1
|
Brady C, Tipton T, Carnell O, Longet S, Gooch K, Hall Y, Salguero J, Tomic A, Carroll M. A systems biology approach to define SARS-CoV-2 correlates of protection. NPJ Vaccines 2025; 10:69. [PMID: 40229322 PMCID: PMC11997207 DOI: 10.1038/s41541-025-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Correlates of protection (CoPs) for SARS-CoV-2 have yet to be sufficiently defined. This study uses the machine learning platform, SIMON, to accurately predict the immunological parameters that reduced clinical pathology or viral load following SARS-CoV-2 challenge in a cohort of 90 non-human primates. We found that anti-SARS-CoV-2 spike antibody and neutralising antibody titres were the best predictors of clinical protection and low viral load in the lung. Since antibodies to SARS-CoV-2 spike showed the greatest association with clinical protection and reduced viral load, we next used SIMON to investigate the immunological features that predict high antibody titres. It was found that a pre-immunisation response to seasonal beta-HCoVs and a high frequency of peripheral intermediate and non-classical monocytes predicted low SARS-CoV-2 spike IgG titres. In contrast, an elevated T cell response as measured by IFNγ ELISpot predicted high IgG titres. Additional predictors of clinical protection and low SARS-CoV-2 burden included a high abundance of peripheral T cells. In contrast, increased numbers of intermediate monocytes predicted clinical pathology and high viral burden in the throat. We also conclude that an immunisation strategy that minimises pathology post-challenge did not necessarily mediate viral control. This would be an important finding to take forward into the development of future vaccines aimed at limiting the transmission of SARS-CoV-2. These results contribute to SARS-CoV-2 CoP definition and shed light on the factors influencing the success of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Caolann Brady
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| | - Tom Tipton
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Oliver Carnell
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Stephanie Longet
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- International Center for Infectiology Research (CIRI), Team GIMAP, Claude Bernard Lyon 1 University, Saint-Etienne, France
| | - Karen Gooch
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Javier Salguero
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Medical School, Boston, MA, USA
- Biomedical Engineering, Boston University, College of Engineering, Boston, MA, USA
| | - Miles Carroll
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Florian DM, Bauer M, Popovitsch A, Fae I, Springer DN, Graninger M, Traugott M, Weseslindtner L, Aberle SW, Fischer G, Kundi M, Stiasny K, Zoufaly A, Landry SJ, Aberle JH. Enhanced and long-lasting SARS-CoV-2 immune memory in individuals with common cold coronavirus cross-reactive T cell immunity. Front Immunol 2025; 16:1501704. [PMID: 40191213 PMCID: PMC11968687 DOI: 10.3389/fimmu.2025.1501704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
With the continuous emergence of novel SARS-CoV-2 variants, long-lasting and broadly reactive cellular and humoral immunity is critical for durable protection from COVID-19. We investigated SARS-CoV-2-specific T cell immunity in relation to antibodies, infection outcome and disease severity and assessed its durability in a longitudinal cohort over a three-year time course. We identified pre-existing T cells reactive to the seasonal coronavirus (CoV) OC43 that cross-react with the conserved SARS-CoV-2 spike S813-829 peptide. These cross-reactive T cells increased in frequency following SARS-CoV-2 infection or vaccination and correlated with enhanced spike-specific T cell responses and significantly reduced viral loads. Furthermore, our data revealed that CoV-cross-reactive T cells were maintained as part of the long-lasting memory response, contributing to increased T cell frequencies against omicron variants. These findings suggest a functional role of CoV-cross-reactive T cells that extends beyond the initial SARS-CoV-2 exposure, contributing to enhanced immunity against highly mutated SARS-CoV-2 variants.
Collapse
Affiliation(s)
- David M. Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Bauer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Ingrid Fae
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | - Gottfried Fischer
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department for Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Alexander Zoufaly
- Department of Medicine IV, Klinik Favoriten, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - Samuel J. Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Loyal L, Braun J, Reimer U, Meyer-Arndt L, Henze L, Kruse B, Dingeldey M, Mangold M, Behrens J, Tober Lau P, Michel J, Grossegesse M, Schnatbaum K, Wenschuh H, Johannis W, Di Cristanziano V, Nitsche A, Klein F, Sander LE, Thiel A. Hybrid immunity-based induction of durable pan-endemic-coronavirus immunity in the elderly. Cell Rep 2025; 44:115314. [PMID: 39960834 DOI: 10.1016/j.celrep.2025.115314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
Repeated vaccinations and infections have led to diverse states of hybrid immunity against SARS-CoV-2 in the global population. However, age and comorbidities can compromise protection against severe disease, and antibody-mediated immunity is undercut by viral immune escape mutations. Whether and to what extent durable T cell responses compensate for reduced humoral immunity, particularly in the elderly, have not been investigated. Here, we utilize SARS-CoV-2-specific and pan-coronavirus-derived peptide pools, including or excluding spike glycoprotein-derived epitopes, to measure vaccination and infection induced pan-human endemic coronavirus (PHEC)-directed T cell immunity. In contrast to vaccinated individuals, hybrid immunity induced by vaccination and SARS-CoV-2 infection comprises high frequencies of PHEC-reactive T cells with comparable frequencies and functional TCR avidities across all age groups. With waning humoral immunity and vulnerability to escape mutations, PHEC-reactive T cells may provide critical protection. Our findings underscore the importance of incorporating pan-coronavirus T cell epitopes in future vaccine strategies.
Collapse
Affiliation(s)
- Lucie Loyal
- Si-M/"Der Simulierte Mensch," a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics - Regenerative Immunology and Aging, 13353 Berlin, Germany
| | - Julian Braun
- Si-M/"Der Simulierte Mensch," a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics - Regenerative Immunology and Aging, 13353 Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, 12489 Berlin, Germany
| | - Lil Meyer-Arndt
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics - Regenerative Immunology and Aging, 13353 Berlin, Germany
| | - Larissa Henze
- Si-M/"Der Simulierte Mensch," a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics - Regenerative Immunology and Aging, 13353 Berlin, Germany
| | - Beate Kruse
- Si-M/"Der Simulierte Mensch," a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics - Regenerative Immunology and Aging, 13353 Berlin, Germany
| | - Manuela Dingeldey
- Si-M/"Der Simulierte Mensch," a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics - Regenerative Immunology and Aging, 13353 Berlin, Germany
| | - Maike Mangold
- Si-M/"Der Simulierte Mensch," a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics - Regenerative Immunology and Aging, 13353 Berlin, Germany
| | - Janina Behrens
- Si-M/"Der Simulierte Mensch," a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics - Regenerative Immunology and Aging, 13353 Berlin, Germany
| | - Pinkus Tober Lau
- Department of Infectious Diseases, Respiratory, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Janine Michel
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, 13353 Berlin, Germany
| | - Marica Grossegesse
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, 13353 Berlin, Germany
| | | | | | - Wibke Johannis
- Institute for Clinical Chemistry, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, 13353 Berlin, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Leif-Erik Sander
- Department of Infectious Diseases, Respiratory, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Andreas Thiel
- Si-M/"Der Simulierte Mensch," a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics - Regenerative Immunology and Aging, 13353 Berlin, Germany.
| |
Collapse
|
4
|
Zhong Y, Kottaiswamy A, Ang CX, Li HE, Yap GC, Tay CJX, Osman NE, Roslan SNB, Tan CW, Yap WC, Ang EY, Chan Ng PPL, Yap HK, Lu L, Aw MM, Karthik SV, Quak SH, Quah TC, Tham EH, Shek LP, Ooi EE. Reduced durability of hybrid immunity to SARS-CoV-2 in immunocompromised children. Front Immunol 2024; 15:1502598. [PMID: 39742263 PMCID: PMC11685208 DOI: 10.3389/fimmu.2024.1502598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
Background In endemic COVID-19, immunocompromised children are vulnerable until vaccinated but the optimal primary vaccination regime and need for booster doses remains uncertain. Methods We recruited 19 immunocompromised children (post-solid organ transplantation, have autoimmune disease or were on current or recent chemotherapy for acute lymphoblastic leukemia), and followed them from the start of primary vaccination with BNT162b2 mRNA SARS-CoV-2 until 1-year post-vaccination. We investigated the quality of vaccine immunogenicity, and longevity of hybrid immunity, in comparison to healthy children. Results Immunocompromised children failed to produce T cell and memory B cell (MBC) responses reaching thresholds of protection after 2 doses; a third dose however improved both responses. Initially robust hybrid immunity demonstrated significantly more decline in T cell and MBC responses in immunocompromised compared to healthy children, to levels below the protective threshold by month 12. Discussion Immunocompromised children may benefit from a 3-dose primary vaccination regime, with yearly or twice-yearly booster doses for sustained immunity.
Collapse
Affiliation(s)
- Youjia Zhong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Program of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Amuthavalli Kottaiswamy
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Chen Xiang Ang
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Hui’ En Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Gaik Chin Yap
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Carina J. X. Tay
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Nurul Elyana Osman
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Siti Namirah Binte Roslan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Chee Wah Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Wee Chee Yap
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Elizabeth Y. Ang
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Pauline P. L. Chan Ng
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Hui Kim Yap
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Liangjian Lu
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Marion M. Aw
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Sivaraman V. Karthik
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Seng Hock Quak
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Thuan Chong Quah
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Elizabeth H. Tham
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Lynette P. Shek
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Eng Eong Ooi
- Program of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Center, Singapore, Singapore
- Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
5
|
Tipoe T, Ogbe A, Lee M, Brown H, Robinson N, Hall R, Petersen C, Lewis H, Thornhill J, Ryan F, Fox J, Fidler S, Frater J. Impact of antiretroviral therapy during primary HIV infection on T-cell immunity after treatment interruption. Eur J Immunol 2024; 54:e2451200. [PMID: 39138621 DOI: 10.1002/eji.202451200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
This study aims to understand the impact of early antiretroviral therapy (ART) on HIV-specific T-cell responses measured after treatment interruption, which may inform strategies to deliver ART-free immune-mediated viral suppression. HIV-specific T-cell immunity was analysed using gamma interferon enzyme-linked immunospot assays in two studies. SPARTAC included individuals with primary HIV infection randomised to 48 weeks of ART (n = 24) or no immediate therapy (n = 37). The PITCH (n = 7) cohort started antiretroviral therapy in primary infection for at least one year, followed by TI. In SPARTAC, participants treated in PHI for 48 weeks followed by TI for 12 weeks, and those who remained untreated for 60 weeks made similar HIV Gag-directed responses (both magnitude and breadth) at week 60. However, the treated group made a greater proportion of novel HIV Gag-directed responses by Week 60, suggestive of a greater reserve to produce new potentially protective responses. In the more intensively followed PITCH study, 6/7 participants showed dominant Gag and/or Pol-specific responses post-TI compared with pre-TI. Although early ART in PHI was not associated with major differences in HIV-specific immunity following TI compared with untreated participants, the potential to make more new Gag-directed responses warrants further investigation as this may inform strategies to achieve ART-free control.
Collapse
Affiliation(s)
- Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Ming Lee
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Hall
- Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Petersen
- Department of Infectious Disease, Imperial College London, London, UK
| | - Heather Lewis
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Fiona Ryan
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Julie Fox
- Guy's and St Thomas' NHS Foundation Trust, London, UK
- NIHR Clinical Research Facility, Guys and St Thomas' NHS Trust, London, UK
| | - Sarah Fidler
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- NIHR Imperial College Biomedical Research Centre, London, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
6
|
Ali M, Longet S, Neale I, Rongkard P, Chowdhury FUH, Hill J, Brown A, Laidlaw S, Tipton T, Hoque A, Hassan N, Hackstein CP, Adele S, Akther HD, Abraham P, Paul S, Rahman MM, Alam MM, Parvin S, Mollah FH, Hoque MM, Moore SC, Biswas SK, Turtle L, de Silva TI, Ogbe A, Frater J, Barnes E, Tomic A, Carroll MW, Klenerman P, Kronsteiner B, Chowdhury FR, Dunachie SJ. Obesity differs from diabetes mellitus in antibody and T-cell responses post-COVID-19 recovery. Clin Exp Immunol 2024; 218:78-92. [PMID: 38642547 PMCID: PMC11404124 DOI: 10.1093/cei/uxae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVE Obesity and type 2 diabetes (DM) are risk factors for severe coronavirus disease 2019 (COVID-19) outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with overweight/obesity (Ov/Ob, BMI ≥ 23 kg/m2) and DM in Bangladesh. METHODS In this cross-sectional study, SARS-CoV-2-specific antibody and T-cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. RESULTS In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T-cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, Ov/Ob was associated with decreased neutralizing antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8 + T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T-cell responses after adjustment for obesity and other confounders. CONCLUSION Ov/Ob is associated with lower neutralizing antibody levels and higher T-cell responses to SARS-CoV-2 post-COVID-19 recovery, while antibody or T-cell responses remain unaltered in DM.
Collapse
Affiliation(s)
- Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Directorate General of Health Services, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Patpong Rongkard
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Jennifer Hill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stephen Laidlaw
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Tipton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ashraful Hoque
- Department of Transfusion Medicine, Sheikh Hasina National Burn & Plastics Surgery Institute, Dhaka, Bangladesh
| | - Nazia Hassan
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Shrebash Paul
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Matiur Rahman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Masum Alam
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shamima Parvin
- Department of Biochemistry and Molecular Biology, Mugda Medical College, Dhaka, Bangladesh
| | - Forhadul Hoque Mollah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Mozammel Hoque
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shona C Moore
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Subrata K Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Lance Turtle
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Miles W Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Fazle Rabbi Chowdhury
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
7
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Benhamouda N, Besbes A, Bauer R, Mabrouk N, Gadouas G, Desaint C, Chevrier L, Lefebvre M, Radenne A, Roelens M, Parfait B, Weiskopf D, Sette A, Gruel N, Courbebaisse M, Appay V, Paul S, Gorochov G, Ropers J, Lebbah S, Lelievre JD, Johannes L, Ulmer J, Lebeaux D, Friedlander G, De Lamballerie X, Ravel P, Kieny MP, Batteux F, Durier C, Launay O, Tartour E. Cytokine profile of anti-spike CD4 +T cells predicts humoral and CD8 +T cell responses after anti-SARS-CoV-2 mRNA vaccination. iScience 2024; 27:110441. [PMID: 39104410 PMCID: PMC11298648 DOI: 10.1016/j.isci.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Coordinating immune responses - humoral and cellular - is vital for protection against severe Covid-19. Our study evaluates a multicytokine CD4+T cell signature's predictive for post-vaccinal serological and CD8+T cell responses. A cytokine signature composed of four cytokines (IL-2, TNF-α, IP10, IL-9) excluding IFN-γ, and generated through machine learning, effectively predicted the CD8+T cell response following mRNA-1273 or BNT162b2 vaccine administration. Its applicability extends to murine vaccination models, encompassing diverse immunization routes (such as intranasal) and vaccine platforms (including adjuvanted proteins). Notably, we found correlation between CD4+T lymphocyte-produced IL-21 and the humoral response. Consequently, we propose a test that offers a rapid overview of integrated immune responses. This approach holds particular relevance for scenarios involving immunocompromised patients because they often have low cell counts (lymphopenia) or pandemics. This study also underscores the pivotal role of CD4+T cells during a vaccine response and highlights their value in vaccine immunomonitoring.
Collapse
Affiliation(s)
- Nadine Benhamouda
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Anissa Besbes
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | | | - Nesrine Mabrouk
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Gauthier Gadouas
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Corinne Desaint
- INSERM SC10-US019, Villejuif, France
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Lucie Chevrier
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | - Maeva Lefebvre
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes, Nantes, France
| | - Anne Radenne
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière-Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, APHP, Paris, France
| | - Marie Roelens
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Béatrice Parfait
- Centre de ressources Biologiques, Hôpital Cochin, APHP, Paris, France
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, School of Medicine in Health Sciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Nadège Gruel
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, Centre de Recherche, Institut Curie, Université PSL, Paris, France
- Department of Translational Research, Centre de Recherche, Institut Curie, Université PSL, Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital Européen Georges-Pompidou, APHP, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team GIMAP, Université Jean Monnet, Université Claude Bernard Lyon, INSERM, CIC 1408 INSERM Vaccinology, Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacques Ropers
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Said Lebbah
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Jean-Daniel Lelievre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- Groupe Henri-Mondor Albert-Chenevier, APHP, Créteil, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - Jonathan Ulmer
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - David Lebeaux
- Université Paris Cité, Service de maladies infectieuses Hôpital Saint Louis/Lariboisère APHP, INSERM, Paris, France
| | - Gerard Friedlander
- Department of « Croissance et Signalisation », Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Université de Paris Cité, Paris, France
| | - Xavier De Lamballerie
- Unité des Virus Émergents, UVE: Aix-Marseille Université, IRD 190, INSERM 1207 Marseille, France
| | - Patrice Ravel
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Marie Paule Kieny
- Institut National de la Santé et de la Recherche Médicale, INSERM, Paris, France
| | - Fréderic Batteux
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | | | - Odile Launay
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Eric Tartour
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| |
Collapse
|
9
|
Richards KA, Changrob S, Thomas PG, Wilson PC, Sant AJ. Lack of memory recall in human CD4 T cells elicited by the first encounter with SARS-CoV-2. iScience 2024; 27:109992. [PMID: 38868209 PMCID: PMC11166706 DOI: 10.1016/j.isci.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The studies reported here focus on the impact of pre-existing CD4 T cell immunity on the first encounter with SARS-CoV-2. They leverage PBMC samples from plasma donors collected after a first SARS-CoV-2 infection, prior to vaccine availability and compared to samples collected prior to the emergence of SARS-CoV-2. Analysis of CD4 T cell specificity across the entire SARS-CoV-2 proteome revealed that the recognition of SARS-CoV-2-derived epitopes by CD4 memory cells prior to the pandemic are enriched for reactivity toward non-structural proteins conserved across endemic CoV strains. However, CD4 T cells after primary infection with SARS-CoV-2 focus on epitopes from structural proteins. We observed little evidence for preferential recall to epitopes conserved between SARS-CoV-2 and seasonal CoV, a finding confirmed through use of selectively curated conserved and SARS-unique peptides. Our data suggest that SARS-CoV-2 CD4 T cells elicited by the first infection are primarily established from the naive CD4 T cell pool.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Chwa JS, Kim M, Lee Y, Cheng WA, Shin Y, Jumarang J, Bender JM, Pannaraj PS. Detection of SARS-CoV-2-Specific Secretory IgA and Neutralizing Antibodies in the Nasal Secretions of Exposed Seronegative Individuals. Viruses 2024; 16:852. [PMID: 38932145 PMCID: PMC11209246 DOI: 10.3390/v16060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Mucosal immunity may contribute to clearing SARS-CoV-2 infection prior to systemic infection, thereby allowing hosts to remain seronegative. We describe the meaningful detection of SARS-CoV-2-specific nasal mucosal antibodies in a group of exposed-household individuals that evaded systemic infection. Between June 2020 and February 2023, nasopharyngeal swab (NPS) and acute and convalescent blood were collected from individuals exposed to a SARS-CoV-2-confirmed household member. Nasal secretory IgA (SIgA) antibodies targeting the SARS-CoV-2 spike protein were measured using a modified ELISA. Of the 36 exposed individuals without SARS-CoV-2 detected by the RT-PCR of NPS specimens and seronegative for SARS-CoV-2-specific IgG at enrollment and convalescence, 13 (36.1%) had positive SARS-CoV-2-specific SIgA levels detected in the nasal mucosa at enrollment. These individuals had significantly higher nasal SIgA (median 0.52 AU/mL) compared with never-exposed, never-infected controls (0.001 AU/mL) and infected-family participants (0.0002 AU/mL) during the acute visit, respectively (both p < 0.001). The nasal SARS-CoV-2-specific SIgA decreased rapidly over two weeks in the exposed seronegative individuals compared to a rise in SIgA in infected-family members. The nasal SARS-CoV-2-specific SIgA may have a protective role in preventing systemic infection.
Collapse
Affiliation(s)
- Jason S. Chwa
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Minjun Kim
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Yesun Lee
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Wesley A. Cheng
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Yunho Shin
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Jaycee Jumarang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Jeffrey M. Bender
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
- Division of Infectious Diseases, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
11
|
Fasquelle F, Vreulx AC, Betbeder D. Improved ELISPOT protocol for monitoring Th1/Th17 T-cell response following T.gondii infection. PLoS One 2024; 19:e0301687. [PMID: 38718078 PMCID: PMC11078343 DOI: 10.1371/journal.pone.0301687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/20/2024] [Indexed: 05/12/2024] Open
Abstract
In the monitoring of human Toxoplasma gondii infection, it is crucial to confirm the development of a specific Th1/Th17 immune response memory. The use of a simple, specific, and sensitive assay to follow the T-cell activation is thus required. Current protocols are not always specific as stimulation with peptides is Human Leukocyte Antigen (HLA)-dependent, while stimulation with total-lysis antigens tends to stimulate seronegative donors resulting to false positives. Here, an improved ELISPOT protocol is reported, using peripheral blood mononuclear cells (PBMC) of T.gondii-infected donors, incubated with the inactivated parasite. The results showed that, contrary to standard protocols, a pre-incubation step at high cell density in presence of the inactivated parasite allowed a specific Th1/Th17 response with the secretion of IFN-γ, IL-2, IL-12 and IL-17 cytokines. This protocol allows to evaluate precisely the immune response after a T.gondii infection.
Collapse
|
12
|
Zhong Y, Kang AYH, Tay CJX, Li HE, Elyana N, Tan CW, Yap WC, Lim JME, Le Bert N, Chan KR, Ong EZ, Low JG, Shek LP, Tham EH, Ooi EE. Correlates of protection against symptomatic SARS-CoV-2 in vaccinated children. Nat Med 2024; 30:1373-1383. [PMID: 38689059 PMCID: PMC11164684 DOI: 10.1038/s41591-024-02962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
The paucity of information on longevity of vaccine-induced immune responses and uncertainty of the correlates of protection hinder the development of evidence-based COVID-19 vaccination policies for new birth cohorts. Here, to address these knowledge gaps, we conducted a cohort study of healthy 5-12-year-olds vaccinated with BNT162b2. We serially measured binding and neutralizing antibody titers (nAbs), spike-specific memory B cell (MBC) and spike-reactive T cell responses over 1 year. We found that children mounted antibody, MBC and T cell responses after two doses of BNT162b2, with higher antibody and T cell responses than adults 6 months after vaccination. A booster (third) dose only improved antibody titers without impacting MBC and T cell responses. Among children with hybrid immunity, nAbs and T cell responses were highest in those infected after two vaccine doses. Binding IgG titers, MBC and T cell responses were predictive, with T cells being the most important predictor of protection against symptomatic infection before hybrid immunity; nAbs only correlated with protection after hybrid immunity. The stable MBC and T cell responses over time suggest sustained protection against symptomatic SARS-CoV-2 infection, even when nAbs wane. Booster vaccinations do not confer additional immunological protection to healthy children.
Collapse
Affiliation(s)
- Youjia Zhong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), Singapore, Singapore.
| | - Alicia Y H Kang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Carina J X Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Hui' En Li
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Nurul Elyana
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Chee Wah Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joey M E Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eugenia Z Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Jenny G Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Lynette P Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore.
| |
Collapse
|
13
|
Nhu LNT, Chambers M, Chantratita N, Cheah PY, Day NP, Dejnirattisai W, Dunachie SJ, Grifoni A, Hamers RL, Hill J, Jones EY, Klenerman P, Mongkolsapaya J, Screaton G, Sette A, Stuart DI, Tan CW, Thwaites G, Thanh VD, Wang LF, Tan LV, SEACOVARIANTS Consortium. Southeast Asia initiative to combat SARS-CoV-2 variants (SEACOVARIANTS) consortium. Wellcome Open Res 2024; 9:181. [PMID: 39022321 PMCID: PMC11252647 DOI: 10.12688/wellcomeopenres.20742.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 07/20/2024] Open
Abstract
A strong and effective COVID-19 and future pandemic responses rely on global efforts to carry out surveillance of infections and emerging SARS-CoV-2 variants and to act accordingly in real time. Many countries in Southeast Asia lack capacity to determine the potential threat of new variants, or other emerging infections. Funded by Wellcome, the Southeast Asia initiative to combat SARS-CoV-2 variants (SEACOVARIANTS) consortium aims to develop and apply a multidisciplinary research platform in Southeast Asia (SEA) for rapid assessment of the biological significance of SARS-CoV-2 variants, thereby informing coordinated local, regional and global responses to the COVID-19 pandemic. Our proposal is delivered by the Vietnam and Thailand Wellcome Africa Asia Programmes, bringing together a multidisciplinary team in Indonesia, Thailand and Vietnam with partners in Singapore, the UK and the USA. Herein we outline five work packages to deliver strengthened regional scientific capacity that can be rapidly deployed for future outbreak responses.
Collapse
Affiliation(s)
| | - Mary Chambers
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phaik Yeong Cheah
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P.J. Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanwisa Dejnirattisai
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Susanna J. Dunachie
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Alba Grifoni
- La Jolla Institute for Immunology, San Diego, California, USA
| | - Raph L. Hamers
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Jennifer Hill
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Paul Klenerman
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Juthathip Mongkolsapaya
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, England, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Gavin Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, England, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | | | - David I. Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Vu Duy Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
| | - SEACOVARIANTS Consortium
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- La Jolla Institute for Immunology, San Diego, California, USA
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, England, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
14
|
Halvorson T, Ivison S, Huang Q, Ladua G, Yotis DM, Mannar D, Subramaniam S, Ferreira VH, Kumar D, Belga S, Levings MK. SARS-CoV-2 Variants Omicron BA.4/5 and XBB.1.5 Significantly Escape T Cell Recognition in Solid-organ Transplant Recipients Vaccinated Against the Ancestral Strain. Transplantation 2024; 108:e49-e62. [PMID: 38012843 DOI: 10.1097/tp.0000000000004873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND Immune-suppressed solid-organ transplant recipients (SOTRs) display impaired humoral responses to COVID-19 vaccination, but T cell responses are incompletely understood. SARS-CoV-2 variants Omicron BA.4/5 (BA.4/5) and XBB.1.5 escape neutralization by antibodies induced by vaccination or infection with earlier strains, but T cell recognition of these lineages in SOTRs is unclear. METHODS We characterized Spike-specific T cell responses to ancestral SARS-CoV-2 and BA.4/5 peptides in 42 kidney, liver, and lung transplant recipients throughout a 3- or 4-dose ancestral Spike mRNA vaccination schedule. As the XBB.1.5 variant emerged during the study, we tested vaccine-induced T cell responses in 10 additional participants using recombinant XBB.1.5 Spike protein. Using an optimized activation-induced marker assay, we quantified circulating Spike-specific CD4 + and CD8 + T cells based on antigen-stimulated expression of CD134, CD69, CD25, CD137, and/or CD107a. RESULTS Vaccination strongly induced SARS-CoV-2-specific T cells, including BA.4/5- and XBB.1.5-reactive T cells, which remained detectable over time and further increased following a fourth dose. However, responses to BA.4/5 (1.34- to 1.67-fold lower) XBB.1.5 (2.0- to 18-fold lower) were significantly reduced in magnitude compared with ancestral strain responses. CD4 + responses correlated with anti-receptor-binding domain antibodies and predicted subsequent antibody responses in seronegative individuals. Lung transplant recipients receiving prednisone and older adults displayed weaker responses. CONCLUSIONS Ancestral strain vaccination stimulates BA.4/5 and XBB.1.5-cross-reactive T cells in SOTRs, but at lower magnitudes. Antigen-specific T cells can predict future antibody responses. Our data support monitoring both humoral and cellular immunity in SOTRs to track COVID-19 vaccine immunogenicity against emerging variants.
Collapse
Affiliation(s)
- Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sabine Ivison
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gale Ladua
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Infection and Immunity Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Demitra M Yotis
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Victor H Ferreira
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Deepali Kumar
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sara Belga
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Infection and Immunity Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Binayke A, Zaheer A, Vishwakarma S, Singh S, Sharma P, Chandwaskar R, Gosain M, Raghavan S, Murugesan DR, Kshetrapal P, Thiruvengadam R, Bhatnagar S, Pandey AK, Garg PK, Awasthi A. A quest for universal anti-SARS-CoV-2 T cell assay: systematic review, meta-analysis, and experimental validation. NPJ Vaccines 2024; 9:3. [PMID: 38167915 PMCID: PMC10762233 DOI: 10.1038/s41541-023-00794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Measuring SARS-CoV-2-specific T cell responses is crucial to understanding an individual's immunity to COVID-19. However, high inter- and intra-assay variability make it difficult to define T cells as a correlate of protection against COVID-19. To address this, we performed systematic review and meta-analysis of 495 datasets from 94 original articles evaluating SARS-CoV-2-specific T cell responses using three assays - Activation Induced Marker (AIM), Intracellular Cytokine Staining (ICS), and Enzyme-Linked Immunospot (ELISPOT), and defined each assay's quantitative range. We validated these ranges using samples from 193 SARS-CoV-2-exposed individuals. Although IFNγ ELISPOT was the preferred assay, our experimental validation suggested that it under-represented the SARS-CoV-2-specific T cell repertoire. Our data indicate that a combination of AIM and ICS or FluoroSpot assay would better represent the frequency, polyfunctionality, and compartmentalization of the antigen-specific T cell responses. Taken together, our results contribute to defining the ranges of antigen-specific T cell assays and propose a choice of assay that can be employed to better understand the cellular immune response against viral diseases.
Collapse
Affiliation(s)
- Akshay Binayke
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Aymaan Zaheer
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Siddhesh Vishwakarma
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Savita Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Priyanka Sharma
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Rucha Chandwaskar
- Department of Microbiology, AMITY University Rajasthan, Jaipur, India
| | - Mudita Gosain
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | | | - Ramachandran Thiruvengadam
- Translational Health Science and Technology Institute, Faridabad, India
- Pondicherry Institute of Medical Sciences, Puducherry, India
| | | | | | - Pramod Kumar Garg
- Translational Health Science and Technology Institute, Faridabad, India
- All India Institute of Medical Sciences, New Delhi, India
| | - Amit Awasthi
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India.
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
16
|
Neale I, Ali M, Kronsteiner B, Longet S, Abraham P, Deeks AS, Brown A, Moore SC, Stafford L, Dobson SL, Plowright M, Newman TAH, Wu MY, Crick COVID Immunity Pipeline, Carr EJ, Beale R, Otter AD, Hopkins S, Hall V, Tomic A, Payne RP, Barnes E, Richter A, Duncan CJA, Turtle L, de Silva TI, Carroll M, Lambe T, Klenerman P, Dunachie S, On behalf of the PITCH Consortium. CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study. mBio 2023; 14:e0121223. [PMID: 37655880 PMCID: PMC10653804 DOI: 10.1128/mbio.01212-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough.
Collapse
Affiliation(s)
- Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alexandra S. Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Shona C. Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lizzie Stafford
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Susan L. Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Thomas A. H. Newman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Mary Y. Wu
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
| | - Crick COVID Immunity Pipeline
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
| | | | | | | | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Rebecca P. Payne
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christopher J. A. Duncan
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Teresa Lambe
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - On behalf of the PITCH Consortium
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
- UK Health Security Agency, Porton Down, United Kingdom
- UK Health Security Agency, London, United Kingdom
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Jay C, Adland E, Csala A, Lim N, Longet S, Ogbe A, Ratcliff J, Sampson O, Thompson CP, Turtle L, Barnes E, Dunachie S, Klenerman P, Carroll M, Goulder P. Age- and sex-specific differences in immune responses to BNT162b2 COVID-19 and live-attenuated influenza vaccines in UK adolescents. Front Immunol 2023; 14:1248630. [PMID: 37942333 PMCID: PMC10627794 DOI: 10.3389/fimmu.2023.1248630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The key to understanding the COVID-19 correlates of protection is assessing vaccine-induced immunity in different demographic groups. Young people are at a lower risk of COVID-19 mortality, females are at a lower risk than males, and females often generate stronger immune responses to vaccination. Methods We studied immune responses to two doses of BNT162b2 Pfizer COVID-19 vaccine in an adolescent cohort (n = 34, ages 12-16), an age group previously shown to elicit significantly greater immune responses to the same vaccine than young adults. Adolescents were studied with the aim of comparing their response to BNT162b2 to that of adults; and to assess the impacts of other factors such as sex, ongoing SARS-CoV-2 infection in schools, and prior exposure to endemic coronaviruses that circulate at high levels in young people. At the same time, we were able to evaluate immune responses to the co-administered live attenuated influenza vaccine. Blood samples from 34 adolescents taken before and after vaccination with COVID-19 and influenza vaccines were assayed for SARS-CoV-2-specific IgG and neutralising antibodies and cellular immunity specific for SARS-CoV-2 and endemic betacoronaviruses. The IgG targeting influenza lineages contained in the influenza vaccine were also assessed. Results Robust neutralising responses were identified in previously infected adolescents after one dose, and two doses were required in infection-naïve adolescents. As previously demonstrated, total IgG responses to SARS-CoV-2 Spike were significantly higher among vaccinated adolescents than among adults (aged 32-52) who received the BNT162b2 vaccine (comparing infection-naïve, 49,696 vs. 33,339; p = 0.03; comparing SARS-CoV-2 previously infected, 743,691 vs. 269,985; p <0.0001) by the MSD v-plex assay. There was no evidence of a stronger vaccine-induced immunity in females compared than in males. Discussion These findings may result from the introduction of novel mRNA vaccination platforms, generating patterns of immunity divergent from established trends and providing new insights into what might be protective following COVID-19 vaccination.
Collapse
Affiliation(s)
- Cecilia Jay
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anna Csala
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jeremy Ratcliff
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Oliver Sampson
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Craig P. Thompson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Susanna Dunachie
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Berryman MA, Ilonen J, Triplett EW, Ludvigsson J. Important denominator between autoimmune comorbidities: a review of class II HLA, autoimmune disease, and the gut. Front Immunol 2023; 14:1270488. [PMID: 37828987 PMCID: PMC10566625 DOI: 10.3389/fimmu.2023.1270488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Human leukocyte antigen (HLA) genes are associated with more diseases than any other region of the genome. Highly polymorphic HLA genes produce variable haplotypes that are specifically correlated with pathogenically different autoimmunities. Despite differing etiologies, however, many autoimmune disorders share the same risk-associated HLA haplotypes often resulting in comorbidity. This shared risk remains an unanswered question in the field. Yet, several groups have revealed links between gut microbial community composition and autoimmune diseases. Autoimmunity is frequently associated with dysbiosis, resulting in loss of barrier function and permeability of tight junctions, which increases HLA class II expression levels and thus further influences the composition of the gut microbiome. However, autoimmune-risk-associated HLA haplotypes are connected to gut dysbiosis long before autoimmunity even begins. This review evaluates current research on the HLA-microbiome-autoimmunity triplex and proposes that pre-autoimmune bacterial dysbiosis in the gut is an important determinant between autoimmune comorbidities with systemic inflammation as a common denominator.
Collapse
Affiliation(s)
- Meghan A. Berryman
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W. Triplett
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Mora-Buch R, Tomás-Marín M, Enrich E, Antón-Iborra M, Martorell L, Valdivia E, Lara-de-León AG, Aran G, Piron M, Querol S, Rudilla F. Virus-Specific T Cells From Cryopreserved Blood During an Emergent Virus Outbreak for a Potential Off-the-Shelf Therapy. Transplant Cell Ther 2023; 29:572.e1-572.e13. [PMID: 37290691 DOI: 10.1016/j.jtct.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
During the first outbreak of an emergent virus, methods need to be developed to rapidly establish suitable therapies for patients with high risk of severe disease caused by the pathogen. Considering the importance of the T-cell response in controlling viral infections, adoptive cell therapy with virus-specific T cells has been used as a safe and effective antiviral prophylaxis and treatment for immunocompromised patients. The main objective of this study was to establish an effective and safe method to cryostore whole blood as starting material and to adapt a T-cell activation and expansion protocol to generate an off-the-shelf antiviral therapeutic option. Additionally, we studied how memory T-cell phenotype, clonality based on T-cell receptor, and antigen specificity could condition characteristics of the final expanded T-cell product. Twenty-nine healthy blood donors were selected from a database of convalescent plasma donors with a confirmed history of SARS-CoV-2 infection. Blood was processed using a fully automated, clinical-grade, and 2-step closed system. Eight cryopreserved bags were advanced to the second phase of the protocol to obtain purified mononucleated cells. We adapted the T-cell activation and expansion protocol, without specialized antigen-presenting cells or presenting molecular structures, in a G-Rex culture system with IL-2, IL-7, and IL-15 cytokine stimulation. The adapted protocol successfully activated and expanded virus-specific T cells to generate a T-cell therapeutic product. We observed no major impact of post-symptom onset time of donation on the initial memory T-cell phenotype or clonotypes resulting in minor differences in the final expanded T-cell product. We showed that antigen competition in the expansion of T-cell clones affected the T-cell clonality based on the T-cell receptor β repertoire. We demonstrated that good manufacturing practice of blood preprocessing and cryopreserving is a successful procedure to obtain an initial cell source able to activate and expand without a specialized antigen-presenting agent. Our 2-step blood processing allowed recruitment of the cell donors independently of the expansion cell protocol timing, facilitating donor, staff, and facility needs. Moreover, the resulting virus-specific T cells could be also banked for further use, notably maintaining viability and antigen specificity after cryopreservation.
Collapse
Affiliation(s)
- Rut Mora-Buch
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain.
| | - Maria Tomás-Marín
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Emma Enrich
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain; Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Mireia Antón-Iborra
- Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lluís Martorell
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Elena Valdivia
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Ana Gabriela Lara-de-León
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Immunogenetics Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Aran
- Cell Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Maria Piron
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain; Transfusion Safety Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Sergi Querol
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Francesc Rudilla
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain; Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain.
| |
Collapse
|
20
|
Jay C, Adland E, Csala A, Dold C, Edmans M, Hackstein CP, Jamsen A, Lim N, Longet S, Ogbe A, Sampson O, Skelly D, Spiller OB, Stafford L, Thompson CP, Turtle L, Barnes E, Dunachie S, Carroll M, Klenerman P, Conlon C, Goulder P, Jones LC. Cellular immunity to SARS-CoV-2 following intrafamilial exposure in seronegative family members. Front Immunol 2023; 14:1248658. [PMID: 37711627 PMCID: PMC10497976 DOI: 10.3389/fimmu.2023.1248658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Family studies of antiviral immunity provide an opportunity to assess virus-specific immunity in infected and highly exposed individuals, as well as to examine the dynamics of viral infection within families. Transmission of SARS-CoV-2 between family members represented a major route for viral spread during the early stages of the pandemic, due to the nature of SARS-CoV-2 transmission through close contacts. Methods Here, humoral and cellular immunity is explored in 264 SARS-CoV-2 infected, exposed or unexposed individuals from 81 families in the United Kingdom sampled in the winter of 2020 before widespread vaccination and infection. Results We describe robust cellular and humoral immunity into COVID-19 convalescence, albeit with marked heterogeneity between families and between individuals. T-cell response magnitude is associated with male sex and older age by multiple linear regression. SARS-CoV-2-specific T-cell responses in seronegative individuals are widespread, particularly in adults and in individuals exposed to SARS-CoV-2 through an infected family member. The magnitude of this response is associated with the number of seropositive family members, with a greater number of seropositive individuals within a family leading to stronger T-cell immunity in seronegative individuals. Discussion These results support a model whereby exposure to SARS-CoV-2 promotes T-cell immunity in the absence of an antibody response. The source of these seronegative T-cell responses to SARS-CoV-2 has been suggested as cross-reactive immunity to endemic coronaviruses that is expanded upon SARS-CoV-2 exposure. However, in this study, no association between HCoV-specific immunity and seronegative T-cell immunity to SARS-CoV-2 is identified, suggesting that de novo T-cell immunity may be generated in seronegative SARS-CoV-2 exposed individuals.
Collapse
Affiliation(s)
- Cecilia Jay
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anna Csala
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Christina Dold
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Matthew Edmans
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Anni Jamsen
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Oliver Sampson
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Donal Skelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals, University of Oxford, Oxford, United Kingdom
| | - Owen B. Spiller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lizzie Stafford
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Craig P. Thompson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ellie Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Susanna Dunachie
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Chris Conlon
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Lucy C. Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
21
|
Sumner G, Keller S, Huleatt J, Staack RF, Wagner L, Azadeh M, Bandukwala A, Cao L, Du X, Salinas GF, Garofolo F, Harris S, Hopper S, Irwin C, Ji Q, Joseph J, King L, Kinhikar A, Lu Y, Luo R, Mabrouk O, Malvaux L, Marshall JC, McGuire K, Mikol V, Neely R, Qiu X, Saito Y, Salaun B, Scully I, Smeraglia J, Solstad T, Stoop J, Tang H, Teixeira P, Wang Y, Wright M, Mendez L, Beaver C, Eacret J, Au-Yeung A, Decman V, Dessy F, Eck S, Goihberg P, Alcaide EG, Gonneau C, Grugan K, Hedrick MN, Kar S, Sehra S, Stevens E, Stevens C, Sun Y, McCush F, Williams L, Fischer S, Wu B, Jordan G, Burns C, Cludts I, Coble K, Grimaldi C, Henderson N, Joyce A, Lotz G, Lu Y, Luo L, Neff F, Sperinde G, Stubenrauch KG, Wang Y, Ware M, Xu W. 2022 White Paper on Recent Issues in Bioanalysis: Enzyme Assay Validation, BAV for Primary End Points, Vaccine Functional Assays, Cytometry in Tissue, LBA in Rare Matrices, Complex NAb Assays, Spectral Cytometry, Endogenous Analytes, Extracellular Vesicles Part 2 - Recommendations on Biomarkers/CDx, Flow Cytometry, Ligand-Binding Assays Development & Validation; Emerging Technologies; Critical Reagents Deep Characterization. Bioanalysis 2023; 15:861-903. [PMID: 37584363 DOI: 10.4155/bio-2023-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | - Roland F Staack
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | - Qin Ji
- AbbVie, North Chicago, IL, USA
| | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Priscila Teixeira
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Yixin Wang
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gregor Jordan
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | - Neil Henderson
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gregor Lotz
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | - Florian Neff
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Law JC, Watts TH. Considerations for Choosing T Cell Assays during a Pandemic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:169-174. [PMID: 37399079 DOI: 10.4049/jimmunol.2300129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 07/05/2023]
Abstract
The appropriate immunosurveillance tools are foundational for the creation of therapeutics, vaccines, and containment strategies when faced with outbreaks of novel pathogens. During the COVID-19 pandemic, there was an urgent need to rapidly assess immune memory following infection or vaccination. Although there have been attempts to standardize cellular assays more broadly, methods for measuring cell-mediated immunity remain variable across studies. Commonly used methods include ELISPOT, intracellular cytokine staining, activation-induced markers, cytokine secretion assays, and peptide-MHC tetramer staining. Although each assay offers unique and complementary information on the T cell response, there are challenges associated with standardizing these assays. The choice of assay can be driven by sample size, the need for high throughput, and the information sought. A combination of approaches may be optimal. This review describes the benefits and limitations of commonly used methods for assessing T cell immunity across SARS-CoV-2 studies.
Collapse
Affiliation(s)
- Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Abdelaziz MO, Raftery MJ, Weihs J, Bielawski O, Edel R, Köppke J, Vladimirova D, Adler JM, Firsching T, Voß A, Gruber AD, Hummel LV, Fernandez Munoz I, Müller-Marquardt F, Willimsky G, Elleboudy NS, Trimpert J, Schönrich G. Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front Immunol 2023; 14:1166765. [PMID: 37520530 PMCID: PMC10372429 DOI: 10.3389/fimmu.2023.1166765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.
Collapse
Affiliation(s)
- Mohammed O. Abdelaziz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Weihs
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, Division of Gastroenterology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Bielawski
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Edel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Köppke
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia M. Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Theresa Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Luca V. Hummel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivan Fernandez Munoz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesca Müller-Marquardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Nooran S. Elleboudy
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Johnson SA, Phillips E, Adele S, Longet S, Malone T, Mason C, Stafford L, Jamsen A, Gardiner S, Deeks A, Neo J, Blurton EJ, White J, Ali M, Kronsteiner B, Wilson JD, Skelly DT, Jeffery K, Conlon CP, Goulder P, Consortium PITCH, Carroll M, Barnes E, Klenerman P, Dunachie SJ. Evaluation of QuantiFERON SARS-CoV-2 interferon-γ release assay following SARS-CoV-2 infection and vaccination. Clin Exp Immunol 2023; 212:249-261. [PMID: 36807499 PMCID: PMC10243914 DOI: 10.1093/cei/uxad027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
T cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T-cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T-cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Forty-eight participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established 'Protective Immunity from T Cells in Healthcare workers' (PITCH) ELISpot, which can evaluate spike-specific T-cell responses. The primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared with the PITCH ELISpot. The QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naïve individuals (P < 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (44.4%) compared to the PITCH ELISpot (66.6%). The QuantiFERON SARS-CoV-2 assay showed potential as a T- cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection.
Collapse
Affiliation(s)
- Síle A Johnson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- University of Oxford Medical School, University of Oxford, Oxford, UK
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Eloise Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Malone
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Chris Mason
- University of Oxford Medical School, University of Oxford, Oxford, UK
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anni Jamsen
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Siobhan Gardiner
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Alexandra Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Janice Neo
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Emily J Blurton
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Jemima White
- University of Oxford Medical School, University of Oxford, Oxford, UK
| | - Muhammed Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joseph D Wilson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- King’s College Hospital NHS Foundation Trust, London, UK
| | - Dónal T Skelly
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher P Conlon
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - PITCH Consortium
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
25
|
Gil-Bescós R, Ostiz A, Zalba S, Tamayo I, Bandrés E, Rojas-de-Miguel E, Redondo M, Zabalza A, Ramírez N. Potency assessment of IFNγ-producing SARS-CoV-2-specific T cells from COVID-19 convalescent subjects. Life Sci Alliance 2023; 6:e202201759. [PMID: 36941056 PMCID: PMC10027900 DOI: 10.26508/lsa.202201759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The development of new therapies for COVID-19 high-risk patients remains necessary to prevent additional deaths. Here, we studied the phenotypical and functional characteristics of IFN-γ producing-SARS-CoV-2-specific T cells (SC2-STs), obtained from 12 COVID-19 convalescent donors, to determine their potency as an off-the-shelf T cell therapy product. We found that these cells present mainly an effector memory phenotype, characterized by the basal expression of cytotoxicity and activation markers, including granzyme B, perforin, CD38, and PD-1. We demonstrated that SC2-STs could be expanded and isolated in vitro, and they exhibited peptide-specific cytolytic and proliferative responses after antigenic re-challenge. Collectively, these data demonstrate that SC2-STs can be a suitable candidate for the manufacture of a T cell therapy product aimed to treat severe COVID-19.
Collapse
Affiliation(s)
- Rubén Gil-Bescós
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Ainhoa Ostiz
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Saioa Zalba
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Ibai Tamayo
- Unit of Methodology, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, IdiSNA, Pamplona, Spain
- Red de Investigación en Servicios Sanitarios y Enfermedades Crónicas (REDISSEC), Pamplona, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Pamplona, Spain
| | - Eva Bandrés
- Immunology Service, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Elvira Rojas-de-Miguel
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Margarita Redondo
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
26
|
Murray SM, Ansari AM, Frater J, Klenerman P, Dunachie S, Barnes E, Ogbe A. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol 2023; 23:304-316. [PMID: 36539527 PMCID: PMC9765363 DOI: 10.1038/s41577-022-00809-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Pre-existing cross-reactive immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in infection-naive subjects have been described by several studies. In particular, regions of high homology between SARS-CoV-2 and common cold coronaviruses have been highlighted as a likely source of this cross-reactivity. However, the role of such cross-reactive responses in the outcome of SARS-CoV-2 infection and vaccination is currently unclear. Here, we review evidence regarding the impact of pre-existing humoral and T cell immune responses to outcomes of SARS-CoV-2 infection and vaccination. Furthermore, we discuss the importance of conserved coronavirus epitopes for the rational design of pan-coronavirus vaccines and consider cross-reactivity of immune responses to ancestral SARS-CoV-2 and SARS-CoV-2 variants, as well as their impact on COVID-19 vaccination.
Collapse
Affiliation(s)
- Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Azim M Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Moore SC, Kronsteiner B, Longet S, Adele S, Deeks AS, Liu C, Dejnirattisai W, Reyes LS, Meardon N, Faustini S, Al-Taei S, Tipton T, Hering LM, Angyal A, Brown R, Nicols AR, Dobson SL, Supasa P, Tuekprakhon A, Cross A, Tyerman JK, Hornsby H, Grouneva I, Plowright M, Zhang P, Newman TAH, Nell JM, Abraham P, Ali M, Malone T, Neale I, Phillips E, Wilson JD, Murray SM, Zewdie M, Shields A, Horner EC, Booth LH, Stafford L, Bibi S, Wootton DG, Mentzer AJ, Conlon CP, Jeffery K, Matthews PC, Pollard AJ, Brown A, Rowland-Jones SL, Mongkolsapaya J, Payne RP, Dold C, Lambe T, Thaventhiran JED, Screaton G, Barnes E, Hopkins S, Hall V, Duncan CJA, Richter A, Carroll M, de Silva TI, Klenerman P, Dunachie S, Turtle L. Evolution of long-term vaccine-induced and hybrid immunity in healthcare workers after different COVID-19 vaccine regimens. MED 2023; 4:191-215.e9. [PMID: 36863347 PMCID: PMC9933851 DOI: 10.1016/j.medj.2023.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Both infection and vaccination, alone or in combination, generate antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the maintenance of such responses-and hence protection from disease-requires careful characterization. In a large prospective study of UK healthcare workers (HCWs) (Protective Immunity from T Cells in Healthcare Workers [PITCH], within the larger SARS-CoV-2 Immunity and Reinfection Evaluation [SIREN] study), we previously observed that prior infection strongly affected subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. METHODS Here, we report longer follow-up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. FINDINGS We make three observations: first, the dynamics of humoral and cellular responses differ; binding and neutralizing antibodies declined, whereas T and memory B cell responses were maintained after the second vaccine dose. Second, vaccine boosting restored immunoglobulin (Ig) G levels; broadened neutralizing activity against variants of concern, including Omicron BA.1, BA.2, and BA.5; and boosted T cell responses above the 6-month level after dose 2. Third, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. CONCLUSIONS Broadly cross-reactive T cell responses are well maintained over time-especially in those with combined vaccine and infection-induced immunity ("hybrid" immunity)-and may contribute to continued protection against severe disease. FUNDING Department for Health and Social Care, Medical Research Council.
Collapse
Affiliation(s)
- Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stephanie Longet
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Alexandra S Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Division of Emerging Infectious Disease, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Laura Silva Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Naomi Meardon
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sian Faustini
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Saly Al-Taei
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Tom Tipton
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luisa M Hering
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adrienn Angyal
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alexander R Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Susan L Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aekkachai Tuekprakhon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew Cross
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Jessica K Tyerman
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Irina Grouneva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Peijun Zhang
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Thomas A H Newman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jeremy M Nell
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Tom Malone
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Eloise Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joseph D Wilson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford University Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Martha Zewdie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Adrian Shields
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Emily C Horner
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lucy H Booth
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lizzie Stafford
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Daniel G Wootton
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christopher P Conlon
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Philippa C Matthews
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; The Francis Crick Institute, London, UK; Division of Infection and Immunity, University College London, London, UK; Department of Infectious Diseases, University College London Hospital NHS Foundation Trust, London, UK
| | - Andrew J Pollard
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sarah L Rowland-Jones
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | | | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Susan Hopkins
- UK Health Security Agency, London, UK; Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Victoria Hall
- UK Health Security Agency, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Christopher J A Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK; Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alex Richter
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Miles Carroll
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thushan I de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
28
|
Swadling L, Maini MK. Can T Cells Abort SARS-CoV-2 and Other Viral Infections? Int J Mol Sci 2023; 24:4371. [PMID: 36901802 PMCID: PMC10002440 DOI: 10.3390/ijms24054371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Despite the highly infectious nature of the SARS-CoV-2 virus, it is clear that some individuals with potential exposure, or even experimental challenge with the virus, resist developing a detectable infection. While a proportion of seronegative individuals will have completely avoided exposure to the virus, a growing body of evidence suggests a subset of individuals are exposed, but mediate rapid viral clearance before the infection is detected by PCR or seroconversion. This type of "abortive" infection likely represents a dead-end in transmission and precludes the possibility for development of disease. It is, therefore, a desirable outcome on exposure and a setting in which highly effective immunity can be studied. Here, we describe how early sampling of a new pandemic virus using sensitive immunoassays and a novel transcriptomic signature can identify abortive infections. Despite the challenges in identifying abortive infections, we highlight diverse lines of evidence supporting their occurrence. In particular, expansion of virus-specific T cells in seronegative individuals suggests abortive infections occur not only after exposure to SARS-CoV-2, but for other coronaviridae, and diverse viral infections of global health importance (e.g., HIV, HCV, HBV). We discuss unanswered questions related to abortive infection, such as: 'Are we just missing antibodies? Are T cells an epiphenomenon? What is the influence of the dose of viral inoculum?' Finally, we argue for a refinement of the current paradigm that T cells are only involved in clearing established infection; instead, we emphasise the importance of considering their role in terminating early viral replication by studying abortive infections.
Collapse
Affiliation(s)
- Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| |
Collapse
|
29
|
Almendro-Vázquez P, Laguna-Goya R, Paz-Artal E. Defending against SARS-CoV-2: The T cell perspective. Front Immunol 2023; 14:1107803. [PMID: 36776863 PMCID: PMC9911802 DOI: 10.3389/fimmu.2023.1107803] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
SARS-CoV-2-specific T cell response has been proven essential for viral clearance, COVID-19 outcome and long-term memory. Impaired early T cell-driven immunity leads to a severe form of the disease associated with lymphopenia, hyperinflammation and imbalanced humoral response. Analyses of acute SARS-CoV-2 infection have revealed that mild COVID-19 course is characterized by an early induction of specific T cells within the first 7 days of symptoms, coordinately followed by antibody production for an effective control of viral infection. In contrast, patients who do not develop an early specific cellular response and initiate a humoral immune response with subsequent production of high levels of antibodies, develop severe symptoms. Yet, delayed and persistent bystander CD8+ T cell activation has been also reported in hospitalized patients and could be a driver of lung pathology. Literature supports that long-term maintenance of T cell response appears more stable than antibody titters. Up to date, virus-specific T cell memory has been detected 22 months post-symptom onset, with a predominant IL-2 memory response compared to IFN-γ. Furthermore, T cell responses are conserved against the emerging variants of concern (VoCs) while these variants are mostly able to evade humoral responses. This could be partly explained by the high HLA polymorphism whereby the viral epitope repertoire recognized could differ among individuals, greatly decreasing the likelihood of immune escape. Current COVID-19-vaccination has been shown to elicit Th1-driven spike-specific T cell response, as does natural infection, which provides substantial protection against severe COVID-19 and death. In addition, mucosal vaccination has been reported to induce strong adaptive responses both locally and systemically and to protect against VoCs in animal models. The optimization of vaccine formulations by including a variety of viral regions, innovative adjuvants or diverse administration routes could result in a desirable enhanced cellular response and memory, and help to prevent breakthrough infections. In summary, the increasing evidence highlights the relevance of monitoring SARS-CoV-2-specific cellular immune response, and not only antibody levels, as a correlate for protection after infection and/or vaccination. Moreover, it may help to better identify target populations that could benefit most from booster doses and to personalize vaccination strategies.
Collapse
Affiliation(s)
- Patricia Almendro-Vázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
30
|
Fidler S, Fox J, Tipoe T, Longet S, Tipton T, Abeywickrema M, Adele S, Alagaratnam J, Ali M, Aley PK, Aslam S, Balasubramanian A, Bara A, Bawa T, Brown A, Brown H, Cappuccini F, Davies S, Fowler J, Godfrey L, Goodman AL, Hilario K, Hackstein CP, Mathew M, Mujadidi YF, Packham A, Petersen C, Plested E, Pollock KM, Ramasamy MN, Robinson H, Robinson N, Rongkard P, Sanders H, Serafimova T, Spence N, Waters A, Woods D, Zacharopoulou P, Barnes E, Dunachie S, Goulder P, Klenerman P, Winston A, Hill AVS, Gilbert SC, Carroll M, Pollard AJ, Lambe T, Ogbe A, Frater J. Booster Vaccination Against SARS-CoV-2 Induces Potent Immune Responses in People With Human Immunodeficiency Virus. Clin Infect Dis 2023; 76:201-209. [PMID: 36196614 PMCID: PMC9619587 DOI: 10.1093/cid/ciac796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).
Collapse
Affiliation(s)
- Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Julie Fox
- NIHR Guy's and St Thomas’ Biomedical Research Centre, London, United Kingdom
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Timothy Tipoe
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Movin Abeywickrema
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Sandra Adele
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Jasmini Alagaratnam
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Mohammad Ali
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Suhail Aslam
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Anbhu Balasubramanian
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Anna Bara
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Tanveer Bawa
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Anthony Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Helen Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Federica Cappuccini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sophie Davies
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jamie Fowler
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Leila Godfrey
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Anna L Goodman
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Kathrine Hilario
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Carl-Philipp Hackstein
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Moncy Mathew
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Yama F Mujadidi
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alice Packham
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Claire Petersen
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Emma Plested
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Katrina M Pollock
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Maheshi N Ramasamy
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Patpong Rongkard
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Helen Sanders
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Teona Serafimova
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Niamh Spence
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Anele Waters
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Danielle Woods
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Panagiota Zacharopoulou
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Eleanor Barnes
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Susanna Dunachie
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Philip Goulder
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Andrew J Pollard
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, Oxford, United Kingdom
| | - Ane Ogbe
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
31
|
Ning B, Chandra S, Rosen J, Multala E, Argrave M, Pierson L, Trinh I, Simone B, Escarra MD, Drury S, Zwezdaryk KJ, Norton E, Lyon CJ, Hu T. Evaluation of SARS-CoV-2-Specific T-Cell Activation with a Rapid On-Chip IGRA. ACS NANO 2023; 17:1206-1216. [PMID: 36595218 PMCID: PMC9878992 DOI: 10.1021/acsnano.2c09018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Interferon-gamma release assays (IGRAs) that measure pathogen-specific T-cell response rates can provide a more reliable estimate of protection than specific antibody levels but have limited potential for widespread use due to their workflow, personnel, and instrumentation demands. The major vaccines for SARS-CoV-2 have demonstrated substantial efficacy against all of its current variants, but approaches are needed to determine how these vaccines will perform against future variants, as they arise, to inform vaccine and public health policies. Here we describe a rapid, sensitive, nanolayer polylysine-integrated microfluidic chip IGRA read by a fluorescent microscope that has a 5 h sample-to-answer time and uses ∼25 μL of a fingerstick whole blood sample. Results from this assay correlated with those of a comparable clinical IGRA when used to evaluate the T-cell response to SARS-CoV-2 peptides in a population of vaccinated and/or infected individuals. Notably, this streamlined and inexpensive assay is suitable for high-throughput analyses in resource-limited settings for other infectious diseases.
Collapse
Affiliation(s)
- Bo Ning
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Sutapa Chandra
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Juniper Rosen
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Evan Multala
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Melvin Argrave
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Lane Pierson
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ivy Trinh
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Brittany Simone
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Matthew David Escarra
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Stacy Drury
- Department
of Psychiatry, Tulane University, New Orleans, Louisiana 70112, United States
- Tulane
Brain
Institute, Tulane University, New Orleans, Louisiana 70112, United States
| | - Kevin J. Zwezdaryk
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Elizabeth Norton
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Christopher J. Lyon
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Tony Hu
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
32
|
Brady C, Tipton T, Longet S, Carroll MW. Pre-clinical models to define correlates of protection for SARS-CoV-2. Front Immunol 2023; 14:1166664. [PMID: 37063834 PMCID: PMC10097995 DOI: 10.3389/fimmu.2023.1166664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
A defined immune profile that predicts protection against a pathogen-of-interest, is referred to as a correlate of protection (CoP). A validated SARS-CoV-2 CoP has yet to be defined, however considerable insights have been provided by pre-clinical vaccine and animal rechallenge studies which have fewer associated limitations than equivalent studies in human vaccinees or convalescents, respectively. This literature review focuses on the advantages of the use of animal models for the definition of CoPs, with particular attention on their application in the search for SARS-CoV-2 CoPs. We address the conditions and interventions required for the identification and validation of a CoP, which are often only made possible with the use of appropriate in vivo models.
Collapse
Affiliation(s)
- Caolann Brady
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Caolann Brady, ; Miles W. Carroll,
| | - Tom Tipton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- International Center for Infectiology Research (CIRI), Team GIMAP, Claude Bernard Lyon 1 University, Inserm, U1111, CNRS, UMR530, Saint-Etienne, France
| | - Miles W. Carroll
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Caolann Brady, ; Miles W. Carroll,
| |
Collapse
|
33
|
Jay C, Ratcliff J, Turtle L, Goulder P, Klenerman P. Exposed seronegative: Cellular immune responses to SARS-CoV-2 in the absence of seroconversion. Front Immunol 2023; 14:1092910. [PMID: 36776841 PMCID: PMC9909393 DOI: 10.3389/fimmu.2023.1092910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
The factors determining whether infection will occur following exposure to SARS-CoV-2 remain elusive. Certain SARS-CoV-2-exposed individuals mount a specific T-cell response but fail to seroconvert, representing a population that may provide further clarity on the nature of infection susceptibility and correlates of protection against SARS-CoV-2. Exposed seronegative individuals have been reported in patients exposed to the blood-borne pathogens Human Immunodeficiency virus and Hepatitis C virus and the sexually transmitted viruses Hepatitis B virus and Herpes Simplex virus. By comparing the quality of seronegative T-cell responses to SARS-CoV-2 with seronegative cellular immunity to these highly divergent viruses, common patterns emerge that offer insights on the role of cellular immunity against infection. For both SARS-CoV-2 and Hepatitis C, T-cell responses in exposed seronegatives are consistently higher than in unexposed individuals, but lower than in infected, seropositive patients. Durability of T-cell responses to Hepatitis C is dependent upon repeated exposure to antigen - single exposures do not generate long-lived memory T-cells. Finally, exposure to SARS-CoV-2 induces varying degrees of immune activation, suggesting that exposed seronegative individuals represent points on a spectrum rather than a discrete group. Together, these findings paint a complex landscape of the nature of infection but provide clues as to what may be protective early on in SARS-CoV-2 disease course. Further research on this phenomenon, particularly through cohort studies, is warranted.
Collapse
Affiliation(s)
- Cecilia Jay
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jeremy Ratcliff
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lance Turtle
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Alhajjat AM, Redden CR, Langereis M, Papastefan ST, Ito JA, Ott KC, Turner LE, Kang HK, Shaaban AF. CD4 and IL-2 mediated NK cell responses after COVID-19 infection and mRNA vaccination in adults. Immunobiology 2023; 228:152304. [PMID: 36508885 PMCID: PMC9683520 DOI: 10.1016/j.imbio.2022.152304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
A detailed understanding of protective immunity against SARS-CoV-2 is incredibly important in fighting the pandemic. Central to protective immunity is the ability of the immune system to recall previous exposures. Although antibody and T cell immunity have gained considerable attention, the contribution of the NK cell compartment to immune recall and protection from SARS-CoV-2 has not been explored. In this study, we investigate the NK cell responses to stimulation with SARS-CoV-2 in previously exposed and non-exposed individuals. We show that NK cells demonstrate an enhanced CD4+ T cell dependent response when re-exposed to SARS-CoV-2 antigen. The enhanced response is dependent on T cells and correlates with the number of SARS-CoV-2 specific CD4 T cells. We find that IL-2 is a critical mediator of NK cell function. These findings suggest that NK cells contribute to the protective responses against SARS-CoV-2 through a cooperation with antigen-specific CD4 T cells and have significant implications on our understanding of protective immunity in SARS-CoV-2.
Collapse
|
35
|
Early CD4 + T cell responses induced by the BNT162b2 SARS-CoV-2 mRNA vaccine predict immunological memory. Sci Rep 2022; 12:20376. [PMID: 36437407 PMCID: PMC9701808 DOI: 10.1038/s41598-022-24938-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Longitudinal studies have revealed large interindividual differences in antibody responses induced by SARS-CoV-2 mRNA vaccines. Thus, we performed a comprehensive analysis of adaptive immune responses induced by three doses of the BNT162b2 SARS-CoV-2 mRNA vaccines. The responses of spike-specific CD4+ T cells, CD8+ T cells and serum IgG, and the serum neutralization capacities induced by the two vaccines declined 6 months later. The 3rd dose increased serum spike IgG and neutralizing capacities against the wild-type and Omicron spikes to higher levels than the 2nd dose, and this was supported by memory B cell responses, which gradually increased after the 2nd dose and were further enhanced by the 3rd dose. The 3rd dose moderately increased the frequencies of spike-specific CD4+ T cells, but the frequencies of spike-specific CD8+ T cells remained unchanged. T cells reactive against the Omicron spike were 1.3-fold fewer than those against the wild-type spike. The early responsiveness of spike-specific CD4+ T, circulating T follicular helper cells and circulating T peripheral helper cells correlated with memory B cell responses to the booster vaccination, and early spike-specific CD4+ T cell responses were also associated with spike-specific CD8+ T cell responses. These findings highlight the importance of evaluating cellular responses to optimize future vaccine strategies.
Collapse
|
36
|
Sánchez-Zapardiel E, Alós M, Nozal P, González-Muñoz M, Frauca-Remacha E, Gavilán LB, Quiles MJ, Hierro L, López-Granados E. Humoral and cellular immune responses to Pfizer-BioNTech BNT162b2 SARS-CoV-2 vaccine in adolescents with liver transplantation: Single center experience. Front Immunol 2022; 13:1049188. [PMID: 36505469 PMCID: PMC9727154 DOI: 10.3389/fimmu.2022.1049188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Immune responses to vaccines against severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 are variable. In the absence of disease, youngsters are expected to better react to vaccines than adults. Nevertheless, chronic immunosuppression in transplant recipients may impair their capability to generate protection. We aim to explore immune responses after BNT162b2 SARS-CoV-2 vaccination in our cohort of young liver-transplanted patients. Methods A prospective study of adolescent liver-transplanted patients (n=33) in the long-term follow-up was performed. Immune responses after receiving Pfizer-BioNTech BNT162b2 vaccine were analyzed at two time-points: baseline and 30 days after the second dose. Humoral responses were measured by fluoroenzyme-immunoassay and T-cell responses by interferon-γ-release assay. Post-vaccine coronavirus disease (COVID-19) events were recorded by a survey. Results Pre-vaccine SARS-CoV-2-specific antibodies were undetectable in 27/32 (84.4%), negative/indeterminate in 3/32 (9.4%) and positive in 2/32 (6.3%) patients. Cellular responses at baseline were negative in 12/18 (66.6%), positive in 3/18 (16.6%) and indeterminate in 3/18 (16.6%) recipients. None of the baseline positives recalled any symptoms. Post-vaccine antibodies were detected in all patients and 92.6% showed levels >816 BAU/mL. Twenty (71.4%) recipients had positive T-cell responses. Regarding post-vaccine SARS-Cov-2 infection, 10 (30.3%) patients reported COVID-19 without hospitalization and 21 (63.6%) did not notify any infection. Negative and positive cell-response groups after vaccination showed statistically significant differences regarding COVID-19 cases (62.5% vs 22.2%, respectively; p=0.046). Conclusions Adolescents and young adults with liver transplantation responded to SARS-Cov-2 vaccine, generating both humoral and cellular responses. Recipients developing cellular responses after vaccination had a lower incidence of COVID-19.
Collapse
Affiliation(s)
- Elena Sánchez-Zapardiel
- Department of Immunology, La Paz University Hospital, Madrid, Spain,Lymphocyte Pathophysiology in Immunodeficiency Group, La Paz Biomedical Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain,European Reference Network (ERN) Transplant-Child, Madrid, Spain,*Correspondence: Elena Sánchez-Zapardiel,
| | - María Alós
- European Reference Network (ERN) Transplant-Child, Madrid, Spain,Department of Pediatric Hepatology, La Paz University Hospital, Madrid, Spain
| | - Pilar Nozal
- Department of Immunology, La Paz University Hospital, Madrid, Spain,Diagnosis and Treatment of Pathologies Associated with Alterations of the Complement System Group, La Paz Biomedical Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain,Rare Diseases Networking Biomedical Research Centre (CIBERER U754), Madrid, Spain
| | - Miguel González-Muñoz
- Department of Immunology, La Paz University Hospital, Madrid, Spain,Patient Safety and Quality Research Group, La Paz Biomedical Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Esteban Frauca-Remacha
- European Reference Network (ERN) Transplant-Child, Madrid, Spain,Department of Pediatric Hepatology, La Paz University Hospital, Madrid, Spain
| | | | - María José Quiles
- Department of Pediatric Hepatology, La Paz University Hospital, Madrid, Spain
| | - Loreto Hierro
- European Reference Network (ERN) Transplant-Child, Madrid, Spain,Department of Pediatric Hepatology, La Paz University Hospital, Madrid, Spain
| | - Eduardo López-Granados
- Department of Immunology, La Paz University Hospital, Madrid, Spain,Lymphocyte Pathophysiology in Immunodeficiency Group, La Paz Biomedical Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain,European Reference Network (ERN) Transplant-Child, Madrid, Spain,Rare Diseases Networking Biomedical Research Centre (CIBERER U767), Madrid, Spain
| |
Collapse
|
37
|
Olafsdottir TA, Bjarnadottir K, Norddahl GL, Halldorsson GH, Melsted P, Gunnarsdottir K, Ivarsdottir E, Olafsdottir T, Arnthorsson AO, Theodors F, Eythorsson E, Helgason D, Eggertsson HP, Masson G, Bjarnadottir S, Saevarsdottir S, Runolfsdottir HL, Olafsson I, Saemundsdottir J, Sigurdsson MI, Ingvarsson RF, Palsson R, Thorgeirsson G, Halldorsson BV, Holm H, Kristjansson M, Sulem P, Thorsteinsdottir U, Jonsdottir I, Gudbjartsson DF, Stefansson K. HLA alleles, disease severity, and age associate with T-cell responses following infection with SARS-CoV-2. Commun Biol 2022; 5:914. [PMID: 36068292 PMCID: PMC9446630 DOI: 10.1038/s42003-022-03893-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
Memory T-cell responses following SARS-CoV-2 infection have been extensively investigated but many studies have been small with a limited range of disease severity. Here we analyze SARS-CoV-2 reactive T-cell responses in 768 convalescent SARS-CoV-2-infected (cases) and 500 uninfected (controls) Icelanders. The T-cell responses are stable three to eight months after SARS-CoV-2 infection, irrespective of disease severity and even those with the mildest symptoms induce broad and persistent T-cell responses. Robust CD4+ T-cell responses are detected against all measured proteins (M, N, S and S1) while the N protein induces strongest CD8+ T-cell responses. CD4+ T-cell responses correlate with disease severity, humoral responses and age, whereas CD8+ T-cell responses correlate with age and functional antibodies. Further, CD8+ T-cell responses associate with several class I HLA alleles. Our results, provide new insight into HLA restriction of CD8+ T-cell immunity and other factors contributing to heterogeneity of T-cell responses following SARS-CoV-2 infection. A study of 768 convalescent SARS CoV-2-infected and 500 uninfected Icelanders reveals broad and stable T-cell responses 3-8 months from infection. HLA alleles, disease severity, and age contribute to the heterogeneity of cellular immunity.
Collapse
Affiliation(s)
| | | | | | | | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Elias Eythorsson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Dadi Helgason
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Sólveig Bjarnadottir
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Hrafnhildur L Runolfsdottir
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Isleifur Olafsson
- Clinical Laboratory Services, Diagnostics and Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Martin I Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Perioperative Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ragnar F Ingvarsson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Runolfur Palsson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavík, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Mar Kristjansson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
38
|
Diniz MO, Mitsi E, Swadling L, Rylance J, Johnson M, Goldblatt D, Ferreira D, Maini MK. Airway-resident T cells from unexposed individuals cross-recognize SARS-CoV-2. Nat Immunol 2022; 23:1324-1329. [PMID: 36038709 PMCID: PMC9477726 DOI: 10.1038/s41590-022-01292-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
T cells can contribute to clearance of respiratory viruses that cause acute-resolving infections such as SARS-CoV-2, helping to provide long-lived protection against disease. Recent studies have suggested an additional role for T cells in resisting overt infection: pre-existing cross-reactive responses were preferentially enriched in healthcare workers who had abortive infections1, and in household contacts protected from infection2. We hypothesize that such early viral control would require pre-existing cross-reactive memory T cells already resident at the site of infection; such airway-resident responses have been shown to be critical for mediating protection after intranasal vaccination in a murine model of SARS-CoV3. Bronchoalveolar lavage samples from the lower respiratory tract of healthy donors obtained before the COVID-19 pandemic revealed airway-resident, SARS-CoV-2-cross-reactive T cells, which correlated with the strength of human seasonal coronavirus immunity. We therefore demonstrate the potential to harness functional airway-resident SARS-CoV-2-reactive T cells in next-generation mucosal vaccines.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Elena Mitsi
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jamie Rylance
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Daniela Ferreira
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK.
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK.
| |
Collapse
|
39
|
Aiello A, Coppola A, Vanini V, Petrone L, Cuzzi G, Salmi A, Altera AMG, Tortorella C, Gualano G, Gasperini C, Scolieri P, Beccacece A, Vita S, Bruzzese V, Lorenzetti R, Palmieri F, Nicastri E, Goletti D. Accuracy of QuantiFERON SARS-CoV-2 research use only assay and characterization of the CD4 + and CD8 + T cell-SARS-CoV-2 response: comparison with a homemade interferon-γ release assay. Int J Infect Dis 2022; 122:841-849. [PMID: 35878802 PMCID: PMC9307287 DOI: 10.1016/j.ijid.2022.07.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES In this study, we aimed to characterize the SARS-CoV-2-specific T cell response detected by the QuantiFERON SARS-CoV-2 research use only assay in terms of accuracy and T cell subsets involved compared with a homemade interferon (IFN)-γ release assay (IGRA). METHODS We evaluated T cell response by the standardized QuantiFERON SARS-CoV-2 tubes (antigen [Ag]1 and Ag2) and a homemade IGRA quantifying IFN-γ response to SARS-CoV-2 spike peptides (homemade-IGRA-SPIKE test). We evaluated the T cell subsets mediating the specific response using flow cytometry. RESULTS We prospectively enrolled 66 individuals: COVID-19 or post-COVID-19 subjects and NO-COVID-19-vaccinated subjects, including healthy donors and immunocompromised subjects. The standardized kit detected 62.1% (41/66) of T cell responders. Ag2 tube showed a higher IFN-γ quantitative and qualitative response. Ag1 tube response was mainly mediated by CD4+ T cells; Ag2 tube response was mediated by CD4+ and CD8+ T cells. The homemade-IGRA-SPIKE test detected a higher number of responders (52/66, 78.8%) than the QuantiFERON SARS-CoV-2 assay (P = 0.056). The response was found in both T cell subsets, although a higher magnitude and response rate was observed in the CD4+ T cell subset. CONCLUSION The QuantiFERON SARS-CoV-2 response is mediated by CD4+ and CD8+ T cells. A lower number of responders is found compared with the homemade-IGRA-SPIKE test, likely because of the different peptide composition.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Coppola
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy,Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Palma Scolieri
- UOC di Medicina e Rete Reumatologica, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Alessia Beccacece
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Serena Vita
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Vincenzo Bruzzese
- UOC di Medicina e Rete Reumatologica, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Roberto Lorenzetti
- UOC di Gastroenterologia ASL Roma1, Nuovo Regina Margherita, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy,Corresponding author: Translational Research Unit of the Research Department, National Institute for Infectious Diseases, Padiglione del Vecchio, Room 39, Via Portuense 292, Rome 00149, Italy. Tel.: +39 06 55170 906; fax: +39 06 5582 825
| |
Collapse
|
40
|
Saggau C, Martini GR, Rosati E, Meise S, Messner B, Kamps AK, Bekel N, Gigla J, Rose R, Voß M, Geisen UM, Reid HM, Sümbül M, Tran F, Berner DK, Khodamoradi Y, Vehreschild MJGT, Cornely O, Koehler P, Krumbholz A, Fickenscher H, Kreuzer O, Schreiber C, Franke A, Schreiber S, Hoyer B, Scheffold A, Bacher P. The pre-exposure SARS-CoV-2-specific T cell repertoire determines the quality of the immune response to vaccination. Immunity 2022; 55:1924-1939.e5. [PMID: 35985324 PMCID: PMC9372089 DOI: 10.1016/j.immuni.2022.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 infection and vaccination generates enormous host-response heterogeneity and an age-dependent loss of immune-response quality. How the pre-exposure T cell repertoire contributes to this heterogeneity is poorly understood. We combined analysis of SARS-CoV-2-specific CD4+ T cells pre- and post-vaccination with longitudinal T cell receptor tracking. We identified strong pre-exposure T cell variability that correlated with subsequent immune-response quality and age. High-quality responses, defined by strong expansion of high-avidity spike-specific T cells, high interleukin-21 production, and specific immunoglobulin G, depended on an intact naive repertoire and exclusion of pre-existing memory T cells. In the elderly, T cell expansion from both compartments was severely compromised. Our results reveal that an intrinsic defect of the CD4+ T cell repertoire causes the age-dependent decline of immune-response quality against SARS-CoV-2 and highlight the need for alternative strategies to induce high-quality T cell responses against newly arising pathogens in the elderly.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Elisa Rosati
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Silja Meise
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Berith Messner
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Ann-Kristin Kamps
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Nicole Bekel
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Johannes Gigla
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mathias Voß
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf M Geisen
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Hayley M Reid
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Melike Sümbül
- Department of Dermatology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Dennis K Berner
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Claudia Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Bimba Hoyer
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany.
| |
Collapse
|
41
|
Alfonso-Dunn R, Lin J, Kirschner V, Lei J, Feuer G, Malin M, Liu J, Roche M, Sadiq SA. Strong T-cell activation in response to COVID-19 vaccination in multiple sclerosis patients receiving B-cell depleting therapies. Front Immunol 2022; 13:926318. [PMID: 35990701 PMCID: PMC9388928 DOI: 10.3389/fimmu.2022.926318] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Immunocompromised individuals, including multiple sclerosis (MS) patients on certain immunotherapy treatments, are considered susceptible to complications from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and specific vaccination regimens have been recommended for suitable protection. MS patients receiving anti-CD20 therapy (aCD20-MS) are considered especially vulnerable due to acquired B-cell depletion and impaired antibody production in response to virus infection and COVID-19 vaccination. Here, the humoral and cellular responses are analyzed in a group of aCD20-MS patients (n=43) compared to a healthy control cohort (n=34) during the first 6 months after a 2-dose cycle mRNA-based COVID-19 vaccination. Both IgG antibodies recognizing receptor binding domain (RBD) from CoV-2 spike protein and their blocking activity against RBD-hACE2 binding were significantly reduced in aCD20-MS patients, with a seroconversion rate of only 23.8%. Interestingly, even under conditions of severe B-cell depletion and failed seroconversion, a significantly higher polyfunctional IFNγ+ and IL-2+ T-cell response and strong T-cell proliferation capacity were detected compared to controls. Moreover, no difference in T-cell response was observed between forms of disease (relapsing remitting- vs progressive-MS), anti-CD20 therapy (Rituximab vs Ocrelizumab) and type of mRNA-based vaccine received (mRNA-1273 vs BNT162b2). These results suggest the generation of a partial adaptive immune response to COVID-19 vaccination in B-cell depleted MS individuals driven by a functionally competent T-cell arm. Investigation into the role of the cellular immune response is important to identifying the level of protection against SARS-CoV-2 in aCD20-MS patients and could have potential implications for future vaccine design and application.
Collapse
|
42
|
Aiello A, Grossi A, Meschi S, Meledandri M, Vanini V, Petrone L, Casetti R, Cuzzi G, Salmi A, Altera AM, Pierelli L, Gualano G, Ascoli Bartoli T, Castilletti C, Agrati C, Girardi E, Palmieri F, Nicastri E, Di Rosa E, Goletti D. Coordinated innate and T-cell immune responses in mild COVID-19 patients from household contacts of COVID-19 cases during the first pandemic wave. Front Immunol 2022; 13:920227. [PMID: 35967321 PMCID: PMC9364317 DOI: 10.3389/fimmu.2022.920227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023] Open
Abstract
Objective To better define the immunopathogenesis of COVID-19, the present study aims to characterize the early immune responses to SARS-CoV-2 infection in household contacts of COVID-19 cases. In particular, innate, T- and B-cell specific responses were evaluated over time. Methods Household contacts of COVID-19 cases screened for SARS−CoV−2 infection by nasopharyngeal swab for surveillance purposes were enrolled (T0, n=42). Of these, 28 subjects returned for a follow-up test (T1). The innate response was assessed by detecting a panel of soluble factors by multiplex-technology in plasma samples. Cell-mediated response was evaluated by measuring interferon (IFN)-γ levels by ELISA in plasma harvested from whole-blood stimulated with SARS−CoV−2 peptide pools, including spike (S), nucleocapsid (N) and membrane (M) proteins. The serological response was assessed by quantifying anti-Receptor-Binding-Domain (RBD), anti-Nucleocapsid (N), whole virus indirect immunofluorescence, and neutralizing antibodies. Results At T0, higher levels of plasmatic IFN-α, IL-1ra, MCP-1 and IP-10, and lower levels of IL-1β, IL-9, MIP-1β and RANTES were observed in subjects with positive swab compared to individuals with a negative one (p<0.05). Plasmatic IFN-α was the only cytokine detectable in subjects with positive SARS-CoV-2 swabs with high accuracy for swab score positivity (0.93, p<0.0001). Among subjects with positive swabs, significant negative correlations were found among the RT-PCR cycle threshold values reported for genes S and N and IFN-α or IP-10 levels. At T0, the IFN-γ T-cell specific response was detected in 50% (5/10) of subjects with positive swab, while anti-RBD/anti-N antibodies showed a positivity rate of 10% (1/10). At T1, the IFN-γ T-cell specific response was detected in most of the confirmed-infection subjects (77.8%, 7/9), whereas the serological response was still observed in a minority of them (44.4%, 4/9). Overall, the swab test showed a moderate concordance with the T-cell response (78.6%, k=0.467), and a scarce concordance with the serological one (72.9%, k=0.194). Conclusions Plasmatic IFN-α and the IFN-γ T-cell specific response appear early even in the absence of seroconversion, and show a greater positivity rate than the serological response in household contacts with positive swab.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Adriano Grossi
- Local Public Health Office, Azienda Sanitaria Locale (ASL) Roma 1, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Marcello Meledandri
- Unità Operativa Complessa (UOC) Microbiology and Virology, Azienda Sanitaria Locale (ASL) Roma 1-San Filippo Neri Hospital, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Rita Casetti
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Luca Pierelli
- Unità Operativa Complessa (UOC) Transfusion Medicine and Stem Cell, San Camillo Forlanini Hospital, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Enrico Girardi
- Clinical Epidemiology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Enrico Di Rosa
- Local Public Health Office, Azienda Sanitaria Locale (ASL) Roma 1, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- *Correspondence: Delia Goletti,
| |
Collapse
|
43
|
Phillips E, Adele S, Malone T, Deeks A, Stafford L, Dobson SL, Amini A, Skelly D, Eyre D, Jeffery K, Conlon CP, Dold C, Otter A, D’Arcangelo S, Turtle L, Klenerman P, Barnes E, Dunachie SJ. Comparison of two T-cell assays to evaluate T-cell responses to SARS-CoV-2 following vaccination in naïve and convalescent healthcare workers. Clin Exp Immunol 2022; 209:90-98. [PMID: 35522978 PMCID: PMC9129206 DOI: 10.1093/cei/uxac042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
T-cell responses to SARS-CoV-2 following infection and vaccination are less characterized than antibody responses, due to a more complex experimental pathway. We measured T-cell responses in 108 healthcare workers (HCWs) using the commercialized Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay service (OI T-SPOT) and the PITCH ELISpot protocol established for academic research settings. Both assays detected T-cell responses to SARS-CoV-2 spike, membrane, and nucleocapsid proteins. Responses were significantly lower when reported by OI T-SPOT than by PITCH ELISpot. Four weeks after two doses of either Pfizer/BioNTech BNT162b or ChAdOx1 nCoV-19 AZD1222 vaccine, the responder rate was 63% for OI T-SPOT Panels 1 + 2 (peptides representing SARS-CoV-2 spike protein excluding regions present in seasonal coronaviruses), 69% for OI T-SPOT Panel 14 (peptides representing the entire SARS-CoV-2 spike), and 94% for the PITCH ELISpot total spike. The two OI T-SPOT panels correlated strongly with each other showing that either readout quantifies spike-specific T-cell responses, although the correlation between the OI T-SPOT panels and the PITCH ELISpot total spike was moderate. The standardization, relative scalability, and longer interval between blood acquisition and processing are advantages of the commercial OI T-SPOT assay. However, the OI T-SPOT assay measures T-cell responses at a significantly lower magnitude compared to the PITCH ELISpot assay, detecting T-cell responses in a lower proportion of vaccinees. This has implications for the reporting of low-level T-cell responses that may be observed in patient populations and for the assessment of T-cell durability after vaccination.
Collapse
Affiliation(s)
- Eloise Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Tom Malone
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Alexandra Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Susan L Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University ofLiverpool, UK
| | - Ali Amini
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Donal Skelly
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University ofOxford, UK
| | - David Eyre
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher P Conlon
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | | | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University ofLiverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, member of Liverpool Health Partners, Liverpool, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| |
Collapse
|
44
|
Tennøe S, Gheorghe M, Stratford R, Clancy T. The T Cell Epitope Landscape of SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2022; 10:1123. [PMID: 35891287 PMCID: PMC9315645 DOI: 10.3390/vaccines10071123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
During the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOC) emerged, bringing with them varying degrees of health and socioeconomic burdens. In particular, the Omicron VOC displayed distinct features of increased transmissibility accompanied by antigenic drift in the spike protein that partially circumvented the ability of pre-existing antibody responses in the global population to neutralize the virus. However, T cell immunity has remained robust throughout all the different VOC transmission waves and has emerged as a critically important correlate of protection against SARS-CoV-2 and its VOCs, in both vaccinated and infected individuals. Therefore, as SARS-CoV-2 VOCs continue to evolve, it is crucial that we characterize the correlates of protection and the potential for immune escape for both B cell and T cell human immunity in the population. Generating the insights necessary to understand T cell immunity, experimentally, for the global human population is at present a critical but a time consuming, expensive, and laborious process. Further, it is not feasible to generate global or universal insights into T cell immunity in an actionable time frame for potential future emerging VOCs. However, using computational means we can expedite and provide early insights into the correlates of T cell protection. In this study, we generated and revealed insights on the T cell epitope landscape for the five main SARS-CoV-2 VOCs observed to date. We demonstrated using a unique AI prediction platform, a significant conservation of presentable T cell epitopes across all mutated peptides for each VOC. This was modeled using the most frequent HLA alleles in the human population and covers the most common HLA haplotypes in the human population. The AI resource generated through this computational study and associated insights may guide the development of T cell vaccines and diagnostics that are even more robust against current and future VOCs, and their emerging subvariants.
Collapse
Affiliation(s)
| | | | | | - Trevor Clancy
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo, Norway; (S.T.); (M.G.); (R.S.)
| |
Collapse
|
45
|
McNaughton AL, Paton RS, Edmans M, Youngs J, Wellens J, Phalora P, Fyfe A, Belij-Rammerstorfer S, Bolton JS, Ball J, Carnell GW, Dejnirattisai W, Dold C, Eyre DW, Hopkins P, Howarth A, Kooblall K, Klim H, Leaver S, Lee LN, López-Camacho C, Lumley SF, Macallan DC, Mentzer AJ, Provine NM, Ratcliff J, Slon-Compos J, Skelly D, Stolle L, Supasa P, Temperton N, Walker C, Wang B, Wyncoll D, Oxford Protective T Cell Immunology for COVID-19 (OPTIC) consortium, Scottish National Blood Transfusion Service (SNBTS) consortium, Simmonds P, Lambe T, Baillie JK, Semple MG, Openshaw PJ, International Severe Acute Respiratory and emerging Infection Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) investigators, Obolski U, Turner M, Carroll M, Mongkolsapaya J, Screaton G, Kennedy SH, Jarvis L, Barnes E, Dunachie S, Lourenço J, Matthews PC, Bicanic T, Klenerman P, Gupta S, Thompson CP. Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight 2022; 7:156372. [PMID: 35608920 PMCID: PMC9310533 DOI: 10.1172/jci.insight.156372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal outcomes with coronavirus disease 2019 (COVID-19) is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to an intensive care unit (ICU) with fatal COVID-19 outcomes, but not in individuals with nonfatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to an ICU with fatal and nonfatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an "original antigenic sin" type response.
Collapse
Affiliation(s)
- Anna L. McNaughton
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Robert S. Paton
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Matthew Edmans
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jonathan Youngs
- Institute of Infection & Immunity, St George’s University of London, London, United Kingdom
| | - Judith Wellens
- Peter Medawar Building for Pathogen Research
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
- Translational Research for Gastrointestinal Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Prabhjeet Phalora
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Alex Fyfe
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Jai S. Bolton
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jonathan Ball
- General Intensive Care service, St George’s University Hospital National Health Service (NHS) Trust, London, United Kingdom
| | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | - David W. Eyre
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Philip Hopkins
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College, London, United Kingdom
| | - Alison Howarth
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kreepa Kooblall
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, and
| | - Hannah Klim
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Future of Humanity Institute, Department of Philosophy, and
| | - Susannah Leaver
- General Intensive Care service, St George’s University Hospital National Health Service (NHS) Trust, London, United Kingdom
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | | | - Sheila F. Lumley
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Derek C. Macallan
- Institute of Infection & Immunity, St George’s University of London, London, United Kingdom
| | | | - Nicholas M. Provine
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jeremy Ratcliff
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Jose Slon-Compos
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
| | - Donal Skelly
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Lucas Stolle
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Chris Walker
- Meso Scale Diagnostics, Rockville, Maryland, USA
| | - Beibei Wang
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
| | - Duncan Wyncoll
- Intensive Care Medicine, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | - Peter Simmonds
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Teresa Lambe
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | | | - Malcolm G. Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Uri Obolski
- School of Public Health, Faculty of Medicine, and
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Marc Turner
- National Microbiology Reference Unit, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
- National Infection Service, Public Health England (PHE), Salisbury, United Kingdom
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
- Siriraj Center of Research for Excellence in Dengue & Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Stephen H. Kennedy
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lisa Jarvis
- National Microbiology Reference Unit, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - José Lourenço
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Philippa C. Matthews
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George’s University of London, London, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Translational Research for Gastrointestinal Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Sunetra Gupta
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Craig P. Thompson
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
46
|
Kent SJ, Khoury DS, Reynaldi A, Juno JA, Wheatley AK, Stadler E, John Wherry E, Triccas J, Sasson SC, Cromer D, Davenport MP. Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast? Nat Rev Immunol 2022; 22:387-397. [PMID: 35484322 PMCID: PMC9047577 DOI: 10.1038/s41577-022-00716-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
The rapid development of multiple vaccines providing strong protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been a major achievement. There is now compelling evidence for the role of neutralizing antibodies in protective immunity. T cells may play a role in resolution of primary SARS-CoV-2 infection, and there is a widely expressed view that T cell-mediated immunity also plays an important role in vaccine-mediated protection. Here we discuss the role of vaccine-induced T cells in two distinct stages of infection: firstly, in protection from acquisition of symptomatic SARS-CoV-2 infection following exposure; secondly, if infection does occur, the potential for T cells to reduce the risk of developing severe COVID-19. We describe several lines of evidence that argue against a direct impact of vaccine-induced memory T cells in preventing symptomatic SARS-CoV-2 infection. However, the contribution of T cell immunity in reducing the severity of infection, particularly in infection with SARS-CoV-2 variants, remains to be determined. A detailed understanding of the role of T cells in COVID-19 is critical for next-generation vaccine design and development. Here we discuss the challenges in determining a causal relationship between vaccine-induced T cell immunity and protection from COVID-19 and propose an approach to gather the necessary evidence to clarify any role for vaccine-induced T cell memory in protection from severe COVID-19.
Collapse
Affiliation(s)
- Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Melbourne Sexual Health Centre, Monash University, Melbourne, VIC, Australia.
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eva Stadler
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James Triccas
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sarah C Sasson
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
47
|
Sieber J, Mayer M, Schmidthaler K, Kopanja S, Camp JV, Popovitsch A, Dwivedi V, Hoz J, Schoof A, Weseslindtner L, Szépfalusi Z, Stiasny K, Aberle JH. Long-Lived Immunity in SARS-CoV-2-Recovered Children and Its Neutralizing Capacity Against Omicron. Front Immunol 2022; 13:882456. [PMID: 35663948 PMCID: PMC9157051 DOI: 10.3389/fimmu.2022.882456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 infection is effectively controlled by humoral and cellular immune responses. However, the durability of immunity in children as well as the ability to neutralize variants of concern are unclear. Here, we assessed T cell and antibody responses in a longitudinal cohort of children after asymptomatic or mild COVID-19 over a 12-month period. Antigen-specific CD4 T cells remained stable over time, while CD8 T cells declined. SARS-CoV-2 infection induced long-lived neutralizing antibodies against ancestral SARS-CoV-2 (D614G isolate), but with poor cross-neutralization of omicron. Importantly, recall responses to vaccination in children with pre-existing immunity yielded neutralizing antibody activities against D614G and omicron BA.1 and BA.2 variants that were 3.9-fold, 9.9-fold and 14-fold higher than primary vaccine responses in seronegative children. Together, our findings demonstrate that SARS-CoV-2 infection in children induces robust memory T cells and antibodies that persist for more than 12 months, but lack neutralizing activity against omicron. Vaccination of pre-immune children, however, substantially improves the omicron-neutralizing capacity.
Collapse
Affiliation(s)
- Justyna Sieber
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Margareta Mayer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Klara Schmidthaler
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sonja Kopanja
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jeremy V. Camp
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Varsha Dwivedi
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jakub Hoz
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Anja Schoof
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Zsolt Szépfalusi
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Shankar S, Beckett J, Tipton T, Ogbe A, Kasanyinga M, Dold C, Lumley S, Dengu F, Rompianesi G, Elgilani F, Longet S, Deeks A, Payne RP, Duncan CJ, Richter A, de Silva TI, Turtle L, Bull K, Barnardo M, Friend PJ, Dunachie SJ, Hester J, Issa F, Barnes E, Carroll MW, Klenerman P. SARS-CoV-2-Specific T Cell Responses Are Not Associated with Protection against Reinfection in Hemodialysis Patients. J Am Soc Nephrol 2022; 33:883-887. [PMID: 35361708 PMCID: PMC9063898 DOI: 10.1681/asn.2021121587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Patients on hemodialysis (HD) are vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mount poor neutralizing antibody responses after two-dose vaccination. Although serological responses have been associated with reduced rates of reinfection, the relationship between cellular immunogenicity and protection has not been established. We report, for the first time, high incidence of reinfection in patients on HD who are vaccine naive (25%), which identifies that T cell responses do not predict protection against reinfection. Instead, patients on HD who went on to become reinfected had mounted highly variable and sometimes robust proliferative T cell responses to a broad array of SARS-CoV-2 peptide pools during the primary infection. The understanding that SARS-CoV-2–specific T cell responses are not predictive of protection against future infection will be a critical issue when measuring clinical efficacy of vaccination in these vulnerable cohorts, particularly when facing rapidly emerging variants of concern.
Collapse
Affiliation(s)
- Sushma Shankar
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Joseph Beckett
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Mwila Kasanyinga
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Christina Dold
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Sheila Lumley
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fungai Dengu
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Gianluca Rompianesi
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Faysal Elgilani
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Stephanie Longet
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Alexandra Deeks
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Rebecca P. Payne
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher J.A. Duncan
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Alex Richter
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Lance Turtle
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Katherine Bull
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin Barnardo
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Peter J. Friend
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Susanna J. Dunachie
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Eleanor Barnes
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Miles W. Carroll
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Richardson JR, Götz R, Mayr V, Lohse MJ, Holthoff HP, Ungerer M. SARS-CoV2 wild type and mutant specific humoral and T cell immunity is superior after vaccination than after natural infection. PLoS One 2022; 17:e0266701. [PMID: 35468147 PMCID: PMC9037910 DOI: 10.1371/journal.pone.0266701] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
Objective We investigated blood samples from fully SARS-CoV2-vaccinated subjects and from previously positive tested patients up to one year after infection with SARS-CoV2, and compared short- and long-term T cell and antibody responses, with a special focus on the recently emerged delta variant (B.1.617.2). Methods and results In 23 vaccinated subjects, we documented high anti-SARS-CoV2 spike protein receptor binding domain (RBD) antibody titers. Average virus neutralization by antibodies, assessed as inhibition of ACE2 binding to RBD, was 2.2-fold reduced for delta mutant vs. wild type (wt) RBD. The mean specific antibody titers were lower one year after natural infection than after vaccination; ACE2 binding to delta mutant vs. wt RBD was 1.65-fold reduced. In an additional group, omicron RBD binding was reduced compared to delta. Specific CD4+ T cell responses were measured after stimulation with peptides pools from wt, alpha, beta, gamma, or delta variant SARS-CoV2 spike proteins by flow cytometric intracellular cytokine staining. There was no significant difference in cytokine production of IFN-γ, TNF-α, or IL-2 between vaccinated subjects. T cell responses to wt or mutant SARS-CoV2 spike were significantly weaker after natural occurring infections compared to those in vaccinated individuals. Conclusion Antibody neutralisation of the delta mutant was reduced compared to wt, as assessed in a novel inhibition assay with a finger prick blood drop. Strong CD4 T cell responses were present against wt and mutant SARS-CoV2 variants, including the delta (B.1.617.2) strain, in fully vaccinated individuals, whereas they were partly weaker 1 year after natural infection. Hence, immune responses after vaccination are stronger compared to those after naturally occurring infection, pointing out the need of the vaccine to overcome the pandemic.
Collapse
|
50
|
Bai J, Chiba A, Murayama G, Kuga T, Tamura N, Miyake S. Sex, Age, and Ethnic Background Shape Adaptive Immune Responses Induced by the SARS-CoV-2 mRNA Vaccine. Front Immunol 2022; 13:786586. [PMID: 35418996 PMCID: PMC8995562 DOI: 10.3389/fimmu.2022.786586] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine-induced adaptive responses have been well investigated. However, the effects of sex, age, and ethnic background on the immune responses elicited by the mRNA vaccine remain unclear. Here, we performed comprehensive analyses of adaptive immune responses elicited by the SARS-CoV-2 mRNA vaccine. Vaccine-induced antibody and T cell responses declined over time but persisted after 3 months, and switched memory B cells were even increased. Spike-specific CD4+ T and CD8+ T cell responses were decreased against the B.1.351 variant, but not against B.1.1.7. Interestingly, T cell reactivity against B.1.617.1 and B.1.617.2 variants was decreased in individuals carrying HLA-A24, suggesting adaptive immune responses against variants are influenced by different HLA haplotypes. T follicular helper cell responses declined with increasing age in both sexes, but age-related decreases in antibody levels were observed only in males, and this was associated with the decline of T peripheral helper cell responses. In contrast, vaccine-induced CD8+ T cell responses were enhanced in older males. Taken together, these findings highlight that significant differences in the reactogenicity of the adaptive immune system elicited by mRNA vaccine were related to factors including sex, age, and ethnic background.
Collapse
Affiliation(s)
- Jie Bai
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Goh Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taiga Kuga
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|