1
|
Liu S, Shen Y, Chen J, Ruan Z, Hua L, Wang K, Xi X, Mao J. The critical role of platelets in venous thromboembolism: Pathogenesis, clinical status, and emerging therapeutic strategies. Blood Rev 2025:101302. [PMID: 40382294 DOI: 10.1016/j.blre.2025.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Venous thromboembolism (VTE), encompassing deep vein thrombosis (DVT) and pulmonary embolism (PE), is a complex vascular disorder with high morbidity and mortality, driven by Virchow's Triad: blood stasis, hypercoagulability, and endothelial injury. VTE is now recognized as an inflammatory process involving multiple components. Platelets are involved in the process of VTE, contributing to thrombosis initiation, progression, resolution and recurrence through coagulation activation, and interactions with immune and endothelial cells. Anticoagulation remains the cornerstone of VTE treatment; however, antiplatelet agents like aspirin have demonstrated therapeutic potential, particularly following major orthopedic surgeries. Furthermore, emerging platelet-targeted therapies and biomarkers offer new opportunities for improving VTE diagnosis and treatment. This review explores the evolving role of platelets in VTE pathophysiology, assesses current antiplatelet strategies, and highlights novel therapeutic approaches. Advancing platelet research in VTE may lead to safer, more effective interventions, optimizing outcomes for patients with this life-threatening condition.
Collapse
Affiliation(s)
- Shuang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Shen
- Research Center for Experimental Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiayi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Ruan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Hua
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaodong Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jianhua Mao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Wolf G, Leippe P, Onstein S, Goldmann U, Frommelt F, Teoh ST, Girardi E, Wiedmer T, Superti-Furga G. The genetic interaction map of the human solute carrier superfamily. Mol Syst Biol 2025:10.1038/s44320-025-00105-5. [PMID: 40355755 DOI: 10.1038/s44320-025-00105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Solute carriers (SLCs), the largest superfamily of transporter proteins in humans with about 450 members, control the movement of molecules across membranes. A typical human cell expresses over 200 different SLCs, yet their collective influence on cell phenotypes is not well understood due to overlapping substrate specificities and expression patterns. To address this, we performed systematic pairwise gene double knockouts using CRISPR-Cas12a and -Cas9 in human colon carcinoma cells. A total of 1,088,605 guide combinations were used to interrogate 35,421 SLC-SLC and SLC-enzyme double knockout combinations across multiple growth conditions, uncovering 1236 genetic interactions with a growth phenotype. Further exploration of an interaction between the mitochondrial citrate/malate exchanger SLC25A1 and the zinc transporter SLC39A1 revealed an unexpected role for SLC39A1 in metabolic reprogramming and anti-apoptotic signaling. This full-scale genetic interaction map of human SLC transporters is the backbone for understanding the intricate functional network of SLCs in cellular systems and generates hypotheses for pharmacological target exploitation in cancer and other diseases. The results are available at https://re-solute.eu/resources/dashboards/genomics/ .
Collapse
Affiliation(s)
- Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Solgate GmbH, IST Park Building, 3400, Klosterneuburg, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
- Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
3
|
Dubey S, Yu Z, Stephens EM, Lazrak A, Ahmad I, Aggarwal S, Andrabi S, Hossain MI, Jilling T, Fernandez SR, Bartels JL, Lapi SE, Mobley JA, Pastukh VM, Gillespie MN, Matalon S. Oxidative damage to lung mitochondrial DNA is a key contributor to the development of chemical lung injury. Redox Biol 2025; 82:103624. [PMID: 40209617 PMCID: PMC12013491 DOI: 10.1016/j.redox.2025.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
Humans exposed to chlorine (Cl2) due to industrial accidents or acts of terrorism may develop lung injury culminating to Acute Respiratory Distress syndrome and death from respiratory failure. Early molecular targets of inhaled oxidant gases suitable for pharmacologic modulation have not been established. Because the mitochondrial genome is highly sensitive to oxidant stress, we tested the hypothesis that mice exposure to Cl2 gas causes oxidative damage to the mitochondrial DNA (mtDNA) that triggers the development of acute and chronic lung injury. Cl2 gas-exposed C57BL/6 mice and returned to room air, developed progressive loss of lung DNA glycosylase OGG1, followed by oxidative mtDNA damage. This resulted in activation of inflammatory pathways by circulating DNA, progressive increased airway resistance, alveolar injury and acute pulmonary edema due to loss of epithelial amiloride-sensitive sodium channels. Mice not succumbing acutely displayed a delayed syndrome of progressive increase in airway resistance and emphysematous-like changes in lung morphology. Global proteomics of lungs harvested 24 h post Cl2 exposure revealed alterations in over 1500 lung proteins, including 14 key mitochondrial proteins. Intranasal instillation of a recombinant protein targeting OGG1 to mitochondria (mitoOGG1) at 1 h post exposure decreased oxidized lung mtDNA, alterations to the lung and mitochondrial proteomes, severity of the acute and delayed lung injury and increased survival. These data show that injury to the mt-genome is a key contributor to the development of acute and chronic lung injury after Cl2 gas exposure and point to mtDNA oxidation as a target for pharmacologic intervention.
Collapse
Affiliation(s)
- Shubham Dubey
- Department of Anesthesiology and Perioperative Medicine, USA
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, USA
| | | | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, USA
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, USA
| | | | | | | | - Tamas Jilling
- Department of Pediatrics, Division of Neonatology, USA
| | - Solana R Fernandez
- Department of Radiology, The Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Bartels
- Department of Radiology, The Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E Lapi
- Department of Radiology, The Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, USA
| | - Viktor M Pastukh
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Mark N Gillespie
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, USA.
| |
Collapse
|
4
|
Xu Y, Liu S, Zhou Z, Qin H, Zhang Y, Zhang G, Ma H, Han X, Liu H, Liu Z. Integrated multi-omics analysis revealed the molecular networks and potential targets of cellular senescence in Alzheimer's disease. Hum Mol Genet 2025; 34:381-391. [PMID: 39690817 DOI: 10.1093/hmg/ddae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Cellular senescence (CS) is a hallmark of Alzheimer's disease (AD). However, the mechanisms through which CS contributes to AD pathogenesis remain poorly understood. We found that CS level in AD was higher compared with the healthy control group. Transcriptome-based differential expression analysis identified 113 CS-related genes in blood and 410 in brain tissue as potential candidate genes involved in AD. To further explore the causal role of these genes, an integrative mendelian randomization analysis was conducted, combining AD genome-wide association study summary statistics with expression quantitative trait loci (eQTL) and DNA methylation quantitative trait loci (mQTL) data from blood samples, which identified five putative AD-causal genes (CENPW, EXOSC9, HSPB11, SLC44A2, and SLFN12) and 18 corresponding DNA methylation probes. Additionally, integrative analysis between eQTLs and mQTLs from blood uncovered two genes and 12 corresponding regulatory elements involved in AD. Furthermore, two genes (CDKN2B and ITGAV) were prioritized as putative causal genes in brain tissue and were validated through in vitro experiments. The multi-omics integration study revealed the potential role and underlying biological mechanisms of CS driven by genetic predisposition in AD. This study contributed to fundamental understanding of CS in AD pathogenesis and facilitated the identification of potential therapeutic targets for AD prevention and treatment.
Collapse
Affiliation(s)
- Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Hongzhuo Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Hongxuan Ma
- Department of Kidney Transportation, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Huimin Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| |
Collapse
|
5
|
Mereweather LJ, Harwood D, Ahnström J, van Batenburg-Sherwood J, Salles-Crawley II, Crawley JTB. Role of von Willebrand factor (VWF), platelets, and aberrant flow in the initiation of venous thrombosis. SCIENCE ADVANCES 2025; 11:eadr5250. [PMID: 39908367 PMCID: PMC11797557 DOI: 10.1126/sciadv.adr5250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Deep vein thrombosis is a major cause of morbidity and mortality worldwide. However, because of the absence of overt blood vessel damage, how venous thrombosis is actually initiated remains unclear. Using endothelialized fluidic devices, we show that aberrant flow patterns that may occur in venous valve pockets of individuals with common stasis-related risk factors can cause the formation of von Willebrand factor-platelet tangles that are resistant to ADAMTS13 removal. These von Willebrand factor-bound platelets specifically recruit neutrophils in a manner that is dependent on platelet-activated αIIbβ3, neutrophil SLC44A2, and endothelial P-selectin. The interaction of SLC44A2 with activated αIIbβ3 promotes formation of prothrombotic neutrophil extracellular traps. These data provide molecular and cellular insights into the proclivity for venous thrombosis to develop in venous valve pockets and suggest an alternative strategy to protect against the initiation of venous thrombosis.
Collapse
Affiliation(s)
- Laura J. Mereweather
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Daniel Harwood
- Department of Bioengineering, White City Campus, Imperial College London, London, UK
| | - Josefin Ahnström
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | | | - Isabelle I. Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
- Cardiovascular and Genomics Research Institute, School of Health and Medical Sciences, City St George’s University of London, London, UK
| | - James T. B. Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| |
Collapse
|
6
|
Maity S, Sharma K. The mitochondrial choline transporter, SLC25A48, regulates urine and blood choline levels in humans. Kidney Int 2025; 107:225-227. [PMID: 39848743 DOI: 10.1016/j.kint.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 01/25/2025]
Abstract
Choline is an essential nutrient for the biosynthesis of phospholipids and neurotransmitters and controls several physiological functions in mammals. It is metabolized in the organelles within cells, including mitochondria. However, its subcellular distribution and mode of mitochondrial transport remain poorly understood. Patil et al. identified SLC25A48 as a mitochondrial choline transporter, and its loss-of-function mutations were associated with elevated urine and plasma choline levels in humans.
Collapse
Affiliation(s)
- Soumya Maity
- Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA; Division of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA; Division of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
7
|
Patil S, Borisov O, Scherer N, Wirth C, Schlosser P, Wuttke M, Ehret S, Hannibal L, Eckardt KU, Hunte C, Neubauer B, Köttgen A, Köttgen M. The membrane transporter SLC25A48 enables transport of choline into human mitochondria. Kidney Int 2025; 107:296-301. [PMID: 39084256 DOI: 10.1016/j.kint.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
Choline has important physiological functions as a precursor for essential cell components, signaling molecules, phospholipids, and the neurotransmitter acetylcholine. Choline is a water-soluble charged molecule requiring transport proteins to cross biological membranes. Although transporters continue to be identified, membrane transport of choline is incompletely understood and knowledge about choline transport into intracellular organelles such as mitochondria remains limited. Here we show that SLC25A48 imports choline into human mitochondria. Human loss-of-function mutations in SLC25A48 show impaired choline transport into mitochondria and are associated with elevated urine and plasma choline levels. Thus, our studies may have implications for understanding and treating conditions related to choline metabolism.
Collapse
Affiliation(s)
- Suraj Patil
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Oleg Borisov
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Christophe Wirth
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Sandra Ehret
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Björn Neubauer
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Michael Köttgen
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Méndez D, Tellería F, Alarcón M, Montecino-Garrido H, Molina-Gutiérrez N, Morales-Malvarez L, Deras B, Mansilla S, Castro L, Trostchansky A, Araya-Maturana R, Fuentes E. MITOCDNB DECREASES PLATELET ACTIVATION THROUGH ITS SELECTIVE ACTION ON MITOCHONDRIAL THIOREDOXIN REDUCTASE. Biomed Pharmacother 2025; 183:117840. [PMID: 39842272 DOI: 10.1016/j.biopha.2025.117840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Platelet inhibition is a fundamental objective to prevent and treat thrombus formation. Platelet activation depends on mitochondrial function. This study aims to identify a new mitochondria-targeting compound with antiplatelet activity at safe concentrations in vitro. Cytotoxicity and viability tests were performed on human platelets from volunteer donors, together with experiments on aggregation, platelet activation, mitochondrial function, mitochondrial respiration, and thioredoxin reductase 2 (TrxR2) enzymatic activity in isolated platelet mitochondria. The compound MitoCDNB, corresponding to the molecule 5-chloro-2,4-dinitrophenylamino linked with triphenylphosphonium cation (TPP+) by a butyl chain and methanesulfonate as the counterion, was evaluated. MitoCDNB demonstrates potent, high mitochondria-selective antiplatelet effects that provide a novel approach to platelet inhibition with potentially minimized systemic risks. Here, we describe the first compound that inhibits platelet activation by decreasing TrxR2 enzymatic activity and collagen-stimulated maximal mitochondrial respiration, preventing aggregation and platelet activation. These results can be used to develop new antiplatelet drugs targeting mitochondria.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Francisca Tellería
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Nacim Molina-Gutiérrez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Lisandra Morales-Malvarez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile; Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| | - Bessy Deras
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
9
|
Dubey S, Yu Z, Stephens EM, Lazrak A, Ahmad I, Aggarwal S, Andrabi S, Hossain MI, Jilling T, Fernadez SR, Bartels JL, Lapi SE, Mobley J, Pastukh VM, Gillespie M, Matalon S. Oxidative Injury to Lung Mitochondrial DNA is a Key Contributor for the Development of Chemical Lung Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624949. [PMID: 39651262 PMCID: PMC11623505 DOI: 10.1101/2024.11.22.624949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The mechanisms and extent to which inhalation of oxidant gases damage the mitochondrial genome contributing to the development of acute and chronic lung injury have not been investigated. C57BL/6 mice exposed to chlorine (Cl 2 ) gas and returned to room air, developed progressive loss of lung DNA glycosylase OGG1, significant oxidative injury to mtDNA, decreased intact lung mitochondrial (mt) DNA, generation of inflammatory pathway by DAMPs causing airway and alveolar injury with significant mortality. Global proteomics identified over 1400 lung proteins with alteration of key mitochondrial proteins at 24 h post Cl 2 exposure. Intranasal instillation of a recombinant protein containing mitochondrial targeted OGG1 (mitoOGG1) post exposure, decreased oxidative injury to mtDNA, lung mitochondrial proteome, severity of the acute and chronic lung injury and increased survival. These data show that injury to the mt-genome is a key contributor to the development of acute and chronic lung injury.
Collapse
|
10
|
Mang G, Chen J, Sun P, Ma R, Du J, Wang X, Cui J, Yang M, Tong Z, Yan X, Wang D, Xie H, Chen Y, Yang Q, Kong Y, Jin J, Wu J, Zhang M, Yu B. Von Willebrand factor exacerbates heart failure through formation of neutrophil extracellular traps. Eur Heart J 2024; 45:3853-3867. [PMID: 39165142 DOI: 10.1093/eurheartj/ehae517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/14/2023] [Accepted: 07/28/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND AND AIMS Heart failure (HF) is a leading cause of mortality worldwide and characterized by significant co-morbidities and dismal prognosis. Neutrophil extracellular traps (NETs) aggravate inflammation in various cardiovascular diseases; however, their function and mechanism of action in HF pathogenesis remain underexplored. This study aimed to investigate the involvement of a novel VWF-SLC44A2-NET axis in HF progression. METHODS NET levels were examined in patients with HF and mouse models of transverse aortic constriction (TAC) HF. PAD4 knockout mice and NET inhibitors (GSK-484, DNase I, NEi) were used to evaluate the role of NETs in HF. RNA sequencing was used to investigate the downstream mechanisms. Recombinant human ADAMTS13 (rhADAMTS13), ADAMTS13, and SLC44A2 knockouts were used to identify novel upstream factors of NETs. RESULTS Elevated NET levels were observed in patients with HF and TAC mouse models of HF. PAD4 knockout and NET inhibitors improved the cardiac function. Mechanistically, NETs induced mitochondrial dysfunction in cardiomyocytes, inhibiting mitochondrial biogenesis via the NE-TLR4-mediated suppression of PGC-1α. Furthermore, VWF/ADAMTS13 regulated NET formation via SLC44A2. Additionally, sacubitril/valsartan amplifies the cardioprotective effects of the VWF-SLC44A2-NET axis blockade. CONCLUSIONS This study established the role of a novel VWF-SLC44A2-NET axis in regulating mitochondrial homeostasis and function, leading to cardiac apoptosis and contributing to HF pathogenesis. Targeting this axis may offer a potential therapeutic approach for HF treatment.
Collapse
Affiliation(s)
- Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100013, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jianfeng Chen
- Experimental Animal Centre, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Ping Sun
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Ruishuang Ma
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jingwen Du
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Xiaoqi Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jingxuan Cui
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Mian Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Zhonghua Tong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Xiangyu Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Dongni Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Huiqi Xie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Yujia Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Qiannan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Yingjin Kong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jiaqi Jin
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St., Beijing 100053, China
| | - Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Harbin Medical University, Harbin 150086, Heilongjiang, China
| |
Collapse
|
11
|
Ministrini S, Tirandi A. Von Willebrand factor in inflammation and heart failure: beyond thromboembolic and bleeding risk. Eur Heart J 2024; 45:3868-3870. [PMID: 39193812 DOI: 10.1093/eurheartj/ehae543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Affiliation(s)
- Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Amedeo Tirandi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Internal Medicine, University of Genoa, viale Benedetto XV 6, Genoa, Italy
| |
Collapse
|
12
|
Peng L, Liu L, Chai M, Cai Z, Wang D. Predictive value of neutrophil to lymphocyte ratio for clinical outcome in patients with atrial fibrillation: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1461923. [PMID: 39390991 PMCID: PMC11464451 DOI: 10.3389/fcvm.2024.1461923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background The association between the Neutrophil-to-Lymphocyte Ratio (NLR) and the prognosis of Atrial Fibrillation (AF) has been extensively studied, yet clinical outcomes have varied. Consequently, this analysis was undertaken to explore the link between NLR and the prognostic markers of AF. Methods We conducted an exhaustive search across electronic databases, including PubMed, Embase, Web of Science, and the Cochrane Library, to investigate the correlation between the NLR and indicators of adverse clinical outcomes associated with AF from the database establishment date through March 31, 2024. In this study, the recurrence rate of AF was the primary outcome measure, while the secondary outcome measures were mortality, stroke, and left atrial thrombus. Odds ratio (OR), relative risk (RR), hazard ratio (HR) and standard mean difference (SMD) with a 95% confidence interval (CI) were integrated for assessment, and the stability of prognostic outcomes and publication bias were verified by sensitivity analysis and Egger's test, respectively. Subgroup analyses were performed to pinpoint the sources of heterogeneity. Results This analysis included 20 studies, encompassing a total of 59,256 patients. Our statistical analysis of both categorical and continuous variables revealed that an elevated NLR was significantly associated with increased risks in AF patients for recurrence (categorical variable: OR = 1.39, 95% CI = 1.21-1.60; continuous variable: SMD = 0.49, 95% CI = 0.24-0.74), mortality (categorical variable: OR = 1.87, 95% CI = 1.59-2.20), stroke (categorical variable: OR = 1.56, 95% CI = 1.13-2.17; continuous variable: SMD = 0.77, 95% CI = 0.63-0.91), and left atrial thrombus (categorical variable: OR = 1.87, 95% CI = 1.27-2.75; continuous variable: SMD = 0.59, 95% CI = 0.30-0.89). Subgroup analyses found that high NLR was significantly linked to AF recurrence when the NLR was >3. High NLR was significantly linked to the risk of stroke in AF when the NLR was ≤3. Conclusions This study suggested that a high NLR is significantly linked to prognostic risk markers of AF, and NLR may be an effective biomarker for the prognosis of AF in clinical practice. Systematic Review Registration PROSPERO (CRD42024530970).
Collapse
Affiliation(s)
- Lei Peng
- Department of Cardiology, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Li Liu
- Department of Cardiology, Jinan Integrated Traditional Chinese and Western Medicine Hospital, Jinan, China
| | - Miaomiao Chai
- Department of Cardiology, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Zhonggui Cai
- Department of Interventional Cardiology, Shandong Healthcare Group Zaozhuang Hospital, Zaozhuang, China
| | - Deqi Wang
- Department of Interventional Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, China
| |
Collapse
|
13
|
Underwood M, Bidlack C, Desch KC. Venous thromboembolic disease genetics: from variants to function. J Thromb Haemost 2024; 22:2393-2403. [PMID: 38908832 PMCID: PMC11934295 DOI: 10.1016/j.jtha.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Venous thromboembolic disease (VTE) is a prevalent and potentially life-threatening vascular disease, including both deep vein thrombosis and pulmonary embolism. This review will focus on recent insights into the heritable factors that influence an individual's risk for VTE. Here, we will explore not only the discovery of new genetic risk variants but also the importance of functional characterization of these variants. These genome-wide studies should lead to a better understanding of the biological role of genes inside and outside of the canonical coagulation system in thrombus formation and lead to an improved ability to predict an individual's risk of VTE. Further understanding of the molecular mechanisms altered by genetic variation in VTE risk will be accelerated by further human genome sequencing efforts and the use of functional genetic screens.
Collapse
Affiliation(s)
- Mary Underwood
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Bidlack
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Karl C Desch
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
14
|
Bernard DJ, Pangilinan F, Mendina C, Desporte T, Wincovitch SM, Walsh DJ, Porter RK, Molloy AM, Shane B, Brody LC. SLC25A48 influences plasma levels of choline and localizes to the inner mitochondrial membrane. Mol Genet Metab 2024; 143:108518. [PMID: 39047301 DOI: 10.1016/j.ymgme.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Choline contributes to the biogenesis of methyl groups, neurotransmitters, and cell membranes. Our genome-wide association study (GWAS) of circulating choline in 2228 college students found that alleles in SLC25A48 (rs6596270) influence choline concentrations in men (p = 9.6 × 10-8), but not women. Previously, the subcellular location and function of SLC25A48 were unknown. Using super-resolution immunofluorescence microscopy, we localized SLC25A48 to the inner mitochondrial membrane. Our results suggest that SLC25A48 transports choline across the inner mitochondrial membrane.
Collapse
Affiliation(s)
- David J Bernard
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Faith Pangilinan
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Caitlin Mendina
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Tara Desporte
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | | | - Darren J Walsh
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Anne M Molloy
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Barry Shane
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Lawrence C Brody
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA.
| |
Collapse
|
15
|
He J, Wang A, Zhao Q, Zou Y, Zhang Z, Sha N, Hou G, Zhou B, Yang Y, Chen T, Zhao Y, Jiang Y. RNAi screens identify HES4 as a regulator of redox balance supporting pyrimidine synthesis and tumor growth. Nat Struct Mol Biol 2024; 31:1413-1425. [PMID: 38769389 DOI: 10.1038/s41594-024-01309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
NADH/NAD+ redox balance is pivotal for cellular metabolism. Systematic identification of NAD(H) redox regulators, although currently lacking, would help uncover unknown effectors critically implicated in the coordination of growth metabolism. In this study, we performed a genome-scale RNA interference (RNAi) screen to globally survey the genes involved in redox modulation and identified the HES family bHLH transcription factor HES4 as a negative regulator of NADH/NAD+ ratio. Functionally, HES4 is shown to be crucial for maintaining mitochondrial electron transport chain (ETC) activity and pyrimidine synthesis. More specifically, HES4 directly represses transcription of SLC44A2 and SDS, thereby inhibiting mitochondrial choline oxidation and cytosolic serine deamination, respectively, which, in turn, ensures coenzyme Q reduction capacity for DHODH-mediated UMP synthesis and serine-derived dTMP production. Accordingly, inhibition of choline oxidation preserves mitochondrial serine catabolism and ETC-coupled redox balance. Furthermore, HES4 protein stability is enhanced under EGFR activation, and increased HES4 levels facilitate EGFR-driven tumor growth and predict poor prognosis of lung adenocarcinoma. These findings illustrate an unidentified mechanism, underlying pyrimidine biosynthesis in the intersection between serine and choline catabolism, and underscore the physiological importance of HES4 in tumor metabolism.
Collapse
Affiliation(s)
- Jing He
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Qin Zhao
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Sha
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofang Hou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Zhou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yuhui Jiang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Zhang Z, Zhou X, Zhou X, Cheng Z, Hu Y. Role of Platelets and Their Interaction with Immune Cells in Venous Thromboembolism. Semin Thromb Hemost 2024. [PMID: 39214148 DOI: 10.1055/s-0044-1789022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Venous thromboembolism (VTE) represents a significant global health challenge, ranking as the third leading cause of cardiovascular-related mortality. VTE pervades diverse clinical specialties, posing substantial risks to patient well-being and imposing considerable economic strains on health care systems. While platelets have long been recognized as pivotal players in hemostasis, emerging evidence underscores their multifaceted immune functions and their capacity to engage in crosstalk with other immune cells, such as neutrophils, thereby fostering immune-related thrombosis. Notably, investigations have elucidated the pivotal role of platelets in the pathogenesis of VTE. This review provides a comprehensive overview of platelet physiology, encompassing their activation, secretion dynamics, and implications in VTE. Moreover, it delineates the impact of platelet interactions with various immune cells on the initiation and progression of VTE, explores the correlation between platelet-related laboratory markers and VTE, and elucidates the role of platelets in thrombosis regression.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xianghui Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xin Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Zhipeng Cheng
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Yu Hu
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| |
Collapse
|
17
|
Xing M, Chen W, Ji Y, Song W. SLC44A2-mediated phenotypic switch of vascular smooth muscle cells contributes to aortic aneurysm. J Clin Invest 2024; 134:e183527. [PMID: 39145443 PMCID: PMC11324288 DOI: 10.1172/jci183527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
The phenotypic switch of vascular smooth cells (VSMCs) from a contractile to a synthetic state is associated with the development and progression of aortic aneurysm (AA). However, the mechanism underlying this process remains unclear. In this issue of the JCI, Song et al. identified SLC44A2 as a regulator of the phenotypic switch in VSMCs. Inhibition of SLC44A2 facilitated the switch to the synthetic state, contributing to the development of AA. Mechanistically, SLC44A2 interacted with NRP1 and ITGB3 to activate the TGF-β/SMAD signaling pathway, resulting in VSMCs with a contractile phenotype. Furthermore, VSMC-specific SLC44A2 overexpression by genetic or pharmacological manipulation reduced AA in mouse models. These findings suggest the potential of targeting the SLC44A2 signaling pathway for AA prevention and treatment.
Collapse
Affiliation(s)
- Mengen Xing
- Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, School of Mental Health and Affiliated Kangning Hospital, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Wanqi Chen
- Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, School of Mental Health and Affiliated Kangning Hospital, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Yachen Ji
- Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, School of Mental Health and Affiliated Kangning Hospital, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, School of Mental Health and Affiliated Kangning Hospital, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Arauna D, Araya-Maturana R, Urra FA, García Á, Palomo I, Fuentes E. Altered dynamics of calcium fluxes and mitochondrial metabolism in platelet activation-related disease and aging. Life Sci 2024; 351:122846. [PMID: 38880165 DOI: 10.1016/j.lfs.2024.122846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms controlling platelet function is crucial for exploring potential therapeutic targets related to atherothrombotic pathologies and primary hemostasis disorders. Our research, which focuses on the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis, has significant implications for the development of new therapeutic strategies. Traditionally, Ca2+-dependent cellular signaling has been recognized as a determinant process throughout the platelet activation, controlled primarily by store-operated Ca2+ entry and the PLC-PKC signaling pathway. However, despite the accumulated knowledge of these regulatory mechanisms, the effectiveness of therapy based on various commonly used antiplatelet drugs (such as acetylsalicylic acid and clopidogrel, among others) has faced challenges due to bleeding risks and reduced efficacy associated with the phenomenon of high platelet reactivity. Recent evidence suggests that platelet mitochondria could play a fundamental role in these aspects through Ca2+-dependent mechanisms linked to apoptosis and forming a procoagulant phenotype. In this context, the present review describes the latest advances regarding the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, Chile
| | - Félix A Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Santiago, Chile
| | - Ángel García
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
19
|
Groten SA, Smit ER, van den Biggelaar M, Hoogendijk AJ. The proteomic landscape of in vitro cultured endothelial cells across vascular beds. Commun Biol 2024; 7:989. [PMID: 39143368 PMCID: PMC11324761 DOI: 10.1038/s42003-024-06649-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Blood vessel endothelial cells (EC) display heterogeneity across vascular beds, which is anticipated to drive site-specific vascular pathology. This heterogeneity is assessed using transcriptomics in vivo, and functional assays in vitro, but how proteomes compare across human in vitro cultured ECs remains incompletely characterized. We generated an in-depth human EC proteomic landscape (>8000 proteins) across six organs and two in vitro models in steady-state and upon IFNγ-induced inflammation. EC proteomes displayed a high similarity and organ-specific proteins were limited. Variation between ECs was mainly based on proliferation and differentiation processes in which Blood outgrowth endothelial cells (BOEC) and Human umbilical vein cells (HUVEC) represented the extremes of proteomic phenotypes. The IFNγ response was highly conserved across all samples. Harnessing dynamics in protein abundances we delineated VWF and VE-Cadherin correlation networks. This EC landscape provides an extensive proteomic addition in studying EC biology and heterogeneity from an in vitro perspective.
Collapse
Affiliation(s)
- Stijn A Groten
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Eva R Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Majid QA, Ghimire BR, Merkely B, Randi AM, Harding SE, Talman V, Földes G. Generation and characterisation of scalable and stable human pluripotent stem cell-derived microvascular-like endothelial cells for cardiac applications. Angiogenesis 2024; 27:561-582. [PMID: 38775849 PMCID: PMC11303486 DOI: 10.1007/s10456-024-09929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 08/07/2024]
Abstract
Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here, we report the development and comprehensive characterisation of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. Further, the generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. Thus, we present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Moreover, owing to their phenotypic stability, cardiac specificity, and high angiogenic potential, the cells described within would also be well suited for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Qasim A Majid
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary
| | - Anna M Randi
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sian E Harding
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Virpi Talman
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gábor Földes
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary.
| |
Collapse
|
21
|
Song T, Zhao S, Luo S, Chen C, Liu X, Wu X, Sun Z, Cao J, Wang Z, Wang Y, Yu B, Zhang Z, Du X, Li X, Han Z, Chen H, Chen F, Wang L, Wang H, Sun K, Han Y, Xie L, Ji Y. SLC44A2 regulates vascular smooth muscle cell phenotypic switching and aortic aneurysm. J Clin Invest 2024; 134:e173690. [PMID: 38916960 PMCID: PMC11324303 DOI: 10.1172/jci173690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Aortic aneurysm is a life-threatening disease with limited interventions that is closely related to vascular smooth muscle cell (VSMC) phenotypic switching. SLC44A2, a member of the solute carrier series 44 (SLC44) family, remains undercharacterized in the context of cardiovascular diseases. Venn diagram analysis based on microarray and single-cell RNA sequencing identified SLC44A2 as a major regulator of VSMC phenotypic switching in aortic aneurysm. Screening for Slc44a2 among aortic cell lineages demonstrated its predominant location in VSMCs. Elevated levels of SLC44A2 were evident in the aorta of both patients with abdominal aortic aneurysm and angiotensin II-infused (Ang II-infused) Apoe-/- mice. In vitro, SLC44A2 silencing promoted VSMCs toward a synthetic phenotype, while SLC44A2 overexpression attenuated VSMC phenotypic switching. VSMC-specific SLC44A2-knockout mice were more susceptible to aortic aneurysm under Ang II infusion, while SLC44A2 overexpression showed protective effects. Mechanistically, SLC44A2's interaction with NRP1 and ITGB3 activates TGF-β/SMAD signaling, thereby promoting contractile gene expression. Elevated SLC44A2 in aortic aneurysm is associated with upregulated runt-related transcription factor 1 (RUNX1). Furthermore, low-dose lenalidomide (LEN; 20 mg/kg/day) suppressed aortic aneurysm progression by enhancing SLC44A2 expression. These findings reveal that the SLC44A2-NRP1-ITGB3 complex is a major regulator of VSMC phenotypic switching and provide a potential therapeutic approach (LEN) for aortic aneurysm treatment.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Angiotensin II/pharmacology
- Aortic Aneurysm/genetics
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Mice, Knockout
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Signal Transduction
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
Collapse
Affiliation(s)
- Tianyu Song
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuang Zhao
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanshan Luo
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuansheng Chen
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingeng Liu
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqi Wu
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongxu Sun
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiawei Cao
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziyu Wang
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yineng Wang
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), and
| | - Zhiren Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), and
- Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Harbin Medical University, China
| | - Xiaolong Du
- Department of Vascular Surgery, The Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaoqiang Li
- Department of Vascular Surgery, The Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhijian Han
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongshan Chen
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Chen
- Department of Forensic Medicine, and
| | - Liansheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yi Han
- Critical Care Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liping Xie
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Ji
- Gusu School, Nanjing Medical University, Suzhou, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), and
| |
Collapse
|
22
|
Chen S, Liu J, Luo S, Xing L, Li W, Gong L. The Effects of Bacillus amyloliquefaciens SC06 on Behavior and Brain Function in Broilers Infected by Clostridium perfringens. Animals (Basel) 2024; 14:1547. [PMID: 38891594 PMCID: PMC11171150 DOI: 10.3390/ani14111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Poultry studies conducted on Clostridium perfringens (CP) mainly focus on the effects of intestinal health and productive performance. Notably, the probiotic Bacillus amyloliquefaciens SC06 (BaSC06) is known to play a role in preventing bacterial infection. However, whether CP could induce the changes in brain function and behaviors and whether BaSC06 could play roles in these parameters is yet to be reported. The aim of this study was to evaluate the effects of BaSC06 on stress-related behaviors and gene expression, as well as the brain morphology and mRNA sequence of the hypothalamus in broiler chickens. A total of 288 one-day-old chicks were randomly divided into four groups: (1) a control group with no treatment administered or infection; (2) birds treated with the BaSC06 group; (3) a CP group; and (4) a BaSC06 plus CP (Ba_CP) group. The results showed that stress and fear-related behaviors were significantly induced by a CP infection and decreased due to the treatment of BaSC06. CP infection caused pathological damage to the pia and cortex of the brain, while BaSC06 showed a protective effect. CP significantly inhibited hypothalamic GABA and promoted HTR1A gene expression, while BaSC06 promoted GABA and decreased HTR1A gene expression. The different genes were nearly found between the comparisons of control vs. Ba group and Ba vs. CP group, while there were a great number of different genes between the comparisons of control vs. Ba_CP as well as CP vs. Ba_CP. Several different gene expression pathways were found that were related to disease, energy metabolism, and nervous system development. Our results will help to promote poultry welfare and health, as well as provide insights into probiotics to replace antibiotics and reduce resistance in the chicken industry.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Jinling Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Shuyan Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Weifen Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| |
Collapse
|
23
|
Fan Z, Xu S, Deng Y, Wei L, Yang J, Xing X. Disordered gut microbiota and alterations in the serum metabolome are associated with venous thromboembolism. Thromb Res 2024; 235:68-74. [PMID: 38306775 DOI: 10.1016/j.thromres.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
INTRODUCTION The gut microbiome plays a crucial role in various diseases, and its regulation is a potential treatment option for these conditions. However, the relationship between the gut microbiome and venous thromboembolism (VTE) remains poorly explored. METHODS In this study, we collected feces and serum samples from 8 VTE patients and 7 healthy controls. The gut microbiota and serum metabolites were analyzed using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry, respectively. Additionally, a combined analysis of microbiota and metabolome was performed. RESULTS The alpha and beta diversity between the VTE and control groups were significantly different. Patients with VTE exhibited an overgrowth of Blautia, Roseburia, Coprococcus, and Ruminococcus. Moreover, serum metabolomics analysis revealed altered levels of choline and lithocholic acid. Pathway enrichment analysis indicated a significant upregulation of bile secretion pathways. In addition, a positive correlation was observed between the levels of serum choline and lithocholic acid and the abundance of gut flora enriched in the VTE group. CONCLUSION This study provided novel insights into the disordered gut microbiota and serum metabolome associated with VTE, suggesting potential common pathological mechanisms between VTE and arterial thrombosis. Targeted modulation of the gut microbiome may hold promise as a preventive and therapeutic approach for VTE.
Collapse
Affiliation(s)
- Zeqin Fan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Shuanglan Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Yishu Deng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Li Wei
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Jiao Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China.
| |
Collapse
|
24
|
Valdés-Hernández J, Folch JM, Crespo-Piazuelo D, Passols M, Sebastià C, Criado-Mesas L, Castelló A, Sánchez A, Ramayo-Caldas Y. Identification of candidate regulatory genes for intramuscular fatty acid composition in pigs by transcriptome analysis. Genet Sel Evol 2024; 56:12. [PMID: 38347496 PMCID: PMC10860264 DOI: 10.1186/s12711-024-00882-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content and its fatty acid (FA) composition are typically controlled by several genes, each with a small effect. In the current study, to pinpoint candidate genes and putative regulators involved in FA composition, we performed a multivariate integrative analysis between intramuscular FA and transcriptome profiles of porcine longissimus dorsi (LD) muscle. We also carried out a combination of network, regulatory impact factor (RIF), in silico prediction of putative target genes, and functional analyses to better support the biological relevance of our findings. RESULTS For this purpose, we used LD RNA-Seq and intramuscular FA composition profiles of 129 Iberian × Duroc backcrossed pigs. We identified 378 correlated variables (13 FA and 365 genes), including six FA (C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, C18:0, and C16:1n-7) that were among the most interconnected variables in the predicted network. The detected FA-correlated genes include genes involved in lipid and/or carbohydrate metabolism or in regulation of IMF deposition (e.g., ADIPOQ, CHUK, CYCS, CYP4B1, DLD, ELOVL6, FBP1, G0S2, GCLC, HMGCR, IDH3A, LEP, LGALS12, LPIN1, PLIN1, PNPLA8, PPP1R1B, SDR16C5, SFRP5, SOD3, SNW1, and TFRC), meat quality (GALNT15, GOT1, MDH1, NEU3, PDHA1, SDHD, and UNC93A), and transport (e.g., EXOC7 and SLC44A2). Functional analysis highlighted 54 over-represented gene ontology terms, including well-known biological processes and pathways that regulate lipid and carbohydrate metabolism. RIF analysis suggested a pivotal role for six transcription factors (CARHSP1, LBX1, MAFA, PAX7, SIX5, and TADA2A) as putative regulators of gene expression and intramuscular FA composition. Based on in silico prediction, we identified putative target genes for these six regulators. Among these, TADA2A and CARHSP1 had extreme RIF scores and present novel regulators in pigs. In addition, the expression of TADA2A correlated (either positively or negatively) with C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, and that of CARHSP1 correlated (positively) with the C16:1n-7 lipokine. We also found that these two transcription factors share target genes that are involved in lipid metabolism (e.g., GOT1, PLIN1, and TFRC). CONCLUSIONS This integrative analysis of muscle transcriptome and intramuscular FA profile revealed valuable information about key candidate genes and potential regulators for FA and lipid metabolism in pigs, among which some transcription factors are proposed to control gene expression and modulate FA composition differences.
Collapse
Affiliation(s)
- Jesús Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Josep M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca y Tecnologia Agraroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Yuliaxis Ramayo-Caldas
- Departament de Genètica i Millora Animal, Institut de Recerca y Tecnologia Agraroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
25
|
Roch B, Pisareva E, Mirandola A, Sanchez C, Pastor B, Tanos R, Frayssinoux F, Diab-Assaf M, Anker P, Al Amir Dache Z, Thierry AR. Impact of platelet activation on the release of cell-free mitochondria and circulating mitochondrial DNA. Clin Chim Acta 2024; 553:117711. [PMID: 38101467 DOI: 10.1016/j.cca.2023.117711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Research on circulating mitochondrial DNA (cir-mtDNA) based diagnostic is insufficient, as to its function, origin, structural features, and particularly its standardization of isolation. To date, plasma preparation performed in previous studies do not take into consideration the potential bias resulting from the release of mitochondria by activated platelets. METHODS To tackle this, we compared the mtDNA amount determined by a standard plasma preparation method or a method optimally avoiding platelet activation. MtDNA extracted from the plasma of seven healthy individuals was quantified by Q-PCR in the course of the process of both methods submitted to filtration, freezing or differential centrifugation. RESULTS 98.7 to 99.4% of plasma mtDNA corresponded to extracellular mitochondria, either free or into large extracellular vesicles. Without platelet activation, the proportion of both types of entities remained preponderant (76-80%), but the amount of detected mtDNA decreased 67-fold. CONCLUSION We show the high capacity of platelets to release free mitochondria in "in vitro" conditions. This represents a potent confounding factor when extracting mtDNA for cir-mtDNA investigation. Platelet activation during pre-analytical conditions should therefore be avoided when studying cir-mtDNA. Our findings lead to a profound revision of the assumptions previously made by most works in this field. Overall, our data suggest the need to characterize or isolate mtDNA associated various structural forms, as well as to standardize plasma preparation, to better circumscribe cir-mtDNA's diagnostic capacity.
Collapse
Affiliation(s)
- Benoit Roch
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France; Thoracic Oncology Unit, Arnaud de Villeneuve Hospital, University Hospital of Montpellier, Montpellier F-34295, France
| | - Ekaterina Pisareva
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Alexia Mirandola
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Cynthia Sanchez
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Brice Pastor
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Rita Tanos
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Florence Frayssinoux
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Mona Diab-Assaf
- Faculty of Sciences II, Lebanese University Fanar, Beirut, Lebanon
| | - Philippe Anker
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Zahra Al Amir Dache
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Alain R Thierry
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France; ICM, Institut Régional du Cancer de Montpellier, Montpellier F-34298, France.
| |
Collapse
|
26
|
LOWENSTEIN CHARLESJ. GENETIC DETERMINANTS OF THROMBOSIS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2024; 134:230-238. [PMID: 39135563 PMCID: PMC11316864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Venous thromboembolism (VTE) is a major cause of morbidity and mortality in the United States. VTE is caused by genetic and acquired conditions, but the genetic variants that increase the risk of VTE are not fully characterized. Recent genome-wide association studies (GWAS) have discovered novel genetic loci linked to VTE. Some of these loci have been characterized, uncovering new pathways that regulate VTE. Functional characterization of candidate genes discovered by GWAS may reveal new therapeutic targets to treat and prevent abnormal thrombosis or bleeding.
Collapse
|
27
|
Yu A, Beck M, Merzendorfer H, Yang Q. Advances in understanding insect chitin biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104058. [PMID: 38072083 DOI: 10.1016/j.ibmb.2023.104058] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Chitin, a natural polymer of N-acetylglucosamine chains, is a principal component of the apical extracellular matrix in arthropods. Chitin microfibrils serve as structural components of natural biocomposites present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes, fungi and arthropods. In this review, we summarize the frontier advances of insect chitin synthesis. More specifically, we focus on the chitin synthase (CHS), which catalyzes the key biosynthesis step. CHS is also known as an attractive insecticidal target in that this enzyme is absent in mammals, birds or plants. As no insect chitin synthase structure have been reported so far, we review recent studies on glycosyltransferase domain structures derived from fungi and oomycetes, which are conserved in CHS from all species containing chitin. Auxiliary proteins, which coordinate with CHS in chitin biosynthesis and assembly, are also discussed.
Collapse
Affiliation(s)
- Ailing Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Marius Beck
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany.
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
28
|
Ghani H, Pepke-Zaba J. Chronic Thromboembolic Pulmonary Hypertension: A Review of the Multifaceted Pathobiology. Biomedicines 2023; 12:46. [PMID: 38255153 PMCID: PMC10813488 DOI: 10.3390/biomedicines12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic thromboembolic pulmonary disease results from the incomplete resolution of thrombi, leading to fibrotic obstructions. These vascular obstructions and additional microvasculopathy may lead to chronic thromboembolic pulmonary hypertension (CTEPH) with increased pulmonary arterial pressure and pulmonary vascular resistance, which, if left untreated, can lead to right heart failure and death. The pathobiology of CTEPH has been challenging to unravel due to its rarity, possible interference of results with anticoagulation, difficulty in selecting the most relevant study time point in relation to presentation with acute pulmonary embolism (PE), and lack of animal models. In this article, we review the most relevant multifaceted cross-talking pathogenic mechanisms and advances in understanding the pathobiology in CTEPH, as well as its challenges and future direction. There appears to be a genetic background affecting the relevant pathological pathways. This includes genetic associations with dysfibrinogenemia resulting in fibrinolysis resistance, defective angiogenesis affecting thrombus resolution, and inflammatory mediators driving chronic inflammation in CTEPH. However, these are not necessarily specific to CTEPH and some of the pathways are also described in acute PE or deep vein thrombosis. In addition, there is a complex interplay between angiogenic and inflammatory mediators driving thrombus non-resolution, endothelial dysfunction, and vascular remodeling. Furthermore, there are data to suggest that infection, the microbiome, circulating microparticles, and the plasma metabolome are contributing to the pathobiology of CTEPH.
Collapse
Affiliation(s)
- Hakim Ghani
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
| | | |
Collapse
|
29
|
Kelliher S, Gamba S, Weiss L, Shen Z, Marchetti M, Schieppati F, Scaife C, Madden S, Bennett K, Fortune A, Maung S, Fay M, Ní Áinle F, Maguire P, Falanga A, Kevane B, Krishnan A. Platelet proteo-transcriptomic profiling validates mediators of thrombosis and proteostasis in patients with myeloproliferative neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563619. [PMID: 37961700 PMCID: PMC10634751 DOI: 10.1101/2023.10.23.563619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patients with chronic Myeloproliferative Neoplasms (MPN) including polycythemia vera (PV) and essential thrombocythemia (ET) exhibit unique clinical features, such as a tendency toward thrombosis and hemorrhage, and risk of disease progression to secondary bone marrow fibrosis and/or acute leukemia. Although an increase in blood cell lineage counts (quantitative features) contribute to these morbid sequelae, the significant qualitative abnormalities of myeloid cells that contribute to vascular risk are not well understood. Here, we address this critical knowledge gap via a comprehensive and untargeted profiling of the platelet proteome in a large (n= 140) cohort of patients (from two independent sites) with an established diagnosis of PV and ET (and complement prior work on the MPN platelet transcriptome from a third site). We discover distinct MPN platelet protein expression and confirm key molecular impairments associated with proteostasis and thrombosis mechanisms of potential relevance to MPN pathology. Specifically, we validate expression of high-priority candidate markers from the platelet transcriptome at the platelet proteome (e.g., calreticulin (CALR), Fc gamma receptor (FcγRIIA) and galectin-1 (LGALS1) pointing to their likely significance in the proinflammatory, prothrombotic and profibrotic phenotypes in patients with MPN. Together, our proteo-transcriptomic study identifies the peripherally-derived platelet molecular profile as a potential window into MPN pathophysiology and demonstrates the value of integrative multi-omic approaches in gaining a better understanding of the complex molecular dynamics of disease.
Collapse
Affiliation(s)
- Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Sara Gamba
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Luisa Weiss
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Zhu Shen
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina Marchetti
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Schieppati
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Caitriona Scaife
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kathleen Bennett
- School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Anne Fortune
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Su Maung
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Fay
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Fionnuala Ní Áinle
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Medicine, Royal College of Surgeons in Ireland
| | - Patricia Maguire
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Institute for Discovery, University College Dublin, Dublin, Ireland
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
- University of Milano-Bicocca, Department of Medicine and Surgery, Monza, Italy
| | - Barry Kevane
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Rutgers University, Piscataway, NJ
- Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
30
|
Fuentes E, Arauna D, Araya-Maturana R. Regulation of mitochondrial function by hydroquinone derivatives as prevention of platelet activation. Thromb Res 2023; 230:55-63. [PMID: 37639783 DOI: 10.1016/j.thromres.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Platelet activation plays an essential role in the pathogenesis of thrombotic events in different diseases (e.g., cancer, type 2 diabetes, Alzheimer's, and cardiovascular diseases, and even in patients diagnosed with coronavirus disease 2019). Therefore, antiplatelet therapy is essential to reduce thrombus formation. However, the utility of current antiplatelet drugs is limited. Therefore, identifying novel antiplatelet compounds is very important in developing new drugs. In this context, the involvement of mitochondrial function as an efficient energy source required for platelet activation is currently accepted; however, its contribution as an antiplatelet target still has little been exploited. Regarding this, the intramolecular hydrogen bonding of hydroquinone derivatives has been described as a structural motif that allows the reach of small molecules at mitochondria, which can exert antiplatelet activity, among others. In this review, we describe the role of mitochondrial function in platelet activation and how hydroquinone derivatives exert antiplatelet activity through mitochondrial regulation.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile.
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
31
|
Monero-Paredes M, Feliu-Maldonado R, Carrasquillo-Carrion K, Gonzalez P, Rogozin IB, Roche-Lima A, Duconge J. Non-Random Enrichment of Single-Nucleotide Polymorphisms Associated with Clopidogrel Resistance within Risk Loci Linked to the Severity of Underlying Cardiovascular Diseases: The Role of Admixture. Genes (Basel) 2023; 14:1813. [PMID: 37761953 PMCID: PMC10531115 DOI: 10.3390/genes14091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in Puerto Rico, where clopidogrel is commonly prescribed to prevent ischemic events. Genetic contributors to both a poor clopidogrel response and the severity of CVD have been identified mainly in Europeans. However, the non-random enrichment of single-nucleotide polymorphisms (SNPs) associated with clopidogrel resistance within risk loci linked to underlying CVDs, and the role of admixture, have yet to be tested. This study aimed to assess the possible interaction between genetic biomarkers linked to CVDs and those associated with clopidogrel resistance among admixed Caribbean Hispanics. We identified 50 SNPs significantly associated with CVDs in previous genome-wide association studies (GWASs). These SNPs were combined with another ten SNPs related to clopidogrel resistance in Caribbean Hispanics. We developed Python scripts to determine whether SNPs related to CVDs are in close proximity to those associated with the clopidogrel response. The average and individual local ancestry (LAI) within each locus were inferred, and 60 random SNPs with their corresponding LAIs were generated for enrichment estimation purposes. Our results showed no CVD-linked SNPs in close proximity to those associated with the clopidogrel response among Caribbean Hispanics. Consequently, no genetic loci with a dual predictive role for the risk of CVD severity and clopidogrel resistance were found in this population. Native American ancestry was the most enriched within the risk loci linked to CVDs in this population. The non-random enrichment of disease susceptibility loci with drug-response SNPs is a new frontier in Precision Medicine that needs further attention.
Collapse
Affiliation(s)
- Mariangeli Monero-Paredes
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (M.M.-P.); (P.G.)
| | - Roberto Feliu-Maldonado
- Research Centers in Minority Institutions Program, Center for Collaborative Research in Health Disparities, Academic Affairs Deanship, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (R.F.-M.); (K.C.-C.); (A.R.-L.)
| | - Kelvin Carrasquillo-Carrion
- Research Centers in Minority Institutions Program, Center for Collaborative Research in Health Disparities, Academic Affairs Deanship, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (R.F.-M.); (K.C.-C.); (A.R.-L.)
| | - Pablo Gonzalez
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (M.M.-P.); (P.G.)
| | - Igor B. Rogozin
- Computational Biology Branch, National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Rockville Pike MSC 3830, Bethesda, MD 20894, USA;
| | - Abiel Roche-Lima
- Research Centers in Minority Institutions Program, Center for Collaborative Research in Health Disparities, Academic Affairs Deanship, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (R.F.-M.); (K.C.-C.); (A.R.-L.)
| | - Jorge Duconge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico
| |
Collapse
|
32
|
Gama-Almeida MC, Pinto GDA, Teixeira L, Hottz ED, Ivens P, Ribeiro H, Garrett R, Torres AG, Carneiro TIA, Barbalho BDO, Ludwig C, Struchiner CJ, Assunção-Miranda I, Valente APC, Bozza FA, Bozza PT, Dos Santos GC, El-Bacha T. Integrated NMR and MS Analysis of the Plasma Metabolome Reveals Major Changes in One-Carbon, Lipid, and Amino Acid Metabolism in Severe and Fatal Cases of COVID-19. Metabolites 2023; 13:879. [PMID: 37512587 PMCID: PMC10384698 DOI: 10.3390/metabo13070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Brazil has the second-highest COVID-19 death rate worldwide, and Rio de Janeiro is among the states with the highest rate in the country. Although vaccine coverage has been achieved, it is anticipated that COVID-19 will transition into an endemic disease. It is concerning that the molecular mechanisms underlying clinical evolution from mild to severe disease, as well as the mechanisms leading to long COVID-19, are not yet fully understood. NMR and MS-based metabolomics were used to identify metabolites associated with COVID-19 pathophysiology and disease outcome. Severe COVID-19 cases (n = 35) were enrolled in two reference centers in Rio de Janeiro within 72 h of ICU admission, alongside 12 non-infected control subjects. COVID-19 patients were grouped into survivors (n = 18) and non-survivors (n = 17). Choline-related metabolites, serine, glycine, and betaine, were reduced in severe COVID-19, indicating dysregulation in methyl donors. Non-survivors had higher levels of creatine/creatinine, 4-hydroxyproline, gluconic acid, and N-acetylserine, indicating liver and kidney dysfunction. Several changes were greater in women; thus, patients' sex should be considered in pandemic surveillance to achieve better disease stratification and improve outcomes. These metabolic alterations may be useful to monitor organ (dys) function and to understand the pathophysiology of acute and possibly post-acute COVID-19 syndromes.
Collapse
Affiliation(s)
- Marcos C Gama-Almeida
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela D A Pinto
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora 36936-900, Brazil
| | - Paula Ivens
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Hygor Ribeiro
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Rafael Garrett
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Alexandre G Torres
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Talita I A Carneiro
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bianca de O Barbalho
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2SQ, UK
| | - Claudio J Struchiner
- School of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro 22231-080, Brazil
- Institute of Social Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Iranaia Assunção-Miranda
- LaRIV, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Paula C Valente
- National Center for Nuclear Magnetic Resonance-Jiri Jonas, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Gilson C Dos Santos
- LabMet-Laboratory of Metabolomics, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Department of Genetics, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
33
|
Hirsch J, Uzun G, Zlamal J, Singh A, Bakchoul T. Platelet-neutrophil interaction in COVID-19 and vaccine-induced thrombotic thrombocytopenia. Front Immunol 2023; 14:1186000. [PMID: 37275917 PMCID: PMC10237318 DOI: 10.3389/fimmu.2023.1186000] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is known to commonly induce a thrombotic diathesis, particularly in severely affected individuals. So far, this COVID-19-associated coagulopathy (CAC) has been partially explained by hyperactivated platelets as well as by the prothrombotic effects of neutrophil extracellular traps (NETs) released from neutrophils. However, precise insight into the bidirectional relationship between platelets and neutrophils in the pathophysiology of CAC still lags behind. Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare autoimmune disorder caused by auto-antibody formation in response to immunization with adenoviral vector vaccines. VITT is associated with life-threatening thromboembolic events and thus, high fatality rates. Our concept of the thrombophilia observed in VITT is relatively new, hence a better understanding could help in the management of such patients with the potential to also prevent VITT. In this review we aim to summarize the current knowledge on platelet-neutrophil interplay in COVID-19 and VITT.
Collapse
Affiliation(s)
- Johannes Hirsch
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Günalp Uzun
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Jan Zlamal
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anurag Singh
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Tamam Bakchoul
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
34
|
Deng Y, Zhou F, Li Q, Guo J, Cai B, Li G, Liu J, Li L, Zheng Q, Chang D. Associations between neutrophil-lymphocyte ratio and monocyte to high-density lipoprotein ratio with left atrial spontaneous echo contrast or thrombus in patients with non-valvular atrial fibrillation. BMC Cardiovasc Disord 2023; 23:234. [PMID: 37142962 PMCID: PMC10157900 DOI: 10.1186/s12872-023-03270-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The importance of inflammation in thrombosis is increasingly appreciated. Neutrophil-lymphocyte ratio (NLR) and monocyte to high-density lipoprotein ratio (MHR) are important indicators of systemic inflammation. This study aimed to investigate the associations between NLR and MHR with left atrial appendage thrombus (LAAT) and spontaneous echo contrast (SEC) in patients with non-valvular atrial fibrillation. METHODS This retrospective, cross-sectional study enrolled 569 consecutive patients with non-valvular atrial fibrillation. Multivariable logistic regression analysis was used to investigate independent risk factors of LAAT/SEC. Receiver operating characteristic (ROC) curves were used to evaluate the specificity and sensitivity of NLR and MHR in predicting LAAT/SEC. Subgroup and Pearson correlation analyses were used to assess the correlations between NLR and MHR with the CHA2DS2-VASc score. RESULTS Multivariate logistic regression analysis showed that NLR (OR: 1.49; 95%CI: 1.173-1.892) and MHR (OR: 2.951; 95%CI: 1.045-8.336) were independent risk factors for LAAT/SEC. The area under the ROC curve of NLR (0.639) and MHR (0.626) was similar to that of the CHADS2 score (0.660) and CHA2DS2-VASc score (0.637). Subgroup and Pearson correlation analyses showed significant but very weak associations between NLR (r = 0.139, P < 0.05) and MHR (r = 0.095, P < 0.05) with the CHA2DS2-VASc score. CONCLUSION Generally, NLR and MHR are independent risk factors for predicting LAAT/SEC in patients with non-valvular atrial fibrillation.
Collapse
Affiliation(s)
- Yingjian Deng
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Faguang Zhou
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Qiang Li
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jincun Guo
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Binni Cai
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Guiyang Li
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jianghai Liu
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Linlin Li
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Qi Zheng
- Department of Psychology, Xiamen Xianyue Hospital, Xiamen, China.
| | - Dong Chang
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China.
| |
Collapse
|
35
|
Koehl B, Vrignaud C, Mikdar M, Nair TS, Yang L, Landry S, Laiguillon G, Giroux‐Lathuile C, Anselme‐Martin S, El Kenz H, Hermine O, Mohandas N, Cartron JP, Colin Y, Detante O, Marlu R, Le Van Kim C, Carey TE, Azouzi S, Peyrard T. Lack of the human choline transporter-like protein SLC44A2 causes hearing impairment and a rare red blood phenotype. EMBO Mol Med 2023; 15:e16320. [PMID: 36695047 PMCID: PMC9994479 DOI: 10.15252/emmm.202216320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Blood phenotypes are defined by the presence or absence of specific blood group antigens at the red blood cell (RBC) surface, due to genetic polymorphisms among individuals. The recent development of genomic and proteomic approaches enabled the characterization of several enigmatic antigens. The choline transporter-like protein CTL2 encoded by the SLC44A2 gene plays an important role in platelet aggregation and neutrophil activation. By investigating alloantibodies to a high-prevalence antigen of unknown specificity, found in patients with a rare blood type, we showed that SLC44A2 is also expressed in RBCs and carries a new blood group system. Furthermore, we identified three siblings homozygous for a large deletion in SLC44A2, resulting in complete SLC44A2 deficiency. Interestingly, the first-ever reported SLC44A2-deficient individuals suffer from progressive hearing impairment, recurrent arterial aneurysms, and epilepsy. Furthermore, SLC44A2null individuals showed no significant platelet aggregation changes and do not suffer from any apparent hematological disorders. Overall, our findings confirm the function of SLC44A2 in hearing preservation and provide new insights into the possible role of this protein in maintaining cerebrovascular homeostasis.
Collapse
Affiliation(s)
- Bérengère Koehl
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
- Department of Child HematologyReference Center for Sickle‐Cell Disease Robert Debré University Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
| | - Cédric Vrignaud
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
| | - Mahmoud Mikdar
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
| | - Thankam S Nair
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Lucy Yang
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Seyve Landry
- Hemostasis LaboratoryGrenoble Alpes University Hospital GrenobleGrenobleFrance
| | - Guy Laiguillon
- Établissement Français de Sang (EFS) Ile‐de‐France, Centre National de Référence pour les Groupes SanguinsParisFrance
| | | | - Sophie Anselme‐Martin
- Etablissement Français du Sang Auvergne Rhône Alpes, Immunohematology LaboratoryGrenobleFrance
| | - Hanane El Kenz
- Department of Transfusion, Blood Bank, CHU‐Brugmann and Hôpital Universitaire des Enfants Reine FabiolaUniversité Libre de BruxellesBrusselsBelgium
| | - Olivier Hermine
- Université de Paris, Imagine Institute, INSERM UMR 1163ParisFrance
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood CenterNew YorkNYUSA
| | | | - Yves Colin
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
| | - Olivier Detante
- Stroke Unit, Neurology Department, Grenoble Hospital, Grenoble Institute of Neurosciences, Inserm U1216University of Grenoble AlpesGrenobleFrance
| | - Raphaël Marlu
- Hemostasis LaboratoryGrenoble Alpes University Hospital GrenobleGrenobleFrance
- University Grenoble Alpes, CNRS UMR5525, TIMCGrenobleFrance
| | | | - Thomas E Carey
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Slim Azouzi
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
- Établissement Français de Sang (EFS) Ile‐de‐France, Centre National de Référence pour les Groupes SanguinsParisFrance
| | - Thierry Peyrard
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
- Établissement Français de Sang (EFS) Ile‐de‐France, Centre National de Référence pour les Groupes SanguinsParisFrance
| |
Collapse
|
36
|
Platelet-Neutrophil Crosstalk in Thrombosis. Int J Mol Sci 2023; 24:ijms24021266. [PMID: 36674781 PMCID: PMC9861587 DOI: 10.3390/ijms24021266] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Platelets are essential for the formation of a haemostatic plug to prevent bleeding, while neutrophils are the guardians of our immune defences against invading pathogens. The interplay between platelets and innate immunity, and subsequent triggering of the activation of coagulation is part of the host system to prevent systemic spread of pathogen in the blood stream. Aberrant immunothrombosis and excessive inflammation can however, contribute to the thrombotic burden observed in many cardiovascular diseases. In this review, we highlight how platelets and neutrophils interact with each other and how their crosstalk is central to both arterial and venous thrombosis and in COVID-19. While targeting platelets and coagulation enables efficient antithrombotic treatments, they are often accompanied with a bleeding risk. We also discuss how novel approaches to reduce platelet-mediated recruitment of neutrophils could represent promising therapies to treat thrombosis without affecting haemostasis.
Collapse
|
37
|
Immunothrombosis and the Role of Platelets in Venous Thromboembolic Diseases. Int J Mol Sci 2022; 23:ijms232113176. [PMID: 36361963 PMCID: PMC9656618 DOI: 10.3390/ijms232113176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Venous thromboembolism (VTE) is the third leading cardiovascular cause of death and is conventionally treated with anticoagulants that directly antagonize coagulation. However, recent data have demonstrated that also platelets play a crucial role in VTE pathophysiology. In the current review, we outline how platelets are involved during all stages of experimental venous thrombosis. Platelets mediate initiation of the disease by attaching to the vessel wall upon which they mediate leukocyte recruitment. This process is referred to as immunothrombosis, and within this novel concept inflammatory cells such as leukocytes and platelets directly drive the progression of VTE. In addition to their involvement in immunothrombosis, activated platelets can directly drive venous thrombosis by supporting coagulation and secreting procoagulant factors. Furthermore, fibrinolysis and vessel resolution are (partly) mediated by platelets. Finally, we summarize how conventional antiplatelet therapy can prevent experimental venous thrombosis and impacts (recurrent) VTE in humans.
Collapse
|
38
|
Thibord F, Klarin D, Brody JA, Chen MH, Levin MG, Chasman DI, Goode EL, Hveem K, Teder-Laving M, Martinez-Perez A, Aïssi D, Daian-Bacq D, Ito K, Natarajan P, Lutsey PL, Nadkarni GN, de Vries PS, Cuellar-Partida G, Wolford BN, Pattee JW, Kooperberg C, Braekkan SK, Li-Gao R, Saut N, Sept C, Germain M, Judy RL, Wiggins KL, Ko D, O’Donnell CJ, Taylor KD, Giulianini F, De Andrade M, Nøst TH, Boland A, Empana JP, Koyama S, Gilliland T, Do R, Huffman JE, Wang X, Zhou W, Soria JM, Souto JC, Pankratz N, Haessler J, Hindberg K, Rosendaal FR, Turman C, Olaso R, Kember RL, Bartz TM, Lynch JA, Heckbert SR, Armasu SM, Brumpton B, Smadja DM, Jouven X, Komuro I, Clapham KR, Loos RJ, Willer CJ, Sabater-Lleal M, Pankow JS, Reiner AP, Morelli VM, Ridker PM, van Hylckama Vlieg A, Deleuze JF, Kraft P, Rader DJ, Global Biobank Meta-Analysis Initiative, Estonian Biobank Research Team, 23andMe Research Team, Biobank Japan, CHARGE Hemostasis Working Group, Lee KM, Psaty BM, Skogholt AH, Emmerich J, Suchon P, Rich SS, Vy HMT, Tang W, Jackson RD, Hansen JB, Morange PE, Kabrhel C, Trégouët DA, Damrauer SM, Johnson AD, Smith NL. Cross-Ancestry Investigation of Venous Thromboembolism Genomic Predictors. Circulation 2022; 146:1225-1242. [PMID: 36154123 PMCID: PMC10152894 DOI: 10.1161/circulationaha.122.059675] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources. METHODS We present new cross-ancestry meta-analyzed GWAS results involving up to 81 669 VTE cases from 30 studies, with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations. RESULTS In our genetic discovery effort that included 55 330 participants with VTE (47 822 European, 6320 African, and 1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple testing. In our combined discovery-replication analysis (81 669 VTE participants) and ancestry-stratified meta-analyses (European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized pathways to thrombosis. CONCLUSIONS Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis treatments.
Collapse
Affiliation(s)
- Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
| | - Derek Klarin
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, 94550, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
| | - Michael G. Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kristian Hveem
- HUNT Research Center, Department of Public Health and Nursing, Norwegian University of Science and Technology, Forskningsvegen 2, Levanger, 7600, Norway
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - Maris Teder-Laving
- Institute of Genomics, University of Tartu, Riia 23b, Tartu, Tartu, 51010, Estonia
| | - Angel Martinez-Perez
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
| | - Dylan Aïssi
- Bordeaux Population Health Research Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, France
- UMR1219, INSERM, 146 rue Léo Saignat, Bordeaux, 33076, France
| | - Delphine Daian-Bacq
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02446, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Shattuck St, Boston, MA, 02115, USA
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South Second Street, Minneapolis, MN, 55454, USA
| | - Girish N. Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gu stave L. Levy Pl, New York, NY, 10029, USA
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St, Houston, TX, 77030, USA
| | | | - Brooke N. Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jack W. Pattee
- Division of Biostatistics, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Center for Innovative Design & Analysis and Department of Biostatistics & Informatics, Colorado School of Public Health, 13001 East 17th Place, Aurora, CO, 80045, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Sigrid K. Braekkan
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
- Division of internal medicine, University Hospital of North Norway, Tromsø, 9038, Norway
| | - Ruifang Li-Gao
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Noemie Saut
- Hematology Laboratory, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, Marseille, 13385, France
| | - Corriene Sept
- Department of Epidemiology, Harvard TH Chan Harvard School of Public Health, 655 Huntington Ave., Building II, Boston, MA, 02115, USA
| | - Marine Germain
- Bordeaux Population Health Research Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, France
- UMR1219, INSERM, 146 rue Léo Saignat, Bordeaux, 33076, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Renae L. Judy
- Surgery, University of Pennsylvania, 3401 Walnut Street, Philadelphia, PA, 19104, USA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Darae Ko
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- Section of Cardiovascular Medicine, Boston University School of Medicine, 85 East Newton Street, Boston, MA, 02118, USA
| | - Christopher J. O’Donnell
- Cardiology Section, Department of Medicine, VA Boston Healthcare System, Boston, MA, 02132, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation, 1124 W Carson St., Torrance, CA, 90502, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
| | - Mariza De Andrade
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Therese H. Nøst
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Jean-Philippe Empana
- Integrative Epidemiology of cardiovascular diseases, Université Paris Cité, Paris Cardiovascular Research Center (PARCC), 56 rue Leblanc, Paris, 75015, France
- Department of Cardiology, APHP, Hopital Européen Georges Pompidou, 20 rue Leblanc, Paris, 75015, France
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02446, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
| | - Thomas Gilliland
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02446, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Shattuck St, Boston, MA, 02115, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gu stave L. Levy Pl, New York, NY, 10029, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Jennifer E. Huffman
- MAVERIC, VA Boston Heathcare System, 2 Avenue de Lafayette, Boston, MA, 02111, USA
| | - Xin Wang
- 23andMe, Inc., 223 N Mathilda Ave, Sunnyvale, CA, 94086, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jose Manuel Soria
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
| | - Juan Carlos Souto
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, St Quinti 89, Barcelona, 8041, Spain
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Jeffery Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Kristian Hindberg
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
| | - Frits R. Rosendaal
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Constance Turman
- Department of Epidemiology, Harvard TH Chan Harvard School of Public Health, 655 Huntington Ave., Building II, Boston, MA, 02115, USA
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Rachel L. Kember
- Psychiatry, University of Pennsylvania, 3401 Walnut Street, Philadelphia, PA, 19104, USA
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Julie A. Lynch
- VA Informatics & Computing Infrastructure, VA Salt Lake City Healthcare System, 500 Foothills Drive, Salt Lake City, UT, 84148, USA
- Epidemiology, University of Utah, 500 Foothills Drive, Salt Lake City, UT, 84148, USA
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Sebastian M. Armasu
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ben Brumpton
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - David M. Smadja
- Hematology Department and Biosurgical Research Lab (Carpentier Foundation), European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, 20 rue Leblanc, Paris, 75015, France
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, 4 avenue de l’Observatoire, Paris, 75270, France
| | - Xavier Jouven
- Integrative Epidemiology of cardiovascular diseases, Université Paris Descartes, Sorbonne Paris Cité, 56 rue Leblanc, Paris, 75015, France
- Paris Cardiovascular Research Center, Inserm U970, Université Paris Descartes, Sorbonne Paris Cité, 20 rue Leblanc, Paris, 75015, France
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Tokyo, 113-8655, Japan
| | - Katharine R. Clapham
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Shattuck St, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Cristen J. Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Sabater-Lleal
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, 17176, Sweden
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South Second Street, Minneapolis, MN, 55454, USA
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Vania M. Morelli
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
- Division of internal medicine, University Hospital of North Norway, Tromsø, 9038, Norway
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Astrid van Hylckama Vlieg
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
- Centre D’Etude du Polymorphisme Humain, Fondation Jean Dausset, 27 rue Juliette Dodu, Paris, 75010, France
| | - Peter Kraft
- Department of Epidemiology, Harvard TH Chan Harvard School of Public Health, 655 Huntington Ave., Building II, Boston, MA, 02115, USA
| | - Daniel J. Rader
- Departments of Medicine and Genetics and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | - Kyung Min Lee
- VA Informatics & Computing Infrastructure, VA Salt Lake City Healthcare System, 500 Foothills Drive, Salt Lake City, UT, 84148, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
- Department of Health Systems and Population Heath, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Anne Heidi Skogholt
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - Joseph Emmerich
- Department of vascular medicine, Paris Saint-Joseph Hospital Group, University of Paris, 185 rue Raymond Losserand, Paris, 75674, France
- UMR1153, INSERM CRESS, 185 rue Raymond Losserand, Paris, 75674, France
| | - Pierre Suchon
- Hematology Laboratory, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, Marseille, 13385, France
- C2VN, INSERM, INRAE, Aix-Marseille University, 27, bd Jean Moulin, Marseille, 13385, France
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, 3242 West Complex, Charlottesville, VA, 22908-0717, USA
| | - Ha My T. Vy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gu stave L. Levy Pl, New York, NY, 10029, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South Second Street, Minneapolis, MN, 55454, USA
| | - Rebecca D. Jackson
- College of Medicine, Ohio State University, 376 W. 10th Ave, Columbus, OH, 43210, USA
| | - John-Bjarne Hansen
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
- Division of internal medicine, University Hospital of North Norway, Tromsø, 9038, Norway
| | - Pierre-Emmanuel Morange
- Hematology Laboratory, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, Marseille, 13385, France
- C2VN, INSERM, INRAE, Aix-Marseille University, 27, bd Jean Moulin, Marseille, 13385, France
| | - Christopher Kabrhel
- Emergency Medicine, Massachusetts General Hospital, Zero Emerson Place, Suite 3B, Boston, MA, 02114, USA
- Emergency Medicine, Harvard Medical School, Zero Emerson Place, Suite 3B, Boston, MA, 02114, USA
| | - David-Alexandre Trégouët
- Bordeaux Population Health Research Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, France
- UMR1219, INSERM, 146 rue Léo Saignat, Bordeaux, 33076, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Ave, Philadelphia, PA, 19104, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew D. Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, 98101, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, 98108, USA
| |
Collapse
|
39
|
Jankauskaite L, Malinauskas M, Snipaitiene A. Effect of stimulated platelets in COVID-19 thrombosis: Role of alpha7 nicotinic acetylcholine receptor. Front Cardiovasc Med 2022; 9:1037369. [PMID: 36312286 PMCID: PMC9614055 DOI: 10.3389/fcvm.2022.1037369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
Since early 2020, SARS-CoV-2-induced infection resulted in global pandemics with high morbidity, especially in the adult population. COVID-19 is a highly prothrombotic condition associated with subsequent multiorgan failure and lethal outcomes. The exact mechanism of the prothrombotic state is not well understood and might be multifactorial. Nevertheless, platelets are attributed to play a crucial role in COVID-19-associated thrombosis. To date, platelets' role was defined primarily in thrombosis and homeostasis. Currently, more focus has been set on their part in inflammation and immunity. Moreover, their ability to release various soluble factors under activation as well as internalize and degrade specific pathogens has been highly addressed in viral research. This review article will discuss platelet role in COVID-19-associated thrombosis and their role in the cholinergic anti-inflammatory pathway. Multiple studies confirmed that platelets display a hyperactivated phenotype in COVID-19 patients. Critically ill patients demonstrate increased platelet activation markers such as P-selectin, PF4, or serotonin. In addition, platelets contain acetylcholine and express α7 nicotinic acetylcholine receptors (α7nAchR). Thus, acetylcholine can be released under activation, and α7nAchR can be stimulated in an autocrine manner and support platelet function. α7 receptor is one of the most important mediators of the anti-inflammatory properties as it is associated with humoral and intrinsic immunity and was demonstrated to contribute to better outcomes in COVID-19 patients when under stimulation. Hematopoietic α7nAchR deficiency increases platelet activation and, in experimental studies, α7nAchR stimulation can diminish the pro-inflammatory state and modulate platelet reactiveness via increased levels of NO. NO has been described to inhibit platelet adhesion, activation, and aggregation. In addition, acetylcholine has been demonstrated to decrease platelet aggregation possibly by blocking the e p-38 pathway. SARS-CoV-2 proteins have been found to be similar to neurotoxins which can bind to nAChR and prevent the action of acetylcholine. Concluding, the platelet role in COVID-19 thrombotic events could be explained by their active function in the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Lina Jankauskaite
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania,Department of Pediatrics, Medical Faculty, Lithuanian University of Health Sciences, Kaunas, Lithuania,*Correspondence: Lina Jankauskaite
| | - Mantas Malinauskas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ausra Snipaitiene
- Department of Pediatrics, Medical Faculty, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
40
|
Sachkova A, Jensen O, Dücker C, Ansari S, Brockmöller J. The mystery of the human proton-organic cation antiporter: One transport protein or many? Pharmacol Ther 2022; 239:108283. [DOI: 10.1016/j.pharmthera.2022.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
41
|
Wienkamp AK, Erpenbeck L, Rossaint J. Platelets in the NETworks interweaving inflammation and thrombosis. Front Immunol 2022; 13:953129. [PMID: 35979369 PMCID: PMC9376363 DOI: 10.3389/fimmu.2022.953129] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
Platelets are well characterized for their indispensable role in primary hemostasis to control hemorrhage. Research over the past years has provided a substantial body of evidence demonstrating that platelets also participate in host innate immunity. The surface expression of pattern recognition receptors, such as TLR2 and TLR4, provides platelets with the ability to sense bacterial products in their environment. Platelet α-granules contain microbicidal proteins, chemokines and growth factors, which upon release may directly engage pathogens and/or contribute to inflammatory signaling. Additionally, platelet interactions with neutrophils enhance neutrophil activation and are often crucial to induce a sufficient immune response. In particular, platelets can activate neutrophils to form neutrophil extracellular traps (NETs). This specific neutrophil effector function is characterized by neutrophils expelling chromatin fibres decorated with histones and antimicrobial proteins into the extracellular space where they serve to trap and kill pathogens. Until now, the mechanisms and signaling pathways between platelets and neutrophils inducing NET formation are still not fully characterized. NETs were also detected in thrombotic lesions in several disease backgrounds, pointing towards a role as an interface between neutrophils, platelets and thrombosis, also known as immunothrombosis. The negatively charged DNA within NETs provides a procoagulant surface, and in particular NET-derived proteins may directly activate platelets. In light of the current COVID-19 pandemic, the topic of immunothrombosis has become more relevant than ever, as a majority of COVID-19 patients display thrombi in the lung capillaries and other vascular beds. Furthermore, NETs can be found in the lung and other tissues and are associated with an increased mortality. Here, virus infiltration may lead to a cytokine storm that potently activates neutrophils and leads to massive neutrophil infiltration into the lung and NET formation. The resulting NETs presumably activate platelets and coagulation factors, further contributing to the subsequent emergence of microthrombi in pulmonary capillaries. In this review, we will discuss the interplay between platelets and NETs and the potential of this alliance to influence the course of inflammatory diseases. A better understanding of the underlying molecular mechanisms and the identification of treatment targets is of utmost importance to increase patients’ survival and improve the clinical outcome.
Collapse
Affiliation(s)
- Ann-Katrin Wienkamp
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- *Correspondence: Jan Rossaint,
| |
Collapse
|
42
|
Dürholz K, Schmid E, Frech M, Azizov V, Otterbein N, Lucas S, Rauh M, Schett G, Bruns H, Zaiss MM. Microbiota-Derived Propionate Modulates Megakaryopoiesis and Platelet Function. Front Immunol 2022; 13:908174. [PMID: 35880182 PMCID: PMC9307893 DOI: 10.3389/fimmu.2022.908174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is associated with an increased risk for cardiovascular events driven by abnormal platelet clotting effects. Platelets are produced by megakaryocytes, deriving from megakaryocyte erythrocyte progenitors (MEP) in the bone marrow. Increased megakaryocyte expansion across common autoimmune diseases was shown for RA, systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS). In this context, we evaluated the role of the microbial-derived short chain fatty acid (SCFA) propionate on hematopoietic progenitors in the collagen induced inflammatory arthritis model (CIA) as we recently showed attenuating effects of preventive propionate treatment on CIA severity. In vivo, propionate treatment starting 21 days post immunization (dpi) reduced the frequency of MEPs in the bone marrow of CIA and naïve mice. Megakaryocytes numbers were reduced but increased the expression of the maturation marker CD61. Consistent with this, functional analysis of platelets showed an upregulated reactivity state following propionate-treatment. This was confirmed by elevated histone 3 acetylation and propionylation as well as by RNAseq analysis in Meg-01 cells. Taken together, we identified a novel nutritional axis that skews platelet formation and function.
Collapse
Affiliation(s)
- Kerstin Dürholz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Eva Schmid
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Nadine Otterbein
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Sébastien Lucas
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Manfred Rauh
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- *Correspondence: Mario M. Zaiss,
| |
Collapse
|
43
|
de Lima Beltrão FE, de Almeida Beltrão DC, Carvalhal G, de Lima Beltrão FE, de Souza Braga Filho J, de Brito Oliveira J, de Jesus JDS, Machado GJR, dos Santos Silva H, Teixeira HMP, Rodrigues JL, de Figueiredo CAV, dos Santos Costa R, Hecht F, Bianco AC, da Conceição Rodrigues Gonçalves M, Ramos HE. Heterozygote Advantage of the Type II Deiodinase Thr92Ala Polymorphism on Intrahospital Mortality of COVID-19. J Clin Endocrinol Metab 2022; 107:e2488-e2501. [PMID: 35137147 PMCID: PMC8903419 DOI: 10.1210/clinem/dgac075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 01/08/2023]
Abstract
CONTEXT The type 2 deiodinase and its Thr92Ala-DIO2 polymorphism have been linked to clinical outcomes in acute lung injury and pulmonary fibrosis. OBJECTIVE Our objectives were to evaluate were cumulative mortality during admission according to Thr92Ala-DIO2 polymorphism. METHODS Here we conducted an observational, longitudinal, and prospective cohort study to investigate a possible association between the Thr92Ala-DIO2 polymorphism and intrahospital mortality from COVID-19 in adult patients admitted between June and August 2020. Blood biochemistry, thyroid function tests, length of stay, comorbidities, complications, and severity scores were also studied according to Thr92Ala-DIO2 polymorphism. RESULTS In total, 220 consecutive patients (median age 62; 48-74 years) were stratified into 3 subgroups: Thr/Thr (n = 79), Thr/Ala (n = 119), and Ala/Ala (n = 23). While the overall mortality was 17.3%, the lethality was lower in Ala/Thr patients (12.6%) than in Thr/Thr patients (21.7%) or Ala/Ala patients (23%). The heterozygous genotype (Thr/Ala) was associated with a 47% reduced risk of intrahospital mortality whereas univariate and multivariate logistic regression adjusted for multiple covariates revealed a reduction that ranged from 51% to 66%. The association of the Thr/Ala genotype with better clinical outcomes was confirmed in a metanalysis of 5 studies, including the present one. CONCLUSION Here we provide evidence for a protective role played by Thr92Ala-DIO2 heterozygosity in patients with COVID-19. This protective effect follows an inheritance model known as overdominance, in which the phenotype of the heterozygote lies outside the phenotypical range of both homozygous.
Collapse
Affiliation(s)
- Fabyan Esberard de Lima Beltrão
- Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
- Post-Graduation Program in Nutritional Sciences, Department of Nutrition, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
- University Center of João Pessoa – UNIPE, João Pessoa, PB, Brazil
| | | | - Giulia Carvalhal
- Center for Biological and Health Sciences, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil
| | | | - Jair de Souza Braga Filho
- Bioregulation Department, Health and Science Institut, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Jocyel de Brito Oliveira
- Bioregulation Department, Health and Science Institut, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Joice dos Santos de Jesus
- Bioregulation Department, Health and Science Institut, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Hatilla dos Santos Silva
- Bioregulation Department, Health and Science Institut, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Juliana Lopes Rodrigues
- Laboratory of Immunopharmacology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Brazil
| | | | - Ryan dos Santos Costa
- Laboratory of Immunopharmacology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Fabio Hecht
- The Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio C Bianco
- Section of Endocrinology and Metabolism, Division of the Biological Sciences, University of Chicago, Chicago, IL, USA
| | - Maria da Conceição Rodrigues Gonçalves
- Post-Graduation Program in Nutritional Sciences, Department of Nutrition, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Helton Estrela Ramos
- Bioregulation Department, Health and Science Institut, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Medicine and Health, Medical School of Medicine, Federal University of Bahia, Salvador, Brazil
- Postgraduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
44
|
Yao Y, Ran G, Hou CL, Zhang R, Mangel DN, Yang ZS, Zhu M, Zhang W, Zhang J, Sessler JL, Gao S, Zhang JL. Nonaromatic Organonickel(II) Phototheranostics. J Am Chem Soc 2022; 144:7346-7356. [PMID: 35420807 DOI: 10.1021/jacs.2c00710] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Earth-abundant metal-based theranostics, agents that integrate diagnostic and therapeutic functions within the same molecule, may hold the key to the development of low-cost personalized medicines. Here, we report a set of O-linked nonaromatic benzitripyrrin (C^N^N^N) macrocyclic organonickel(II) complexes, Ni-1-4, containing strong σ-donating M-C bonds. Complexes Ni-1-4 are characterized by a square-planar coordination geometry as inferred from the structural studies of Ni-1. They integrate photothermal therapy, photothermal imaging, and photoacoustic imaging (PAI) within one system. This makes them attractive as potential phototheranostics. Relative to traditional Ni(II) porphyrins, such as F20TPP (tetrapentafluorophenylporphyrin), the lowest energy absorption of Ni-1 is shifted into the near infrared region, presumably as a consequence of Ni-C bonding. Ultrafast transient absorption spectroscopy combined with theoretical calculations revealed that, upon photoexcitation, a higher population of ligand-centered and 3MLCT states is seen in Ni-1 relative to NiTPBP (TPBP = 6,11,16,21-tetraphenylbenziporphyrin). Encapsulating Ni-1 in 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) afforded nanoparticles, Ni-1@DSPE, displaying red-shifted absorption features, as well as good photothermal conversion efficiency (∼45%) in aqueous media. Proof-of-principle experiments involving thrombus treatment were carried out both in vitro and in vivo. It was found that Ni-1@DSPE in combination with 785 nm photo-irradiation for 3 min (0.3 W/cm2) proved successful in removing blood clots from a mouse thrombus model as monitored by photoacoustic imaging (PAI). The present work highlights the promise of organonickel(II) complexes as potential theranostics and the benefits that can accrue from manipulating the excited-state features of early transition-metal complexes via, for example, interrupting π-conjugation pathways.
Collapse
Affiliation(s)
- Yuhang Yao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Guangliu Ran
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, P. R. China
| | - Chun-Liang Hou
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruijing Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Daniel N Mangel
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, P. R. China
| | - Jing Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China.,The Institute of Spin Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
45
|
Jiang Z, Xia B, Ren F, Bao B, Xing W, He T, Li Z. Boosting Vascular Imaging-Performance and Systemic Biosafety of Ultra-Small NaGdF 4 Nanoparticles via Surface Engineering with Rationally Designed Novel Hydrophilic Block Co-Polymer. SMALL METHODS 2022; 6:e2101145. [PMID: 35107219 DOI: 10.1002/smtd.202101145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Revealing the anatomical structures, functions, and distribution of vasculature via contrast agent (CA) enhanced magnetic resonance imaging (MRI) is crucial for precise medical diagnosis and therapy. The clinically used MRI CAs strongly rely on Gd-chelates, which exhibit low T1 relaxivities and high risks of nephrogenic systemic fibrosis (NSF) for patients with renal dysfunction. It is extremely important to develop high-performance and safe CAs for MRI. Herein, it is reported that ultra-small NaGdF4 nanoparticles (UGNs) can serve as an excellent safe MRI CA via surface engineering with rationally designed novel hydrophilic block co-polymer (BPn ). By optimizing the polymer molecular weights, the polymer-functionalized UGNs (i.e., UGNs-BP14 ) are obtained to exhibit remarkably higher relaxivity (11.8 mm-1 s-1 at 3.0 T) than Gd-DTPA (3.6 mm-1 s-1 ) due to their ultracompact and abundant hydrophilic surface coating. The high performance of UGNs-BP14 enables us to sensitively visualize microvasculature with a small diameter of ≈0.17 mm for up to 2 h, which is the thinnest blood vessel and the longest time window for low field (1.0 T) MR angiography ever reported, and cannot be achieved by using the clinically used Gd-DTPA under the same conditions. More importantly, renal clearable UGNs-BP14 show lower risks of inducing NSF in comparison with Gd-DTPA due to their negligible release of Gd3+ ions after modification with the novel hydrophilic block copolymer. The study presents a novel avenue for boosting imaging-performance and systemic biosafety of UGNs as a robust MRI CA with great potential in precise diagnosis of vasculature-related diseases.
Collapse
Affiliation(s)
- Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Bolin Bao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
| | - Wei Xing
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
46
|
Huang Y, Tu M, Qian Y, Ma J, Chen L, Liu Y, Wu Y, Chen K, Liu J, Ying Y, Chen Y, Ye Y, Xing L, Zhang F, Hu Y, Zhang R, Ruan YC, Zhang D. Age-Dependent Metabolomic Profile of the Follicular Fluids From Women Undergoing Assisted Reproductive Technology Treatment. Front Endocrinol (Lausanne) 2022; 13:818888. [PMID: 35250874 PMCID: PMC8888916 DOI: 10.3389/fendo.2022.818888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
Female fertility declines with age, and this natural variation culminates in reproductive senescence. Human follicular fluids are rich in low-molecular weight metabolites which are responsible for the maturation of oocytes. The metabolomic approaches are powerful tools to study biochemical markers of oocyte quality in the follicular fluids. It is necessary to identify and quantify the reliable metabolites in follicular fluids reflecting oocyte developmental potential. The goal of this study is to conduct a metabolomic analysis of the follicular fluids in women of different ages and study the metabolomic profile of the follicular fluids in relationship with oocyte quality in assisted reproductive technology (ART) treatment. A total of 30 women seeking for ART treatment at the Women's Hospital, Zhejiang University School of Medicine from October 2014 to April 2015 were recruited for the present study. Fifteen women aged from 39 to 47 were grouped as advanced maternal age, and the other 15 women aged from 27 to 34, as young controls. Ovarian stimulation and oocyte retrieval were conducted using a regular protocol involving mid-luteal pituitary down-regulation and controlled ovarian stimulation. Follicular fluids from mature follicles were collected and centrifuged for analyses. Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography-Mass Spectroscopy (GC-MS) were used to perform the quantitative metabolomic analysis. The follicular fluid levels of 311 metabolites and the metabolic significance were assessed. 70 metabolites showed significant differences between women with young and advanced ages. Follicular fluids from women with advanced age showed significantly higher levels of creatine, histidine, methionine, trans-4-hydroxyproline, choline, mevalonate, N2,N2-dimethylguanosine and gamma-glutamylvaline, as compared to those from the young age group. 8 metabolites were found significantly correlated with maternal age positively. Moreover, 3 metabolites were correlated with the number of oocytes retrieved, and 5 metabolites were correlated with cleaved embryo numbers, both negatively. The follicular fluids from women undergoing ART treatment exhibited age-dependent metabolomic profile. Metabolites associated with oocyte quality were identified, suggesting them as potential biomarkers for oocyte maturation and ART outcomes.
Collapse
Affiliation(s)
- Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuli Qian
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Ma
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifen Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Wu
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Chen
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghui Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanfeng Xing
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zhang
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanjun Hu
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runjv Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Duan Y, Zhu W, Zhao X, Merzendorfer H, Chen J, Zou X, Yang Q. Choline transporter-like protein 2 interacts with chitin synthase 1 and is involved in insect cuticle development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103718. [PMID: 34982980 DOI: 10.1016/j.ibmb.2021.103718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Chitin is an aminopolysaccharide present in insects as a major structural component of the cuticle. However, current knowledge on the chitin biosynthetic machinery, especially its constituents and mechanism, is limited. Using three independent binding assays, including co-immunoprecipitation, split-ubiquitin membrane yeast two-hybrid assay, and pull-down assay, we demonstrate that choline transporter-like protein 2 (Ctl2) interacts with krotzkopf verkehrt (kkv) in Drosophila melanogaster. The global knockdown of Ctl2 by RNA interference (RNAi) induced lethality at the larval stage. Tissue-specific RNAi to silence Ctl2 in the tracheal system and in the epidermis of the flies resulted in lethality at the first larval instar. The knockdown of Ctl2 in wings led to shrunken wings containing accumulated fluid. Calcofluor White staining demonstrated reduced chitin content in the first longitudinal vein of Ctl2 knockdown wings. The pro-cuticle, which was thinner compared to wildtype, exhibited a reduced number of chitin laminar layers. Phylogenetic analyses revealed orthologues of Ctl2 in different insect orders with highly conserved domains. Our findings provide new insights into cuticle formation, wherein Ctl2 plays an important role as a chitin-synthase interacting protein.
Collapse
Affiliation(s)
- Yanwei Duan
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Weixing Zhu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Hans Merzendorfer
- Institute of Biology, University of Siegen, Adolf-Reichwein-Strasse 2, Siegen, 57068, Germany
| | - Jiqiang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Xu Zou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7 Pengfei Road, Shenzhen, 518120, China.
| |
Collapse
|
48
|
Nair TS, Kakaraparthi BN, Yang L, Lu L, Thomas TB, Morris AC, Kommareddi P, Kanicki A, Carey TE. Slc44a2 deletion alters tetraspanin and N-cadherin expression: Reduced adhesion and enhanced proliferation in cultured mesenchymal lung cells. Tissue Cell 2021; 73:101599. [PMID: 34371293 DOI: 10.1016/j.tice.2021.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Slc44a2 is reported to interact with tetraspanins CD9 and CD81. To investigate how Slc44a2 affects adhesion protein expression, cells from wild-type (WT) Slc44a2+/+, heterozygous (HET) Slc44a2+/-, and knockout (KO) Slc44a2-/- mice were cultured from lung tissue. The cultured cells expressed vimentin, N-cadherin, p120 catenin, beta-catenin, actin, CD9, and CD81, but not E-cadherin. Vimentin expression with lack of E-cadherin indicated that the cultured cells were of mesenchymal origin. Slc44a2 KO cells and HET cells demonstrated lower adherence and faster proliferation than the WT cells. All three groups displayed dramatically altered intracellular distribution of N-cadherin, CD9, and CD81. The CD9 membrane foci observed in WT cell membranes were less frequent and diminished in size in HET cells and KO cells. N-cadherin was dispersed throughout both the cytoplasm and membrane in WT cells, with similar yet weaker distribution in HET cells; however, in KO cells, N-cadherin was densely aggregated in the perinuclear cytoplasm. CD81 had a distribution pattern in WT, HET, and KO cells similar to that of N-cadherin with dense cytoplasmic clusters in the cells. KO cells also exhibited reduced filamentous actin as compared to WT cells. These results suggest that Slc44a2 is necessary for proper cellular localization of adhesion proteins and growth regulation that may be related to altered adhesion signals.
Collapse
Affiliation(s)
- Thankam S Nair
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Bala Naveen Kakaraparthi
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Lucy Yang
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Lillian Lu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Trey B Thomas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Anna C Morris
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Pavan Kommareddi
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Ariane Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Thomas E Carey
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States.
| |
Collapse
|
49
|
WPK5, a Novel Kunitz-Type Peptide from the Leech Whitmania pigra Inhibiting Factor XIa, and Its Loop-Replaced Mutant to Improve Potency. Biomedicines 2021; 9:biomedicines9121745. [PMID: 34944561 PMCID: PMC8698482 DOI: 10.3390/biomedicines9121745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Kunitz-type proteins or peptides have been found in many blood-sucking animals, but the identity of them in leeches remained elusive. In the present study, five Kunitz-type peptides named WPK1-WPK5 were identified from the leech Whitmania pigra. Recombinant WPK1-WPK5 were expressed in Pichia pastoris GS115, and their inhibitory activity against Factor XIa (FXIa) was tested. WPK5 showed inhibitory activity against FXIa with an IC50 value of 978.20 nM. To improve its potency, the loop replacement strategy was used. The loop 1 (TGPCRSNLER) and loop 2 (QYGGC) in WPK5 were replaced by loop 1 (TGPCRAMISR) and loop 2 (FYGGC) in PN2KPI, respectively, and the resulting peptide named WPK5-Mut showed an IC50 value of 8.34 nM to FXIa, which is about 100-fold the potency of FXIa compared to that of WPK5. WPK5-Mut was further evaluated for its extensive bioactivity in vitro and in vivo. It dose-dependently prolonged APTT on both murine plasma and human plasma, and potently inhibited FeCl3-induced carotid artery thrombosis in mice at a dose of 1.5 mg/kg. Additionally, WPK5-Mut did not show significant bleeding risk at a dose of 6 mg/kg. Together, these results showed that WPK5-Mut is a promising candidate for the development of an antithrombotic drug.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW In this review, we will describe how the combined ability of platelets and neutrophils to interact with each other drives ischemic stroke brain injury. RECENT FINDINGS Neutrophils are one of the first cells to respond during ischemic stroke. Although animals stroke models have indicated targeting neutrophils improves outcomes, clinical trials have failed to yield successful strategies. Platelets play a critical role in recruiting neutrophils to sites of injury by acting as a bridge to the injured endothelium. After initial platelet adhesion, neutrophils can rapidly bind platelets through P-selectin and glycoprotein Ibα. In addition, recent data implicated platelet phosphatidylserine as a novel key regulator of platelet-neutrophil interactions in the setting of ischemic stroke. Inhibition of procoagulant platelets decreases circulating platelet-neutrophil aggregates and thereby reduces infarct size. Platelet binding alters neutrophil function, which contributes to the injury associated with ischemic stroke. This includes inducing the release of neutrophil extracellular traps, which are neurotoxic and pro-thrombotic, leading to impaired stroke outcomes. SUMMARY Platelet-neutrophil interactions significantly contribute to the pathophysiology of ischemic stroke brain injury. Better understanding the mechanisms behind their formation and the downstream consequences of their interactions will lead to improved therapies for stroke patients.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - John L Rustad
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132
| |
Collapse
|