1
|
Bean DJ, Liang YM, Avila F, He X, Asundi A, Sagar M. Endemic coronavirus infection is associated with SARS-CoV-2 Fc receptor-binding antibodies. J Virol 2025:e0055025. [PMID: 40387363 DOI: 10.1128/jvi.00550-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 05/20/2025] Open
Abstract
Recent documented infection with an endemic coronavirus (eCoV) is associated with less severe coronavirus disease 2019 (COVID-19), yet the immune mechanism behind this protection has not been fully explored. We measured both antibody and T-cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in SARS-CoV-2-naïve individuals, classified into two groups: those with or without presumed recent eCoV infections. There was no difference in neutralizing antibodies and T-cell responses against SARS-CoV-2 antigens between the two groups. SARS-CoV-2-naïve individuals with recent presumed eCoV infection, however, had higher and significantly correlated levels of Fc receptor (FcR)-binding antibodies against eCoV spikes (S) and SARS-CoV-2 S2. Recent eCoV infection boosts cross-reactive antibodies that can mediate Fc effector functions, and this may play a role in the observed heterotypic immune protection against severe COVID-19. IMPORTANCE With the recent emergence of SARS-CoV-2 and other pathogenic coronaviruses, it is important to understand how the immune system may protect against disease from future coronavirus outbreaks. We investigated the adaptive immune responses elicited from a "common cold" eCoV and measured the cross-reactivity against SARS-CoV-2 in individuals classified as having or not having a recent eCoV infection. Although both groups had similar cross-reactive T-cell and neutralizing antibody responses, individuals with a recent eCoV infection had higher antibody levels capable of Fc receptor binding. Antibodies with enhanced Fc receptor binding could mediate the killing of virally infected cells through mechanisms such as antibody-dependent cellular cytotoxicity, which may reduce the severity of COVID-19. Antibodies capable of mediating Fc effector functions may be critical for therapies and vaccines against future pathogenic coronavirus outbreaks.
Collapse
Affiliation(s)
- David J Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Frida Avila
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Xianbao He
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Archana Asundi
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Shang Z, Huang L, Qin S. The underlying mechanism behind the different outcomes of COVID-19 in children and adults. Front Immunol 2025; 16:1440169. [PMID: 40370452 PMCID: PMC12075420 DOI: 10.3389/fimmu.2025.1440169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has affected hundreds of millions of people globally, resulting in millions of deaths. During this pandemic, children have demonstrated greater resistance than adults, exhibiting lower infection rates, reduced mortality, and milder symptoms. Summarizing the differences in resistance between children and adults during COVID-19 can provide insights into protective mechanisms and potential implications for future treatments. In this review, we focused on summarizing and discussing the mechanisms for better protection of children in COVID-19. These protective mechanisms encompass several factors: the baseline expression of cell surface receptor ACE2 and hydrolase TMPRSS2, the impact of complications on COVID-19, and age-related cytokine profiles. Additionally, differences in local and systemic immune responses between children and adults also contribute significantly, particularly interferon responses, heterologous protection from non-COVID-19 vaccinations, and immune status variations influenced by micronutrient levels. The advantageous protection mechanisms of these children may provide insights into the prevention and treatment of COVID-19. Importantly, while age-related metabolic profiles and differential COVID-19 vaccine responses may contribute to protection in children, current comparative research remains limited and requires further investigation.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Ling Huang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shijie Qin
- Innovative Vaccine and Immunotherapy Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Castro-Trujillo S, Castro-Meneses J, Rojas MC, Castro-Amaya M, Lastra G, Narváez CF. Regulatory cytokines modulate early isotype-specific response associated with COVID-19 survival. Front Immunol 2025; 16:1543626. [PMID: 40342417 PMCID: PMC12058664 DOI: 10.3389/fimmu.2025.1543626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/01/2025] [Indexed: 05/11/2025] Open
Abstract
Identifying immune markers driving early and effective antibody response in patients with severe coronavirus disease 2019 (COVID-19) is critical due to the threat of future coronavirus pandemics, incomplete global vaccination, and suboptimal booster coverage. Patients with life-threatening severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by dysregulated thromboinflammation and cytokine storm that could influence the isotype virus-specific antibody response and the subsequent clinical outcome. We investigated the association between COVID-19-related mortality with the dynamics, magnitude, and relative avidity of nucleoprotein (N), spike (S), and receptor-binding domain (RBD)-specific IgM, IgA, and IgG in circulation. We also assessed the relationship between the virus-specific antibody responses and cytokine patterns, as well as systemic and pulmonary thromboinflammation markers. This multicenter study included COVID-19 patients hospitalized early in the pandemic, classified as survivors (n=62) and non-survivors (n=17). We developed indirect enzyme-linked immunosorbent assays (ELISAs) to evaluate each virus-specific isotype using well-characterized outpatient COVID-19 (n=180) and pre-pandemic cohorts (n=111). The pro-inflammatory interleukin (IL)-6 and tumor necrosis factor (TNF)-α, as well as the regulatory IL-10, transforming growth factor (TGF)-β1, and soluble tumor necrosis factor receptor I (sTNFRI) levels were evaluated. The ELISAs performed highly for all virus-specific isotypes, although modest for IgM-N. Non-survivors increased N-specific, but no S-specific, IgM and IgA responses throughout the disease course and, more notably, a delayed class switching to IgG-S and IgG-RBD compared to survivors. No differences were observed in the virus-specific IgG relative avidity. Survivors exhibited an antibody response proportional to the degree of systemic and pulmonary thromboinflammation, whereas non-survivors showed those dissociated because of their uncontrolled severe thromboinflammation. Only the survivors showed a dominant regulatory cytokine pattern in the early phase of infection (<10 days after symptoms onset), which strongly correlated with developing IgG-S and IgG-RBD protective antibodies. We developed easy-to-use immune assays that enable patient monitoring and identify at-risk populations in low- to middle-income regions. Non-survivors displayed an ineffective N-mediated antibody response, marked by an inability to control inflammation and a compromised time-dependent class switching toward S and RBD-specific IgG. The regulatory cytokine axis, including TGF-β1, maybe a critical immune correlate of effective antibody-mediated immunity in COVID-19.
Collapse
Affiliation(s)
- Sebastián Castro-Trujillo
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Juanita Castro-Meneses
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Programa de Biología Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - María Clemencia Rojas
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| | - Marcela Castro-Amaya
- Departamento de Medicina Interna, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Giovani Lastra
- Departamento de Medicina Interna, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Carlos F. Narváez
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
4
|
Mukenge EK, Sumbu BMM, Nkodila AN, Muwonga JM, Makulo JRR, Ngole MZ, Bepouka BI, Longokolo MM, Kamwiziku G, Situakibanza HN, Kayembe JMN, Longo-Mbenza B, Mvumbi GL, Buassa-Bu-Tsumbu B, Makangara JC, Mashinda DK, Mafuta EM, Mangala DS, Nkanga MN, Ilunga GN, Nkunda FT, Lengo CN, Ahuka SM. Incidence of dynamic seroconversion in subjects received the first dose of the SARS-COV-2 vaccine (AstraZeneca, Moderna and Pfizer) in Kinshasa, Democratic Republic of Congo: prospective cohort study. BMC Infect Dis 2025; 25:342. [PMID: 40069636 PMCID: PMC11899428 DOI: 10.1186/s12879-025-10754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Mass vaccination efforts worldwide have reduced the incidence of COVID-19, but despite this reduction, seroconversion studies in sub-Saharan Africa are limited. The aim of this study is to assess the incidence of seroconversion in subjects who received the first dose of SARS-COV-2 vaccine (AstraZeneca, Moderna and Pfizer) in Kinshasa. METHODS This was a prospective study recruiting 918 subjects vaccinated at the Cliniques Universitaires de Kinshasa between 19 April and 14 August 2021. Sociodemographic, haematological, biochemical and serological data were collected. Cox proportional hazards were used to identify predictors of seroconversion with a threshold of p < 0.05. RESULTS Of the 918 vaccinated individuals, 69.3% were men with a mean age of 47.4 ± 16.0 years. The incidence of seroconversion at last follow-up was 3.00 per 100 P-D. Patients receiving Pfizer (aRR: 3.19; 95% CI: 2.62-3.88) and Modern (aRR: 1.91; 95% CI: 1.60-2.29) vaccines, men (aRR: 2.03; 95% CI: 1.89-3.20), those with comorbidities (aRR: 2.38; 95% CI: 1.89-3.21); subjects with normal creatinine (aRR: 2.08; 95% CI: 1.88-3.32) and normal ALT (aRR: 3.04; 95% CI: 1.89-4.22) were the factors independently predicting seroconversion. CONCLUSION The vaccines used had conferred significant immunity on subjects upon receipt of the first dose. This immunity appears to be greater when using the mRNA vaccine than when using the inactivated vaccine.
Collapse
Affiliation(s)
- Eric Kasongo Mukenge
- Department of Clinical Biology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Aliocha Natuhoyila Nkodila
- Department of Family Medicine and Primary Health Care, Protestant University of Congo, Kinshasa, Democratic Republic of Congo.
| | - Jeremie Masidi Muwonga
- Department of Clinical Biology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Mamy Zita Ngole
- Department of Clinical Biology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Ben Izizag Bepouka
- Department of Internal Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Guyguy Kamwiziku
- Department of Microbiology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | | | - Benjamin Longo-Mbenza
- Department of Internal Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - George Lelo Mvumbi
- Department of Basic Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Jean Claude Makangara
- Department of Microbiology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Eric Musalu Mafuta
- School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Donatien Sonzi Mangala
- Department of Internal Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Mireille Nganga Nkanga
- Department of Clinical Biology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Gustave Ntita Ilunga
- Department of Clinical Biology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Fonce Tshibawu Nkunda
- Department of Clinical Biology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Christian Nsimba Lengo
- Department of Clinical Biology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Steve Mundeke Ahuka
- Department of Microbiology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| |
Collapse
|
5
|
Trimbake D, Singh D, K. YG, Babar P, S. VD, Tripathy AS. Durability of Functional SARS-CoV-2-Specific Immunological Memory and T Cell Response up to 8-9 Months Postrecovery From COVID-19. J Immunol Res 2025; 2025:9743866. [PMID: 39963186 PMCID: PMC11832264 DOI: 10.1155/jimr/9743866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025] Open
Abstract
Research on long-term follow-up in individuals who have recovered from coronavirus disease-19 (COVID-19) would yield insights regarding their immunity status and identify those who need booster vaccinations. This study evaluated the longevity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific cellular and humoral memory responses, as well as T cell effector functionalities, at 1-2 months (n = 40), 8-9 months (n = 40), and 12 months/1 year (n = 27) following recovery from SARS-CoV-2 infection. CTL response by enzyme-linked immunospot (ELISPOT); levels of cytokine by Bio-Plex, natural killer (NK), CD4+ helper, and CD8+ cytotoxic T cell functionalities using flow cytometry; anti-SARS-CoV-2 IgG by ELISA; and levels of neutralizing antibodies (NAbs) by surrogate virus NAb assay were assessed. The levels of SARS-CoV-2-specific IgG and NAb at 1-2 and 8-9 months postrecovery were hand in hand and appeared declining. SARS-CoV-2-specific B, memory B and plasma cells, and T cells sustained up to 8-9 months. Increased expression of CD107a/IFN-γ by NK cells and cytotoxic T cells at 8-9 months could be indicative of SARS-CoV-2-specific effector functions. Recovered individuals with positive and negative IgG antibody status displayed T cell response up to 1 year and 8-9 months, respectively, emphasizing the durabilty of effector immunity up to 8-9 months regardless of IgG antibody status. Overall, the recovered individuals exhibited robust immunological memory, sustained T cell response with effector functionality against SARS-CoV-2 that persists for at least 8-9 months.
Collapse
Affiliation(s)
- Diptee Trimbake
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| | - Dharmendra Singh
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| | - Yogesh Gurav K.
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| | - Prasad Babar
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| | - Varsha Dange S.
- Department of Medicine, Pimpri Chinchwad Municipal Corporation, Pimpri, Pune 411018, Maharashtra, India
| | - Anuradha S. Tripathy
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| |
Collapse
|
6
|
Fialova M, Cecrdlova E, Zahradka I, Petr V, Hruby F, Modos I, Viklicky O, Striz I. Attenuated neutralization, maintained specificity: Humoral response to SARS-CoV-2 booster in kidney allograft recipients. Diagn Microbiol Infect Dis 2025; 111:116550. [PMID: 39437653 DOI: 10.1016/j.diagmicrobio.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Despite the lower virulence of current SARS-CoV-2 variants and high rates of vaccinated and previously infected subjects, COVID-19 remains a persistent threat in kidney transplant recipients (KTRs). This study evaluated the parameters of anti-SARS-CoV-2 antibody production in 120 KTRs. The production of neutralizing antibodies in KTRs, following booster vaccination with the mRNA vaccine BNT162b2, was significantly decreased and their decline was faster than in healthy subjects. Factors predisposing to the downregulation of anti-SARS-CoV-2 neutralizing antibodies included age, lower estimated glomerular filtration rate, and a full dose of mycophenolate mofetil. Neutralizing antibodies correlated with those targeting the SARS-CoV-2 receptor binding domain (RBD), SARS-CoV-2 Spike trimmer, total SARS-CoV-2 S1 protein, as well as with antibodies to the deadly SARS-CoV-1 virus. No cross-reactivity was found with antibodies against seasonal coronaviruses. KTRs exhibited lower postvaccination production of neutralizing antibodies against SARS-CoV-2; however, the specificity of their humoral response did not differ compared to healthy subjects.
Collapse
Affiliation(s)
- Martina Fialova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Cecrdlova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ivan Zahradka
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtech Petr
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Filip Hruby
- Information Technology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Istvan Modos
- Information Technology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ondrej Viklicky
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
7
|
Kuijper LH, Kreher C, Elias G, Claireaux M, Kerster G, Bos AV, Duurland MC, Konijn VAL, Paul AGA, de Jong N, de Jongh R, Steenhuis M, Garcia-Vallejo JJ, van Gils MJ, Kuijpers TW, Eftimov F, Rispens T, van der Schoot CE, van Ham SM, ten Brinke A. Longevity of antibody responses is associated with distinct antigen-specific B cell subsets early after infection. Front Immunol 2024; 15:1505719. [PMID: 39742271 PMCID: PMC11686410 DOI: 10.3389/fimmu.2024.1505719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Upon infection, T cell-driven B cell responses in GC reactions induce memory B cells and antibody-secreting cells that secrete protective antibodies. How formation of specifically long-lived plasma cells is regulated via the interplay between specific B and CD4+ T cells is not well understood. Generally, antibody levels decline over time after clearance of the primary infection. Method In this study, convalescent individuals with stable RBD antibody levels (n=14, "sustainers") were compared with donors (n=13) with the greatest antibody decline from a cohort of 132. To investigate the role of the cellular immune compartment in the maintenance of antibody levels, SARS-CoV-2-specific responses at 4 to 6 weeks post-mild COVID-19 infection were characterized using deep immune profiling. Results Both groups had similar frequencies of total SARS-CoV-2-specific B and CD4+ T cells. Sustainers had fewer Spike-specific IgG+ memory B cells early after infection and increased neutralizing capacity of RBD antibodies over time, unlike the declining group. However, declining IgG titers correlated with lower frequency of Spike-specific CD4+ T cells. Conclusion These data suggest that "sustainers" have unique dynamics of GC reactions, yield different outputs of terminally differentiating cells, and improve the quality of protective antibodies over time. This study helps identify factors controlling formation of long-lived PC and sustained antibody responses.
Collapse
Affiliation(s)
- Lisan H. Kuijper
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine Kreher
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - George Elias
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mathieu Claireaux
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Gius Kerster
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Amélie V. Bos
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mariël C. Duurland
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique A. L. Konijn
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alberta G. A. Paul
- Cytek Biosciences, Inc., Fremont, CA, United States
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, Netherlands
| | - Nina de Jong
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rivka de Jongh
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maurice Steenhuis
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Wang S, Yan J, Song M, Xue Z, Wang Z, Diao R, Liu Q, Ruan Q, Yao C. Development of a nomogram for high antibody titre of COVID-19 convalescent plasma. Epidemiol Infect 2024; 152:e167. [PMID: 39659202 PMCID: PMC11696598 DOI: 10.1017/s0950268824001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
This study aimed to develop a predictive tool for identifying individuals with high antibody titers crucial for recruiting COVID-19 convalescent plasma (CCP) donors and to assess the quality and storage changes of CCP. A convenience sample of 110 plasma donors was recruited, of which 75 met the study criteria. Using univariate logistic regression and random forest, 6 significant factors were identified, leading to the development of a nomogram. Receiver operating characteristic curves, calibration plots, and decision curve analysis (DCA) evaluated the nomogram's discrimination, calibration, and clinical utility. The nomogram indicated that females aged 18 to 26, blood type O, receiving 1 to 2 COVID-19 vaccine doses, experiencing 2 symptoms during infection, and donating plasma 41 to 150 days after symptom onset had higher likelihoods of high antibody titres. Nomogram's AUC was 0.853 with good calibration. DCA showed clinical benefit within 9% ~ 90% thresholds. CCP quality was qualified, with stable antibody titres over 6 months (P > 0.05). These findings highlight developing predictive tools to identify suitable CCP donors and emphasize the stability of CCP quality over time, suggesting its potential for long-term storage.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Jie Yan
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Min Song
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Zhenrui Xue
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Zerong Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Ronghua Diao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Qianying Ruan
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, P.R China
| |
Collapse
|
9
|
Gonçalves ACA, Conzentino MDS, de Souza Barbosa AB, Doline FR, Nilsson MG, da Silva AV, Kmetiuk LB, Biondo AW, Huergo LF. Ultrafast and high-throughput immunoassay assay to detect anti-SARS-CoV-2 IgG antibodies in dogs and cats. Braz J Microbiol 2024; 55:4183-4189. [PMID: 39302629 PMCID: PMC11711606 DOI: 10.1007/s42770-024-01518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/08/2024] [Indexed: 09/22/2024] Open
Abstract
The fact that SARS-CoV-2 has reportedly infected companion, livestock and wildlife animals may constitute a significant risk for virus reservoirs, ground for emerging variants and potential for novel reverse zoonosis. Hence, SARS-CoV-2 surveillance in animal species is crucial to prevent emerging variants which may spread to humans. The present study aimed to develop a simple, high-throughput and ultrafast magnetic bead immunoassay to detect anti-SARS-CoV-2 nucleocapsid and spike reactive IgG antibodies in dog and cat serum samples. The assays were validated using serum from eleven dogs and cats which had SARS-CoV-2 infections confirmed by real-time RT-PCR. The negative cohort consisted of pre-pandemic dog and cat samples. The assays performed at 73-82% sensitivity and 97.5-98% specificity for dogs and 71% sensitivity and 92-94% specificity for cats. The lower assay specificity for cats is explained by the fact that cat pre-pandemic sera showed high levels of cross-reactive with SARS-CoV-2 Nucleocapsid and Spike, supporting that these animals have been exposed to other coronavirus sharing structural similarities with SARS-CoV-2. These assays described in this work are now being used for SARS-CoV-2 surveillance and research purposes.
Collapse
Affiliation(s)
| | - Marcelo Dos Santos Conzentino
- Seashore Campus Setor Litoral, Federal University of Paraná (UFPR), 512 Jaguariaíva Street, Matinhos, Paraná, 83260-000, Brazil
| | - Altina Bruna de Souza Barbosa
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Paraná, 81531-970, Brazil
| | - Fernando Rodrigo Doline
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Paraná, 81531-970, Brazil
| | - Mariana Guimarães Nilsson
- Zoonosis and Public Health Research Group, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, 44036-900, Brazil
| | - Aristeu Vieira da Silva
- Zoonosis and Public Health Research Group, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, 44036-900, Brazil
| | - Louise Bach Kmetiuk
- Carlos Chagas Institut, Oswaldo Cruz Foundation, Curitiba, Paraná, 81310-020, Brazil
| | - Alexander Welker Biondo
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Paraná, 81531-970, Brazil
| | - Luciano Fernandes Huergo
- Seashore Campus Setor Litoral, Federal University of Paraná (UFPR), 512 Jaguariaíva Street, Matinhos, Paraná, 83260-000, Brazil.
| |
Collapse
|
10
|
Bean DJ, Liang YM, Sagar M. Recent Endemic Coronavirus Infection Associates With Higher SARS-CoV-2 Cross-Reactive Fc Receptor Binding Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619886. [PMID: 39484477 PMCID: PMC11527020 DOI: 10.1101/2024.10.23.619886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recent documented infection with an endemic coronavirus (eCoV) associates with less severe coronavirus disease 2019 (COVID-19), yet the immune mechanism behind this protection has not been fully explored. We measured both antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in SARS-CoV-2 naïve individuals classified into two groups, either with or without presumed recent eCoV infections. There was no difference in neutralizing antibodies and T cell responses against SARS-CoV-2 antigens between the two groups. SARS-CoV-2 naïve individuals with recent presumed eCoV infection, however, had higher levels of Fc receptor (FcR) binding antibodies against eCoV spikes (S) and SARS-CoV-2 S2. There was also a significant correlation between eCoV and SARS-CoV-2 FcR binding antibodies. Recent eCoV infection boosts cross-reactive antibodies that can mediate Fc effector functions, and this may play a role in the observed heterotypic immune protection against severe COVID-19.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| |
Collapse
|
11
|
Abela IA, Hauser A, Schwarzmüller M, Pasin C, Kusejko K, Epp S, Cavassini M, Battegay M, Rauch A, Calmy A, Notter J, Bernasconi E, Fux CA, Leuzinger K, Perreau M, Ramette A, Gottschalk J, Schindler E, Wepf A, Marconato M, Manz MG, Frey BM, Braun DL, Huber M, Günthard HF, Trkola A, Kouyos RD. Deciphering Factors Linked With Reduced Severe Acute Respiratory Syndrome Coronavirus 2 Susceptibility in the Swiss HIV Cohort Study. J Infect Dis 2024; 230:e292-e304. [PMID: 38227786 PMCID: PMC11326820 DOI: 10.1093/infdis/jiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Factors influencing susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain to be resolved. Using data from the Swiss HIV Cohort Study on 6270 people with human immunodeficiency virus (HIV) and serologic assessment for SARS-CoV-2 and circulating human coronavirus (HCoV) antibodies, we investigated the association of HIV-related and general parameters with SARS-CoV-2 infection. METHODS We analyzed SARS-CoV-2 polymerase chain reaction test results, COVID-19-related hospitalizations, and deaths reported to the Swiss HIV Cohort Study between 1 January 2020 and 31 December 2021. Antibodies to SARS-CoV-2 and HCoVs were determined in prepandemic (2019) and pandemic (2020) biobanked plasma samples and compared with findings in HIV-negative individuals. We applied logistic regression, conditional logistic regression, and bayesian multivariate regression to identify determinants of SARS-CoV-2 infection and antibody responses to SARS-CoV-2 in people with HIV. RESULTS No HIV-1-related factors were associated with SARS-CoV-2 acquisition. High prepandemic HCoV antibodies were associated with a lower risk of subsequent SARS-CoV-2 infection and with higher SARS-CoV-2 antibody responses on infection. We observed a robust protective effect of smoking on SARS-CoV-2 infection risk (adjusted odds ratio, 0.46 [95% confidence interval, .38-.56]; P < .001), which occurred even in previous smokers and was highest for heavy smokers. CONCLUSIONS Our findings of 2 independent protective factors, smoking and HCoV antibodies, both affecting the respiratory environment, underscore the importance of the local immune milieu in regulating susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Irene A Abela
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Anthony Hauser
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Chloé Pasin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra Calmy
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Julia Notter
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Christoph A Fux
- Department of Infectious Diseases, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Matthieu Perreau
- Division of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | - Alexander Wepf
- Institute of Laboratory Medicine, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Maddalena Marconato
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Beat M Frey
- Blood Transfusion Service Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Kweon OJ, Yoon S, Choe KW, Kim H, Lim YK, Lee MK. Performance evaluation of microfluidic microplate-based fluorescent ELISA for qualitative detection of SARS-CoV-2-specific IgG and IgM. Sci Rep 2024; 14:18200. [PMID: 39107336 PMCID: PMC11303516 DOI: 10.1038/s41598-024-67977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
We evaluated the diagnostic performance of newly developed microfluidic microplate-based fluorescent ELISA for anti-SARS-CoV-2 antibody detection: the Veri-Q opti COVID-19 IgG and IgM ELISAs (hereafter, "Opti IgG/M"; MiCo BioMed, Gyeonggi-do, Republic of Korea), in comparison with conventional ELISAs. A total of 270 serum samples were analyzed, among which 90 samples were serially obtained from 25 COVID-19 patients. Another 180 samples were collected from 180 SARS-CoV-2-negative individuals. As comparative assays, we used SCoV-2 Detect IgG/M ELISA (hereafter, "InBios IgG/M"; InBios, Seattle, WA, USA) and Veri-Q COVID-19 IgG/IgM ELISA (hereafter, "Veri-Q IgG/M"; MiCo BioMed). Compared with conventional ELISAs, the Opti IgG yielded 97.1-100.0% positive percent agreement, 95.2-98.0% negative percent agreement, 96.3-97.8% total percent agreement, and kappa values of 0.90-0.94. Between the Opti IgM and the InBios IgM, the values were 93.7%, 96.6%, 95.9%, and 0.89, respectively. For the Opti IgG, sensitivities for the samples collected from 0-7, 8-14, 15-21, and ≥ 22 days after symptom onset were 40.0, 58.3, 94.1, and 100.0%, respectively. The values for the Opti IgM were 30.0, 54.2, 88.2, and 80%, respectively. The diagnostic specificities of the Opti IgG and IgM were 99.4 and 97.2%, respectively. The microfluidic microplate-based fluorescent ELISAs showed comparable diagnostic performance to conventional ELISAs for detecting anti-SARS-CoV-2 antibodies. With the combination of high throughput, a simplified workflow, and the ability to analyze reduced volumes, this new technology has great potential for improving SARS-CoV-2 serologic testing.
Collapse
Affiliation(s)
- Oh Joo Kweon
- Department of Laboratory Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-Do, Republic of Korea
| | - Sumi Yoon
- Department of Laboratory Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-Do, Republic of Korea
| | - Kye Won Choe
- Department of Laboratory Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-Do, Republic of Korea
| | - Hongkyung Kim
- Department of Laboratory Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-Do, Republic of Korea
| | - Yong Kwan Lim
- Department of Laboratory Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Gray P, Eriksson T, Skoglund L, Lagheden C, Hellström C, Pin E, Suomenrinne-Nordvik A, Pimenoff VN, Nilsson P, Dillner J, Lehtinen M. Seroepidemiological assessment of the spread of SARS-CoV-2 among 25 and 28 year-old adult women in Finland between March 2020-June 2022. PLoS One 2024; 19:e0305285. [PMID: 38990856 PMCID: PMC11238966 DOI: 10.1371/journal.pone.0305285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION Serological surveys of the prevalence of SARS-CoV-2 are instrumental to understanding the course of the COVID-19 epidemic. We evaluate the seroprevalence of SARS-CoV-2 among young adult Finnish females residing in 25 communities all over Finland from 2020 until 2022. METHODS Between 1st March 2020 and 30th June 2022, 3589 blood samples were collected from 3583 women born in 1992-95 when aged 25 or 28 years old attending the follow-up of an ongoing population-based trial of cervical screening strategies. The crude and population standardized SARS-CoV-2 seroprevalence was measured using nucleocapsid (induced by infection) and spike wild-type (WT) protein (induced both by infection and by vaccination) antigens over time and stratified by place of residence (inside or outside the Helsinki metropolitan region). RESULTS During 2020 (before vaccinations), spike-WT and nucleocapsid IgG antibodies followed each other closely, at very low levels (<5%). Spike-WT seropositivity increased rapidly concomitant with mass vaccinations in 2021 and reached 96.3% in the 2nd quartile of 2022. Antibodies to nucleocapsid IgG remained relatively infrequent throughput 2020-2021, increasing rapidly in the 1st and 2nd quartiles of 2022 (to 19.7% and 56.6% respectively). The nucleocapsid IgG seropositivity increased more profoundly in participants residing in the Helsinki metropolitan region (4.5%, 8.4% and 43.9% in 2020, 2021 and 2022 respectively) compared to those residing in communities outside the capital region (4.5%, 4.3% and 34.7%). CONCLUSIONS Low SARS-CoV-2 infection-related seroprevalence during 2020-2021 suggest a comparatively successful infection control. Antibodies to the SARS-CoV-2 WT spike protein became extremely common among young women by the end of 2021, in line with the high uptake of SARS-CoV-2 vaccination. Finally, the rapid increase of seroprevalences to the SARS-CoV-2 nucleocapsid protein during the first and second quartile of 2022, imply a high incidence of infections with SARS-CoV-2 variants able to escape vaccine-induced protection.
Collapse
Affiliation(s)
- Penelope Gray
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Lovisa Skoglund
- Division of Affinity Proteomics Department of Protein Science KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Camilla Lagheden
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ceke Hellström
- Division of Affinity Proteomics Department of Protein Science KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Elisa Pin
- Division of Affinity Proteomics Department of Protein Science KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Anna Suomenrinne-Nordvik
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Tampere University Hospital, Tampere, Finland
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ville N Pimenoff
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biobank Borealis of Northern Finland, University of Oulu, Oulu, Finland
| | - Peter Nilsson
- Division of Affinity Proteomics Department of Protein Science KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Joakim Dillner
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Matti Lehtinen
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Aguilar R, Jiménez A, Santano R, Vidal M, Maiga-Ascofare O, Strauss R, Bonney J, Agbogbatey M, Goovaerts O, Boham EEA, Adu EA, Cuamba I, Ramírez-Morros A, Dutta S, Angov E, Zhan B, Izquierdo L, Santamaria P, Mayor A, Gascón J, Ruiz-Comellas A, Molinos-Albert LM, Amuasi JH, Awuah AAA, Adriaensen W, Dobaño C, Moncunill G. Malaria and other infections induce polyreactive antibodies that impact SARS-CoV-2 seropositivity estimations in endemic settings. J Med Virol 2024; 96:e29713. [PMID: 38874194 DOI: 10.1002/jmv.29713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence is used to estimate the proportion of individuals within a population previously infected, to track viral transmission, and to monitor naturally and vaccine-induced immune protection. However, in sub-Saharan African settings, antibodies induced by higher exposure to pathogens may increase unspecific seroreactivity to SARS-CoV-2 antigens, resulting in false positive responses. To investigate the level and type of unspecific seroreactivitiy to SARS-CoV-2 in Africa, we measured immunoglobulin G (IgG), IgA, and IgM to a broad panel of antigens from different pathogens by Luminex in 602 plasma samples from African and European subjects differing in coronavirus disease 2019, malaria, and other exposures. Seroreactivity to SARS-CoV-2 antigens was higher in prepandemic African than in European samples and positively correlated with antibodies against human coronaviruses, helminths, protozoa, and especially Plasmodium falciparum. African subjects presented higher levels of autoantibodies, a surrogate of polyreactivity, which correlated with P. falciparum and SARS-CoV-2 antibodies. Finally, we found an improved sensitivity in the IgG assay in African samples when using urea as a chaotropic agent. In conclusion, our data suggest that polyreactive antibodies induced mostly by malaria are important mediators of the unspecific anti-SARS-CoV-2 responses, and that the use of dissociating agents in immunoassays could be useful for more accurate estimates of SARS-CoV-2 seroprevalence in African settings.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Oumou Maiga-Ascofare
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ricardo Strauss
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joseph Bonney
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Melvin Agbogbatey
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Odin Goovaerts
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eric E A Boham
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Evan A Adu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Inocencia Cuamba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Anna Ramírez-Morros
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Bin Zhan
- Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Pere Santamaria
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Department of Physiological Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Joaquim Gascón
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Anna Ruiz-Comellas
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
- Grup de Promoció de la Salut en l'Àmbit Rural (ProSaARu), Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- Centre d'Atenció Primària (CAP) Sant Joan de Vilatorrada, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
| | | | - John H Amuasi
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Anthony A-A Awuah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Wim Adriaensen
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
15
|
Abela IA, Schwarzmüller M, Ulyte A, Radtke T, Haile SR, Ammann P, Raineri A, Rueegg S, Epp S, Berger C, Böni J, Manrique A, Audigé A, Huber M, Schreiber PW, Scheier T, Fehr J, Weber J, Rusert P, Günthard HF, Kouyos RD, Puhan MA, Kriemler S, Trkola A, Pasin C. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024; 15:e0272223. [PMID: 38270455 PMCID: PMC10865973 DOI: 10.1128/mbio.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Numerous clinical parameters link to severe coronavirus disease 2019, but factors that prevent symptomatic disease remain unknown. We investigated the impact of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and endemic human coronavirus (HCoV) antibody responses on symptoms in a longitudinal children cohort (n = 2,917) and a cross-sectional cohort including children and adults (n = 882), all first exposed to SARS-CoV-2 (March 2020 to March 2021) in Switzerland. Saliva (n = 4,993) and plasma (n = 7,486) antibody reactivity to the four HCoVs (subunit S1 [S1]) and SARS-CoV-2 (S1, receptor binding domain, subunit S2 [S2], nucleocapsid protein) was determined along with neutralizing activity against SARS-CoV-2 Wuhan, Alpha, Delta, and Omicron (BA.2) in a subset of individuals. Inferred recent SARS-CoV-2 infection was associated with a strong correlation between mucosal and systemic SARS-CoV-2 anti-spike responses. Individuals with pre-existing HCoV-S1 reactivity exhibited significantly higher antibody responses to SARS-CoV-2 in both plasma (IgG regression coefficients = 0.20, 95% CI = [0.09, 0.32], P < 0.001) and saliva (IgG regression coefficient = 0.60, 95% CI = [0.088, 1.11], P = 0.025). Saliva neutralization activity was modest but surprisingly broad, retaining activity against Wuhan (median NT50 = 32.0, 1Q-3Q = [16.4, 50.2]), Alpha (median NT50 = 34.9, 1Q-3Q = [26.0, 46.6]), and Delta (median NT50 = 28.0, 1Q-3Q = [19.9, 41.7]). In line with a rapid mucosal defense triggered by cross-reactive HCoV immunity, asymptomatic individuals presented with higher pre-existing HCoV-S1 activity in plasma (IgG HKU1, odds ratio [OR] = 0.53, 95% CI = [0.29,0.97], P = 0.038) and saliva (total HCoV, OR = 0.55, 95% CI = [0.33, 0.91], P = 0.019) and higher SARS-CoV-2 reactivity in saliva (IgG S2 fold change = 1.26, 95% CI = [1.03, 1.54], P = 0.030). By investigating the systemic and mucosal immune responses to SARS-CoV-2 and HCoVs in a population without prior exposure to SARS-CoV-2 or vaccination, we identified specific antibody reactivities associated with lack of symptom development.IMPORTANCEKnowledge of the interplay between human coronavirus (HCoV) immunity and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is critical to understanding the coexistence of current endemic coronaviruses and to building knowledge potential future zoonotic coronavirus transmissions. This study, which retrospectively analyzed a large cohort of individuals first exposed to SARS-CoV-2 in Switzerland in 2020-2021, revealed several key findings. Pre-existing HCoV immunity, particularly mucosal antibody responses, played a significant role in improving SARS-CoV-2 immune response upon infection and reducing symptoms development. Mucosal neutralizing activity against SARS-CoV-2, although low in magnitude, retained activity against SARS-CoV-2 variants underlining the importance of maintaining local mucosal immunity to SARS-CoV-2. While the cross-protective effect of HCoV immunity was not sufficient to block infection by SARS-CoV-2, the present study revealed a remarkable impact on limiting symptomatic disease. These findings support the feasibility of generating pan-protective coronavirus vaccines by inducing potent mucosal immune responses.
Collapse
Affiliation(s)
- Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Priska Ammann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Amapola Manrique
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| |
Collapse
|
16
|
Röltgen K, Boyd SD. Antibody and B Cell Responses to SARS-CoV-2 Infection and Vaccination: The End of the Beginning. ANNUAL REVIEW OF PATHOLOGY 2024; 19:69-97. [PMID: 37738512 DOI: 10.1146/annurev-pathmechdis-031521-042754] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
17
|
Song L, Rauf F, Hou CW, Qiu J, Murugan V, Chung Y, Lai H, Adam D, Magee DM, Trivino Soto G, Peterson M, Anderson KS, Rice SG, Readhead B, Park JG, LaBaer J. Quantitative assessment of multiple pathogen exposure and immune dynamics at scale. Microbiol Spectr 2024; 12:e0239923. [PMID: 38063388 PMCID: PMC10783028 DOI: 10.1128/spectrum.02399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Serology reveals exposure to pathogens, as well as the state of autoimmune and other clinical conditions. It is used to evaluate individuals and their histories and as a public health tool to track epidemics. Employing a variety of formats, studies nearly always perform serology by testing response to only one or a few antigens. However, clinical outcomes of new infections also depend on which previous infections may have occurred. We developed a high-throughput serology method that evaluates responses to hundreds of antigens simultaneously. It can be used to evaluate thousands of samples at a time and provide a quantitative readout. This tool will enable doctors to monitor which pathogens an individual has been exposed to and how that changes in the future. Moreover, public health officials could track populations and look for infectious trends among large populations. Testing many potential antigens at a time may also aid in vaccine development.
Collapse
Affiliation(s)
- Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Femina Rauf
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ching-Wen Hou
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Vel Murugan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Yunro Chung
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Huafang Lai
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Deborah Adam
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - D. Mitchell Magee
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Guillermo Trivino Soto
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Milene Peterson
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Karen S. Anderson
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Stephen G. Rice
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Benjamin Readhead
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, Arizona, USA
| | - Jin G. Park
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
18
|
Ratcliffe H, Tiley KS, Longet S, Tonry C, Roarty C, Watson C, Amirthalingam G, Vichos I, Morey E, Douglas NL, Marinou S, Plested E, Aley PK, Galiza E, Faust SN, Hughes S, Murray C, Roderick MR, Shackley F, Oddie S, Lee TW, Turner DP, Raman M, Owens S, Turner PJ, Cockerill H, Lopez Bernal J, Ijaz S, Poh J, Shute J, Linley E, Borrow R, Hoschler K, Brown KE, Carroll MW, Klenerman P, Dunachie SJ, Ramsay M, Voysey M, Waterfield T, Snape MD. Serum HCoV-spike specific antibodies do not protect against subsequent SARS-CoV-2 infection in children and adolescents. iScience 2023; 26:108500. [PMID: 38089581 PMCID: PMC10711458 DOI: 10.1016/j.isci.2023.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 02/15/2024] Open
Abstract
SARS-CoV-2 infections in children are generally asymptomatic or mild and rarely progress to severe disease and hospitalization. Why this is so remains unclear. Here we explore the potential for protection due to pre-existing cross-reactive seasonal coronavirus antibodies and compare the rate of antibody decline for nucleocapsid and spike protein in serum and oral fluid against SARS-CoV-2 within the pediatric population. No differences in seasonal coronaviruses antibody concentrations were found at baseline between cases and controls, suggesting no protective effect from pre-existing immunity against seasonal coronaviruses. Antibodies against seasonal betacoronaviruses were boosted in response to SARS-CoV-2 infection. In serum, anti-nucleocapsid antibodies fell below the threshold of positivity more quickly than anti-spike protein antibodies. These findings add to our understanding of protection against infection with SARS-CoV-2 within the pediatric population, which is important when considering pediatric SARS-CoV-2 immunization policies.
Collapse
Affiliation(s)
- Helen Ratcliffe
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Karen S. Tiley
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claire Tonry
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Cathal Roarty
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Chris Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | | | - Iason Vichos
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Ella Morey
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Naomi L. Douglas
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Spyridoula Marinou
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Emma Plested
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Parvinder K. Aley
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Eva Galiza
- St Georges Hospital NHS Foundation Trust
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine and Institute of Life Sciences, University of Southampton
- National Immunisation Schedule Evaluation Consortium
| | - Stephen Hughes
- Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Clare Murray
- Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | - Sam Oddie
- Bradford Teaching Hospitals NHS Foundation Trust
| | | | - David P.J. Turner
- School of Life Sciences, University of Nottingham
- Nottingham University Hospitals NHS Trust
| | | | - Stephen Owens
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust
| | - Paul J. Turner
- National Heart & Lung Institute, Imperial College London
| | | | | | | | | | | | | | | | | | | | - Miles W. Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford BRC
| | - Susanna J. Dunachie
- National Institute for Health Research (NIHR) Oxford BRC
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Merryn Voysey
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Thomas Waterfield
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Matthew D. Snape
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
- National Immunisation Schedule Evaluation Consortium
- West Suffolk NHS Foundation Trust
| |
Collapse
|
19
|
Bansal S, Fleming T, Canez J, Maine GN, Bharat A, Walia R, Tokman S, Smith MA, Tiffany B, Bremner RM, Mohanakumar T. Immune responses of lung transplant recipients against SARS-CoV-2 and common respiratory coronaviruses: Evidence for pre-existing cross-reactive immunity. Transpl Immunol 2023; 81:101940. [PMID: 37866672 PMCID: PMC11019873 DOI: 10.1016/j.trim.2023.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Humoral and cellular immune responses to SARS-CoV-2 and other coronaviruses in lung transplant recipients are unknown. We measured antibodies and T cell responses against the SARS-CoV-2 spike S2 and nucleocapsid antigens and spike antigens from common respiratory coronaviruses (229E, NL63, OC43, and HKU1) after vaccination or infection of LTxRs. 148 LTxRs from single center were included in this study: 98 after vaccination and 50 following SARS-CoV-2 infection. Antibodies were quantified by enzyme-linked immunosorbent assay. The frequency of T cells secreting IL2, IL4, IL10, IL17, TNFα, and IFNγ were enumerated by enzyme-linked immunospot assay. Our results have shown the development of antibodies to SARS-CoV-2 spike protein in infected LTxRs (39/50) and vaccinated LTxRs (52/98). Vaccinated LTxRs had higher number of T cells producing TNFα but less cells producing IFNγ than infected LTxRs in response to the nucleocapsid antigen and other coronavirus spike antigens. We didn't find correlation between the development of antibodies and cellular immune responses against the SARS-CoV-2 spike protein after vaccination. Instead, LTxRs have pre-existing cellular immunity to common respiratory coronaviruses, leading to cross-reactive immunity against SARS-CoV-2 which likely will provide protection against SARS-Cov-2 infection.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jesse Canez
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Gabriel N Maine
- Department of Pathology and Laboratory Medicine, Royal Oak, Beaumont Health, MI, USA
| | | | - Rajat Walia
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Brian Tiffany
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
| |
Collapse
|
20
|
Bešević J, Lacey B, Callen H, Omiyale W, Conroy M, Feng Q, Crook DW, Doherty N, Ebner D, Eyre DW, Fry D, Horn E, Jones EY, Marsden BD, Peto TEA, Starkey F, Stuart D, Welsh S, Wood N, Young A, Young A, Effingham M, Collins R, Holliday J, Allen N. Persistence of SARS-CoV-2 antibodies over 18 months following infection: UK Biobank COVID-19 Serology Study. J Epidemiol Community Health 2023; 78:jech-2023-220569. [PMID: 37923370 PMCID: PMC10850672 DOI: 10.1136/jech-2023-220569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Little is known about the persistence of antibodies after the first year following SARS-CoV-2 infection. We aimed to determine the proportion of individuals that maintain detectable levels of SARS-CoV-2 antibodies over an 18-month period following infection. METHODS Population-based prospective study of 20 000 UK Biobank participants and their adult relatives recruited in May 2020. The proportion of SARS-CoV-2 cases testing positive for immunoglobulin G (IgG) antibodies against the spike protein (IgG-S), and the nucleocapsid protein (IgG-N), was calculated at varying intervals following infection. RESULTS Overall, 20 195 participants were recruited. Their median age was 56 years (IQR 39-68), 56% were female and 88% were of white ethnicity. The proportion of SARS-CoV-2 cases with IgG-S antibodies following infection remained high (92%, 95% CI 90%-93%) at 6 months after infection. Levels of IgG-N antibodies following infection gradually decreased from 92% (95% CI 88%-95%) at 3 months to 72% (95% CI 70%-75%) at 18 months. There was no strong evidence of heterogeneity in antibody persistence by age, sex, ethnicity or socioeconomic deprivation. CONCLUSION This study adds to the limited evidence on the long-term persistence of antibodies following SARS-CoV-2 infection, with likely implications for waning immunity following infection and the use of IgG-N in population surveys.
Collapse
Affiliation(s)
- Jelena Bešević
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Ben Lacey
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Howard Callen
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Wemimo Omiyale
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Megan Conroy
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Qi Feng
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
| | | | - Daniel Ebner
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
| | - David W Eyre
- University of Oxford Big Data Institute, Oxford, UK
| | | | - Edward Horn
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - E Yvonne Jones
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
| | - Brian D Marsden
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
| | - Tim E A Peto
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
| | - Fenella Starkey
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - David Stuart
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
| | | | - Natasha Wood
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Alan Young
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
- UK Biobank, Stockport, UK
| | - Allen Young
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | | | - Rory Collins
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
- UK Biobank, Stockport, UK
| | - Jo Holliday
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | - Naomi Allen
- Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
- UK Biobank, Stockport, UK
| |
Collapse
|
21
|
Hollstein MM, Dierks S, Schön MP, Bergmann A, Abratis A, Eidizadeh A, Kaltenbach S, Schanz J, Groß U, Leha A, Kröger A, Andag R, Zautner AE, Fischer A, Erpenbeck L, Schnelle M. Humoral and cellular immune responses in fully vaccinated individuals with or without SARS-CoV-2 breakthrough infection: Results from the CoV-ADAPT cohort. J Med Virol 2023; 95:e29122. [PMID: 37787583 DOI: 10.1002/jmv.29122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Despite recent advances in prophylactic vaccination, SARS-CoV-2 infections continue to cause significant morbidity. A better understanding of immune response differences between vaccinated individuals with and without later SARS-CoV-2 breakthrough infection is urgently needed. CoV-ADAPT is a prospective long-term study comparing humoral (anti-spike-RBD-IgG, neutralization capacity, avidity) and cellular (spike-induced T-cell interferon-γ [IFN-γ] release) immune responses in individuals vaccinated against SARS-CoV-2 at four different time points (three before and one after third vaccination). In this cohort study, 62 fully vaccinated individuals presented with SARS-CoV-2 breakthrough infections vs 151 without infection 3-7 months following third vaccination. Breakthrough infections significantly increased anti-spike-RBD-IgG (p < 0.01), but not spike-directed T-cell IFN-γ release (TC) or antibody avidity. Despite comparable surrogate neutralization indices, the functional neutralization capacity against SARS-CoV-2-assessed via a tissue culture-based assay-was significantly higher following breakthrough vs no breakthrough infection. Anti-spike-RBD-IgG and antibody avidity decreased with age (p < 0.01) and females showed higher anti-spike-RBD-IgG (p < 0.01), and a tendency towards higher antibody avidity (p = 0.051). The association between humoral and cellular immune responses previously reported at various time points was lost in subjects after breakthrough infections (p = 0.807). Finally, a machine-learning approach based on our large immunological dataset (a total of 49 variables) from different time points was unable to predict breakthrough infections (area under the curve: 0.55). In conclusion, distinct differences in humoral vs cellular immune responses in fully vaccinated individuals with or without breakthrough infection could be demonstrated. Breakthrough infections predominantly drive the humoral response without boosting the cellular component. Breakthrough infections could not be predicted based on immunological data, which indicates a superior role of environmental factors (e.g., virus exposure) in individualized risk assessment.
Collapse
Affiliation(s)
- Moritz M Hollstein
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Sascha Dierks
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Interdisciplinary UMG Laboratory, University Medical Center Göttingen, Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
- Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | - Armin Bergmann
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Anna Abratis
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Interdisciplinary UMG Laboratory, University Medical Center Göttingen, Göttingen, Germany
| | - Abass Eidizadeh
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Interdisciplinary UMG Laboratory, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Kaltenbach
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Interdisciplinary UMG Laboratory, University Medical Center Göttingen, Göttingen, Germany
| | - Julie Schanz
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Groß
- Interdisciplinary UMG Laboratory, University Medical Center Göttingen, Göttingen, Germany
- Institute of Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Reiner Andag
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Interdisciplinary UMG Laboratory, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas E Zautner
- Institute of Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Interdisciplinary UMG Laboratory, University Medical Center Göttingen, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
- Department of Dermatology, University of Münster, Münster, Germany
| | - Moritz Schnelle
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Interdisciplinary UMG Laboratory, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Yamamoto S, Yamayoshi S, Ito M, Sakai-Tagawa Y, Nakachi I, Baba R, Kamimoto S, Ogura T, Hagiwara S, Kato H, Nakajima H, Uwamino Y, Yagi K, Sugaya N, Nagai H, Saito M, Adachi E, Koga M, Tsutsumi T, Duong C, Okuda M, Murakami J, Furusawa Y, Ujie M, Iwatsuki-Horimoto K, Yotsuyanagi H, Kawaoka Y. Differences among epitopes recognized by neutralizing antibodies induced by SARS-CoV-2 infection or COVID-19 vaccination. iScience 2023; 26:107208. [PMID: 37448563 PMCID: PMC10290734 DOI: 10.1016/j.isci.2023.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
SARS-CoV-2 has gradually acquired amino acid substitutions in its S protein that reduce the potency of neutralizing antibodies, leading to decreased vaccine efficacy. Here, we attempted to obtain mutant viruses by passaging SARS-CoV-2 in the presence of plasma samples from convalescent patients or vaccinees to determine which amino acid substitutions affect the antigenicity of SARS-CoV-2. Several amino acid substitutions in the S2 region, as well as the N-terminal domain (NTD) and receptor-binding domain (RBD), affected the neutralization potency of plasma samples collected from vaccinees, indicating that amino acid substitutions in the S2 region as well as those in the NTD and RBD affect neutralization by vaccine-induced antibodies. Furthermore, the neutralizing potency of vaccinee plasma samples against mutant viruses we obtained or circulating viruses differed among individuals. These findings suggest that genetic backgrounds of vaccinees influence the recognition of neutralizing epitopes.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ichiro Nakachi
- Pulmonary Division, Department of Internal Medicine, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Rie Baba
- Pulmonary Division, Department of Internal Medicine, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Shigenobu Kamimoto
- Pulmonary Division, Department of Internal Medicine, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Takayuki Ogura
- Department of Emergency and Intensive Care, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Shigehiro Hagiwara
- Department of Clinical Laboratory, Saiseikai Utsunomiya Hospital, Tochigi 321-0974, Japan
| | - Hideaki Kato
- Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Hideaki Nakajima
- Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuma Yagi
- Department of Pulmonary Medicine, Keiyu Hospital, Kanagawa 220-8521, Japan
| | - Norio Sugaya
- Department of Pediatrics, Keiyu Hospital, Kanagawa 220-8521, Japan
| | - Hiroyuki Nagai
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Eisuke Adachi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Calvin Duong
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Moe Okuda
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Jurika Murakami
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Michiko Ujie
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Tokyo 108-8639, Japan
| |
Collapse
|
23
|
Dodge MC, Ye L, Duffy ER, Cole M, Gawel SH, Werler MM, Daghfal D, Andry C, Kataria Y. Kinetics of SARS-CoV-2 Serum Antibodies Through the Alpha, Delta, and Omicron Surges Among Vaccinated Health Care Workers at a Boston Hospital. Open Forum Infect Dis 2023; 10:ofad266. [PMID: 37396669 PMCID: PMC10314714 DOI: 10.1093/ofid/ofad266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Background Longitudinal serology studies can assist in analyzing the kinetics of antibodies to SARS-CoV-2, helping to inform public health decision making. Our study aims to characterize circulating antibody trends over 18 months in vaccinated participants with and without evidence of COVID-19 infection. Methods A cohort of health care workers employed at Boston Medical Center was followed to collect serum samples and survey data over 6 time points from July 2020 through December 2021 (N = 527). History of SARS-CoV-2 infection, vaccination, and booster status were confirmed, where possible, through electronic medical records. Serum was assessed for the qualitative and semiquantitative detection of IgG antibody levels (anti-nucleoprotein [anti-N] and anti-spike [anti-S], respectively). Piecewise regression models were utilized to characterize antibody kinetics over time. Results Anti-S IgG titers remained above the positivity threshold following infection and/or vaccination throughout the 18-month follow-up. Among participants with no evidence of COVID-19 infection, titers declined significantly faster in the initial 90 days after full vaccination (β = -0.056) from December 2020 to March 2021 as compared with the decline observed following booster dose uptake (β = -0.023, P < 0.001). Additionally, COVID-19 infection prior to vaccination significantly attenuated the decline of anti-S IgG when compared with no infection following vaccine uptake (P < 0.001). Lastly, fewer participants contracted Omicron when boosted (12.7%) compared to fully vaccinated (17.6%). Regardless of vaccination status, participants who were Omicron positive had lower anti-S IgG titers than those who did not test positive, but this difference was not significant. Conclusions These findings provide novel 18-month kinetics of anti-S IgG antibodies and highlight the durability of hybrid immunity, underlining the strong humoral response stimulated by combined infection and vaccination.
Collapse
Affiliation(s)
- Maura C Dodge
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Lei Ye
- Department of Biostatistics, Abbott Core Diagnostics, Abbott Park, Illinois, USA
| | - Elizabeth R Duffy
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Manisha Cole
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Susan H Gawel
- Department of Biostatistics, Abbott Core Diagnostics, Abbott Park, Illinois, USA
| | - Martha M Werler
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts, USA
| | - David Daghfal
- Department of Biostatistics, Abbott Core Diagnostics, Abbott Park, Illinois, USA
| | - Chris Andry
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Yachana Kataria
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Lawal BJ, Gallagher KE, Kitonsa J, Tindanbil D, Kasonia K, Drammeh A, Lowe B, Mukadi-Bamuleka D, Patterson C, Greenwood B, Samai M, Leigh B, Tetteh KKA, Ruzagira E, Watson-Jones D, Kavunga-Membo H. Prevalence of immunoglobulin G and M to SARS-CoV-2 and other human coronaviruses in The Democratic Republic of Congo, Sierra Leone, and Uganda: A longitudinal study. Int J Infect Dis 2023; 131:183-192. [PMID: 37001799 PMCID: PMC10060023 DOI: 10.1016/j.ijid.2023.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVES We assessed the prevalence of immunoglobulin G (IgG) and IgM against four endemic human coronaviruses and two SARS-CoV-2 antigens among vaccinated and unvaccinated staff at health care centers in Uganda, Sierra Leone, and the Democratic Republic of Congo. METHODS The government health facility staff who had patient contact in Goma (Democratic Republic of Congo), Kambia District (Sierra Leone), and Masaka District (Uganda) were enrolled. Questionnaires and blood samples were collected at three time points over 4 months. Blood samples were analyzed with the Luminex MAGPIXⓇ. RESULTS Among unvaccinated participants, the prevalence of IgG/IgM antibodies against SARS-CoV-2 receptor-binding domain or nucleocapsid protein at enrollment was 70% in Goma (138 of 196), 89% in Kambia (112 of 126), and 89% in Masaka (190 of 213). The IgG responses against endemic human coronaviruses at baseline were not associated with SARS-CoV-2 sero-acquisition during follow-up. Among the vaccinated participants, those who had evidence of SARS-CoV-2 IgG/IgM at baseline tended to have higher IgG responses to vaccination than those who were SARS-CoV-2 seronegative at baseline, controlling for the time of sample collection since vaccination. CONCLUSION The high levels of natural immunity and hybrid immunity should be incorporated into both vaccination policies and prediction models of the impact of subsequent waves of infection in these settings.
Collapse
Affiliation(s)
| | - Katherine E Gallagher
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom; KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | | | - Daniel Tindanbil
- LSHTM-COMAHS Research Partnership, Kambia District, Sierra Leone
| | - Kambale Kasonia
- LSHTM-INRB Research Partnership, Goma, Democratic Republic of the Congo
| | - Abdoulie Drammeh
- LSHTM-COMAHS Research Partnership, Kambia District, Sierra Leone
| | - Brett Lowe
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Daniel Mukadi-Bamuleka
- Laboratoire Rodolphe Merieux-Institute National Research biomedical (INRB), Goma, Democratic Republic of the Congo
| | - Catriona Patterson
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Brian Greenwood
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Mohamed Samai
- University of Sierra Leone College of Medicine and Allied Health Sciences (COMAHS), Freetown, Sierra Leone
| | - Bailah Leigh
- University of Sierra Leone College of Medicine and Allied Health Sciences (COMAHS), Freetown, Sierra Leone
| | - Kevin K A Tetteh
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | | | - Deborah Watson-Jones
- London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Hugo Kavunga-Membo
- Laboratoire Rodolphe Merieux-Institute National Research biomedical (INRB), Goma, Democratic Republic of the Congo
| |
Collapse
|
25
|
Westphal T, Mader M, Karsten H, Cords L, Knapp M, Schulte S, Hermanussen L, Peine S, Ditt V, Grifoni A, Addo MM, Huber S, Sette A, Lütgehetmann M, Pischke S, Kwok WW, Sidney J, Schulze zur Wiesch J. Evidence for broad cross-reactivity of the SARS-CoV-2 NSP12-directed CD4 + T-cell response with pre-primed responses directed against common cold coronaviruses. Front Immunol 2023; 14:1182504. [PMID: 37215095 PMCID: PMC10196118 DOI: 10.3389/fimmu.2023.1182504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction The nonstructural protein 12 (NSP12) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has a high sequence identity with common cold coronaviruses (CCC). Methods Here, we comprehensively assessed the breadth and specificity of the NSP12-specific T-cell response after in vitro T-cell expansion with 185 overlapping 15-mer peptides covering the entire SARS-CoV-2 NSP12 at single-peptide resolution in a cohort of 27 coronavirus disease 2019 (COVID-19) patients. Samples of nine uninfected seronegative individuals, as well as five pre-pandemic controls, were also examined to assess potential cross-reactivity with CCCs. Results Surprisingly, there was a comparable breadth of individual NSP12 peptide-specific CD4+ T-cell responses between COVID-19 patients (mean: 12.82 responses; range: 0-25) and seronegative controls including pre-pandemic samples (mean: 12.71 responses; range: 0-21). However, the NSP12-specific T-cell responses detected in acute COVID-19 patients were on average of a higher magnitude. The most frequently detected CD4+ T-cell peptide specificities in COVID-19 patients were aa236-250 (37%) and aa246-260 (44%), whereas the peptide specificities aa686-700 (50%) and aa741-755 (36%), were the most frequently detected in seronegative controls. In CCC-specific peptide-expanded T-cell cultures of seronegative individuals, the corresponding SARS-CoV-2 NSP12 peptide specificities also elicited responses in vitro. However, the NSP12 peptide-specific CD4+ T-cell response repertoire only partially overlapped in patients analyzed longitudinally before and after a SARS-CoV-2 infection. Discussion The results of the current study indicate the presence of pre-primed, cross-reactive CCC-specific T-cell responses targeting conserved regions of SARS-CoV-2, but they also underline the complexity of the analysis and the limited understanding of the role of the SARS-CoV-2 specific T-cell response and cross-reactivity with the CCCs.
Collapse
Affiliation(s)
- Tim Westphal
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Maria Mader
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Karsten
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leon Cords
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Knapp
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sophia Schulte
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Ditt
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Marylyn Martina Addo
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Infection Research and Vaccine Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Marc Lütgehetmann
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Pischke
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
26
|
Dawood FS, Couture A, Zhang X, Stockwell MS, Porucznik CA, Stanford JB, Hetrich M, Veguilla V, Thornburg N, Heaney CD, Wang J, Duque J, Jeddy Z, Deloria Knoll M, Karron R. Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Antibody Responses After Community Infections in Children and Adults. Open Forum Infect Dis 2023; 10:ofad168. [PMID: 37213425 PMCID: PMC10199115 DOI: 10.1093/ofid/ofad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2024] Open
Abstract
Background We compared postinfection severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (nAb) responses among children and adults while the D614G-like strain and Alpha, Iota, and Delta variants circulated. Methods During August 2020-October 2021, households with adults and children were enrolled and followed in Utah, New York City, and Maryland. Participants collected weekly respiratory swabs that were tested for SARS-CoV-2 and had sera collected during enrollment and follow-up. Sera were tested for SARS-CoV-2 nAb by pseudovirus assay. Postinfection titers were characterized with biexponential decay models. Results Eighty participants had SARS-CoV-2 infection during the study (47 with D614G-like virus, 17 with B.1.1.7, and 8 each with B.1.617.2 and B.1.526 virus). Homologous nAb geometric mean titers (GMTs) trended higher in adults (GMT = 2320) versus children 0-4 (GMT = 425, P = .33) and 5-17 years (GMT = 396, P = .31) at 1-5 weeks postinfection but were similar from 6 weeks. Timing of peak titers was similar by age. Results were consistent when participants with self-reported infection before enrollment were included (n = 178). Conclusions The SARS-CoV-2 nAb titers differed in children compared to adults early after infection but were similar by 6 weeks postinfection. If postvaccination nAb kinetics have similar trends, vaccine immunobridging studies may need to compare nAb responses in adults and children 6 weeks or more after vaccination.
Collapse
Affiliation(s)
- Fatimah S Dawood
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alexia Couture
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xueyan Zhang
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Population and Family Health, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA
| | - Christina A Porucznik
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Joseph B Stanford
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Marissa Hetrich
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vic Veguilla
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie Thornburg
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher D Heaney
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jing Wang
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Zuha Jeddy
- Abt Associates, Cambridge, Massachusetts, USA
| | - Maria Deloria Knoll
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ruth Karron
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Pieren DKJ, Kuguel SG, Rosado J, Robles AG, Rey-Cano J, Mancebo C, Esperalba J, Falcó V, Buzón MJ, Genescà M. Limited induction of polyfunctional lung-resident memory T cells against SARS-CoV-2 by mRNA vaccination compared to infection. Nat Commun 2023; 14:1887. [PMID: 37019909 PMCID: PMC10074357 DOI: 10.1038/s41467-023-37559-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Resident memory T cells (TRM) present at the respiratory tract may be essential to enhance early SARS-CoV-2 viral clearance, thus limiting viral infection and disease. While long-term antigen-specific TRM are detectable beyond 11 months in the lung of convalescent COVID-19 patients, it is unknown if mRNA vaccination encoding for the SARS-CoV-2 S-protein can induce this frontline protection. Here we show that the frequency of CD4+ T cells secreting IFNγ in response to S-peptides is variable but overall similar in the lung of mRNA-vaccinated patients compared to convalescent-infected patients. However, in vaccinated patients, lung responses present less frequently a TRM phenotype compared to convalescent infected individuals and polyfunctional CD107a+ IFNγ+ TRM are virtually absent in vaccinated patients. These data indicate that mRNA vaccination induces specific T cell responses to SARS-CoV-2 in the lung parenchyma, although to a limited extend. It remains to be determined whether these vaccine-induced responses contribute to overall COVID-19 control.
Collapse
Affiliation(s)
- Daan K J Pieren
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Sebastián G Kuguel
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Joel Rosado
- Thoracic Surgery and Lung Transplantation Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Alba G Robles
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Joan Rey-Cano
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Cristina Mancebo
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - María J Buzón
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
28
|
Kogevinas M, Karachaliou M, Espinosa A, Aguilar R, Castaño-Vinyals G, Garcia-Aymerich J, Carreras A, Cortés B, Pleguezuelos V, Papantoniou K, Rubio R, Jiménez A, Vidal M, Serra P, Parras D, Santamaría P, Izquierdo L, Cirach M, Nieuwenhuijsen M, Dadvand P, Straif K, Moncunill G, de Cid R, Dobaño C, Tonne C. Long-Term Exposure to Air Pollution and COVID-19 Vaccine Antibody Response in a General Population Cohort (COVICAT Study, Catalonia). ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47001. [PMID: 37017430 PMCID: PMC10075082 DOI: 10.1289/ehp11989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Ambient air pollution has been associated with COVID-19 disease severity and antibody response induced by infection. OBJECTIVES We examined the association between long-term exposure to air pollution and vaccine-induced antibody response. METHODS This study was nested in an ongoing population-based cohort, COVICAT, the GCAT-Genomes for Life cohort, in Catalonia, Spain, with multiple follow-ups. We drew blood samples in 2021 from 1,090 participants of 2,404 who provided samples in 2020, and we included 927 participants in this analysis. We measured immunoglobulin M (IgM), IgG, and IgA antibodies against five viral-target antigens, including receptor-binding domain (RBD), spike-protein (S), and segment spike-protein (S2) triggered by vaccines available in Spain. We estimated prepandemic (2018-2019) exposure to fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)], nitrogen dioxide (NO2), black carbon (BC), and ozone (O3) using Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) models. We adjusted estimates for individual- and area-level covariates, time since vaccination, and vaccine doses and type and stratified by infection status. We used generalized additive models to explore the relationship between air pollution and antibodies according to days since vaccination. RESULTS Among vaccinated persons not infected by SARS-CoV-2 (n=632), higher prepandemic air pollution levels were associated with a lower vaccine antibody response for IgM (1 month post vaccination) and IgG. Percentage change in geometric mean IgG levels per interquartile range of PM2.5 (1.7 μg/m3) were -8.1 (95% CI: -15.9, 0.4) for RBD, -9.9 (-16.2, -3.1) for S, and -8.4 (-13.5, -3.0) for S2. We observed a similar pattern for NO2 and BC and an inverse pattern for O3. Differences in IgG levels by air pollution levels persisted with time since vaccination. We did not observe an association of air pollution with vaccine antibody response among participants with prior infection (n=295). DISCUSSION Exposure to air pollution was associated with lower COVID-19 vaccine antibody response. The implications of this association on the risk of breakthrough infections require further investigation. https://doi.org/10.1289/EHP11989.
Collapse
Affiliation(s)
- Manolis Kogevinas
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Ana Espinosa
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Ruth Aguilar
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Gemma Castaño-Vinyals
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Carreras
- Genomes for Life-GCAT lab Group, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Beatriz Cortés
- Genomes for Life-GCAT lab Group, Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | - Kyriaki Papantoniou
- Department of Epidemiology, Center of Public Health, Medical University of Vienna, Vienna, Austria
| | - Rocío Rubio
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Alfons Jiménez
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Marta Vidal
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Pau Serra
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Parras
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Pere Santamaría
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luis Izquierdo
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Enfermedades Infecciosas, Barcelona, Spain
| | - Marta Cirach
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Kurt Straif
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Gemma Moncunill
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Enfermedades Infecciosas, Barcelona, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT lab Group, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Carlota Dobaño
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Enfermedades Infecciosas, Barcelona, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
29
|
Seroprevalence and socioeconomic impact of the first SARS-CoV-2 infection wave in a small town in Navarre, Spain. Sci Rep 2023; 13:3862. [PMID: 36890175 PMCID: PMC9992915 DOI: 10.1038/s41598-023-30542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
The characterization of the antibody response to SARS-CoV-2 and its determinants are key for the understanding of COVID-19. The identification of vulnerable populations to the infection and to its socioeconomic impact is indispensable for inclusive policies. We conducted an age-stratified cross-sectional community-based seroprevalence survey between June 12th and 19th 2020-during the easing of lockdown-in Cizur, Spain. We quantified IgG, IgM and IgA levels against SARS-CoV-2 spike and its receptor-binding domain in a sample of 728 randomly selected, voluntarily registered inhabitants. We estimated a 7.9% seroprevalence in the general population, with the lowest seroprevalence among children under ten (n = 3/142, 2.1%) and the highest among adolescents (11-20 years old, n = 18/159, 11.3%). We found a heterogeneous immune-response profile across participants regarding isotype/antigen-specific seropositivity, although levels generally correlated. Those with technical education level were the most financially affected. Fifty-five percent had visited a supermarket and 43% a sanitary centre since mid-February 2020. When comparing by gender, men had left the household more frequently. In conclusion, few days after strict lockdown, the burden of SARS-CoV-2 infection was the lowest in children under 10. The findings also suggest that a wider isotype-antigen panel confers higher sensitivity. Finally, the economic impact biases should be considered when designing public health measures.
Collapse
|
30
|
Kaczorek-Łukowska E, Wernike K, Beer M, Blank A, Małaczewska J, Blank M, Jałonicka A, Siwicki AK. No indication for SARS-CoV-2 transmission to pet ferrets, in five cities in Poland, 2021 - antibody testing among ferrets living with owners infected with SARS-CoV-2 or free of infection. Acta Vet Scand 2023; 65:9. [PMID: 36855124 PMCID: PMC9974054 DOI: 10.1186/s13028-023-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in China by the end of 2019 and was responsible for a pandemic in the human population that resulted in millions of deaths worldwide. Since the beginning of the pandemic, the role of animals as spill-over or reservoir hosts was discussed. In addition to cats and dogs, ferrets are becoming increasingly popular as companion animals. Under experimental conditions, ferrets are susceptible to SARS-CoV-2 and it appears that they can also be infected through contact with a SARS-CoV-2 positive owner. However, there is still little information available regarding these natural infections. Here, we serologically tested samples collected from pet ferrets (n = 45) from Poland between June and September 2021. Of the ferrets that were included in the study, 29% (13/45) had contact with owners with confirmed SARS-CoV-2 infections. Nevertheless, SARS-CoV-2-specific antibodies could not be detected in any of the animals, independent of the infection status of the owner. The obtained results suggest that ferrets cannot be readily infected with SARS-CoV-2 under natural conditions, even after prolonged contact with infected humans. However, due to the rapid mutation rate of this virus, it is important to include ferrets in future monitoring studies.
Collapse
Affiliation(s)
- Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Alicja Blank
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Joanna Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Mirosława Blank
- Association of Friends of Ferrets, Mickiewicza 18a/4, 01-517, Warsaw, Poland
| | - Anna Jałonicka
- PULSVET Specialist Veterinary Clinic, Alternatywy 7/U8, 02-775, Warsaw, Poland
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
31
|
Karaba AH, Johnston TS, Beck E, Laeyendecker O, Cox AL, Klein SL, Sullivan DJ. Endemic Human Coronavirus Antibody Levels Are Unchanged after Convalescent or Control Plasma Transfusion for Early Outpatient COVID-19 Treatment. mBio 2023; 14:e0328722. [PMID: 36625657 PMCID: PMC9973272 DOI: 10.1128/mbio.03287-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
The impact of preexisting antibodies to the four endemic human coronaviruses (ehCoV) (229E, OC43, NL63, and HKU1) on severe (hospitalization) coronavirus disease 2019 (COVID-19) outcomes has been described in small cohorts. Many studies have measured ehCoV 229E, OC43, NL63, and HKU1 antibody levels weeks after recovery rather than in the first weeks of illness, which is more relevant to early hospitalizations. Antibody levels to the spike protein of the four coronaviruses (229E, OC43, NL63, and HKU1), as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were measured both before and immediately after convalescent or control plasma transfusion in 51 participants who were hospitalized and 250 who were not hospitalized, as well as in 71 convalescent and 50 control plasma donors as a subset from a completed randomized controlled trial. In COVID-19 convalescent plasma donors, the ehCoV spike antibodies were 1.2 to 2 times greater than the control donor unit levels, while donor COVID-19 convalescent plasma (CCP) SARS-CoV-2 spike antibodies were more than 600 times the control plasma units. Plasma transfusion, whether COVID-19 convalescent or control, did not alter the post-transfusion antibody levels for the endemic human coronaviruses (229E, OC43, NL63, and HKU1) in those hospitalized and not hospitalized, despite the 1.2- to 2-fold elevation in donor COVID-19 convalescent plasma. There was no influence of prior antibody levels to 229E, OC43, NL63, and HKU1 or post-transfusion antibody levels on subsequent hospitalization. These data, from a well-controlled prospective randomized clinical trial, add evidence that antibodies to ehCoV do not significantly impact COVID-19 outcomes, despite the apparent back-boosting of some ehCoV after SARS-CoV-2 infection. IMPORTANCE The relevance of preexisting immunity to the four endemic human coronaviruses in the first week of COVID-19 illness on the outcome of COVID-19 progression stems from the high prevalence of the ehCoV and SARS-CoV-2 coronaviruses. The question has been raised of whether therapeutic convalescent plasma or control plasma containing ehCoV antibodies might alter the outcome of COVID-19 progression to hospitalization. Here, we observed that plasma transfusion did not significantly change the preexisting ehCoV antibody levels. In over 50 hospitalized participants and 250 nonhospitalized participants, ehCoV antibody levels were comparable, without statistical differences. Antibody levels were stable over the more than 12 months of the intervention trial, with individual heterogeneity similar in hospitalized and nonhospitalized participants. The ehCoV antibodies in plasma transfusion did not alter the recipient preexisting antibody levels nor hasten the COVID-19 progression to hospitalization in this clinical trial data.
Collapse
Affiliation(s)
- Andrew H. Karaba
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Trevor S. Johnston
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan Beck
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L. Klein
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David J. Sullivan
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - COVID-19 Serologic Studies Consortium
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, Maryland, USA
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Poolchanuan P, Matsee W, Sengyee S, Siripoon T, Dulsuk A, Phunpang R, Pisutsan P, Piyaphanee W, Luvira V, Chantratita N. Dynamics of Different Classes and Subclasses of Antibody Responses to Severe Acute Respiratory Syndrome Coronavirus 2 Variants after Coronavirus Disease 2019 and CoronaVac Vaccination in Thailand. mSphere 2023; 8:e0046522. [PMID: 36688637 PMCID: PMC9942573 DOI: 10.1128/msphere.00465-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
The humoral immune response plays a key role in protecting the population from SARS-CoV-2 transmission. Patients who recovered from COVID-19 as well as fully vaccinated individuals have elevated levels of antibodies. The dynamic levels of the classes and subclasses of antibody responses to new variants that occur in different populations remain unclear. We prospectively recruited 60 participants, including COVID-19 patients and CoronaVac-vaccinated individuals, in Thailand from May to August 2021. Plasma samples were collected on day 0, day 14, and day 28 to determine the dynamic levels of the classes and subclasses of plasma antibodies against the receptor-binding domain (RBD) in the spike protein (S) of four SARS-CoV-2 strains (Wuhan, Alpha, Delta, and Omicron) via enzyme-linked immunosorbent assay. Our results indicated that the patients with SARS-CoV-2 infections had broader class and subclass profiles as well as higher levels of anti-S RBD antibodies to the Wuhan, Alpha, and Delta strains than did the CoronaVac-vaccinated individuals. The median antibody levels increased and subsequently declined in a month in the COVID-19 patients and in the vaccinated group. Correlations of the classes and subclasses of antibodies were observed in the COVID-19 patients but not in the vaccinated individuals. The levels of all of the anti-S RBD antibodies against the Omicron variant were low in the patients and in the vaccinated individuals. Our study revealed distinct antibody profiles between the two cohorts, suggesting different pathways of immune activation. This could have an impact on protection from infections by new variants of concern (VOC). IMPORTANCE The antibody responses to new SARS-CoV-2 variants that occur in different populations remain unclear. In this study, we recruited 60 participants, including COVID-19 patients and CoronaVac-vaccinated individuals, in Thailand and determined the dynamic levels of the IgG, IgA, IgM, and IgG subclasses of antibodies against the spike protein (S) of four SARS-CoV-2 strains. Our results showed that the patients with SARS-CoV-2 infections had broader profiles and higher levels of antibodies to the Wuhan, Alpha, and Delta strains than did the CoronaVac-vaccinated individuals. The antibody levels of both groups increased and subsequently decreased within 1 month. Higher and functional correlations of these antibodies were observed in the COVID-19 patients. The levels of all anti-S RBD antibodies against the Omicron variant were low in patients and vaccinated individuals. Our study revealed distinct antibody responses between the two groups, suggesting different pathways of immune response, which may have an impact on protection from infections by new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Prapassorn Poolchanuan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wasin Matsee
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tanaya Siripoon
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phimphan Pisutsan
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharapong Piyaphanee
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Viravarn Luvira
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Bedekar P, Kearsley AJ, Patrone PN. Prevalence estimation and optimal classification methods to account for time dependence in antibody levels. J Theor Biol 2023; 559:111375. [PMID: 36513210 DOI: 10.1016/j.jtbi.2022.111375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Serology testing can identify past infection by quantifying the immune response of an infected individual providing important public health guidance. Individual immune responses are time-dependent, which is reflected in antibody measurements. Moreover, the probability of obtaining a particular measurement from a random sample changes due to changing prevalence (i.e., seroprevalence, or fraction of individuals exhibiting an immune response) of the disease in the population. Taking into account these personal and population-level effects, we develop a mathematical model that suggests a natural adaptive scheme for estimating prevalence as a function of time. We then combine the estimated prevalence with optimal decision theory to develop a time-dependent probabilistic classification scheme that minimizes the error associated with classifying a value as positive (history of infection) or negative (no such history) on a given day since the start of the pandemic. We validate this analysis by using a combination of real-world and synthetic SARS-CoV-2 data and discuss the type of longitudinal studies needed to execute this scheme in real-world settings.
Collapse
Affiliation(s)
- Prajakta Bedekar
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | - Anthony J Kearsley
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Paul N Patrone
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
34
|
Aguilar R, Li X, Crowell CS, Burrell T, Vidal M, Rubio R, Jiménez A, Hernández-Luis P, Hofmann D, Mijočević H, Jeske S, Christa C, D'Ippolito E, Lingor P, Knolle PA, Roggendorf H, Priller A, Yazici S, Carolis C, Mayor A, Schreiner P, Poppert H, Beyer H, Schambeck SE, Izquierdo L, Tortajada M, Angulo A, Soutschek E, Engel P, Garcia-Basteiro A, Busch DH, Moncunill G, Protzer U, Dobaño C, Gerhard M. RBD-Based ELISA and Luminex Predict Anti-SARS-CoV-2 Surrogate-Neutralizing Activity in Two Longitudinal Cohorts of German and Spanish Health Care Workers. Microbiol Spectr 2023; 11:e0316522. [PMID: 36622140 PMCID: PMC9927417 DOI: 10.1128/spectrum.03165-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/04/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of antibodies to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important correlate of protection. For routine evaluation of protection, however, a simple and cost-efficient anti-SARS-CoV-2 serological assay predictive of serum neutralizing activity is needed. We analyzed clinical epidemiological data and blood samples from two cohorts of health care workers in Barcelona and Munich to compare several immunological readouts for evaluating antibody levels that could be surrogates of neutralizing activity. We measured IgG levels against SARS-CoV-2 spike protein (S), its S2 subunit, the S1 receptor binding domain (RBD), and the full length and C terminus of nucleocapsid (N) protein by Luminex, and against RBD by enzyme-linked immunosorbent assay (ELISA), and assessed those as predictors of plasma surrogate-neutralizing activity measured by a flow cytometry assay. In addition, we determined the clinical and demographic factors affecting plasma surrogate-neutralizing capacity. Both cohorts showed a high positive correlation between IgG levels to S antigen, especially to RBD, and the levels of plasma surrogate-neutralizing activity, suggesting RBD IgG as a good correlate of plasma neutralizing activity. Symptomatic infection, with symptoms such as loss of taste, dyspnea, rigors, fever and fatigue, was positively associated with anti-RBD IgG positivity by ELISA and Luminex, and with plasma surrogate-neutralizing activity. Our serological assays allow for the prediction of serum neutralization activity without the cost, hazards, time, and expertise needed for surrogate or conventional neutralization assays. Once a cutoff is established, these relatively simple high-throughput antibody assays will provide a fast and cost-effective method of assessing levels of protection from SARS-CoV-2 infection. IMPORTANCE Neutralizing antibody titers are the best correlate of protection against SARS-CoV-2. However, current tests to measure plasma or serum neutralizing activity do not allow high-throughput screening at the population level. Serological tests could be an alternative if they are proved to be good predictors of plasma neutralizing activity. In this study, we analyzed the SARS-CoV-2 serological profiles of two cohorts of health care workers by applying Luminex and ELISA in-house serological assays. Correlations of both serological tests were assessed between them and with a flow cytometry assay to determine plasma surrogate-neutralizing activity. Both assays showed a high positive correlation between IgG levels to S antigens, especially RBD, and the levels of plasma surrogate-neutralizing activity. This result suggests IgG to RBD as a good correlate of plasma surrogate-neutralizing activity and indicates that serology of IgG to RBD could be used to assess levels of protection from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Xue Li
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Claudia S. Crowell
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Teresa Burrell
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Rocio Rubio
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Pablo Hernández-Luis
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Dieter Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Hrvoje Mijočević
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Samuel Jeske
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Catharina Christa
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Elvira D'Ippolito
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Paul Lingor
- Klinikum rechts der Isar, Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A. Knolle
- German Center for Infection Research (DZIF), Munich, Germany
- Klinikum rechts der Isar, Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hedwig Roggendorf
- Klinikum rechts der Isar, Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alina Priller
- Klinikum rechts der Isar, Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sarah Yazici
- Klinikum rechts der Isar, Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | | | | | - Sophia E. Schambeck
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Helios Klinikum München West, Munich, Germany
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Marta Tortajada
- Occupational Health Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alberto Garcia-Basteiro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
- Department of Preventive Medicine and Epidemiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Dirk H. Busch
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Markus Gerhard
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
35
|
Nyagwange J, Kutima B, Mwai K, Karanja HK, Gitonga JN, Mugo D, Sein Y, Wright D, Omuoyo DO, Nyiro JU, Tuju J, Nokes DJ, Agweyu A, Bejon P, Ochola-Oyier LI, Scott JAG, Lambe T, Nduati E, Agoti C, Warimwe GM. Serum immunoglobulin G and mucosal immunoglobulin A antibodies from prepandemic samples collected in Kilifi, Kenya, neutralize SARS-CoV-2 in vitro. Int J Infect Dis 2023; 127:11-16. [PMID: 36476349 PMCID: PMC9721188 DOI: 10.1016/j.ijid.2022.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
OBJECTIVES Many regions of Africa have experienced lower COVID-19 morbidity and mortality than Europe. Pre-existing humoral responses to endemic human coronaviruses (HCoV) may cross-protect against SARS-CoV-2. We investigated the neutralizing capacity of SARS-CoV-2 spike reactive and nonreactive immunoglobulin (Ig)G and IgA antibodies in prepandemic samples. METHODS To investigate the presence of pre-existing immunity, we performed enzyme-linked immunosorbent assay using spike antigens from reference SARS-CoV-2, HCoV HKU1, OC43, NL63, and 229E using prepandemic samples from Kilifi in coastal Kenya. In addition, we performed neutralization assays using pseudotyped reference SARS-CoV-2 to determine the functionality of the identified reactive antibodies. RESULTS We demonstrate the presence of HCoV serum IgG and mucosal IgA antibodies, which cross-react with the SARS-CoV-2 spike. We show pseudotyped reference SARS-CoV-2 neutralization by prepandemic serum, with a mean infective dose 50 of 1: 251, which is 10-fold less than that of the pooled convalescent sera from patients with COVID-19 but still within predicted protection levels. The prepandemic naso-oropharyngeal fluid neutralized pseudo-SARS-CoV-2 at a mean infective dose 50 of 1: 5.9 in the neutralization assay. CONCLUSION Our data provide evidence for pre-existing functional humoral responses to SARS-CoV-2 in Kilifi, coastal Kenya and adds to data showing pre-existing immunity for COVID-19 from other regions.
Collapse
Affiliation(s)
- James Nyagwange
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya.
| | | | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews Road, Parktown 2193, Johannesburg, South Africa
| | - Henry K Karanja
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - John N Gitonga
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Daisy Mugo
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Yiakon Sein
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Daniel Wright
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | - Joyce U Nyiro
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - James Tuju
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - D James Nokes
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, CV4 7AL, United Kingdom; School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ambrose Agweyu
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | - J Anthony G Scott
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom; Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street WC1E 7HT, London, United Kingdom
| | - Teresa Lambe
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Eunice Nduati
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - Charles Agoti
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya
| | - George M Warimwe
- KEMRI-Wellcome Trust Research Programme,PO Box 230, Kilifi, Kenya; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
36
|
Abebe EC, Dejenie TA. Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Front Immunol 2023; 14:1055457. [PMID: 36742320 PMCID: PMC9892939 DOI: 10.3389/fimmu.2023.1055457] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neutralizing antibodies (NAbs) are central players in the humoral immunity that defends the body from SARS-CoV-2 infection by blocking viral entry into host cells and neutralizing their biological effects. Even though NAbs primarily work by neutralizing viral antigens, on some occasions, they may also combat the SARS-CoV-2 virus escaping neutralization by employing several effector mechanisms in collaboration with immune cells like natural killer (NK) cells and phagocytes. Besides their prophylactic and therapeutic roles, antibodies can be used for COVID-19 diagnosis, severity evaluation, and prognosis assessment in clinical practice. Furthermore, the measurement of NAbs could have key implications in determining individual or herd immunity against SARS-CoV-2, vaccine effectiveness, and duration of the humoral protective response, as well as aiding in the selection of suitable individuals who can donate convalescent plasma to treat infected people. Despite all these clinical applications of NAbs, using them in clinical settings can present some challenges. This review discusses the protective functions, possible protective mechanisms against SARS-CoV-2, and potential clinical applications of NAbs in COVID-19. This article also highlights the possible challenges and solutions associated with COVID-19 antibody-based prophylaxis, therapy, and vaccination.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
37
|
Sikkema RS, de Bruin E, Ramakers C, Bentvelsen R, Li W, Bosch BJ, Westerhuis B, Haagmans B, Koopmans MPG, Fraaij PLA. Reduced Seasonal Coronavirus Antibody Responses in Children Following COVID-19 Mitigation Measures, The Netherlands. Viruses 2023; 15:212. [PMID: 36680252 PMCID: PMC9862716 DOI: 10.3390/v15010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
SARS-CoV-2 prevention and control measures did not only impact SARS-CoV-2 circulation, but also the timing and prevalence of other seasonal respiratory viruses. Especially in children, information on exposure and infections to seasonal coronaviruses as well as SARS-CoV-2 in the first year of the pandemic is largely lacking. Therefore, we set up a one-year serological survey in a large tertiary hospital in the Netherlands. We show that seasonal coronavirus seroprevalence significantly decreased in 2021 in children less than one year, most likely due to COVID-19 control measures. The SARS-CoV-2 seroprevalence in children and adolescents increased from 0.4% to 11.3%, the highest in adolescents. This implies higher exposure rates in adolescents as compared to the general population (>18 years old). It is clear that there have been significant changes in the circulation and subsequent immunity against most respiratory pathogens as a result of the mitigation measures. The implications on shorter as well as longer term are still largely unknown, but the impact of the SARS-CoV-2 pandemic and subsequent control measures will continue to affect the dynamics of other pathogens.
Collapse
Affiliation(s)
| | - Erwin de Bruin
- Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | | | - Robbert Bentvelsen
- Microvida Laboratory for Microbiology, Amphia Hospital, 4818 Breda, The Netherlands
- Department of Medical Microbiology, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Wentao Li
- Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Berend-Jan Bosch
- Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | | | - Bart Haagmans
- Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | | | - Pieter L. A. Fraaij
- Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
- Pediatrics, Erasmus MC-Sophia Children’s Hospital, 3015 Rotterdam, The Netherlands
| |
Collapse
|
38
|
Tartof SY, Xie F, Yadav R, Wernli KJ, Martin ET, Belongia EA, Gaglani M, Zimmerman RK, Talbot HK, Thornburg N, Flannery B. Prior SARS-CoV-2 Infection and COVID-19 Vaccine Effectiveness against Outpatient Illness during Widespread Circulation of SARS-CoV-2 Omicron Variant, US Flu VE Network. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.10.23284397. [PMID: 36711929 PMCID: PMC9882409 DOI: 10.1101/2023.01.10.23284397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background We estimated combined protection conferred by prior SARS-CoV-2 infection and COVID-19 vaccination against COVID-19-associated acute respiratory illness (ARI). Methods During SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529) variant circulation between October 2021 and April 2022, prospectively enrolled adult patients with outpatient ARI had respiratory and filter paper blood specimens collected for SARS-CoV-2 molecular testing and serology. Dried blood spots were tested for immunoglobulin-G antibodies against SARS-CoV-2 nucleocapsid (NP) and spike protein receptor binding domain antigen using a validated multiplex bead assay. Evidence of prior SARS-CoV-2 infection also included documented or self-reported laboratory-confirmed COVID-19. We used documented COVID-19 vaccination status to estimate vaccine effectiveness (VE) by multivariable logistic regression by prior infection status. Results 455 (29%) of 1577 participants tested positive for SARS-CoV-2 infection at enrollment; 209 (46%) case-patients and 637 (57%) test-negative patients were NP seropositive, had documented previous laboratory-confirmed COVID-19, or self-reported prior infection. Among previously uninfected patients, three-dose VE was 97% (95% confidence interval [CI], 60%- 99%) against Delta, but not statistically significant against Omicron. Among previously infected patients, three-dose VE was 57% (CI, 20%-76%) against Omicron; VE against Delta could not be estimated. Conclusions Three mRNA COVID-19 vaccine doses provided additional protection against SARS-CoV-2 Omicron variant-associated illness among previously infected participants.
Collapse
Affiliation(s)
- Sara Y Tartof
- Kaiser Permanente Southern California, Department of Research & Evaluation
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA USA
| | - Fagen Xie
- Kaiser Permanente Southern California, Department of Research & Evaluation
| | - Ruchi Yadav
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen J Wernli
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Emily T Martin
- University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University College of Medicine, Temple, TX, USA
| | | | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | |
Collapse
|
39
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
40
|
Population-Based Analysis of the Immunoglobulin G Response to Different COVID-19 Vaccines in Brazil. Vaccines (Basel) 2022; 11:vaccines11010021. [PMID: 36679871 PMCID: PMC9862407 DOI: 10.3390/vaccines11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: COVID-19 vaccination in Brazil has been performed mostly with CoronaVac (Sinovac), ChAdOx1-S (AstraZeneca-University of Oxford) and BNT162b2 (Pfizer-BioNTech) vaccines. The titers of IgG antibodies reactive to the SARS-CoV-2 spike protein correlate with vaccine efficacy. Studies comparing vaccine immunogenicity in a real-world scenario are lacking. (2) Methods: We performed a population-based study to analyze the immunoglobulin G response to different COVID-19 vaccines. Citizens older than 18 years (n = 2376) provided personal data, a self-declaration of any previous COVID-19 positive tests and information regarding COVID-19 vaccination: the vaccine popular name and the date of each dose. Blood samples were collected and the levels of IgG reactive to SARS-CoV-2 antigens were determined and compared between different vaccine groups. (3) Results: The seroconversion for anti-spike IgG achieved > 95% by February 2022 and maintained stable until June 2022. Higher anti-spike IgG titers were detected in individuals vaccinated with BNT162b2, followed by ChAdOx1-S and CoronaVac. The anti-spike IgG response was negatively correlated with age and interval after the second dose for the BNT162b2 vaccine. Natural infections boosted anti-spike IgG in those individuals who completed primary vaccination with ChAdOx1-S and CoronaVac, but not with BNT162b2. The levels of anti-spike IgG increased with the number of vaccine doses administered. The application of BNT162b2 as a 3rd booster dose resulted in high anti-spike IgG antibody titers, despite the type of vaccine used during primary vaccination. (4) Conclusions: Our data confirmed the effectiveness of the Brazilian vaccination program. Of the vaccines used in Brazil, BNT162b2 performed better to elicit anti-spike protein IgG after primary vaccination and as a booster dose and thus should be recommended as a booster whenever available. A continuous COVID-19 vaccination program will be required to sustain anti-spike IgG antibodies in the population.
Collapse
|
41
|
Egger AE, Sahanic S, Gleiss A, Ratzinger F, Holzer B, Irsara C, Binder N, Winkler C, Binder CJ, Posch W, Loacker L, Hartmann B, Anliker M, Weiss G, Sonnweber T, Tancevski I, Griesmacher A, Löffler-Ragg J, Hoermann G. One-Year Follow-Up of COVID-19 Patients Indicates Substantial Assay-Dependent Differences in the Kinetics of SARS-CoV-2 Antibodies. Microbiol Spectr 2022; 10:e0059722. [PMID: 36222681 PMCID: PMC9784763 DOI: 10.1128/spectrum.00597-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023] Open
Abstract
Determination of antibody levels against the nucleocapsid (N) and spike (S) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are used to estimate the humoral immune response after SARS-CoV-2 infection or vaccination. Differences in the design and specification of antibody assays challenge the interpretation of test results, and comparative studies are often limited to single time points per patient. We determined the longitudinal kinetics of antibody levels of 145 unvaccinated coronavirus disease 2019 (COVID-19) patients at four visits over 1 year upon convalescence using 8 commercial SARS-CoV-2 antibody assays (from Abbott, DiaSorin, Roche, Siemens, and Technoclone), as well as a virus neutralization test (VNT). A linear regression model was used to investigate whether antibody results obtained in the first 6 months after disease onset could predict the VNT results at 12 months. Spike protein-specific antibody tests showed good correlation to the VNT at individual time points (rS, 0.74 to 0.92). While longitudinal assay comparison with the Roche Elecsys anti-SARS-CoV-2 S test showed almost constant antibody concentrations over 12 months, the VNT and all other tests indicated a decline in serum antibody levels (median decrease to 14% to 36% of baseline). The antibody level at 3 months was the best predictor of the VNT results at 12 months after disease onset. The current standardization to a WHO calibrator for normalization to binding antibody units (BAU) is not sufficient for the harmonization of SARS-CoV-2 antibody tests. Assay-specific differences in absolute values and trends over time need to be considered when interpreting the course of antibody levels in patients. IMPORTANCE Determination of antibodies against SARS-CoV-2 will play an important role in detecting a sufficient immune response. Although all the manufacturers expressed antibody levels in binding antibody units per milliliter, thus suggesting comparable results, we found discrepant behavior between the eight investigated assays when we followed the antibody levels in a cohort of 145 convalescent patients over 1 year. While one assay yielded constant antibody levels, the others showed decreasing antibody levels to a varying extent. Therefore, the comparability of the assays must be improved regarding the long-term kinetics of antibody levels. This is a prerequisite for establishing reliable antibody level cutoffs for sufficient individual protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Alexander E. Egger
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Gleiss
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Barbara Holzer
- Austrian Agency for Health and Food Safety (AGES), Department for Animal Health, Moedling, Austria
| | - Christian Irsara
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
| | - Nikolaus Binder
- Technoclone Herstellung von Diagnostika und Arzneimitteln GmbH, Vienna, Austria
| | - Christoph Winkler
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorin Loacker
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
| | - Boris Hartmann
- Austrian Agency for Health and Food Safety (AGES), Department for Animal Health, Moedling, Austria
| | - Markus Anliker
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Hoermann
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
- MLL (Munich Leukemia Laboratory), Munich, Germany
| |
Collapse
|
42
|
Dynamics of Antibody and T Cell Immunity against SARS-CoV-2 Variants of Concern and the Impact of Booster Vaccinations in Previously Infected and Infection-Naïve Individuals. Vaccines (Basel) 2022; 10:vaccines10122132. [PMID: 36560542 PMCID: PMC9784197 DOI: 10.3390/vaccines10122132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Despite previous coronavirus disease 2019 (COVID-19) vaccinations and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, SARS-CoV-2 still causes a substantial number of infections due to the waning of immunity and the emergence of new variants. Here, we assessed the SARS-CoV-2 spike subunit 1 (S1)-specific T cell responses, anti-SARS-CoV-2 receptor-binding domain (RBD) IgG serum concentrations, and the neutralizing activity of serum antibodies before and one, four, and seven months after the BNT162b2 or mRNA-1273 booster vaccination in a cohort of previously infected and infection-naïve healthcare workers (HCWs). Additionally, we assessed T cell responses against the spike protein of the SARS-CoV-2 Delta, Omicron BA.1 and BA.2 variants of concern (VOC). We found that S1-specific T cell responses, anti-RBD IgG concentrations, and neutralizing activity significantly increased one month after booster vaccination. Four months after booster vaccination, T cell and antibody responses significantly decreased but levels remained steady thereafter until seven months after booster vaccination. After a similar number of vaccinations, previously infected individuals had significantly higher S1-specific T cell, anti-RBD IgG, and neutralizing IgG responses than infection-naïve HCWs. Strikingly, we observed overall cross-reactive T cell responses against different SARS-CoV-2 VOC in both previously infected and infection-naïve HCWs. In summary, COVID-19 booster vaccinations induce strong T cell and neutralizing antibody responses and the presence of T cell responses against SARS-CoV-2 VOC suggest that vaccine-induced T cell immunity offers cross-reactive protection against different VOC.
Collapse
|
43
|
Dobaño C, Ramírez-Morros A, Alonso S, Ruiz-Olalla G, Rubio R, Vidal M, Prados de la Torre E, Jairoce C, Mitchell RA, Barrios D, Jiménez A, Rodrigo Melero N, Carolis C, Izquierdo L, Zanoncello J, Aguilar R, Vidal-Alaball J, Moncunill G, Ruiz-Comellas A. Eleven-month longitudinal study of antibodies in SARS-CoV-2 exposed and naïve primary health care workers upon COVID-19 vaccination. Immunology 2022; 167:528-543. [PMID: 36065677 DOI: 10.1111/imm.13551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
We evaluated the kinetics of antibody responses to Two years into the COVID-19 pandemic and 1 year after the start of vaccination rollout, the world faced a peak of cases associated with the highly contagious Omicron variant of concern (VoC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) and nucleocapsid (N) antigens over five cross-sectional visits (January-November 2021), and the determinants of pre-booster immunoglobulin levels, in a prospective cohort of vaccinated primary health care workers in Catalonia, Spain. Antibodies against S antigens after a full primary vaccination course, mostly with BNT162b2, decreased steadily over time and were higher in pre-exposed (n = 247) than naïve (n = 200) individuals, but seropositivity was maintained at 100% (100% IgG, 95.5% IgA, 30.6% IgM) up to 319 days after the first dose. Antibody binding to variants of concern was highly maintained for IgG compared to wild type but significantly reduced for IgA and IgM, particularly for Beta and Gamma. Factors significantly associated with longer-term antibodies included age, sex, occupation, smoking, adverse reaction to vaccination, levels of pre-vaccination SARS-CoV-2 antibodies, interval between disease onset and vaccination, hospitalization, oxygen supply, post COVID and symptomatology. Earlier morning vaccination hours were associated with higher IgG responses in pre-exposed participants. Symptomatic breakthroughs occurred in 9/447 (2.01%) individuals, all among naïve (9/200, 4.5%) and generally boosted antibody responses. Additionally, an increase in IgA and/or IgM seropositivity to variants, and N seroconversion at later time points (6.54%), indicated asymptomatic breakthrough infections, even among pre-exposed. Seropositivity remained highly stable over almost a year after vaccination. However, gradually waning of anti-S IgGs that correlate with neutralizing activity, coupled to evidence of an increase in breakthrough infections during the Delta and Omicron predominance, provides a rationale for booster immunization.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Anna Ramírez-Morros
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | - Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Rocío Rubio
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Chenjerai Jairoce
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Robert A Mitchell
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Diana Barrios
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBERESP, Barcelona, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Jasmina Zanoncello
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Vidal-Alaball
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Anna Ruiz-Comellas
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Centre d'Atenció Primària (CAP) Sant Joan de Vilatorrada, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
| |
Collapse
|
44
|
Yaugel-Novoa M, Bourlet T, Paul S. Role of the humoral immune response during COVID-19: guilty or not guilty? Mucosal Immunol 2022; 15:1170-1180. [PMID: 36195658 PMCID: PMC9530436 DOI: 10.1038/s41385-022-00569-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Systemic and mucosal humoral immune responses are crucial to fight respiratory viral infections in the current pandemic of COVID-19 caused by the SARS-CoV-2 virus. During SARS-CoV-2 infection, the dynamics of systemic and mucosal antibody infections are affected by patient characteristics, such as age, sex, disease severity, or prior immunity to other human coronaviruses. Patients suffering from severe disease develop higher levels of anti-SARS-CoV-2 antibodies in serum and mucosal tissues than those with mild disease, and these antibodies are detectable for up to a year after symptom onset. In hospitalized patients, the aberrant glycosylation of anti-SARS-CoV-2 antibodies enhances inflammation-associated antibody Fc-dependent effector functions, thereby contributing to COVID-19 pathophysiology. Current vaccines elicit robust humoral immune responses, principally in the blood. However, they are less effective against new viral variants, such as Delta and Omicron. This review provides an overview of current knowledge about the humoral immune response to SARS-CoV-2, with a particular focus on the protective and pathological role of humoral immunity in COVID-19 severity. We also discuss the humoral immune response elicited by COVID-19 vaccination and protection against emerging viral variants.
Collapse
Affiliation(s)
- Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France,CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
45
|
Binder RA, Fujimori GF, Forconi CS, Reed GW, Silva LS, Lakshmi PS, Higgins A, Cincotta L, Dutta P, Salive MC, Mangolds V, Anya O, Calvo Calle JM, Nixon T, Tang Q, Wessolossky M, Wang Y, Ritacco DA, Bly CS, Fischinger S, Atyeo C, Oluoch PO, Odwar B, Bailey JA, Maldonado-Contreras A, Haran JP, Schmidt AG, Cavacini L, Alter G, Moormann AM. SARS-CoV-2 Serosurveys: How Antigen, Isotype and Threshold Choices Affect the Outcome. J Infect Dis 2022; 227:371-380. [PMID: 36314635 PMCID: PMC9891417 DOI: 10.1093/infdis/jiac431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Evaluating the performance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological assays and clearly articulating the utility of selected antigens, isotypes, and thresholds is crucial to understanding the prevalence of infection within selected communities. METHODS This cross-sectional study, implemented in 2020, screened PCRconfirmed coronavirus disease 2019 patients (n 86), banked prepandemic and negative samples (n 96), healthcare workers and family members (n 552), and university employees (n 327) for antiSARS-CoV-2 receptor-binding domain, trimeric spike protein, and nucleocapsid protein immunoglobulin (Ig)G and IgA antibodies with a laboratory-developed enzyme-linked immunosorbent assay and tested how antigen, isotype and threshold choices affected the seroprevalence outcomes. The following threshold methods were evaluated: (i) mean 3 standard deviations of the negative controls; (ii) 100 specificity for each antigen-isotype combination; and (iii) the maximal Youden index. RESULTS We found vastly different seroprevalence estimates depending on selected antigens and isotypes and the applied threshold method, ranging from 0.0 to 85.4. Subsequently, we maximized specificity and reported a seroprevalence, based on more than one antigen, ranging from 9.3 to 25.9. CONCLUSIONS This study revealed the importance of evaluating serosurvey tools for antigen-, isotype-, and threshold-specific sensitivity and specificity, to interpret qualitative serosurvey outcomes reliably and consistently across studies.
Collapse
Affiliation(s)
- Raquel A Binder
- Correspondence: Raquel A. Binder, University of Massachusetts Chan Medical School, Worcester, MA 01605 ()
| | | | | | - George W Reed
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Leandro S Silva
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Priya Saikumar Lakshmi
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Amanda Higgins
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lindsey Cincotta
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Protiva Dutta
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Marie-Claire Salive
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Virginia Mangolds
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Otuwe Anya
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - J Mauricio Calvo Calle
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Thomas Nixon
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Qiushi Tang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mireya Wessolossky
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yang Wang
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - Dominic A Ritacco
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Courtney S Bly
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Peter O Oluoch
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Boaz Odwar
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA,Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa Cavacini
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | | |
Collapse
|
46
|
Diani S, Leonardi E, Cavezzi A, Ferrari S, Iacono O, Limoli A, Bouslenko Z, Natalini D, Conti S, Mantovani M, Tramonte S, Donzelli A, Serravalle E. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022; 11:6272. [PMID: 36362500 PMCID: PMC9655392 DOI: 10.3390/jcm11216272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. AIMS This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naïve subjects. MATERIAL AND METHODS through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. RESULTS nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. CONCLUSIONS this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity.
Collapse
Affiliation(s)
- Sara Diani
- School of Musictherapy, Université Européenne Jean Monnet, 35129 Padova, Italy
| | | | | | | | - Oriana Iacono
- Physical Medicine and Rehabilitation Department, Mirandola Hospital, 41037 Mirandola, Italy
| | - Alice Limoli
- ARPAV (Regional Agency for the Environment Protection), 31100 Treviso, Italy
| | - Zoe Bouslenko
- Cardiology Department, Valdese Hospital, 10100 Torino, Italy
| | | | | | | | - Silvano Tramonte
- Environment and Health Commission, National Bioarchitecture Institute, 20121 Milano, Italy
| | | | | |
Collapse
|
47
|
Lavell AHA, Sikkens JJ, Edridge AWD, van der Straten K, Sechan F, Oomen M, Buis DTP, Schinkel M, Burger JA, Poniman M, van Rijswijk J, de Jong MD, de Bree GJ, Peters EJG, Smulders YM, Sanders RW, van Gils MJ, van der Hoek L, Bomers MK. Recent infection with HCoV-OC43 may be associated with protection against SARS-CoV-2 infection. iScience 2022; 25:105105. [PMID: 36101832 PMCID: PMC9458542 DOI: 10.1016/j.isci.2022.105105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Antibodies against seasonal human coronaviruses (HCoVs) are known to cross-react with SARS-CoV-2, but data on cross-protective effects of prior HCoV infections are conflicting. In a prospective cohort of healthcare workers (HCWs), we studied the association between seasonal HCoV (OC43, HKU1, 229E and NL63) nucleocapsid protein IgG and SARS-CoV-2 infection during the first pandemic wave in the Netherlands (March 2020 - June 2020), by 4-weekly serum sampling. HCW with HCoV-OC43 antibody levels in the highest quartile, were less likely to become SARS-CoV-2 seropositive when compared with those with lower levels (6/32, 18.8%, versus 42/97, 43.3%, respectively: p = 0.019; HR 0.37, 95% CI 0.16-0.88). We found no significant association with HCoV-OC43 spike protein IgG, or with antibodies against other HCoVs. Our results indicate that the high levels of HCoV-OC43-nucleocapsid antibodies, as an indicator of a recent infection, are associated with protection against SARS-CoV-2 infection; this supports and informs efforts to develop pancoronavirus vaccines.
Collapse
Affiliation(s)
- A H Ayesha Lavell
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jonne J Sikkens
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Arthur W D Edridge
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Ferdyansyah Sechan
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Melissa Oomen
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - David T P Buis
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Michiel Schinkel
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Judith A Burger
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Meliawati Poniman
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Menno D de Jong
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Edgar J G Peters
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Yvo M Smulders
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rogier W Sanders
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Marit J van Gils
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Marije K Bomers
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Sievers BL, Gelbart T, Tan GS. A high-throughput SARS-CoV-2 pseudovirus multiplex neutralization assay. STAR Protoc 2022; 3:101835. [PMID: 36595901 PMCID: PMC9579189 DOI: 10.1016/j.xpro.2022.101835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Evaluating the neutralizing antibody titer following SARS-CoV-2 vaccination is essential in defining correlates of protection. We describe an assay that uses single-cycle vesicular stomatitis virus (VSV) pseudoviruses linking a fluorophore with a spike (S) from a variant of concern (VOC). Using two fluorophores linked to two VOC S, respectively, allows us to determine the neutralization titer against two VOCs in a single run. This is a generalizable approach that saves time, samples, and run-to-run variability. For complete details on the use and execution of this protocol, please refer to Sievers et al. (2022).1.
Collapse
Affiliation(s)
| | | | - Gene S. Tan
- J. Craig Venter Institute, La Jolla, CA 92037, USA,Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA,Corresponding author
| |
Collapse
|
49
|
Li N, Li X, Wu J, Zhang S, Zhu L, Chen Q, Fan Y, Wu Z, Xie S, Chen Q, Wang N, Wu N, Luo C, Shu Y, Luo H. Pre-existing humoral immunity to low pathogenic human coronaviruses exhibits limited cross-reactive antibodies response against SARS-CoV-2 in children. Front Immunol 2022; 13:1042406. [PMCID: PMC9626651 DOI: 10.3389/fimmu.2022.1042406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes asymptomatic or mild symptoms, even rare hospitalization in children. A major concern is whether the pre-existing antibodies induced by low pathogenic human coronaviruses (LPH-CoVs) in children can cross-react with SARS-CoV-2. To address this unresolved question, we analyzed the pre-existing spike (S)-specific immunoglobin (Ig) G antibodies against LPH-CoVs and the cross-reactive antibodies against SARS-CoV-2 in 658 serum samples collected from children prior to SARS-CoV-2 outbreak. We found that the seroprevalence of these four LPH-CoVs reached 75.84%, and about 24.64% of the seropositive samples had cross-reactive IgG antibodies against the nucleocapsid, S, and receptor binding domain antigens of SARS-CoV-2. Additionally, the re-infections with different LPH-CoVs occurred frequently in children and tended to increase the cross-reactive antibodies against SARS-CoV-2. From the forty-nine serum samples with cross-reactive anti-S IgG antibodies against SARS-CoV-2, we found that seven samples with a median age of 1.4 years old had detected neutralizing activity for the wild-type or mutant SARS-CoV-2 S pseudotypes. Interestingly, all of the seven samples contained anti-S IgG antibodies against HCoV-OC43. Together, these data suggest that children’s pre-existing antibodies to LPH-CoVs have limited cross-reactive neutralizing antibodies against SRAS-CoV-2.
Collapse
Affiliation(s)
- Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - XueYun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Fan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhengyu Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Sidian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ning Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Wu
- Department of Epidemiology, Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- *Correspondence: Huanle Luo, ; Yuelong Shu,
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- *Correspondence: Huanle Luo, ; Yuelong Shu,
| |
Collapse
|
50
|
Dobaño C, Ramírez-Morros A, Alonso S, Rubio R, Ruiz-Olalla G, Vidal-Alaball J, Macià D, Catalina QM, Vidal M, Casanovas AF, Prados de la Torre E, Barrios D, Jiménez A, Zanoncello J, Melero NR, Carolis C, Izquierdo L, Aguilar R, Moncunill G, Ruiz-Comellas A. Sustained seropositivity up to 20.5 months after COVID-19. BMC Med 2022; 20:379. [PMID: 36224590 PMCID: PMC9556137 DOI: 10.1186/s12916-022-02570-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/15/2022] [Indexed: 01/09/2023] Open
Abstract
This study evaluated the persistence of IgM, IgA, and IgG to SARS-CoV-2 spike and nucleocapsid antigens up to 616 days since the onset of symptoms in a longitudinal cohort of 247 primary health care workers from Barcelona, Spain, followed up since the start of the pandemic. The study also assesses factors affecting antibody levels, including comorbidities and the responses to variants of concern as well as the frequency of reinfections. Despite a gradual and significant decline in antibody levels with time, seropositivity to five SARS-CoV-2 antigens combined was always higher than 90% over the whole study period. In a subset of 23 participants who had not yet been vaccinated by November 2021, seropositivity remained at 95.65% (47.83% IgM, 95.65% IgA, 95.65% IgG). IgG seropositivity against Alpha and Delta predominant variants was comparable to that against the Wuhan variant, while it was lower for Gamma and Beta (minority) variants and for IgA and IgM. Antibody levels at the time point closest to infection were associated with age, smoking, obesity, hospitalization, fever, anosmia/hypogeusia, chest pain, and hypertension in multivariable regression models. Up to 1 year later, just before the massive roll out of vaccination, antibody levels were associated with age, occupation, hospitalization, duration of symptoms, anosmia/hypogeusia, fever, and headache. In addition, tachycardia and cutaneous symptoms associated with slower antibody decay, and oxygen supply with faster antibody decay. Eight reinfections (3.23%) were detected in low responders, which is consistent with a sustained protective role for anti-spike naturally acquired antibodies. Stable persistence of IgG and IgA responses and cross-recognition of the predominant variants circulating in the 2020-2021 period indicate long-lasting and largely variant-transcending humoral immunity in the initial 20.5 months of the pandemic, in the absence of vaccination.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain.
- CIBER de Enfermedades Infecciosas, Barcelona, Spain.
| | - Anna Ramírez-Morros
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | - Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
| | - Rocío Rubio
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
| | - Josep Vidal-Alaball
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
- Grup de Promoció de la Salut en l'Àmbit Rural (ProSaARu), Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
| | - Dídac Macià
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Barcelona, Spain
| | - Queralt Miró Catalina
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
| | - Aina Fuster Casanovas
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | - Esther Prados de la Torre
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
| | - Diana Barrios
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
| | - Jasmina Zanoncello
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Carrer Roselló 153 (CEK building), E-08036, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Barcelona, Spain
| | - Anna Ruiz-Comellas
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
- Grup de Promoció de la Salut en l'Àmbit Rural (ProSaARu), Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- Centre d'Atenció Primària (CAP) Sant Joan de Vilatorrada. Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
| |
Collapse
|