1
|
Washimkar KR, Bisen AC, Verma S, Bhatt D, Yadav M, Kumar A, Bhatta RS, Bawankule DU, Yadav PP, Mugale MN. Modulation in NF-κB-p65/NLRP3, TXNIP-mediated signaling using an ethanolic fruit extract of Withania coagulans mitigates silica-induced pulmonary fibrosis in rats. Fitoterapia 2025; 183:106578. [PMID: 40318702 DOI: 10.1016/j.fitote.2025.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Withania coagulans encompasses many active phytoconstituents, which have been used to treat many ailments. Prior research has shown that fruit extract of Withania coagulans has anti-inflammatory properties and effectively reduces oxidative stress in various diseases. Nevertheless, its effects are not obscured in the silica (SiO2) induced pulmonary fibrosis (PF). In the current study, an ethanolic fruit extract of Withania coagulans (WCE) was prepared, and its effects and underlying mechanisms on SiO2-induced PF in rats were elucidated. LC-MS/MS analysis identified various bioactive phytoconstituents, secondary plant metabolites, and flavonoids in the WCE. In vitro, results showed that the WCE exhibited no toxicity towards A549 cells, reduced the production of reactive oxygen species, and inhibited cell migration. Further, WCE abrogated alveolar wall thickening, reduced inflammatory cell infiltration, and maintained lung architecture. It also suppresses collagen accumulation and mucus production, abrogating inflammation by downregulating nuclear factor kappa B (NF-κB-p65)/ NOD-like receptor protein 3 (NLRP3) and cytokine levels. It suppresses oxidative and endoplasmic reticulum stress induced by SiO2 by downregulating thioredoxin-interacting protein (TXNIP), activating transcription factor 6 (ATF6), and C/EBP Homologous Protein (CHOP) proteins. Additionally, WCE, by suppressing EMT and transforming growth factor beta 1 (TGF-β1)/Suppressor of Mothers against Decapentaplegic (Smad) pathway, mitigated PF in rats. Taken together, WCE via anti-inflammatory and anti-oxidative properties inhibited SiO2-induced PF, and therefore, it can be envisaged as an effective antifibrotic agent to treat PF.
Collapse
Affiliation(s)
- Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Divya Bhatt
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; In vivo Testing Facility, Bioprospection, and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Manisha Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Rabi Shankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Dnyaneshwar U Bawankule
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; In vivo Testing Facility, Bioprospection, and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prem Prakash Yadav
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
2
|
Yang Z, Yao Y, Chen X, Madigan V, Pu S, Fan X, Pu J, Bei F. Cross-species tropism of AAV.CPP.16 in the respiratory tract and its gene therapies against pulmonary fibrosis and viral infection. Cell Rep Med 2025:102144. [PMID: 40409263 DOI: 10.1016/j.xcrm.2025.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2025] [Accepted: 04/25/2025] [Indexed: 05/25/2025]
Abstract
Efficient gene delivery vectors are crucial for respiratory and lung disease therapies. We report that AAV.CPP.16, an engineered adeno-associated virus (AAV) variant derived from AAV9, efficiently transduces airway and lung cells in mice and non-human primates via intranasal administration. AAV.CPP.16 outperforms AAV6 and AAV9, two wild-type AAVs with demonstrated tropism for respiratory tissues, and efficiently targets key respiratory cell types. It supports gene supplementation and editing therapies in two clinically relevant mouse models of respiratory and lung diseases. A single intranasal dose of AAV.CPP.16 expressing a dual-target, vascular endothelial growth factor (VEGF)/transforming growth factor (TGF)-β1-neutralizing protein protected lungs from idiopathic pulmonary fibrosis, while a similar application of AAV.CPP.16 carrying an "all-in-one" CRISPR-Cas13d system inhibited transcription of the SARS-CoV-2-derived RNA-dependent RNA polymerase (Rdrp) gene. Our findings highlight AAV.CPP.16 as a promising vector for respiratory and lung gene therapy.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650106, China; NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Victoria Madigan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shanrui Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650106, China; NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650106, China; NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China.
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Sato S, Ogawa Y, Shimizu E, Asai K, Negishi K, Tsubota K, Hirayama M. Endoplasmic reticulum stress contributes to the development of ocular graft-vs-host disease in the eyelids and the ocular surface. Ocul Surf 2025; 37:115-131. [PMID: 40127761 DOI: 10.1016/j.jtos.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND While endoplasmic reticulum (ER) stress has been implicated in various aspects of graft-versus-host disease (GVHD), its effects on the eyelids and ocular surface in patients with chronic GVHD (cGVHD) remains poorly understood. We aimed to investigate the relationship between ER stress and ocular GVHD using the ER stress suppressor, 4-phenylbutyric acid (PBA). METHODS The study used allogeneic bone marrow transplantation (BMT) and syngeneic BMT to establish a cGVHD mouse model. cGVHD mice were treated with either intraperitoneal administration of PBA or 2 % PBA eye drops following BMT. RESULTS The Intraperitoneal PBA-treated (PBAip) group retained a larger meibomian gland (MG) area and corneal epithelial damage and inflammatory and fibrotic cell infiltration in the ocular surface was attenuated compared to vehicle-treated cGVHD mice. The expression of unfolded protein response markers was significantly elevated in the vehicle group compared to the syngeneic control and the PBAip group. Electron microscopy and immunohistochemistry revealed that fibroblasts and macrophages infiltrated the eyelids and ocular surface of cGVHD mice under ER stress. The corneal fluorescein staining score was significantly lower in the PBA eye drop-treated group than in the vehicle-treated group. The numbers of leukocyte marker CD45-, T cell marker CD4-, and macrophage marker F4/80-positive cells were significantly reduced in the PBA eye drop-treated group compared to the vehicle group. CONCLUSIONS The study suggests that the ER stress response, which is triggered by cGVHD in ocular surface tissues, can be suppressed by PBA, an ER stress suppressor, potentially offering therapeutic benefits in ocular GVHD.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Tsubota Laboratory, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
4
|
Du Z, Liu Q, Wang M, Gao Y, Li Q, Yang Y, Lu T, Bao L, Pang Y, Wang H, Niu Y, Zhang R. Reticulophagy promotes EMT-induced fibrosis in offspring's lung tissue after maternal exposure to carbon black nanoparticles during gestation by a m 5C-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136873. [PMID: 39694008 DOI: 10.1016/j.jhazmat.2024.136873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Accumulating evidence indicates that maternal exposure to carbon black nanoparticles (CBNPs) during gestation can induce multiple system abnormalities in offspring, whereas its potential mechanism in respiratory disease is still largely unknown. In order to explore the effect of maternal exposure to CBNPs on offspring's lung and latent pathogenesis, we respectively established in vivo model of pregnant rats exposed to CBNPs and ex vivo model of lung epithelial cells treated with pups' serum of pregnant rats exposed to CBNPs. After maternal exposure to CBNPs, epithelial-mesenchymal transition (EMT) and fibrosis levels increased as a result of DDRGK1-mediated reticulophagy upregulated in offspring's lung. DDRGK1 as FAM134B's cargo bound with FAM134B to mediate reticulophagy. Transcription factor "SP1" positively regulated DDRGK1 gene expression by binding to its promoter. Furthermore, the upregulation of NSUN2 elevated m5C methylation of SP1 mRNA and the protein level of SP1 subsequently increased through Ybx1 recognizing and stabilizing m5C-methylated SP1 mRNA, followed by the increased levels of reticulophagy and fibrosis in lung epithelial cells treated with offspring's serum of matrix exposed to CBNPs during gestation. In conclusion, NSUN2/Ybx1/m5C-SP1 axis promoted DDRGK1-mediated reticulophagy, which played an important role in EMT-induced fibrosis in offspring's lung tissue after maternal exposure to CBNPs during gestation.
Collapse
Affiliation(s)
- Zhe Du
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yifu Gao
- Hebei Province Center for Disease Control and Prevention, Shijiazhuang 050021, PR China
| | - Qi Li
- Hunan Institute for Drug Control, Changsha 410001, PR China
| | - Yizhe Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Tianyu Lu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Haijun Wang
- Department of Maternal and Child Health, Peking University, Beijing 100191, PR China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
5
|
Guo Y, Pabitra D, Pan L, Gong L, Li A, Liu S, Xiong J. Quantitative proteomic studies of the intestinal mucosa provide new insights into the molecular mechanism of ulcerative colitis. BMC Gastroenterol 2025; 25:48. [PMID: 39891110 PMCID: PMC11786489 DOI: 10.1186/s12876-025-03647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Differentiation between ulcerative colitis (UC) and other intestinal inflammatory diseases is difficult, and the precise etiology of UC is poorly understood. Thus, there is a need for novel diagnostic and prognostic biomarkers for UC. METHODS Intestinal mucosal biopsy tissue specimens of inflamed (ulcerative colitis-inflamed, UC-I) and non-inflamed (ulcerative colitis-noninflamed, UC-N) tissue were obtained simultaneously during colonoscopy from newly diagnosed UC patients prior to any treatments. Label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) quantitative proteomics was used to detect proteomic differences between UC-I, UC-N, and normal control subjects (n = 5). Proteins with a fold-change > 1.5 and P < 0.05 between groups were considered to be differentially expressed (DEPs). Candidate biomarkers were further verified in 8 patients of each group by parallel reaction monitoring (PRM) (a prospective cohort, n = 8). Expression of TXNDC5 was quantified using immunohistochemistry (IHC). RESULTS A total of 4,788 proteins were identified. Multiple upregulated pathways, including leukocyte trans-endothelial migration and natural killer (NK) cell-mediated cytotoxicity, were identified. Network analysis showed that proteins were involved in 4 pathways in UC-I and 3 pathways in UC-N tissues, and participated in protein-protein interactions. Increased expression of 9 DEPs, including TXNDC5, EPX, and ITGAM were detected in UC patients compared to normal control subjects. Subsequent verification of the 9 DEPs by PRM confirmed the reliability of the mass spectrometry data. TXNDC5 expression was significantly increased in UC. CONCLUSIONS The pathways, networks, and proteins identified in this study may provide new insights into the molecular pathogenesis of UC. Further studies are required to determine if the proteins identified may help in the diagnosis and treatment of UC.
Collapse
Affiliation(s)
- Yandong Guo
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dahal Pabitra
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Pan
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanbo Gong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
6
|
Tsai YW, Tseng YS, Wu YS, Song WL, You MY, Hsu YC, Chen WP, Huang WH, Chng JC, Lim CL, Wei KH, Ben Lai SL, Lee WC, Yang KC. N-Cadherin promotes cardiac regeneration by potentiating pro-mitotic β-Catenin signaling in cardiomyocytes. Nat Commun 2025; 16:896. [PMID: 39837836 PMCID: PMC11751462 DOI: 10.1038/s41467-025-56216-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Adult human hearts exhibit limited regenerative capacity. Post-injury cardiomyocyte (CM) loss can lead to myocardial dysfunction and failure. Although neonatal mammalian hearts can regenerate, the underlying molecular mechanisms remain elusive. Herein, comparative transcriptome analyses identify adherens junction protein N-Cadherin as a crucial regulator of CM proliferation/renewal. Its expression correlates positively with mitotic genes and shows an age-dependent reduction. N-Cadherin is upregulated in the neonatal mouse heart following injury, coinciding with increased CM mitotic activities. N-Cadherin knockdown reduces, whereas overexpression increases, the proliferation activity of neonatal mouse CMs and human induced pluripotent stem cell-derived CMs. Mechanistically, N-Cadherin binds and stabilizes pro-mitotic transcription regulator β-Catenin, driving CM self-renewal. Targeted N-Cadherin deletion in CMs impedes cardiac regeneration in neonatal mice, leading to excessive scarring. N-Cadherin overexpression, by contrast, promotes regeneration in adult mouse hearts following ischemic injury. N-Cadherin targeting presents a promising avenue for promoting cardiac regeneration and restoring function in injured adult human hearts.
Collapse
Grants
- This work was funded by Taiwan National Science and Technology Council Grants 111-2628-B-002-008, 111-2314-B-002-069 MY3, 112-2314-B-002-277 MY3, 112-2918-I-002-002 and 112-2926-I-002-511-G (KCY), an Innovative Research Grant from Taiwan National Health Research Institute NHRI-EX112-11213BI (KCY), a CRC Translational Research Grant IBMS-CRC111-P01 (KCY & SLL) and a Grand Challenge Program Grant AS-GC-110-L06 (KCY & SLL) from Academia Sinica, Taiwan, grants from National Taiwan University Hospital NTUH. VN111-08, VN112-06, VN-113-03, 111-S0042, 112-S0307, 112-S0311, 113-S0196, 111-IF0005, 113-IF0002, 113-E0008 (KCY), Collaborative Research Projects of National Taiwan University College of Medicine, National Taiwan University Hospital and Min-Sheng General Hospital 109F005-110-B3, 109F005-111-C2, 119F005-112-M2 (KCY), grants from the Excellent Translation Medicine Research Projects of National Taiwan University College of Medicine and National Taiwan University Hospital, NSCCMOH-131-41, 111C101-051, 112C101-031 (KCY) and Career Development Grants from National Taiwan University 112L7849, 113L7832 (KCY).
Collapse
Affiliation(s)
- Yi-Wei Tsai
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Shuan Tseng
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Yu-Shuo Wu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wei-Lun Song
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Min-Yi You
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Yun-Chia Hsu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wen-Pin Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wei-Han Huang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Jia-Ci Chng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chai-Ling Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Ke-Hsuan Wei
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shih-Lei Ben Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wen-Chih Lee
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC.
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
- Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC.
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
7
|
Liu M, Sheng Y, Li M, Pan T, Jiang W, Zhang Y, Pan X, Huang C, Li J, Wang Y. METTL3-Dependent YTHDF2 Mediates TSC1 Expression to Regulate Alveolar Epithelial Mesenchymal Transition and Promote Idiopathic Pulmonary Fibrosis. J Cell Physiol 2025; 240:e31473. [PMID: 39606797 DOI: 10.1002/jcp.31473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 11/29/2024]
Abstract
Diffuse, progressive interstitial lung disease with few treatment options and low survival rates is known as idiopathic pulmonary fibrosis (IPF). Alveolar epithelial cell damage and dysfunction are the main features of IPF. TSC1 has been documented to exert a pivotal function in governing cellular growth, proliferation, and ontogenesis. This work investigated TSC1's function and mechanism in IPF. Mice were given BLM to cause pulmonary fibrosis, and A549 cells underwent epithelial mesenchymal transition (EMT) in response to TGF-β1. According to the data, TSC1 expression was reduced in IPF. Overexpression of TSC1 was established by adenopathy-associated virus in vivo and adenovirus in vitro to significantly block the EMT process. Besides, the findings from the RNA-sequencing analysis indicate that overexpression of TSC1 mitigated the EMT process by suppressing the activation of the AKT/mTOR pathway via downregulation of ACTN4 expression. To examine the upstream regulatory mechanism, we employed the SRAMP database to predict m6A modification of TSC1 mRNA, followed by verification of m6A modification levels and expression using MERIP-qPCR, Dot blot, RT-qPCR, and WB. The results indicated a high degree of m6A modification in TSC1 mRNA in pulmonary fibrosis. The expression of METTL3 was further found to be significantly elevated. METTL3 knockdown impeded EMT progression. METTL3 inhibits TSC1 expression by increasing TSC1 m6A modification through the reading protein YTHDF2. In conclusion, our study elucidated that the METTL3/YTHDF2/TSC1 signaling axis activates the AKT/mTOR pathway to promote the development of IPF. This study provides potential molecular-level therapeutic targets for IPF disease.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Inflammation and Immune-Mediated Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yingying Sheng
- Key Laboratory of Inflammation and Immune-Mediated Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Mengyu Li
- Key Laboratory of Inflammation and Immune-Mediated Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Tianyu Pan
- Key Laboratory of Inflammation and Immune-Mediated Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yafei Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xin Pan
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Cheng Huang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jun Li
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
8
|
Chou CH, Huang WJ, Hsu KC, Hsu JY, Lin TE, Yang CR. The Cyclin-Dependent Kinase 8 Inhibitor E966-0530-45418 Attenuates Pulmonary Fibrosis In Vitro and In Vivo. Int J Biol Sci 2025; 21:685-707. [PMID: 39781457 PMCID: PMC11705631 DOI: 10.7150/ijbs.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms. We discovered that CDK8 is upregulated in lung tissues from idiopathic pulmonary fibrosis patients and in a bleomycin-induced PF mouse model. Our study further revealed that E966-0530-45418 inhibits PF progression by attenuating the activity of the transcription factor Smad3, which is involved in TGF-β1/Smad signaling, along with RNA polymerase II to downregulate fibrosis-associated protein expression in alveolar epithelia and lung fibroblasts and consequently mitigate myofibroblast differentiation and collagen deposition. E966-0530-45418 also blocks STAT3 signaling to obstruct M2 macrophage polarization, further suppressing PF progression. Moreover, E966-0530-45418 administration ameliorated lung function deterioration and lung parenchymal destruction in the bleomycin-induced PF mouse model. These findings indicate that E966-0530-45418 holds promise as a pioneering CDK8 inhibitor for treating PF.
Collapse
Affiliation(s)
- Ching-Hsuan Chou
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Jan Huang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jui-Yi Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Chiu HI, WU SB, Wu AY, Tsai CC. Endoplasmic reticulum protein TXNDC5 modulates thyroid eye disease TGF-β1-induced myofibroblast transdifferentiation. BMJ Open Ophthalmol 2024; 9:e001693. [PMID: 39721966 PMCID: PMC11683962 DOI: 10.1136/bmjophth-2024-001693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
AIM There remain limited therapies to treat thyroid eye disease (TED) orbital fibrosis, highlighting the urgency to develop novel targets. Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts are important pathogenetic factor of TED. Endoplasmic reticulum (ER) stress may play a role in TED pathogenesis since it has been linked to liver, kidney, heart and lung fibrotic remodelling. We would evaluate the role of thioredoxin domain containing 5 (TXNDC5), a fibroblast-enriched ER protein, in TGF-β1-induced myofibroblast transdifferentiation from TED orbital fibroblasts. METHODS Orbital fibroblasts from patients with TED were treated with TGF-β1 to investigate ER stress-relative gene expression especially for TXNDC5. To determine if TXNDC5 is involved in TGF-β1-induced fibrosis, we transfected TED orbital fibroblasts by lentivirus with a small hairpin RNA of pLKO-TXNDC5 gene (shTXNDC5) to knockdown TXNDC5 protein expression levels. After transfection of shTXNDC5 in TED orbital fibroblast followed by TGF-β1 treatment, we analysed TGF-β1-induced fibrosis protein expression. RESULTS We measured increased TXNDC5 gene and protein expression in primary TED orbital fibroblasts. TXNDC5 protein levels were increased in TED orbital fibroblasts under TGF-β1 stimulation (2.5, 5, 10 and 20 ng/mL). Moreover, TXNDC5 knockdown of attenuated TGFβ1 (5 ng/mL)-induced myofibroblast transdifferentiation and extracellular matrix protein upregulation whereas increasing TXNDC5 expression by a recombinant protein of TXNDC5 (rhTXNDC5) addition increased alpha smooth muscle actin, fibronectin and connective tissue growth factor protein expression. CONCLUSION In conclusion, targeting TXNDC5 may be a novel therapeutic approach against TGF-β1-induced myofibroblast transdifferentiation in TED orbital fibroblasts.
Collapse
Affiliation(s)
- Hsun-I Chiu
- Ophthalmology, National Yang Ming Chiao Tung University - Yangming Campus, Taipei, Taiwan
| | - Shi-Bei WU
- Office of Business Development, Technology Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Albert Y Wu
- Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Chieh-Chih Tsai
- Ophthalmology, National Yang Ming Chiao Tung University - Yangming Campus, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Wu W, Yu N, Chen W, Zhu Y. ANRIL upregulates TGFBR1 to promote idiopathic pulmonary fibrosis in TGF-β1-treated lung fibroblasts via sequestering let-7d-5p. Epigenetics 2024; 19:2435682. [PMID: 39612365 DOI: 10.1080/15592294.2024.2435682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/20/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and life-threatening respiratory disease characterized by worsening lung function due to excessive scarring. The objective of this study was to investigate the role of the long non-coding RNA ANRIL (antisense non-coding RNA in the INK4 locus) in the development of IPF. Our research revealed a significant increase in ANRIL expression in pulmonary fibrosis, consistent with prior studies indicating elevated ANRIL levels in fibrotic tissues. In vitro experiments demonstrated that elevated ANRIL expression promoted fibroblast activation, as evidenced by the upregulation of fibrosis-related markers. Mechanistically, we found that ANRIL interacts with let-7d-5p, a microRNA involved in gene regulation, acting as a sponge for let-7d-5p. Functional experiments confirmed a potential influence of let-7d-5p on fibroblast activation through direct interaction with ANRIL. Furthermore, our investigation identified TGFBR1 as a potential mediator of ANRIL's fibrogenic effects. Silence of TGFBR1 mitigated the fibrotic phenotype induced by ANRIL overexpression. Collectively, these results suggest that ANRIL promotes fibroblast activation and fibrosis development, possibly through the let-7d-5p/TGFBR1 axis, indicating that ANRIL could be a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, Fujian, China
| | - Nanding Yu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Weiming Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, Fujian, China
| | - Yong Zhu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Tavares de Sousa H, Ferreira M, Gullo I, Rocha AM, Pedro A, Leitão D, Oliveira C, Carneiro F, Magro F. Fibrosis-related Transcriptome Unveils a Distinctive Remodelling Matrix Pattern in Penetrating Ileal Crohn's Disease. J Crohns Colitis 2024; 18:1741-1752. [PMID: 38700484 DOI: 10.1093/ecco-jcc/jjae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND AIMS Stricturing [B2] and penetrating [B3] ileal Crohn's disease have been reported to present similar levels of histopathological transmural fibrosis. This study aimed to compare the fibrosis-related transcriptomic profiles of penetrating and stricturing ileal Crohn's disease. METHODS Using Nanostring technology and comparative bioinformatics, we analysed the expression of 787 fibrosis-related genes in 36 ileal surgical specimens, 12 B2 and 24 B3, the latter including 12 cases with associated stricture[s] [B3s] and 12 without [B3o]. Quality control of extracted RNA was performed according to Nanostring parameters and principal component analysis for the distribution analysis. For the selection of the differentially expressed genes, a p-adjusted <0.05 and fold change ≤-1.5 or ≥1.5 were adopted. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry analyses were used to validate selected differentially expressed genes. RESULTS We included 34 patients with B2 and B3 phenotypes, balanced for age at diagnosis, age at surgery, gender, Crohn's disease localisation, perianal disease, and therapy. Inflammation and fibrosis histopathological scoring were similar in all cases. B2 and B3 groups showed a very good clustering regarding 30 significantly differentially expressed genes, all being remarkably upregulated in B3. More than half of these genes were involved in Crohn's disease fibrogenesis, and eight differentially expressed genes were so in other organs. The most significantly active biological processes and pathways in penetrating disease were response to TGFβ and matrix organisation and degradation, as validated by immunohistochemistry. CONCLUSIONS Despite the histopathological similarities in fibrosis between stricturing and penetrating ileal Crohn's disease, their fibrosis-related transcriptomic profiles are distinct. Penetrating disease exhibits a distinctive transcriptomic landscape related to enhanced matrix remodelling.
Collapse
Affiliation(s)
- Helena Tavares de Sousa
- Gastroenterology Department, Algarve University Hospital Center [CHUA], Portimão, Portugal
- ABC-Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Marta Ferreira
- Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Irene Gullo
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Ana Mafalda Rocha
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Ana Pedro
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Dina Leitão
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine of the University of Porto [FMUP], Portugal
- Department of Gastroenterology, São João University Hospital Center, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Xia Y, Wang H, Shao M, Liu X, Sun F. MAP3K19 Promotes the Progression of Tuberculosis-Induced Pulmonary Fibrosis Through Activation of the TGF-β/Smad2 Signaling Pathway. Mol Biotechnol 2024; 66:3300-3310. [PMID: 37906388 DOI: 10.1007/s12033-023-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Tuberculosis-induced pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease, which severely affects lung ventilation and air exchange, leading to respiratory distress, impaired lung function, and ultimately death. As previously reported, epithelial-mesenchymal transition (EMT) and fibrosis in type II alveolar epithelial cells (AEC II) are two critical processes that contributes to the initiation and progression of tuberculosis-related PF, but the underlying pathological mechanisms remain unclear. In this study, through performing Real-Time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, and immunofluorescence staining assay, we confirmed that the expression levels of EMT and fibrosis-related biomarkers were significantly increased in lung tissues with tuberculosis-associated PF in vivo and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) strain-infected AEC II cells in vitro. Besides, we noticed that the mitogen-activated protein kinase 19 (MAP3K19) was aberrantly overexpressed in PF models, and silencing of MAP3K19 significantly reduced the expression levels of fibronectin, collagen type I, and alpha-smooth muscle actin to decrease fibrosis, and upregulated E-cadherin and downregulated vimentin to suppress EMT in BCG-treated AEC II cells. Then, we uncovered the underlying mechanisms and found that BCG synergized with MAP3K19 to activate the pro-inflammatory transforming growth factor-beta (TGF-β)/Smad2 signal pathway in AEC II cells, and BCG-induced EMT process and fibrosis in AEC II cells were all abrogated by co-treating cells with TGF-β/Smad2 signal pathway inhibitor LY2109761. In summary, our results uncovered the underlying mechanisms by which the MAP3K19/TGF-β/Smad2 signaling pathway regulated EMT and fibrotic phenotypes of AEC II cells to facilitate the development of tuberculosis-associated PF, and these findings will provide new ideas and biomarkers to ameliorate tuberculosis-induced PF in clinic.
Collapse
Affiliation(s)
- Yu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China.
| | - Haiyue Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Meihua Shao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Feng Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| |
Collapse
|
13
|
Liu Z, Xian L, Li J, Zheng S, Xie H. Single-cell RNA sequencing analysis reveals the role of TXNDC5 in keloid formation. Cytojournal 2024; 21:40. [PMID: 39563670 PMCID: PMC11574684 DOI: 10.25259/cytojournal_58_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 11/21/2024] Open
Abstract
Objective Thioredoxin domain-containing protein 5 (TXNDC5) is associated with fibrosis in a variety of organs, but its mechanism of action in keloid is unclear. In this study, we aimed to investigate the mechanism of TXNDC5 in keloid. Material and Methods Single-cell RNA sequencing data of keloid and normal scar samples obtained from public databases were normalized and clustered using the Seurat package. Pathway enrich analysis was conducted using biological process enrichment analysis and Gene Set Enrichment Analysis (GSEA). In addition, TXNDC5 expression and its effects on migration and invasion of keloid fibroblasts (KFs) were validated based on cell function experiments. Results A total of five cell types were obtained. The KF clusters were further clustered into two fibroblast subtypes (Fibroblast cells 1 and Fibroblast cells 2). Biological process enrichment analysis showed that transforming growth factor beta (TGF-β) signaling pathway was enriched in the two fibroblast subtypes. GSEA analysis demonstrated that genes in TGF-β signaling pathway were mainly enriched in Fibroblast cells 1, and that genes involved in cell proliferation, migration, and the TGF-β signaling pathway were all high-expressed in fibroblast cells 1. TXNDC5 was positively correlated with fibroblast proliferation, migration and TGF-β signaling pathway, and AUCell score. The cellular experiment confirmed that the messenger RNA and protein levels of TXNDC5 and TGF-β1 were high-expressed in KFs cells (P<0.001), and that knockdown of TXNDC5 downregulated TGF-β1 expression and inhibited migration and invasion of KFs (P<0.0001). Conclusion Our study indicated that TGF-β signaling pathway was enriched in fibroblast cells, and TXNDC5 was positively correlated with proliferation, migration, and TGF-β signaling pathway. Cellular experiment demonstrated that knocking down TXNDC5 downregulated TGF-β1 expression, and suppressed migration and invasion of KFs. The current discoveries provided a new therapeutic strategy for the treatment of keloid.
Collapse
Affiliation(s)
- Zhikun Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lining Xian
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianmin Li
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shudan Zheng
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hongju Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
14
|
Liu Y, Xu D, Xing X, Shen A, Jin X, Li S, Liu Z, Wang L, Huang Y. Lung-Targeting Perylenediimide Nanocomposites for Efficient Therapy of Idiopathic Pulmonary Fibrosis. NANO LETTERS 2024; 24:12701-12708. [PMID: 39331492 DOI: 10.1021/acs.nanolett.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Idiopathic pulmonary fibrosis, an idiopathic interstitial lung disease with high mortality, remains challenging to treat due to the lack of clinically approved lung-targeting drugs. Herein, we present PDIC-DPC, a perylenediimide derivative that exhibits superior lung-selective enrichment. PDIC-DPC forms nanocomposites with plasma proteins, including fibrinogen beta chain and vitronectin, which bind to pulmonary endothelial receptors for lung-specific accumulation. Moreover, PDIC-DPC significantly suppresses transforming growth factor beta1 and activates adenosine monophosphate-activated protein kinase. As a result, compared to existing therapeutic drugs, PDIC-DPC achieves superior therapeutic outcomes, evidenced by the lowest Ashcroft score, significantly improved pulmonary function, and an extended survival rate in a bleomycin-induced pulmonary fibrosis model. This study elucidates the lung-selective enrichment of assembled prodrug from biological perspectives and affords a platform enabling therapeutic efficiency on idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuting Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Damin Xu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Anqi Shen
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Xinpeng Jin
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Shijiao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Ma J, Ding L, Zang X, Wei R, Yang Y, Zhang W, Su H, Li X, Li M, Sun J, Zhang Z, Wang Z, Zhao D, Li X, Zhao L, Tong X. Licoricesaponin G2 ameliorates bleomycin-induced pulmonary fibrosis via targeting TNF-α signaling pathway and inhibiting the epithelial-mesenchymal transition. Front Pharmacol 2024; 15:1437231. [PMID: 39301567 PMCID: PMC11412005 DOI: 10.3389/fphar.2024.1437231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Background Pulmonary fibrosis (PF) emerges as a significant pulmonary sequelae in the convalescent phase of coronavirus disease 2019 (COVID-19), with current strategies neither specifically preventive nor therapeutic. Licoricesaponin G2 (LG2) displays a spectrum of natural activities, including antibacterial, anti-inflammatory, and antioxidant properties, and has been effectively used in treating various respiratory conditions. However, the potential protective effects of LG2 against PF remain underexplored. Methods Network analysis and molecular docking were conducted in combination to identify the core targets and pathways through which LG2 acts against PF. In the model of bleomycin (BLM)-induced C57 mice and transforming growth factor-β1 (TGF-β1)-induced A549 and MRC5 cells, techniques such as western blot (WB), quantitative Real-Time PCR (qPCR), Immunohistochemistry (IHC), Immunofluorescence (IF), and Transwell migration assays were utilized to analyze the expression of Epithelial-mesenchymal transition (EMT) and inflammation proteins. Based on the analysis above, we identified targets and potential mechanisms underlying LG2's effects against PF. Results Network analysis has suggested that the mechanism by which LG2 combats PF may involve the TNF-α pathway. Molecular docking studies have demonstrated a high binding affinity of LG2 to TNF-α and MMP9. Observations from the study indicated that LG2 may mitigate PF by modulating EMT and extracellular matrix (ECM) remodeling. It is proposed that the therapeutic effect is likely arises from the inhibition of inflammatory expression through regulation of the TNF-α pathway. Conclusion LG2 mitigates PF by suppressing TNF-α signaling pathway activation, modulating EMT, and remodeling the ECM. These results provide compelling evidence supporting the use of LG2 as a potential natural therapeutic agent for PF in clinical trials.
Collapse
Affiliation(s)
- Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoyu Zang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ruonan Wei
- Shiyan Hospital of Traditional Chinese Medicine, Shiyan, China
| | - Yingying Yang
- China-Japan Friendship Hospital, National Center for Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wei Zhang
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jun Sun
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Liu Q, Niu Y, Pei Z, Yang Y, Xie Y, Wang M, Wang J, Wu M, Zheng J, Yang P, Hao H, Pang Y, Bao L, Dai Y, Niu Y, Zhang R. Gas6-Axl signal promotes indoor VOCs exposure-induced pulmonary fibrosis via pulmonary microvascular endothelial cells-fibroblasts cross-talk. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134786. [PMID: 38824778 DOI: 10.1016/j.jhazmat.2024.134786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Volatile organic compounds (VOCs) as environmental pollutants were associated with respiratory diseases. Pulmonary fibrosis (PF) was characterized by an increase of extracellular matrix, leading to deterioration of lung function. The adverse effects on lung and the potential mechanism underlying VOCs induced PF had not been elucidated clearly. In this study, the indoor VOCs exposure mouse model along with an ex vivo biosensor assay was established. Based on scRNA-seq analysis, the adverse effects on lung and potential molecular mechanism were studied. Herein, the results showed that VOCs exposure from indoor decoration contributed to decreased lung function and facilitated pulmonary fibrosis in mice. Then, the whole lung cell atlas after VOCs exposure and the heterogeneity of fibroblasts were revealed. We explored the molecular interactions among various pulmonary cells, suggesting that endothelial cells contributed to fibroblasts activation in response to VOCs exposure. Mechanistically, pulmonary microvascular endothelial cells (MPVECs) secreted Gas6 after VOCs-induced PANoptosis phenotype, bound to the Axl in fibroblasts, and then activated fibroblasts. Moreover, Atf3 as the key gene negatively regulated PANoptosis phenotype to ameliorate fibrosis induced by VOCs exposure. These novel findings provided a new perspective about MPVECs could serve as the initiating factor of PF induced by VOCs exposure.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zijie Pei
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yizhe Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujia Xie
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jingyuan Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Zheng
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Peihao Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Haiyan Hao
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Province Center for Disease Control and Prevention, Shijiazhuang 050021, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lei Bao
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yujie Niu
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
17
|
Jiang W, Deng B, Xie M, Feng Y, Jiang X, Yang B, Tan Z, Ou H, Tan Y, Liu S, Zhang S, Zhang J, Zhou Y, Wu W, Liu B. Caffeic acid mitigates myocardial fibrosis and improves heart function in post-myocardial infarction by inhibiting transforming growth factor-β receptor 1 signaling pathways. Biomed Pharmacother 2024; 177:117012. [PMID: 38906025 DOI: 10.1016/j.biopha.2024.117012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
Myocardial fibrosis is a pathological, physiological change that results from alterations, such as inflammation and metabolic dysfunction, after myocardial infarction (MI). Excessive fibrosis can cause cardiac dysfunction, ventricular remodeling, and heart failure. Caffeic acid (CA), a natural polyphenolic acid in various foods, has cardioprotective effects. This study aimed to explore whether CA exerts a cardioprotective effect to inhibit myocardial fibrosis post-MI and elucidate the underlying mechanisms. Histological observations indicated that CA ameliorated ventricular remodeling induced by left anterior descending coronary artery ligation in MI mice and partially restored cardiac function. CA selectively targeted transforming growth factor-β receptor 1 (TGFBR1) and inhibited TGFBR1-Smad2/3 signaling, reducing collagen deposition in the infarcted area of MI mice hearts. Furthermore, cell counting (CCK-8) assay, 5-ethynyl-2'-deoxyuridine assay, and western blotting revealed that CA dose-dependently decreased the proliferation, collagen synthesis, and activation of the TGFBR1-Smad2/3 pathway in primary cardiac fibroblasts (CFs) stimulated by TGF-β1 in vitro. Notably, TGFBR1 overexpression in CFs partially counteracted the inhibitory effects of CA. These findings suggest that CA effectively mitigates myocardial fibrosis and enhances cardiac function following MI and that this effect may be associated with the direct targeting of TGFBR1 by CA.
Collapse
Affiliation(s)
- Weihao Jiang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Mengting Xie
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Yunting Feng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Xiaoli Jiang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Bo Yang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Zhangbin Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Hongbin Ou
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Yongzhen Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Shaojun Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Shuangwei Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Jingzhi Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China.
| | - Weiwei Wu
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China.
| |
Collapse
|
18
|
Xu Z, Zhou Z, Yang X, Thakur A, Han N, Li HT, Li LG, Hu J, Li TF, Yan Y. Determining M2 macrophages content for the anti-tumor effects of metal-organic framework-encapsulated pazopanib nanoparticles in breast cancer. J Nanobiotechnology 2024; 22:429. [PMID: 39033109 PMCID: PMC11264935 DOI: 10.1186/s12951-024-02694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Pazopanib (PAZ), an oral multi-tyrosine kinase inhibitor, demonstrates promising cytostatic activities against various human cancers. However, its clinical utility is limited by substantial side effects and therapeutic resistance. We developed a nanoplatform capable of delivering PAZ for enhanced anti-breast cancer therapy. Nanometer-sized PAZ@Fe-MOF, compared to free PAZ, demonstrated increased anti-tumor therapeutic activities in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. High-throughput single-cell RNA sequencing (scRNAseq) revealed that PAZ@Fe-MOF significantly reduced pro-tumorigenic M2-like macrophage populations at tumor sites and suppressed M2-type signaling pathways, such as ATF6-TGFBR1-SMAD3, as well as chemokines including CCL17, CCL22, and CCL24. PAZ@Fe-MOF reprogramed the inhibitory immune microenvironment and curbed tumorigenicity by blocking the polarization of M2 phenotype macrophages. This platform offers a promising and new strategy for improving the cytotoxicity of PAZ against breast cancers. It provides a method to evaluate the immunological response of tumor cells to PAZ-mediated treatment.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhiyang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Breast Cancer in Hunan Province, Changsha, 410008, Hunan, China
| | - Xiaoxin Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ning Han
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hai-Tao Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Liu-Gen Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jun Hu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
19
|
Wu S, Luo X, Chen Y, Wang Z, Liu X, Sun N, Zhao J, Luo W, Zhang J, Tong X, Huang L, Liu C, Qin Z. Sodium-glucose cotransporter 2 inhibitors attenuate vascular calcification by suppressing endoplasmic reticulum protein thioredoxin domain containing 5 dependent osteogenic reprogramming. Redox Biol 2024; 73:103183. [PMID: 38759418 PMCID: PMC11127605 DOI: 10.1016/j.redox.2024.103183] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
AIMS Vascular calcification is strongly linked to the development of major adverse cardiovascular events, but effective treatments are lacking. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an emerging category of oral hypoglycemic drugs that have displayed marked effects on metabolic and cardiovascular diseases, including recently reported vascular medial calcification. However, the roles and underlying mechanisms of SGLT2 inhibitors in vascular calcification have not been fully elucidated. Thus, we aimed to further determine whether SGLT2 inhibitors protect against vascular calcification and to investigate the mechanisms involved. METHODS AND RESULTS A computed tomography angiography investigation of coronary arteries from 1554 patients with type 2 diabetes revealed that SGLT2 inhibitor use was correlated with a lower Agatston calcification score. In the vitamin D3 overdose, 5/6 nephrectomy chronic kidney disease-induced medial calcification and Western diet-induced atherosclerotic intimal calcification models, dapagliflozin (DAPA) substantially alleviated vascular calcification in the aorta. Furthermore, we showed that DAPA reduced vascular calcification via Runx2-dependent osteogenic transdifferentiation in vascular smooth muscle cells (VSMCs). Transcriptome profiling revealed that thioredoxin domain containing 5 (TXNDC5) was involved in the attenuation of vascular calcification by DAPA. Rescue experiments showed that DAPA-induced TXNDC5 downregulation in VSMCs blocked the protective effect on vascular calcification. Furthermore, TXNDC5 downregulation disrupted protein folding-dependent Runx2 stability and promoted subsequent proteasomal degradation. Moreover, DAPA downregulated TXNDC5 expression via amelioration of oxidative stress and ATF6-dependent endoplasmic reticulum stress. Consistently, the class effects of SGLT2 inhibitors on vascular calcification were validated with empagliflozin in intimal and medial calcification models. CONCLUSIONS SGLT2 inhibitors ameliorate vascular calcification through blocking endoplasmic reticulum stress-dependent TXNDC5 upregulation and promoting subsequent Runx2 proteasomal degradation, suggesting that SGLT2 inhibitors are potentially beneficial for vascular calcification treatment and prevention.
Collapse
MESH Headings
- Vascular Calcification/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/pathology
- Vascular Calcification/etiology
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Animals
- Humans
- Osteogenesis/drug effects
- Mice
- Glucosides/pharmacology
- Male
- Thioredoxins/metabolism
- Thioredoxins/genetics
- Benzhydryl Compounds/pharmacology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/drug effects
- Rats
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Disease Models, Animal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Female
Collapse
Affiliation(s)
- Shaofa Wu
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China; Department of Nephrology, Youyang Hospital, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 409800, China
| | - Xiaolin Luo
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yang Chen
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Zelan Wang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xi Liu
- Department of Nephrology, Youyang Hospital, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 409800, China
| | - Ning Sun
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Junyong Zhao
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Wenjian Luo
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jiawen Zhang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Lan Huang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| | - Chuan Liu
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| | - Zhexue Qin
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
20
|
Bidooki SH, Barranquero C, Sánchez-Marco J, Martínez-Beamonte R, Rodríguez-Yoldi MJ, Navarro MA, Fernandes SCM, Osada J. TXNDC5 Plays a Crucial Role in Regulating Endoplasmic Reticulum Activity through Different ER Stress Signaling Pathways in Hepatic Cells. Int J Mol Sci 2024; 25:7128. [PMID: 39000233 PMCID: PMC11241358 DOI: 10.3390/ijms25137128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER) chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3. In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Cristina Barranquero
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María J. Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.B.); (M.J.R.-Y.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
21
|
Cheng KC, Chong PCT, Hsieh CC, Lin YT, Ye CH, Khumsupan D, Lu JJ, Yu WC, Cheng KW, Yap KY, Kou WS, Cheng MT, Hsu CC, Sheen LY, Lin SP, Wei AC, Yu SH. Identification of anti-fibrotic and pro-apoptotic bioactive compounds from Ganoderma formosanum and their possible mechanisms in modulating TGF-β1-induced lung fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118008. [PMID: 38458343 DOI: 10.1016/j.jep.2024.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-β1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-β1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-β receptor 1. CONCLUSION Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.
Collapse
Affiliation(s)
- Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Department of Optometry, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung, Taiwan. R.O.C; Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, Taiwan. R.O.C
| | - Patrick Chun Theng Chong
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Darin Khumsupan
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Jheng-Jhe Lu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Weng Si Kou
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Meng-Tsung Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100025, Taiwan. R.O.C
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Leeuwenhoek Laboratories Co. Ltd., No. 71, Fanglan Rd, Taipei, 106038, Taiwan. R.O.C
| | - Lee-Yan Sheen
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, Taiwan. R.O.C
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C.
| |
Collapse
|
22
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
23
|
Deng J, Liu J, Chen W, Liang Q, He Y, Sun G. Effects of Natural Products through Inhibiting Endoplasmic Reticulum Stress on Attenuation of Idiopathic Pulmonary Fibrosis. Drug Des Devel Ther 2024; 18:1627-1650. [PMID: 38774483 PMCID: PMC11108075 DOI: 10.2147/dddt.s388920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes herbal preparations and bioactive compounds which protect against IPF through regulating ERS.
Collapse
Affiliation(s)
- JiuLing Deng
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - WanSheng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - YuQiong He
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - GuangChun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
24
|
Sheng Y, Deng Y, Li X, Ji P, Sun X, Liu B, Zhu J, Zhao J, Nan Y, Zhou EM, Hiscox JA, Stewart JP, Sun Y, Zhao Q. Hepatitis E virus ORF3 protein hijacking thioredoxin domain-containing protein 5 (TXNDC5) for its stability to promote viral particle release. J Virol 2024; 98:e0164923. [PMID: 38548704 PMCID: PMC11019958 DOI: 10.1128/jvi.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.
Collapse
Affiliation(s)
- Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiahong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
26
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
27
|
Liu B, Zhang X, Liu Z, Pan H, Yang H, Wu Q, Lv Y, Shen T. A novel model for predicting prognosis in patients with idiopathic pulmonary fibrosis based on endoplasmic reticulum stress-related genes. Cell Biol Int 2024; 48:483-495. [PMID: 38238919 DOI: 10.1002/cbin.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 03/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease of unknown pathogenic origin. Endoplasmic reticulum (ER) stress refers to the process by which cells take measures to ER function when the morphology and function of the reticulum are changed. Recent studies have demonstrated that the ER was involved in the evolution and progression of IPF. In this study, we obtained transcriptome data and relevant clinical information from the Gene Expression Omnibus database and conducted bioinformatics analysis. Among the 544 ER stress-related genes (ERSRGs), 78 were identified as differentially expressed genes (DEGs). These DEGs were primarily enriched in response to ER stress, protein binding, and protein processing. Two genes (HTRA2 and KTN1) were included for constructing an accurate molecular signature. The overall survival of patients was remarkably worse in the high-risk group than in the low-risk group. We further analyzed the difference in immune cells between high-risk and low-risk groups. M0 and M2 macrophages were significantly increased in the high-risk group. Our results suggested that ERSRGs might play a critical role in the development of IPF by regulating the immune microenvironment in the lungs, which provide new insights on predicting the prognosis of patients with IPF.
Collapse
Affiliation(s)
- Bin Liu
- Department of Medical Aspects of Specifc Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Haihong Pan
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hongxu Yang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Qing Wu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yan Lv
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
29
|
Mohanan A, Washimkar KR, Mugale MN. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119676. [PMID: 38242330 DOI: 10.1016/j.bbamcr.2024.119676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-β, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.
Collapse
Affiliation(s)
- Anushree Mohanan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
30
|
Zhu H, Zhou A, Zhang M, Pan L, Wu X, Fu C, Gong L, Yang W, Liu D, Cheng Y. Comprehensive analysis of an endoplasmic reticulum stress-related gene prediction model and immune infiltration in idiopathic pulmonary fibrosis. Front Immunol 2024; 14:1305025. [PMID: 38274787 PMCID: PMC10808546 DOI: 10.3389/fimmu.2023.1305025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease. This study aimed to investigate the involvement of endoplasmic reticulum stress (ERS) in IPF and explore its correlation with immune infiltration. Methods ERS-related differentially expressed genes (ERSRDEGs) were identified by intersecting differentially expressed genes (DEGs) from three Gene Expression Omnibus datasets with ERS-related gene sets. Gene Set Variation Analysis and Gene Ontology were used to explore the potential biological mechanisms underlying ERS. A nomogram was developed using the risk signature derived from the ERSRDEGs to perform risk assessment. The diagnostic value of the risk signature was evaluated using receiver operating characteristics, calibration, and decision curve analyses. The ERS score of patients with IPF was measured using a single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm. Subsequently, a prognostic model based on the ERS scores was established. The proportion of immune cell infiltration was assessed using the ssGSEA and CIBERSORT algorithms. Finally, the expression of ERSRDEGs was validated in vivo and in vitro via RT-qPCR. Results This study developed an 8-ERSRDEGs signature. Based on the expression of these genes, we constructed a diagnostic nomogram model in which agouti-related neuropeptide had a significantly greater impact on the model. The area under the curve values for the predictive value of the ERSRDEGs signature were 0.975 and 1.000 for GSE70866 and GSE110147, respectively. We developed a prognostic model based on the ERS scores of patients with IPF. Furthermore, we classified patients with IPF into two subtypes based on their signatures. The RT-qPCR validation results supported the reliability of most of our conclusions. Conclusion We developed and verified a risk model using eight ERSRDEGs. These eight genes can potentially affect the progression of IPF by regulating ERS and immune responses.
Collapse
Affiliation(s)
- Honglan Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital (The First People’s Hospital of Zunyi) of Zunyi Medical University, Zunyi, China
| | - Aiming Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Menglin Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Anshun, Anshun, China
| | - Lin Pan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Chenkun Fu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital (The First People’s Hospital of Zunyi) of Zunyi Medical University, Zunyi, China
| | - Wenting Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daishun Liu
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yiju Cheng
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The Fourth People’s Hospital of Guiyang, Guiyang, China
| |
Collapse
|
31
|
Song C, Xu Z, Liang Q, Mu Y, Liu M, Wu Z, Li X, Li J, Chen H, Wang Y, Gao S, Li A, Yao W, Liu G. OGG1 promoted lung fibrosis by activating fibroblasts via interacting with Snail1. Int Immunopharmacol 2024; 126:111148. [PMID: 37977070 DOI: 10.1016/j.intimp.2023.111148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
One of abundant DNA lesions induced by reactive oxygen species is 8-oxoguanine (8-oxoG), which compromises genetic instability. 8-oxoG is recognized by the DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) that not only participates in base excision repair but also involves in transcriptional regulation.OGG1 has an important role inIdiopathic Pulmonary Fibrosis (IPF) processing and targeting fibroblasts is a major strategy for the treatment of pulmonary fibrosis, but whether OGG1 activate fibroblast is not clear. In this study, we show that OGG1 expression level is increased at the fibroblast activation stage in mouse lungs induced by bleomycin (BLM) treatment. OGG1 promoted the expression level of fibroblast activation markers (CTGF, fibronectin, and collagen 1) in a pro-fibrotic gene transcriptional regulation pathway via interacting with Snail1, which dependent on 8-oxoG recognition. Global inhibition of OGG1 at the middle stage of lung fibrosis also relieved BLM-induced lung fibrosis in mice. Our results suggest that OGG1 is a target for inhibiting fibroblast activation and a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Chuge Song
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Respiratory Medicine, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zhiliang Xu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Dongguan Institute of Respiratory Medicine, Guangdong Medical University, Dongguan 523121, China.
| | - Qingyun Liang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yifan Mu
- Department of Respiratory Medicine, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Manqi Liu
- Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zijun Wu
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xiaomin Li
- Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Jiali Li
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Hongqiao Chen
- Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Shenglan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Ao Li
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Weimin Yao
- Department of Respiratory Medicine, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
32
|
Li X, Bai Z, Li Z, Wang J, Yan X. Toosendanin Restrains Idiopathic Pulmonary Fibrosis by Inhibiting ZEB1/CTBP1 Interaction. Curr Mol Med 2024; 24:123-133. [PMID: 37138491 PMCID: PMC10804237 DOI: 10.2174/1566524023666230501205149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Extensive deposition of extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) is due to hyperactivation and proliferation of pulmonary fibroblasts. However, the exact mechanism is not clear. OBJECTIVE This study focused on the role of CTBP1 in lung fibroblast function, elaborated its regulation mechanism, and analyzed the relationship between CTBP1 and ZEB1. Meanwhile, the antipulmonary fibrosis effect and its molecular mechanism of Toosendanin were studied. METHODS Human IPF fibroblast cell lines (LL-97A and LL-29) and normal fibroblast cell lines (LL-24) were cultured in vitro. The cells were stimulated with FCS, PDGF-BB, IGF-1, and TGF-β1, respectively. BrdU detected cell proliferation. The mRNA expression of CTBP1 and ZEB1 was detected by QRT-PCR. Western blotting was used to detect the expression of COL1A1, COL3A1, LN, FN, and α-SMA proteins. An animal model of pulmonary fibrosis was established to analyze the effects of CTBP1 silencing on pulmonary fibrosis and lung function in mice. RESULTS CTBP1 was up-regulated in IPF lung fibroblasts. Silencing CTBP1 inhibits growth factor-driven proliferation and activation of lung fibroblasts. Overexpression of CTBP1 promotes growth factor-driven proliferation and activation of lung fibroblasts. Silencing CTBP1 reduced the degree of pulmonary fibrosis in mice with pulmonary fibrosis. Western blot, CO-IP, and BrdU assays confirmed that CTBP1 interacts with ZEB1 and promotes the activation of lung fibroblasts. Toosendanin can inhibit the ZEB1/CTBP1protein interaction and further inhibit the progression of pulmonary fibrosis. CONCLUSION CTBP1 can promote the activation and proliferation of lung fibroblasts through ZEB1. CTBP1 promotes lung fibroblast activation through ZEB1, thereby increasing excessive deposition of ECM and aggravating IPF. Toosendanin may be a potential treatment for pulmonary fibrosis. The results of this study provide a new basis for clarifying the molecular mechanism of pulmonary fibrosis and developing new therapeutic targets.
Collapse
Affiliation(s)
- Xingbin Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050005, China
- Department of Respiratory and Critical Care Medicine, Hebei Chest Hospital, Shijiazhuang, Hebei, 050041,China
| | - Zina Bai
- Department of Respiratory and Critical Care Medicine, Hebei Chest Hospital, Shijiazhuang, Hebei, 050041,China
| | - Zhensheng Li
- Department of Respiratory and Critical Care Medicine, Hebei Chest Hospital, Shijiazhuang, Hebei, 050041,China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, Hebei Chest Hospital, Shijiazhuang, Hebei, 050041,China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050005, China
| |
Collapse
|
33
|
Zhao Q, Yang W, Li X, Yuan H, Guo J, Wang Y, Shan Z. MicroRNA-499-5p inhibits transforming growth factor-β1-induced Smad2 signaling pathway and suppresses fibroblast proliferation and collagen synthesis in rat by targeting TGFβ-R1. Mol Biol Rep 2023; 50:9757-9767. [PMID: 37676431 PMCID: PMC10676300 DOI: 10.1007/s11033-023-08755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Artial fibrosis has been recognized as a typical pathological change in atrial fibrillation. Although present evidence suggests that microRNA-499-5p (miR-499-5p) plays an important role in the development of atrial fibrosis, the specific mechanism is not fully understood. Therefore, this study attempted to assess the influence of miR-499-5p on atrial fibroblasts and explore the potential molecular mechanism. METHODS Atrial fibroblasts from sprague dawley rat were respectively transfected with miR-499-5p mimic, miR-499-5p negative control and miR-499-5p inhibitor, atrial fibroblasts without any treatment were also established. Cell counting kit-8 assay and transwell assay were used to detect the proliferation and migration of atrial fibroblasts in each group. Expressions of miR-499-5p, TGF-β1, smad2, α-SMA, collagen-I and TGFβ-R1 in mRNA and protein level were subsequently detected via quantitative real-time polymerase chain reaction and western blot. Furthermore, the prediction of the binding sites of miR-499-5p and TGFβ-R1 was performed via the bioinformatics online software TargetScan and verified by dual luciferase reporter. RESULTS By utilizing miR-499-5p-transfected atrial fibroblasts model, expression of miR-499-5p in the miR-499-5p mimic group was upregulated, while it was downregulated in the miR-499-5p inhibitors group. Upregulated miR-499-5p expression led to to a significant decrease in the proliferative and migratory ability of cultured atrial fibroblasts, while downregulated miR-499-5p expression led to a significant increase in the proliferative and migratory ability of cultured atrial fibroblasts. Additionally, upregulated miR-499-5p expression made a significant rise in TGF-β1-induced mRNA and protein expression of TGF-β1, TGFβ-R1, smad2, α-SMA and collagen-I in atrial fibroblasts. Furthermore, results from the dual luciferase reporter conformed that miR-499-5p may repress TGFβ-R1 by binding the 3'UTR of TGFβ-R1 directly. CONCLUSIONS miR-499-5p is able to inhibit the activation of transforming growth factor β-induced Smad2 signaling and eventually suppressed the proliferation, migration and invasion of atrial fibroblasts and collagen synthesis by targeting TGFβ-R1.
Collapse
Affiliation(s)
- Qing Zhao
- Chinese PLA Medical Academy, Beijing, China
- Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wentao Yang
- Department of Cardiology, Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, China
| | | | - Hongtao Yuan
- Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | - Yutang Wang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Zhaoliang Shan
- Chinese PLA Medical Academy, Beijing, China.
- Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
34
|
Zhang L, Zeng J, Wu H, Tian H, Song D, Wu W, Dong F. Knockdown of TXNDC5 alleviates CCL4-induced hepatic fibrosis in mice by enhancing endoplasmic reticulum stress. Am J Med Sci 2023; 366:449-457. [PMID: 37716602 DOI: 10.1016/j.amjms.2023.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Hepatic fibrosis is a common pathological process in many chronic liver diseases. TXNDC5 has been shown to be involved in the progression of renal and pulmonary fibrosis. However, the role of TXNDC5 in hepatic fibrosis is unknown. The purpose of this study is to explore the role and mechanism of TXNDC5 in hepatic fibrosis. METHODS We used TGF-β1 to activate LX-2 cells and reduced TXNDC5 expression by short hairpin RNA. Cell viability was assessed by CCK-8 assay. Cell apoptosis was analyzed by flow cytometry or Tunel assay. The fibrosis-related proteins and endoplasmic reticulum stress (ERs)-related proteins were measured by western blot. ELISA was performed to detect COL1AL levels and MMP2/9 activities in cell medium. A mouse model of hepatic fibrosis was constructed by intraperitoneal injection of CCL4. HE and Masson staining were performed to assess fibrosis in mouse liver tissue. RESULTS The results show that TXNDC5 was up-regulated in activated LX-2 cells and CCL4-induced hepatic fibrosis mice. Knockdown of TXNDC5 inhibited the viability of activated LX-2 cells and the production of collagen COL1A1. Knockdown of TXNDC5 promoted apoptosis of activated LX-2 cells. Mechanically, inhibition of TXNDC5 enhanced ERs, and the ERs inhibitor 4-Phenylbutyric acid (4-PBA) reversed the effect of TXNDC5 on activated LX-2 cells. More importantly, knockdown of TXNDC5 alleviated CCl4-induced hepatic fibrosis in mice. CONCLUSIONS Knockdown of TXNDC5 may reduce hepatic fibrosis by regulating ERs, and targeting TXNDC5 seems to be a candidate treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Health Management, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jieying Zeng
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Huaiyu Wu
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Hongtian Tian
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Di Song
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Weiqing Wu
- Department of Health Management, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Fajin Dong
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| |
Collapse
|
35
|
Luo L, Wang S, Hu Y, Wang L, Jiang X, Zhang J, Liu X, Guo X, Luo Z, Zhu C, Xie M, Li Y, You J, Yang F. Precisely Regulating M2 Subtype Macrophages for Renal Fibrosis Resolution. ACS NANO 2023; 17:22508-22526. [PMID: 37948096 DOI: 10.1021/acsnano.3c05998] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Macrophages are central to the pathogenesis of kidney disease and serve as an effective therapeutic target for kidney injury and fibrosis. Among them, M2-type macrophages have double-edged effects regarding anti-inflammatory effects and tissue repair. Depending on the polarization of the M2 subtypes (M2a or M2c) in the diseased microenvironment, they can either mediate normal tissue repair or drive tissue fibrosis. In renal fibrosis, M2a promotes disease progression through macrophage-to-myofibroblast transition (MMT) cells, while M2c possesses potent anti-inflammatory functions and promotes tissue repair, and is inhibited. The mechanisms underlying this differentiation are complex and are currently not well understood. Therefore, in this study, we first confirmed that M2a-derived MMT cells are responsible for the development of renal fibrosis and demonstrated that the intensity of TGF-β signaling is a major factor determining the differential polarization of M2a and M2c. Under excessive TGF-β stimulation, M2a undergoes a process known as MMT cells, whereas moderate TGF-β stimulation favors the polarization of M2c phenotype macrophages. Based on these findings, we employed targeted nanotechnology to codeliver endoplasmic reticulum stress (ERS) inhibitor (Ceapin 7, Cea or C) and conventional glucocorticoids (Dexamethasone, Dex or D), precisely modulating the ATF6/TGF-β/Smad3 signaling axis within macrophages. This approach calibrated the level of TGF-β stimulation on macrophages, promoting their polarization toward the M2c phenotype and suppressing excessive MMT polarization. The study indicates that the combination of ERS inhibitor and a first-line anti-inflammatory drug holds promise as an effective therapeutic approach for renal fibrosis resolution.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Hangzhou 310058, Zhejiang, China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Litong Wang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xindong Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Chunqi Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Miaomiao Xie
- The Second Affiliated Hospital of Shenzhen University, 118 Longjinger Road, Baoan District, Shenzhen 518101, Guangdong, China
| | - Yeqing Li
- The People's Hospital of Baoan Shenzhen, 118 Longjinger Road, Baoan District, Shenzhen 518101, Guangdong, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
36
|
Yang B, Lin Y, Huang Y, Zhu N, Shen YQ. Extracellular vesicles modulate key signalling pathways in refractory wound healing. BURNS & TRAUMA 2023; 11:tkad039. [PMID: 38026441 PMCID: PMC10654481 DOI: 10.1093/burnst/tkad039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023]
Abstract
Chronic wounds are wounds that cannot heal properly due to various factors, such as underlying diseases, infection or reinjury, and improper healing of skin wounds and ulcers can cause a serious economic burden. Numerous studies have shown that extracellular vesicles (EVs) derived from stem/progenitor cells promote wound healing, reduce scar formation and have significant advantages over traditional treatment methods. EVs are membranous particles that carry various bioactive molecules from their cellular origins, such as cytokines, nucleic acids, enzymes, lipids and proteins. EVs can mediate cell-to-cell communication and modulate various physiological processes, such as cell differentiation, angiogenesis, immune response and tissue remodelling. In this review, we summarize the recent advances in EV-based wound healing, focusing on the signalling pathways that are regulated by EVs and their cargos. We discuss how EVs derived from different types of stem/progenitor cells can promote wound healing and reduce scar formation by modulating the Wnt/β-catenin, phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, vascular endothelial growth factor, transforming growth factor β and JAK-STAT pathways. Moreover, we also highlight the challenges and opportunities for engineering or modifying EVs to enhance their efficacy and specificity for wound healing.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Nanxi Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| |
Collapse
|
37
|
Wu M, Wang Z, Shi X, Zan D, Chen H, Yang S, Ding F, Yang L, Tan P, Ma RZ, Wang J, Ma L, Ma Y, Jin J. TGFβ1-RCN3-TGFBR1 loop facilitates pulmonary fibrosis by orchestrating fibroblast activation. Respir Res 2023; 24:222. [PMID: 37710230 PMCID: PMC10500825 DOI: 10.1186/s12931-023-02533-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) bears high mortality due to unclear pathogenesis and limited therapeutic options. Therefore, identifying novel regulators is required to develop alternative therapeutic strategies. METHODS The lung fibroblasts from IPF patients and Reticulocalbin 3 (RCN3) fibroblast-selective knockdown mouse model were used to determine the importance of Rcn3 in IPF; the epigenetic analysis and protein interaction assays, including BioID, were used for mechanistic studies. RESULTS Reticulocalbin 3 (RCN3) upregulation is associated with the fibrotic activation of lung fibroblasts from IPF patients and Rcn3 overexpression blunts the antifibrotic effects of pirfenidone and nintedanib. Moreover, repressing Rcn3 expression in mouse fibroblasts ameliorates bleomycin-induced lung fibrosis and pulmonary dysfunction in vivo. Mechanistically, RCN3 promotes fibroblast activation by maintaining persistent activation of TGFβ1 signalling via the TGFβ1-RCN3-TGFBR1 positive feedback loop, in which RCN3 upregulated by TGFβ1 exposure detains EZH2 (an epigenetic methyltransferase) in the cytoplasm through RCN3-EZH2 interaction, leading to the release of the EZH2-H3K27me3 epigenetic repression of TGFBR1 and the persistent expression of TGFBR1. CONCLUSIONS These findings introduce a novel regulating mechanism of TGFβ1 signalling in fibroblasts and uncover a critical role of the RCN3-mediated loop in lung fibrosis. RCN3 upregulation may cause resistance to IPF treatment and targeting RCN3 could be a novel approach to ameliorate pulmonary fibrosis.
Collapse
Affiliation(s)
- Mingting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoqian Shi
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Danni Zan
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hong Chen
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuqiao Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
| | - Fangping Ding
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Pingping Tan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Runlin Z Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
| | - Lishuang Ma
- Department of Neonatal Surgery, Children's Hospital of Capital Institute of Pediatrics, Peking Union Medical College, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Beijing, China.
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Wang Y, Chen L, Yao C, Wang T, Wu J, Shang Y, Li B, Xia H, Huang S, Wang F, Wen S, Huang S, Lin Y, Dong N, Yao S. Early plasma proteomic biomarkers and prediction model of acute respiratory distress syndrome after cardiopulmonary bypass: a prospective nested cohort study. Int J Surg 2023; 109:2561-2573. [PMID: 37528797 PMCID: PMC10498873 DOI: 10.1097/js9.0000000000000434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/21/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Early recognition of the risk of acute respiratory distress syndrome (ARDS) after cardiopulmonary bypass (CPB) may improve clinical outcomes. The main objective of this study was to identify proteomic biomarkers and develop an early prediction model for CPB-ARDS. METHODS The authors conducted three prospective nested cohort studies of all consecutive patients undergoing cardiac surgery with CPB at Union Hospital of Tongji Medical College Hospital. Plasma proteomic profiling was performed in ARDS patients and matched controls (Cohort 1, April 2021-July 2021) at multiple timepoints: before CPB (T1), at the end of CPB (T2), and 24 h after CPB (T3). Then, for Cohort 2 (August 2021-July 2022), biomarker expression was measured and verified in the plasma. Furthermore, lung ischemia/reperfusion injury (LIRI) models and sham-operation were established in 50 rats to explore the tissue-level expression of biomarkers identified in the aforementioned clinical cohort. Subsequently, a machine learning-based prediction model incorporating protein and clinical predictors from Cohort 2 for CPB-ARDS was developed and internally validated. Model performance was externally validated on Cohort 3 (January 2023-March 2023). RESULTS A total of 709 proteins were identified, with 9, 29, and 35 altered proteins between ARDS cases and controls at T1, T2, and T3, respectively, in Cohort 1. Following quantitative verification of several predictive proteins in Cohort 2, higher levels of thioredoxin domain containing 5 (TXNDC5), cathepsin L (CTSL), and NPC intracellular cholesterol transporter 2 (NPC2) at T2 were observed in CPB-ARDS patients. A dynamic online predictive nomogram was developed based on three proteins (TXNDC5, CTSL, and NPC2) and two clinical risk factors (CPB time and massive blood transfusion), with excellent performance (precision: 83.33%, sensitivity: 93.33%, specificity: 61.16%, and F1 score: 85.05%). The mean area under the receiver operating characteristics curve (AUC) of the model after 10-fold cross-validation was 0.839 (95% CI: 0.824-0.855). Model discrimination and calibration were maintained during external validation dataset testing, with an AUC of 0.820 (95% CI: 0.685-0.955) and a Brier Score of 0.177 (95% CI: 0.147-0.206). Moreover, the considerably overexpressed TXNDC5 and CTSL proteins identified in the plasma of patients with CPB-ARDS, exhibited a significant upregulation in the lung tissue of LIRI rats. CONCLUSIONS This study identified several novel predictive biomarkers, developed and validated a practical prediction tool using biomarker and clinical factor combinations for individual prediction of CPB-ARDS risk. Assessing the plasma TXNDC5, CTSL, and NPC2 levels might identify patients who warrant closer follow-up and intensified therapy for ARDS prevention following major surgery.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Lin Chen
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | | | - Tingting Wang
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Jing Wu
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Bo Li
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Haifa Xia
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Shiqian Huang
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Fuquan Wang
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Shuyu Wen
- Department of Cardiovascular Surgery
| | - Shaoxin Huang
- SpecAlly Life Technology Co., Ltd., Wuhan, Hubei, People’s Republic of China
| | - Yun Lin
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | | | - Shanglong Yao
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| |
Collapse
|
39
|
Wei J, Zhan J, Ji H, Xu Y, Xu Q, Zhu X, Liu Y. Fibroblast Upregulation of Vitamin D Receptor Represents a Self-Protective Response to Limit Fibroblast Proliferation and Activation during Pulmonary Fibrosis. Antioxidants (Basel) 2023; 12:1634. [PMID: 37627629 PMCID: PMC10451996 DOI: 10.3390/antiox12081634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Dysregulation of vitamin D receptor (VDR) is implicated in chronic obstructive pulmonary disease. However, whether VDR dysregulation contributes to the development of pulmonary fibrosis remains largely unknown. Analysis of bulk and single-cell RNA profiling datasets revealed VDR upregulation in lung fibroblasts from patients with pulmonary fibrosis or fibrotic mice, which was validated in lung fibroblasts from bleomycin-exposed mice and bleomycin-treated fibroblasts. Stable VDR knockdown promoted, whereas the VDR agonist paricalcitol suppressed lung fibroblast proliferation and activation. Gene set enrichment analysis (GSEA) showed that the JAK/STAT pathway and unfolded protein response (UPR), a process related to endoplasmic reticulum (ER) stress, were enriched in lung fibroblasts of fibrotic lungs. Stable VDR knockdown stimulated, but paricalcitol suppressed ER stress and JAK1/STAT3 activation in lung fibroblasts. The STAT3 inhibitor blocked bleomycin- or stable VDR knockdown-induced ER stress. Paricalcitol inhibited the bleomycin-induced enrichment of STAT3 to the ATF6 promoter, thereby suppressing ATF6 expression in fibroblasts. Paricalcitol or intrapulmonary VDR overexpression inactivated JAK1/STAT3 and suppressed ER stress in bleomycin-treated mice, thus resulting in the inhibition of fibroblast proliferation and activation. Collectively, this study suggests that fibroblast VDR upregulation may be a self-protective response to limit fibroblast proliferation and activation during pulmonary fibrosis by suppressing the JAK1/STAT3/ER stress pathway.
Collapse
Affiliation(s)
- Juan Wei
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Junhui Zhan
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Hui Ji
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Yitong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Qingfeng Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China
| | - Yujian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| |
Collapse
|
40
|
Yu WC, Yeh TY, Ye CH, Chong PCT, Ho YH, So DK, Yap KY, Peng GR, Shao CH, Jagtap AD, Chern JW, Lin CS, Lin SP, Lin SL, Yu SH, Yu CW. Discovery of HDAC6, HDAC8, and 6/8 Inhibitors and Development of Cell-Based Drug Screening Models for the Treatment of TGF-β-Induced Idiopathic Pulmonary Fibrosis. J Med Chem 2023; 66:10528-10557. [PMID: 37463500 DOI: 10.1021/acs.jmedchem.3c00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Idiopathic pulmonary fibrosis is incurable, and its progression is difficult to control and thus can lead to pulmonary deterioration. Pan-histone deacetylase inhibitors such as SAHA have shown potential for modulating pulmonary fibrosis yet with off-target effects. Therefore, selective HDAC inhibitors would be beneficial for reducing side effects. Toward this goal, we designed and synthesized 24 novel HDAC6, HDAC8, or dual HDAC6/8 inhibitors and established a two-stage screening platform to rapidly screen for HDAC inhibitors that effectively mitigate TGF-β-induced pulmonary fibrosis. The first stage consisted of a mouse NIH-3T3 fibroblast prescreen and yielded five hits. In the second stage, human pulmonary fibroblasts (HPFs) were used, and four out of the five hits were tested for caco-2 permeability and liver microsome stability to give two potential leads: J27644 (15) and 20. This novel two-stage screen platform will accelerate the discovery and reduce the cost of developing HDAC inhibitors to mitigate TGF-β-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Yu Yeh
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | | | - Yi-Hsun Ho
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Dorothy Kazuno So
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Hsuan Shao
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Ajit Dhananjay Jagtap
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Ji-Wang Chern
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Shau-Ping Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Center of Systems Biology, National Taiwan University, Taipei 106, Taiwan
- The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chao-Wu Yu
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
41
|
Li N, Chang M, Zhou Q, Zhang L, Wang Y, Guan Y, Li H, Zhao Y, Ding C, Hong S, Yao S. Activation of AMPK signalling by Metformin: Implication an important molecular mechanism for protecting against mice silicosis via inhibited endothelial cell-to-mesenchymal transition by regulating oxidative stress and apoptosis. Int Immunopharmacol 2023; 120:110321. [PMID: 37192555 DOI: 10.1016/j.intimp.2023.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Inhalation of silica particles (SiO2) causes oxidative stress-induced inflammation and cell apoptosis, ultimately resulting in irreversible pulmonary fibrosis, Unfortunately, effective treatment or preventative measures have yet to be fully established. Metformin (Met), a relatively safe and effective medication for treating diabetes, may hold promise as protective agent against early-stage pulmonary fibrosis in mice through the activation of autophagy and inhibition of endothelial cell to mesenchymal transition (EndoMT). Here, we investigated whether Met could reduce silicosis in mice by regulating inflammation, oxidative stress, and apoptosis, and to identify the underlying protective effect on endothelial cells. First, through pathological observation, we found that 21 consecutive days of Met (100 mg/kg) administration is optimal against silicosis. Next, using haematoxylin-eosin and Masson's trichrome staining and immunoblotting, we found that Met effectively blunted the inflammatory response and collagen deposition at 56 days after exposure to SiO2. We also demonstrated that Met effectively activates AMPK signalling and markedly relieves oxidative stress, the mitochondrial apoptotic pathway and EndoMT induced by SiO2 exposure both in vivo and in vitro. Overall, Met can alleviate SiO2-induced pulmonary fibrosis by regulating oxidative stress and the mitochondrial apoptotic pathway. The current study provides a rationale for the clinical treatment of SiO2-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Ning Li
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China; School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Meiyu Chang
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China
| | - Qiang Zhou
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Yongheng Wang
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China
| | - Yi Guan
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunjie Ding
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shan Hong
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China; School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
42
|
Li D, Zhao A, Zhu J, Wang C, Shen J, Zheng Z, Pan F, Liu Z, Chen Q, Yang Y. Inhaled Lipid Nanoparticles Alleviate Established Pulmonary Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300545. [PMID: 37058092 DOI: 10.1002/smll.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Pulmonary fibrosis, a sequela of lung injury resulting from severe infection such as severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) infection, is a kind of life-threatening lung disease with limited therapeutic options. Herein, inhalable liposomes encapsulating metformin, a first-line antidiabetic drug that has been reported to effectively reverse pulmonary fibrosis by modulating multiple metabolic pathways, and nintedanib, a well-known antifibrotic drug that has been widely used in the clinic, are developed for pulmonary fibrosis treatment. The composition of liposomes made of neutral, cationic or anionic lipids, and poly(ethylene glycol) (PEG) is optimized by evaluating their retention in the lung after inhalation. Neutral liposomes with suitable PEG shielding are found to be ideal delivery carriers for metformin and nintedanib with significantly prolonged retention in the lung. Moreover, repeated noninvasive aerosol inhalation delivery of metformin and nintedanib loaded liposomes can effectively diminish the development of fibrosis and improve pulmonary function in bleomycin-induced pulmonary fibrosis by promoting myofibroblast deactivation and apoptosis, inhibiting transforming growth factor 1 (TGFβ1) action, suppressing collagen formation, and inducing lipogenic differentiation. Therefore, this work presents a versatile platform with promising clinical translation potential for the noninvasive inhalation delivery of drugs for respiratory disease treatment.
Collapse
Affiliation(s)
- Dongjun Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Ang Zhao
- Department of medical affair, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chunjie Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| |
Collapse
|
43
|
Ding L, Yang Y, Wang Z, Su H, Li Y, Ma J, Bao T, Qi H, Song S, Li J, Zhao J, Wang Z, Zhao D, Li X, Zhao L, Tong X. Qimai Feiluoping decoction inhibits mitochondrial complex I-mediated oxidative stress to ameliorate bleomycin-induced pulmonary fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154707. [PMID: 36805483 DOI: 10.1016/j.phymed.2023.154707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Qimai Feiluoping decoction (QM), a Traditional Chinese Medicine formula, has been included in rehabilitation program for functional disorders of discharged COVID-19 patients. QM has been proved to effectively improve the clinical symptoms and imaging signs of PF in COVID-19 convalescent patients. PURPOSE This study to explore the pharmacological effect of QM against PF from the perspectives of imaging, pathological staining, and molecular mechanisms, and identify possible active components. METHODS Micro-CT imaging and immunohistochemical staining were investigated to verify the therapeutic effect of QM in the bleomycin (BLM)-induced PF mouse model. The 4D-label-free proteomics analysis of lung tissues was then conducted to explore the novel mechanisms of QM against PF, which were further validated by a series of experiments. The possible components of QM in plasma and lung tissues were identified with UHPLC/IM-QTOF-MS analysis. RESULTS The results from micro-CT imaging and pathological staining revealed that QM treatment can inhibit BLM-induced lung injury, extracellular matrix accumulation and TGF-β expression in the mouse model with PF. The 4D-label-free proteomics analysis demonstrated that the partial subunit proteins of mitochondrial complex I and complex II might be potential targets of QM against PF. Furthermore, QM treatment can inhibit BLM-induced mitochondrial ROS content to promote ATP production and decrease oxidative stress injury in the mouse and cell models of PF, which was mediated by the inhibition of mitochondrial complex I. Finally, a total of 13 protype compounds and 15 metabolites from QM in plasma and lung tissues were identified by UHPLC/IM-QTOF-MS, and liquiritin and isoliquiritigenin from Glycyrrhizae radix et rhizoma could be possible active compounds against PF. CONCLUSION It concludes that QM treatment could treat PF by inhibiting mitochondrial complex I-mediated mitochondrial oxidated stress injury, which could offer new insights into the pharmacological mechanisms of QM in the clinical application of PF patients.
Collapse
Affiliation(s)
- Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing China; Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hongyu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jing Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jiachao Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Ziyuan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Linhua Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
44
|
Cobalt protoporphyrin-induced nano-self-assembly for CT imaging, magnetic-guidance, and antioxidative protection of stem cells in pulmonary fibrosis treatment. Bioact Mater 2023; 21:129-141. [PMID: 36093327 PMCID: PMC9411585 DOI: 10.1016/j.bioactmat.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) transplantation is a promising approach for pulmonary fibrosis (PF), however it is impeded by several persistent challenges, including the lack of long-term tracking, low retention, and poor survival of MSCs, as well as the low labeling efficiency of nanoprobes. Herein, a cobalt protoporphyrin IX (CoPP) aggregation-induced strategy is applied to develop a multifunctional nano-self-assembly (ASCP) by combining gold nanoparticle (AuNPs), superparamagnetic iron oxide nanoparticles (SPIONs), and CoPP through a facile solvent evaporation-driven approach. Since no additional carrier materials are employed during the synthesis, high loading efficiency of active ingredients and excellent biocompatibility are achieved. Additionally, facile modification of the ASCPs with bicyclo[6.1.0]nonyne (BCN) groups (named as ASCP-BCN) enables them to effectively label MSCs through bioorthogonal chemistry. The obtained ASCP-BCN could not only help to track MSCs with AuNP-based computed tomography (CT) imaging, but also achieve an SPIONs-assisted magnetic field based improvement in the MSCs retention in lungs as well as promoted the survival of MSCs via the sustained release of CoPP. The in vivo results demonstrated that the labeled MSCs improved the lung functions and alleviated the fibrosis symptoms in a bleomycin–induced PF mouse model. Collectively, a novel ASCP-BCN multifunctional nanoagent was developed to bioorthogonally-label MSCs with a high efficiency, presenting a promising potential in the high-efficient MSC therapy for PF. Cobalt protoporphyrin IX induces the formation of multifunctional nanoagent by self-assembly without additional carriers. Bioorthogonal reaction increases the stem cell labeling efficiency of nanoagents. Gold nanoparticles-based CT imaging enables stem cell tracking in vivo. Magnetic guidance and cytoprotection functions improve the therapeutic effect of stem cell therapy for pulmonary fibrosis.
Collapse
|
45
|
Sokolov D, Gorshkova A, Markova K, Milyutina Y, Pyatygina K, Zementova M, Korenevsky A, Mikhailova V, Selkov S. Natural Killer Cell Derived Microvesicles Affect the Function of Trophoblast Cells. MEMBRANES 2023; 13:213. [PMID: 36837716 PMCID: PMC9963951 DOI: 10.3390/membranes13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
Collapse
|
46
|
Li C, Meng X, Wang L, Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway. Front Pharmacol 2023; 14:1092148. [PMID: 36843918 PMCID: PMC9947662 DOI: 10.3389/fphar.2023.1092148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Cardiac fibrosis is a serious public health problem worldwide that is closely linked to progression of many cardiovascular diseases (CVDs) and adversely affects both the disease process and clinical prognosis. Numerous studies have shown that the TGF-β/Smad signaling pathway plays a key role in the progression of cardiac fibrosis. Therefore, targeted inhibition of the TGF-β/Smad signaling pathway may be a therapeutic measure for cardiac fibrosis. Currently, as the investigation on non-coding RNAs (ncRNAs) move forward, a variety of ncRNAs targeting TGF-β and its downstream Smad proteins have attracted high attention. Besides, Traditional Chinese Medicine (TCM) has been widely used in treating the cardiac fibrosis. As more and more molecular mechanisms of natural products, herbal formulas, and proprietary Chinese medicines are revealed, TCM has been proven to act on cardiac fibrosis by modulating multiple targets and signaling pathways, especially the TGF-β/Smad. Therefore, this work summarizes the roles of TGF-β/Smad classical and non-classical signaling pathways in the cardiac fibrosis, and discusses the recent research advances in ncRNAs targeting the TGF-β/Smad signaling pathway and TCM against cardiac fibrosis. It is hoped, in this way, to give new insights into the prevention and treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Chunjun Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangxiang Meng
- College of Marxism, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Wang
- First College of Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Dai
- College of Health, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Xia Dai,
| |
Collapse
|
47
|
Kocatürk B. Identification of thioredoxin domain containing family members' expression pattern and prognostic value in diffuse gliomas via in silico analysis. Cancer Med 2023; 12:3830-3844. [PMID: 36106447 PMCID: PMC9939227 DOI: 10.1002/cam4.5169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gliomas are the most prevalent primary tumors of the central nervous system. Their aggressive nature and the obstacles arising during therapy highlights the importance of finding new prognostic markers and therapy targets for gliomas. TXNDC genes are members of the thioredoxin superfamily and were shown to play a role in redox homeostasis, protein folding, electron transfer and also acting as cellular adapters. The well known contribution of these processes in cancer progression prompted us to investigate if TXNDC family members may also play a role in carcinogenesis, in particular diffuse gliomas. METHODS The present study used in silico analysis tools GEPIA, UCSC Xena, Gliovis, cBioPortal, and Ivy GAP to evaluate the expression pattern, prognostic value and clinical significance of TXNDC family members in diffuse gliomas. RESULTS Our analysis showed that TXNDC family members' expression pattern differ between tumors and healthy tissues and among tumors with different grades. The detailed analysis of TXNDC5 in glioma pathogenesis revealed that TXNDC5 expression is associated with more aggressive clinical and molecular features and poor therapy success both in LGG and GBM samples. Kaplan-Meier survival curves represented a worse prognosis for patients with leveated TXNDC5 levels in LGG and all grade glioma patients. The levels of TXNDC5 was shown to be possibly regulated by hypoxia-ER stress axis and a potential mechanism for TXNDC5-driven glioma progression was found to be extracellular matrix (ECM) production which is known to promote tumor aggressiveness. CONCLUSIONS Our results uncovered the previously unknown role of TXNDC family members in glioma pathogenesis and showed that TXNDC5 levels could serve as a predictor of clinical outcome and therapy success and may very well be used for targeted therapy.
Collapse
Affiliation(s)
- Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
48
|
Li J, Li K, Tian Y, Zhao P, Liu X, Li M, Bai Y. Effective-compounds of Jinshui Huanxian formula ameliorates fibroblast activation in pulmonary fibrosis by inhibiting the activation of mTOR signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154604. [PMID: 36610143 DOI: 10.1016/j.phymed.2022.154604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Jinshui Huanxian formula (JHF) ameliorates idiopathic pulmonary fibrosis patients. Active compounds, including icariin, isoliquiritigenin, nobiletin, peimine, and paeoniflorin, deriving from JHF were combined as effective-component compatibility ECC of JHF II (ECC-JHF II), which is an effective therapeutic strategy for pulmonary fibrosis (PF) induced by bleomycin (BLM) in rats. PURPOSE This study aimed to explore the underlying mechanism of ECC-JHF II on pulmonary fibrosis. METHODS A model of PF in rats was established through intratracheal instillation of BLM. Pulmonary function, pathological changes, and collagen deposition were examined. The gene and protein expressions in fibroblast activation were detected by quantitative real-time PCR and western blotting respectively. RESULTS ECC-JHF II significantly improved BLM-induced PF in rats, manifested as decreased collagen deposition, reduced pathological damage and improved pulmonary function. Furthermore, ECC-JHF II inhibited fibroblast activation by reducing the expression of α-smooth muscle actin (α-SMA) and fibronectin. We analyzed the targets of ECC-JHF II and differentially expressed genes (DEGs) of fibroblast activation induced by transforming growth factor-β1 (TGF-β1) and found that ECC-JHF II might regulate fibroblast activation by EGFR, PI3K-Akt or mTOR signaling pathway. In vitro experiments, we also found that ECC-JHF II suppressed the mTOR pathway, such as downregulating the phosphorylation levels of p70S6K in fibroblast activation induced by TGF-β1. After activating mTOR signaling, the inhibition of ECC-JHF II on fibroblast activation was blocked. These results suggested that ECC-JHF II potently ameliorated pulmonary fibrosis in rats and effectively suppressed fibroblast activation by interfering with mTOR signaling. CONCLUSION We combined transcriptomics with the network analysis to predict the mechanism underlying ECC-JHF II suppression of fibroblast activation. In summary, ECC-JHF II improved BLM-induced pulmonary fibrosis, which might be associated with the suppression of fibroblast activation by inhibiting the mTOR signaling.
Collapse
Affiliation(s)
- Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan 450046, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Kangchen Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan 450046, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Minyan Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan 450046, China
| | - Yunping Bai
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
49
|
Jiang H, Thapa P, Hao Y, Ding N, Alshahrani A, Wei Q. Protein Disulfide Isomerases Function as the Missing Link Between Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1191-1205. [PMID: 36000195 PMCID: PMC9805878 DOI: 10.1089/ars.2022.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
Significance: Diabetes has long been recognized as an independent risk factor for cancer, but there is insufficient mechanistic understanding of biological mediators that bridge two disorders together. Understanding the pathogenic association between diabetes and cancer has become the focus of many studies, and findings are potentially valuable for the development of effective preventive or therapeutic strategies for both disorders. Recent Advances: A summary of literature reveals a possible connection between diabetes and cancer through the family of protein disulfide isomerase (PDI). Historical as well as the most recent findings on the structure, biochemistry, and biology of the PDI family were summarized in this review. Critical Issues: PDIs in general function as redox enzymes and protein chaperones to control the quality of proteins by correcting or otherwise eliminating misfolded proteins in conditions of oxidative stress and endoplasmic reticulum stress, respectively. However, individual members of the PDI family may contribute uniquely to the pathogenesis of diabetes and cancer. Studies of exemplary members such as protein disulfide isomerase-associated (PDIA) 1, PDIA6, and PDIA15 were reviewed to highlight their contributions in the pathogenesis of diabetes and cancer and how they can be potential links bridging the two disorders through the cross talk of signaling pathways. Future Directions: Apparently ubiquitous presence of the PDIs creates difficulties and challenges for scientific community to develop targeted therapeutics for the treatment of diabetes and cancer simultaneously. Understanding molecular contribution of individual PDI in the context of specific disease may provide some insights into the development of mechanism-based target-directed therapeutics. Antioxid. Redox Signal. 37, 1191-1205.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
50
|
Zhang T, Zhang J, Lv C, Li H, Song X. Senescent AECⅡ and the implication for idiopathic pulmonary fibrosis treatment. Front Pharmacol 2022; 13:1059434. [PMID: 36457712 PMCID: PMC9705785 DOI: 10.3389/fphar.2022.1059434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 07/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal lung disease with limited treatment options. The onset of IPF increases with age, indicating that aging is a major risk factor for IPF. Among the hallmarks of aging, cellular senescence is the primordial driver and primary etiological factor for tissue and organ aging, and an independent risk factor for the progression of IPF. In this review, we focus on the senescence of alveolar type II epithelial cells (AECIIs) and systematically summarize abnormal changes in signal pathways and biological process and implications of senescent AECIIs during IPF progression. Meanwhile, we objectively analyze current medications targeting the elimination of senescent cells or restoration of vitality such as senolytics, senomorphics, autophagy regulators, and stem cell therapy. Finally, we dialectically discuss the feasibility and limitation of targeting senescent AECIIs for IPF treatment. We hope that the understanding will provide new insights to the development of senescent AECII-based approaches for the prevention and mitigation of IPF.
Collapse
Affiliation(s)
- Tingwei Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|