1
|
Li W, Zhu W, Tang X, Peng Z, Ye J, Nie S. Similarity of immune-associated markers in COVID-19 and Kawasaki disease: analyses from bioinformatics and machine learning. BMC Pediatr 2025; 25:400. [PMID: 40383755 PMCID: PMC12087065 DOI: 10.1186/s12887-025-05752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Infection by the SARS-CoV-2 virus can cause coronavirus disease 2019 (COVID-19) and can also exacerbate the symptoms of Kawasaki disease (KD), an acute vasculitis that mostly affects children. This study used bioinformatics and machine learning to examine similarities in the molecular pathogenesis of COVID-19 and KD. METHODS We first identified disease-associated modules in KD using weighted gene co-expression network analysis. Then, we determined shared differentially expressed genes (DEGs) in training datasets for KD (GSE100154) and COVID-19 (GSE225220), performed functional annotation of these shared DEGs, and used Cytoscape plug-ins (MCODE and Cytohubba) to characterize the protein-protein interaction (PPI) network and identify the hub genes. We performed Least Absolute Shrinkage and Selection Operator(LASSO) regression and receiver operating characteristic (ROC) curve analysis to identify the most robust markers, validated these results by analysis of two other datasets (GSE73461 and GSE18606), and then calculated the correlations of these key genes with immune cells. RESULTS This analysis identified 26 shared DEGs in COVID-19 and KD. The results from functional annotation showed that the shared DEGs primarily functioned in immune responses, the formation of neutrophil extracellular traps, and NOD-like receptor signaling pathways. There were three key genes (PGLYRP1, DEFA4, RETN), and they had positive correlations with monocytes, M0 macrophages, and dendritic cells, which function as immune infiltrating cells in KD. CONCLUSION The potential immune-associated biomarkers (PGLYRP1, DEFA4, RETN) along with their shared pathways, hold promise for advancing investigations into the underlying pathogenesis of KD and COVID-19.
Collapse
Affiliation(s)
- Wang Li
- Department of Clinical laboratory, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, Guangdong, 518000, China
| | - Wenjie Zhu
- Department of Clinical laboratory, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, Guangdong, 518000, China
| | - Xiangting Tang
- Department of Clinical laboratory, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, Guangdong, 518000, China
| | - Zhiting Peng
- Department of Clinical laboratory, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, Guangdong, 518000, China
| | - Jiaqi Ye
- Department of Clinical laboratory, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, Guangdong, 518000, China
| | - Shuping Nie
- Department of Clinical laboratory, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
2
|
Kabeerdoss J, Pilania RK, Goyal T, Thangaraj A, Dhaliwal M, Singh S. Epigenome-Wide DNA Methylation Profiling of Peripheral Blood Shows Lymphocyte Dysfunction in Children with Kawasaki Disease. J Interferon Cytokine Res 2025. [PMID: 40340576 DOI: 10.1089/jir.2025.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
Kawasaki disease (KD) is an acute childhood vasculitis, commonly seen in children under the age of five. Despite extensive research over the past five decades, the pathogenesis of KD remains elusive. The objective of this epigenetic reanalysis study is to delineate common pathways involved in KD using a bioinformatics approach. Array datasets from the Gene Expression Omnibus repository were extracted and subjected to analysis using the Chip Analysis Methylation Pipeline in the R statistical tool for the identification of differential methylation probes and differential methylation regions. Adaptive immune genes CD8B, RAG1, IL-7R, STAT1, and CCR7 were significantly hypermethylated in acute KD as compared to healthy controls. Gene enrichment analysis showed that genes involved in T-cell receptor activation and differentiation, antigen processing and presentation of MHC class I were hypermethylated, whereas neutrophil degranulation was hypomethylated in the acute phase of KD as compared to healthy controls. The proportion of neutrophils significantly increased, while the proportions of CD4 T-cells and CD8 T-cells decreased in the peripheral blood of children with acute KD as compared to healthy controls. Reduced proportions of CD4 T cells and CD8 T cells, as well as hypermethylation of their genes, have been observed in the peripheral blood of patients with acute KD. [Figure: see text].
Collapse
Affiliation(s)
- Jayakanthan Kabeerdoss
- Biochemistry Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Rakesh Kumar Pilania
- Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Taru Goyal
- Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Abarna Thangaraj
- Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Manpreet Dhaliwal
- Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Surjit Singh
- Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
3
|
Song S, Chen L, Zhou Y, Huang J, Xu Y, Li G, Ding G, Xiao T, Huang M. Single cell sequencing technology reveals the correlation between B lymphocytes and vascular inflammatory symptoms of Kawasaki disease. Transl Pediatr 2025; 14:582-596. [PMID: 40386362 PMCID: PMC12079694 DOI: 10.21037/tp-2025-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/25/2025] [Indexed: 05/20/2025] Open
Abstract
Background Kawasaki disease (KD), an acute vasculitis syndrome affecting children under 5 years, lacks specific biological markers for diagnosis. This study explores immune cell activation in KD patients during early vasculitis symptoms to identify potential diagnostic markers and guide intravenous immunoglobulin (IVIG) therapy timing. Methods The study included single-cell sequencing (SCS) from 10 patients, comprising seven with KD and three controls, as well as flow cytometry and polymerase chain reaction (PCR) validation from 277 patients. This included 95 children with KD and controls consisting of 12 healthy children and 170 children with febrile illnesses. Children with KD were divided into early vasculitis group and late vasculitis group based on whether the symptoms of vasculitis were less than or more than three days. peripheral blood mononuclear cells (PBMCs) were sequenced using the 10× Genomics platform, and flow cytometry and quantitative PCR (qPCR) verified changes in gene expression and cell proportions. Results KD patients showed higher CD19+ B cells, particularly in the late vasculitis group. Pre-treatment CD19+ B cells were elevated and normalized post-IVIG treatment. Flow cytometry validation confirmed the increase in CD19+ B cells before IVIG treatment, which decreased to normal levels post-treatment, aligning with the SCS results. The study identified a total of 1,680 differentially expressed genes (DEGs) involved in B cell activation and immune responses, with core genes like IFITM1, CD55, FCER1G, and others down-regulated in the late vasculitis group. Time-series analysis revealed genes with high expression in early vasculitis that down-regulated over time, including S100A8, S100A9, and S100A12 which were further validated using qPCR, showing higher expression in the early stage of KD compared to healthy controls. Conclusions This study highlights the close relationship between the number of immune cells and gene expression changes with the duration of vasculitis in KD, providing new insights into the pathophysiological mechanisms of the disease and potential prognostic indicators for clinical treatment.
Collapse
Affiliation(s)
- Sirui Song
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqin Chen
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Zhou
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhang Huang
- Daozhi Precision Medicine Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Yanbing Xu
- Daozhi Precision Medicine Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Guang Li
- Daozhi Precision Medicine Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Guohui Ding
- International Human Phenome Institutes, Shanghai, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Huang
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Han XY, Qi HR. Pyroptosis in Kawasaki disease: from mechanisms to targeted interventions. Front Immunol 2025; 16:1566985. [PMID: 40308588 PMCID: PMC12040648 DOI: 10.3389/fimmu.2025.1566985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Kawasaki disease (KD) is a relatively common autoimmune disease of childhood, characterized by systemic vasculitis and involvement of the cardiovascular system, particularly the coronary artery. Progressive inflammatory cascades and vascular injury are regarded as two major processes underlying KD. Although it is regarded as a self-limiting disease, some children exhibit resistance to intravenous immunoglobulin (IVIG) treatment, which can lead to the development of life-threatening coronary artery aneurysms that persist into adulthood. Pyroptosis, a special inflammatory cell death pattern, results in the intense release of inflammatory mediators and injuries of tissues such as endothelial cell damage. Evidence from in vitro studies and animal models suggests that pyroptosis and associated inflammatory cascades may play a significant role in KD. Here, we highlight the latest insights into pyroptosis in KD and explore the potential therapeutic interventions that target pyroptosis.
Collapse
Affiliation(s)
- Xiang-Yu Han
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Hui-Ru Qi
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| |
Collapse
|
5
|
Deng C, Xie C, Li Z, Mei J, Wang K. Multi-omics analysis identifies diagnostic circulating biomarkers and potential therapeutic targets, revealing IQGAP1 as an oncogene in gastric cancer. NPJ Precis Oncol 2025; 9:105. [PMID: 40229327 PMCID: PMC11997149 DOI: 10.1038/s41698-025-00895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
This study employed a multi-omics integration approach to identify circulating biomarkers for gastric cancer (GC). We analyzed plasma and tumor tissue single-cell RNA sequencing data, along with gene and protein quantitative trait loci analyses. Leveraging data from UK Biobank and FinnGen, we investigated genetic associations with GC. Through colocalization, Mendelian Randomization, and various filtering analyses, we identified four genes (IQGAP1, KRTCAP2, PARP1, MLF2) and four proteins (EGFL9 [DLK2], ECM1, PDIA5, TIMP4) as potential GC biomarkers. These were selected based on significant genetic colocation probabilities and significant associations with GC. Seven of these biomarkers demonstrated predictive capability for GC occurrence, with AUC ranging from 0.61 to 0.99. Drug prediction analysis identified seven protein biomarkers as potential targets for immunotherapy, targeted therapies, and tumor chemotherapy. Further scRNA-seq analysis revealed significant expression differences between gastric tumor and normal tissues, particularly the upregulation of IQGAP1, which highlights its role in tumor growth.
Collapse
Affiliation(s)
- Chao Deng
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chenjun Xie
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, 214122, China
| | - Zixi Li
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, 214122, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Kewei Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, 214122, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Feng C, Wei Z, Li X. Identification of novel metabolism-related biomarkers of Kawasaki disease by integrating single-cell RNA sequencing analysis and machine learning algorithms. Front Immunol 2025; 16:1541939. [PMID: 40276515 PMCID: PMC12018418 DOI: 10.3389/fimmu.2025.1541939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background The bile acid metabolism (BAM) and fatty acid metabolism (FAM) have been implicated in Kawasaki disease (KD), but their precise mechanisms remain unclear. Identifying signature cells and genes related to BAM and FAM could offer a deeper understanding of their role in the pathogenesis of KD. Method We analyzed the public single-cell RNA sequencing (scRNA-seq) dataset GSE1687323 to characterize the immune cell-type landscape in KD. Gene sets related to BAM and FAM were collected from the Gene Set Enrichment Analysis (GSEA) database and previous literature. We analyzed the cellular heterogeneity of BAM and FAM at the single-cell level using R packages. Through differential expressed genes (DEG) analysis, high-dimensional Weighted Correlation Network Analysis (hdWGCNA) and machine learning algorithms, we identified signature genes associated with both BAM and FAM. The cellular expression patterns of signature genes were further validated using our own scRNA-seq dataset. Finally, quantitative real-time PCR (qRT-PCR) was performed to validate the expression levels of signature genes in KD, and Receiver Operating Characteristic (ROC) curve analysis was conducted to evaluate their diagnostic potential. Results Enhanced BAM and FAM were detected in monocytes and natural killer (NK) cells from KD in the public scRNA-seq dataset. Our scRNA-seq data confirmed the signature genes identified by machine learning algorithms: Vimentin (VIM) and chloride intracellular channel 1 (CLIC1) were upregulated in monocytes, while integrin subunit beta 2 (ITGB2) was elevated in NK cells of KD. qRT-PCR results also validated the bioinformatic analysis. Moreover, these genes demonstrated significant diagnostic potential. In the training dataset (GSE68004), the area under the curve (AUC) values and 95% CI were as follows: VIM: 0.914 (0.863-0.966), ITGB2: 0.958 (0.925-0.991), and CLIC1: 0.985 (0.969-1). The validation dataset (GSE73461) yielded similarly robust results, with AUC values and 95% CI: VIM: 0.872 (0.811-0.934), ITGB2: 0.861 (0.795-0.928), and CLIC1: 0.893 (0.837-0.948). Conclusion This study successfully identified and validated VIM and CLIC1 in monocytes, as well as ITGB2 in NK cells, as novel metabolism-related genes in KD. These findings suggest that BAM and FAM may play crucial roles in KD pathogenesis. Furthermore, these signature genes hold promising potential as diagnostic biomarkers for KD.
Collapse
Affiliation(s)
- Chenhui Feng
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Zhimiao Wei
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Xiaohui Li
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
7
|
Quan K, Wang H, Su P, Xu Y, Yao X. Decoding B Cells in Autoimmune Diseases Through ScRNA + BCR-Seq: Current Knowledge and Future Directions. Cells 2025; 14:539. [PMID: 40214492 PMCID: PMC11988620 DOI: 10.3390/cells14070539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
The combined application of single-cell RNA sequencing (scRNA-seq) and single-cell B-cell receptor sequencing (scBCR-seq) offers a multidimensional perspective for dissecting the immunopathological mechanisms of B cells in autoimmune diseases. This review systematically summarizes the principles of these techniques, the analytical framework, and their key applications in diseases such as systemic lupus erythematosus et. al. It reveals the dynamic correlations between the transcriptome of B-cell subsets and B-cell receptor (BCR) clones. Furthermore, we focus on the potential roles of dual BCR B cells and B/T biphenotypic cells in autoimmunity, emphasizing their exacerbation of disease progression through abnormal clonal expansion and autoantibody secretion. By sorting through cutting-edge advancements and bottleneck issues, this article aims to propel the innovation of multi-omics research and precision treatment paradigms for autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | - Xinsheng Yao
- Department of Immunology, Center of Immuno-Molecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563002, China; (K.Q.); (H.W.); (P.S.); (Y.X.)
| |
Collapse
|
8
|
Song S, Chen L, Zhou Y, Xu Y, Li G, Shen L, Xiao T, Huang M. CD14 + monocytes: the immune communication hub in early vasculitis symptoms of Kawasaki disease. Front Immunol 2025; 16:1557231. [PMID: 40207219 PMCID: PMC11979218 DOI: 10.3389/fimmu.2025.1557231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Background Kawasaki Disease (KD) is an acute systemic vasculitis syndrome predominantly affecting children, with a propensity to induce coronary artery lesions. Aberrant immune activation and cytokines cascade reactions are involved in its pathogenesis. The aim of this study is to investigate the changes in immune cell communication during the course of KD and to identify potential biomarkers. Methods The study enrolled seven pediatric patients diagnosed with Kawasaki Disease (KD) between December 2019 and December 2021. Single-cell RNA sequencing (scRNA-seq) technology was utilized to analyze peripheral blood mononuclear cells (PBMCs). Bioinformatics methods including quality control, dimensionality reduction, cell annotation, differential expression analysis, cell communication analysis, and co-expression network analysis were employed for data processing and analysis. Results This study utilized single-cell sequencing technology to uncover the dynamics of immune cell communication during the course of KD, revealing a significant increase in the number of CD14+ monocytes in the early stages of vasculitis, which play a central role in cell-cell communication. SELPLG was identified as a particularly crucial gene in the signal transduction among immune cells. The study also observed various cellular communication patterns of vasculitis at different time points and identified co-expression modules related to ribosomal function, cell proliferation, and immune responses in CD19+ B cells, CD4+ T cells, CD8+ T cells, CD14+ monocytes, and CD16+ monocytes. Notably, the expression of the ITK gene in CD14+ monocytes stood out. Furthermore, MHC-I genes were the most active molecules involved in signal transduction, and the expression of CD40 genes increased with the prolongation of vasculitis duration. Conclusion CD14+ monocytes play a pivotal role in cellular communication during the activation process of KD vasculitis, with SELPLG and ITK as important communication signal genes. These findings provide a novel perspective for the discovery of biomarkers, prediction of disease progression, and the development of targeted treatment strategies for KD. Clinical Trial Registration http://www.medresman.org.cn/pub/cn/proj/projectshow.aspx?proj=7739, identifier ChiCTR, ChiCTR2100044729.
Collapse
Affiliation(s)
- Sirui Song
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqin Chen
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Zhou
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbing Xu
- Daozhi Precision Medicine Technology (Shanghai) Co., Ltd, Shanghai, China
| | - Guang Li
- Daozhi Precision Medicine Technology (Shanghai) Co., Ltd, Shanghai, China
| | - Libing Shen
- International Human Phenome Institutes (Shanghai), China, Shanghai, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Huang
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhuo W, Zhang M, Tan J, Gao Y, Wang Y, Wang N, Ma J, Zhang J, Liu Z, Lv H, Liu Y. Lysine lactylation analysis of proteins in the heart of the Kawasaki disease mouse model. Front Cell Dev Biol 2025; 13:1550220. [PMID: 40114965 PMCID: PMC11922914 DOI: 10.3389/fcell.2025.1550220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Kawasaki disease (KD) is a medium-vessel vasculitis predominantly affecting children under 5 years of age and may involve the coronary arteries. Methods A mouse KD model was induced by Candida albicans cell wall extracts (CAWS), cardiac tissues were analyzed through integrated lactylomic and proteomic profiling. The lysine lactylation (Kla) results were normalized to the proteomic data. Results Elevated serum lactate and lactate dehydrogenase (LDH) levels were observed in KD patients. Given lactate's role as a substrate for Kla, this study investigated Kla modifications in KD. Proteomic analysis identified 150 upregulated proteins and 18 downregulated proteins, with 38.1% located in the cytoplasm and significant enrichment in immune-related pathways. After normalization, 41 sites in 37 proteins were found to be upregulated in the Kla data, with no downregulated sites. Approximately 67.57% of the altered proteins were localized in the mitochondria. Bioinformatics analysis indicated alterations in aerobic respiration, energy production and conversion, and key immune- and metabolism-related pathways. Discussion This study enhances the understanding of Kla modifications in the development of KD and may inform targeted therapies for its prevention and improved prognosis.
Collapse
Affiliation(s)
- Wenyu Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingyang Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiajia Tan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Gao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Pediatrics, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang (Lianyungang Clinical College of Nanjing Medical University), Lianyungang, China
| | - Yan Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Cardiology, The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nana Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Ma
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiheng Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Wang Y, Zhang X, Ge J, Jin J, Zheng Z, Li J, Wang X, Zhang S, Wang Z, Dong G. Single-Cell Landscape of Peripheral Blood Mononuclear Cells in Patients With Graves Disease. Endocrinology 2025; 166:bqaf038. [PMID: 39996309 DOI: 10.1210/endocr/bqaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 02/26/2025]
Abstract
CONTEXT Graves disease (GD) is a thyroid-specific autoimmune disease and the most common cause of hyperthyroidism. Its pathogenesis is associated with the disruption of immune tolerance and autoantibody production. However, the mechanisms underlying immune abnormalities remain incompletely elucidated. OBJECTIVE To investigate changes in the cellular composition and function of peripheral blood mononuclear cells (PBMCs) in GD patients at single-cell resolution. METHODS We employed single-cell RNA sequencing (scRNA-seq) and analyzed 22 680 peripheral blood mononuclear cells (PBMCs) from 8 GD patients and 12 healthy controls. RESULTS Our results unveiled the single-cell landscape of PBMCs in GD patients, revealing substantial heterogeneity and changes in the cellular composition and function of PBMCs. We observed an increase in the proportion of CD16+ natural killer (NK) cells and memory cells in T and B lymphocyte subsets. This increase was accompanied by significantly enhanced functions, including cell activation, immune/defense responses, and inflammatory reactions. Additionally, we detected changes in the activity of transcription factors in various cell types, which were linked to the regulation of genes critical for immune and inflammation responses. Furthermore, we found a reduction in communication between NK cells and other immune cells, including CD4+ T cells, monocytes, and B cells, mediated by killer cell immunoglobulin-like receptor (KIR)-like inhibitory receptors, suggesting their involvement in the pathogenesis of GD. CONCLUSION Our study revealed characteristic alterations in the composition and function of immune cell subsets in the PBMCs of GD patients. These findings shed light on the mechanisms underlying immune dysregulation in GD.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xinjie Zhang
- Department of Biology, University College London, London NW1 2HE, UK
| | - Junfeng Ge
- Anesthesiology Department, Jinan Second People's Hospital, Jinan 250026, China
| | - Jiajia Jin
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhijian Zheng
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jiaxuan Li
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaowei Wang
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shucui Zhang
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhe Wang
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangguo Dong
- Anesthesiology Department, Jinan Second People's Hospital, Jinan 250026, China
| |
Collapse
|
11
|
Wang Y, Li R, Tong R, Chen T, Sun M, Luo L, Li Z, Chen Y, Zhao Y, Zhang C, Wei L, Lin W, Chen H, Qian K, Chen AF, Liu J, Chen L, Li B, Wang F, Wang L, Su B, Pu J. Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age. Nat Immunol 2025; 26:308-322. [PMID: 39881000 PMCID: PMC11785523 DOI: 10.1038/s41590-024-02059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
A comprehensive understanding of the evolution of the immune landscape in humans across the entire lifespan at single-cell transcriptional and protein levels, during development, maturation and senescence is currently lacking. We recruited a total of 220 healthy volunteers from the Shanghai Pudong Cohort (NCT05206643), spanning 13 age groups from 0 to over 90 years, and profiled their peripheral immune cells through single-cell RNA-sequencing coupled with single T cell and B cell receptor sequencing, high-throughput mass cytometry, bulk RNA-sequencing and flow cytometry validation experiments. We revealed that T cells were the most strongly affected by age and experienced the most intensive rewiring in cell-cell interactions during specific age. Different T cell subsets displayed different aging patterns in both transcriptomes and immune repertoires; examples included GNLY+CD8+ effector memory T cells, which exhibited the highest clonal expansion among all T cell subsets and displayed distinct functional signatures in children and the elderly; and CD8+ MAIT cells, which reached their peaks of relative abundance, clonal diversity and antibacterial capability in adolescents and then gradually tapered off. Interestingly, we identified and experimentally verified a previously unrecognized 'cytotoxic' B cell subset that was enriched in children. Finally, an immune age prediction model was developed based on lifecycle-wide single-cell data that can evaluate the immune status of healthy individuals and identify those with disturbed immune functions. Our work provides both valuable insights and resources for further understanding the aging of the immune system across the whole human lifespan.
Collapse
MESH Headings
- Humans
- Aged
- Single-Cell Analysis/methods
- Adult
- Aged, 80 and over
- Middle Aged
- Infant
- Child
- Child, Preschool
- Male
- Female
- Adolescent
- Aging/immunology
- Aging/genetics
- Infant, Newborn
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Flow Cytometry
- Young Adult
- Receptors, Antigen, T-Cell/genetics
- Sequence Analysis, RNA
- T-Lymphocyte Subsets/immunology
- B-Lymphocytes/immunology
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghong Li
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Renyang Tong
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Taiwei Chen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Mingze Sun
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lingjie Luo
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Li
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Chen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chensheng Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Wei
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Lin
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- Department of Gastroenterology and Hepatology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Qian
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
12
|
Chen Z, Zeng A, Yang P, Zhang J, Liu D, Li M, Jing F, Yi Q. Role of leukocyte-associated Ig-like receptor-1 in the pathogenesis of Kawasaki disease and coronary artery aneurysms. Immunol Lett 2025; 271:106948. [PMID: 39603426 DOI: 10.1016/j.imlet.2024.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/31/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE To elucidate the relationship between leukocyte-associated Ig-like receptor-1 (LAIR-1) and the pathogenesis of Kawasaki disease (KD) and coronary artery aneurysms(CAA). METHODS The study cohort comprises children who were diagnosed with KD and were categorized into two groups: KD patients with CAA (KD-CAA) and KD without CAA (KD-NCAA), with healthy children serving as control group (HC). LAIR-1 on leukocytes was examined via flow cytometry, while serum LAIR-1 (sLAIR-1) was quantified using ELISA. IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IFN-α, IFN-γ and TNF-α were examined by Immunofluorescence assay. RESULTS sLAIR-1 levels were elevated in the KD and KD-CAA groups compared with those in the HC and KD-NCAA groups (P < 0.05). sLAIR-1 exhibited an area under the curve value of 0.858 for predicting KD (P < 0.001) and 0.628 for predicting CAA (P = 0.055, borderline significance). LAIR-1 was increased on the neutrophils in KD group, whereas it was lower in KD-CAA than that in KD-NCAA, and decreased in KD after IVIG treatment. In contrast, LAIR-1 was reduced on CD4+ and CD8+ T lymphocyte in KD group, and increased in KD after IVIG treatment (all P < 0.05). LAIR-1 on neutrophils showed a positive correlation with IL-5, while on CD4+ T cells, it was negatively correlated with IL-2, IL-6, IL-10, IFN-γ, and IL-8. On CD8+ T cells, LAIR-1 was negatively correlated with IL-2 and IFN-γ. CONCLUSION sLAIR-1 may serve as a potential biomarker for KD and CAAs, while LAIR-1 might be implicated in KD pathogenesis and CAA.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Cardiovascular Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, PR China
| | - Anle Zeng
- Department of Rheumatology and Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, PR China
| | - Penghui Yang
- Department of Cardiovascular Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, PR China
| | - Jing Zhang
- Department of Cardiovascular Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, PR China
| | - Dong Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, PR China
| | - Mengling Li
- Department of Cardiovascular Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, PR China
| | - Fengchuan Jing
- Department of Cardiovascular Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, PR China
| | - Qijian Yi
- Department of Cardiovascular Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, PR China.
| |
Collapse
|
13
|
Jin J, Zhao Y, Fang Y, Pan Y, Wang P, Fan Z, Yu H. Neutrophil extracellular traps promote the activation of the NLRP3 inflammasome and PBMCs pyroptosis via the ROS-dependent signaling pathway in Kawasaki disease. Int Immunopharmacol 2025; 145:113783. [PMID: 39647285 DOI: 10.1016/j.intimp.2024.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis predominantly affecting infants and children under the age of 5. Recent studies have indicated that excessively released neutrophil extracellular traps (NETs) are involved in the progression of vasculitis. The purpose of this study was to investigate the role of NETs, especially their interaction with peripheral blood mononuclear cells (PBMCs), in the pathogenesis of KD. First, we demonstrated that the levels of NETs (cfDNA, MPO, and NE) in the serum of KD patients were significantly higher than those in healthy controls (HCs) and notably decreased after treatment. During the acute phase of KD, inflammatory markers (CRP and ESR) were positively correlated with NETs levels. Furthermore, we observed that neutrophils from KD patients in the acute phase produced elevated levels of NETs, and aspirin could effectively regulate the release of NETs. Additionally, NETs significantly increased the mRNA levels of NLRP3 and IL-1β in PBMCs, as well as the protein expression of NLRP3, caspase-1, ASC and gasdermin D, and the concentration of IL-1β in the cell supernatant. Moreover, NETs stimulated the production of reactive oxygen species (ROS) in PBMCs. N-acetylcysteine significantly reduced the expression of inflammatory factors and pyroptosis-related proteins in PBMCs. In conclusion, our findings suggest that NETs induce the generation of ROS, which in turn activates the NLRP3 inflammasome to mediate PBMCs pyroptosis and perpetuate inflammation in KD patients. This study reveals that targeting NETs or ROS could be a potential therapeutic approach for alleviating systemic inflammation, and that NETs may be a novel target for aspirin in the treatment of KD patients.
Collapse
Affiliation(s)
- Jing Jin
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhao
- Department of Ultrasonography, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuying Fang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Pan
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Panpan Wang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhidan Fan
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Haiguo Yu
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Sharma S, Goel S, Goyal T, Pilania RK, Aggarwal R, Kaur T, Dhaliwal M, Rawat A, Singh S. Single-cell RNA sequencing: an emerging tool revealing dysregulated innate and adaptive immune response at single cell level in Kawasaki disease. Expert Rev Clin Immunol 2025; 21:83-92. [PMID: 39230194 DOI: 10.1080/1744666x.2024.2401105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Kawasaki disease [KD] is a systemic disorder characterized by acute febrile illness due to widespread medium-vessel vasculitis, mainly affecting children. Despite the ongoing advanced research into the disease pathophysiology and molecular mechanisms, the exact etiopathogenesis of KD is still an enigma. Recently, single-cell RNA sequencing [scRNA-seq], has been utilized to elucidate the pathophysiology of KD at a resolution higher than that of previous methods. AREA COVERED In the present article, we re-emphasize the pivotal role of this high-resolution technique, scRNA-seq, in the characterization of immune cell transcriptomic profile and signaling/response pathways in KD and explore the diagnostic, prognostic, and therapeutic potential of this new technique in KD. Using combinations of the search phrases 'KD, scRNA-seq, CAA, childhood vasculitis' a literature search was carried out on Scopus, Google Scholar, and PubMed until the beginning of 2024. EXPERT OPINION scRNA-seq presents a transformative tool for dissecting KD at the cellular level. By revealing rare cell populations, gene expression alterations, and disease-specific pathways, scRNA-seq aids in understanding the intricacies of KD pathogenesis. This review will provide new insights into pathogenesis of KD and the field of applications of scRNA-seq in personalized therapeutics for KD in the future.
Collapse
Affiliation(s)
- Saniya Sharma
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sumit Goel
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Pilania
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ridhima Aggarwal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taranpreet Kaur
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manpreet Dhaliwal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Chen J, Xie J, Deng F, Cai J, Chen S, Song X, Xia S, Shen Q, Guo X, Tang Y. Expansion of peripheral cytotoxic CD4+ T cells in Alzheimer's disease: New insights from multi-omics evidence. Genomics 2025; 117:110976. [PMID: 39657893 DOI: 10.1016/j.ygeno.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The significance of the adaptive immune response in Alzheimer's disease (AD) is increasingly recognized. We analyzed scRNA-Seq data from AD patients, revealing a notable rise in CD4 cytotoxic T cells (CD4-CTLs) in peripheral blood mononuclear cells (PBMCs), validated in vivo and in vitro. This rise correlates with cognitive decline in AD patients. We also identified transcription factors TBX21 and MYBL1 as key drivers of CD4-CTL expansion. Further analyses indicate these cells are terminally differentiated, showing clonal expansion, metabolic changes, and unique communication patterns. Mendelian randomization identified risk genes SRGN and ITGB1, suggesting their genetic regulation in CD4-CTLs may contribute to AD. To summarize, our findings characterize the expansion of CD4-CTLs in the PBMCs of AD patients, providing valuable understanding into the possible mechanisms involved in the expansion of CD4-CTLs in AD.
Collapse
Affiliation(s)
- Jiongxue Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fuyin Deng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sitai Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children Medical Center, Guangzhou 510623, China
| | - Shangzhou Xia
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Qingyu Shen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xinying Guo
- Department of Anesthesiology, Guangzhou Women and Children Medical Center, Guangzhou 510623, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-sen Memorial Hospital, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Andrieu T, Duo A, Duempelmann L, Patzak M, Saner FAM, Skrabalova J, Donato C, Nestorov P, Mueller MD. Single-Cell RNA Sequencing of PBMCs Identified Junction Plakoglobin (JUP) as Stratification Biomarker for Endometriosis. Int J Mol Sci 2024; 25:13071. [PMID: 39684780 DOI: 10.3390/ijms252313071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to identify unique characteristics in the peripheral blood mononuclear cells (PBMCs) of endometriosis patients and develop a non-invasive early diagnostic tool. Using single-cell RNA sequencing (scRNA-seq), we constructed the first single-cell atlas of PBMCs from endometriosis patients based on 107,964 cells and 25,847 genes. Within CD16+ monocytes, we discovered JUP as a dysregulated gene. To assess its diagnostic potential, we measured peritoneal fluid (PF) and serum JUP levels in a large cohort of 199 patients including 20 women with ovarian cancer (OC). JUP was barely detectable in PF but was significantly elevated in the serum of patients with endometriosis and OC, with levels 1.33 and 2.34 times higher than controls, respectively. Additionally, JUP was found in conditioned culture media of CD14+/CD16+ monocytes aligning with our scRNA-seq data. Serum JUP levels correlated with endometriosis severity and endometrioma presence but were unaffected by dysmenorrhea, menstrual cycle, or adenomyosis. When combined with CA125 (cancer antigen 125) JUP enhanced the specificity of endometriosis diagnosis from 89.13% (CA125 measured alone) to 100%. While sensitivity remains a challenge at 19%, our results suggest that JUP's potential to enhance diagnostic accuracy warrants additional investigation. Furthermore, employing serum JUP as a stratification marker unlocked the potential to identify additional endometriosis-related genes, offering novel insights into disease pathogenesis.
Collapse
Affiliation(s)
- Thomas Andrieu
- Endometriosis & Gynaecological Oncology Laboratory (EndoGO), Department for Biomedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
- Inselspital Universitätsspital Bern, Women's Hospital-Universitätsklinik für Frauenheilkunde, Friedbühlstrasse 19, 3010 Bern, Switzerland
| | - Angelo Duo
- Scailyte AG, True Precision Medicine Through Single-Cell Science, Lichtstrasse 35, 4056 Basel, Switzerland
| | - Lea Duempelmann
- Endometriosis & Gynaecological Oncology Laboratory (EndoGO), Department for Biomedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
- Inselspital Universitätsspital Bern, Women's Hospital-Universitätsklinik für Frauenheilkunde, Friedbühlstrasse 19, 3010 Bern, Switzerland
| | - Magdalena Patzak
- Endometriosis & Gynaecological Oncology Laboratory (EndoGO), Department for Biomedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
- Inselspital Universitätsspital Bern, Women's Hospital-Universitätsklinik für Frauenheilkunde, Friedbühlstrasse 19, 3010 Bern, Switzerland
| | - Flurina Annacarina Maria Saner
- Endometriosis & Gynaecological Oncology Laboratory (EndoGO), Department for Biomedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
- Inselspital Universitätsspital Bern, Women's Hospital-Universitätsklinik für Frauenheilkunde, Friedbühlstrasse 19, 3010 Bern, Switzerland
| | - Jitka Skrabalova
- Endometriosis & Gynaecological Oncology Laboratory (EndoGO), Department for Biomedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
- Inselspital Universitätsspital Bern, Women's Hospital-Universitätsklinik für Frauenheilkunde, Friedbühlstrasse 19, 3010 Bern, Switzerland
| | - Cinzia Donato
- Scailyte AG, True Precision Medicine Through Single-Cell Science, Lichtstrasse 35, 4056 Basel, Switzerland
| | - Peter Nestorov
- Scailyte AG, True Precision Medicine Through Single-Cell Science, Lichtstrasse 35, 4056 Basel, Switzerland
| | - Michael D Mueller
- Endometriosis & Gynaecological Oncology Laboratory (EndoGO), Department for Biomedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
- Inselspital Universitätsspital Bern, Women's Hospital-Universitätsklinik für Frauenheilkunde, Friedbühlstrasse 19, 3010 Bern, Switzerland
| |
Collapse
|
17
|
Atici AE, Noval Rivas M, Arditi M. The Central Role of Interleukin-1 Signalling in the Pathogenesis of Kawasaki Disease Vasculitis: Path to Translation. Can J Cardiol 2024; 40:2305-2320. [PMID: 39084253 PMCID: PMC11646188 DOI: 10.1016/j.cjca.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Kawasaki disease (KD) manifests as an acute febrile condition and systemic vasculitis, the etiology of which remains elusive. Primarily affecting children under 5 years of age, if untreated KD can lead to a significant risk of coronary artery aneurysms and subsequent long-term cardiovascular sequelae, including myocardial ischemia and myocardial infarction. Intravenous immunoglobulin therapy mitigates the risk of aneurysm formation, but a subset of patients exhibit resistance to this treatment, increasing the susceptibility of coronary artery lesions. Furthermore, the absence of a KD-specific diagnostic test or biomarkers complicates early detection and appropriate treatment. Experimental murine models of KD vasculitis have substantially improved our understanding of the disease pathophysiology, revealing the key roles of the NLRP3 inflammasome and interleukin-1 (IL-1) signalling pathway. This review aims to delineate the pathophysiologic findings of KD while summarising the findings for the emerging key role of IL-1β in its pathogenesis, derived from both human data and experimental murine models, and the translational potential of these findings for anti-IL-1 therapies for children with KD.
Collapse
Affiliation(s)
- Asli Ekin Atici
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, California, USA; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Magali Noval Rivas
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, California, USA; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, California, USA; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
18
|
Yang M, Chen Y, Feng C, Zhang M, Wang H, Zheng Y, Li X. Single-cell RNA sequencing uncovers molecular mechanisms of intravenous immunoglobulin plus methylprednisolone in Kawasaki disease: attenuated monocyte-driven inflammation and improved NK cell cytotoxicity. Front Immunol 2024; 15:1455925. [PMID: 39524437 PMCID: PMC11543420 DOI: 10.3389/fimmu.2024.1455925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Intravenous immunoglobulin (IVIG) plus methylprednisolone as initial intensive therapy or additional therapy in Kawasaki disease (KD) has been used in clinical practice. However, its molecular and cellular mechanism is unclear. Methods We performed single-cell analysis on 14 peripheral blood mononuclear cell (PBMC) samples obtained from 7 KD patients who received either IVIG monotherapy or IVIG plus methylprednisolone therapy. This encompassed 4 samples from KD patients collected before and after IVIG treatment, as well as 3 samples from KD patients before and after IVIG plus methylprednisolone therapy. Results Both IVIG monotherapy and IVIG plus methylprednisolone therapy can increase lymphocyte counts (e.g. CD4+T, CD8+T, and gdT cells) to address lymphopenia. They can also decrease monocyte counts and repress the expression of S100A12, NLRP3, and genes associated with immune-cell migration in monocytes. IVIG combined with methylprednisolone downregulates more monocyte-driven inflammatory pathways than IVIG alone. Additionally, this combination uniquely enhances NK cell cytotoxicity by modulating receptor homeostasis, while significantly upregulating interferon-related genes in CD4+ T cells, CD8+ T cells, and B cells, particularly type I interferons. Conclusion The combination of IVIG with methylprednisolone attenuated monocyte-driven inflammation and improved NK cell cytotoxicity which might provide clues for pediatricians to consider treatment options for children with KD. Whether the monocyte-driven hyperinflammatory state and NK cell function can be indicators for the clinical choice of IVIG with methylprednisolone therapy in KD needs further investigation.
Collapse
Affiliation(s)
- Minna Yang
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Yeshi Chen
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Chenhui Feng
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Mingming Zhang
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Hongmao Wang
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Yang Zheng
- Department of Cardiovascular Medicine, Peking Union Medical College Graduate School, Beijing, China
| | - Xiaohui Li
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
- Department of Cardiovascular Medicine, Peking Union Medical College Graduate School, Beijing, China
| |
Collapse
|
19
|
Zhang C, Ren T, Zhao X, Su Y, Wang Q, Zhang T, He B, Chen Y, Wu LY, Sun L, Zhang B, Xia Z. Biologically informed machine learning modeling of immune cells to reveal physiological and pathological aging process. Immun Ageing 2024; 21:74. [PMID: 39449067 PMCID: PMC11515583 DOI: 10.1186/s12979-024-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The immune system undergoes progressive functional remodeling from neonatal stages to old age. Therefore, understanding how aging shapes immune cell function is vital for precise treatment of patients at different life stages. Here, we constructed the first transcriptomic atlas of immune cells encompassing human lifespan, ranging from newborns to supercentenarians, and comprehensively examined gene expression signatures involving cell signaling, metabolism, differentiation, and functions in all cell types to investigate immune aging changes. By comparing immune cell composition among different age groups, HLA highly expressing NK cells and CD83 positive B cells were identified with high percentages exclusively in the teenager (Tg) group, whereas unknown_T cells were exclusively enriched in the supercentenarian (Sc) group. Notably, we found that the biological age (BA) of pediatric COVID-19 patients with multisystem inflammatory syndrome accelerated aging according to their chronological age (CA). Besides, we proved that inflammatory shift- myeloid abundance and signature correlate with the progression of complications in Kawasaki disease (KD). The shift- myeloid signature was also found to be associated with KD treatment resistance, and effective therapies improve treatment outcomes by reducing this signaling. Finally, based on those age-related immune cell compositions, we developed a novel BA prediction model PHARE ( https://xiazlab.org/phare/ ), which can apply to both scRNA-seq and bulk RNA-seq data. Using this model, we found patients with coronary artery disease (CAD) also exhibit accelerated aging compared to healthy individuals. Overall, our study revealed changes in immune cell proportions and function associated with aging, both in health and disease, and provided a novel tool for successfully capturing features that accelerate or delay aging.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Boxiao He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yabing Chen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
20
|
Lin Q, Wang Z, Ding G, Li G, Chen L, Qiu Q, Song S, Liu W, Jiang X, Huang M, Shen L, Xiao T, Xie L. The mechanism underlying B-cell developmental dysfunction in Kawasaki disease based on single-cell transcriptomic sequencing. Front Immunol 2024; 15:1438640. [PMID: 39507528 PMCID: PMC11537935 DOI: 10.3389/fimmu.2024.1438640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Background Kawasaki disease (KD) is an acute systemic vasculitis that can lead to acquired heart disease in children mostly from in developed countries. The previous research showed that B cells in KD patients underwent a profound change in both the cell numbers and types after intravenous immunoglobulin (IVIG) therapy. Methods We performed the single-cell RNA-sequencing for the peripheral blood mononuclear cells (PBMCs) from three febrile patients and three KD patients to investigate the possible mechanism underlying B cell developmental dysfunction in KD. The pseudo-time analysis was employed to study the developmental trajectories of the PBMCs in febrile control and KD patients. Results Overall single-cell expression profiles show that the biological processes of immunity, B cell activation pathway and their related biological entities are repressed in KD patients before IVIG treatment compared to febrile patient and KD patients after IVIG treatment. The differentially expressed gene analyses further demonstrate that B cell signaling pathway is downregulated in B cells and plasma blast cells of KD patients before treatment while cell cycle genes and MYC gene are upregulated in dendritic cells (DCs) and hematopoietic stem and progenitor cells (HSPCs) of KD patients before treatment. The biological process of immune response is upregulated in the HSPCs of KD patients before treatment in our dataset while the biological process of inflammatory response is upregulated in the HSPCs of KD patients before treatment in GSE168732 dataset. Single-cell trajectory analyses demonstrate that KD patients before treatment have a shortened developmental path in which B cells and T cells are failed to differentiate into separate lineages. HSPD1 and HSPE1 genes show an elevated expression level in the early cell development stage of KD patients before treatment accompanied with the repression of MYC, SPI1, MT2A and UBE2C genes. Our analyses of all B cells from KD patients before treatment show most of B cells are arrested in a transitional state with an ill developmental path compared with febrile patients and KD patients after treatment. Conclusion Our results indicate that the immune premature HSPCs accompanied with the abnormal expression dynamics of cell cycle and SPI1 genes are the mechanism underlying B cell developmental dysfunction in KD patients.
Collapse
Affiliation(s)
- Qiuping Lin
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guohui Ding
- Institute for Digital Health, International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Guang Li
- Daozhi Precision Medicine Technology Co., LTD, Shanghai, China
| | - Liqin Chen
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingzhu Qiu
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sirui Song
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xunwei Jiang
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Huang
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Libing Shen
- Institute for Digital Health, International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijian Xie
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Wen J, Li H, Zhou Y, Du H, Hu G, Wen Z, Tang D, Wang Y, Cui X, Zhou Z, Wang DW, Chen C. Immunoglobin attenuates fulminant myocarditis by inhibiting overactivated innate immune response. Br J Pharmacol 2024. [PMID: 39442535 DOI: 10.1111/bph.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Fulminant myocarditis (FM) is a myocardial inflammatory disease that can result from either viral diseases or autoimmune diseases. In this study, we have determined the treatment effects of immunomodulatory drugs on FM. EXPERIMENTAL APPROACH FM was induced in A/JGpt mice by intraperitoneal administration of coxsackievirus B3, after which immunoglobins were administered daily by intraperitoneal injection. On the seventh day, the cardiac structure and function were determined using echocardiography and cardiac catheterisation. Single-cell RNA sequencing (scRNA-seq) was performed to evaluate CD45+ cells in the heart. KEY RESULTS Immunoglobin, a typical immunomodulatory drug, dramatically reduced mortality and significantly improved cardiac function in mice with FM. ScRNA-seq revealed that immunoglobin treatment effectively modulated cardiac immune homeostasis, particularly by attenuating overactivated innate immune responses. At the cellular level, immunoglobin predominantly targeted Plac8+ monocytes and S100a8+ neutrophils, suppressing their proinflammatory activities, and enhancing antigen processing and presentation capabilities, thereby amplifying the efficiency and potency of the immune response against the virus. Immunoglobin benefits are mediated by the modulation of multiple signalling pathways, including relevant receptors on immune cells, direction of inflammatory cell chemotaxis, antigen presentation and anti-viral effects. Subsequently, Bst2-ILT7 ligand-receptor-mediated cellular interactions manipulated by immunoglobin were further confirmed in vivo. CONCLUSIONS AND IMPLICATIONS Immunoglobin treatment significantly attenuated FM-induced cardiac inflammation and improved cardiac function by inhibiting overactivated innate immune responses.
Collapse
Affiliation(s)
- Jianpei Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yufei Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hengzhi Du
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Hu
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Du Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanwen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
22
|
Li X, Wang Y, Guan R, Sheng N, Zhang S. Multi-Omics Profiling Unveils the Complexity and Dynamics of Immune Infiltrates in Intrahepatic Cholangiocarcinoma. BIOLOGY 2024; 13:816. [PMID: 39452125 PMCID: PMC11504529 DOI: 10.3390/biology13100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous malignancy. The reasons behind the global rise in the incidence of ICC remain unclear, and there exists limited knowledge regarding the immune cells within the tumor microenvironment (TME). In this study, a more comprehensive analysis of multi-omics data was performed using machine learning methods. The study found that the immunoactivity of B cells, macrophages, and T cells in the infiltrating immune cells of ICC exhibits a significantly higher level of immunoactivity in comparison to other immune cells. During the immune sensing and response, the effect of antigen-presenting cells (APCs) such as B cells and macrophages on activating NK cells was weakened, while the effect of activating T cells became stronger. Simultaneously, four distinct subpopulations, namely BLp, MacrophagesLp, BHn, and THn, have been identified from the infiltrating immune cells, and their corresponding immune-related marker genes have been identified. The immune sensing and response model of ICC has been revised and constructed based on our current comprehension. This study not only helps to deepen the understanding the heterogeneity of infiltrating immune cells in ICC, but also may provide valuable insights into the diagnosis, evaluation, treatment, and prognosis of ICC.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Yan Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Renchu Guan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Nan Sheng
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Shuangquan Zhang
- School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
23
|
Zheng Y, Zhou Y, Zhu D, Fu X, Xie C, Sun S, Qin G, Feng M, Liu C, Zhou Q, Liu F, Chu C, Wang F, Yang D, Wang MW, Gui Y. Single-cell mapping of peripheral blood mononuclear cells reveals key transcriptomic changes favoring coronary artery lesion in IVIG-resistant Kawasaki disease. Heliyon 2024; 10:e37857. [PMID: 39323779 PMCID: PMC11422586 DOI: 10.1016/j.heliyon.2024.e37857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Background Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease (KD) poses a considerable challenge to patients and their families due to its severe complications. Previous researches have highlighted the critical role of immune disorders in its pathogenesis. However, fragmented studies based on isolated cases hinder a comprehensive understanding of this deadly illness. This study aimed to explore the overall landscape of peripheral blood mononuclear cells (PBMCs) in IVIG-resistant KD patients using single-cell RNA sequencing (scRNA-seq). Methods The scRNA-seq was used to characterize the transcriptomic profiles of IVIG-resistant KD patients, IVIG-responsive KD patients, and healthy controls. Data quality control (QC) and subsequent analysis were conducted using various R packages. These included DoubletFinder and Harmony for QC, Seurat and SingleR for identifying and annotating major cell types, ggpubr for calculating and visualizing the percentages of each cell type, Seurat for characterizing differentially expressed genes (DEGs) between groups, pheatmap for visualizing the DEGs, clusterProfiler for performing Gene Ontology (GO) enrichment analysis of DEGs, scRepertoire for TCR and BCR data analysis, Monocle for assessing cell differentiation trajectories, and CellChat for intercellular interaction evaluation. Results High-quality single-cell transcriptome data from 12 participants were analyzed, including five with IVIG-resistant KD, four with IVIG-responsive KD, and three healthy controls. We identified 10 major cell types and observed that the differentiation of CD8+ effector T cells was impeded in IVIG-resistant KD patients with coronary artery lesion (CAL) according to cell differentiation trajectory analysis. Subsequent cell communication analysis demonstrated that myeloid cluster with high expression of LCN2, S100P, and LTF played a key role, potentially signaling through MIF-CD74/CXCR4 and MIF-CD74/CD44 ligand-receptor pairs. Conclusion Complex immunopathological changes occur during the development of CAL in IVIG-resistant KD. Stunted differentiation of CD8+ effector T cells is noted in KD-CAL. Interactions between myeloid cells and T cells activates multiple inflammatory signaling pathways, with ligand-receptor pairs, including MIF-CD74/CXCR4 and MIF-CD74/CD44, potentially playing crucial roles.
Collapse
Affiliation(s)
- Yuanzheng Zheng
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yan Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Di Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xing Fu
- Accuramed Technology (Shanghai) Ltd., Shanghai, 200233, China
| | - Cao Xie
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shuna Sun
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Guoyou Qin
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Mei Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenglong Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Fang Liu
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Chen Chu
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Feng Wang
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yonghao Gui
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| |
Collapse
|
24
|
Gu W, Mirsaidi-Madjdabadi S, Ramirez F, Simonson TS, Makino A. Transcriptome meta-analysis of Kawasaki disease in humans and mice. Front Pediatr 2024; 12:1423958. [PMID: 39350793 PMCID: PMC11440715 DOI: 10.3389/fped.2024.1423958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Kawasaki Disease (KD) affects young children less than five years old with severe blood vessel inflammation. Despite being treatable, the causes and mechanisms remain elusive. This study conducted a meta-analysis of RNA sequencing (RNA-seq) data from human and animal models to explore KD's transcriptomic profile and evaluate animal models. We retrieved bulk and single-cell RNA-seq data from Gene Expression Omnibus, with blood and coronary artery samples from KD patients, aorta samples from KD mouse models (Lactobacillus casei cell wall extract-injected mice), and their controls. Upon consistent quality control, we applied Fisher's exact test to assess differential gene expression, followed by an enrichment analysis of overlapping genes. These studies identified 400 differentially expressed genes in blood samples of KD patients compared to controls and 413 genes in coronary artery samples. The data from KD blood and KD coronary artery samples shared only 16 differentially expressed genes. Eighty-one genes overlapped between KD human coronary arteries and KD mouse aortas, and 67 of these 81 genes were regulated in parallel in both humans and mice: 30 genes were up-regulated, and 37 were down-regulated. These included previously identified KD-upregulated genes: CD74, SFRP4, ITGA4, and IKZF1. Gene enrichment analysis revealed significant alterations in the cardiomyopathy pathway. Single-cell RNAseq showed a few significant markers, with known KD markers like S100A9, S100A8, CD74, CD14, IFITM2, and IFITM3, being overexpressed in KD cohorts. Gene profiles obtained from KD human coronary artery are more compatible with data from aorta samples of KD mice than blood samples of KD humans, validating KD animal models for identifying therapeutic targets. Although blood samples can be utilized to discover novel biomarkers, more comprehensive single-cell sequencing is required to detail gene expression in different blood cell populations. This study identifies critical genes from human and mouse tissues to help develop new treatment strategies for KD.
Collapse
Affiliation(s)
- Wanjun Gu
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Francisco Ramirez
- Department of Medicine, University of California, San Diego, CA, United States
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Tatum S. Simonson
- Department of Medicine, University of California, San Diego, CA, United States
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, CA, United States
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| |
Collapse
|
25
|
Meng N, Su Y, Ye Z, Xie X, Liu Y, Qin C. Single-cell transcriptomic landscape reveals the role of intermediate monocytes in aneurysmal subarachnoid hemorrhage. Front Cell Dev Biol 2024; 12:1401573. [PMID: 39318997 PMCID: PMC11420033 DOI: 10.3389/fcell.2024.1401573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Objective Neuroinflammation is associated with brain injury and poor outcomes after aneurysmal subarachnoid hemorrhage (SAH). In this study, we performed single-cell RNA sequencing (scRNA-seq) to analyze monocytes and explore the mechanisms of neuroinflammation after SAH. Methods We recruited two male patients with SAH and collected paired cerebrospinal fluid (CSF) and peripheral blood (PB) samples from each patient. Mononuclear cells from the CSF and PB samples were sequenced using 10x Genomics scRNA-seq. Additionally, scRNA-seq data for CSF from eight healthy individuals were obtained from the Gene Expression Omnibus database, serving as healthy controls (HC). We employed various R packages to comprehensively study the heterogeneity of transcriptome and phenotype of monocytes, including monocyte subset identification, function pathways, development and differentiation, and communication interaction. Results (1) A total of 17,242 cells were obtained in this study, including 7,224 cells from CSF and 10,018 cells from PB, mainly identified as monocytes, T cells, B cells, and NK cells. (2) Monocytes were divided into three subsets based on the expression of CD14 and CD16: classical monocytes (CM), intermediate monocytes (IM), and nonclassical monocytes (NCM). Differentially expressed gene modules regulated the differentiation and biological function in monocyte subsets. (3) Compared with healthy controls, both the toll-like receptor (TLR) and nod-like receptor (NLR) pathways were significantly activated and upregulated in IM from CSF after SAH. The biological processes related to neuroinflammation, such as leukocyte migration and immune response regulation, were also enriched in IM. These findings revealed that IM may play a key role in neuroinflammation by mediating the TLR and NLR pathways after SAH. Interpretation In conclusion, we establish a single-cell transcriptomic landscape of immune cells and uncover the heterogeneity of monocyte subsets in SAH. These findings offer new insights into the underlying mechanisms of neuroinflammation and therapeutic targets for SAH.
Collapse
Affiliation(s)
- Ningqin Meng
- First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ying Su
- First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ziming Ye
- First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xufeng Xie
- The first people’s hospital of Yulin, Guangxi, China
| | - Ying Liu
- Department of Rehabilitation, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Qin
- First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
Wang Y, Liu Y, Wang N, Liu Z, Qian G, Li X, Huang H, Zhuo W, Xu L, Zhang J, Lv H, Gao Y. Identification of novel mitophagy-related biomarkers for Kawasaki disease by integrated bioinformatics and machine-learning algorithms. Transl Pediatr 2024; 13:1439-1456. [PMID: 39263286 PMCID: PMC11384439 DOI: 10.21037/tp-24-230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Background Kawasaki disease (KD) is a systemic vasculitis primarily affecting the coronary arteries in children. Despite growing attention to its symptoms and pathogenesis, the exact mechanisms of KD remain unclear. Mitophagy plays a critical role in inflammation regulation, however, its significance in KD has only been minimally explored. This study sought to identify crucial mitophagy-related biomarkers and their mechanisms in KD, focusing on their association with immune cells in peripheral blood. Methods This research used four datasets from the Gene Expression Omnibus (GEO) database that were categorized as the merged and validation datasets. Screening for differentially expressed mitophagy-related genes (DE-MRGs) was conducted, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A weighted gene co-expression network analysis (WGCNA) identified the hub module, while machine-learning algorithms [random forest-recursive feature elimination (RF-RFE) and support vector machine-recursive feature elimination (SVM-RFE)] pinpointed the hub genes. Receiver operating characteristic (ROC) curves were generated for these genes. Additionally, the CIBERSORT algorithm was used to assess the infiltration of 22 immune cell types to explore their correlations with hub genes. Interactions between transcription factors (TFs), genes, and Gene-microRNAs (miRNAs) of hub genes were mapped using the NetworkAnalyst platform. The expression difference of the hub genes was validated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results Initially, 306 DE-MRGs were identified between the KD patients and healthy controls. The enrichment analysis linked these MRGs to autophagy, mitochondrial function, and inflammation. The WGCNA revealed a hub module of 47 KD-associated DE-MRGs. The machine-learning algorithms identified cytoskeleton-associated protein 4 (CKAP4) and serine-arginine protein kinase 1 (SRPK1) as critical hub genes. In the merged dataset, the area under the curve (AUC) values for CKAP4 and SRPK1 were 0.933 [95% confidence interval (CI): 0.901 to 0.964] and 0.936 (95% CI: 0.906 to 0.966), respectively, indicating high diagnostic potential. The validation dataset results corroborated these findings with AUC values of 0.872 (95% CI: 0.741 to 1.000) for CKAP4 and 0.878 (95% CI: 0.750 to 1.000) for SRPK1. The CIBERSORT analysis connected CKAP4 and SRPK1 with specific immune cells, including activated cluster of differentiation 4 (CD4) memory T cells. TFs such as MAZ, SAP30, PHF8, KDM5B, miRNAs like hsa-mir-7-5p play essential roles in regulating these hub genes. The qRT-PCR results confirmed the differential expression of these genes between the KD patients and healthy controls. Conclusions CKAP4 and SRPK1 emerged as promising diagnostic biomarkers for KD. These genes potentially influence the progression of KD through mitophagy regulation.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Department of Cardiology, The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Nana Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhiheng Liu
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xuan Li
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Hongbiao Huang
- Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Wenyu Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Lei Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jiaying Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Yang Gao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang (Lianyungang Clinical College of Nanjing Medical University), Lianyungang, China
| |
Collapse
|
27
|
Wu H, Wang Y, Tan P, Ran Y, Guan Y, Qian S, Feng X, Jiang Y, Peng Y, Sheng K, Xi H, Ji W, Guo X. Ferulic acid suppresses the inflammation and apoptosis in Kawasaki disease through activating the AMPK/mTOR/NF-κB pathway. Front Pharmacol 2024; 15:1420602. [PMID: 39268468 PMCID: PMC11390509 DOI: 10.3389/fphar.2024.1420602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Background Kawasaki disease (KD) is a self-limiting and acute systemic vasculitis of unknown etiology, mainly affecting children. Ferulic acid (FA), a natural phenolic substance, has multiple pharmacological properties, including anti-inflammatory, anti-apoptosis, and anti-fibrosis, and so on. So far, the protective effects of FA on KD have not been explored. Methods In this study, we established Candida albicans water soluble fraction (CAWS)-induced mouse coronary artery vasculitis of KD model and the tumor necrosis factor α (TNF-α)-induced human umbilical vein endothelial cells (HUVECs) injury model to investigate the anti-inflammatory and anti-apoptosis effects of FA on KD, and try to elucidate the underlying mechanism. Results Our in vivo results demonstrated that FA exerted anti-inflammatory effects on KD by inhibiting the infiltration of CD45-positive leukocytes and fibrosis around the coronary artery. Additionally, FA downregulated the levels of inflammatory and chemotactic cytokines, alleviated splenomegaly, and exhibited anti-apoptotic effects on KD by reducing TUNEL-positive cells, downregulating BAX expression, and upregulating BCL-2 expression. In addition, Our in vitro findings showed that FA could effectively inhibit TNF-α-induced HUVEC inflammation like NF-κB inhibitor QNZ by downregulating the expression of pro-inflammatory cytokines as well as attenuated TNF-α-induced HUVEC apoptosis by reducing apoptotic cell numbers and the BAX/BCL-2 ratio, which could be reversed by the AMPK inhibitor compound c (CC). The further mechanistic study demonstrated that FA could restrain vascular endothelial cell inflammation and apoptosis in KD through activating the AMPK/mTOR/NF-κB pathway. However, FA alone is hard to completely restore KD into normal condition. Conclusion In conclusion, FA has potential protective effects on KD, suggesting its promising role as an adjuvant for KD therapy in the future.
Collapse
Affiliation(s)
- Huilan Wu
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Wang
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Tan
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Ran
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Guan
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songwei Qian
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Xing Feng
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yalan Jiang
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongmiao Peng
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Sheng
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haitao Xi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiping Ji
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Guo
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Scientific Research Department, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
28
|
Yang K, Tang J, Li H, Zhang H, Ding J, Li Z, Luo J. LncRNAs in Kawasaki disease and Henoch-Schönlein purpura: mechanisms and clinical applications. Mol Cell Biochem 2024; 479:1969-1984. [PMID: 37639198 DOI: 10.1007/s11010-023-04832-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Kawasaki disease (KD) and Henoch-Schönlein purpura (HSP) are the two most predominant types of childhood vasculitis. In childhood vasculitis, factors such as lack of sensitive diagnostic indicators and adverse effects of drug therapy may cause multiorgan system involvement and complications and even death. Many studies suggest that long noncoding RNAs (lncRNAs) are involved in the mechanism of vasculitis development in children and can be used to diagnose or predict prognosis by lncRNAs. In existing drug therapies, lncRNAs are also involved in drug-mediated treatment mechanisms and are expected to improve drug toxicity. The aim of this review is to summarize the link between lncRNAs and the pathogenesis of KD and HSP. In addition, we review the potential applications of lncRNAs in multiple dimensions, such as diagnosis, treatment, and prognosis prediction. This review highlights that targeting lncRNAs may be a novel therapeutic strategy to improve and treat KD and HSP.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Jiayao Tang
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Haoying Li
- Queen Mary School of Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinghua Luo
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
29
|
Noval Rivas M, Kocatürk B, Franklin BS, Arditi M. Platelets in Kawasaki disease: mediators of vascular inflammation. Nat Rev Rheumatol 2024; 20:459-472. [PMID: 38886559 DOI: 10.1038/s41584-024-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/20/2024]
Abstract
Kawasaki disease, a systemic vasculitis that affects young children and can result in coronary artery aneurysms, is the leading cause of acquired heart disease among children. A hallmark of Kawasaki disease is increased blood platelet counts and platelet activation, which is associated with an increased risk of developing resistance to intravenous immunoglobulin and coronary artery aneurysms. Platelets and their releasate, including granules, microparticles, microRNAs and transcription factors, can influence innate immunity, enhance inflammation and contribute to vascular remodelling. Growing evidence indicates that platelets also interact with immune and non-immune cells to regulate inflammation. Platelets boost NLRP3 inflammasome activation and IL-1β production by human immune cells by releasing soluble mediators. Activated platelets form aggregates with leukocytes, such as monocytes and neutrophils, enhancing numerous functions of these cells and promoting thrombosis and inflammation. Leukocyte-platelet aggregates are increased in children with Kawasaki disease during the acute phase of the disease and can be used as biomarkers for disease severity. Here we review the role of platelets in Kawasaki disease and discuss progress in understanding the immune-effector role of platelets in amplifying inflammation related to Kawasaki disease vasculitis and therapeutic strategies targeting platelets or platelet-derived molecules.
Collapse
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Lin J, Bai S, He L, Yang Y, Li X, Luo L, Wang Y, Chen YY, Qin J, Zhong Y. Cytotoxic Lymphocyte-Monocyte Complex Reflects the Dynamics of Coronavirus Disease 2019 Systemic Immune Response. J Infect Dis 2024; 230:5-14. [PMID: 39052699 DOI: 10.1093/infdis/jiae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a variety of clinical manifestations, many of which originate from altered immune responses, either locally or systemically. Immune cell cross-talk occurs mainly in lymphoid organs. However, systemic cell interaction specific to coronavirus disease 2019 has not been well characterized. Here, by employing single-cell RNA sequencing and imaging flow cytometry analysis, we unraveled, in peripheral blood, a heterogeneous group of cell complexes formed by the adherence of CD14+ monocytes to different cytotoxic lymphocytes, including SARS-CoV-2-specific CD8+ T cells, γδ T cells, and natural killer T cells. These lymphocytes attached to CD14+ monocytes that showed enhanced inflammasome activation and pyroptosis-induced cell death in progression stage; in contrast, in the convalescent phase, CD14+ monocytes with elevated antigen presentation potential were targeted by cytotoxic lymphocytes, thereby restricting the excessive immune activation. Collectively, our study reports previously unrecognized cell-cell interplay in the SARS-CoV-2-specific immune response, providing new insight into the intricacy of dynamic immune cell interaction representing antiviral defense.
Collapse
Affiliation(s)
- Jiajia Lin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shiyu Bai
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liheng He
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
| | - Ye Yang
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiyue Li
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liulin Luo
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine
| | - Ying Wang
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ying Chen
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
| | - Yi Zhong
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
31
|
Markandran K, Clemente KNM, Tan E, Attal K, Chee QZ, Cheung C, Chen CK. The Future of Kawasaki Disease Diagnosis: Liquid Biopsy May Hold the Key. Int J Mol Sci 2024; 25:8062. [PMID: 39125631 PMCID: PMC11311979 DOI: 10.3390/ijms25158062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Kawasaki disease (KD) is a febrile illness characterised by systemic inflammation of small- and medium-sized blood vessels, which commonly occurs in young children. Although self-limiting, there is a risk of developing coronary artery lesions as the disease progresses, with delay in diagnosis and treatment. Unfortunately, the diagnosis of KD continues to remain a clinical dilemma. Thus, this article not only summarises the key research gaps associated with KD, but also evaluates the possibility of using circulating endothelial injury biomarkers, such as circulating endothelial cells, endothelial microparticles and vascular endothelial cell-free DNA, as diagnostic and prognostic tools for KD: a "liquid biopsy" approach. The challenges of translating liquid biopsies to use in KD and the opportunities for improvement in its diagnosis and management that such translation may provide are discussed. The use of endothelial damage markers, which are easily obtained via blood collection, as diagnostic tools is promising, and we hope this will be translated to clinical applications in the near future.
Collapse
Affiliation(s)
- Kasturi Markandran
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.M.)
| | - Kristine Nicole Mendoza Clemente
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.M.)
| | - Elena Tan
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Karan Attal
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Qiao Zhi Chee
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat–National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Experimental Medicine Building, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.M.)
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat–National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
32
|
Li S, Ling S, Wang D, Wang X, Hao F, Yin L, Yuan Z, Liu L, Zhang L, Li Y, Chen Y, Luo L, Dai Y, Zhang L, Chen L, Deng D, Tang W, Zhang S, Wang S, Cai Y. Modified lentiviral globin gene therapy for pediatric β 0/β 0 transfusion-dependent β-thalassemia: A single-center, single-arm pilot trial. Cell Stem Cell 2024; 31:961-973.e8. [PMID: 38759653 DOI: 10.1016/j.stem.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/24/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
β0/β0 thalassemia is the most severe type of transfusion-dependent β-thalassemia (TDT) and is still a challenge facing lentiviral gene therapy. Here, we report the interim analysis of a single-center, single-arm pilot trial (NCT05015920) evaluating the safety and efficacy of a β-globin expression-optimized and insulator-engineered lentivirus-modified cell product (BD211) in β0/β0 TDT. Two female children were enrolled, infused with BD211, and followed up for an average of 25.5 months. Engraftment of genetically modified hematopoietic stem and progenitor cells was successful and sustained in both patients. No unexpected safety issues occurred during conditioning or after infusion. Both patients achieved transfusion independence for over 22 months. The treatment extended the lifespan of red blood cells by over 42 days. Single-cell DNA/RNA-sequencing analysis of the dynamic changes of gene-modified cells, transgene expression, and oncogene activation showed no notable adverse effects. Optimized lentiviral gene therapy may safely and effectively treat all β-thalassemia.
Collapse
Affiliation(s)
- Shiqi Li
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Sikai Ling
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; BDgene Therapeutics, Shanghai 200240, China
| | - Dawei Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | - Liufan Yin
- Sequanta Technologies, Shanghai 200131, China
| | - Zhongtao Yuan
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Lin Liu
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Lin Zhang
- BDgene Therapeutics, Shanghai 200240, China
| | - Yu Li
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Yingnian Chen
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Le Luo
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Ying Dai
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Lihua Zhang
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Lvzhe Chen
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | | | - Wei Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sanbin Wang
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China.
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
33
|
Lombardi Pereira AP, Aubuchon E, Moreira DP, Lane M, Carvalho TT, Mesquita TRR, Lee Y, Crother TR, Porritt RA, Verri WA, Noval Rivas M, Arditi M. Long-term cardiovascular inflammation and fibrosis in a murine model of vasculitis induced by Lactobacillus casei cell wall extract. Front Immunol 2024; 15:1411979. [PMID: 38989288 PMCID: PMC11234797 DOI: 10.3389/fimmu.2024.1411979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Background Kawasaki disease (KD), an acute febrile illness and systemic vasculitis, is the leading cause of acquired heart disease in children in industrialized countries. KD leads to the development of coronary artery aneurysms (CAA) in affected children, which may persist for months and even years after the acute phase of the disease. There is an unmet need to characterize the immune and pathological mechanisms of the long-term complications of KD. Methods We examined cardiovascular complications in the Lactobacillus casei cell wall extract (LCWE) mouse model of KD-like vasculitis over 4 months. The long-term immune, pathological, and functional changes occurring in cardiovascular lesions were characterized by histological examination, flow cytometric analysis, immunofluorescent staining of cardiovascular tissues, and transthoracic echocardiogram. Results CAA and abdominal aorta dilations were detected up to 16 weeks following LCWE injection and initiation of acute vasculitis. We observed alterations in the composition of circulating immune cell profiles, such as increased monocyte frequencies in the acute phase of the disease and higher counts of neutrophils. We determined a positive correlation between circulating neutrophil and inflammatory monocyte counts and the severity of cardiovascular lesions early after LCWE injection. LCWE-induced KD-like vasculitis was associated with myocarditis and myocardial dysfunction, characterized by diminished ejection fraction and left ventricular remodeling, which worsened over time. We observed extensive fibrosis within the inflamed cardiac tissue early in the disease and myocardial fibrosis in later stages. Conclusion Our findings indicate that increased circulating neutrophil counts in the acute phase are a reliable predictor of cardiovascular inflammation severity in LCWE-injected mice. Furthermore, long-term cardiac complications stemming from inflammatory cell infiltrations in the aortic root and coronary arteries, myocardial dysfunction, and myocardial fibrosis persist over long periods and are still detected up to 16 weeks after LCWE injection.
Collapse
Affiliation(s)
- Ana Paula Lombardi Pereira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Emily Aubuchon
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debbie P. Moreira
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Malcolm Lane
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Thacyana T. Carvalho
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Youngho Lee
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rebecca A. Porritt
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
34
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
35
|
Zhang Z, Kean IRL, Dratva LM, Clark JA, Syrimi E, Khan N, Daubney E, White D, O'Neill L, Chisholm C, Payne C, Benkenstein S, Kupiec K, Galassini R, Wright V, Winmill H, Robbins C, Brown K, Ramnarayan P, Scholefield B, Peters M, Klein N, Montgomery H, Meyer KB, Teichmann SA, Bryant C, Taylor G, Pathan N. Enhanced CD95 and interleukin 18 signalling accompany T cell receptor Vβ21.3+ activation in multi-inflammatory syndrome in children. Nat Commun 2024; 15:4227. [PMID: 38762592 PMCID: PMC11102542 DOI: 10.1038/s41467-024-48699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Multisystem inflammatory syndrome in children is a post-infectious presentation SARS-CoV-2 associated with expansion of the T cell receptor Vβ21.3+ T-cell subgroup. Here we apply muti-single cell omics to compare the inflammatory process in children with acute respiratory COVID-19 and those presenting with non SARS-CoV-2 infections in children. Here we show that in Multi-Inflammatory Syndrome in Children (MIS-C), the natural killer cell and monocyte population demonstrate heightened CD95 (Fas) and Interleuking 18 receptor expression. Additionally, TCR Vβ21.3+ CD4+ T-cells exhibit skewed differentiation towards T helper 1, 17 and regulatory T cells, with increased expression of the co-stimulation receptors ICOS, CD28 and interleukin 18 receptor. We observe no functional evidence for NLRP3 inflammasome pathway overactivation, though MIS-C monocytes show elevated active caspase 8. This, coupled with raised IL18 mRNA expression in CD16- NK cells on single cell RNA sequencing analysis, suggests interleukin 18 and CD95 signalling may trigger activation of TCR Vβ21.3+ T-cells in MIS-C, driven by increased IL-18 production from activated monocytes and CD16- Natural Killer cells.
Collapse
MESH Headings
- Humans
- Interleukin-18/metabolism
- Child
- Signal Transduction
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- fas Receptor/metabolism
- fas Receptor/genetics
- Monocytes/immunology
- Monocytes/metabolism
- Systemic Inflammatory Response Syndrome/immunology
- Systemic Inflammatory Response Syndrome/metabolism
- COVID-19/immunology
- COVID-19/virology
- COVID-19/metabolism
- COVID-19/complications
- Inflammasomes/metabolism
- Inflammasomes/immunology
- SARS-CoV-2/immunology
- Adolescent
- Male
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Female
- Child, Preschool
- Single-Cell Analysis
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD28 Antigens/metabolism
- Lymphocyte Activation/immunology
- Receptors, Interleukin-18/metabolism
- Receptors, Interleukin-18/genetics
- Receptors, Interleukin-18/immunology
Collapse
Affiliation(s)
- Zhenguang Zhang
- Departments of Paediatrics, University of Cambridge, Cambridge, UK
| | - Iain R L Kean
- Departments of Paediatrics, University of Cambridge, Cambridge, UK
| | - Lisa M Dratva
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - John A Clark
- Departments of Paediatrics, University of Cambridge, Cambridge, UK
| | - Eleni Syrimi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Esther Daubney
- Paediatric Intensive Care Unit, Addenbrookes Hospital, Cambridge, UK
| | - Deborah White
- Paediatric Intensive Care Unit, Addenbrookes Hospital, Cambridge, UK
| | - Lauran O'Neill
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | - Catherine Chisholm
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | - Caroline Payne
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | - Sarah Benkenstein
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | - Klaudia Kupiec
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | | | - Victoria Wright
- Department of Paediatrics, Imperial College London, London, UK
| | - Helen Winmill
- Paediatric Intensive Care Unit, Birmingham Children's Hospital, Birmingham, UK
| | - Ceri Robbins
- Paediatric Intensive Care Unit, Birmingham Children's Hospital, Birmingham, UK
| | - Katherine Brown
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | | | - Barnaby Scholefield
- Paediatric Intensive Care Unit, Birmingham Children's Hospital, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Mark Peters
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
- Departments of Paediatrics, University College London, London, UK
| | - Nigel Klein
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
- Departments of Paediatrics, University College London, London, UK
| | | | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Theory of Condensed Matter, Cavendish Laboratory, Department of Physics University of Cambridge, Cambridge, UK
| | - Clare Bryant
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| | - Nazima Pathan
- Departments of Paediatrics, University of Cambridge, Cambridge, UK.
- Paediatric Intensive Care Unit, Addenbrookes Hospital, Cambridge, UK.
| |
Collapse
|
36
|
Aminu M, Hong L, Vokes N, Schmidt ST, Saad M, Zhu B, Le X, Tina C, Sheshadri A, Wang B, Jaffray D, Futreal A, Lee JJ, Byers LA, Gibbons D, Heymach J, Chen K, Cheng C, Zhang J, Wu J. Joint multi-omics discriminant analysis with consistent representation learning using PANDA. RESEARCH SQUARE 2024:rs.3.rs-4353037. [PMID: 38798352 PMCID: PMC11118856 DOI: 10.21203/rs.3.rs-4353037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Integrative multi-omics analysis provides deeper insight and enables better and more realistic modeling of the underlying biology and causes of diseases than does single omics analysis. Although several integrative multi-omics analysis methods have been proposed and demonstrated promising results in integrating distinct omics datasets, inconsistent distribution of the different omics data, which is caused by technology variations, poses a challenge for paired integrative multi-omics methods. In addition, the existing discriminant analysis-based integrative methods do not effectively exploit correlation and consistent discriminant structures, necessitating a compromise between correlation and discrimination in using these methods. Herein we present PAN-omics Discriminant Analysis (PANDA), a joint discriminant analysis method that seeks omics-specific discriminant common spaces by jointly learning consistent discriminant latent representations for each omics. PANDA jointly maximizes between-class and minimizes within-class omics variations in a common space and simultaneously models the relationships among omics at the consistency representation and cross-omics correlation levels, overcoming the need for compromise between discrimination and correlation as with the existing integrative multi-omics methods. Because of the consistency representation learning incorporated into the objective function of PANDA, this method seeks a common discriminant space to minimize the differences in distributions among omics, can lead to a more robust latent representations than other methods, and is against the inconsistency of the different omics. We compared PANDA to 10 other state-of-the-art multi-omics data integration methods using both simulated and real-world multi-omics datasets and found that PANDA consistently outperformed them while providing meaningful discriminant latent representations. PANDA is implemented using both R and MATLAB, with codes available at https://github.com/WuLabMDA/PANDA.
Collapse
Affiliation(s)
- Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie T. Schmidt
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maliazurina Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Zhu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cascone Tina
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Wang
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - David Jaffray
- Office of the Chief Technology and Digital Officer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Cheng
- Department of Medicine, Institution of Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Goldner Kabeli R, Zevin S, Abargel A, Zilberberg A, Efroni S. Self-supervised learning of T cell receptor sequences exposes core properties for T cell membership. SCIENCE ADVANCES 2024; 10:eadk4670. [PMID: 38669334 PMCID: PMC11809652 DOI: 10.1126/sciadv.adk4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The T cell receptor (TCR) repertoire is an extraordinarily diverse collection of TCRs essential for maintaining the body's homeostasis and response to threats. In this study, we compiled an extensive dataset of more than 4200 bulk TCR repertoire samples, encompassing 221,176,713 sequences, alongside 6,159,652 single-cell TCR sequences from over 400 samples. From this dataset, we then selected a representative subset of 5 million bulk sequences and 4.2 million single-cell sequences to train two specialized Transformer-based language models for bulk (CVC) and single-cell (scCVC) TCR repertoires, respectively. We show that these models successfully capture TCR core qualities, such as sharing, gene composition, and single-cell properties. These qualities are emergent in the encoded TCR latent space and enable classification into TCR-based qualities such as public sequences. These models demonstrate the potential of Transformer-based language models in TCR downstream applications.
Collapse
Affiliation(s)
- Romi Goldner Kabeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Avital Abargel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
38
|
Chen Y, Yang M, Zhang M, Wang H, Zheng Y, Sun R, Li X. Single-Cell Transcriptome Reveals Potential Mechanisms for Coronary Artery Lesions in Kawasaki Disease. Arterioscler Thromb Vasc Biol 2024; 44:866-882. [PMID: 38357816 DOI: 10.1161/atvbaha.123.320188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Coronary artery lesions (CALs) are the most common and major complication of Kawasaki disease (KD) in developed countries. However, the underlying immunologic mechanisms of CAL development in KD remain unclear. METHODS Here, we conducted single-cell transcriptome analyses of 212 210 peripheral blood mononuclear cells collected from a cross-sectional cohort of 16 children, including 4 patients with KD with CALs, 5 patients with KD without CALs, 4 healthy controls, and 3 febrile controls. RESULTS KD altered the proportion of peripheral blood mononuclear cells, including an increasing trend in inflammatory cells (megakaryocytes and monocytes) and a decreasing trend in lymphocytes (eg, CD4+ T, CD8+ T, mucosal-associated invariant T, natural killer, and γδ T cells), highlighting the potential presence of lymphopenia phenomenon in KD. Our data indicated the presence of inflammatory cytokine storm in patients with KD with CALs, caused by systemic upregulation of TNFSF13B (tumor necrosis factor superfamily member 13b), CXCL16 (C-X-C motif chemokine ligand 16), TNFSF10 (tumor necrosis factor superfamily member 10), and IL1RN (interleukin 1 receptor antagonist), mainly produced by monocytes (especially for the Mono_CD14-CD16 cluster) and megakaryocytes. We also found that myeloid cells of patients with KD, particularly in those with CALs, might play a role in vascular injury (eg, increased MMP [matrix metalloproteinase] 9, MMP17, and MMP25) and immune cell recruitment. The immune landscape of patients with KD with CALs was featured by lower exhaustion levels in natural killer cells, a high cytotoxic state in the CD8_Pro cluster, and activation of the complement system in monocytes. Additionally, the activation of B cells was more pronounced in the early stage of KD. CONCLUSIONS Collectively, this study provides a comprehensive understanding of the roles of various immune cells and inflammatory cytokine storms in the development of CALs in KD and offers a valuable resource for identifying novel therapeutic targets for patients with KD with CALs.
Collapse
Affiliation(s)
- Yeshi Chen
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
| | - Minna Yang
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
| | - Mingming Zhang
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Beijing, China (M.Z., H.W., X.L.)
| | - Hongmao Wang
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Beijing, China (M.Z., H.W., X.L.)
| | - Yang Zheng
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Peking Union Medical College Graduate School, Beijing, China (Y.Z.)
| | - Rui Sun
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
| | - Xiaohui Li
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Beijing, China (M.Z., H.W., X.L.)
| |
Collapse
|
39
|
Xu L, Zhang J, Dong J, Chen Q, Ma S, Jiang J, Zheng Y, Zhuo W, Tang X, Gao Y, Li X, Yang F, You G, Lv H, Huang H. A bibliometric analysis of Kawasaki disease from 1974 to 2022. Heliyon 2024; 10:e27290. [PMID: 38486756 PMCID: PMC10937693 DOI: 10.1016/j.heliyon.2024.e27290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Objective To analyse the research history, development trends and current status of relevant literature in the field of Kawasaki disease, and to provide the basis for future directions in Kawasaki disease (KD) research. Methods Literature on Kawasaki disease published between January 1974 and December 2022 was searched for in the Web of Science database, and CiteSpace was used to perform visual analyses. Results The search yielded a total of 6950 articles. The number of publications related to Kawasaki disease showed an increasing trend. A collaborative network analysis revealed that the United States, Japan and mainland China were the most influential countries in this field. The University of California system contributed the most publications and the journal with the most publications was Circulation. JW Newburger was an authoritative author in this field. "Coronary artery lesion", "Intravenous immunoglobulin" (IVIG) and "Risk factor" were three prominent keywords. Keyword bursts changed from "TNF" and "IVIG", which focused on aetiology and treatment, to "Long term management", which emphasized the recovery period, and to "Kawasaki-like disease" and "Multisystem inflammatory syndrome" during the novel coronavirus pandemic. Trends of highly cited references indicated that landmark articles in different periods focused on Kawasaki disease guidelines, gene polymorphisms and multisystem inflammatory syndrome caused by the novel coronavirus. Conclusion The aetiology of Kawasaki disease remains unclear, but viral infection is likely to play an important role. The combination of evolving sequencing technologies, large-scale epidemiological investigations and prospective cohort studies is likely to be important in exploring Kawasaki disease and improving its prognosis in future.
Collapse
Affiliation(s)
- Lei Xu
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Pediatric, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jiaying Zhang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jinfeng Dong
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Shurong Ma
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, China
| | - Jiangqi Jiang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiming Zheng
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, China
| | - Wenyu Zhuo
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuan Tang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Gao
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuan Li
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fang Yang
- Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Guoping You
- Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Haitao Lv
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongbiao Huang
- Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
40
|
Yasumizu Y, Takeuchi D, Morimoto R, Takeshima Y, Okuno T, Kinoshita M, Morita T, Kato Y, Wang M, Motooka D, Okuzaki D, Nakamura Y, Mikami N, Arai M, Zhang X, Kumanogoh A, Mochizuki H, Ohkura N, Sakaguchi S. Single-cell transcriptome landscape of circulating CD4 + T cell populations in autoimmune diseases. CELL GENOMICS 2024; 4:100473. [PMID: 38359792 PMCID: PMC10879034 DOI: 10.1016/j.xgen.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 02/17/2024]
Abstract
CD4+ T cells are key mediators of various autoimmune diseases; however, their role in disease progression remains unclear due to cellular heterogeneity. Here, we evaluated CD4+ T cell subpopulations using decomposition-based transcriptome characterization and canonical clustering strategies. This approach identified 12 independent gene programs governing whole CD4+ T cell heterogeneity, which can explain the ambiguity of canonical clustering. In addition, we performed a meta-analysis using public single-cell datasets of over 1.8 million peripheral CD4+ T cells from 953 individuals by projecting cells onto the reference and cataloging cell frequency and qualitative alterations of the populations in 20 diseases. The analyses revealed that the 12 transcriptional programs were useful in characterizing each autoimmune disease and predicting its clinical status. Moreover, genetic variants associated with autoimmune diseases showed disease-specific enrichment within the 12 gene programs. The results collectively provide a landscape of single-cell transcriptomes of CD4+ T cell subpopulations involved in autoimmune disease.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Daiki Takeuchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Faculty of Medicine, Osaka University, Osaka, Japan
| | - Reo Morimoto
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Takeshima
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Min Wang
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yamami Nakamura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaya Arai
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
41
|
Sun SN, Zhou Y, Fu X, Zheng YZ, Xie C, Qin GY, Liu F, Chu C, Wang F, Liu CL, Zhou QT, Yang DH, Zhu D, Wang MW, Gui YH. A pilot study of the differentiated landscape of peripheral blood mononuclear cells from children with incomplete versus complete Kawasaki disease. World J Pediatr 2024; 20:189-200. [PMID: 37688719 DOI: 10.1007/s12519-023-00752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/14/2023] [Indexed: 09/11/2023]
Affiliation(s)
- Shu-Na Sun
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yan Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing Fu
- Accuramed Technology (Shanghai) Ltd., Shanghai, 200233, China
| | - Yuan-Zheng Zheng
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Cao Xie
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-You Qin
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Fang Liu
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Chen Chu
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Feng Wang
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Cheng-Long Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - De-Hua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Di Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, 570288, China.
| | - Yong-Hao Gui
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
42
|
Carmona EG, Callejas-Rubio JL, Raya E, Ríos-Fernández R, Villanueva-Martín G, Cid MC, Hernández-Rodríguez J, Ballestar E, Timmermann B, Ortego-Centeno N, Martín J, Márquez A. Single-cell transcriptomic profiling reveals a pathogenic role of cytotoxic CD4 + T cells in giant cell arteritis. J Autoimmun 2024; 142:103124. [PMID: 37952293 DOI: 10.1016/j.jaut.2023.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Giant cell arteritis (GCA) is a systemic vasculitis mediated by an aberrant immunological response against the blood vessel wall. Although the pathogenic mechanisms that drive GCA have not yet been elucidated, there is strong evidence that CD4+ T cells are key drivers of the inflammatory process occurring in this vasculitis. The aim of this study was to further delineate the role of CD4+ T cells in GCA by applying single-cell RNA sequencing and T cell receptor (TCR) repertoire profiling to 114.799 circulating CD4+ T cells from eight GCA patients in two different clinical states, active and in remission, and eight healthy controls. Our results revealed an expansion of cytotoxic CD4+ T lymphocytes (CTLs) in active GCA patients, which expressed higher levels of cytotoxic and chemotactic genes when compared to patients in remission and controls. Accordingly, differentially expressed genes in CTLs of active patients were enriched in pathways related to granzyme-mediated apoptosis, inflammation, and the recruitment of different immune cells, suggesting a role of this cell type in the inflammatory and vascular remodelling processes occurring in GCA. CTLs also exhibited a higher clonal expansion in active patients with respect to those in remission. Drug repurposing analysis prioritized maraviroc, which targeted CTLs, as potentially repositionable for this vasculitis. In addition, effector regulatory T cells (Tregs) were decreased in GCA and showed lower expression of genes involved in their suppressive activity. These findings provide further insights into the pathogenic role of CD4+ T cells in GCA and suggest targeting CTLs as a potential therapeutic option.
Collapse
Affiliation(s)
- Elio G Carmona
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain; Systemic Autoimmune Diseases Unit, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - José Luis Callejas-Rubio
- Systemic Autoimmune Diseases Unit, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Enrique Raya
- Rheumatology Department, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Raquel Ríos-Fernández
- Systemic Autoimmune Diseases Unit, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Gonzalo Villanueva-Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - María C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Hernández-Rodríguez
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | | | - Norberto Ortego-Centeno
- Department of Medicine, University of Granada, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain.
| |
Collapse
|
43
|
Tsoukas P, Yeung RSM. Kawasaki Disease-Associated Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:365-383. [PMID: 39117827 DOI: 10.1007/978-3-031-59815-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Kawasaki disease (KD) is a hyperinflammatory syndrome manifesting as an acute systemic vasculitis characterized by fever, nonsuppurative conjunctival injection, rash, oral mucositis, extremity changes, and cervical lymphadenopathy. KD predominantly affects young children and shares clinical features and immunobiology with other hyperinflammation syndromes including systemic juvenile idiopathic arthritis (sJIA) and multisystem inflammatory syndrome in children (MIS-C). Cytokine storm syndrome (CSS) is an acute complication in ~2% of KD patients; however, the incidence is likely underestimated as many clinical and laboratory features of both diseases overlap. CSS should be entertained when a child with KD is unresponsive to IVIG therapy with recalcitrant fever. Early recognition and prompt institution of immunomodulatory treatment can substantially reduce the mortality and morbidity of CSS in KD. Given the known pathogenetic role of IL-1β in both syndromes, the early use of IL-1 blockers in refractory KD with CSS deserves consideration.
Collapse
Affiliation(s)
- Paul Tsoukas
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rae S M Yeung
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Beltran JVB, Lin FP, Chang CL, Ko TM. Single-Cell Meta-Analysis of Neutrophil Activation in Kawasaki Disease and Multisystem Inflammatory Syndrome in Children Reveals Potential Shared Immunological Drivers. Circulation 2023; 148:1778-1796. [PMID: 37905415 DOI: 10.1161/circulationaha.123.064734] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C) share similar clinical manifestations, including cardiovascular complications, suggesting similar underlying immunopathogenic processes. Aberrant neutrophil activation may play a crucial role in the shared pathologies of KD and MIS-C; however, the associated pathogenic mechanisms and molecular drivers remain unknown. METHODS We performed a single-cell meta-analysis of neutrophil activation with 103 pediatric single-cell transcriptomic peripheral blood mononuclear cell data across 9 cohorts, including healthy controls, KD, MIS-C, compared with dengue virus infection, juvenile idiopathic arthritis, and pediatric celiac disease. We used a series of computational analyses to investigate the shared neutrophil transcriptional programs of KD and MIS-C that are linked to systemic damage and cardiac pathologies, and suggested Food and Drug Administration-approved drugs to consider as KD and MIS-C treatment. RESULTS We meta-analyzed 521 950 high-quality cells. We found that blood signatures associated with risks of cardiovascular events are enriched in neutrophils of KD and MIS-C. We revealed the expansion of CD177+ neutrophils harboring hyperactivated effector functions in both KD and MIS-C, but not in healthy controls or in other viral-, inflammatory-, or immune-related pediatric diseases. KD and MIS-C CD177+ neutrophils had highly similar transcriptomes, marked by conserved signatures and pathways related to molecular damage. We found the induction of a shared neutrophil expression program, potentially regulated by SPI1 (Spi-1 proto-oncogene), which confers enhanced effector functions, especially neutrophil degranulation. CD177 and shared neutrophil expression program expressions were associated with acute stages and attenuated during KD intravenous immunoglobulin treatment and MIS-C recovery. Network analysis identified hub genes that correlated with the high activation of CD177+ neutrophils. Disease-gene association analysis revealed that the KD and MIS-C CD177+ neutrophils' shared expression program was associated with the development of coronary and myocardial disorders. Last, we identified and validated TSPO (translocator protein) and S100A12 (S100 calcium-binding protein A12) as main molecular targets, for which the Food and Drug Administration-approved drugs methotrexate, zaleplon, metronidazole, lorazepam, clonazepam, temazepam, and zolpidem, among others, are primary candidates for drug repurposing. CONCLUSIONS Our findings indicate that CD177+ neutrophils may exert systemic pathological damage contributing to the shared morbidities in KD and MIS-C. We uncovered potential regulatory drivers of CD177+ neutrophil hyperactivation and pathogenicity that may be targeted as a single therapeutic strategy for either KD or MIS-C.
Collapse
Affiliation(s)
- Jan Vincent B Beltran
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan (J.V.B.B., T.-M.K.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (J.V.B.B., T.-M.K.)
| | - Fang-Ping Lin
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan (F.-P.L., C.-L.C., T.-M.K.)
| | - Chaw-Liang Chang
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan (F.-P.L., C.-L.C., T.-M.K.)
- Department of Pediatrics, Cathay General Hospital, Hsinchu, Taiwan (C.-L.C.)
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan (C.-L.C.)
| | - Tai-Ming Ko
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan (J.V.B.B., T.-M.K.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (J.V.B.B., T.-M.K.)
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan (F.-P.L., C.-L.C., T.-M.K.)
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan (T.-M.K.)
- School of Pharmacy, College of Pharmacy, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan (T.-M.K.)
| |
Collapse
|
45
|
Wang H, Ji Z. T-cell receptor sequences correlate with and predict gene expression levels in T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568912. [PMID: 38076860 PMCID: PMC10705237 DOI: 10.1101/2023.11.27.568912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
T cells exhibit high heterogeneity in both their gene expression profiles and antigen specificities. We analyzed fifteen single-cell immune profiling datasets to systematically investigate the association between T-cell receptor (TCR) sequences and the gene expression profiles of T cells. Our findings reveal that T cells sharing identical or similar TCR sequences tend to have highly similar gene expression profiles. Additionally, we developed a foundational model that leverages TCR information to predict gene expression levels in T cells.
Collapse
Affiliation(s)
- Hao Wang
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
46
|
Li C, Li G, Tu S, Bai X, Yuan H. Integrative bioinformatics analysis reveals STAT2 as a novel biomarker of inflammation-related cardiac dysfunction in atrial fibrillation. Open Med (Wars) 2023; 18:20230834. [PMID: 38025532 PMCID: PMC10655688 DOI: 10.1515/med-2023-0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is a common critical cause of stroke and cardiac dysfunction worldwide with lifetime risks. Viral infection and inflammatory response with myocardial involvement may lead to an increase in AF-related mortality. To dissect the potential sequelae of viral infection in AF patients, especially the coronavirus disease 2019 (COVID-19), based on AF and COVID-19 databases from Gene Expression Omnibus, weighted gene co-expression network analysis was used to identify key genes in heart tissues and peripheral blood mononuclear cells. Here, HSCT, PSMB9, STAT2, and TNFSF13B were identified as common risk genes of AF and COVID-19 patients. Correlation analysis of these genes with AF and COVID-19 showed a positive disease relevance. silencing of STAT2 by small interfering RNA significantly rescued SARS-CoV-2 XBB1.5 pseudovirus-induced cardiac cell contraction dysfunction in vitro. In conclusion, we identified STAT2 may be a novel biomarker of inflammation-related cardiac dysfunction in AF.
Collapse
Affiliation(s)
- Cairong Li
- Department of Cardiology, First People’s Hospital of Linping District, Hangzhou311199, P.R. China
| | - Guanhua Li
- Department of Cardiology, First People’s Hospital of Linping District, Hangzhou311199, P.R. China
| | - Sijia Tu
- Department of Cardiology, First People’s Hospital of Linping District, Hangzhou311199, P.R. China
| | - Xinghua Bai
- Department of Cardiology, First People’s Hospital of Linping District, Hangzhou311199, P.R. China
| | - Hong Yuan
- Department of Cardiology, First People’s Hospital of Linping District, 369 Yingbin Rd, Hangzhou311199, P.R. China
| |
Collapse
|
47
|
Gao Y, Tang X, Qian G, Huang H, Wang N, Wang Y, Zhuo W, Jiang J, Zheng Y, Li W, Liu Z, Li X, Xu L, Zhang J, Huang L, Liu Y, Lv H. Identification of hub biomarkers and immune-related pathways participating in the progression of Kawasaki disease by integrated bioinformatics analysis. Immunobiology 2023; 228:152750. [PMID: 37837870 DOI: 10.1016/j.imbio.2023.152750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is a systemic vasculitis that commonly affects children and its etiology remains unknown. Growing evidence suggests that immune-mediated inflammation and immune cells in the peripheral blood play crucial roles in the pathophysiology of KD. The objective of this research was to find important biomarkers and immune-related mechanisms implicated in KD, along with their correlation with immune cells in the peripheral blood. MATERIAL/METHODS Gene microarray data from the Gene Expression Omnibus (GEO) was utilized in this study. Three datasets, namely GSE63881 (341 samples), GSE73463 (233 samples), and GSE73461 (279 samples), were obtained. To find intersecting genes, we employed differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA). Subsequently, functional annotation, construction of protein-protein interaction (PPI) networks, and Least Absolute Shrinkage and Selection Operator (LASSO) regression were performed to identify hub genes. The accuracy of these hub genes in identifying KD was evaluated using the receiver operating characteristic curve (ROC). Furthermore, Gene Set Variation Analysis (GSVA) was employed to explore the composition of circulating immune cells within the assessed datasets and their relationship with the hub gene markers. RESULTS WGCNA yielded eight co-expression modules, with one hub module (MEblue module) exhibiting the strongest association with acute KD. 425 distinct genes were identified. Integrating WGCNA and DEGs yielded a total of 277 intersecting genes. By conducting LASSO analysis, five hub genes (S100A12, MMP9, TLR2, NLRC4 and ARG1) were identified as potential biomarkers for KD. The diagnostic value of these five hub genes was demonstrated through ROC curve analysis, indicating their high accuracy in diagnosing KD. Analysis of the circulating immune cell composition within the assessed datasets revealed a significant association between KD and various immune cell types, including activated dendritic cells, neutrophils, immature dendritic cells, macrophages, and activated CD8 T cells. Importantly, all five hub genes exhibited strong correlations with immune cells. CONCLUSION Activated dendritic cells, neutrophils, and macrophages were closely associated with the pathogenesis of KD. Furthermore, the hub genes (S100A12, MMP9, TLR2, NLRC4, and ARG1) are likely to participate in the pathogenic mechanisms of KD through immune-related signaling pathways.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Pediatrics, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Xuan Tang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Wuxi, Jiangsu, China
| | - Guanghui Qian
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongbiao Huang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Nana Wang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Wang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhuo
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiaqi Jiang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiming Zheng
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenjie Li
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiheng Liu
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuan Li
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Xu
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Zhang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Huang
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Liu
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Haitao Lv
- Department of Pediatrics, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
48
|
Wang JR, Zhao HZ, Chang LJ, Xu X, Gao Y, Li M, Kong QY, Wang MM, Zhao CF. Predictive value of monocyte to HDL-C ratio for coronary artery lesions and intravenous immunoglobulin resistance in Kawasaki disease. Eur J Pediatr 2023; 182:4399-4406. [PMID: 37480545 DOI: 10.1007/s00431-023-05122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
We aimed to investigate the predictive validity of monocyte to high-density lipoprotein cholesterol ratio (MHR) for coronary artery lesions (CALs) and intravenous immunoglobulin (IVIG) resistance in complete Kawasaki disease (KD). MHR values of a total of 207 complete KD patients were calculated and analyzed with regard to their clinical characteristics and outcomes. We compared the differences in clinical data and laboratory parameters between CAL+ group and CAL- group as well as between IVIG-resistant group and IVIG-responsive group. Spearman's correlation analysis was applied to evaluate the correlation between C-reactive protein (CRP) and MHR. Multivariate logistic regression was used to identify risk factors of CALs and IVIG resistance. Receiver operating characteristic (ROC) curve analysis was chosen to determine the optimal cut-off value of MHR and its validity in predicting CALs and IVIG resistance. The MHR level was significantly higher in the CAL+ group, with cut-off value of 1.30 g/L, yielding a sensitivity of 0.753 and specificity of 0.805, as well as in IVIG-resistant group, with cut-off value of 1.03 g/L, yielding a sensitivity of 0.97 and specificity of 0.485. Multivariate logistic regression showed that MHR was an independent risk factor for CALs but not for IVIG resistance. According to the Spearman's correlation analysis, CRP was positively correlated with the MHR. CONCLUSIONS As a practical, cost-effective inflammatory biomarker, MHR has a significantly predictive value in complete KD children complicated with CALs and IVIG-resistance. Paying more attention to the changes of MHR in KD children may contribute to better understanding of KD development and prognosis in clinical practice. WHAT IS KNOWN • CALs are the most prevalent serious sequela of KD, and approximately 10%~20% of patients do not respond to IVIG therapy. • MHR could be a convenient biomarker to predict the development and progression of CVDs. It has been reported that the MHR is a new prognostic biomarker in several CVDs. WHAT IS NEW • MHR has a significantly predictive value in KD children complicated with CALs and IVIG-resistance. • Compared with the molecular and immunological biomarkers that have been reported, MHR has the characteristics of practical, cost-effective, higher sensitivity and specificity, which can be used as a predictive indicator in complete KD patients.
Collapse
Affiliation(s)
- Jia-Ran Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Street, Wenhuaxi Road, Shandong, 250012, Jinan, China
| | - Hai-Zhao Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Street, Wenhuaxi Road, Shandong, 250012, Jinan, China
| | - Lu-Jie Chang
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Street, Wenhuaxi Road, Shandong, 250012, Jinan, China
| | - Xue Xu
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Street, Wenhuaxi Road, Shandong, 250012, Jinan, China
| | - Yuan Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Street, Wenhuaxi Road, Shandong, 250012, Jinan, China
| | - Meng Li
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Street, Wenhuaxi Road, Shandong, 250012, Jinan, China
| | - Qing-Yu Kong
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Street, Wenhuaxi Road, Shandong, 250012, Jinan, China
| | - Min-Min Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Street, Wenhuaxi Road, Shandong, 250012, Jinan, China
| | - Cui-Fen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Street, Wenhuaxi Road, Shandong, 250012, Jinan, China.
| |
Collapse
|
49
|
Cao N, Ouyang H, Zhang X, Xu Y, Li J, Chen Y. Integration of scRNA-Seq and bulk RNA-Seq uncover perturbed immune cell types and pathways of Kawasaki disease. Front Immunol 2023; 14:1259353. [PMID: 37841239 PMCID: PMC10568768 DOI: 10.3389/fimmu.2023.1259353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Kawasaki disease (KD) is an acute febrile illness primarily affecting children and characterized by systemic inflammation and vasculitis that can lead to coronary artery complications. The aim of this study was to gain a comprehensive understanding of immune dysregulation in KD. Methods To this end, we employed integration of single-cell RNA sequencing (scRNA-Seq) and bulk RNA sequencing (bulk RNA-Seq) data. Furthermore, we conducted flow cytometry analysis for a cohort of 82 KD patients. Results Our analysis revealed significant heterogeneity within immune cell populations in KD patients, with distinct clusters of T cells, B cells, and natural killer (NK) cells. Importantly, CD4+ naïve T cells in KD patients were found to predominantly differentiate into Treg cells and Th2 cells, potentially playing a role in the excessive inflammation and vascular damage characteristic of the disease. Dysregulated signaling pathways were also identified, including the mTOR signaling pathway, cardiomyopathy pathway, COVID-19 signaling pathway, and pathways involved in bacterial or viral infection. Discussion These findings provide insights into the immunopathogenesis of KD, emphasizing the importance of immune cell dysregulation and dysregulated signaling pathways. Integration of scRNA-Seq and bulk RNA-Seq data offers a comprehensive view of the molecular and cellular alterations in KD and highlights potential therapeutic targets for further investigation. Validation and functional studies are warranted to elucidate the roles of the identified immune cell types and pathways in KD pathogenesis and to develop targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Naixin Cao
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Hospital, Kunming, China
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Huayi Ouyang
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Hospital, Kunming, China
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xing Zhang
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Hospital, Kunming, China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yanfei Chen
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Hospital, Kunming, China
| |
Collapse
|
50
|
Rowley AH, Arrollo D, Shulman ST, Torres A, O’Brien A, Wylie K, Kim KYA, Baker SC. Analysis of Plasmablasts From Children With Kawasaki Disease Reveals Evidence of a Convergent Antibody Response to a Specific Protein Epitope. J Infect Dis 2023; 228:412-421. [PMID: 36808252 PMCID: PMC10428203 DOI: 10.1093/infdis/jiad048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a febrile illness of young childhood that can result in coronary artery aneurysms and death. Coronavirus disease 2019 (COVID-19) mitigation strategies resulted in a marked decrease in KD cases worldwide, supporting a transmissible respiratory agent as the cause. We previously reported a peptide epitope recognized by monoclonal antibodies (MAbs) derived from clonally expanded peripheral blood plasmablasts from 3 of 11 KD children, suggesting a common disease trigger in a subset of patients with KD. METHODS We performed amino acid substitution scans to develop modified peptides with improved recognition by KD MAbs. We prepared additional MAbs from KD peripheral blood plasmablasts and assessed MAb characteristics that were associated with binding to the modified peptides. RESULTS We report a modified peptide epitope that is recognized by 20 MAbs from 11 of 12 KD patients. These MAbs predominantly use heavy chain VH3-74; two-thirds of VH3-74 plasmablasts from these patients recognize the epitope. The MAbs were nonidentical between patients but share a common complementarity-determining region 3 (CDR3) motif. CONCLUSIONS These results demonstrate a convergent VH3-74 plasmablast response to a specific protein antigen in children with KD, supporting one predominant causative agent in the etiopathogenesis of the illness.
Collapse
Affiliation(s)
- Anne H Rowley
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Microbiology/Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - David Arrollo
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Stanford T Shulman
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Abigail Torres
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Amornrat O’Brien
- Department of Microbiology and Immunology, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Kristine Wylie
- Department of Pediatrics, Washington University in St Louis, St Louis, Missouri, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, Missouri, USA
| | - Kwang-Youn A Kim
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Susan C Baker
- Department of Microbiology and Immunology, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|