transcription factors and signaling pathways, which are responsible for P hc alterations. In silico perturbation suggests knocking out EGR regulons or pathways of IL-1R1 and β-adrenoreceptor partially reverses P hc promoted by Tet2 mutation and inflammation.
Collapse
Affiliation(s)
- Yuchen Wen
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hang He
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yunxi Ma
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Dengyi Bao
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Lorie Chen Cai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
| | - Yanmei Li
- Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhigang Cai
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
| |
Collapse
|
48
|
Caporale N, Castaldi D, Rigoli MT, Cheroni C, Valenti A, Stucchi S, Lessi M, Bulgheresi D, Trattaro S, Pezzali M, Vitriolo A, Lopez-Tobon A, Bonfanti M, Ricca D, Schmid KT, Heinig M, Theis FJ, Villa CE, Testa G. Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution. Nat Methods 2025; 22:358-370. [PMID: 39653820 PMCID: PMC11810796 DOI: 10.1038/s41592-024-02555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.
Collapse
Affiliation(s)
- Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Davide Castaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Marco Tullio Rigoli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | - Alessia Valenti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Sarah Stucchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Manuel Lessi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | | | - Martina Pezzali
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | | | | | | | - Katharina T Schmid
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | | | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
- Human Technopole, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
49
|
Rodov A, Baniadam H, Zeiser R, Amit I, Yosef N, Wertheimer T, Ingelfinger F. Towards the Next Generation of Data-Driven Therapeutics Using Spatially Resolved Single-Cell Technologies and Generative AI. Eur J Immunol 2025; 55:e202451234. [PMID: 39964048 PMCID: PMC11834372 DOI: 10.1002/eji.202451234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Recent advances in multi-omics and spatially resolved single-cell technologies have revolutionised our ability to profile millions of cellular states, offering unprecedented opportunities to understand the complex molecular landscapes of human tissues in both health and disease. These developments hold immense potential for precision medicine, particularly in the rational design of novel therapeutics for treating inflammatory and autoimmune diseases. However, the vast, high-dimensional data generated by these technologies present significant analytical challenges, such as distinguishing technical variation from biological variation or defining relevant questions that leverage the added spatial dimension to improve our understanding of tissue organisation. Generative artificial intelligence (AI), specifically variational autoencoder- or transformer-based latent variable models, provides a powerful and flexible approach to addressing these challenges. These models make inferences about a cell's intrinsic state by effectively identifying complex patterns, reducing data dimensionality and modelling the biological variability in single-cell datasets. This review explores the current landscape of single-cell and spatial multi-omics technologies, the application of generative AI in data analysis and modelling and their transformative impact on our understanding of autoimmune diseases. By combining spatial and single-cell data with advanced AI methodologies, we highlight novel insights into the pathogenesis of autoimmune disorders and outline future directions for leveraging these technologies to achieve the goal of AI-powered personalised medicine.
Collapse
Affiliation(s)
- Avital Rodov
- Department of Systems ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Robert Zeiser
- Department of Internal Medicine IMedical Center‐University of FreiburgFreiburgGermany
| | - Ido Amit
- Department of Systems ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Nir Yosef
- Department of Systems ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Tobias Wertheimer
- Department of Internal Medicine IMedical Center‐University of FreiburgFreiburgGermany
| | - Florian Ingelfinger
- Department of Systems ImmunologyWeizmann Institute of ScienceRehovotIsrael
- Department of Internal Medicine IMedical Center‐University of FreiburgFreiburgGermany
| |
Collapse
|
50
|
Grimes JM, Ghosh S, Manzoor S, Li LX, Moran MM, Clements JC, Alexander SD, Markert JM, Leavenworth JW. Oncolytic reprogramming of tumor microenvironment shapes CD4 T-cell memory via the IL6ra-Bcl6 axis for targeted control of glioblastoma. Nat Commun 2025; 16:1095. [PMID: 39885128 PMCID: PMC11782536 DOI: 10.1038/s41467-024-55455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Oncolytic viruses (OVs) emerge as a promising cancer immunotherapy. However, the temporal impact on tumor cells and the tumor microenvironment, and the nature of anti-tumor immunity post-therapy remain largely unclear. Here we report that CD4+ T cells are required for durable tumor control in syngeneic murine models of glioblastoma multiforme after treatment with an oncolytic herpes simplex virus (oHSV) engineered to express IL-12. The upregulated MHCII on residual tumor cells facilitates programmed polyfunctional CD4+ T cells for tumor control and for recall responses. Mechanistically, the proper ratio of Bcl-6 to T-bet in CD4+ T cells navigates their enhanced anti-tumor capacity, and a reciprocal IL6ra-Bcl-6 regulatory axis in a memory CD4+ T-cell subset, which requires MHCII signals from reprogrammed tumor cells, tumor-infiltrating and resident myeloid cells, is necessary for the prolonged response. These findings uncover an OV-induced tumor/myeloid-CD4+ T-cell partnership, leading to long-term anti-tumor immune memory, and improved OV therapeutic efficacy.
Collapse
Affiliation(s)
- Jeffrey M Grimes
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadashib Ghosh
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shamza Manzoor
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Li X Li
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Monica M Moran
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer C Clements
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sherrie D Alexander
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
- The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|