1
|
Cao H, Tao Y, Jin R, Li P, Zhou H, Cheng J. Proteomics reveals the key transcription-related factors mediating obstructive nephropathy in pediatric patients and mice. Ren Fail 2025; 47:2443032. [PMID: 39743726 DOI: 10.1080/0886022x.2024.2443032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Obstructive nephropathy is one of the leading causes of kidney injury in infants and children. Increasing evidence has shown that transcription-related factors (TRFs), including transcription factors and cofactors, are associated with kidney diseases. However, a global landscape of dysregulated TRFs in pediatric patients with obstructive nephropathy is lacking. METHODS We mined the data from our previous proteomic study for the TRF profile in pediatric patients with obstructive nephropathy and unilateral ureteral obstruction (UUO) mice. Gene ontology (GO) analysis was performed to determine pathways that were enriched in the dysregulated TRFs. We then took advantage of kidney samples from patients and UUO mice to verify the selected TRFs by immunoblots. RESULTS The proteomes identified a total of 140 human TRFs with 28 upregulated and 1 downregulated, and 160 murine TRFs with 88 upregulated and 1 downregulated (fold change >2 or <0.5). These dysregulated TRFs were enriched in the inflammatory signalings, such as janus kinase/signal transducer and activator of transcription (JAK-STAT) and tumor necrosis factor (TNF) pathways. Of note, the transforming growth factor (TGF)-β signaling pathway, which is the master regulator of organ fibrosis, was enriched in both patients and mice. Cross-species analysis showed 16 key TRFs that might mediate obstructive nephropathy in patients and UUO mice. Moreover, we verified a significant dysregulation of three previously unexplored TRFs; prohibitin (PHB), regulatory factor X 1 (RFX1), and activity-dependent neuroprotector homeobox protein (ADNP), in patients and mice. CONCLUSIONS Our study uncovered key TRFs in the obstructed kidneys and provided additional molecular insights into obstructive nephropathy.
Collapse
Affiliation(s)
- Hualin Cao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuandong Tao
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Ruyue Jin
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Pin Li
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Huixia Zhou
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Fang X, Zhao J, Wu S, Liao P, Guan G. The intestinal toxicity mechanisms of triclosan and triclocarban and their possible clinical nutritional intervention mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126396. [PMID: 40345375 DOI: 10.1016/j.envpol.2025.126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/20/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Triclosan (TCS) and triclocarban (TCC) are widely used as antimicrobial agents in personal care products. Their widespread use has become a potential environmental contaminant. This review reviews the mechanisms of intestinal toxicity of TCS and TCC and their potential nutritional intervention strategies. TCS and TCC can be metabolized to glucuronic acid conjugates in the host and subsequently uncoupled by microorganisms in the intestine to regenerate free forms of TCS and TCC. TCS and TCC are unique metabolic pathways that lead to accumulation in the gut, altering the structure of intestinal flora, increasing the relative abundance of pathogenic bacteria, while reducing the abundance of beneficial bacteria, thereby disrupting the balance of intestinal flora. In addition, they can interfere with the self-renewal and differentiation of ISCs, thereby weakening intestinal barrier function. TCS and TCC can also activate the TLR4-NFκB signaling pathway, inducing and exacerbating inflammatory responses. These mechanisms together lead to intestinal toxicity and have a significant negative impact on intestinal health. In order to cope with the intestinal toxicity caused by these mechanisms of action, this paper believes that prebiotics, probiotics, vitamins, minerals and herbal extracts can be used as potential nutritional interventions to reduce the intestinal toxicity of TCS and TCC by regulating intestinal microbiota, enhancing intestinal barrier function and inhibiting inflammatory response. Although preliminary studies have shown the potential benefits of these interventions, their specific efficacy and safety still need further study.
Collapse
Affiliation(s)
- Xinyu Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Jinfeng Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Simin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, 410219, China.
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
3
|
Li XJ, Wu S, Liu ZH, Liu AA, Peng HS, Wang YJ, Chen YX, Liu JG, Xu C. CXCR2 modulates chronic pain comorbid depression in mice by regulating adult neurogenesis in the ventral dentate gyrus. Acta Pharmacol Sin 2025; 46:1567-1579. [PMID: 39972170 PMCID: PMC12098724 DOI: 10.1038/s41401-025-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Research shows that chronic pain may induce depression-like behaviors through impairing adult hippocampal neurogenesis (AHN) in the ventral dentate gyrus (DG), whereas restoration of AHN may effectively alleviate depression. The C-X-C motif chemokine receptor 2 (CXCR2) is a chemokine receptor involved in various neural activities of the hippocampus including AHN. In this study we investigated the role of CXCR2 of neural stem cells (NSCs) in the ventral DG in regulating both AHN and depression-like behaviors of mice with chronic neuropathic pain. Chronic neuropathic pain was induced in mice by the spared nerve injury (SNI) surgery; mechanical allodynia and depression-like behaviors were monitored, then mouse DG was collected for analysis. We observed that chronic neuropathic pain significantly decreased the number of immature neurons in the ventral DG by inhibiting the neuronal differentiation of NSCs; specific overexpression of CXCR2 in NSCs by injecting the adeno-associated virus (AAV) into the DG restored adult neurogenesis accompanied by alleviated depression-like behaviors in SNI mice. In contrast, the knockdown of CXCR2 in hippocampal NSCs of naive mice was sufficient to inhibit adult neurogenesis, inducing depression-like behaviors. Moreover, we found that the Wnt3a/β-catenin pathway was downregulated in the ventral DG of SNI mice, which was restored after CXCR2 overexpression or infusing a CXCR2 agonist CXCL1 into the ventral DG. We conclude that CXCR2 expressed in hippocampal NSCs is crucial for regulating adult neurogenesis and chronic pain-induced depression-like behavior, thus representing a new target for the treatment of chronic pain comorbid depression.
Collapse
Affiliation(s)
- Xiao-Jie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China
- Department of Rehabilitation Health, Wuhan Hankou Hospital, Wuhan, 430000, China
| | - Shuo Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China
| | - Zi-Han Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - An-An Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Sheng Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China
| | - Yu-Jun Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Ye-Xiang Chen
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
| | - Jing-Gen Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
| |
Collapse
|
4
|
Shapira G, Karmon G, Hacohen-Kleiman G, Ganaiem M, Shazman S, Theotokis P, Grigoriadis N, Shomron N, Gozes I. ADNP is essential for sex-dependent hippocampal neurogenesis, through male unfolded protein response and female mitochondrial gene regulation. Mol Psychiatry 2025; 30:2696-2706. [PMID: 39715923 DOI: 10.1038/s41380-024-02879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Essential for brain formation and protective against tauopathy, activity-dependent neuroprotective protein (ADNP) is critical for neurogenesis and cognitive functions, while regulating steroid hormone biogenesis. As such, de novo mutations in ADNP lead to syndromic autism and somatic ADNP mutations parallel Alzheimer's disease progression. Furthermore, clinical trials with the ADNP fragment NAP (the investigational drug davunetide) showed efficacy in women suffering from the tauopathy progressive supranuclear palsy and differentially boosted memory in men (spatial) and women (verbal), exhibiting prodromal Alzheimer's disease. While autism is more prevalent in boys and Alzheimer's disease in women, both involve impaired neurogenesis. Here, we asked whether ADNP sex-dependently regulates neurogenesis. Using bromodeoxyuridine (BrdU) as a marker of neurogenesis, we identified two-fold higher labeling in the hippocampal sub-ventricular zone of ADNP-intact male versus female mice. Adnp haplo-insufficient (Adnp+/-) mice or mice CRSIPR/Cas9-edited to present the most prevalent neurodevelopmental ADNP syndrome mutation, p.Tyr718* (Tyr) showed dramatic reductions in male BrdU incorporation, resulting in mutated females presenting higher labeling than males. Treatment with NAP compensated for the male reduction of BrdU labeling. Mechanistically, hippocampal RNAseq revealed male-specific Tyr down-regulation of endoplasmic reticulum unfolded protein response genes critical for sex-dependent organogenesis. Newly discovered mitochondrial accessibility of ADNP was inhibited by the Tyr718* mutation further revealing female-specific Tyr downregulation of mitochondrial ATP6. NAP moderated much of the differential expression caused by p.Tyr718*, accompanied by the down-regulation of neurotoxic, pro-inflammatory and pro-apoptotic genes. Thus, ADNP is a key regulator of sex-dependent neurogenesis that acts by controlling canonical pathways, with NAP compensating for fundamental ADNP deficiencies, striding toward clinical development targeting the ADNP syndrome and related neurodevelopmental/neurodegenerative diseases.
Collapse
Affiliation(s)
- Guy Shapira
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gidon Karmon
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Hacohen-Kleiman
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Maram Ganaiem
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, 4353701, Israel
| | - Paschalis Theotokis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
5
|
Choi J, Jang E, Jeong H, Hwang J, Cho HH, Kim BC, Jang G, Jeong HS, Jang S. Novel miRNAs, miR-937-3p, miR-4536-3p, and miR-4650-5p, can Modulate Neuronal Differentiation via the Wnt/MAPK Pathway in SH-SY5Y Cells. Mol Neurobiol 2025:10.1007/s12035-025-05002-4. [PMID: 40316877 DOI: 10.1007/s12035-025-05002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes, including cell differentiation. Despite their potential, their role in promoting neuronal differentiation by targeting neuronal genes and modulating signaling pathways is poorly understood. In this study, we aimed to elucidate the functions of miR-937-3p-, miR-4536-3p-, and miR-4650-5p-inhibitors in the neuronal differentiation of SH-SY5Y cells. We also aimed to determine the underlying mechanisms via qPCR, luciferase assay, immunocytochemistry, and western blotting analysis. Our findings confirmed that miRNAs participated in neuronal differentiation and regulated the Wnt/MAPK signaling pathway. Specifically, we identified Netrin1 (NTN1), Drebrin1 (DBN1), and Netrin-G1 (NTNG1) as target genes of miR-937-3p, miR-4536-3p, and miR-4650-5p, respectively. The treatment with the miRNA inhibitors increased the expression levels of neuronal markers such as TUBB3, NEFH, NEFM, NEFL, and MAP2. It also enhanced the protein expression levels of Wnt and MAPK signaling. Therefore, the inhibitors of miR-937-3p, miR-4536-3p, and miR-4650-5p could promote neuronal differentiation by targeting neuronal genes and activating the Wnt/MAPK signaling pathway.
Collapse
Affiliation(s)
- Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Eunjae Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-Gun, Jeollanamdo, 58141, Republic of Korea
| | - Haewon Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea.
| |
Collapse
|
6
|
Galushkin A, Gozes I. Intranasal NAP (Davunetide): Neuroprotection and circadian rhythmicity. Adv Drug Deliv Rev 2025; 220:115573. [PMID: 40185278 DOI: 10.1016/j.addr.2025.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
In this review we examine the neuroprotective potential of NAP (davunetide), a small peptide derived from Activity-Dependent Neuroprotective Protein (ADNP), in the context of neurodevelopmental and neurodegenerative disorders. ADNP, a protein essential for brain development and function, is associated with tauopathy-related diseases, such as Alzheimer's Disease (AD), and circadian rhythm regulation. NAP enhances microtubule stability and prevents tauopathy. In preclinical studies, NAP shows promise in improving cognitive performance and correcting behavioral deficits in different models. Clinical studies on NAP (davunetide) administered via intranasal delivery have demonstrated its safety, favorable bioavailability, and potential efficacy in improving cognitive function, making it a viable therapeutic option. In the pure tauopathy, progressive supranuclear palsy, NAP (davunetide) significantly slowed disease progression in women in a phase II-III clinical trial. Additionally, the complex interactions between ADNP, associated pathways, and circadian regulation and the extensive NAP compensation upon ADNP deficiency attest to further clinical development. Thus, NAP is an example of a reductionist approach in drug delivery, replacing/enhancing the critical large ADNP-related pathways including dysregulated microtubules and tauopathy with a small brain bioavailable investigational drug, davunetide.
Collapse
Affiliation(s)
- Artur Galushkin
- Dr. Diana and Zelman Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Illana Gozes
- Dr. Diana and Zelman Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
7
|
Li K, Li M, Liu Z, Yang J, Li J, Jiang T. NLK knockdown in hBMSCs enhance repair of critical-size bone defects by modulating neurogenic and osteogenic differentiation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167870. [PMID: 40280200 DOI: 10.1016/j.bbadis.2025.167870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Nemo-like kinase (NLK), an evolutionarily conserved MAP kinase-related kinase, is highly expressed in neural tissues and critically regulates cell proliferation, migration, and apoptosis by regulating numerous transcriptional molecules. Despite the widespread application of mesenchymal stem cells (MSCs) in regenerative medicine, the functional role and molecular mechanisms of NLK in MSC-mediated tissue repair remained poorly understood. Here, the dual regulatory effects of NLK on both neurogenic and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) were investigated. The results showed that NLK acted as a potent inhibitor of hBMSC neurogenesis in vitro and suppressed osteogenesis both in vitro and in vivo. Mechanistically, NLK downregulated the transcriptional coactivators LEF1 and TCF4, thereby impairing their pro-differentiation functions during neural and bone formation. These findings suggested that NLK-mediated suppression of LEF1/TCF4 signaling might hinder endogenous bone repair by dual inhibition of hBMSC neurogenic and osteogenic capacities. Targeting this pathway could offer novel therapeutic strategies for enhancing bone defect regeneration and inform the design of advanced biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Ke Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Mengdi Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Jingwen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Jian Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| | - Ting Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| |
Collapse
|
8
|
李 梦, 雷 蕾, 刘 中, 李 健, 姜 婷. [Gene silencing of Nemo-like kinase promotes neuralized tissue engineered bone regeneration]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2025; 57:227-236. [PMID: 40219550 PMCID: PMC11992439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Indexed: 04/14/2025]
Abstract
OBJECTIVE To identify the role of gene silencing or overexpression of Nemo-like kinase (NLK) during the process of neural differentiation of human mesenchymal stem cells (hBMSCs), and to explore the effect of NLK downregulation by transfection of small interfering RNA (siRNA) on promoting neuralized tissue engineered bone regeneration. METHODS NLK-knockdown hBMSCs were established by transfection of siRNA (the experimental group was transfected with siRNA silencing the NLK gene, the control group was transfected with control siRNA and labeled as negative control group), and NLK-overexpression hBMSCs were established using lentivirus vector transfection technique (the experimental group was infected with lentivirus overexpressing the NLK gene, the control group was infected with an empty vector lentivirus and labeled as the empty vector group). After neurogenic induction, quantitative real-time polymerase chain reaction (qPCR) was used to detect the expression of neural-related gene, and Western blot as well as immunofluorescence staining about several specific neural markers were used to evaluate the neural differentiation ability of hBMSCs.6-week-old male nude mice were divided into 4 groups: ① β-tricalcium phosphate (β-TCP) group, ② β-TCP+ osteogenic induced hBMSCs group, ③ β-TCP+ siRNA-negative control (siRNA-NC) transfection hBMSCs group, ④ β-TCP+ siRNA-NLK transfection hBMSCs group. Four weeks after the subcutaneous ectopic osteogenesis models were established, the osteogenesis and neurogenesis were detected by hematoxylin-eosin (HE) staining, Masson staining and tissue immunofluorescence assay. Statistical analysis was conducted by independent sample t test. RESULTS After gene silencing of NLK by siRNA in hBMSCs, neural-related genes, including the class Ⅲ β-tubulin (TUBB3), microtubule association protein-2 (MAP2), soluble protein-100 (S100), nestin (NES), NG2 proteoglycan (NG2) and calcitonin gene-related peptide (CGRP), were increased significantly in NLK-knockdown hBMSCs compared with the negative control group(P < 0.05), and the expression levels of TUBB3 and MAP2 of the NLK silencing group were also increased. Oppositely, after NLK was overexpressed using lentivirus vector transfection technique, TUBB3, MAP2, S100 and NG2 were significantly decreased in NLK-overexpression hBMSCs compared with the empty vector group (P < 0.05), and the expression level of TUBB3 was also decreased. 4 weeks after the subcutaneous ectopic osteogenesis model was established, more mineralized tissues were formed in the β-TCP+ siRNA-NLK transfection hBMSCs group compared with the other three groups, and the expression of BMP2 and S100 was higher in the β-TCP+ siRNA-NLK transfection hBMSCs group than in the other groups. CONCLUSION Gene silencing of NLK by siRNA promoted the ability of neural differentiation of hBMSCs in vitro and promoted neuralized tissue engineered bone formation in subcutaneous ectopic osteogenic models in vivo in nude mice.
Collapse
Affiliation(s)
- 梦迪 李
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - 蕾 雷
- 首都医科大学附属北京友谊医院口腔科,北京 100050Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - 中宁 刘
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - 健 李
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - 婷 姜
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
9
|
Zhang F, Gao K, Zhang J, Li S, Li Y, Wang J, Wu Y, Jiang Y, Wu C. Bexarotene Promotes Neuroblastoma SH-SY5Y Cell Differentiation to Mature Neurons with Decreased Proliferation. Mol Neurobiol 2025:10.1007/s12035-025-04888-4. [PMID: 40229457 DOI: 10.1007/s12035-025-04888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
Bexarotene is a retinoid X receptor (RXR) pharmacological agonist that has been demonstrated to treat cutaneous T-cell lymphoma and promising therapeutic potential for neurological diseases. But it still remains unclear whether bexarotene participates in regulation of neuroblastoma. Human neuroblastoma SH-SY5Y cells were used as a model to investigate the neuronal differentiation impact of bexarotene. Bexarotene-cultured SH-SY5Y cells showed changes in cell morphology, adopting pyramidal shapes and extending neurites, increased expression of neuronal marker β-tubulin III and mature neurons marker neurofilament M and upregulation of neuronal differentiation markers including growth-associated protein 43 (GAP43) and synaptophysin (SYP). SH-SY5Y cells induced by bexarotene increased the expression of GABAergic marker glutamate decarboxylase (GAD1) and dopaminergic marker TH, but not glutamatergic marker glutamate-ammonia ligase (GLUL) and cholinergic marker solute carrier family 18 member 1 (SLC18A1). Functional enrichment analysis of RNAseq data and subsequent cell experiments revealed that the PI3K-Akt axis is the dominant signaling pathway promoting the differentiation of SH-SY5Y cells into mature and functional neurons in response to bexarotene. Additionally, we observed that SH-SY5Y cells show reduced proliferation rates accompanied by decreased expression of cyclin-dependent kinase 6 (CDK6) and increased expression of cyclin-dependent kinase 1 (CDK1) following 7-day exposure to bexarotene, suggesting bexarotene induces a quiescent state in SH-SY5Y cells. SH-SY5Y cells can be induced to mature neurons with decreased proliferation induced by bexarotene via PI3K-Akt axis. It indicates bexarotene has the potential to treat neuroblastoma.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Junjiao Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Sihan Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yue Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| | - Congying Wu
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Tongzhou District, No.116 Cuiping West Street, Beijing, 101121, China.
| |
Collapse
|
10
|
Gregor A, Distel L, Ekici AB, Kirchner P, Uebe S, Krumbiegel M, Turan S, Winner B, Zweier C. Proteasomal activation ameliorates neuronal phenotypes linked to FBXO11-deficiency. HGG ADVANCES 2025; 6:100425. [PMID: 40114442 PMCID: PMC11999343 DOI: 10.1016/j.xhgg.2025.100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Haploinsufficiency of FBXO11, encoding a ubiquitin ligase complex subunit, is associated with a variable neurodevelopmental disorder. So far, the underlying nervous system-related pathomechanisms are poorly understood, and specific therapies are lacking. Using a combined approach, we established an FBXO11-deficient human stem cell-based neuronal model using CRISPR-Cas9 and a Drosophila model using tissue-specific knockdown techniques. We performed transcriptomic analyses on iPSC-derived neurons and molecular phenotyping in both models. RNA sequencing revealed disrupted transcriptional networks related to processes important for neuronal development, such as differentiation, migration, and cell signaling. Consistently, we found that loss of FBXO11 leads to neuronal phenotypes such as impaired neuronal migration and abnormal proliferation/differentiation balance in human cultured neurons and impaired dendritic development and behavior in Drosophila. Interestingly, application of three different proteasome-activating substances could alleviate FBXO11-deficiency-associated phenotypes in both human neurons and flies. One of these substances is the long-approved drug Verapamil, opening the possibility of drug repurposing in the future. Our study shows the importance of FBXO11 for neurodevelopment and highlights the reversibility of related phenotypes, opening an avenue for potential development of therapeutic approaches through drug repurposing.
Collapse
Affiliation(s)
- Anne Gregor
- Department of Human Genetics, Inselspital University Hospital Bern, University of Bern, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland.
| | - Laila Distel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Institute of Tissue Medicine and Pathology, University of Bern, 3010 Bern, Switzerland
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Soeren Turan
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- Department of Human Genetics, Inselspital University Hospital Bern, University of Bern, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
11
|
Teter OM, McQuade A, Hagan V, Liang W, Dräger NM, Sattler SM, Holmes BB, Castillo VC, Papakis V, Leng K, Boggess S, Nowakowski TJ, Wells J, Kampmann M. CRISPRi-based screen of autism spectrum disorder risk genes in microglia uncovers roles of ADNP in microglia endocytosis and synaptic pruning. Mol Psychiatry 2025:10.1038/s41380-025-02997-z. [PMID: 40188316 DOI: 10.1038/s41380-025-02997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with complex biology. The identification of ASD risk genes from exome-wide association studies and de novo variation analyses has enabled mechanistic investigations into how ASD-risk genes alter development. Most functional genomics studies have focused on the role of these genes in neurons and neural progenitor cells. However, roles for ASD risk genes in other cell types are largely uncharacterized. There is evidence from postmortem tissue that microglia, the resident immune cells of the brain, appear activated in ASD. Here, we used CRISPRi-based functional genomics to systematically assess the impact of ASD risk gene knockdown on microglia activation and phagocytosis. We developed an iPSC-derived microglia-neuron coculture system and high-throughput flow cytometry readout for synaptic pruning to enable parallel CRISPRi-based screening of phagocytosis of beads, synaptosomes, and synaptic pruning. Our screen identified ADNP, a high-confidence ASD risk genes, as a modifier of microglial synaptic pruning. We found that microglia with ADNP loss have altered endocytic trafficking, remodeled proteomes, and increased motility in coculture.
Collapse
Affiliation(s)
- Olivia M Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda McQuade
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Venus Hagan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Weiwei Liang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Nina M Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M Sattler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Brandon B Holmes
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vincent Cele Castillo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Vasileios Papakis
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Steven Boggess
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94158, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - James Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Xie Y, Ouyang T, Xu A, Bian Q, Zhu B, Zhao M. Quercetin Improves Hippocampal Neurogenesis in Depression by Regulating the Level of Let-7e-5p in Microglia Exosomes. Drug Des Devel Ther 2025; 19:2189-2203. [PMID: 40160967 PMCID: PMC11951924 DOI: 10.2147/dddt.s493779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Background Adult hippocampal neurogenesis plays a beneficial role in the treatment of depression. The precise mechanism by which let-7e-5p functions as a potential marker for depression remains unclear. Quercetin, a flavonoid compound, exhibits antidepressant effects; however, further investigation is needed to elucidate its regulatory effect and mechanism on hippocampal neurogenesis. Methods Chronic unpredictable mild stress (CUMS) was employed to induce depressive-like signaling and cognitive impairment in mice, while quercetin was administered via oral gavage. The symptoms of the mice were evaluated using various signaling methods. The expression levels of microglia, neural stem cells, and let-7e-5p in the dentate gyrus (DG) area of hippocampus were assessed using pathological observation methods. The expression levels of let-7e-5p and the Wnt1/β-catenin signaling pathways in the hippocampal DG of mice were assessed using qRT-PCR and Western blotting, respectively. The exosomes from peripheral blood were isolated and identified, followed by the detection of expression levels for microglia markers CD11b and TMEM119. We isolated hippocampal neural stem cells (NSCs) and co-cultured them with exosomes secreted by BV2 cells under LPS stimulation to observe the proliferation of NSCs and the generation of new neurons. The targeting relationship between let-7e-5p and Wnt1 was ultimately confirmed through the utilization of a dual luciferase reporter assay. Results (1) Quercetin ameliorated depression-like behaviors in mice induced by CUMS and restored neurogenesis in the DG region of the hippocampus. (2) Quercetin suppressed the secretion of microglia-derived exosomes carrying let-7e-5p in the DG, which exerted effects on NSC. (3) let-7e-5p regulates depression-related neurogenesis through targeting the Wnt1/β-catenin signaling pathway. Conclusion The inhibitory effect of let-7e-5p in microglial exosomes on depression-associated neurogenesis is mediated through the blockade of the Wnt1/β-catenin signaling pathway, which can be effectively reversed by Quercetin treatment.
Collapse
Affiliation(s)
- Ying Xie
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
| | - Tongxuan Ouyang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
| | - Anli Xu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
| | - Qinglai Bian
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
| | - Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430061, People’s Republic of China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430061, People’s Republic of China
| |
Collapse
|
13
|
Bieluszewska A, Wulfridge P, Fang KC, Hong Y, Sawada T, Erwin J, Song H, Ming GL, Sarma K. Transcriptomic Analysis Uncovers an Unfolded Protein Response in ADNP Syndrome. Mol Cell Biol 2025; 45:143-153. [PMID: 39950682 DOI: 10.1080/10985549.2025.2463892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 04/16/2025] Open
Abstract
Chromatin regulators are frequently mutated in autism spectrum disorders, but in most cases how they cause disease is unclear. Mutations in the activity dependent neuroprotective protein (ADNP) causes ADNP syndrome, which is characterized by intellectual deficiency and developmental delays. To identify mechanisms that contribute to ADNP syndrome, we used induced pluripotent stem cells derived from ADNP syndrome patients as a model to test the effects of syndromic ADNP mutations on gene expression and neurodifferentiation. We found that some ADNP mutations result in truncated ADNP proteins, which displayed aberrant subcellular localization. Gene expression analyses revealed widespread transcriptional deregulation in all tested mutants. Interestingly, mutants that show presence of ADNP fragments show ER stress as evidenced by activation of the unfolded protein response (UPR). The mutants showing the greatest UPR pathway activation associated with the most severe neurodifferentiation and survival defects. Our results reveal the potential to explore UPR activation as a new biomarker for ADNP syndrome severity and perhaps also in other ASDs where mutations result in presence of truncated proteins.
Collapse
Affiliation(s)
- Anna Bieluszewska
- Genome Regulation and Cell Signaling Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Wulfridge
- Genome Regulation and Cell Signaling Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kuo-Chen Fang
- Genome Regulation and Cell Signaling Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yan Hong
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Jennifer Erwin
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Hongjun Song
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kavitha Sarma
- Genome Regulation and Cell Signaling Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Wang M, Han Y, An W, Wang X, Chen F, Lu J, Meng Y, Li Y, Wang Y, Li J, Zhao C, Chai R, Wang H, Liu W, Xu L. Wnt signalling facilitates neuronal differentiation of cochlear Frizzled10-positive cells in mouse cochlea via glypican 6 modulation. Cell Commun Signal 2025; 23:50. [PMID: 39871249 PMCID: PMC11771042 DOI: 10.1186/s12964-025-02039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025] Open
Abstract
Degeneration of cochlear spiral ganglion neurons (SGNs) leads to irreversible sensorineural hearing loss (SNHL), as SGNs lack regenerative capacity. Although cochlear glial cells (GCs) have some neuronal differentiation potential, their specific identities remain unclear. This study identifies a distinct subpopulation, Frizzled10 positive (FZD10+) cells, as an important type of GC responsible for neuronal differentiation in mouse cochlea. FZD10 + cells can differentiate into various SGN subtypes in vivo, adhering to natural proportions. Wnt signaling enhances the ability of FZD10 + cells to function as neural progenitors and increases the neuronal excitability of the FZD10-derived neurons. Single-cell RNA sequencing analysis characterizes FZD10-derived differentiating cell populations, while crosstalk network analysis identifies multiple signaling pathways and target genes influenced by Wnt signaling that contribute to the function of FZD10 + cells as neural progenitors. Pseudotime analysis maps the differentiation trajectory from proliferated GCs to differentiating neurons. Further experiments indicate that glypican 6 (GPC6) may regulate this neuronal lineage, while GPC6 deficiency diminishes the effects of Wnt signaling on FZD10-derived neuronal differentiation and synapse formation. These findings suggest the critical role of Wnt signaling in the neuronal differentiation derived from cochlear FZD10 + cells and provide insights into the mechanisms potentially involved in this process.
Collapse
Affiliation(s)
- Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yan Li
- Translational Medical Research Centre, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, School of Medicine, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Renjie Chai
- Key Laboratory of Developmental Genes and Human Diseases, School of Medicine, Ministry of Education, Southeast University, Nanjing, 210009, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China.
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China.
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China.
| |
Collapse
|
15
|
Clémot-Dupont S, Lourenço Fernandes JA, Larrigan S, Sun X, Medisetti S, Stanley R, El Hankouri Z, Joshi SV, Picketts DJ, Shekhar K, Mattar P. The chromatin remodeler ADNP regulates neurodevelopmental disorder risk genes and neocortical neurogenesis. Proc Natl Acad Sci U S A 2025; 122:e2405981122. [PMID: 39808658 PMCID: PMC11760920 DOI: 10.1073/pnas.2405981122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo ADNP mutations lead to intellectual disability and autism spectrum disorder. However, germline Adnp knockout mice were previously shown to exhibit early embryonic lethality, obscuring subsequent roles for the ChAHP complex in neurogenesis. To circumvent this early developmental arrest, we generated a conditional Adnp mutant allele. Using single-cell transcriptomics, cut&run-seq, and histological approaches, we show that during neocortical development, Adnp orchestrates the production of late-born, upper-layer neurons through a two-step process. First, Adnp is required to sustain progenitor proliferation specifically during the developmental window for upper-layer cortical neurogenesis. Accordingly, we found that Adnp recruits the ChAHP subunit Chd4 to genes associated with progenitor proliferation. Second, in postmitotic differentiated neurons, we define a network of risk genes linked to NDDs that are regulated by Adnp and Chd4. Taken together, these data demonstrate that ChAHP is critical for driving the expansion of upper-layer cortical neurons and for regulating neuronal gene expression programs, suggesting that these processes may potentially contribute to NDD etiology.
Collapse
Affiliation(s)
- Samuel Clémot-Dupont
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - José Alex Lourenço Fernandes
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Sarah Larrigan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Xiaoqi Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Suma Medisetti
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Rory Stanley
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Ziyad El Hankouri
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Shrilaxmi V. Joshi
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA94720
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Pierre Mattar
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| |
Collapse
|
16
|
Liang Q, Zhang C, Lv P, Huang Y, Zhao H, Jiang S, Xu W. The important role of the Wnt/β-catenin signaling pathway in small molecules mediated gingival mesenchymal stem cells transdifferentiate into neuron-like cells. Arch Oral Biol 2025; 169:106115. [PMID: 39488928 DOI: 10.1016/j.archoralbio.2024.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Given their neural crest origin, gingival mesenchymal stem cells (GMSCs) possess high neurogenic potential, which makes them suitable for cell replacement therapy against neurodegenerative diseases. This study investigated whether GMSCs can be transdifferentiated into neurons in vitro using a protocol involving small molecules VCRFY (VPA, CHIR99021, Repsox, Forskolin, and Y-27632). The regulatory mechanisms of key signaling pathways were also investigated. METHODS Neuronal induction of GMSCs was conducted using a small molecules-based protocol over 7 days, which included the evaluation of cell morphology, proliferation, expressions of neurogenic markers, and intracellular calcium oscillation. The activation of canonical the Wnt signaling pathway was assessed by examining the protein content and subcellular localization of β-catenin. RESULTS Small molecules-treated GMSCs displayed neuronal morphology and increased expression of neurogenic markers, including class III beta-tubulin (TUJ1), neuron-specific enolase (NSE), microtube-associated protein 2 (MAP2), and neurofilament medium (NFM), verified through RT-qPCR, western blotting, and immunocytochemistry. Based on the results of Fluo-4 AM calcium flux assay, small molecules-treated GMSCs exhibited enhanced electrophysiological activity. GMSC proliferation halted after 2 days of treatment. Among the small molecules, CHIR99021 exhibited the highest neuronal induction efficiency. Furthermore, activation of the Wnt/β-catenin signaling pathway augmented neuronal differentiation. CONCLUSIONS Small molecule-based cellular reprogramming can efficiently generate neurons from GMSCs, with Wnt/β-catenin signaling to play a critical role in neuronal induction.
Collapse
Affiliation(s)
- Qiuying Liang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Chuhan Zhang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Peiyi Lv
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Yongmao Huang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Hang Zhao
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Shan Jiang
- Department of Periodontics and Oral Medicine, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China.
| | - Wenan Xu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China.
| |
Collapse
|
17
|
Zhang Q, Chen Y, Huang W, Zhou J, Yang D. Melittin promotes the proliferation of Schwann cells in hyperglycemic environment by up‑regulating the Crabp2/Wnt/β‑catenin signaling pathway. Mol Med Rep 2025; 31:5. [PMID: 39450531 PMCID: PMC11529206 DOI: 10.3892/mmr.2024.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024] Open
Abstract
The present study aimed to explore the effect of melittin (MLT) on the growth of Schwann cells (SCs) in high glucose conditions and to understand the mechanisms involved. The goal was to provide a theoretical basis for using MLT in the treatment of diabetic peripheral neuropathy (DPN). The CCK‑8 assay was used to measure cell activity at different concentrations of glucose and MLT. Flow cytometry was employed to analyze the effect of MLT on cell cycle phases and apoptosis in SCs under high glucose conditions. To identify differentially expressed proteins, 4D label‑free quantitative proteomics with liquid chromatography‑mass spectrometry was used, followed by biological analysis to explore potential mechanisms. PCR, western blotting and immunofluorescence were conducted to confirm these mechanisms. Melittin (0.2 µg/ml) increased the proliferation of SCs in a high glucose environment. Flow cytometry showed that after MLT treatment, the proportion of cells in the G2/M+S phase increased and the combined ratio of early and late apoptosis decreased under high glucose conditions. Proteomics identified 1,784 proteins with significant changes in expression; 725 were upregulated, and 1,059 were downregulated. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the differentially expressed proteins were mainly involved in metabolic pathways and neurodegenerative disease pathways. PCR, western blotting and immunofluorescence confirmed the increase in Crabp2, Wnt3a, C‑Jun, CDK4, CyclinD1 and proliferating cell nuclear antigen. In high glucose conditions, MLT protects SCs from glucose toxicity by upregulating the Crabp2/Wnt/β‑catenin signaling pathway, potentially providing a new treatment for DPN.
Collapse
Affiliation(s)
- Qiuyi Zhang
- National Immunological Laboratory of Traditional Chinese Medicine Affiliated to Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Yuxia Chen
- National Immunological Laboratory of Traditional Chinese Medicine Affiliated to Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Wei Huang
- National Immunological Laboratory of Traditional Chinese Medicine Affiliated to Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Jiaqian Zhou
- National Immunological Laboratory of Traditional Chinese Medicine Affiliated to Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Dawei Yang
- Department of Gerontology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533099, P.R. China
| |
Collapse
|
18
|
He Y, Zhao Y, Lv RJ, Dong N, Wang X, Yu Q, Yue HM. Curcumin activates the Wnt/β-catenin signaling pathway to alleviate hippocampal neurogenesis abnormalities caused by intermittent hypoxia: A study based on network pharmacology and experimental verification. Int Immunopharmacol 2024; 143:113299. [PMID: 39362017 DOI: 10.1016/j.intimp.2024.113299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
The purpose of this work was to investigate how curcumin (Cur) might enhance cognitive function and to gain a better understanding of the molecular mechanisms behind Cur's impacts on neurogenesis deficits brought on by intermittent hypoxia (IH). Using network pharmacology, we explored possible targets for Cur's obstructive sleep apnea (OSA) therapy. We established an IH model using C57BL/6 mice and c17.2 cells, and we assessed the influence of Cur on treatment outcomes as well as the effect of IH on cognitive function. Hippocampal damage and neurogenesis, as well as expression of core targets, were then examined. Network pharmacology analysis revealed that Cur has the potential for multi-target, multi-pathway therapy, with CTNNB1 and MYC as core target genes. The Morris water maze test showed that Cur (100 mg/kg, intragastrically) significantly improved cognitive dysfunction induced by IH. The hematoxylin and eosin (H&E) and Nissl staining indicated that Cur could alleviate damage to the hippocampus caused by IH. Immunohistochemistry, immunofluorescence, and western blotting results showed that Cur might promote neurogenesis and upregulate the expression of β-catenin and c-myc. In vitro, Cur (0.5 μM) has a protective effect on IH-induced neural stem cells (NSCs) injury and apoptosis and can restore the Wnt/β-catenin. Cur significantly increased the neurogenesis via the Wnt/β-catenin pathway, providing the scientific groundwork for the development of new treatment strategies for neurological damage linked to OSA.
Collapse
Affiliation(s)
- Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yan Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ren-Jun Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qin Yu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China; Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Hong-Mei Yue
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China; Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
19
|
Yang H, Liang C, Luo J, Liu X, Wang W, Zheng K, Luo D, Hou Y, Guo D, Lin D, Zheng X, Li X. Transplantation of Wnt5a-modified Bone Marrow Mesenchymal Stem Cells Promotes Recovery After Spinal Cord Injury via the PI3K/AKT Pathway. Mol Neurobiol 2024; 61:10830-10844. [PMID: 38795301 PMCID: PMC11584464 DOI: 10.1007/s12035-024-04248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
Spinal cord injury (SCI) is a severe neurological condition that can lead to paralysis or even death. This study explored the potential benefits of bone marrow mesenchymal stem cell (BMSC) transplantation for repairing SCI. BMSCs also differentiate into astrocytes within damaged spinal cord tissues hindering the cell transplantation efficacy, therefore it is crucial to enhance their neuronal differentiation rate to facilitate spinal cord repair. Wnt5a, an upstream protein in the non-classical Wnt signaling pathway, has been implicated in stem cell migration, differentiation, and neurite formation but its role in the neuronal differentiation of BMSCs remains unclear. Thus, this study investigated the role and underlying mechanisms of Wnt5a in promoting neuronal differentiation of BMSCs both in vivo and in vitro. Wnt5a enhanced neuronal differentiation of BMSCs in vitro while reducing astrocyte differentiation. Additionally, high-throughput RNA sequencing revealed a correlation between Wnt5a and phosphoinositide 3-kinase (PI3K)/protein kinase B(AKT) signaling, which was confirmed by the use of the PI3K inhibitor LY294002 to reverse the effects of Wnt5a on BMSC neuronal differentiation. Furthermore, transplantation of Wnt5a-modified BMSCs into SCI rats effectively improved the histomorphology (Hematoxylin and eosin [H&E], Nissl and Luxol Fast Blue [LFB] staining), motor function scores (Footprint test and Basso-Beattie-Bresnahan [BBB]scores)and promoted neuron production, axonal formation, and remodeling of myelin sheaths (microtubule associated protein-2 [MAP-2], growth-associated protein 43 [GAP43], myelin basic protein [MBP]), while reducing astrocyte production (glial fibrillary acidic protein [GFAP]). Therefore, targeting the Wnt5a/PI3K/AKT pathway could enhance BMSC transplantation for SCI treatment.
Collapse
Affiliation(s)
- Haimei Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Chaolun Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Department of Orthopedics (Joint Surgery), Guangdong Province Hospital of Chinese Medicine, Zhuhai, 519015, Guangdong, China
| | - Junhua Luo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiuzhen Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Wanshun Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Kunrui Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Dan Luo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Yu Hou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Da Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Dingkun Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiasheng Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Xing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
20
|
Teter OM, McQuade A, Hagan V, Liang W, Dräger NM, Sattler SM, Holmes BB, Castillo VC, Papakis V, Leng K, Boggess S, Nowakowski TJ, Wells J, Kampmann M. CRISPRi-based screen of Autism Spectrum Disorder risk genes in microglia uncovers roles of ADNP in microglia endocytosis and synaptic pruning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596962. [PMID: 39605704 PMCID: PMC11601228 DOI: 10.1101/2024.06.01.596962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with complex biology. The identification of ASD risk genes from exome-wide association studies and de novo variation analyses has enabled mechanistic investigations into how ASD-risk genes alter development. Most functional genomics studies have focused on the role of these genes in neurons and neural progenitor cells. However, roles for ASD risk genes in other cell types are largely uncharacterized. There is evidence from postmortem tissue that microglia, the resident immune cells of the brain, appear activated in ASD. Here, we used CRISPRi-based functional genomics to systematically assess the impact of ASD risk gene knockdown on microglia activation and phagocytosis. We developed an iPSC-derived microglia-neuron coculture system and high-throughput flow cytometry readout for synaptic pruning to enable parallel CRISPRi-based screening of phagocytosis of beads, synaptosomes, and synaptic pruning. Our screen identified ADNP, a high-confidence ASD risk genes, as a modifier of microglial synaptic pruning. We found that microglia with ADNP loss have altered endocytic trafficking, remodeled proteomes, and increased motility in coculture.
Collapse
Affiliation(s)
- Olivia M Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda McQuade
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Venus Hagan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Weiwei Liang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Nina M Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M Sattler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Brandon B Holmes
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vincent Cele Castillo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Vasileios Papakis
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Steven Boggess
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Wang Q, Wang L, Botchway BOA, Zhang Y, Huang M, Liu X. OTULIN Can Improve Spinal Cord Injury by the NF-κB and Wnt/β-Catenin Signaling Pathways. Mol Neurobiol 2024; 61:8820-8830. [PMID: 38561559 DOI: 10.1007/s12035-024-04134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Spinal cord injury (SCI) is a significant health concern, as it presently has no effective treatment in the clinical setting. Inflammation is a key player in the pathophysiological process of SCI, with a number of studies evidencing that the inhibition of the NF-κB signaling pathway may impede the inflammatory response and improve SCI. OTULIN, as a de-ubiquitination enzyme, the most notable is its anti-inflammatory effect. OTULIN can inhibit the NF-κB signaling pathway to suppress the inflammatory reaction via de-ubiquitination. In addition, OTULIN may promote vascular regeneration through the Wnt/β-catenin pathway in the wake of SCI. In this review, we analyze the structure and physiological function of OTULIN, along with both NF-κB and Wnt/β-catenin signaling pathways. Furthermore, we examine the significant role of OTULIN in SCI through its impairment of the NF-κB signaling pathway, which could open the possibility of it being a novel interventional target for the condition.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Lvxia Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Benson O A Botchway
- Bupa Cromwell Hospital, London, SW5 0TU, UK
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
22
|
Gozes I, Blatt J, Lobyntseva A. Davunetide sex-dependently boosts memory in prodromal Alzheimer's disease. Transl Psychiatry 2024; 14:412. [PMID: 39358355 PMCID: PMC11446927 DOI: 10.1038/s41398-024-03118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The tauopathy inhibitor, davunetide shows sex-dependent efficacy in women suffering from progressive supranuclear palsy. Extending these findings to prodromal Alzheimer's disease, we submitted a double-blind, placebo-controlled, 12 weeks/16 weeks follow-up, davunetide clinical trial results in amnestic mild cognitive impairment (ClinicalTrials.gov ID NCT00422981), to a sex-dependent analysis. METHODS One hundred forty-four individuals, separated into eight groups (1:2 placebo-and 2 doses, 5 mg davunetide/daily or 15 mg davunetide/twice-daily, with matching placebo intranasal volumes), were evaluated. RESULTS Significant dose-dependent cognitive increases were observed in men compared to women with a test of delayed (12 ss) visual matching to the sample. In a test of semantic working memory and attention (digit span), women showed a significant low-dose placebo effect, ensuing in a high dose significant davunetide improvement, over the matched placebo. Correlating anxiety with cognition showed sex-opposing results, with women depicting significant anxiety correlations with delayed matching to sample. DISCUSSION In conclusion, sex-specific prodromal Alzheimer's drug development is encouraged, with davunetide playing a lead initiative role.
Collapse
Affiliation(s)
- Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, School of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel.
| | - Jason Blatt
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, School of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Alexandra Lobyntseva
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, School of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Fan Y, Zhong J. LINC01094: A key long non-coding RNA in the regulation of cancer progression and therapeutic targets. Heliyon 2024; 10:e37527. [PMID: 39309878 PMCID: PMC11415682 DOI: 10.1016/j.heliyon.2024.e37527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
LINC01094 is a long non-coding RNA that plays a crucial role in cancer progression by modulating key signaling pathways, such as PI3K/AKT, Wnt/β-catenin and TGF-β Signaling Pathway Feedback Loop. In this review we summarize the recent research on the functional mechanisms of LINC01094 in various cancers, including its impact on tumor growth, metastasis, and resistance to therapy. We also discuss the therapeutic potential of targeting LINC01094 and highlight the current strategies and challenges in this area. Perspectives on future development of LINC01094-based therapies are also provided.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Yu Fan
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| |
Collapse
|
24
|
Dai N, Su X, Li A, Li J, Jiang D, Wang Y. DVL/GSK3/ISL1 pathway signaling: unraveling the mechanism of SIRT3 in neurogenesis and AD therapy. Stem Cell Res Ther 2024; 15:299. [PMID: 39267160 PMCID: PMC11395226 DOI: 10.1186/s13287-024-03925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The established association between Alzheimer's disease (AD) and compromised neural regeneration is well-documented. In addition to the mitigation of apoptosis in neural stem cells (NSCs), the induction of neurogenesis has been proposed as a promising therapeutic strategy for AD. Our previous research has demonstrated the effective inhibition of NSC injury induced by microglial activation through the repression of oxidative stress and mitochondrial dysfunction by Sirtuin 3 (SIRT3). Nonetheless, the precise role of SIRT3 in neurogenesis remains incompletely understood. METHODS In vivo, SIRT3 overexpression adenovirus was firstly injected by brain stereotaxic localization to affect the hippocampal SIRT3 expression in APP/PS1 mice, and then behavioral experiments were performed to investigate the cognitive improvement of SIRT3 in APP/PS1 mice, as well as neurogenic changes in hippocampal region by immunohistochemistry and immunofluorescence. In vitro, under the transwell co-culture condition of microglia and neural stem cells, the mechanism of SIRT3 improving neurogenesis of neural stem cells through DVL/GSK3/ISL1 axis was investigated by immunoblotting, immunofluorescence and other experimental methods. RESULTS Our findings indicate that the overexpression of SIRT3 in APP/PS1 mice led to enhanced cognitive function and increased neurogenesis. Additionally, SIRT3 was observed to promote the differentiation of NSCs into neurons during retinoic acid (RA)-induced NSC differentiation in vitro, suggesting a potential role in neurogenesis. Furthermore, we observed the activation of the Wnt/ß-catenin signaling pathway during this process, with Glycogen Synthase Kinase-3a (GSK3a) primarily governing NSC proliferation and GSK3ß predominantly regulating NSC differentiation. Moreover, the outcomes of our study demonstrate that SIRT3 exerts a protective effect against microglia-induced apoptosis in neural stem cells through its interaction with DVLs. CONCLUSIONS Our results show that SIRT3 overexpressing APP/PS1 mice have improved cognition and neurogenesis, as well as improved neurogenesis of NSC in microglia and NSC transwell co-culture conditions through the DVL/GSK3/ISL1 axis.
Collapse
Affiliation(s)
- Nan Dai
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xiaorong Su
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, 10# Zhenhai Road, Xiamen, China
| | - Aihua Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jinglan Li
- Department of Pharmacy, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Deqi Jiang
- Department of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Laboratory of Research of New Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
25
|
Toren Y, Ziv Y, Sragovich S, McKinney RA, Barak S, Shazman S, Gozes I. Sex-Specific ADNP/NAP (Davunetide) Regulation of Cocaine-Induced Plasticity. J Mol Neurosci 2024; 74:76. [PMID: 39251453 PMCID: PMC11384652 DOI: 10.1007/s12031-024-02234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 09/11/2024]
Abstract
Cocaine use disorder (CUD) is a chronic neuropsychiatric disorder estimated to effect 1-3% of the population. Activity-dependent neuroprotective protein (ADNP) is essential for brain development and functioning, shown to be protective in fetal alcohol syndrome and to regulate alcohol consumption in adult mice. The goal of this study was to characterize the role of ADNP, and its active peptide NAP (NAPVSIPQ), which is also known as davunetide (investigational drug) in mediating cocaine-induced neuroadaptations. Real time PCR was used to test levels of Adnp and Adnp2 in the nucleus accumbens (NAc), ventral tegmental area (VTA), and dorsal hippocampus (DH) of cocaine-treated mice (15 mg/kg). Adnp heterozygous (Adnp +/-)and wild-type (Adnp +/-) mice were further tagged with excitatory neuronal membrane-expressing green fluorescent protein (GFP) that allowed for in vivo synaptic quantification. The mice were treated with cocaine (5 injections; 15 mg/kg once every other day) with or without NAP daily injections (0.4 µg/0.1 ml) and sacrificed following the last treatment. We analyzed hippocampal CA1 pyramidal cells from 3D confocal images using the Imaris x64.8.1.2 (Oxford Instruments) software to measure changes in dendritic spine density and morphology. In silico ADNP/NAP/cocaine structural modeling was performed as before. Cocaine decreased Adnp and Adnp2 expression 2 h after injection in the NAc and VTA of male mice, with mRNA levels returning to baseline levels after 24 h. Cocaine further reduced hippocampal spine density, particularly synaptically weaker immature thin and stubby spines, in male Adnp+/+) mice while increasing synaptically stronger mature (mushroom) spines in Adnp+/-) male mice and thin and stubby spines in females. Lastly, we showed that cocaine interacts with ADNP on a zinc finger domain identical to ketamine and adjacent to a NAP-zinc finger interaction site. Our results implicate ADNP in cocaine abuse, further placing the ADNP gene as a key regulator in neuropsychiatric disorders. Ketamine/cocaine and NAP treatment may be interchangeable to some degree, implicating an interaction with adjacent zinc finger motifs on ADNP and suggestive of a potential sex-dependent, non-addictive NAP treatment for CUD.
Collapse
Affiliation(s)
- Yael Toren
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yarden Ziv
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
- School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shlomo Sragovich
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Segev Barak
- School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, Israel
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
26
|
López-Cerdán A, Andreu Z, Hidalgo MR, Soler-Sáez I, de la Iglesia-Vayá M, Mikozami A, Guerini FR, García-García F. An integrated approach to identifying sex-specific genes, transcription factors, and pathways relevant to Alzheimer's disease. Neurobiol Dis 2024; 199:106605. [PMID: 39009097 DOI: 10.1016/j.nbd.2024.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Age represents a significant risk factor for the development of Alzheimer's disease (AD); however, recent research has documented an influencing role of sex in several features of AD. Understanding the impact of sex on specific molecular mechanisms associated with AD remains a critical challenge to creating tailored therapeutic interventions. METHODS The exploration of the sex-based differential impact on disease (SDID) in AD used a systematic review to first select transcriptomic studies of AD with data regarding sex in the period covering 2002 to 2021 with a focus on the primary brain regions affected by AD - the cortex (CT) and the hippocampus (HP). A differential expression analysis for each study and two tissue-specific meta-analyses were then performed. Focusing on the CT due to the presence of significant SDID-related alterations, a comprehensive functional characterization was conducted: protein-protein network interaction and over-representation analyses to explore biological processes and pathways and a VIPER analysis to estimate transcription factor activity. RESULTS We selected 8 CT and 5 HP studies from the Gene Expression Omnibus (GEO) repository for tissue-specific meta-analyses. We detected 389 significantly altered genes in the SDID comparison in the CT. Generally, female AD patients displayed more affected genes than males; we grouped said genes into six subsets according to their expression profile in female and male AD patients. Only subset I (repressed genes in female AD patients) displayed significant results during functional profiling. Female AD patients demonstrated more significant impairments in biological processes related to the regulation and organization of synapsis and pathways linked to neurotransmitters (glutamate and GABA) and protein folding, Aβ aggregation, and accumulation compared to male AD patients. These findings could partly explain why we observe more pronounced cognitive decline in female AD patients. Finally, we detected 23 transcription factors with different activation patterns according to sex, with some associated with AD for the first time. All results generated during this study are readily available through an open web resource Metafun-AD (https://bioinfo.cipf.es/metafun-ad/). CONCLUSION Our meta-analyses indicate the existence of differences in AD-related mechanisms in female and male patients. These sex-based differences will represent the basis for new hypotheses and could significantly impact precision medicine and improve diagnosis and clinical outcomes in AD patients.
Collapse
Affiliation(s)
- Adolfo López-Cerdán
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain; Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Irene Soler-Sáez
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Akiko Mikozami
- Oral Health/Brain Health/Total health (OBT) Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Francisco García-García
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.
| |
Collapse
|
27
|
Choi J, Gang S, Ramalingam M, Hwang J, Jeong H, Yoo J, Cho HH, Kim BC, Jang G, Jeong HS, Jang S. BML-281 promotes neuronal differentiation by modulating Wnt/Ca 2+ and Wnt/PCP signaling pathway. Mol Cell Biochem 2024; 479:2391-2403. [PMID: 37768498 DOI: 10.1007/s11010-023-04857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Histone deacetylase (HDAC) inhibitors promote differentiation through post-translational modifications of histones. BML-281, an HDAC6 inhibitor, has been known to prevent tumors, acute dextran sodium sulfate-associated colitis, and lung injury. However, the neurogenic differentiation effect of BML-281 is poorly understood. In this study, we investigated the effect of BML-281 on neuroblastoma SH-SY5Y cell differentiation into mature neurons by immunocytochemistry (ICC), reverse transcriptase PCR (RT-PCR), quantitative PCR (qPCR), and western blotting analysis. We found that the cells treated with BML-281 showed neurite outgrowth and morphological changes into mature neurons under a microscope. It was confirmed that the gene expression of neuronal markers (NEFL, MAP2, Tuj1, NEFH, and NEFM) was increased with certain concentrations of BML-281. Similarly, the protein expression of neuronal markers (NeuN, Synaptophysin, Tuj1, and NFH) was upregulated with BML-281 compared to untreated cells. Following treatment with BML-281, the expression of Wnt5α increased, and downstream pathways were activated. Interestingly, both Wnt/Ca2+ and Wnt/PCP pathways activated and regulated PKC, Cdc42, RhoA, Rac1/2/3, and p-JNK. Therefore, BML-281 induces the differentiation of SH-SY5Y cells into mature neurons by activating the non-canonical Wnt signaling pathway. From these results, we concluded that BML-281 might be a novel drug to differentiation into neuronal cells through the regulation of Wnt signaling pathway to reduce the neuronal cell death.
Collapse
Affiliation(s)
- Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Seoyeon Gang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
- Department of Pre-Medical Science, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Haewon Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jin Yoo
- Department of Physiological Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| |
Collapse
|
28
|
Wang Y, Sun X, Xiong B, Duan M, Sun Y. Genetic and Environmental Factors Co-Contributing to Behavioral Abnormalities in adnp/ adnp2 Mutant Zebrafish. Int J Mol Sci 2024; 25:9469. [PMID: 39273418 PMCID: PMC11395604 DOI: 10.3390/ijms25179469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Human mutations of ADNP and ADNP2 are known to be associated with neural developmental disorders (NDDs), including autism spectrum disorders (ASDs) and schizophrenia (SZ). However, the underlying mechanisms remain elusive. In this study, using CRISPR/Cas9 gene editing technology, we generated adnp and adnp2 mutant zebrafish models, which exhibited developmental delays, brain deficits, and core behavioral features of NDDs. RNA sequencing analysis of adnpa-/-; adnpb-/- and adnp2a-/-; adnp2b-/- larval brains revealed altered gene expression profiles affecting synaptic transmission, autophagy, apoptosis, microtubule dynamics, hormone signaling, and circadian rhythm regulation. Validation using whole-mount in situ hybridization (WISH) and real-time quantitative PCR (qRT-PCR) corroborated these findings, supporting the RNA-seq results. Additionally, loss of adnp and adnp2 resulted in significant downregulation of pan-neuronal HuC and neuronal fiber network α-Tubulin signals. Importantly, prolonged low-dose exposure to environmental endocrine disruptors (EEDs) aggravated behavioral abnormalities in adnp and adnp2 mutants. This comprehensive approach enhances our understanding of the complex interplay between genetic mutations and environmental factors in NDDs. Our findings provide novel insights and experimental foundations into the roles of adnp and adnp2 in neurodevelopment and behavioral regulation, offering a framework for future preclinical drug screening aimed at elucidating the pathogenesis of NDDs and related conditions.
Collapse
Affiliation(s)
- Yongxin Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyun Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Duan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuhua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
29
|
Munguia-Galaviz FJ, Miranda-Diaz AG, Gutierrez-Mercado YK, Ku-Centurion M, Gonzalez-Gonzalez RA, Portilla-de Buen E, Echavarria R. The Sigma-1 Receptor Exacerbates Cardiac Dysfunction Induced by Obstructive Nephropathy: A Role for Sexual Dimorphism. Biomedicines 2024; 12:1908. [PMID: 39200372 PMCID: PMC11351121 DOI: 10.3390/biomedicines12081908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
The Sigma-1 Receptor (Sigmar1) is a stress-activated chaperone and a promising target for pharmacological modulation due to its ability to induce multiple cellular responses. Yet, it is unknown how Sigmar1 is involved in cardiorenal syndrome type 4 (CRS4) in which renal damage results in cardiac dysfunction. This study explored the role of Sigmar1 and its ligands in a CRS4 model induced by unilateral ureteral obstruction (UUO) in male and female C57BL/6 mice. We evaluated renal and cardiac dysfunction markers, Sigmar1 expression, and cardiac remodeling through time (7, 12, and 21 days) and after chronically administering the Sigmar1 agonists PRE-084 (1 mg/kg/day) and SA4503 (1 mg/kg/day), and the antagonist haloperidol (2 mg/kg/day), for 21 days after UUO using colorimetric analysis, RT-qPCR, histology, immunohistochemistry, enzyme-linked immunosorbent assay, RNA-seq, and bioinformatics. We found that obstructive nephropathy induces Sigmar1 expression in the kidneys and heart, and that Sigmar1 stimulation with its agonists PRE-084 and SA4503 aggravates cardiac dysfunction and remodeling in both sexes. Still, their effects are significantly more potent in males. Our findings reveal essential differences associated with sex in the development of CRS4 and should be considered when contemplating Sigmar1 as a pharmacological target.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (F.J.M.-G.); (A.G.M.-D.)
- Division de Ciencias de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | - Alejandra Guillermina Miranda-Diaz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (F.J.M.-G.); (A.G.M.-D.)
| | - Yanet Karina Gutierrez-Mercado
- Departamento de Clinicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlan 47620, Jalisco, Mexico;
| | - Marco Ku-Centurion
- Unidad de Biotecnologia Medica y Farmaceutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico;
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (R.A.G.-G.); (E.P.-d.B.)
| | - Ricardo Arturo Gonzalez-Gonzalez
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (R.A.G.-G.); (E.P.-d.B.)
| | - Eliseo Portilla-de Buen
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (R.A.G.-G.); (E.P.-d.B.)
| | - Raquel Echavarria
- Consejo Nacional de Humanidades, Ciencias y Tecnologias (CONAHCYT)—Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
30
|
D'Incal CP, Cappuyns E, Choukri K, De Man K, Szrama K, Konings A, Bastini L, Van Meel K, Buys A, Gabriele M, Rizzuti L, Vitriolo A, Testa G, Mohn F, Bühler M, Van der Aa N, Van Dijck A, Kooy RF, Berghe WV. Tracing the invisible mutant ADNP protein in Helsmoortel-Van der Aa syndrome patients. Sci Rep 2024; 14:14710. [PMID: 38926592 PMCID: PMC11208605 DOI: 10.1038/s41598-024-65608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Heterozygous de novo mutations in the Activity-Dependent Neuroprotective Homeobox (ADNP) gene underlie Helsmoortel-Van der Aa syndrome (HVDAS). Most of these mutations are situated in the last exon and we previously demonstrated escape from nonsense-mediated decay by detecting mutant ADNP mRNA in patient blood. In this study, wild-type and ADNP mutants are investigated at the protein level and therefore optimal detection of the protein is required. Detection of ADNP by means of western blotting has been ambiguous with reported antibodies resulting in non-specific bands without unique ADNP signal. Validation of an N-terminal ADNP antibody (Aviva Systems) using a blocking peptide competition assay allowed to differentiate between specific and non-specific signals in different sample materials, resulting in a unique band signal around 150 kDa for ADNP, above its theoretical molecular weight of 124 kDa. Detection with different C-terminal antibodies confirmed the signals at an observed molecular weight of 150 kDa. Our antibody panel was subsequently tested by immunoblotting, comparing parental and homozygous CRISPR/Cas9 endonuclease-mediated Adnp knockout cell lines and showed disappearance of the 150 kDa signal, indicative for intact ADNP. By means of both a GFPSpark and Flag-tag N-terminally fused to a human ADNP expression vector, we detected wild-type ADNP together with mutant forms after introduction of patient mutations in E. coli expression systems by site-directed mutagenesis. Furthermore, we were also able to visualize endogenous ADNP with our C-terminal antibody panel in heterozygous cell lines carrying ADNP patient mutations, while the truncated ADNP mutants could only be detected with epitope-tag-specific antibodies, suggesting that addition of an epitope-tag possibly helps stabilizing the protein. However, western blotting of patient-derived hiPSCs, immortalized lymphoblastoid cell lines and post-mortem patient brain material failed to detect a native mutant ADNP protein. In addition, an N-terminal immunoprecipitation-competent ADNP antibody enriched truncating mutants in overexpression lysates, whereas implementation of the same method failed to enrich a possible native mutant protein in immortalized patient-derived lymphoblastoid cell lines. This study aims to shape awareness for critical assessment of mutant ADNP protein analysis in Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Elisa Cappuyns
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kaoutar Choukri
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kevin De Man
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristy Szrama
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anthony Konings
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lina Bastini
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kim Van Meel
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Amber Buys
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Ludovico Rizzuti
- Neurogenomics, Human Technopole, Viale Rita Levi-Montacini 1, 20157, Milan, Italy
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Alessandro Vitriolo
- Neurogenomics, Human Technopole, Viale Rita Levi-Montacini 1, 20157, Milan, Italy
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Giuseppe Testa
- Neurogenomics, Human Technopole, Viale Rita Levi-Montacini 1, 20157, Milan, Italy
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathalie Van der Aa
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anke Van Dijck
- Family Medicine and Population Health (FAMPOP), Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
31
|
Wan L, Yang G, Yan Z. Identification of a molecular network regulated by multiple ASD high risk genes. Hum Mol Genet 2024; 33:1176-1185. [PMID: 38588587 PMCID: PMC11190613 DOI: 10.1093/hmg/ddae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Genetic sequencing has identified high-confidence ASD risk genes with loss-of-function mutations. How the haploinsufficiency of distinct ASD risk genes causes ASD remains to be elucidated. In this study, we examined the role of four top-ranking ASD risk genes, ADNP, KDM6B, CHD2, and MED13, in gene expression regulation. ChIP-seq analysis reveals that gene targets with the binding of these ASD risk genes at promoters are enriched in RNA processing and DNA repair. Many of these targets are found in ASD gene database (SFARI), and are involved in transcription regulation and chromatin remodeling. Common gene targets of these ASD risk genes include a network of high confidence ASD genes associated with gene expression regulation, such as CTNNB1 and SMARCA4. We further directly examined the transcriptional impact of the deficiency of these ASD risk genes. Our mRNA profiling with qPCR assays in cells with the knockdown of Adnp, Kdm6b, Chd2 or Med13 has revealed an intricate pattern of their cross-regulation, as well as their influence on the expression of other ASD genes. In addition, some synaptic genes, such as Snap25 and Nrxn1, are strongly regulated by deficiency of the four ASD risk genes, which could be through the direct binding at promoters or indirectly through the targets like Ctnnb1 or Smarca4. The identification of convergent and divergent gene targets that are regulated by multiple ASD risk genes will help to understand the molecular mechanisms underlying common and unique phenotypes associated with haploinsufficiency of ASD-associated genes.
Collapse
Affiliation(s)
- Lei Wan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main Street, Buffalo, NY 14203, United States
| | - Guojun Yang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main Street, Buffalo, NY 14203, United States
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main Street, Buffalo, NY 14203, United States
| |
Collapse
|
32
|
Liang LR, Liu B, Cao SH, Zhao YY, Zeng T, Zhai MT, Fan Z, He DY, Ma SX, Shi XT, Zhang Y, Zhang H. Integrated ribosome and proteome analyses reveal insights into sevoflurane-induced long-term social behavior and cognitive dysfunctions through ADNP inhibition in neonatal mice. Zool Res 2024; 45:663-678. [PMID: 38766748 PMCID: PMC11188609 DOI: 10.24272/j.issn.2095-8137.2023.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 05/22/2024] Open
Abstract
A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/β-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.
Collapse
Affiliation(s)
- Li-Rong Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Shu-Hui Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - You-Yi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Tian Zeng
- Department of Anesthesiology, 986th Air Force Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Ting Zhai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Ze Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Dan-Yi He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - San-Xin Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Tong Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032, China. E-mail:
| |
Collapse
|
33
|
D'Incal C, Van Dijck A, Ibrahim J, De Man K, Bastini L, Konings A, Elinck E, Theys C, Gozes I, Marusic Z, Anicic M, Vukovic J, Van der Aa N, Mateiu L, Vanden Berghe W, Kooy RF. ADNP dysregulates methylation and mitochondrial gene expression in the cerebellum of a Helsmoortel-Van der Aa syndrome autopsy case. Acta Neuropathol Commun 2024; 12:62. [PMID: 38637827 PMCID: PMC11027339 DOI: 10.1186/s40478-024-01743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.
Collapse
Affiliation(s)
- Claudio D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Family Medicine and Population Health (FAMPOP), Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Joe Ibrahim
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Kevin De Man
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Lina Bastini
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Ellen Elinck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Claudia Theys
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zlatko Marusic
- Clinical Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mirna Anicic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Jurica Vukovic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nathalie Van der Aa
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Ligia Mateiu
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium.
| |
Collapse
|
34
|
Li Y, Luan S, Ruan C, Li W, Zhang X, Ran Z, Bi W, Tong Y, Gao L, Zhao J, Li Y, He Z. TSHR signaling promotes hippocampal dependent memory formation through modulating Wnt5a/β-catenin mediated neurogenesis. Biochem Biophys Res Commun 2024; 704:149723. [PMID: 38430698 DOI: 10.1016/j.bbrc.2024.149723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Subclinical hyperthyroidism is defined biochemically as a low or undetectable thyroid-stimulating hormone (TSH) with normal thyroid hormone levels. Low TSHR signaling is considered to associate with cognitive impairment. However, the underlying molecular mechanism by which TSHR signaling modulates memory is poorly understood. In this study, we found that Tshr-deficient in the hippocampal neurons impairs the learning and memory abilities of mice, accompanying by a decline in the number of newborn neurons. Notably, Tshr ablation in the hippocampus decreases the expression of Wnt5a, thereby inactivating the β-catenin signaling pathway to reduce the neurogenesis. Conversely, activating of the Wnt/β-catenin pathway by the agonist SKL2001 results in an increase in hippocampal neurogenesis, resulting in the amelioration in the deficits of memory caused by Tshr deletion. Understanding how TSHR signaling in the hippocampus regulates memory provides insights into subclinical hyperthyroidism affecting cognitive function and will suggest ways to rationally design interventions for neurocognitive disorders.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Sisi Luan
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China; Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Cairong Ruan
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Weihao Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Xinyu Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Zijing Ran
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Yuelin Tong
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Yuan Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
35
|
Liu S, Liu H, Gong C, Li G, Li Q, Pan Z, He X, Jiang Z, Li H, Zhang C. MiR-10b-5p Regulates Neuronal Autophagy and Apoptosis Induced by Spinal Cord Injury Through UBR7. Neuroscience 2024; 543:13-27. [PMID: 38382692 DOI: 10.1016/j.neuroscience.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
This study aimed to explore the effects of miR-10b-5p on autophagy and apoptosis in neuronal cells after spinal cord injury (SCI) and the molecular mechanism. Bioinformatics was used to analyze the differentially expressed miRNAs. The expression of related genes and proteins were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. Cell proliferation was detected by 5-ethynyl-2'-deoxyuridine (EdU), and apoptosis was detected by flow cytometry or terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL). Coimmunoprecipitation confirmed the interaction between UBR7 and Wnt1 or Beclin1. Autophagy was detected by the dansylcadaverine (MDC). The Basso Beattie Bresnahan (BBB) score was used to evaluate motor function, and hematoxylin-eosin (H&E) and Nissl staining were used to detect spinal cord tissue repair and neuronal changes. The result shows that the expression of miR-10b-5p was downregulated in the SCI models, and transfection of a miR-10b-5p mimic inhibited neuronal cell apoptosis. MiR-10b-5p negatively regulated the expression of UBR7, and the inhibitory effect of the miR-10b-5p mimic on neuronal cell apoptosis was reversed by overexpressing UBR7. In addition, UBR7 can regulate apoptosis by affecting the Wnt/β-catenin pathway by promoting Wnt1 ubiquitination. Treatment with the miR-10b-5p mimic effectively improved motor function, inhibited neuronal cell apoptosis, and promoted spinal cord tissue repair in SCI rats. Overall, miR-10b-5p can alleviate SCI by downregulating UBR7 expression, inhibiting Wnt/β-catenin signaling pathway ubiquitination to reduce neuronal apoptosis, or inhibiting Beclin 1 ubiquitination to promote autophagy.
Collapse
Affiliation(s)
- Shuangmei Liu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Huali Liu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Chunyan Gong
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Guiliang Li
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Qiaofen Li
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Zhipeng Pan
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Xiaona He
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Zhilv Jiang
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Heng Li
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Chunjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.
| |
Collapse
|
36
|
Sun Y, Li X, Mai J, Xu W, Wang J, Zhang Q, Wang N. Three Copies of zbed1 Specific in Chromosome W Are Essential for Female-Biased Sexual Size Dimorphism in Cynoglossus semilaevis. BIOLOGY 2024; 13:141. [PMID: 38534411 DOI: 10.3390/biology13030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
The sex chromosome, especially specific in one sex, generally determines sexual size dimorphism (SSD), a phenomenon with dimorphic sexual difference in the body size. For Cynoglossus semilaevis, a flatfish in China, although the importance of chromosome W and its specific gene zbed1 in female-biased SSD have been suggested, its family members and regulation information are still unknown. At present, three zbed1 copies gene were identified on chromosome W, with no gametologs. Phylogenetic analysis for the ZBED family revealed an existence of ZBED9 in the fish. Nine members were uncovered from C. semilaevis, clustering into three kinds, ZBED1, ZBED4 and ZBEDX, which is less than the eleven kinds of ZBED members in mammals. The predominant expression of zbed1 in the female brain and pituitary tissues was further verified by qPCR. Transcription factor c/ebpα could significantly enhance the transcriptional activity of zbed1 promoter, which is opposite to its effect on the male determinant factor-dmrt1. When zbed1 was interfered with, piwil1, esr2 and wnt7b were up-regulated, while cell-cycle-related genes, including cdk4 and ccng1, were down-regulated. Thus, zbed1 is involved in cell proliferation by regulating esr2, piwil1, cell cycle and the Wnt pathway. Further research on their interactions would be helpful to understand fish SSD.
Collapse
Affiliation(s)
- Yuqi Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xihong Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiaqi Mai
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Wenteng Xu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiacheng Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qi Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Na Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
37
|
Levine J, Lobyntseva A, Shazman S, Hakim F, Gozes I. Longitudinal Genotype-Phenotype (Vineland Questionnaire) Characterization of 15 ADNP Syndrome Cases Highlights Mutated Protein Length and Structural Characteristics Correlation with Communicative Abilities Accentuated in Males. J Mol Neurosci 2024; 74:15. [PMID: 38282129 DOI: 10.1007/s12031-024-02189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Activity-dependent neuroprotective protein (ADNP) is essential for neurodevelopment and de novo mutations in ADNP cause the ADNP syndrome. From brain pathologies point of view, tauopathy has been demonstrated at a young age, implying stunted development coupled with early/accelerated neurodegeneration. Given potential genotype-phenotype differences and age-dependency, we have assessed here a cohort of 15 individuals (1-27-year-old), using 1-3 longitudinal parent (caretaker) interview/s (Vineland 3 questionnaire) over several years. Our results indicated developmental delays, or even developmental arrests, coupled with potential spurts of development at early ages. Severe outcomes correlated with the truncating high impact mutation, in other words, the remaining mutated protein length as well as with the tested individual age, corroborating the hypothesis of developmental delays coupled with accelerated aging. A significant correlation was noted between mutated protein length and communication, implying a high impact of ADNP on communicative skills. Additionally, correlations were discovered between the two previously described epi-genetic signatures in ADNP emphasizing aberrant acquisition of motor behaviors, with truncating mutations around the nuclear localization signal being mostly affected. Finally, all individuals seem to acquire an age equivalent of 1-6 years, requiring disease modification treatment, such as the ADNP-derived drug candidate, NAP (davunetide), which has recently shown efficacy in women suffering from the neurodegenerative disorder, progressive supranuclear palsy (PSP), a late-onset tauopathy.
Collapse
Affiliation(s)
- Jospeh Levine
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
- Psychiatric Division, Ben Gurion University of the Negev, Beersheba, Israel
| | - Alexandra Lobyntseva
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, Israel
| | | | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
38
|
Ge C, Tian Y, Hu C, Mei L, Li D, Dong P, Zhang Y, Li H, Sun D, Peng W, Xu X, Jiang Y, Xu Q. Clinical impact and in vitro characterization of ADNP variants in pediatric patients. Mol Autism 2024; 15:5. [PMID: 38254177 PMCID: PMC10804707 DOI: 10.1186/s13229-024-00584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Helsmoortel-Van der Aa syndrome (HVDAS) is a rare genetic disorder caused by variants in the activity-dependent neuroprotector homeobox (ADNP) gene; hence, it is also called ADNP syndrome. ADNP is a multitasking protein with the function as a transcription factor, playing a critical role in brain development. Furthermore, ADNP variants have been identified as one of the most common single-gene causes of autism spectrum disorder (ASD) and intellectual disability. METHODS We assembled a cohort of 15 Chinese pediatric patients, identified 13 variants in the coding region of ADNP gene, and evaluated their clinical phenotypes. Additionally, we constructed the corresponding ADNP variants and performed western blotting and immunofluorescence analysis to examine their protein expression and subcellular localization in human HEK293T and SH-SY5Y cells. RESULTS Our study conducted a thorough characterization of the clinical manifestations in 15 children with ADNP variants, and revealed a broad spectrum of symptoms including global developmental delay, intellectual disability, ASD, facial abnormalities, and other features. In vitro studies were carried out to check the expression of ADNP with identified variants. Two cases presented missense variants, while the remainder exhibited nonsense or frameshift variants, leading to truncated mutants in in vitro overexpression systems. Both overexpressed wildtype ADNP and all the different mutants were found to be confined to the nuclei in HEK293T cells; however, the distinctive pattern of nuclear bodies formed by the wildtype ADNP was either partially or entirely disrupted by the mutant proteins. Moreover, two variants of p.Y719* on the nuclear localization signal (NLS) of ADNP disrupted the nuclear expression pattern, predominantly manifesting in the cytoplasm in SH-SY5Y cells. LIMITATIONS Our study was limited by a relatively small sample size and the absence of a longitudinal framework to monitor the progression of patient conditions over time. Additionally, we lacked in vivo evidence to further indicate the causal implications of the identified ADNP variants. CONCLUSIONS Our study reported the first cohort of HVDAS patients in the Chinese population and provided systematic clinical presentations and laboratory examinations. Furthermore, we identified multiple genetic variants and validated them in vitro. Our findings offered valuable insights into the diverse genetic variants associated with HVDAS.
Collapse
Affiliation(s)
- Chuanhui Ge
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuxin Tian
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Chunchun Hu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lianni Mei
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Dongyun Li
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Ping Dong
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Ying Zhang
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Huiping Li
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Daijing Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wenzhu Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
39
|
Gozes I. Tau, ADNP, and sex. Cytoskeleton (Hoboken) 2024; 81:16-23. [PMID: 37572043 DOI: 10.1002/cm.21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
With 50 years to the original discovery of Tau, I gave here my perspective, looking through the prism of activity-dependent neuroprotective protein (ADNP), and the influence of sex. My starting point was vasoactive intestinal peptide (VIP), a regulator of ADNP. I then moved to the original discovery of ADNP and its active neuroprotective site, NAP, drug candidate, davunetide. Tau-ADNP-NAP interactions were then explained with emphasis on sex and future translational medicine.
Collapse
Affiliation(s)
- Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Tong B, Sun Y. Activation of Young LINE-1 Elements by CRISPRa. Int J Mol Sci 2023; 25:424. [PMID: 38203595 PMCID: PMC10778729 DOI: 10.3390/ijms25010424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Long interspersed element-1 (LINE-1; L1s) are mobile genetic elements that comprise nearly 20% of the human genome. L1s have been shown to have important functions in various biological processes, and their dysfunction is thought to be linked with diseases and cancers. However, the roles of the repetitive elements are largely not understood. While the CRISPR activation (CRISPRa) system based on catalytically deadCas9 (dCas9) is widely used for genome-wide interrogation of gene function and genetic interaction, few studies have been conducted on L1s. Here, we report using the CRISPRa method to efficiently activate L1s in human L02 cells, a derivative of the HeLa cancer cell line. After CRISPRa, the young L1 subfamilies such as L1HS/L1PA1 and L1PA2 are found to be expressed at higher levels than the older L1s. The L1s with high levels of transcription are closer to full-length and are more densely occupied by the YY1 transcription factor. The activated L1s can either be mis-spliced to form chimeric transcripts or act as alternative promoters or enhancers to facilitate the expression of neighboring genes. The method described here can be used for studying the functional roles of young L1s in cultured cells of interest.
Collapse
Affiliation(s)
- Bei Tong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuhua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
41
|
Pedini G, Chen CL, Achsel T, Bagni C. Cancer drug repurposing in autism spectrum disorder. Trends Pharmacol Sci 2023; 44:963-977. [PMID: 37940430 DOI: 10.1016/j.tips.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with uncertain origins. Understanding of the mechanisms underlying ASD remains limited, and treatments are lacking. Genetic diversity complicates drug development. Given the complexity and severity of ASD symptoms and the rising number of diagnoses, exploring novel therapeutic strategies is essential. Here, we focus on shared molecular pathways between ASD and cancer and highlight recent progress on the repurposing of cancer drugs for ASD treatment, such as mTOR inhibitors, histone deacetylase inhibitors, and anti-inflammatory agents. We discuss how to improve trial design considering drug dose and patient age. Lastly, the discussion explores the critical aspects of side effects, commercial factors, and the efficiency of drug-screening pipelines; all of which are essential considerations in the pursuit of repurposing cancer drugs for addressing core features of ASD.
Collapse
Affiliation(s)
- Giorgia Pedini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy
| | - Chin-Lin Chen
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Tilmann Achsel
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Claudia Bagni
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy; University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
42
|
Gozes I, Shapira G, Lobyntseva A, Shomron N. Unexpected gender differences in progressive supranuclear palsy reveal efficacy for davunetide in women. Transl Psychiatry 2023; 13:319. [PMID: 37845254 PMCID: PMC10579238 DOI: 10.1038/s41398-023-02618-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a pure tauopathy, implicating davunetide, enhancing Tau-microtubule interaction, as an ideal drug candidate. However, pooling patient data irrespective of sex concluded no efficacy. Here, analyzing sex-dependency in a 52 week-long- PSP clinical trial (involving over 200 patients) demonstrated clear baseline differences in brain ventricular volumes, a secondary endpoint. Dramatic baseline ventricular volume-dependent/volume increase correlations were observed in 52-week-placebo-treated females (r = 0.74, P = 2.36-9), whereas davunetide-treated females (like males) revealed no such effects. Assessment of primary endpoints, by the PSP Rating Scale (PSPRS) and markedly more so by the Schwab and England Activities of Daily Living (SEADL) scale, showed significantly faster deterioration in females, starting at trial week 13 (P = 0.01, and correlating with most other endpoints by week 52). Twice daily davunetide treatments slowed female disease progression and revealed significant protection according to the SEADL scale as early as at 39 weeks (P = 0.008), as well as protection of the bulbar and limb motor domains considered by the PSPRS, including speaking and swallowing difficulties caused by brain damage, and deterioration of fine motor skills, respectably (P = 0.01), at 52 weeks. Furthermore, at 52 weeks of trial, the exploratory Geriatric Depression Scale (GDS) significantly correlated with the SEADL scale deterioration in the female placebo group and demonstrated davunetide-mediated protection of females. Female-specific davunetide-mediated protection of ventricular volume corresponded to clinical efficacy. Together with the significantly slower disease progression seen in men, the results reveal sex-based drug efficacy differences, demonstrating the neuroprotective and disease-modifying impact of davunetide treatment for female PSP patients.
Collapse
Affiliation(s)
- Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Guy Shapira
- Department of Cell and Developmental Biology, Faculty of Medicine, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Alexandra Lobyntseva
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|
43
|
Ganaiem M, Gildor ND, Shazman S, Karmon G, Ivashko-Pachima Y, Gozes I. NAP (Davunetide): The Neuroprotective ADNP Drug Candidate Penetrates Cell Nuclei Explaining Pleiotropic Mechanisms. Cells 2023; 12:2251. [PMID: 37759476 PMCID: PMC10527813 DOI: 10.3390/cells12182251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Recently, we showed aberrant nuclear/cytoplasmic boundaries/activity-dependent neuroprotective protein (ADNP) distribution in ADNP-mutated cells. This malformation was corrected upon neuronal differentiation by the ADNP-derived fragment drug candidate NAP (davunetide). Here, we investigated the mechanism of NAP nuclear protection. (2) Methods: CRISPR/Cas9 DNA-editing established N1E-115 neuroblastoma cell lines that express two different green fluorescent proteins (GFPs)-labeled mutated ADNP variants (p.Tyr718* and p.Ser403*). Cells were exposed to NAP conjugated to Cy5, followed by live imaging. Cells were further characterized using quantitative morphology/immunocytochemistry/RNA and protein quantifications. (3) Results: NAP rapidly distributed in the cytoplasm and was also seen in the nucleus. Furthermore, reduced microtubule content was observed in the ADNP-mutated cell lines. In parallel, disrupting microtubules by zinc or nocodazole intoxication mimicked ADNP mutation phenotypes and resulted in aberrant nuclear-cytoplasmic boundaries, which were rapidly corrected by NAP treatment. No NAP effects were noted on ADNP levels. Ketamine, used as a control, was ineffective, but both NAP and ketamine exhibited direct interactions with ADNP, as observed via in silico docking. (4) Conclusions: Through a microtubule-linked mechanism, NAP rapidly localized to the cytoplasmic and nuclear compartments, ameliorating mutated ADNP-related deficiencies. These novel findings explain previously published gene expression results and broaden NAP (davunetide) utilization in research and clinical development.
Collapse
Affiliation(s)
- Maram Ganaiem
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Nina D. Gildor
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana 4353107, Israel;
- Department of Information Systems, The Max Stern Yezreel Valley College, Yezreel Valley, Afula 1930600, Israel
| | - Gidon Karmon
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Yanina Ivashko-Pachima
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| |
Collapse
|
44
|
Sun X, Zhang T, Tong B, Cheng L, Jiang W, Sun Y. POGZ suppresses 2C transcriptional program and retrotransposable elements. Cell Rep 2023; 42:112867. [PMID: 37494184 DOI: 10.1016/j.celrep.2023.112867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
The POGZ gene has been found frequently mutated in neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and intellectual disability (ID). We have recently shown that POGZ maintains mouse embryonic stem cells (ESCs). However, the exact mechanisms remain unclear. Here, we show that POGZ plays an important role in the maintenance of ESCs by silencing Dux and endogenous retroviruses (ERVs). POGZ maintains a silent chromatin state at Dux and ERVs by associating with and recruiting TRIM28 and SETDB1, and its loss leads to decreased levels of H3K9me3/H4K20me3, resulting in up-regulation of 2C transcripts and ESC transition to a 2C-like state. POGZ suppresses different classes of ERVs through direct (IAPEy, the intracisternal A-type particle elements) and indirect regulation (MERVL). Activation of POGZ-bound ERVs is associated with up-regulation of nearby neural disease genes such as Serpina3m. Our findings provide important insights into understanding the disease mechanism caused by POGZ dysfunction.
Collapse
Affiliation(s)
- Xiaoyun Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Bei Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Linxi Cheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yuhua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China.
| |
Collapse
|
45
|
Georget M, Lejeune E, Buratti J, Servant E, le Guern E, Heron D, Keren B, de Sainte Agathe JM. Loss of function of ADNP by an intragenic inversion. Eur J Hum Genet 2023; 31:967-970. [PMID: 36828924 PMCID: PMC10400548 DOI: 10.1038/s41431-023-01323-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
ADNP is a well-known gene implicated in intellectual disability and its molecular spectrum consists mainly in loss of function variant in the ADNP last and largest exon. Here, we report the first description of a patient with intellectual disability identified with an intragenic inversion in ADNP. RNAseq experiment showed a splice skipping of the inversed exons. Moreover, in-silico analysis of initiating ATGs in the mutated transcript using contextual Kozak score suggested that several initiating ATGs were likely used to translate poisonous out-of-frame ORFs and would lead to the suppression of any in-frame rescuing translation, thereby causing haploinsufficiency. As constitutive Alu sequences with high homology were identified at both breakpoints in reversed orientation in the reference genome, we hypothesized that Alu-mediated non-allelic-homologous recombination was responsible for this rearrangement. Therefore, as this inversion is not detectable by exome sequencing, this mechanism could be a potential underdiagnosed recurrent mutation in ADNP-related disorders.
Collapse
Affiliation(s)
- Mathieu Georget
- Department of Medical Genetics, AP-HP.Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.
| | - Elodie Lejeune
- Department of Medical Genetics, AP-HP.Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Julien Buratti
- Department of Medical Genetics, AP-HP.Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Euphrasie Servant
- Department of Medical Genetics, AP-HP.Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Eric le Guern
- Department of Medical Genetics, AP-HP.Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Delphine Heron
- Department of Medical Genetics, AP-HP.Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Pitié-Salpêtrière University Hospital, Paris, France
| | - Boris Keren
- Department of Medical Genetics, AP-HP.Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | | |
Collapse
|
46
|
Cho H, Yoo T, Moon H, Kang H, Yang Y, Kang M, Yang E, Lee D, Hwang D, Kim H, Kim D, Kim JY, Kim E. Adnp-mutant mice with cognitive inflexibility, CaMKIIα hyperactivity, and synaptic plasticity deficits. Mol Psychiatry 2023; 28:3548-3562. [PMID: 37365244 PMCID: PMC10618100 DOI: 10.1038/s41380-023-02129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
ADNP syndrome, involving the ADNP transcription factor of the SWI/SNF chromatin-remodeling complex, is characterized by developmental delay, intellectual disability, and autism spectrum disorders (ASD). Although Adnp-haploinsufficient (Adnp-HT) mice display various phenotypic deficits, whether these mice display abnormal synaptic functions remain poorly understood. Here, we report synaptic plasticity deficits associated with cognitive inflexibility and CaMKIIα hyperactivity in Adnp-HT mice. These mice show impaired and inflexible contextual learning and memory, additional to social deficits, long after the juvenile-stage decrease of ADNP protein levels to ~10% of the newborn level. The adult Adnp-HT hippocampus shows hyperphosphorylated CaMKIIα and its substrates, including SynGAP1, and excessive long-term potentiation that is normalized by CaMKIIα inhibition. Therefore, Adnp haploinsufficiency in mice leads to cognitive inflexibility involving CaMKIIα hyperphosphorylation and excessive LTP in adults long after its marked expressional decrease in juveniles.
Collapse
Affiliation(s)
- Heejin Cho
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heera Moon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - MinSoung Kang
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Dowoon Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
47
|
Ferreira ACF, Szeto ACH, Clark PA, Crisp A, Kozik P, Jolin HE, McKenzie ANJ. Neuroprotective protein ADNP-dependent histone remodeling complex promotes T helper 2 immune cell differentiation. Immunity 2023; 56:1468-1484.e7. [PMID: 37285842 PMCID: PMC10501989 DOI: 10.1016/j.immuni.2023.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
Type 2 immune responses are critical in tissue homeostasis, anti-helminth immunity, and allergy. T helper 2 (Th2) cells produce interleukin-4 (IL-4), IL-5, and IL-13 from the type 2 gene cluster under regulation by transcription factors (TFs) including GATA3. To better understand transcriptional regulation of Th2 cell differentiation, we performed CRISPR-Cas9 screens targeting 1,131 TFs. We discovered that activity-dependent neuroprotector homeobox protein (ADNP) was indispensable for immune reactions to allergen. Mechanistically, ADNP performed a previously unappreciated role in gene activation, forming a critical bridge in the transition from pioneer TFs to chromatin remodeling by recruiting the helicase CHD4 and ATPase BRG1. Although GATA3 and AP-1 bound the type 2 cytokine locus in the absence of ADNP, they were unable to initiate histone acetylation or DNA accessibility, resulting in highly impaired type 2 cytokine expression. Our results demonstrate an important role for ADNP in promoting immune cell specialization.
Collapse
Affiliation(s)
| | | | - Paula A Clark
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
48
|
Xu X, Wang J, Du S, Shen X, Lian J, Zhou J, Wang M, Feng W, Lv Z, Zhu J, Jin L, Sun H, Wu L, Wang X, Qiu H, Wang W, Teng H, Wang Y, Huang Z. Yes-associated protein regulates glutamate homeostasis through promoting the expression of excitatory amino acid transporter-2 in astrocytes via β-catenin signaling. Glia 2023; 71:1197-1216. [PMID: 36617748 DOI: 10.1002/glia.24332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023]
Abstract
The homeostasis of glutamate is mainly regulated by the excitatory amino acid transporters (EAATs), especially by EAAT2 in astrocytes. Excessive glutamate in the synaptic cleft caused by dysfunction or dysregulation of EAAT2 can lead to excitotoxicity, neuronal death and cognitive dysfunction. However, it remains unclear about the detailed regulation mechanism of expression and function of astrocytic EAAT2. In this study, first, we found increased neuronal death and impairment of cognitive function in YAPGFAP -CKO mice (conditionally knock out Yes-associated protein [YAP] in astrocytes), and identified EAAT2 as a downstream target of YAP through RNA sequencing. Second, the expression of EAAT2 was decreased in cultured YAP-/- astrocytes and the hippocampus of YAPGFAP -CKO mice, and glutamate uptake was reduced in YAP-/- astrocytes, but increased in YAP-upregulated astrocytes. Third, further investigation of the mechanism showed that the mRNA and protein levels of β-catenin were decreased in YAP-/- astrocytes and increased in YAP-upregulated astrocytes. Wnt3a activated YAP signaling and up-regulated EAAT2 through β-catenin. Furthermore, over-expression or activation of β-catenin partially restored the downregulation of EAAT2, the impairment of glutamate uptake, neuronal death and cognitive decline that caused by YAP deletion. Finally, activation of EAAT2 also rescued neuronal death and cognitive decline in YAPGFAP -CKO mice. Taken together, our study identifies an unrecognized role of YAP signaling in the regulation of glutamate homeostasis through the β-catenin/EAAT2 pathway in astrocytes, which may provide novel insights into the pathogenesis of brain diseases that closely related to the dysfunction or dysregulation of EAAT2, and promote the development of clinical strategy.
Collapse
Affiliation(s)
- Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiaojiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Siyu Du
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiashu Lian
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Zhou
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mianxian Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenjin Feng
- Zhejiang Sinogen Medical Equipment Co., Ltd., Wenzhou, China
| | - Zhaoting Lv
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Junzhe Zhu
- School of the First Clinical Medical Sciences (School of Information and Engineering), Wenzhou Medical University, Wenzhou, China
| | - Lingting Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huankun Sun
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Lihao Wu
- School of the First Clinical Medical Sciences (School of Information and Engineering), Wenzhou Medical University, Wenzhou, China
| | - Xiaoning Wang
- School of the First Clinical Medical Sciences (School of Information and Engineering), Wenzhou Medical University, Wenzhou, China
| | - Haoyu Qiu
- School of the First Clinical Medical Sciences (School of Information and Engineering), Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Wang
- Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
49
|
Bennison SA, Blazejewski SM, Liu X, Hacohen-Kleiman G, Sragovich S, Zoidou S, Touloumi O, Grigoriadis N, Gozes I, Toyo-Oka K. The cytoplasmic localization of ADNP through 14-3-3 promotes sex-dependent neuronal morphogenesis, cortical connectivity, and calcium signaling. Mol Psychiatry 2023; 28:1946-1959. [PMID: 36631597 DOI: 10.1038/s41380-022-01939-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture. Here, we hypothesized that Adnp is localized in the cytoplasm during neurite formation and that this process is mediated by 14-3-3. Indeed, applying the 14-3-3 inhibitor, difopein, blocked Adnp cytoplasmic localization. Furthermore, co-immunoprecipitations showed that Adnp bound 14-3-3 proteins and proteomic analysis identified several potential phosphorylation-dependent Adnp/14-3-3 binding sites. We further discovered that knockdown of Adnp using in utero electroporation of mouse layer 2/3 pyramidal neurons in the somatosensory cortex led to previously unreported changes in neurite formation beginning at P0. Defects were sustained throughout development, the most notable included increased basal dendrite number and axon length. Paralleling the observed morphological aberrations, ex vivo calcium imaging revealed that Adnp deficient neurons had greater and more frequent spontaneous calcium influx in female mice. GRAPHIC, a novel synaptic tracing technology substantiated this finding, revealing increased interhemispheric connectivity between female Adnp deficient layer 2/3 pyramidal neurons. We conclude that Adnp is localized to the cytoplasm by 14-3-3 proteins, where it regulates neurite formation, maturation, and functional cortical connectivity significantly building on our current understanding of Adnp function and the etiology of ADNP syndrome.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Gal Hacohen-Kleiman
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shlomo Sragovich
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sofia Zoidou
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Touloumi
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
50
|
Chen J, Wang Y, Meng W, Zhao R, Lin W, Xiao H, Liao Y. Stearoyl-CoA Desaturases1 Accelerates Non-Small Cell Lung Cancer Metastasis by Promoting Aromatase Expression to Improve Estrogen Synthesis. Int J Mol Sci 2023; 24:ijms24076826. [PMID: 37047797 PMCID: PMC10095487 DOI: 10.3390/ijms24076826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Metastases contribute to the low survival rate of non-small cell lung cancer (NSCLC) patients. Targeting lipid metabolism for anticancer therapies is attractive. Accumulative evidence shows that stearoyl-CoA desaturases1 (SCD1), a key enzyme in lipid metabolism, enables tumor metastasis and the underlying mechanism remains unknown. In this study, immunohistochemical staining of 96 clinical specimens showed that the expression of SCD1 was increased in tumor tissues (p < 0.001). SCD1 knockdown reduced the migration and invasion of HCC827 and PC9 cells in transwell and wound healing assays. Aromatase (CYP19A1) knockdown eliminated cell migration and invasion caused by SCD1 overexpression. Western blotting assays demonstrated that CYP19A1, along with β-catenin protein levels, was reduced in SCD1 knocked-down cells, and estrogen concentration was reduced (p < 0.05) in cell culture medium measured by enzyme-linked immunosorbent assay. SCD1 overexpression preserving β-catenin protein stability was evaluated by coimmunoprecipitation and Western blotting. The SCD1 inhibitor A939572, and a potential SCD1 inhibitor, grape seed extract (GSE), significantly inhibited cell migration and invasion by blocking SCD1 and its downstream β-catenin, CYP19A1 expression, and estrogen concentration. In vivo tumor formation assay and a tail vein metastasis model indicated that knockdown of SCD1 blocked tumor growth and metastasis. In conclusion, SCD1 could accelerate metastasis by maintaining the protein stability of β-catenin and then promoting CYP19A1 transcription to improve estrogen synthesis. SCD1 is expected to be a promised therapeutic target, and its novel inhibitor, GSE, has great therapeutic potential in NSCLC.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|