1
|
Gauthier T, Lim YJ, Jin W, Liu N, Patiño LC, Chen W, Warren J, Martin D, Morell RJ, Dveksler G, Su GH, Chen W. Activin A activation of Smad3 mitigates innate inflammation in mouse models of psoriasis and sepsis. J Clin Invest 2025; 135:e187063. [PMID: 40067393 PMCID: PMC12043092 DOI: 10.1172/jci187063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Phosphorylation of Smad3 is a critical mediator of TGF-β signaling, which plays an important role in regulating innate immune responses. However, whether Smad3 activation can be regulated in innate immune cells in TGF-β-independent contexts remains poorly understood. Here, we show that Smad3 is activated through the phosphorylation of its C-terminal residues (pSmad3C) in murine and human macrophages in response to bacterial and viral ligands, and this activation is mediated by activin A in a TGF-β-independent manner. Specifically, infectious ligands, such as LPS, induced secretion of activin A through the transcription factor STAT5 in macrophages, and activin A signaling in turn activated pSmad3C. This activin A/Smad3 axis controlled mitochondrial ATP production and ATP conversion into adenosine by CD73 in macrophages, enforcing an antiinflammatory mechanism. Consequently, mice with a deletion of activin A receptor 1b specifically in macrophages (Acvr1bfl/fl-Lyz2cre) succumbed more to sepsis as a result of uncontrolled inflammation and exhibited exacerbated skin disease in a mouse model of imiquimod-induced psoriasis. Thus, we have revealed a previously unrecognized natural brake to inflammation in macrophages that occurs through the activation of Smad3 in an activin A-dependent manner.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Na Liu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Liliana C. Patiño
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Weiwei Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - Gloria H. Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Castro-Trujillo S, Castro-Meneses J, Rojas MC, Castro-Amaya M, Lastra G, Narváez CF. Regulatory cytokines modulate early isotype-specific response associated with COVID-19 survival. Front Immunol 2025; 16:1543626. [PMID: 40342417 PMCID: PMC12058664 DOI: 10.3389/fimmu.2025.1543626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/01/2025] [Indexed: 05/11/2025] Open
Abstract
Identifying immune markers driving early and effective antibody response in patients with severe coronavirus disease 2019 (COVID-19) is critical due to the threat of future coronavirus pandemics, incomplete global vaccination, and suboptimal booster coverage. Patients with life-threatening severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by dysregulated thromboinflammation and cytokine storm that could influence the isotype virus-specific antibody response and the subsequent clinical outcome. We investigated the association between COVID-19-related mortality with the dynamics, magnitude, and relative avidity of nucleoprotein (N), spike (S), and receptor-binding domain (RBD)-specific IgM, IgA, and IgG in circulation. We also assessed the relationship between the virus-specific antibody responses and cytokine patterns, as well as systemic and pulmonary thromboinflammation markers. This multicenter study included COVID-19 patients hospitalized early in the pandemic, classified as survivors (n=62) and non-survivors (n=17). We developed indirect enzyme-linked immunosorbent assays (ELISAs) to evaluate each virus-specific isotype using well-characterized outpatient COVID-19 (n=180) and pre-pandemic cohorts (n=111). The pro-inflammatory interleukin (IL)-6 and tumor necrosis factor (TNF)-α, as well as the regulatory IL-10, transforming growth factor (TGF)-β1, and soluble tumor necrosis factor receptor I (sTNFRI) levels were evaluated. The ELISAs performed highly for all virus-specific isotypes, although modest for IgM-N. Non-survivors increased N-specific, but no S-specific, IgM and IgA responses throughout the disease course and, more notably, a delayed class switching to IgG-S and IgG-RBD compared to survivors. No differences were observed in the virus-specific IgG relative avidity. Survivors exhibited an antibody response proportional to the degree of systemic and pulmonary thromboinflammation, whereas non-survivors showed those dissociated because of their uncontrolled severe thromboinflammation. Only the survivors showed a dominant regulatory cytokine pattern in the early phase of infection (<10 days after symptoms onset), which strongly correlated with developing IgG-S and IgG-RBD protective antibodies. We developed easy-to-use immune assays that enable patient monitoring and identify at-risk populations in low- to middle-income regions. Non-survivors displayed an ineffective N-mediated antibody response, marked by an inability to control inflammation and a compromised time-dependent class switching toward S and RBD-specific IgG. The regulatory cytokine axis, including TGF-β1, maybe a critical immune correlate of effective antibody-mediated immunity in COVID-19.
Collapse
Affiliation(s)
- Sebastián Castro-Trujillo
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Juanita Castro-Meneses
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Programa de Biología Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - María Clemencia Rojas
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| | - Marcela Castro-Amaya
- Departamento de Medicina Interna, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Giovani Lastra
- Departamento de Medicina Interna, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Carlos F. Narváez
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
3
|
Goetzke CC, Massoud M, Frischbutter S, Guerra GM, Ferreira-Gomes M, Heinrich F, von Stuckrad ASL, Wisniewski S, Licha JR, Bondareva M, Ehlers L, Khaldi-Plassart S, Javouhey E, Pons S, Trouillet-Assant S, Ozsurekci Y, Zhang Y, Poli MC, Discepolo V, Lo Vecchio A, Sahin B, Verboom M, Hallensleben M, Heuhsen AI, Astudillo C, Espinosa Y, Vial Cox MC, Dobbs K, Delmonte OM, Montealegre Sanchez GA, Magliocco M, Barron K, Danielson J, Petrov L, Unterwalder N, Sawitzki B, Matz M, Lehmann K, Gratopp A, von Bernuth H, Burkhardt LM, Wiese N, Peter L, Schmueck-Henneresse M, Amini L, Maurer M, Roehmel JF, Gewurz BE, Yonker LM, Witkowski M, Kruglov A, Mall MA, Su HC, Ozen S, Radbruch A, Belot A, Durek P, Kallinich T, Mashreghi MF. TGFβ links EBV to multisystem inflammatory syndrome in children. Nature 2025; 640:762-771. [PMID: 40074901 PMCID: PMC12003184 DOI: 10.1038/s41586-025-08697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/24/2025] [Indexed: 03/14/2025]
Abstract
In a subset of children and adolescents, SARS-CoV-2 infection induces a severe acute hyperinflammatory shock1 termed multisystem inflammatory syndrome in children (MIS-C) at four to eight weeks after infection. MIS-C is characterized by a specific T cell expansion2 and systemic hyperinflammation3. The pathogenesis of MIS-C remains largely unknown. Here we show that acute MIS-C is characterized by impaired reactivation of virus-reactive memory T cells, which depends on increased serum levels of the cytokine TGFβ resembling those that occur during severe COVID-19 (refs. 4,5). This functional impairment in T cell reactivity is accompanied by the presence of TGFβ-response signatures in T cells, B cells and monocytes along with reduced antigen-presentation capabilities of monocytes, and can be reversed by blocking TGFβ. Furthermore, T cell receptor repertoires of patients with MIS-C exhibit expansion of T cells expressing TCRVβ21.3, resembling Epstein-Barr virus (EBV)-reactive T cell clones capable of eliminating EBV-infected B cells. Additionally, serum TGFβ in patients with MIS-C can trigger EBV reactivation, which is reversible with TGFβ blockade. Clinically, the TGFβ-induced defect in T cell reactivity correlates with a higher EBV seroprevalence in patients with MIS-C compared with age-matched controls, along with the occurrence of EBV reactivation. Our findings establish a connection between SARS-CoV-2 infection and COVID-19 sequelae in children, in which impaired T cell cytotoxicity triggered by TGFβ overproduction leads to EBV reactivation and subsequent hyperinflammation.
Collapse
Affiliation(s)
- Carl Christoph Goetzke
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany.
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany.
| | - Mona Massoud
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| | | | - Marta Ferreira-Gomes
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
| | - Frederik Heinrich
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
| | - Anne Sae Lim von Stuckrad
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Wisniewski
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Robin Licha
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
| | - Marina Bondareva
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
| | - Lisa Ehlers
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Samira Khaldi-Plassart
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
- Clinical Investigation Center (CIC 1407), Hospices Civils de Lyon, Bron, France
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Sylvie Pons
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Sophie Trouillet-Assant
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Yasemin Ozsurekci
- Department of Pediatric Infectious Diseases, Hacettepe University, Ankara, Turkey
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria Cecilia Poli
- Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
- Immunology and Rheumatology Unit, Hospital de Niños Dr. Roberto del Río, Santiago, Chile
| | - Valentina Discepolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Bengü Sahin
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Murielle Verboom
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Michael Hallensleben
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | - Camila Astudillo
- Immunology and Rheumatology Unit, Hospital de Niños Dr. Roberto del Río, Santiago, Chile
| | - Yazmin Espinosa
- Immunology and Rheumatology Unit, Hospital de Niños Dr. Roberto del Río, Santiago, Chile
| | | | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gina A Montealegre Sanchez
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary Magliocco
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karyl Barron
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Danielson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lev Petrov
- Translational Immunology, Berlin Institute of Health (BIH) and Charité University Medicine, Berlin, Germany
| | - Nadine Unterwalder
- Department of Microbiology and Hygiene, Labor Berlin, Charité-Vivantes, Berlin, Germany
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health (BIH) and Charité University Medicine, Berlin, Germany
| | - Mareen Matz
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Lehmann
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
| | - Alexander Gratopp
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin, Charité-Vivantes, Berlin, Germany
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lisa-Marie Burkhardt
- Berlin Center for Advanced Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niklas Wiese
- Berlin Center for Advanced Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leila Amini
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| | - Jobst Fridolin Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Benjamin E Gewurz
- Division of Infectious Disease, Brigham and Women's Hospital and Program in Virology, Harvard Medical School, Boston, MA, USA
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Division of Pulmonology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mario Witkowski
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrey Kruglov
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Marcus Alexander Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Andreas Radbruch
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
| | - Alexandre Belot
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie, University of Lyon, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard, Lyon 1, Le Centre National de la Recherche Scientifique, Lyon, France
| | - Pawel Durek
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany
| | - Tilmann Kallinich
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany.
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany.
| | - Mir-Farzin Mashreghi
- German Rheumatology Research Center, a Leibniz-Institute (DRFZ), Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany.
| |
Collapse
|
4
|
Pita-Juarez Y, Karagkouni D, Kalavros N, Melms JC, Niezen S, Delorey TM, Essene AL, Brook OR, Pant D, Skelton-Badlani D, Naderi P, Huang P, Pan L, Hether T, Andrews TS, Ziegler CGK, Reeves J, Myloserdnyy A, Chen R, Nam A, Phelan S, Liang Y, Gregory M, He S, Patrick M, Rane T, Wardhani A, Amin AD, Biermann J, Hibshoosh H, Veregge M, Kramer Z, Jacobs C, Yalcin Y, Phillips D, Slyper M, Subramanian A, Ashenberg O, Bloom-Ackermann Z, Tran VM, Gomez J, Sturm A, Zhang S, Fleming SJ, Warren S, Beechem J, Hung D, Babadi M, Padera RF, MacParland SA, Bader GD, Imad N, Solomon IH, Miller E, Riedel S, Porter CBM, Villani AC, Tsai LTY, Hide W, Szabo G, Hecht J, Rozenblatt-Rosen O, Shalek AK, Izar B, Regev A, Popov YV, Jiang ZG, Vlachos IS. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. Genome Biol 2025; 26:56. [PMID: 40087773 PMCID: PMC11907808 DOI: 10.1186/s13059-025-03499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/07/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The molecular underpinnings of organ dysfunction in severe COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we perform single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. RESULTS We identify hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells, and a central role in a pro-fibrotic TGFβ signaling cell-cell communications network. Integrated analysis and comparisons with healthy controls reveal extensive changes in the cellular composition and expression states in COVID-19 liver, providing the underpinning of hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis characteristic of COVID-19 cholangiopathy. We also observe Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition is dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. CONCLUSIONS Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.
Collapse
Affiliation(s)
- Yered Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dimitra Karagkouni
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikolaos Kalavros
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Sebastian Niezen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Essene
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Olga R Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepti Pant
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Disha Skelton-Badlani
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pourya Naderi
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pinzhu Huang
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Liuliu Pan
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Tallulah S Andrews
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Carly G K Ziegler
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Andriy Myloserdnyy
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Chen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Andy Nam
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Yan Liang
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Shanshan He
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Tushar Rane
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Amit Dipak Amin
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Jana Biermann
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Molly Veregge
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Zachary Kramer
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher Jacobs
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Yusuf Yalcin
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Devan Phillips
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Michal Slyper
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | | | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zohar Bloom-Ackermann
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victoria M Tran
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Gomez
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuting Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Fleming
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Deborah Hung
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sonya A MacParland
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, Toronto, ON, Canada
| | - Nasser Imad
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric Miller
- NanoString Technologies, Inc., Seattle, WA, USA
| | - Stefan Riedel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Linus T-Y Tsai
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Winston Hide
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gyongyi Szabo
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jonathan Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Alex K Shalek
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA.
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Immunology, Harvard Medical School, Boston, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia Center for Translational Immunology, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Yury V Popov
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Z Gordon Jiang
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Kingstad-Bakke B, Lee W, Yount BL, Cleven T, Park H, Sullivan JA, Baric RC, Suresh M. Effector CD8 T cell differentiation in primary and breakthrough SARS-CoV-2 infection in mice. Commun Biol 2025; 8:392. [PMID: 40057586 PMCID: PMC11890755 DOI: 10.1038/s42003-025-07820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The nature of the effector and memory T cell response in the lungs following acute SARS-CoV-2 infections remains largely unknown. To define the pulmonary T-cell response to COVID-19, we compared effector and memory T-cell responses to SARS-CoV-2 and influenza A virus (IAV) in mice. Both viruses elicited potent effector T cell responses in lungs, but memory T cells showed exaggerated contraction in SARS-CoV-2-infected mice. Specifically, unlike the T-bet/EOMES-driven effector transcription program in IAV lungs, SARS-CoV-2-specific CD8 T cells embarked on a STAT-3-centric transcriptional program, a defining characteristic of a pro-fibro-inflammatory program: limited cytotoxicity, diminished expression of tissue-protective inhibitory receptors (PD-1, LAG-3, and TIGIT), and augmented mucosal imprinting (CD103). Circulating CD45RO+HLA-DR+ CD8 T cells in hospitalized COVID-19 patients expressed elevated levels of STAT-3 and low levels of TIGIT. IL-6 blockade experiments implicated IL-6 in STAT-3 induction and downregulation of PD-1 expression on SARS-CoV-2-specific primary effector CD8 T cells. Memory CD8 T cells specific to a single epitope, induced by mucosal vaccination, differentiated into cytotoxic effectors and expressed high levels of CD103, effectively reducing viral burden in lungs following a breakthrough SARS-CoV-2 infection. Our findings have implications for developing targeted immunotherapies to mitigate immunopathology and promote protective T cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Woojong Lee
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Boyd L Yount
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy A Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph C Baric
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Lemos FFB, Lopes LW, Brito GC, Viana AIS, de Castro CT, Luz MS, Gonçalves AP, Dórea RSDM, da Silva FAF, de Brito BB, Santos MLC, Júnior GMS, de Lorenzo Barcia MTA, de Amorim Marques R, Botelho AB, Dantas ACS, Pinheiro FD, Teixeira AF, Souza CL, Oliveira MV, de Magalhães Queiroz DM, de Melo FF. Prognostic significance of cytokine dysregulation in critically ill COVID-19 patients. Cytokine 2025; 187:156867. [PMID: 39874939 DOI: 10.1016/j.cyto.2025.156867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Understanding the immunopathogenesis of COVID-19 has yielded valuable insights into predicting adverse outcomes-particularly mortality. However, significant gaps persist in our comprehension of the complex interplay among the proposed pathophysiological mechanisms. Here, we aim to investigate the immunological factors associated with mortality in critically ill, unvaccinated COVID-19 patients admitted to the intensive care unit (ICU). METHODS We conducted a single-center, prospective study involving 56 unvaccinated COVID-19 patients admitted to the ICU. Plasma cytokine levels at admission were quantified using enzyme-linked immunosorbent assay (ELISA). Continuous variables were presented as median (IQR), and categorical variables as frequencies and percentages. Non-parametric tests assessed group differences. Logistic regression and receiver operating characteristic (ROC) curve analyses identified predictors of mortality, with bootstrapping (1000 re-samplings; 95 % BCa CI) applied for model validation. RESULTS Deceased patients exhibited significantly higher levels of interleukin (IL)-1β, IL-2, IL-6, transforming growth factor (TGF)-β, and interferon (IFN)-γ compared to survivors. Conversely, IL-10 and IL-27 were associated with favorable outcomes. Logistic regression modeling identified elevated IL-2 and IFN-γ levels as significant predictors of mortality. Notably, individual ROC curve analyses demonstrated that IL-1β and TGF-β had excellent discriminatory ability for mortality, while IFN-γ, IL-2, and IL-27 showed very good to excellent discriminatory capacity. CONCLUSION Our results indicate that distinct cytokine profiles differentiate survivors from non-survivors in critically ill, unvaccinated COVID-19 patients. These findings highlight the importance of cytokine dysregulation in severe COVID-19 cases and suggest potential targets for prognostic approaches. Further research is warranted to validate these results and translate them into effective clinical management strategies.
Collapse
Affiliation(s)
- Fabian Fellipe Bueno Lemos
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Carvalho Brito
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Airton Idalecio Sousa Viana
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Marcel Silva Luz
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - André Pereira Gonçalves
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | - Breno Bittencourt de Brito
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - André Bezerra Botelho
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Anna Carolina Saúde Dantas
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fillipe Dantas Pinheiro
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Adriano Fernandes Teixeira
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cláudio Lima Souza
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Fabrício Freire de Melo
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil.
| |
Collapse
|
7
|
Luo SM, Chen MJ. Lactobacillus acidophilus TW01 Mitigates PM 2.5-Induced Lung Injury and Improves Gut Health in Mice. Nutrients 2025; 17:831. [PMID: 40077701 PMCID: PMC11901689 DOI: 10.3390/nu17050831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Exposure to fine particulate matter (PM2.5) causes significant respiratory and gastrointestinal health problems. In our prior research, we identified Lactobacillus acidophilus TW01 as a promising strain for mitigating oxidative damage, enhancing wound healing in intestinal epithelial cells, and protecting bronchial cells from cigarette smoke extract. Building upon these findings, this study examines the protective effects of this strain on lung damage induced by particulate matter (PM) through the gut-lung axis in mouse models. Methods: This study evaluated the protective effects of L. acidophilus TW01 against PM2.5-induced lung injury using two in vivo mouse models (OVA sensitization combined with PM2.5 exposure and DSS-induced colitis). Results: L. acidophilus TW01 exhibited significant protective effects in two in-vivo models, reducing pro-inflammatory cytokines (TNF-α, IL-6, and IL-5), modulating the immune response (IgG subtypes), and improving gut barrier integrity. Importantly, L. acidophilus TW01 increased the abundance of beneficial gut bacteria (Bifidobacterium and Lactobacillus). Conclusions: These findings highlight the significant protective/therapeutic potential of L. acidophilus TW01 in mitigating the adverse health effects of PM2.5 exposure, emphasizing the interplay between the gut and lung microbiomes in overall health. The multi-faceted protective effects of this probiotic suggest a novel, multi-pronged therapeutic strategy for addressing the widespread health consequences of air pollution.
Collapse
Affiliation(s)
- Siou-Min Luo
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Center for Biotechnology, National Taiwan University, Taipei 106038, Taiwan
| |
Collapse
|
8
|
Fricke-Galindo I, García-Carmona S, Bautista-Becerril B, Pérez-Rubio G, Buendia-Roldan I, Chávez-Galán L, Nava-Quiroz KJ, Alanis-Ponce J, Reséndiz-Hernández JM, Blanco-Aguilar E, Erives-Sedano JI, Méndez-Velasco Y, Osuna-Espinoza GE, Salvador-Hernández F, Segura-Castañeda R, Solano-Candia UN, Falfán-Valencia R. Genetic Variants in Genes Related to Lung Function and Interstitial Lung Diseases Are Associated with Worse Outcomes in Severe COVID-19 and Lung Performance in the Post-COVID-19 Condition. Int J Mol Sci 2025; 26:2046. [PMID: 40076669 PMCID: PMC11900979 DOI: 10.3390/ijms26052046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Genetic variants related to susceptibility to chronic respiratory conditions such as interstitial lung disease (ILD) could share critical pathways in the pathogenesis of COVID-19 and be implicated in COVID-19 outcomes and post-COVID-19. We aimed to identify the participation of genetic variants in lung function and ILD genes in severe COVID-19 outcomes and post-COVID-19 condition. We studied 936 hospitalized patients with COVID-19. The requirement of invasive mechanical ventilation (IMV) and the acute respiratory distress syndrome (ARDS) classification were considered. The mortality was assessed as the in-hospital death. The post-COVID-19 group included 102 patients evaluated for pulmonary function tests four times during the year after discharge. Five variants (FAM13A rs2609255, DSP rs2076295, TOLLIP rs111521887, TERT rs2736100, and THSD4 rs872471) were genotyped using TaqMan assays. A multifactor dimensionality reduction method (MDR) was performed for epistasis estimation. The TERT rs2736100 and THSD4 rs872471 variants were associated with differential risk for ARDS severity (moderate vs. severe, CC + CA, p = 0.044, OR = 0.66, 95% CI = 0.44-0.99; and GG p = 0.034, OR = 2.22, 95% CI = 1.04-4.72, respectively). These variants and FAM13A rs2609255 were also related to pulmonary function post-COVID-19. The MDR analysis showed differential epistasis and correlation of the genetic variants included in this study. The well-known variants in recognized genes related to pulmonary function worsening and interstitial disorders are related to the severity and mortality of COVID-19 and lung performance in the post-COVID-19 condition.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Salvador García-Carmona
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Jesús Alanis-Ponce
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Juan M. Reséndiz-Hernández
- Laboratorio Clínico, Centro Especializado de Atención a Personas con Discapacidad Visual, Instituto de Salud del Estado de México, Naucalpan 53000, Mexico State, Mexico;
| | - Esther Blanco-Aguilar
- Facultad de Medicina Benemérita, Universidad Autónoma de Puebla, Puebla de Zaragoza 72420, Puebla, Mexico;
| | - Jessica I. Erives-Sedano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico;
| | - Yashohara Méndez-Velasco
- Unidad Académica Profesional Chimalhuacán, Universidad Autónoma del Estado de México, Nezahualcóyotl 56353, Mexico State, Mexico;
| | - Grecia E. Osuna-Espinoza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico;
| | - Fidel Salvador-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Rubén Segura-Castañeda
- Facultad Interdisciplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Hermosillo Sonora 83000, Sonora, Mexico;
| | - Uriel N. Solano-Candia
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico;
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| |
Collapse
|
9
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Majidpour M, Azizi SG, Davodabadi F, Sabeti Akbar-Abad M, Abdollahi Z, Sargazi S, Shahriari H. Recent advances in TGF-β signaling pathway in COVID-19 pathogenesis: A review. Microb Pathog 2025; 199:107236. [PMID: 39701478 DOI: 10.1016/j.micpath.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in approximately 7.0 million fatalities between 2019 and 2022, underscoring a pressing need for comprehensive research into its underlying mechanisms and therapeutic avenues. A distinctive feature of severe COVID-19 is the dysregulated immune response characterized by excessive activation of immune cells and the consequent cytokine storms. Recent advancements in our understanding of cellular signaling pathways have illuminated the role of Transforming Growth Factor Beta (TGF-β) as a pivotal signaling molecule with significant implications for the pathogenesis of infectious diseases, including COVID-19. Emerging evidence reveals that TGF-β signaling, when activated by viral components or secondary pathways, adversely affects diverse cell types, particularly immune cells, and lung tissue, leading to complications such as pulmonary fibrosis. In our review article, we critically evaluate recent literature on the involvement of TGF-β signaling in the progression of COVID-19. We discuss a range of pharmacological interventions, including nintedanib, pirfenidone, corticosteroids, proton pump inhibitors, and histone deacetylase inhibitors, and their potential to modulate the TGF-β pathway in the context of COVID-19 treatment. Additionally, we explore ongoing clinical trials involving mesenchymal stem cells, low-dose radiation therapy, and artemisinin derivatives to assess their impact on TGF-β levels and subsequent clinical outcomes in COVID-19 patients. This review is particularly relevant at this juncture as the global health community continues to grapple with the ramifications of the COVID-19 pandemic, highlighting the urgent need for targeted therapeutic strategies aimed at TGF-β modulation to mitigate disease severity and improve patient outcomes.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fatemeh Davodabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Abdollahi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
11
|
Chan L, Pinedo K, Stabile MA, Hamlin RE, Pienkos SM, Ratnasiri K, Yang S, Blomkalns AL, Nadeau KC, Pulendran B, O'Hara R, Rogers AJ, Holmes SP, Blish CA. Prior vaccination prevents overactivation of innate immune responses during COVID-19 breakthrough infection. Sci Transl Med 2025; 17:eadq1086. [PMID: 39879318 DOI: 10.1126/scitranslmed.adq1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave. Breakthrough infections were characterized by a less activated transcriptomic profile in monocytes and natural killer cells, with induction of pathways limiting monocyte migratory potential and natural killer cell proliferation. Furthermore, we observed a female-specific increase in transcriptomic and proteomic activation of multiple innate immune cell subsets during breakthrough infections. These insights suggest that prior SARS-CoV-2 vaccination prevents overactivation of innate immune responses during breakthrough infections with discernible sex-specific patterns and underscore the potential of harnessing vaccines in mitigating pathologic immune responses resulting from overactivation.
Collapse
Affiliation(s)
- Leslie Chan
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikayla A Stabile
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca E Hamlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaun M Pienkos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andra L Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela J Rogers
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Subbarayan K, Al-Samadi A, Schäfer H, Massa C, Salo T, Biehl K, Vaxevanis CK, Ulagappan K, Wahbi W, Reimers M, Drexler F, Moreira-Soto A, Bachmann M, Seliger B. Altered ACE2 and interferon landscape in the COVID-19 microenvironment correlate with the anti-PD-1 response in solid tumors. Cell Mol Life Sci 2024; 81:473. [PMID: 39625479 PMCID: PMC11615173 DOI: 10.1007/s00018-024-05520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Angiotensensin-converting enzyme-2 (ACE2) is a receptor for SARS-CoV-2, allowing the virus to enter cells. Although tumor patients infected by SARS-CoV-2 often have a worse outcome, the expression, function and clinical relevance of ACE2 in tumors has not yet been thoroughly analyzed. In this study, RNA sequencing (RNA-seq) data from tumors, adjacent tissues and whole blood samples of COVID-19 patients from genome databases and from tumor cell lines and endothelial cells infected with different SARS-CoV-2 variants or transfected with an ACE2 expression vector (ACE2high) or mock (ACE2low) were analyzed for the expression of ACE2 and immune response relevant molecules in silico or by qPCR, flow cytometry, Western blot and/or RNA-seq. The differential expression profiles in ACE2high vs. ACE2low cells correlated with available SARS-CoV-2 RNA-seq datasets. ACE2high cells demonstrated upregulated mRNA and/or protein levels of HLA class I, programmed death ligand 1 (PD-L1), components of the antigen processing machinery (APM) and the interferon (IFN) signaling pathway compared to ACE2low cells. Co-cultures of ACE2high cells with peripheral blood mononuclear cells increased immune cell migration and infiltration towards ACE2high cells, apoptosis of ACE2high cells, release of innate immunity-related cytokines and altered NK cell-mediated cytotoxicity. Thus, ACE2 expression was associated in different model systems and upon SARS-CoV-2 infection with an altered host immunogenicity, which might influence the efficacy of immune checkpoint inhibitors. These results provide novel insights into the (patho)physiological role of ACE2 on immune response-relevant mechanisms and suggest an alternative strategy to reduce COVID-19 severity in infected tumor patients targeting the ACE2-induced IFN-PD-L1 axis.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Ahmed Al-Samadi
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Helene Schäfer
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
- Institute of Translational Immunology, Brandenburg an der Havel, Germany
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, 90014, Finland
| | - Katharina Biehl
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Christoforos K Vaxevanis
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Kamatchi Ulagappan
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Matthias Reimers
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | | | | | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Institute of Translational Immunology, Brandenburg an der Havel, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
- Institute of Translational Medicine, Medical School Theodor Fontane, Hochstr. 29, 14770, Brandenburg an der Havel, Germany.
| |
Collapse
|
13
|
Salem S, Lotfy R, Eltaweel N, Elbadry M. Association of plasma microRNAs with COVID-19 severity and outcome. J Genet Eng Biotechnol 2024; 22:100433. [PMID: 39674647 PMCID: PMC11609541 DOI: 10.1016/j.jgeb.2024.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/20/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE As one of the remarkable host responses to SARS-CoV-2 infection, circulating microRNAs (miRNAs) represent important diagnostic and prognostic diseases biomarkers. The study is a step towards highlighting the role of miRNAs in COVID-19 pathogenesis and severity. METHODS In this case-control study, miRCURY LNA miRNA PCR plasma panel (168 miRNAs) was applied and the expression of the altered miRNAs was then analysed by quantitative real time PCR for 120 COVID-19 patients (30 mild, 30 moderate, 30 severe, and 30 critical) and 30 healthy subjects. RESULTS The initial screening showed that 30 miRNAs displayed altered expression, out of them, only eleven miRNAs (miR-885-5p, miR-141-3p, miR-21-5p, miR-127-3p, miR-99b-5p, let-7d-3p, miR-375, miR-1260a, miR-139-5p, miR-28-5p and miR-34a-5p) were dysregulated in the plasma of COVID-19 patients; all of them were significantly overexpressed. By applying ROC curve analysis, AUC for the eleven miRNAs were ranged from 0.65 to 0.83, and the AUC for the combined miRNAs was 0.93. Ten miRNAs (miR-141-3p, miR-181a-5p, miR-221-3p, miR-223-5p, miR99b-5p, Let-7d-3p, miR-375, miR-199a-5p, miR-139-5p and miR-28-5p) exhibited a significant change in their expression between different severity groups. Patients with positive outcome were found to have increased miR-375 and decreased miR-99b-5p expression levels. Bioinformatic prediction showed that, out of the eleven dysregulated miRNAs, five miRNAs (miR-139-5p, -34a-5p, -28-5p, -21-5p and -885-5p) have the ability to regulate at least two genes related to COVID-19 according to KEGG database. CONCLUSION miRNAs are dysregulated in COVID-19 patients and associated with severity degree and patients' outcome.
Collapse
Affiliation(s)
- Sohair Salem
- Molecular Genetics & Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Randa Lotfy
- Molecular Genetics & Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Noha Eltaweel
- Medical, Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed Elbadry
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
14
|
Neppelenbroek S, Blomberg NJ, Kampstra ASB, van der Hem JGK, Huizinga TWJ, Toes REM, Scherer HU. Autoreactive B cells remain active despite clinical disease control in rheumatoid arthritis. J Autoimmun 2024; 149:103320. [PMID: 39342827 DOI: 10.1016/j.jaut.2024.103320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Autoimmune diseases (AIDs) are frequently hallmarked by the presence of autoreactive B cell responses which are involved in disease pathogenesis. However, the dynamics of such responses and their relation to clinical disease activity in humans is poorly understood. Rheumatoid arthritis (RA), a prototypic chronic AID, is hallmarked by B cell responses directed against citrullinated proteins. OBJECTIVE To determine the relation between the activity of the anti-citrullinated protein antibody (ACPA) B cell response and clinical disease activity in ACPA+ patients with RA. METHODS Expression of B cell activation markers by ACPA+, tetanus toxoid (TT)+ and ACPA- memory B cells (MBCs) from peripheral blood of ACPA+ RA patients receiving different treatments was analyzed by flow cytometry. Results were correlated to clinical disease activity. RESULTS Compared to TT+ and ACPA- MBCs, ACPA+ MBCs displayed a highly activated phenotype as evidenced by increased expression of Ki-67, CD86, CD80, CD19 and CD20 and reduced expression of CD32. The activated phenotype of ACPA+ MBCs did not associate with clinical disease activity in a cross-sectional analysis of RA patients treated with various therapeutic agents. Also, in a longitudinal analysis of patients treated with Janus kinase (JAK) inhibitors, ACPA+ MBCs retained their activated phenotype despite effective control of inflammation and clinical disease. CONCLUSION ACPA+ MBCs remain active despite clinical disease control in patients with RA across a range of interventions. This persistent activity indicates the absence of immunological remission and might explain why ACPA+ patients rarely reach sustained drug-free remission and frequently flare upon drug tapering.
Collapse
Affiliation(s)
- Sam Neppelenbroek
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nienke J Blomberg
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
15
|
Pawar P, Akolkar K, Saxena V. An integrated bioinformatics approach reveals the potential role of microRNA-30b-5p and let-7a-5p during SARS CoV-2 spike-1 mediated neuroinflammation. Int J Biol Macromol 2024; 277:134329. [PMID: 39098684 DOI: 10.1016/j.ijbiomac.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
SARS-CoV-2 induced neuroinflammation contributing to neurological sequelae is one of the critical outcomes of long-COVID, however underlying regulatory mechanisms involved therein are poorly understood. We deciphered the profile of dysregulated microRNAs, their targets, associated pathways, protein-protein interactions (PPI), transcription factor-hub genes interaction networks, hub genes-microRNA co-regulatory networks in SARS-CoV-2 Spike-1 (S1) stimulated microglial cells along with candidate drug prediction using RNA-sequencing and multiple bioinformatics approaches. We identified 11 dysregulated microRNAs in the S1-stimulated microglial cells (p < 0.05). KEGG analysis revealed involvement of important neuroinflammatory pathways such as MAPK signalling, PI3K-AKT signalling, Ras signalling and axon guidance. PPI analysis further identified 11 hub genes involved in these pathways. Real time PCR validation confirmed a significant upregulation of microRNA-30b-5p and let-7a-5p; proinflammatory cytokines- IL-6, TNF-α, IL-1β, GM-CSF; and inflammatory genes- PIK3CA and AKT in the S1-stimulated microglial cells, while PTEN and SHIP1 expression was decreased as compared to the non-stimulated cells. Drug prediction analysis further indicated resveratrol, diclofenac and rapamycin as the potential drugs based on their degree of interaction with hub genes. Thus, targeting of these microRNAs and/or their intermediate signalling molecules would be a prospective immunotherapeutic approach in alleviating SARS-CoV-2-S1 mediated neuroinflammation; and needs further investigations.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Kadambari Akolkar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India.
| |
Collapse
|
16
|
Okuducu YK, Mall MA, Yonker LM. COVID-19 in Pediatric Populations. Clin Chest Med 2024; 45:675-684. [PMID: 39069330 DOI: 10.1016/j.ccm.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic reshaped the landscape of respiratory viral illnesses, causing common viruses to fade as SARS-CoV-2 took precedence. By 2023, more than 96% of the children in the United States were estimated to have been infected with SARS-CoV-2, with certain genetic predispositions and underlying health conditions posing risk factors for severe disease in children. Children, in general though, exhibit immunity advantages, protecting against aspects of the SARS-CoV-2 infection known to drive increased severity in older adults. Post-COVID-19 complications such as multisystem inflammatory syndrome in children and long COVID have emerged, underscoring the importance of vaccination. Here, we highlight the risks of severe pediatric COVID-19, age-specific immunoprotection, comparisons of SARS-CoV-2 with other respiratory viruses, and factors contributing to post-COVID-19 complications in children.
Collapse
Affiliation(s)
- Yanki K Okuducu
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, 175 Cambridge Street, 5(th) floor, Boston, MA 02114, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin Augustenburger Platz 1, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany; German Center for Lung Research (DZL), Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lael M Yonker
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, 175 Cambridge Street, 5(th) floor, Boston, MA 02114, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Yan Q, Gao X, Liu B, Hou R, He P, Ma Y, Zhang Y, Zhang Y, Li Z, Chen Q, Wang J, Huang X, Liang H, Zheng H, Yao Y, Chen X, Niu X, He J, Chen L, Zhao J, Xiong X. Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on SARS-CoV-2 spike protein and potentially drive the genesis of Omicron variants. Nat Commun 2024; 15:7585. [PMID: 39217172 PMCID: PMC11366018 DOI: 10.1038/s41467-024-51770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Continued evolution of SARS-CoV-2 generates variants to challenge antibody immunity established by infection and vaccination. A connection between population immunity and genesis of virus variants has long been suggested but its molecular basis remains poorly understood. Here, we identify a class of SARS-CoV-2 neutralizing public antibodies defined by their shared usage of VL6-57 light chains. Although heavy chains of diverse genotypes are utilized, convergent HCDR3 rearrangements have been observed among these public antibodies to cooperate with germline VL6-57 LCDRs to target a convergent epitope defined by RBD residues S371-S373-S375. Antibody repertoire analysis identifies that this class of VL6-57 antibodies is present in SARS-CoV-2-naive individuals and is clonally expanded in most COVID-19 patients. We confirm that Omicron-specific substitutions at S371, S373 and S375 mediate escape of antibodies of the VL6-57 class. These findings support that this class of public antibodies constitutes a potential immune pressure promoting the introduction of S371L/F-S373P-S375F in Omicron variants. The results provide further molecular evidence to support that antigenic evolution of SARS-CoV-2 is driven by antibody mediated population immunity.
Collapse
Affiliation(s)
- Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xijie Gao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruitian Hou
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping He
- Guangzhou National Laboratory, Guangzhou, China
| | - Yong Ma
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Jingjing Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiran Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichen Yao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xianying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
18
|
Schön J, Barut GT, Trüeb BS, Halwe NJ, Berenguer Veiga I, Kratzel A, Ulrich L, Kelly JN, Brügger M, Wylezich C, Taddeo A, Aguiar Moreira E, Túrós D, Grau-Roma L, Ahrens AK, Schlottau K, Britzke T, Breithaupt A, Corleis B, Kochmann J, Oliveira Esteves BI, Almeida L, Thomann L, Devisme C, Stalder H, Steiner S, Ochsenbein S, Schmied K, Labroussaa F, Jores J, V'kovski P, Cmiljanovic V, Alves MP, Benarafa C, Ebert N, Hoffmann D, Beer M, Thiel V. A safe, effective and adaptable live-attenuated SARS-CoV-2 vaccine to reduce disease and transmission using one-to-stop genome modifications. Nat Microbiol 2024; 9:2099-2112. [PMID: 38997518 PMCID: PMC11306094 DOI: 10.1038/s41564-024-01755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses.
Collapse
Affiliation(s)
- Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bettina Salome Trüeb
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Inês Berenguer Veiga
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jenna N Kelly
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Melanie Brügger
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Adriano Taddeo
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Etori Aguiar Moreira
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Demeter Túrós
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Llorenç Grau-Roma
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Tobias Britzke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa Thomann
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christelle Devisme
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvio Steiner
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sarah Ochsenbein
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kimberly Schmied
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jörg Jores
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Marco P Alves
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
- European Virus Bioinformatics Center, Jena, Germany.
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
- European Virus Bioinformatics Center, Jena, Germany.
| |
Collapse
|
19
|
Davis D, Wizel A, Drier Y. Accurate estimation of pathway activity in single cells for clustering and differential analysis. Genome Res 2024; 34:925-936. [PMID: 38981682 PMCID: PMC11293543 DOI: 10.1101/gr.278431.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Inferring which and how biological pathways and gene sets change is a key question in many studies that utilize single-cell RNA sequencing. Typically, these questions are addressed by quantifying the enrichment of known gene sets in lists of genes derived from global analysis. Here we offer SiPSiC, a new method to infer pathway activity in every single cell. This allows more sensitive differential analysis and utilization of pathway scores to cluster cells and compute UMAP or other similar projections. We apply our method to COVID-19, lung adenocarcinoma and glioma data sets, and demonstrate its utility. SiPSiC analysis results are consistent with findings reported in previous studies in many cases, but SiPSiC also reveals the differential activity of novel pathways, enabling us to suggest new mechanisms underlying the pathophysiology of these diseases and demonstrating SiPSiC's high accuracy and sensitivity in detecting biological function and traits. In addition, we demonstrate how it can be used to better classify cells based on activity of biological pathways instead of single genes and its ability to overcome patient-specific artifacts.
Collapse
Affiliation(s)
- Daniel Davis
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Avishai Wizel
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
20
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
21
|
Ferrucci V, Miceli M, Pagliuca C, Bianco O, Castaldo L, Izzo L, Cozzolino M, Zannella C, Oglio F, Polcaro A, Randazzo A, Colicchio R, Galdiero M, Berni Canani R, Salvatore P, Zollo M. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J Transl Med 2024; 22:574. [PMID: 38886736 PMCID: PMC11184722 DOI: 10.1186/s12967-024-05378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by 'multi-system inflammatory syndrome in children' [MIS-C] and the winter pandemic FLU), in the aged population, and in 'fragile' patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. METHODS Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. RESULTS Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates 'polyPs' with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). CONCLUSION The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Marica Cozzolino
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Franca Oglio
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Antonio Polcaro
- Polcaro Fitopreparazioni S.R.L, Via Sant Agnello, 9 D; 80030, Roccarainola, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberto Berni Canani
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
22
|
Ciszewski WM, Woźniak LA, Sobierajska K. Diverse roles of SARS-CoV-2 Spike and Nucleocapsid proteins in EndMT stimulation through the TGF-β-MRTF axis inhibited by aspirin. Cell Commun Signal 2024; 22:296. [PMID: 38807115 PMCID: PMC11134719 DOI: 10.1186/s12964-024-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The SARS-CoV-2 virus causes severe COVID-19 in one-fifth of patients. In addition to high mortality, infection may induce respiratory failure and cardiovascular complications associated with inflammation. Acute or prolonged inflammation results in organ fibrosis, the cause of which might be endothelial disorders arising during the endothelial-mesenchymal transition (EndMT). METHODS HUVECs and HMEC-1 cells were stimulated with SARS-CoV-2 S (Spike) and N (Nucleocapsid) proteins, and EndMT induction was evaluated by studying specific protein markers via Western blotting. Wound healing and tube formation assays were employed to assess the potential of SARS-CoV-2 to stimulate changes in cell behaviour. MRTF nuclear translocation, ROS generation, TLR4 inhibitors, TGF-β-neutralizing antibodies, and inhibitors of the TGF-β-dependent pathway were used to investigate the role of the TGF-β-MRTF signalling axis in SARS-CoV-2-dependent EndMT stimulation. RESULTS Both viral proteins stimulate myofibroblast trans-differentiation. However, the N protein is more effective at EndMT induction. The TGF-β-MRTF pathway plays a critical role in this process. The N protein preferentially favours action through TGF-β2, whose secretion is induced through TLR4-ROS action. TGF-β2 stimulates MRTF-A and MRTF-B nuclear translocation and strongly regulates EndMT. In contrast, the Spike protein stimulates TGF-β1 secretion as a result of ACE2 downregulation. TGF-β1 induces only MRTF-B, which, in turn, weakly regulates EndMT. Furthermore, aspirin, a common nonsteroidal anti-inflammatory drug, might prevent and reverse SARS-CoV-2-dependent EndMT induction through TGF-β-MRTF pathway deregulation. CONCLUSION The reported study revealed that SARS-CoV-2 infection induces EndMT. Moreover, it was demonstrated for the first time at the molecular level that the intensity of the EndMT triggered by SARS-CoV-2 infection may vary and depend on the viral protein involved. The N protein acts through TLR4-ROS-TGF-β2-MRTF-A/B, whereas the S protein acts through ACE2-TGF-β1-MRTF-B. Furthermore, we identified aspirin as a potential anti-fibrotic drug for treating patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka Str. 6/8, Lodz, 92- 215, Poland
| | - Lucyna A Woźniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego Str. 7/9, Lodz, 90-752, Poland
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka Str. 6/8, Lodz, 92- 215, Poland.
| |
Collapse
|
23
|
Ferreira-Gomes M, Chen Y, Durek P, Rincon-Arevalo H, Heinrich F, Bauer L, Szelinski F, Guerra GM, Stefanski AL, Niedobitek A, Wiedemann A, Bondareva M, Ritter J, Lehmann K, Hardt S, Hipfl C, Hein S, Hildt E, Matz M, Mei HE, Cheng Q, Dang VD, Witkowski M, Lino AC, Kruglov A, Melchers F, Perka C, Schrezenmeier EV, Hutloff A, Radbruch A, Dörner T, Mashreghi MF. Recruitment of plasma cells from IL-21-dependent and IL-21-independent immune reactions to the bone marrow. Nat Commun 2024; 15:4182. [PMID: 38755157 PMCID: PMC11099182 DOI: 10.1038/s41467-024-48570-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.
Collapse
Affiliation(s)
- Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Yidan Chen
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Hector Rincon-Arevalo
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Laura Bauer
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Ana-Luisa Stefanski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Bondareva
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Jacob Ritter
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Sebastian Hardt
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hipfl
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sascha Hein
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Mareen Matz
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Qingyu Cheng
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Witkowski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrey Kruglov
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Carsten Perka
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eva V Schrezenmeier
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hutloff
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany.
| |
Collapse
|
24
|
Nakagawa T, Kotetsu Y, Takizawa K, Yoshimi M, Okamoto I, Takata S. An Autopsy Case of COVID-19 with New Diffuse Pulmonary Ossification. Intern Med 2024; 63:1459-1463. [PMID: 38432960 PMCID: PMC11157320 DOI: 10.2169/internalmedicine.3096-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/14/2024] [Indexed: 03/05/2024] Open
Abstract
We present the case of a 61-year-old man who developed coronavirus disease 2019 (COVID-19) and died during treatment for relapsing polychondritis. The patient was intubated and treated with steroid pulse therapy, remdecivir, antibacterial agents, baricitinib, and tocilizumab. However, his respiratory condition worsened, and he died 108 days after disease onset. An autopsy revealed diffuse alveolar damage in the fibrotic phase in all lung lobes, diffuse pulmonary ossification, and cytomegalovirus-infected cells in the middle lobe of the right lung. We herein discuss the clinical features and pathological findings of COVID-19 in immunosuppressed patients.
Collapse
Affiliation(s)
- Taisuke Nakagawa
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
- Department of Respiratory Medicine, National Hospital Organization Fukuokahigashi Medical Center, Japan
| | - Yasuaki Kotetsu
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Katsumi Takizawa
- Department of Pathology, National Hospital Organization Fukuokahigashi Medical Center, Japan
| | - Michihiro Yoshimi
- Department of Respiratory Medicine, National Hospital Organization Fukuokahigashi Medical Center, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Shohei Takata
- Department of Respiratory Medicine, National Hospital Organization Fukuokahigashi Medical Center, Japan
| |
Collapse
|
25
|
Goldner Kabeli R, Zevin S, Abargel A, Zilberberg A, Efroni S. Self-supervised learning of T cell receptor sequences exposes core properties for T cell membership. SCIENCE ADVANCES 2024; 10:eadk4670. [PMID: 38669334 PMCID: PMC11809652 DOI: 10.1126/sciadv.adk4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The T cell receptor (TCR) repertoire is an extraordinarily diverse collection of TCRs essential for maintaining the body's homeostasis and response to threats. In this study, we compiled an extensive dataset of more than 4200 bulk TCR repertoire samples, encompassing 221,176,713 sequences, alongside 6,159,652 single-cell TCR sequences from over 400 samples. From this dataset, we then selected a representative subset of 5 million bulk sequences and 4.2 million single-cell sequences to train two specialized Transformer-based language models for bulk (CVC) and single-cell (scCVC) TCR repertoires, respectively. We show that these models successfully capture TCR core qualities, such as sharing, gene composition, and single-cell properties. These qualities are emergent in the encoded TCR latent space and enable classification into TCR-based qualities such as public sequences. These models demonstrate the potential of Transformer-based language models in TCR downstream applications.
Collapse
Affiliation(s)
- Romi Goldner Kabeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Avital Abargel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
26
|
Kassis G, Palshikar MG, Hilchey SP, Zand MS, Thakar J. Discrete-state models identify pathway specific B cell states across diseases and infections at single-cell resolution. J Theor Biol 2024; 583:111769. [PMID: 38423206 PMCID: PMC11046450 DOI: 10.1016/j.jtbi.2024.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
Oxygen (O2) regulated pathways modulate B cell activation, migration and proliferation during infection, vaccination, and other diseases. Modeling these pathways in health and disease is critical to understand B cell states and ways to mediate them. To characterize B cells by their activation of O2 regulated pathways we develop pathway specific discrete state models using previously published single-cell RNA-sequencing (scRNA-seq) datasets from isolated B cells. Specifically, Single Cell Boolean Omics Network Invariant-Time Analysis (scBONITA) was used to infer logic gates for known pathway topologies. The simplest inferred set of logic gates that maximized the number of "OR" interactions between genes was used to simulate B cell networks involved in oxygen sensing until they reached steady network states (attractors). By focusing on the attractors that best represented sequenced cells, we identified genes critical in determining pathway specific cellular states that corresponded to diseased and healthy B cell phenotypes. Specifically, we investigate the transendothelial migration, regulation of actin cytoskeleton, HIF1A, and Citrate Cycle pathways. Our analysis revealed attractors that resembled the state of B cell exhaustion in HIV+ patients as well as attractors that promoted anerobic metabolism, angiogenesis, and tumorigenesis in breast cancer patients, which were eliminated after neoadjuvant chemotherapy (NACT). Finally, we investigated the attractors to which the Azimuth-annotated B cells mapped and found that attractors resembling B cells from HIV+ patients encompassed a significantly larger number of atypical memory B cells than HIV- attractors. Meanwhile, attractors resembling B cells from breast cancer patients post NACT encompassed a reduced number of atypical memory B cells compared to pre-NACT attractors.
Collapse
Affiliation(s)
- George Kassis
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Mukta G Palshikar
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Shannon P Hilchey
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin S Zand
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, USA
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA; Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA; Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, USA.
| |
Collapse
|
27
|
Hejenkowska ED, Yavuz H, Swiatecka-Urban A. Beyond Borders of the Cell: How Extracellular Vesicles Shape COVID-19 for People with Cystic Fibrosis. Int J Mol Sci 2024; 25:3713. [PMID: 38612524 PMCID: PMC11012075 DOI: 10.3390/ijms25073713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The interaction between extracellular vesicles (EVs) and SARS-CoV-2, the virus causing COVID-19, especially in people with cystic fibrosis (PwCF) is insufficiently studied. EVs are small membrane-bound particles involved in cell-cell communications in different physiological and pathological conditions, including inflammation and infection. The CF airway cells release EVs that differ from those released by healthy cells and may play an intriguing role in regulating the inflammatory response to SARS-CoV-2. On the one hand, EVs may activate neutrophils and exacerbate inflammation. On the other hand, EVs may block IL-6, a pro-inflammatory cytokine associated with severe COVID-19, and protect PwCF from adverse outcomes. EVs are regulated by TGF-β signaling, essential in different disease states, including COVID-19. Here, we review the knowledge, identify the gaps in understanding, and suggest future research directions to elucidate the role of EVs in PwCF during COVID-19.
Collapse
|
28
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 216] [Impact Index Per Article: 216.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Radke J, Meinhardt J, Aschman T, Chua RL, Farztdinov V, Lukassen S, Ten FW, Friebel E, Ishaque N, Franz J, Huhle VH, Mothes R, Peters K, Thomas C, Schneeberger S, Schumann E, Kawelke L, Jünger J, Horst V, Streit S, von Manitius R, Körtvélyessy P, Vielhaber S, Reinhold D, Hauser AE, Osterloh A, Enghard P, Ihlow J, Elezkurtaj S, Horst D, Kurth F, Müller MA, Gassen NC, Melchert J, Jechow K, Timmermann B, Fernandez-Zapata C, Böttcher C, Stenzel W, Krüger E, Landthaler M, Wyler E, Corman V, Stadelmann C, Ralser M, Eils R, Heppner FL, Mülleder M, Conrad C, Radbruch H. Proteomic and transcriptomic profiling of brainstem, cerebellum and olfactory tissues in early- and late-phase COVID-19. Nat Neurosci 2024; 27:409-420. [PMID: 38366144 DOI: 10.1038/s41593-024-01573-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.
Collapse
Affiliation(s)
- Josefine Radke
- Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany.
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Lorenz Chua
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vadim Farztdinov
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sören Lukassen
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Foo Wei Ten
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ekaterina Friebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Naveed Ishaque
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Franz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Valerie Helena Huhle
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ronja Mothes
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kristin Peters
- Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Carolina Thomas
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Shirin Schneeberger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Schumann
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leona Kawelke
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Jünger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Viktor Horst
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Regina von Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Péter Körtvélyessy
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guerike University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guerike University Magdeburg, Magdeburg, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Anja Osterloh
- Department of Pathology, University Medical Center Ulm, Ulm, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Ihlow
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sefer Elezkurtaj
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Horst
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Julia Melchert
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Jechow
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Camila Fernandez-Zapata
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institut für Biologie, Humboldt Universität, Berlin, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victor Corman
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), associated partner, Berlin, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Ralser
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence NeuroCure, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Conrad
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
30
|
Kruglov AA, Bondareva MA, Gogoleva VS, Semin IK, Astrakhantseva IV, Zvartsev R, Lunin AS, Apolokhov VD, Shustova EY, Volok VP, Ustyugov AA, Ishmukhametov AA, Nedospasov SA, Kozlovskaya LI, Drutskaya MS. Inactivated whole virion vaccine protects K18-hACE2 Tg mice against the Omicron SARS-CoV-2 variant via cross-reactive T cells and nonneutralizing antibody responses. Eur J Immunol 2024; 54:e2350664. [PMID: 38088236 DOI: 10.1002/eji.202350664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/02/2024]
Abstract
COVID-19 is a systemic inflammatory disease initiated by SARS-CoV-2 virus infection. Multiple vaccines against the Wuhan variant of SARS-CoV-2 have been developed including a whole virion beta-propiolactone-inactivated vaccine based on the B.1.1 strain (CoviVac). Since most of the population has been vaccinated by targeting the original or early variants of SARS-CoV-2, the emergence of novel mutant variants raises concern over possible evasion of vaccine-induced immune responses. Here, we report on the mechanism of protection by CoviVac, a whole virion-based vaccine, against the Omicron variant. CoviVac-immunized K18-hACE2 Tg mice were protected against both prototype B.1.1 and BA.1-like (Omicron) variants. Subsequently, vaccinated K18-hACE2 Tg mice rapidly cleared the infection via cross-reactive T-cell responses and cross-reactive, non-neutralizing antibodies recognizing the Omicron variant Spike protein. Thus, our data indicate that efficient protection from SARS-CoV-2 variants can be achieved by the orchestrated action of cross-reactive T cells and non-neutralizing antibodies.
Collapse
Affiliation(s)
- Andrey A Kruglov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Systems Rheumatology, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Marina A Bondareva
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Systems Rheumatology, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Violetta S Gogoleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Iaroslav K Semin
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Systems Rheumatology, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Irina V Astrakhantseva
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Ruslan Zvartsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr S Lunin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Vasiliy D Apolokhov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Elena Yu Shustova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Viktor P Volok
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Aydar A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moskva, Moscow, Russia
| | - Sergei A Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Liubov I Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moskva, Moscow, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| |
Collapse
|
31
|
Passi R, Cholewa-Waclaw J, Wereski R, Bennett M, Veizades S, Berkeley B, Caporali A, Li Z, Rodor J, Dewerchin M, Mills NL, Beqqali A, Brittan M, Baker AH. COVID-19 plasma induces subcellular remodelling within the pulmonary microvascular endothelium. Vascul Pharmacol 2024; 154:107277. [PMID: 38266794 DOI: 10.1016/j.vph.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect multiple organ systems, including the pulmonary vasculature. Endothelial cells (ECs) are thought to play a key role in the propagation of COVID-19, however, our understanding of the exact scale of dysregulation sustained by the pulmonary microvasculature (pMV) remains incomplete. Here we aim to identify transcriptional, phenotypic, and functional changes within the pMV induced by COVID-19. METHODS AND RESULTS Human pulmonary microvascular endothelial cells (HPMVEC) treated with plasma acquired from patients hospitalised with severe COVID-19 were compared to HPMVEC treated with plasma from patients hospitalised without COVID-19 but with other severe illnesses. Exposure to COVID-19 plasma caused a significant functional decline in HPMVECs as seen by a decrease in both cell viability via the WST-1 cell-proliferation assay and cell-to-cell barrier function as measured by electric cell-substrate impedance sensing. High-content imaging using a Cell Painting image-based assay further quantified morphological variations within sub-cellular organelles to show phenotypic changes in the whole endothelial cell, nucleus, mitochondria, plasma membrane and nucleolus morphology. RNA-sequencing of HPMVECs treated with COVID-19 plasma suggests the observed phenotype may, in part, be regulated by genes such as SMAD7, BCOR, SFMBT1, IFIT5 and ZNF566 which are involved in transcriptional regulation, protein monoubiquitination and TGF-β signalling. CONCLUSION AND IMPACT During COVID-19, the pMV undergoes significant remodelling, which is evident based on the functional, phenotypic, and transcriptional changes seen following exposure to COVID-19 plasma. The observed morphological variation may be responsible for downstream complications, such as a decline in overall cellular function and cell-to-cell barrier integrity. Moreover, genes identified through bulk RNA sequencing may contribute to our understanding of the observed phenotype and assist in developing strategies that can inform the rescue of the dysregulated endothelium.
Collapse
Affiliation(s)
- Rainha Passi
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Ryan Wereski
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Stefan Veizades
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Stanford Cardiovascular Institute, Stanford University, Stanford 94305, CA, USA
| | - Bronwyn Berkeley
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ziwen Li
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
32
|
Wolf C, Lim EL, Mokhtari M, Kind B, Odainic A, Lara-Villacanas E, Koss S, Mages S, Menzel K, Engel K, Dückers G, Bernbeck B, Schneider DT, Siepermann K, Niehues T, Goetzke CC, Durek P, Minden K, Dörner T, Stittrich A, Szelinski F, Guerra GM, Massoud M, Bieringer M, de Oliveira Mann CC, Beltrán E, Kallinich T, Mashreghi MF, Schmidt SV, Latz E, Klughammer J, Majer O, Lee-Kirsch MA. UNC93B1 variants underlie TLR7-dependent autoimmunity. Sci Immunol 2024; 9:eadi9769. [PMID: 38207055 DOI: 10.1126/sciimmunol.adi9769] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.
Collapse
Affiliation(s)
- Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Ee Lyn Lim
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Mohammad Mokhtari
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Barbara Kind
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Alexandru Odainic
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eusebia Lara-Villacanas
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Sarah Koss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Simon Mages
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Katharina Menzel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Kerstin Engel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Gregor Dückers
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Benedikt Bernbeck
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Dominik T Schneider
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | | | - Tim Niehues
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Carl Christoph Goetzke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Kirsten Minden
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Anna Stittrich
- Labor Berlin Charité-Vivantes GmbH, Department of Human Genetics, Berlin 13353, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Mona Massoud
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Markus Bieringer
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin 13125, Germany
| | | | - Eduardo Beltrán
- Institute for Clinical Neuroimmunology, BioMedizinisches Zentrum, Ludwig-Maximilians-Universität Munich, Munich 82152, Germany
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
| | - Johanna Klughammer
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Olivia Majer
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
33
|
Islam MA, Getz M, Macklin P, Ford Versypt AN. An agent-based modeling approach for lung fibrosis in response to COVID-19. PLoS Comput Biol 2023; 19:e1011741. [PMID: 38127835 PMCID: PMC10769079 DOI: 10.1371/journal.pcbi.1011741] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/05/2024] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The severity of the COVID-19 pandemic has created an emerging need to investigate the long-term effects of infection on patients. Many individuals are at risk of suffering pulmonary fibrosis due to the pathogenesis of lung injury and impairment in the healing mechanism. Fibroblasts are the central mediators of extracellular matrix (ECM) deposition during tissue regeneration, regulated by anti-inflammatory cytokines including transforming growth factor beta (TGF-β). The TGF-β-dependent accumulation of fibroblasts at the damaged site and excess fibrillar collagen deposition lead to fibrosis. We developed an open-source, multiscale tissue simulator to investigate the role of TGF-β sources in the progression of lung fibrosis after SARS-CoV-2 exposure, intracellular viral replication, infection of epithelial cells, and host immune response. Using the model, we predicted the dynamics of fibroblasts, TGF-β, and collagen deposition for 15 days post-infection in virtual lung tissue. Our results showed variation in collagen area fractions between 2% and 40% depending on the spatial behavior of the sources (stationary or mobile), the rate of activation of TGF-β, and the duration of TGF-β sources. We identified M2 macrophages as primary contributors to higher collagen area fraction. Our simulation results also predicted fibrotic outcomes even with lower collagen area fraction when spatially-localized latent TGF-β sources were active for longer times. We validated our model by comparing simulated dynamics for TGF-β, collagen area fraction, and macrophage cell population with independent experimental data from mouse models. Our results showed that partial removal of TGF-β sources changed the fibrotic patterns; in the presence of persistent TGF-β sources, partial removal of TGF-β from the ECM significantly increased collagen area fraction due to maintenance of chemotactic gradients driving fibroblast movement. The computational findings are consistent with independent experimental and clinical observations of collagen area fractions and cell population dynamics not used in developing the model. These critical insights into the activity of TGF-β sources may find applications in the current clinical trials targeting TGF-β for the resolution of lung fibrosis.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Michael Getz
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
34
|
de Souza Xavier Costa N, Ribeiro Júnior G, do Nascimento ECT, de Brito JM, Antonangelo L, Faria CS, Monteiro JS, Setubal JC, Pinho JRR, Pereira RV, Seelaender M, de Castro GS, Lima JDCC, de Almeida Monteiro RA, Duarte-Neto AN, Saldiva PHN, Ferraz da Silva LF, Dolhnikoff M, Mauad T. COVID-19 induces more pronounced extracellular matrix deposition than other causes of ARDS. Respir Res 2023; 24:281. [PMID: 37964271 PMCID: PMC10648646 DOI: 10.1186/s12931-023-02555-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Lung fibrosis is a major concern in severe COVID-19 patients undergoing mechanical ventilation (MV). Lung fibrosis frequency in post-COVID syndrome is highly variable and even if the risk is proportionally small, many patients could be affected. However, there is still no data on lung extracellular matrix (ECM) composition in severe COVID-19 and whether it is different from other aetiologies of ARDS. METHODS We have quantified different ECM elements and TGF-β expression in lung tissue of 28 fatal COVID-19 cases and compared to 27 patients that died of other causes of ARDS, divided according to MV duration (up to six days or seven days or more). In COVID-19 cases, ECM elements were correlated with lung transcriptomics and cytokines profile. RESULTS We observed that COVID-19 cases presented significant increased deposition of collagen, fibronectin, versican, and TGF-β, and decreased decorin density when compared to non-COVID-19 cases of similar MV duration. TGF-β was precociously increased in COVID-19 patients with MV duration up to six days. Lung collagen was higher in women with COVID-19, with a transition of upregulated genes related to fibrillogenesis to collagen production and ECM disassembly along the MV course. CONCLUSIONS Fatal COVID-19 is associated with an early TGF-β expression lung environment after the MV onset, followed by a disordered ECM assembly. This uncontrolled process resulted in a prominent collagen deposition when compared to other causes of ARDS. Our data provides pathological substrates to better understand the high prevalence of pulmonary abnormalities in patients surviving COVID-19.
Collapse
Affiliation(s)
| | - Gabriel Ribeiro Júnior
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Jôse Mara de Brito
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leila Antonangelo
- Laboratório de Investigação Médica (LIM03), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
- Divisão de Patologia Clínica, Departamento de Patologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Silvério Faria
- Laboratório de Investigação Médica (LIM03), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química Universidade de São Paulo, São Paulo, Brazil
| | - João Renato Rebello Pinho
- Laboratório de Investigação Médica (LIM03), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Roberta Verciano Pereira
- Laboratório de Investigação Médica (LIM03), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
- Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Gabriela Salim de Castro
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
- Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Joanna D C C Lima
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
- Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | | | - Amaro Nunes Duarte-Neto
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Luiz Fernando Ferraz da Silva
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Serviço de Verificação de Óbitos da Capital, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Departamento de Patologia, Laboratório de Patologia Ambiental (LIM- 05), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil.
| |
Collapse
|
35
|
Bondareva M, Budzinski L, Durek P, Witkowski M, Angermair S, Ninnemann J, Kreye J, Letz P, Ferreira-Gomes M, Semin I, Guerra GM, Momsen Reincke S, Sánchez-Sendin E, Yilmaz S, Sempert T, Heinz GA, Tizian C, Raftery M, Schönrich G, Matyushkina D, Smirnov IV, Govorun VM, Schrezenmeier E, Stefanski AL, Dörner T, Zocche S, Viviano E, Klement N, Sehmsdorf KJ, Lunin A, Chang HD, Drutskaya M, Kozlovskaya L, Treskatsch S, Radbruch A, Diefenbach A, Prüss H, Enghard P, Mashreghi MF, Kruglov AA. Cross-regulation of antibody responses against the SARS-CoV-2 Spike protein and commensal microbiota via molecular mimicry. Cell Host Microbe 2023; 31:1866-1881.e10. [PMID: 37944493 DOI: 10.1016/j.chom.2023.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
The commensal microflora provides a repertoire of antigens that illicit mucosal antibodies. In some cases, these antibodies can cross-react with host proteins, inducing autoimmunity, or with other microbial antigens. We demonstrate that the oral microbiota can induce salivary anti-SARS-CoV-2 Spike IgG antibodies via molecular mimicry. Anti-Spike IgG antibodies in the saliva correlated with enhanced abundance of Streptococcus salivarius 1 month after anti-SARS-CoV-2 vaccination. Several human commensal bacteria, including S. salivarius, were recognized by SARS-CoV-2-neutralizing monoclonal antibodies and induced cross-reactive anti-Spike antibodies in mice, facilitating SARS-CoV-2 clearance. A specific S. salivarius protein, RSSL-01370, contains regions with homology to the Spike receptor-binding domain, and immunization of mice with RSSL-01370 elicited anti-Spike IgG antibodies in the serum. Additionally, oral S. salivarius supplementation enhanced salivary anti-Spike antibodies in vaccinated individuals. Altogether, these data show that distinct species of the human microbiota can express molecular mimics of SARS-CoV-2 Spike protein, potentially enhancing protective immunity.
Collapse
Affiliation(s)
- Marina Bondareva
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Lisa Budzinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Mario Witkowski
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Stefan Angermair
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Justus Ninnemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Jakob Kreye
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Philine Letz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Iaroslav Semin
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - S Momsen Reincke
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Elisa Sánchez-Sendin
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Selin Yilmaz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Toni Sempert
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Caroline Tizian
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Martin Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daria Matyushkina
- Scientific Research Institute for Systems Biology and Medicine, Scientific Driveway, 18, 117246 Moscow, Russia
| | - Ivan V Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Vadim M Govorun
- Scientific Research Institute for Systems Biology and Medicine, Scientific Driveway, 18, 117246 Moscow, Russia
| | - Eva Schrezenmeier
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Anna-Luisa Stefanski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Silvia Zocche
- Departments of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité University Medicine, 10117 Berlin, Germany
| | - Edoardo Viviano
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, 10117 Berlin, Germany
| | - Nele Klement
- Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Katharina Johanna Sehmsdorf
- Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Alexander Lunin
- Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marina Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Liubov Kozlovskaya
- Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sascha Treskatsch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Diefenbach
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Andrey A Kruglov
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
36
|
Letellier A, Rolland-Debord C, Luque-Paz D, Milon A, Choinier P, Blin E, Halitim P, Bravais J, Lefèvre G, Parrot A, Piéroni L, Cadranel J. Prognostic value of serum Krebs von den Lungen-6 (KL-6) levels in COVID-19 pneumonia. Respir Med Res 2023; 84:101054. [PMID: 37897878 DOI: 10.1016/j.resmer.2023.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/23/2023] [Accepted: 09/30/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND OBJECTIVES Krebs von den Lungen-6 (KL-6), expressed by damaged type II pneumocytes, is useful in the diagnosis and severity assessment of many diffuse interstitial lung diseases. The objective of our study was to determine the prognostic value of the initial KL-6 plasma level in COVID-19 pneumonia. METHODS All patients hospitalized for a suspected COVID-19 pneumonia between March and May 2020 in our Chest department of a French university hospital were included. KL-6 serum concentrations were measured within 72 h of diagnostic suspicion by chemiluminescence enzyme immunoassay Survival analysis was performed using a Cox regression and modeled by a Kaplan-Meier curve. RESULTS Sixty-six COVID-19 patients (average age = 64 ± 14 years, 71.2 % males) with KL-6 serum measurement were included. Median KL-6 serum concentration was 409 ± 312 U/mL. KL-6 was significantly higher in men (p = 0.003), elders (p = 0.0001) and in patients with greater Charlson's score (p = 0.002). Higher KL-6 concentration was significantly associated with in-hospital mortality (HR: 8.66; 95 % CI:1.1-69.2, p = 0.014), radiological extension of lesions on chest CT scan (p = 0.004) and higher WHO severity score (p = 0.042), but not with admission in intensive care unit. In 9 (14 %) non-surviving COVID-19 patients, KL-6 serum concentration increased whereas it remained stable or decreased in survivors. At 3 months follow-up (n = 48), DLCO was negatively correlated with the initial KL-6 value (r = 0.47, p = 0.001), while FVC, FEV1 and MRC score were not. CONCLUSION Initial KL-6 serum concentration is significantly associated with in-hospital mortality, unfavorable outcome, and persistent impairment of DLCO at 3 months. Initial KL-6 plasma determination appears as a prognostic biomarker in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Alice Letellier
- Department of Pulmonology and Thoracic Oncology, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France
| | - Camille Rolland-Debord
- Department of Pulmonology and Thoracic Oncology, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France
| | - David Luque-Paz
- Department of Infectious Diseases and Intensive Care Unit, Pontchaillou Hospital, CHU Rennes, 2 rue Henri Guilloux, 35000 Rennes, France
| | - Audrey Milon
- Radiology Department, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine,75920 Paris, France
| | - Pascaline Choinier
- Department of Pulmonology and Thoracic Oncology, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France
| | - Emmanuelle Blin
- Department of Pulmonology and Thoracic Oncology, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France
| | - Pierre Halitim
- Department of Pulmonology and Thoracic Oncology, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France
| | - Juliette Bravais
- Department of Pulmonology and Thoracic Oncology, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France
| | - Guillaume Lefèvre
- Biochemistry Department, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France
| | - Antoine Parrot
- Department of Pulmonology and Thoracic Oncology, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France
| | - Laurence Piéroni
- Biochemistry Department, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France
| | - Jacques Cadranel
- Department of Pulmonology and Thoracic Oncology, AP-HP Tenon Hospital, Sorbonne University, 4 rue de la Chine, 75920 Paris, France.
| |
Collapse
|
37
|
Roozbehani M, Razizadeh MH, Keyvani H, Nejati F, Soleymani S, Mousavizadeh L. Expression Pattern of Cholesterol 25-Hydroxylase and Serum Level of 25-Hydroxycholesterol and Relevant Inflammatory Cytokines in Patients with Varying Disease Severity of COVID-19. Viral Immunol 2023; 36:610-616. [PMID: 37831916 DOI: 10.1089/vim.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) and its product 25-hydroxycholesterol (25HC) showed antiviral effects against various viruses in vitro. CH25H expression is regulated in mice by pro-inflammatory cytokine interferons (IFNs) in mice but data on its possible correlation with IFNs in humans are still unclear. We examined gene expression of CH25H, IFN-α, and IFN-β and serum levels of 25HC in Iranian patients with mild and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Fifty intensive care unit (ICU) patients and outpatients with SARS-CoV-2 and 25 healthy controls were studied. Gene expression of CH25H and relevant inflammatory cytokines was quantified in peripheral blood mononuclear cells by real-time polymerase chain reaction. The expression of CH25H and serum levels of 25HC were significantly higher in ICU patients with SARS-CoV-2. Notably, IFN-α levels increased in healthy controls. However, compared to healthy controls, IFN-β was considerably higher in outpatients. Finally, statistical analysis shows that no correlation was found between CH25H and IFN-α expression; nevertheless, a lower correlation was found with IFN-β. The data revealed that CH25H and 25HC levels increase after SARS-CoV-2 infection. In other words, decreased levels of those factors in severe patients compared with mild patients may indicate the importance of their function in controlling the progression of the disease.
Collapse
Affiliation(s)
- Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nejati
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sharareh Soleymani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Leila Mousavizadeh
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Huang CQ, Vishwanath S, Carnell GW, Chan ACY, Heeney JL. Immune imprinting and next-generation coronavirus vaccines. Nat Microbiol 2023; 8:1971-1985. [PMID: 37932355 DOI: 10.1038/s41564-023-01505-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023]
Abstract
Vaccines based on historical virus isolates provide limited protection from continuously evolving RNA viruses, such as influenza viruses or coronaviruses, which occasionally spill over between animals and humans. Despite repeated booster immunizations, population-wide declines in the neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have occurred. This has been compared to seasonal influenza vaccinations in humans, where the breadth of immune responses induced by repeat exposures to antigenically distinct influenza viruses is confounded by pre-existing immunity-a mechanism known as imprinting. Since its emergence, SARS-CoV-2 has evolved in a population with partial immunity, acquired by infection, vaccination or both. Here we critically examine the evidence for and against immune imprinting in host humoral responses to SARS-CoV-2 and its implications for coronavirus disease 2019 (COVID-19) booster vaccine programmes.
Collapse
Affiliation(s)
- Chloe Qingzhou Huang
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sneha Vishwanath
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - George William Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Chun Yue Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
O'Reilly S. Pulmonary fibrosis in COVID-19: mechanisms, consequences and targets. QJM 2023; 116:750-754. [PMID: 37191984 DOI: 10.1093/qjmed/hcad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Pulmonary fibrosis is characterized by extracellular deposition in the lung primarily collagen but also other ECM molecules. The primary cell type responsible for this is the myofibroblast, and this can be induced by various stressors and signals. Infections be they bacterial or viral can cause pulmonary fibrosis (PF). In 2019, severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2) originated in Wuhan, China, has led to a worldwide pandemic and can lead to acute respiratory distress and lung fibrosis. The virus itself can be cleared, but patients may develop long-term PF, which can be debilitating and life-limiting. There is a significantly perturbed immune response that shapes the fibrotic response leading to fibrosis. Given the importance of PF irrespective of cause, understanding the similarities and differences in pathogenesis caused by SARS-CoV-2-induced PF may yield new therapeutic targets. This review examines the pathology associated with the disease and discusses possible targets.
Collapse
Affiliation(s)
- S O'Reilly
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
40
|
Maddaloni L, Santinelli L, Bugani G, Cacciola EG, Lazzaro A, Lofaro CM, Caiazzo S, Frasca F, Fracella M, Ajassa C, Leanza C, Napoli A, Cinti L, Gaeta A, Antonelli G, Ceccarelli G, Mastroianni CM, Scagnolari C, d'Ettorre G. Differential expression of Type I interferon and inflammatory genes in SARS-CoV-2-infected patients treated with monoclonal antibodies. Immun Inflamm Dis 2023; 11:e968. [PMID: 37904704 PMCID: PMC10571496 DOI: 10.1002/iid3.968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Considering the reported efficacy of monoclonal antibodies (mAbs) directed against the Spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in reducing disease severity, the aim of this study was to investigate the innate immune response before and after mAbs treatment in 72 vaccinated and 31 unvaccinated SARS-CoV-2 patients. METHODS The mRNA levels of IFN-I, IFN-related genes and cytokines were evaluated using RT/real-time quantitative PCR. RESULTS Vaccinated patients showed increased rate of negative SARS-CoV-2 PCR tests on nasopharyngeal swab compared with unvaccinated ones after mAbs treatment (p = .002). Unvaccinated patients had lower IFN-α/ω and higher IFN-related genes (IFNAR1, IFNAR2, IRF9, ISG15, ISG56 and IFI27) and cytokines (IL-6, IL-10 and TGF-β) mRNA levels compared to vaccinated individuals before mAbs (p < .05 for all genes). Increased IFN-α/ω, IFNAR1, IFNAR2 and IRF9 levels were observed in unvaccinated patients after mAbs treatment, while the mRNA expression ISGs and IL-10 were reduced in all patients. CONCLUSION These data suggest that anti-S vaccinated patients have increased levels of innate immune genes compared to unvaccinated ones. Also, gene expression changes in IFN genes after mAbs administration are different according to the vaccination status of patients.
Collapse
Affiliation(s)
- Luca Maddaloni
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Letizia Santinelli
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Ginevra Bugani
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Elio G. Cacciola
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Alessandro Lazzaro
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Chiara M. Lofaro
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Sara Caiazzo
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Federica Frasca
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Matteo Fracella
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Camilla Ajassa
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Cristiana Leanza
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Anna Napoli
- Laboratory of Microbiology and Virology, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Lilia Cinti
- Laboratory of Microbiology and Virology, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Aurelia Gaeta
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Guido Antonelli
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
- Azienda Ospedaliero‐Universitaria Policlinico Umberto IRomeItaly
| | | | - Carolina Scagnolari
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| |
Collapse
|
41
|
Kim D, Biancon G, Bai Z, VanOudenhove J, Liu Y, Kothari S, Gowda L, Kwan JM, Buitrago-Pocasangre NC, Lele N, Asashima H, Racke MK, Wilson JE, Givens TS, Tomayko MM, Schulz WL, Longbrake EE, Hafler DA, Halene S, Fan R. Microfluidic Immuno-Serolomic Assay Reveals Systems Level Association with COVID-19 Pathology and Vaccine Protection. SMALL METHODS 2023; 7:e2300594. [PMID: 37312418 PMCID: PMC10592458 DOI: 10.1002/smtd.202300594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Indexed: 06/15/2023]
Abstract
How to develop highly informative serology assays to evaluate the quality of immune protection against coronavirus disease-19 (COVID-19) has been a global pursuit over the past years. Here, a microfluidic high-plex immuno-serolomic assay is developed to simultaneously measure50 plasma or serum samples for50 soluble markers including 35proteins, 11 anti-spike/receptor binding domian (RBD) IgG antibodies spanningmajor variants, and controls. This assay demonstrates the quintuplicate test in a single run with high throughput, low sample volume, high reproducibilityand accuracy. It is applied to the measurement of 1012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein analysis reveals distinct immune mediator modules that exhibit a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies or receiving B cell depletion therapy. Serological analysis identifies that COVID-infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which can be associated with limited clonotype diversity and functional deficiency in B cells. These findings underscore the importance to individualize immunization strategies for these high-risk patients and provide an informative tool to monitor their responses at the systems level.
Collapse
Affiliation(s)
- Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yuxin Liu
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shalin Kothari
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jennifer M Kwan
- Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Nikhil Lele
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
| | | | | | | | | | - Mary M Tomayko
- Departments of Dermatology, Yale University, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Wade L Schulz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Erin E Longbrake
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
| | - David A Hafler
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale University, New Haven, CT, 06520, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center and Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center and Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Human and Translational Immunology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
42
|
Frischbutter S, Durek P, Witkowski M, Angermair S, Treskatsch S, Maurer M, Radbruch A, Mashreghi MF. Serum TGF-β as a predictive biomarker for severe disease and fatality of COVID-19. Eur J Immunol 2023; 53:e2350433. [PMID: 37386908 DOI: 10.1002/eji.202350433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
For targeted intervention in coronavirus disease 2019 (COVID-19), there is a high medical need for biomarkers that predict disease progression and severity in the first days after symptom onset. This study assessed the utility of early transforming growth factor β (TGF-β) serum levels in COVID-19 patients to predict disease severity, fatality, and response to dexamethasone therapy. Patients with severe COVID-19 had significantly higher TGF-β levels (416 pg/mL) as compared to patients with mild (165 pg/mL, p < 0.0001) or moderate COVID-19 (241 pg/mL; p < 0.0001). Receiver operating characteristics area under the curve values were 0.92 (95% confidence interval [CI] 0.85-0.99, cut-off: 255 pg/mL) for mild versus severe COVID-19, and 0.83 (95% CI 0.65-1.0, cut-off: 202 pg/mL) for moderate versus severe COVID-19. Patients who died of severe COVID-19 had significantly higher TGF-β levels (453 pg/mL) as compared to convalescent patients (344 pg/mL), and TGF-β levels predicted fatality (area under the curve: 0.75, 95% CI 0.53-0.96). TGF-β was significantly reduced in severely ill patients treated with dexamethasone (301 pg/mL) as compared to untreated patients (416 pg/mL; p < 0.05). Early TGF-β serum levels in COVID-19 patients predict, with high accuracy, disease severity, and fatality. In addition, TGF-β serves as a specific biomarker to assess response to dexamethasone treatment.
Collapse
Affiliation(s)
- Stefan Frischbutter
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Allergology, Campus Benjamin Franklin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Mario Witkowski
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Angermair
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Sascha Treskatsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Marcus Maurer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Allergology, Campus Benjamin Franklin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
43
|
Ciszewski WM, Wozniak LA, Sobierajska K. SARS-CoV-2 S and N protein peptides drive invasion abilities of colon cancer cells through TGF-β1 regulation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119541. [PMID: 37468071 DOI: 10.1016/j.bbamcr.2023.119541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
The COVID-19 pandemic led to the delay of colorectal cancer (CRC) diagnosis, which causes CRC to be treated at more advanced, often metastatic stages. Unfortunately, there is no effective treatment for metastatic CRC stages, which are considered the leading cause of patients' death. The mortality induced by SARS-CoV-2 is significantly higher in cancer patients than in patients with other diseases. Interestingly, COVID-19 patients often develop fibrosis which depends on epithelial-mesenchymal transition (EMT) - the process also involved in cancer progression. The study aimed to verify whether SARS-CoV-2 induces EMT and consequently increases the invasion potential of colon cancer cells. CRC cells were stimulated with SARS-CoV-2 S and N protein peptides and epithelial and mesenchymal markers were analysed with Western blotting to detect the occurrence of the EMT. The migration, invasion assays and MMP-7 secretion were employed to evaluate the potential of SARS-CoV-2 to stimulate the cells invasion in vitro. ELISA assay, TGF-β1 neutralizing antibodies, TGF-βR silencing and inhibitors were used to investigate the role of the TGF-β1 signalling pathways in the SARS-CoV-2-dependent CRC stimulation. The SARS-CoV-2 induced EMT, which increased the invasion ability of CRC cells. Moreover, the SARS-CoV-2 proteins drive colon cancer cell invasion through TGF-β1. Additionally, secreted TGF-β1 induced a bystander effect in colon cancer cells. However, blocking TGF-β1/Smad- and -non-Smad-dependent pathways suppressed the SARS-CoV-2-induced invasiveness of CRC. In conclusion, we revealed that SARS-CoV-2 stimulates the invasion abilities of CRC by regulating TGF-β1-induced EMT. Our results provide a theoretical basis for using anti-TGF-β1 therapy to reduce the risk of CRC metastasis during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Lucyna A Wozniak
- Department of Structural Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
44
|
Lücke J, Heinrich F, Malsy J, Meins N, Schnell J, Böttcher M, Nawrocki M, Zhang T, Bertram F, Sabihi M, Kempski J, Blankenburg T, Duprée A, Reeh M, Wolter S, Mann O, Izbicki JR, Lohse AW, Gagliani N, Lütgehetmann M, Bunders MJ, Altfeld M, Sauter G, Giannou AD, Krasemann S, Ondruschka B, Huber S. Intestinal IL-1β Plays a Role in Protecting against SARS-CoV-2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1052-1061. [PMID: 37556130 PMCID: PMC10476162 DOI: 10.4049/jimmunol.2200844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/11/2023] [Indexed: 08/10/2023]
Abstract
The intestine is constantly balancing the maintenance of a homeostatic microbiome and the protection of the host against pathogens such as viruses. Many cytokines mediate protective inflammatory responses in the intestine, among them IL-1β. IL-1β is a proinflammatory cytokine typically activated upon specific danger signals sensed by the inflammasome. SARS-CoV-2 is capable of infecting multiple organs, including the intestinal tract. Severe cases of COVID-19 were shown to be associated with a dysregulated immune response, and blocking of proinflammatory pathways was demonstrated to improve patient survival. Indeed, anakinra, an Ab against the receptor of IL-1β, has recently been approved to treat patients with severe COVID-19. However, the role of IL-1β during intestinal SARS-CoV-2 infection has not yet been investigated. Here, we analyzed postmortem intestinal and blood samples from patients who died of COVID-19. We demonstrated that high levels of intestinal IL-1β were associated with longer survival time and lower intestinal SARS-CoV-2 RNA loads. Concurrently, type I IFN expression positively correlated with IL-1β levels in the intestine. Using human intestinal organoids, we showed that autocrine IL-1β sustains RNA expression of IFN type I by the intestinal epithelial layer. These results outline a previously unrecognized key role of intestinal IL-1β during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Heinrich
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Malsy
- I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Nicholas Meins
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Josa Schnell
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Böttcher
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikolaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Bertram
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tom Blankenburg
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Duprée
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W. Lohse
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Madeleine J. Bunders
- Leibniz Institute of Virology, Hamburg, Germany
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Zhang J, Zhu Y, Wang X, Wang J. 25-hydroxycholesterol: an integrator of antiviral ability and signaling. Front Immunol 2023; 14:1268104. [PMID: 37781400 PMCID: PMC10533924 DOI: 10.3389/fimmu.2023.1268104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Cholesterol, as an important component in mammalian cells, is efficient for viral entry, replication, and assembly. Oxysterols especially hydroxylated cholesterols are recognized as novel regulators of the innate immune response. The antiviral ability of 25HC (25-Hydroxycholesterol) is uncovered due to its role as a metabolic product of the interferon-stimulated gene CH25H (cholesterol-25-hydroxylase). With the advancement of research, the biological functions of 25HC and its structural functions have been interpreted gradually. Furthermore, the underlying mechanisms of antiviral effect of 25HC are not only limited to interferon regulation. Taken up by the special biosynthetic ways and structure, 25HC contributes to modulate not only the cholesterol metabolism but also autophagy and inflammation by regulating signaling pathways. The outcome of modulation by 25HC seems to be largely dependent on the cell types, viruses and context of cell microenvironments. In this paper, we review the recent proceedings on the regulatory effect of 25HC on interferon-independent signaling pathways related to its antiviral capacity and its putative underlying mechanisms.
Collapse
Affiliation(s)
- Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Xiaojia Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
46
|
Johnston J, Dorrian D, Linden D, Stanel SC, Rivera-Ortega P, Chaudhuri N. Pulmonary Sequelae of COVID-19: Focus on Interstitial Lung Disease. Cells 2023; 12:2238. [PMID: 37759460 PMCID: PMC10527752 DOI: 10.3390/cells12182238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
As the world transitions from the acute phase of the COVID-19 pandemic, a novel concern has arisen-interstitial lung disease (ILD) as a consequence of SARS-CoV-2 infection. This review discusses what we have learned about its epidemiology, radiological, and pulmonary function findings, risk factors, and possible management strategies. Notably, the prevailing radiological pattern observed is organising pneumonia, with ground-glass opacities and reticulation frequently reported. Longitudinal studies reveal a complex trajectory, with some demonstrating improvement in lung function and radiographic abnormalities over time, whereas others show more static fibrotic changes. Age, disease severity, and male sex are emerging as risk factors for residual lung abnormalities. The intricate relationship between post-COVID ILD and idiopathic pulmonary fibrosis (IPF) genetics underscores the need for further research and elucidation of shared pathways. As this new disease entity unfolds, continued research is vital to guide clinical decision making and improve outcomes for patients with post-COVID ILD.
Collapse
Affiliation(s)
- Janet Johnston
- Interstitial Lung Diseases Unit, North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK (P.R.-O.)
| | - Delia Dorrian
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Dermot Linden
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
- Mater Hospital, Belfast Health and Social Care Trust, Belfast BT14 6AB, UK
| | - Stefan Cristian Stanel
- Interstitial Lung Diseases Unit, North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK (P.R.-O.)
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Pilar Rivera-Ortega
- Interstitial Lung Diseases Unit, North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK (P.R.-O.)
| | - Nazia Chaudhuri
- School of Medicine, Magee Campus, University of Ulster, Northlands Road, Londonderry BT48 7JL, UK;
| |
Collapse
|
47
|
Hejenkowska ED, Mitash N, Donovan JE, Chandra A, Bertrand C, De Santi C, Greene CM, Mu F, Swiatecka-Urban A. TGF-β1 Inhibition of ACE2 Mediated by miRNA Uncovers Novel Mechanism of SARS-CoV-2 Pathogenesis. J Innate Immun 2023; 15:629-646. [PMID: 37579743 PMCID: PMC10601633 DOI: 10.1159/000533606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, utilizes receptor binding domain (RBD) of spike glycoprotein to interact with angiotensin (Ang)-converting enzyme 2 (ACE2). Altering ACE2 levels may affect entry of SARS-CoV-2 and recovery from COVID-19. Decreased cell surface density of ACE2 leads to increased local levels of Ang II and may contribute to mortality resulting from acute lung injury and fibrosis during COVID-19. Studies published early during the COVID-19 pandemic reported that people with cystic fibrosis (PwCF) had milder symptoms, compared to people without CF. This finding was attributed to elevated ACE2 levels and/or treatment with the high efficiency CFTR modulators. Subsequent studies did not confirm these findings reporting variable effects of CFTR gene mutations on ACE2 levels. Transforming growth factor (TGF)-β signaling is essential during SARS-CoV-2 infection and dominates the chronic immune response in severe COVID-19, leading to pulmonary fibrosis. TGF-β1 is a gene modifier associated with more severe lung disease in PwCF but its effects on the COVID-19 course in PwCF is unknown. To understand whether TGF-β1 affects ACE2 levels in the airway, we examined miRNAs and their gene targets affecting SARS-CoV-2 pathogenesis in response to TGF-β1. Small RNAseq and micro(mi)RNA profiling identified pathways uniquely affected by TGF-β1, including those associated with SARS-CoV-2 invasion, replication, and the host immune responses. TGF-β1 inhibited ACE2 expression by miR-136-3p and miR-369-5p mediated mechanism in CF and non-CF bronchial epithelial cells. ACE2 levels were higher in two bronchial epithelial cell models expressing the most common CF-causing mutation in CFTR gene F508del, compared to controls without the mutation. After TGF-β1 treatment, ACE2 protein levels were still higher in CF, compared to non-CF cells. TGF-β1 prevented the modulator-mediated rescue of F508del-CFTR function while the modulators did not prevent the TGF-β1 inhibition of ACE2 levels. Finally, TGF-β1 reduced the interaction between ACE2 and the recombinant spike RBD by lowering ACE2 levels and its binding to RBD. Our data demonstrate novel mechanism whereby TGF-β1 inhibition of ACE2 in CF and non-CF bronchial epithelial cells may modulate SARS-CoV-2 pathogenicity and COVID-19 severity. By reducing ACE2 levels, TGF-β1 may decrease entry of SARS-CoV-2 into the host cells while hindering the recovery from COVID-19 due to loss of the anti-inflammatory and regenerative effects of ACE2. The above outcomes may be modulated by other, miRNA-mediated effects exerted by TGF-β1 on the host immune responses, leading to a complex and yet incompletely understood circuitry.
Collapse
Affiliation(s)
| | - Nilay Mitash
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua E. Donovan
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Anvita Chandra
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Carol Bertrand
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine M. Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
48
|
Gauthier T, Yao C, Dowdy T, Jin W, Lim YJ, Patiño LC, Liu N, Ohlemacher SI, Bynum A, Kazmi R, Bewley CA, Mitrovic M, Martin D, Morell RJ, Eckhaus M, Larion M, Tussiwand R, O’Shea J, Chen W. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Sci Signal 2023; 16:eade0385. [PMID: 37552767 PMCID: PMC11145950 DOI: 10.1126/scisignal.ade0385] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Changes in metabolism of macrophages are required to sustain macrophage activation in response to different stimuli. We showed that the cytokine TGF-β (transforming growth factor-β) regulates glycolysis in macrophages independently of inflammatory cytokine production and affects survival in mouse models of sepsis. During macrophage activation, TGF-β increased the expression and activity of the glycolytic enzyme PFKL (phosphofructokinase-1 liver type) and promoted glycolysis but suppressed the production of proinflammatory cytokines. The increase in glycolysis was mediated by an mTOR-c-MYC-dependent pathway, whereas the inhibition of cytokine production was due to activation of the transcriptional coactivator SMAD3 and suppression of the activity of the proinflammatory transcription factors AP-1, NF-κB, and STAT1. In mice with LPS-induced endotoxemia and experimentally induced sepsis, the TGF-β-induced enhancement in macrophage glycolysis led to decreased survival, which was associated with increased blood coagulation. Analysis of septic patient cohorts revealed that the expression of PFKL, TGFBRI (which encodes a TGF-β receptor), and F13A1 (which encodes a coagulation factor) in myeloid cells positively correlated with COVID-19 disease. Thus, these results suggest that TGF-β is a critical regulator of macrophage metabolism and could be a therapeutic target in patients with sepsis.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Chen Yao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Wenwen Jin
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Liliana C. Patiño
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Na Liu
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Shannon I. Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Andrew Bynum
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Rida Kazmi
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mladen Mitrovic
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Michael Eckhaus
- Division of Veterinary Resources, Pathology Service, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Roxane Tussiwand
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - John O’Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - WanJun Chen
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| |
Collapse
|
49
|
Ndoricyimpaye EL, Van Snick J, Robert R, Bikorimana E, Majyambere O, Mukantwari E, Nshimiyimana T, Mbonigaba V, Coutelier JP, Rujeni N. Cytokine Kinetics during Progression of COVID-19 in Rwanda Patients: Could IL-9/IFNγ Ratio Predict Disease Severity? Int J Mol Sci 2023; 24:12272. [PMID: 37569646 PMCID: PMC10418469 DOI: 10.3390/ijms241512272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
For effective treatments and preventive measures against severe COVID-19, it is essential to determine early markers of disease severity in different populations. We analysed the cytokine kinetics of 129 COVID-19 patients with mild symptoms, 68 severe cases, and 20 healthy controls for the first time in Rwanda. Pro-inflammatory (IFNγ, IL-6, TNFα), Treg (IL-10, TGFβ1, TGFβ3), Th9 (IL-9), Th17 (IL-17), and Th2 (IL-4, IL-13) cytokines, total IgM and IgG, as well as gene expressions of FoxP3, STAT5+, IFNγ-R1, and ROR alpha+, were measured at day 1, day 7, day 14, day 21, and day 28 post-infection. Severe cases showed a significantly stronger increase than mild patients in levels of all cytokines (except IL-9) and all gene expression on day 1 of infection. Some cytokine levels dropped to levels comparable to mild cases at later time points. Further analysis identified IFNγ as a marker of severity throughout the disease course, while TGFβ1, IL-6, and IL-17 were markers of severity only at an early phase. Importantly, this study revealed a striking low IL-9 level and high IFNγ/IL-9 ratio in the plasma of patients who later died compared to mild and severe cases who recovered, suggesting that this could be an important biomarker for predicting the severity of COVID-19 and post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
- de Duve Institute, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Jacques Van Snick
- Ludwig Institute for Cancer Research, Universite Catholique de Louvain, 1348 Brussels, Belgium;
| | - Rutayisire Robert
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
- National Reference Laboratory, Rwanda Biomedical Center, Kigali P.O. Box 4285, Rwanda; (E.M.); (V.M.)
| | - Emmanuel Bikorimana
- Department of General Nursing, School of Nursing, College of Medicine and Health Science, University of Rwanda, Kigali P.O. Box 3248, Rwanda;
| | - Onesphore Majyambere
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
| | - Enatha Mukantwari
- National Reference Laboratory, Rwanda Biomedical Center, Kigali P.O. Box 4285, Rwanda; (E.M.); (V.M.)
| | - Thaddée Nshimiyimana
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
| | - Valens Mbonigaba
- National Reference Laboratory, Rwanda Biomedical Center, Kigali P.O. Box 4285, Rwanda; (E.M.); (V.M.)
| | - Jean Paul Coutelier
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
- de Duve Institute, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Nadine Rujeni
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
| |
Collapse
|
50
|
Yao C, Parimon T, Espindola MS, Hohmann MS, Konda B, Hogaboam CM, Stripp BR, Chen P. Maladaptive TGF-β Signals to the Alveolar Epithelium Drive Fibrosis after COVID-19 Infection. Am J Respir Crit Care Med 2023; 208:201-204. [PMID: 37236627 PMCID: PMC10395488 DOI: 10.1164/rccm.202302-0264le] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
- Changfu Yao
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tanyalak Parimon
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Milena S Espindola
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Miriam S Hohmann
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bindu Konda
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Barry R Stripp
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Chen
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|