1
|
Madrid DMDC, Gu W, Karim SJI, Lowke MT, Kelleher AM, Warren WC, Driver JP. Single-cell analysis of pig lung leukocytes and their response to influenza infection and oseltamivir therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf032. [PMID: 40235089 DOI: 10.1093/jimmun/vkaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/24/2025] [Indexed: 04/17/2025]
Abstract
Despite pigs being an important species in influenza A virus (IAV) epidemiology and a reliable preclinical model for human IAV infections, many aspects of the porcine pulmonary immune system remain poorly understood. Here, we characterized the single-cell landscape of lung leukocytes of healthy pigs and then compared them to pigs infected with 2009 pandemic H1N1 IAV with or without oseltamivir antiviral therapy. Our data show conserved features as well as species-specific differences in cell types and cell states compared with human and mouse lung lymphocytes. IAV infection induced a robust antiviral transcriptional response in multiple lymphoid and myeloid cell types, as well as distinct patterns of cell-cell crosstalk. Oseltamivir treatment substantially reduced these responses. Together, our findings describe key events in the pulmonary anti-IAV response of pigs that open new avenues to develop IAV vaccines and therapies. They should also enable the better use of pigs as a model for human IAV infection and immunity.
Collapse
Affiliation(s)
- Darling Melany De Carvalho Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Weihong Gu
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Shah Jungy Ibna Karim
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Makenzie T Lowke
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, United States
| | - Wesley C Warren
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - John P Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Wang B, Bian Q. Regulation of 3D genome organization during T cell activation. FEBS J 2025; 292:1833-1852. [PMID: 38944686 DOI: 10.1111/febs.17211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Within the three-dimensional (3D) nuclear space, the genome organizes into a series of orderly structures that impose important influences on gene regulation. T lymphocytes, crucial players in adaptive immune responses, undergo intricate transcriptional remodeling upon activation, leading to differentiation into specific effector and memory T cell subsets. Recent evidence suggests that T cell activation is accompanied by dynamic changes in genome architecture at multiple levels, providing a unique biological context to explore the functional relevance and molecular mechanisms of 3D genome organization. Here, we summarize recent advances that link the reorganization of genome architecture to the remodeling of transcriptional programs and conversion of cell fates during T cell activation and differentiation. We further discuss how various chromatin architecture regulators, including CCCTC-binding factor and several transcription factors, collectively modulate the genome architecture during this process.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
3
|
Ascui G, Cedillo-Castelan V, Mendis A, Phung E, Liu HY, Verstichel G, Chandra S, Murray MP, Luna C, Cheroutre H, Kronenberg M. Innateness transcriptome gradients characterize mouse T lymphocyte populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:223-237. [PMID: 40073243 PMCID: PMC11878997 DOI: 10.1093/jimmun/vkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/01/2024] [Indexed: 03/14/2025]
Abstract
A fundamental dichotomy in lymphocytes separates adaptive T and B lymphocytes, with clonally expressed antigen receptors, from innate lymphocytes, which carry out more rapid responses. Some T cell populations, however, are intermediates between these 2 poles, with the capacity to respond rapidly through T cell receptor activation or by cytokine stimulation. Here, using publicly available datasets, we constructed linear mixed models that not only define a gradient of innate gene expression in common for mouse innate-like T cells, but also are applicable to other mouse T lymphoid populations. A similar gradient could be identified for chromatin landscape based on ATAC-seq (assay for transposase-accessible chromatin using sequencing) data. The gradient included increased transcripts related to many traits of innate immune responses, with increased scores related to evidence for antigen experience. While including genes typical for T helper 1 (Th1) responses, the innateness gene program could be separated from Th1, Th2, and Th17 responses. Lymphocyte populations with higher innateness scores correlated with lower calcium-dependent T cell receptor-mediated cell activation, with some downstream signaling proteins dependent on calcium or affecting metabolism prephosphorylation. Therefore, as a group, different mouse innate-like T cell populations had related gene expression programs and activation pathways that are different from naive CD4 and CD8 T cells.
Collapse
Affiliation(s)
- Gabriel Ascui
- La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | | | - Alba Mendis
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Eleni Phung
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Hsin-Yu Liu
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Shilpi Chandra
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Cindy Luna
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
5
|
Grant ZL, Kuang S, Zhang S, Horrillo AJ, Rao KS, Kameswaran V, Joubran C, Lau PK, Dong K, Yang B, Bartosik WM, Zemke NR, Ren B, Kathiriya IS, Pollard KS, Bruneau BG. Dose-dependent sensitivity of human 3D chromatin to a heart disease-linked transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632202. [PMID: 39829922 PMCID: PMC11741296 DOI: 10.1101/2025.01.09.632202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)-linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced TBX5 dosage in a human model of CHD, with variations in response across individual cells. Regions normally bound by TBX5 are especially sensitive, while co-occupancy with CTCF partially protects TBX5-bound TAD boundaries and loop anchors. These results highlight the importance of lineage-restricted TF dosage in cell-type specific 3D chromatin dynamics, suggesting a new mechanism for TF-dependent disease.
Collapse
Affiliation(s)
| | | | - Shu Zhang
- Gladstone Institutes; San Francisco, CA, USA
- Bioinformatics Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | - Abraham J. Horrillo
- Gladstone Institutes; San Francisco, CA, USA
- TETRAD Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | | | | | | | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Irfan S. Kathiriya
- Gladstone Institutes; San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institutes; San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Benoit G. Bruneau
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
6
|
McCullen M, Oltz E. The multifaceted roles of TCF1 in innate and adaptive lymphocytes. Adv Immunol 2024; 164:39-71. [PMID: 39523028 DOI: 10.1016/bs.ai.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The immune system requires a complex network of specialized cell types to defend against a range of threats. The specific roles and destinies of these cell types are enforced by a constellation of gene regulatory programs, which are orchestrated through lineage-specifying transcription factors. T Cell Factor 1 (TCF1) is a central transcription factor in many of these programs, guiding the development and functionality of both adaptive and innate lymphoid cells. This review highlights recent insights into the function of TCF1 in a variety of lymphoid cell subsets and its potential for translational applications in immune disorders and cancer.
Collapse
Affiliation(s)
- Matthew McCullen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States
| | - Eugene Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States.
| |
Collapse
|
7
|
Fiorenza S, Zheng Y, Purushe J, Bock TJ, Sarthy J, Janssens DH, Sheih AS, Kimble EL, Kirchmeier D, Phi TD, Gauthier J, Hirayama AV, Riddell SR, Wu Q, Gottardo R, Maloney DG, Yang JYH, Henikoff S, Turtle CJ. Histone marks identify novel transcription factors that parse CAR-T subset-of-origin, clinical potential and expansion. Nat Commun 2024; 15:8309. [PMID: 39333103 PMCID: PMC11436946 DOI: 10.1038/s41467-024-52503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Chimeric antigen receptor-modified T cell (CAR-T) immunotherapy has revolutionised blood cancer treatment. Parsing the genetic underpinnings of T cell quality and CAR-T efficacy is challenging. Transcriptomics inform CAR-T state, but the nature of dynamic transcription during activation hinders identification of transiently or minimally expressed genes, such as transcription factors, and over-emphasises effector and metabolism genes. Here we explore whether analyses of transcriptionally repressive and permissive histone methylation marks describe CAR-T cell functional states and therapeutic potential beyond transcriptomic analyses. Histone mark analyses improve identification of differences between naïve, central memory, and effector memory CD8 + T cell subsets of human origin, and CAR-T derived from these subsets. We find important differences between CAR-T manufactured from central memory cells of healthy donors and of patients. By examining CAR-T products from a clinical trial in lymphoma (NCT01865617), we find a novel association between the activity of the transcription factor KLF7 with in vivo CAR-T accumulation in patients and demonstrate that over-expression of KLF7 increases in vitro CAR-T proliferation and IL-2 production. In conclusion, histone marks provide a rich dataset for identification of functionally relevant genes not apparent by transcriptomics.
Collapse
Affiliation(s)
- S Fiorenza
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Y Zheng
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Bioinformatics and Computational Biology Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - J Purushe
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - T J Bock
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - J Sarthy
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - D H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - A S Sheih
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - E L Kimble
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - D Kirchmeier
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - T D Phi
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - J Gauthier
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - A V Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - S R Riddell
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - Q Wu
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - R Gottardo
- Biomedical Data Sciences, Lausanne University Hospital, Lausanne, Switzerland
| | - D G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - J Y H Yang
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - S Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - C J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, St. Leonards, NSW, Australia
| |
Collapse
|
8
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
9
|
Corrette J, Li J, Shao H, Veerasubramanian PK, Spakowitz A, Downing TL, Allard J. Nucleosome placement and polymer mechanics explain genomic contacts on 100kbp scales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614727. [PMID: 39386659 PMCID: PMC11463500 DOI: 10.1101/2024.09.24.614727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The 3d organization of the genome - in particular, which two regions of DNA are in contact with each other - plays a role in regulating gene expression. Several factors influence genome 3d organization. Nucleosomes (where ~ 100 basepairs of DNA wrap around histone proteins) also bend, twist and compactify chromosomal DNA, altering its polymer mechanics. How much does the positioning of nucleosomes between gene loci influence contacts between those gene loci? And, to what extent is polymer mechanics responsible for this? To address this question, we combine a stochastic polymer mechanics model of chromosomal DNA including twists and wrapping induced by nucleosomes with two data-driven pipelines. The first estimates nucleosome positioning from ATACseq data in regions of high accessibility. Most of the genome is low-accessibility, so we combine this with a novel image analysis method that estimates the distribution of nucleosome spacing from electron microscopy data. There are no free parameters in the biophysical model. We apply this method to IL6, IL15, CXCL9, and CXCL10, inflammatory marker genes in macrophages, before and after immune stimulation, and compare the predictions with contacts measured by conformation capture experiments (4C-seq). We find that within a 500 kilo-basepairs genomic region, polymer mechanics with nucleosomes can explain 71% of close contacts. These results suggest that, while genome contacts on 100kbp-scales are multifactorial, they may be amenable to mechanistic, physical explanation. Our work also highlights the role of nucleosomes, not just at the loci of interest, but between them, and not just the total number of nucleosomes, but their specific placement. The method generalizes to other genes, and can be used to address whether a contact is under active regulation by the cell (e.g., a macrophage during inflammatory stimulation). Importantly, our findings suggest that gene function may have evolved through selective pressures that co-opted contact-mediated regulatory mechanisms reliant largely on polymer mechanics.
Collapse
Affiliation(s)
- John Corrette
- Mathematical, Computational and Systems Biology, University of California Irvine
| | - Jiachun Li
- Department of Biomedical Engineering, University of California Irvine
| | - Hanjuan Shao
- Department of Biomedical Engineering, University of California Irvine
| | | | | | - Timothy L Downing
- Mathematical, Computational and Systems Biology, University of California Irvine
- Department of Biomedical Engineering, University of California Irvine
| | - Jun Allard
- Mathematical, Computational and Systems Biology, University of California Irvine
- Department of Mathematics, Department of Physics & Astronomy, University of California Irvine
| |
Collapse
|
10
|
Piper M, Gadwa J, Hodgson C, Knitz M, Yee E, Zhu Y, Larson KY, Klein C, Amann M, Saviola A, Karam SD. IL15/IL15Rα complex induces an anti-tumor immune response following radiation therapy only in the absence of Tregs and fails to induce expansion of progenitor TCF1+ CD8 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613691. [PMID: 39345626 PMCID: PMC11429847 DOI: 10.1101/2024.09.18.613691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background This work seeks to understand whether IL15-incorporating treatments improve response to radiotherapy and uncover mechanistic rationale for overcoming resistance to IL15 agonism using novel therapeutic combinations. Experimental Design Orthotopic tumor models of PDAC were used to determine response to treatment. IL15-/- and Rag1-/- mouse models were employed to determine dependence on IL15 and CTLs, respectively. Flow cytometry was used to assess immune cell frequency and activation state. Phospho-proteomic analyses were used to characterize intracellular signaling pathways. Results We show that the combination of radiation therapy (RT) and an IL15/IL15Ra fusion complex (denoted IL15c) fails to confer anti-tumor efficacy; however, a CD8-driven anti-tumor immune response is elicited with the concurrent administration of an aCD25 Treg-depleting antibody. Using IL15-/- and Rag1-/- mice, we demonstrate that response to RT + IL15c + aCD25 is dependent on both IL15 and CTLs. Furthermore, despite an equivalent survival benefit following treatment with RT + IL15c + aCD25 and combination RT + PD1-IL2v, a novel immunocytokine with PD-1 and IL2Rβγ binding domains, CTL immunophenotyping and phospho-proteomic analysis of intracellular metabolites showed significant upregulation of activation and functionality in CD8 T cells treated with RT + PD1-IL2v. Finally, we show the immunostimulatory response to RT + PD1-IL2v is significantly diminished with a concurrent lack of TCF+ CD8 T cell generation in the absence of functional IL15 signaling. Conclusions Our results are illustrative of a mechanism wherein unimpeded effector T cell activation through IL2Rβ signaling and Treg inhibition are necessary in mediating an anti-tumor immune response.
Collapse
|
11
|
Yuan Z, Shu L, Fu J, Yang P, Wang Y, Sun J, Zheng M, Liu Z, Yang J, Song J, Song S, Cai Z. Single-Cell RNA Sequencing Deconstructs the Distribution of Immune Cells Within Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1986-2003. [PMID: 39051127 DOI: 10.1161/atvbaha.124.321129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation is a key component in the development of abdominal aortic aneurysm (AAA), yet insights into the roles of immune cells and their interactions in this process are limited. METHODS Using single-cell RNA transcriptomic analysis, we deconstructed the CD45+ cell population in elastase-induced murine AAA at the single-cell level. We isolated each group of immune cells from murine AAA tissue at different time points and divided them into several subtypes, listed the remarkable differentially expressed genes, explored the developmental trajectories of immune cells, and demonstrated the interactions among them. RESULTS Our findings reveal significant differences in several immune cell subsets, including macrophages, dendritic cells, and T cells, within the AAA microenvironment compared with the normal aorta. Especially, conventional dendritic cell type 1 exclusively existed in the AAA tissue rather than the normal aortas. Via CellChat analysis, we identified several intercellular communication pathways like visfatin, which targets monocyte differentiation and neutrophil extracellular trap-mediated interaction between neutrophils and dendritic cells, which might contribute to AAA development. Some of these pathways were validated in human AAA. CONCLUSIONS Despite the absence of external pathogenic stimuli, AAA tissues develop a complex inflammatory microenvironment involving numerous immune cells. In-depth studies of the inflammatory network shall provide new strategies for patients with AAA.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Animals
- Single-Cell Analysis
- Disease Models, Animal
- Mice, Inbred C57BL
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/immunology
- Mice
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/immunology
- Male
- Transcriptome
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Gene Expression Profiling/methods
- Pancreatic Elastase
- Cell Communication
Collapse
Affiliation(s)
- Zhen Yuan
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Li Shu
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jiantao Fu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Peipei Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Yidong Wang
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jie Sun
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Zheng
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Vascular Surgery (Z.L.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Zhejun Cai
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| |
Collapse
|
12
|
Bevilacqua A, Franco F, Lu YT, Rahiman N, Kao KC, Chuang YM, Zhu Y, Held W, Xie X, Gunsalus KC, Xiao Z, Chen SY, Ho PC. PPARβ/δ-orchestrated metabolic reprogramming supports the formation and maintenance of memory CD8 + T cells. Sci Immunol 2024; 9:eadn2717. [PMID: 39178275 DOI: 10.1126/sciimmunol.adn2717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/25/2024]
Abstract
The formation of memory T cells is a fundamental feature of adaptative immunity, allowing the establishment of long-term protection against pathogens. Although emerging evidence suggests that metabolic reprogramming is crucial for memory T cell differentiation and survival, the underlying mechanisms that drive metabolic rewiring in memory T cells remain unclear. Here, we found that up-regulation of the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) instructs the metabolic reprogramming that occurs during the establishment of central memory CD8+ T cells. PPARβ/δ-regulated changes included suppression of aerobic glycolysis and enhancement of oxidative metabolism and fatty acid oxidation. Mechanistically, exposure to interleukin-15 and expression of T cell factor 1 facilitated activation of the PPARβ/δ pathway, counteracting apoptosis induced by antigen clearance and metabolic stress. Together, our findings indicate that PPARβ/δ is a master metabolic regulator orchestrating a metabolic switch that may be favorable for T cell longevity.
Collapse
Affiliation(s)
- Alessio Bevilacqua
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Fabien Franco
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ya-Ting Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Nabil Rahiman
- Center for Genomics and System Biology (CSGB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kung-Chi Kao
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yu-Ming Chuang
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yanan Zhu
- School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, China
| | - Werner Held
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Xin Xie
- Center for Genomics and System Biology (CSGB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Kristin C Gunsalus
- Center for Genomics and System Biology (CSGB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Zhengtao Xiao
- School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, China
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
13
|
Patrick R, Naval-Sanchez M, Deshpande N, Huang Y, Zhang J, Chen X, Yang Y, Tiwari K, Esmaeili M, Tran M, Mohamed AR, Wang B, Xia D, Ma J, Bayliss J, Wong K, Hun ML, Sun X, Cao B, Cottle DL, Catterall T, Barzilai-Tutsch H, Troskie RL, Chen Z, Wise AF, Saini S, Soe YM, Kumari S, Sweet MJ, Thomas HE, Smyth IM, Fletcher AL, Knoblich K, Watt MJ, Alhomrani M, Alsanie W, Quinn KM, Merson TD, Chidgey AP, Ricardo SD, Yu D, Jardé T, Cheetham SW, Marcelle C, Nilsson SK, Nguyen Q, White MD, Nefzger CM. The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening. Cell Metab 2024; 36:1858-1881.e23. [PMID: 38959897 DOI: 10.1016/j.cmet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
Collapse
Affiliation(s)
- Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yifei Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ying Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kanupriya Tiwari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mohammadhossein Esmaeili
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Amin R Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Binxu Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Ma
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tara Catterall
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Hila Barzilai-Tutsch
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Robin-Lee Troskie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhian Chen
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ye Mon Soe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Snehlata Kumari
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Surgery, Cabrini Monash University, Malvern, VIC 3144, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
14
|
Mulet-Lazaro R, van Herk S, Nuetzel M, Sijs-Szabo A, Díaz N, Kelly K, Erpelinck-Verschueren C, Schwarzfischer-Pfeilschifter L, Stanewsky H, Ackermann U, Glatz D, Raithel J, Fischer A, Pohl S, Rijneveld A, Vaquerizas JM, Thiede C, Plass C, Wouters BJ, Delwel R, Rehli M, Gebhard C. Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia. Nat Commun 2024; 15:5693. [PMID: 38972954 PMCID: PMC11228033 DOI: 10.1038/s41467-024-49811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stanley van Herk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Margit Nuetzel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Aniko Sijs-Szabo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Katherine Kelly
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Erpelinck-Verschueren
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ute Ackermann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dagmar Glatz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Pohl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Anita Rijneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital 8 Campus, London, United Kingdom
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas J Wouters
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Claudia Gebhard
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| |
Collapse
|
15
|
Tu TH, Grunbaum A, Santinon F, Kazanova A, Rozza N, Kremer R, Mihalcioiu C, Rudd CE. Decreased progenitor TCF1 + T-cells correlate with COVID-19 disease severity. Commun Biol 2024; 7:526. [PMID: 38702425 PMCID: PMC11068881 DOI: 10.1038/s42003-024-05922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 05/06/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, can lead to a severe inflammatory disease characterized by significant lymphopenia. However, the underlying cause for the depletion of T-cells in COVID-19 patients remains incompletely understood. In this study, we assessed the presence of different T-cell subsets in the progression of COVID-19 from mild to severe disease, with a focus on TCF1 expressing progenitor T-cells that are needed to replenish peripheral T-cells during infection. Our results showed a preferential decline in TCF1+ progenitor CD4 and CD8+ T-cells with disease severity. This decline was seen in various TCF1+ subsets including naive, memory and effector-memory cells, and surprisingly, was accompanied by a loss in cell division as seen by a marked decline in Ki67 expression. In addition, TCF1+ T-cells showed a reduction in pro-survival regulator, BcL2, and the appearance of a new population of TCF1 negative caspase-3 expressing cells in peripheral blood from patients with severe disease. The decline in TCF1+ T-cells was also seen in a subgroup of severe patients with vitamin D deficiency. Lastly, we found that sera from severe patients inhibited TCF1 transcription ex vivo which was attenuated by a blocking antibody against the cytokine, interleukin-12 (IL12). Collectively, our findings underscore the potential significance of TCF1+ progenitor T-cells in accounting for the loss of immunity in severe COVID-19 and outline an array of markers that could be used to identify disease progression.
Collapse
Affiliation(s)
- Thai Hien Tu
- Départment of Medicine, Universite de Montreal, Montreal, QC, H3T 1J4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
| | - Ami Grunbaum
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, Research Institute of the McGill University Health Center, Montreal, H3A 0G4, Canada
- Division of Medical Biochemistry, McGill University Health Centre, Montréal, QC, Canada
| | - François Santinon
- Départment of Medicine, Universite de Montreal, Montreal, QC, H3T 1J4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
| | - Alexandra Kazanova
- Départment of Medicine, Universite de Montreal, Montreal, QC, H3T 1J4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
| | - Nicholas Rozza
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, Research Institute of the McGill University Health Center, Montreal, H3A 0G4, Canada
| | - Richard Kremer
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, Research Institute of the McGill University Health Center, Montreal, H3A 0G4, Canada
- Division of Medical Biochemistry, McGill University Health Centre, Montréal, QC, Canada
| | - Catalin Mihalcioiu
- Department of Medical Oncology, McGill University Health Center, Montreal, Quebec, Canada
| | - Christopher E Rudd
- Départment of Medicine, Universite de Montreal, Montreal, QC, H3T 1J4, Canada.
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Division of Immunology-Oncology, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada.
| |
Collapse
|
16
|
Doan AE, Mueller KP, Chen AY, Rouin GT, Chen Y, Daniel B, Lattin J, Markovska M, Mozarsky B, Arias-Umana J, Hapke R, Jung IY, Wang A, Xu P, Klysz D, Zuern G, Bashti M, Quinn PJ, Miao Z, Sandor K, Zhang W, Chen GM, Ryu F, Logun M, Hall J, Tan K, Grupp SA, McClory SE, Lareau CA, Fraietta JA, Sotillo E, Satpathy AT, Mackall CL, Weber EW. FOXO1 is a master regulator of memory programming in CAR T cells. Nature 2024; 629:211-218. [PMID: 38600391 PMCID: PMC11062920 DOI: 10.1038/s41586-024-07300-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.
Collapse
Affiliation(s)
- Alexander E Doan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine P Mueller
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy Y Chen
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Geoffrey T Rouin
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingshi Chen
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Genentech, South San Francisco, CA, USA
| | - John Lattin
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Martina Markovska
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett Mozarsky
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jose Arias-Umana
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Hapke
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Wang
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gabrielle Zuern
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malek Bashti
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick J Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhuang Miao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Wenxi Zhang
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Gregory M Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Faith Ryu
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meghan Logun
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junior Hall
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephan A Grupp
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan E McClory
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Evan W Weber
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
17
|
Liukang C, Zhao J, Tian J, Huang M, Liang R, Zhao Y, Zhang G. Deciphering infected cell types, hub gene networks and cell-cell communication in infectious bronchitis virus via single-cell RNA sequencing. PLoS Pathog 2024; 20:e1012232. [PMID: 38743760 PMCID: PMC11125504 DOI: 10.1371/journal.ppat.1012232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.
Collapse
Affiliation(s)
- Chengyin Liukang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Ojo OA, Shen H, Ingram JT, Bonner JA, Welner RS, Lacaud G, Zajac AJ, Shi LZ. Gfi1 controls the formation of effector CD8 T cells during chronic infection and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.579535. [PMID: 38659890 PMCID: PMC11042319 DOI: 10.1101/2024.04.18.579535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During chronic infections and tumor progression, CD8 T cells gradually lose their effector functions and become exhausted. These exhausted CD8 T cells are heterogeneous and comprised of different subsets, including self-renewing progenitors that give rise to Ly108 - CX3CR1 + effector-like cells. Generation of these effector-like cells is essential for the control of chronic infections and tumors, albeit limited. However, the precise cues and mechanisms directing the formation and maintenance of exhausted effector-like are incompletely understood. Using genetic mouse models challenged with LCMV Clone 13 or syngeneic tumors, we show that the expression of a transcriptional repressor, growth factor independent 1 (Gfi1) is dynamically regulated in exhausted CD8 T cells, which in turn regulates the formation of exhausted effector-like cells. Gfi1 deletion in T cells dysregulates the chromatin accessibility and transcriptomic programs associated with the differentiation of LCMV Clone 13-specific CD8 T cell exhaustion, preventing the formation of effector-like and terminally exhausted cells while maintaining progenitors and a newly identified Ly108 + CX3CR1 + state. These Ly108 + CX3CR1 + cells have a distinct chromatin profile and may represent an alternative target for therapeutic interventions to combat chronic infections and cancer. In sum, we show that Gfi1 is a critical regulator of the formation of exhausted effector-like cells.
Collapse
|
19
|
Stevens J, Culberson E, Kinder J, Ramiriqui A, Gray J, Bonfield M, Shao TY, Al Gharabieh F, Peterson L, Steinmeyer S, Zacharias W, Pryhuber G, Paul O, Sengupta S, Alenghat T, Way SS, Deshmukh H. Microbiota-derived inosine programs protective CD8 + T cell responses against influenza in newborns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588427. [PMID: 38645130 PMCID: PMC11030415 DOI: 10.1101/2024.04.09.588427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immunological defects causing susceptibility to severe viral respiratory infections due to early-life dysbiosis remain ill-defined. Here, we show that influenza virus susceptibility in dysbiotic infant mice is caused by CD8+ T cell hyporesponsiveness and diminished persistence as tissue-resident memory cells. We describe a previously unknown role for nuclear factor interleukin 3 (NFIL3) in repression of memory differentiation of CD8+ T cells in dysbiotic mice involving epigenetic regulation of T cell factor 1 (TCF 1) expression. Pulmonary CD8+ T cells from dysbiotic human infants share these transcriptional signatures and functional phenotypes. Mechanistically, intestinal inosine was reduced in dysbiotic human infants and newborn mice, and inosine replacement reversed epigenetic dysregulation of Tcf7 and increased memory differentiation and responsiveness of pulmonary CD8+ T cells. Our data unveils new developmental layers controlling immune cell activation and identifies microbial metabolites that may be used therapeutically in the future to protect at-risk newborns.
Collapse
Affiliation(s)
- Joseph Stevens
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center
| | - Erica Culberson
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center
| | - Jeremy Kinder
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Alicia Ramiriqui
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Jerilyn Gray
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Madeline Bonfield
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center
| | - Tzu-Yu Shao
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Faris Al Gharabieh
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Laura Peterson
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Shelby Steinmeyer
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - William Zacharias
- Department of Pediatrics, University of Cincinnati College of Medicine
- Medical Scientist Training Program, University of Cincinnati College of Medicine
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester, School of Medicine
| | - Oindrila Paul
- Division of Neonatology, Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania
| | - Shaon Sengupta
- Division of Neonatology, Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania
| | - Theresa Alenghat
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Sing Sing Way
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| |
Collapse
|
20
|
Zhao X, Hu W, Park SR, Zhu S, Hu SS, Zang C, Peng W, Shan Q, Xue HH. The transcriptional cofactor Tle3 reciprocally controls effector and central memory CD8 + T cell fates. Nat Immunol 2024; 25:294-306. [PMID: 38238608 PMCID: PMC10916363 DOI: 10.1038/s41590-023-01720-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/28/2023] [Indexed: 02/03/2024]
Abstract
Antigen-experienced CD8+ T cells form effector and central memory T cells (TEM and TCM cells, respectively); however, the mechanism(s) controlling their lineage plasticity remains incompletely understood. Here we show that the transcription cofactor Tle3 critically regulates TEM and TCM cell fates and lineage stability through dynamic redistribution in antigen-responding CD8+ T cell genome. Genetic ablation of Tle3 promoted CD8+ TCM cell formation at the expense of CD8+ TEM cells. Lineage tracing showed that Tle3-deficient CD8+ TEM cells underwent accelerated conversion into CD8+ TCM cells while retaining robust recall capacity. Tle3 acted as a coactivator for Tbet to increase chromatin opening at CD8+ TEM cell-characteristic sites and to activate CD8+ TEM cell signature gene transcription, while engaging Runx3 and Tcf1 to limit CD8+ TCM cell-characteristic molecular features. Thus, Tle3 integrated functions of multiple transcription factors to guard lineage fidelity of CD8+ TEM cells, and manipulation of Tle3 activity could favor CD8+ TCM cell production.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Sung Rye Park
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Shengen Shawn Hu
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Qiang Shan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA.
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA.
| |
Collapse
|
21
|
Rueda AD, Salvador-Martínez I, Sospedra-Arrufat I, Alcaina-Caro A, Fernández-Miñán A, Burgos-Ruiz AM, Cases I, Mohedano A, Tena JJ, Heyn H, Lopez-Rios J, Nusspaumer G. The cellular landscape of the endochondral bone during the transition to extrauterine life. Immunol Cell Biol 2024; 102:131-148. [PMID: 38184783 DOI: 10.1111/imcb.12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
The cellular complexity of the endochondral bone underlies its essential and pleiotropic roles during organismal life. While the adult bone has received significant attention, we still lack a deep understanding of the perinatal bone cellulome. Here, we have profiled the full composition of the murine endochondral bone at the single-cell level during the transition from fetal to newborn life and in comparison with the adult tissue, with particular emphasis on the mesenchymal compartment. The perinatal bone contains different fibroblastic clusters with blastema-like characteristics in organizing and supporting skeletogenesis, angiogenesis and hematopoiesis. Our data also suggest dynamic inter- and intra-compartment interactions, as well as a bone marrow milieu that seems prone to anti-inflammation, which we hypothesize is necessary to ensure the proper program of lymphopoiesis and the establishment of central and peripheral tolerance in early life. Our study provides an integrative roadmap for the future design of genetic and cellular functional assays to validate cellular interactions and lineage relationships within the perinatal bone.
Collapse
Affiliation(s)
- Alejandro Díaz Rueda
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Irepan Salvador-Martínez
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ismael Sospedra-Arrufat
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana M Burgos-Ruiz
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Alberto Mohedano
- Intensive Care Unit, Severo Ochoa University Hospital Leganés, Madrid, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Universidad Loyola Andalucía, School of Health Sciences, Dos Hermanas, Seville, Spain
| | - Gretel Nusspaumer
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
22
|
Wells SB, Rainbow DB, Mark M, Szabo PA, Ergen C, Maceiras AR, Caron DP, Rahmani E, Benuck E, Amiri VVP, Chen D, Wagner A, Howlett SK, Jarvis LB, Ellis KL, Kubota M, Matsumoto R, Mahbubani K, Saeb-Parsy K, Dominguez-Conde C, Richardson L, Xu C, Li S, Mamanova L, Bolt L, Wilk A, Teichmann SA, Farber DL, Sims PA, Jones JL, Yosef N. Multimodal profiling reveals tissue-directed signatures of human immune cells altered with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573877. [PMID: 38260588 PMCID: PMC10802388 DOI: 10.1101/2024.01.03.573877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The immune system comprises multiple cell lineages and heterogeneous subsets found in blood and tissues throughout the body. While human immune responses differ between sites and over age, the underlying sources of variation remain unclear as most studies are limited to peripheral blood. Here, we took a systems approach to comprehensively profile RNA and surface protein expression of over 1.25 million immune cells isolated from blood, lymphoid organs, and mucosal tissues of 24 organ donors aged 20-75 years. We applied a multimodal classifier to annotate the major immune cell lineages (T cells, B cells, innate lymphoid cells, and myeloid cells) and their corresponding subsets across the body, leveraging probabilistic modeling to define bases for immune variations across donors, tissue, and age. We identified dominant tissue-specific effects on immune cell composition and function across lineages for lymphoid sites, intestines, and blood-rich tissues. Age-associated effects were intrinsic to both lineage and site as manifested by macrophages in mucosal sites, B cells in lymphoid organs, and T and NK cells in blood-rich sites. Our results reveal tissue-specific signatures of immune homeostasis throughout the body and across different ages. This information provides a basis for defining the transcriptional underpinnings of immune variation and potential associations with disease-associated immune pathologies across the human lifespan.
Collapse
|
23
|
Rangel Rivera GO, Dwyer CJ, Knochelmann HM, Smith AS, Aksoy BA, Cole AC, Wyatt MM, Kumaresan S, Thaxton JE, Lesinski GB, Paulos CM. Progressively Enhancing Stemness of Adoptively Transferred T Cells with PI3Kδ Blockade Improves Metabolism and Antitumor Immunity. Cancer Res 2024; 84:69-83. [PMID: 37801615 DOI: 10.1158/0008-5472.can-23-0801] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Generating stem-like memory T cells (TSCM) is a potential strategy to improve adoptive immunotherapy. Elucidating optimal ways to modulate signaling pathways that enrich TSCM properties could identify approaches to achieve this goal. We discovered herein that blocking the PI3Kδ pathway pharmaceutically to varying degrees can generate T cells with increasingly heightened stemness properties, based on the progressive enrichment of the transcription factors Tcf1 and Lef1. T cells with enhanced stemness features exhibited metabolic plasticity, marked by improved mitochondrial function and glucose uptake after tumor recognition. Conversely, T cells with low or medium stemness were less metabolically dynamic, vulnerable to antigen-induced cell death, and expressed more inhibitory checkpoint receptors. Only T-cell receptor-specific or chimeric antigen receptor (CAR)-specific T cells with high stemness persisted in vivo and mounted protective immunity to tumors. Likewise, the strongest level of PI3Kδ blockade in vitro generated human tumor-infiltrating lymphocytes and CAR T cells with elevated stemness properties, in turn bolstering their capacity to regress human solid tumors. The stemness level of T cells in vitro was important, ultimately impacting their efficacy in mice bearing three distinct solid tumors. Lef1 and Tcf1 sustained antitumor protection by donor high CD8+ TSCM or CD4+ Th17SCM, as deletion of either one compromised the therapeutic efficacy. Collectively, these findings highlight the importance of strategic modulation of PI3Kδ signaling in T cells to induce stemness and lasting protective responses to solid tumors. SIGNIFICANCE Elevating T-cell stemness by progressively blocking PI3Kδ signaling during ex vivo manufacturing of adoptive cell therapies alters metabolic and functional properties to enhance antitumor immunity dependent on Tcf1 and Lef1.
Collapse
Affiliation(s)
- Guillermo O Rangel Rivera
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Hannah M Knochelmann
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Aubrey S Smith
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Bülent Arman Aksoy
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Anna C Cole
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Megan M Wyatt
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Soundharya Kumaresan
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jessica E Thaxton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Chrystal M Paulos
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
24
|
Zhu S, Liu J, Patel V, Zhao X, Peng W, Xue HH. Antigen exposure reshapes chromatin architecture in central memory CD8 + T cells and imprints enhanced recall capacity. Proc Natl Acad Sci U S A 2023; 120:e2313476120. [PMID: 38085779 PMCID: PMC10742382 DOI: 10.1073/pnas.2313476120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
CD62L+ central memory CD8+ T (TCM) cells provide enhanced protection than naive cells; however, the underlying mechanism, especially the contribution of higher-order genomic organization, remains unclear. Systematic Hi-C analyses reveal that antigen-experienced CD8+ T cells undergo extensive rewiring of chromatin interactions (ChrInt), with TCM cells harboring specific interaction hubs compared with naive CD8+ T cells, as observed at cytotoxic effector genes such as Ifng and Tbx21. TCM cells also acquire de novo CTCF (CCCTC-binding factor) binding sites, which are not only strongly associated with TCM-specific hubs but also linked to increased activities of local gene promoters and enhancers. Specific ablation of CTCF in TCM cells impairs rapid induction of genes in cytotoxic program, energy supplies, transcription, and translation by recall stimulation. Therefore, acquisition of CTCF binding and ChrInt hubs by TCM cells serves as a chromatin architectural basis for their transcriptomic dynamics in primary response and for imprinting the code of "recall readiness" against secondary challenge.
Collapse
Affiliation(s)
- Shaoqi Zhu
- Department of Physics, The George Washington University, Washington, DC20052
| | - Jia Liu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ07110
| | - Vanita Patel
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ07110
| | - Xiuyi Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ07110
- Solon High School, Solon, OH44139
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC20052
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ07110
- New Jersey Veterans Affairs Health Care System, East Orange, NJ07018
| |
Collapse
|
25
|
Beltra JC, Abdel-Hakeem MS, Manne S, Zhang Z, Huang H, Kurachi M, Su L, Picton L, Ngiow SF, Muroyama Y, Casella V, Huang YJ, Giles JR, Mathew D, Belman J, Klapholz M, Decaluwe H, Huang AC, Berger SL, Garcia KC, Wherry EJ. Stat5 opposes the transcription factor Tox and rewires exhausted CD8 + T cells toward durable effector-like states during chronic antigen exposure. Immunity 2023; 56:2699-2718.e11. [PMID: 38091951 PMCID: PMC10752292 DOI: 10.1016/j.immuni.2023.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 08/23/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Rewiring exhausted CD8+ T (Tex) cells toward functional states remains a therapeutic challenge. Tex cells are epigenetically programmed by the transcription factor Tox. However, epigenetic remodeling occurs as Tex cells transition from progenitor (Texprog) to intermediate (Texint) and terminal (Texterm) subsets, suggesting development flexibility. We examined epigenetic transitions between Tex cell subsets and revealed a reciprocally antagonistic circuit between Stat5a and Tox. Stat5 directed Texint cell formation and re-instigated partial effector biology during this Texprog-to-Texint cell transition. Constitutive Stat5a activity antagonized Tox and rewired CD8+ T cells from exhaustion to a durable effector and/or natural killer (NK)-like state with superior anti-tumor potential. Temporal induction of Stat5 activity in Tex cells using an orthogonal IL-2:IL2Rβ-pair fostered Texint cell accumulation, particularly upon PD-L1 blockade. Re-engaging Stat5 also partially reprogrammed the epigenetic landscape of exhaustion and restored polyfunctionality. These data highlight therapeutic opportunities of manipulating the IL-2-Stat5 axis to rewire Tex cells toward more durably protective states.
Collapse
Affiliation(s)
- Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhen Zhang
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hua Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lora Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Muroyama
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Valentina Casella
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yinghui J Huang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Belman
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Klapholz
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Alexander C Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Doan A, Mueller KP, Chen A, Rouin GT, Daniel B, Lattin J, Chen Y, Mozarsky B, Markovska M, Arias-Umana J, Hapke R, Jung I, Xu P, Klysz D, Bashti M, Quinn PJ, Sandor K, Zhang W, Hall J, Lareau C, Grupp SA, Fraietta JA, Sotillo E, Satpathy AT, Mackall CL, Weber EW. FOXO1 is a master regulator of CAR T memory programming. RESEARCH SQUARE 2023:rs.3.rs-2802998. [PMID: 37986944 PMCID: PMC10659532 DOI: 10.21203/rs.3.rs-2802998/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3-7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.
Collapse
Affiliation(s)
- Alexander Doan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katherine P Mueller
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy Chen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Geoffrey T Rouin
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - John Lattin
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yingshi Chen
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brett Mozarsky
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Markovska
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jose Arias-Umana
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Hapke
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inyoung Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malek Bashti
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Wenxi Zhang
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junior Hall
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caleb Lareau
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
| | - Stephan A Grupp
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Division of Blood and Marrow Transplantation and Cell Therapy, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Evan W Weber
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
| |
Collapse
|
27
|
Russ BE, Barugahare A, Dakle P, Tsyganov K, Quon S, Yu B, Li J, Lee JKC, Olshansky M, He Z, Harrison PF, See M, Nussing S, Morey AE, Udupa VA, Bennett TJ, Kallies A, Murre C, Collas P, Powell D, Goldrath AW, Turner SJ. Active maintenance of CD8 + T cell naivety through regulation of global genome architecture. Cell Rep 2023; 42:113301. [PMID: 37858463 PMCID: PMC10679840 DOI: 10.1016/j.celrep.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The differentiation of naive CD8+ T lymphocytes into cytotoxic effector and memory CTL results in large-scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organization underpin these transcriptional programs. We use Hi-C to map changes in the spatial organization of long-range genome contacts within naive, effector, and memory virus-specific CD8+ T cells. We observe that the architecture of the naive CD8+ T cell genome is distinct from effector and memory genome configurations, with extensive changes within discrete functional chromatin domains associated with effector/memory differentiation. Deletion of BACH2, or to a lesser extent, reducing SATB1 DNA binding, within naive CD8+ T cells results in a chromatin architecture more reminiscent of effector/memory states. This suggests that key transcription factors within naive CD8+ T cells act to restrain T cell differentiation by actively enforcing a unique naive chromatin state.
Collapse
Affiliation(s)
- Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Adele Barugahare
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pushkar Dakle
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirril Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sara Quon
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Jasmine Li
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Jason K C Lee
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zhaohren He
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Paul F Harrison
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Michael See
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Simone Nussing
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alison E Morey
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Vibha A Udupa
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Taylah J Bennett
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Phillipe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - David Powell
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ananda W Goldrath
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
28
|
Sun Q, Cai D, Liu D, Zhao X, Li R, Xu W, Xie B, Gou M, Wei K, Li Y, Huang J, Chi X, Wei P, Hao J, Guo X, Pan B, Fu Y, Ni L, Dong C. BCL6 promotes a stem-like CD8 + T cell program in cancer via antagonizing BLIMP1. Sci Immunol 2023; 8:eadh1306. [PMID: 37862431 DOI: 10.1126/sciimmunol.adh1306] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/30/2023] [Indexed: 10/22/2023]
Abstract
Overcoming CD8+ T cell exhaustion is critical in cancer immunotherapy. Recently, an intratumor stem/progenitor-like CD8+ T cell (Tprog cell) population that mediates the persistence of antitumor responses has been defined, which can further develop into a terminally differentiated CD8+ T cell (Tterm cell) subpopulation with potent cytotoxic functions. Tprog cells are the main responders to immune checkpoint blockade therapies, yet how extrinsic signals via transcription factors control Tprog cell generation and persistence in tumors is unclear. Here, we found that BCL6 inhibits tumor-specific Tterm cell generation from Tprog cell downstream of TCF1. We show that Bcl6 deficiency reduced the persistence of Tprog cells, without affecting their generation, thus abrogating long-term tumor control. High-level BCL6 expression was observed in tumor-specific T cells in draining lymph nodes (LNs) and was associated with T cell exhaustion. This was observed in TOX+TCF1+ Tprog cells in both LNs and tumors. BCL6 expression in CD8+ T cells was up-regulated by TGF-β-SMAD2 signaling but down-regulated by the IL-2-STAT5 pathway. Mechanistically, BCL6 transcriptionally repressed the expression of Tterm cell-associated genes and induced those of Tprog cell-related genes, in a manner antagonistic to BLIMP1. Prdm1 deficiency also promoted the Tprog cell program and greatly improved the efficacy of anti-PD-1 therapy. Thus, we identified the TGF-β-BCL6 and IL-2-BLIMP1 antagonistic pathways in regulation of antitumor CD8+ T cells, which may benefit the development of long-lasting and effective cancer immunotherapy.
Collapse
Affiliation(s)
- Qinli Sun
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongli Cai
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Dingfeng Liu
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruifeng Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bowen Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengting Gou
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Kun Wei
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuling Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- College of Life Science and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China
| | - Jinling Huang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinxin Chi
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Wei
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Hao
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Xinyi Guo
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Birui Pan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yujie Fu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| |
Collapse
|
29
|
Neubert EN, DeRogatis JM, Lewis SA, Viramontes KM, Ortega P, Henriquez ML, Buisson R, Messaoudi I, Tinoco R. HMGB2 regulates the differentiation and stemness of exhausted CD8 + T cells during chronic viral infection and cancer. Nat Commun 2023; 14:5631. [PMID: 37704621 PMCID: PMC10499904 DOI: 10.1038/s41467-023-41352-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Chronic infections and cancers evade the host immune system through mechanisms that induce T cell exhaustion. The heterogeneity within the exhausted CD8+ T cell pool has revealed the importance of stem-like progenitor (Tpex) and terminal (Tex) exhausted T cells, although the mechanisms underlying their development are not fully known. Here we report High Mobility Group Box 2 (HMGB2) protein expression is upregulated and sustained in exhausted CD8+ T cells, and HMGB2 expression is critical for their differentiation. Through epigenetic and transcriptional programming, we identify HMGB2 as a cell-intrinsic regulator of the differentiation and maintenance of Tpex cells during chronic viral infection and in tumors. Despite Hmgb2-/- CD8+ T cells expressing TCF-1 and TOX, these master regulators were unable to sustain Tpex differentiation and long-term survival during persistent antigen. Furthermore, HMGB2 also had a cell-intrinsic function in the differentiation and function of memory CD8+ T cells after acute viral infection. Our findings show that HMGB2 is a key regulator of CD8+ T cells and may be an important molecular target for future T cell-based immunotherapies.
Collapse
Affiliation(s)
- Emily N Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
| | - Julia M DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Monique L Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Rémi Buisson
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Salz L, Seitz A, Schäfer D, Franzen J, Holzer T, Garcia-Prieto CA, Bürger I, Hardt O, Esteller M, Wagner W. Culture expansion of CAR T cells results in aberrant DNA methylation that is associated with adverse clinical outcome. Leukemia 2023; 37:1868-1878. [PMID: 37452103 PMCID: PMC10457202 DOI: 10.1038/s41375-023-01966-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Chimeric antigen receptor (CAR) T cells provide new perspectives for treatment of hematological malignancies. Manufacturing of these cellular products includes culture expansion procedures, which may affect cellular integrity and therapeutic outcome. In this study, we investigated culture-associated epigenetic changes in CAR T cells and found continuous gain of DNAm, particularly within genes that are relevant for T cell function. Hypermethylation in many genes, such as TCF7, RUNX1, and TOX, was reflected by transcriptional downregulation. 332 CG dinucleotides (CpGs) showed an almost linear gain in methylation with cell culture time, albeit neighboring CpGs were not coherently regulated on the same DNA strands. An epigenetic signature based on 14 of these culture-associated CpGs predicted cell culture time across various culture conditions. Notably, even in CAR T cell products of similar culture time higher DNAm levels at these CpGs were associated with significantly reduced long-term survival post transfusion. Our data demonstrate that cell culture expansion of CAR T cells evokes DNA hypermethylation at specific sites in the genome and the signature may also reflect loss of potential in CAR T cell products. Hence, reduced cultivation periods are beneficial to avoid dysfunctional methylation programs that seem to be associated with worse therapeutic outcome.
Collapse
Affiliation(s)
- Lucia Salz
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Alexander Seitz
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Daniel Schäfer
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Julia Franzen
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Tatjana Holzer
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Carlos A Garcia-Prieto
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Iris Bürger
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
31
|
Angulo-Aguado M, Orjuela-Amarillo S, Mora-Jácome JF, Córdoba LP, Gallego-Ortiz A, Gaviria-Sabogal CC, Contreras N, Figueroa C, Ortega-Recalde O, Morel A, Fonseca-Mendoza DJ. Functional analysis of CTLA4 promoter variant and its possible implication in colorectal cancer immunotherapy. Front Med (Lausanne) 2023; 10:1160368. [PMID: 37601778 PMCID: PMC10436101 DOI: 10.3389/fmed.2023.1160368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent cancer, ranking as the third most common. Recent advances in our understanding of the molecular causes of this disease have highlighted the crucial role of tumor immune evasion in its initiation and progression. CTLA4, a receptor that acts as a negative regulator of T cell responses, plays a pivotal role in this process, and genetic variations in CTLA4 have been linked to CRC susceptibility, prognosis, and response to therapy. Methods We conducted a case-control study involving 98 CRC patients and 424 controls. We genotyped the CTLA4 c.-319C > T variant (rs5742909) and performed an association analysis by comparing allele frequencies between the patients and controls. To assess the potential functional impact of this variant, we first performed an In Silico analysis of transcription factor binding sites using Genomatix. Finally, to validate our findings, we conducted a luciferase reporter gene assay using different cell lines and an electrophoretic mobility shift assay (EMSA). Results The case-control association analysis revealed a significant association between CTLA4 c.-319C > T and CRC susceptibility (p = 0.023; OR 1.89; 95% CI = 1.11-3.23). Genomatix analysis identified LEF1 and TCF7 transcription factors as specific binders to CTLA4 c.-319C. The reporter gene assay demonstrated notable differences in luciferase activity between the c.-319 C and T alleles in COS-7, HCT116, and Jurkat cell lines. EMSA analysis showed differences in TCF7 interaction with the CTLA4 C and T alleles. Conclusion CTLA4 c.-319C > T is associated with CRC susceptibility. Based on our functional validation results, we proposed that CTLA4 c.-319C > T alters gene expression at the transcriptional level, triggering a stronger negative regulation of T-cells and immune tumoral evasion.
Collapse
Affiliation(s)
- Mariana Angulo-Aguado
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Sarah Orjuela-Amarillo
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Julián Francisco Mora-Jácome
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Lea Paloma Córdoba
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Antonio Gallego-Ortiz
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Cristian Camilo Gaviria-Sabogal
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Nora Contreras
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Carlos Figueroa
- Departamento de Coloproctología, Hospital Universitario Mayor-Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Adrien Morel
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Dora Janeth Fonseca-Mendoza
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| |
Collapse
|
32
|
Balcı AT, Ebeid MM, Benos PV, Kostka D, Chikina M. An intrinsically interpretable neural network architecture for sequence-to-function learning. Bioinformatics 2023; 39:i413-i422. [PMID: 37387140 PMCID: PMC10311317 DOI: 10.1093/bioinformatics/btad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Sequence-based deep learning approaches have been shown to predict a multitude of functional genomic readouts, including regions of open chromatin and RNA expression of genes. However, a major limitation of current methods is that model interpretation relies on computationally demanding post hoc analyses, and even then, one can often not explain the internal mechanics of highly parameterized models. Here, we introduce a deep learning architecture called totally interpretable sequence-to-function model (tiSFM). tiSFM improves upon the performance of standard multilayer convolutional models while using fewer parameters. Additionally, while tiSFM is itself technically a multilayer neural network, internal model parameters are intrinsically interpretable in terms of relevant sequence motifs. RESULTS We analyze published open chromatin measurements across hematopoietic lineage cell-types and demonstrate that tiSFM outperforms a state-of-the-art convolutional neural network model custom-tailored to this dataset. We also show that it correctly identifies context-specific activities of transcription factors with known roles in hematopoietic differentiation, including Pax5 and Ebf1 for B-cells, and Rorc for innate lymphoid cells. tiSFM's model parameters have biologically meaningful interpretations, and we show the utility of our approach on a complex task of predicting the change in epigenetic state as a function of developmental transition. AVAILABILITY AND IMPLEMENTATION The source code, including scripts for the analysis of key findings, can be found at https://github.com/boooooogey/ATAConv, implemented in Python.
Collapse
Affiliation(s)
- Ali Tuğrul Balcı
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Pittsburgh, PA 15213, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Mark Maher Ebeid
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Pittsburgh, PA 15213, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Panayiotis V Benos
- Department of Epidemiology, University of Florida, Gainesville, FL 32610, United States
| | - Dennis Kostka
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Pittsburgh, PA 15213, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Maria Chikina
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Pittsburgh, PA 15213, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
33
|
Novakovsky G, Fornes O, Saraswat M, Mostafavi S, Wasserman WW. ExplaiNN: interpretable and transparent neural networks for genomics. Genome Biol 2023; 24:154. [PMID: 37370113 DOI: 10.1186/s13059-023-02985-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Deep learning models such as convolutional neural networks (CNNs) excel in genomic tasks but lack interpretability. We introduce ExplaiNN, which combines the expressiveness of CNNs with the interpretability of linear models. ExplaiNN can predict TF binding, chromatin accessibility, and de novo motifs, achieving performance comparable to state-of-the-art methods. Its predictions are transparent, providing global (cell state level) as well as local (individual sequence level) biological insights into the data. ExplaiNN can serve as a plug-and-play platform for pretrained models and annotated position weight matrices. ExplaiNN aims to accelerate the adoption of deep learning in genomic sequence analysis by domain experts.
Collapse
Affiliation(s)
- Gherman Novakovsky
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Oriol Fornes
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Manu Saraswat
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington (UW), Seattle, USA
| | - Wyeth W Wasserman
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
34
|
Quon S, Yu B, Russ BE, Tsyganov K, Nguyen H, Toma C, Heeg M, Hocker JD, Milner JJ, Crotty S, Pipkin ME, Turner SJ, Goldrath AW. DNA architectural protein CTCF facilitates subset-specific chromatin interactions to limit the formation of memory CD8 + T cells. Immunity 2023; 56:959-978.e10. [PMID: 37040762 PMCID: PMC10265493 DOI: 10.1016/j.immuni.2023.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Although the importance of genome organization for transcriptional regulation of cell-fate decisions and function is clear, the changes in chromatin architecture and how these impact effector and memory CD8+ T cell differentiation remain unknown. Using Hi-C, we studied how genome configuration is integrated with CD8+ T cell differentiation during infection and investigated the role of CTCF, a key chromatin remodeler, in modulating CD8+ T cell fates through CTCF knockdown approaches and perturbation of specific CTCF-binding sites. We observed subset-specific changes in chromatin organization and CTCF binding and revealed that weak-affinity CTCF binding promotes terminal differentiation of CD8+ T cells through the regulation of transcriptional programs. Further, patients with de novo CTCF mutations had reduced expression of the terminal-effector genes in peripheral blood lymphocytes. Therefore, in addition to establishing genome architecture, CTCF regulates effector CD8+ T cell heterogeneity through altering interactions that regulate the transcription factor landscape and transcriptome.
Collapse
Affiliation(s)
- Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bingfei Yu
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kirill Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hongtuyet Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clara Toma
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James D Hocker
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - J Justin Milner
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Helm EY, Zelenka T, Cismasiu VB, Islam S, Silvane L, Zitti B, Holmes TD, Drashansky TT, Kwiatkowski AJ, Tao C, Dean J, Obermayer AN, Chen X, Keselowsky BG, Zhang W, Huo Z, Zhou L, Sheridan BS, Conejo-Garcia JR, Shaw TI, Bryceson YT, Avram D. Bcl11b sustains multipotency and restricts effector programs of intestinal-resident memory CD8 + T cells. Sci Immunol 2023; 8:eabn0484. [PMID: 37115913 DOI: 10.1126/sciimmunol.abn0484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The networks of transcription factors (TFs) that control intestinal-resident memory CD8+ T (TRM) cells, including multipotency and effector programs, are poorly understood. In this work, we investigated the role of the TF Bcl11b in TRM cells during infection with Listeria monocytogenes using mice with post-activation, conditional deletion of Bcl11b in CD8+ T cells. Conditional deletion of Bcl11b resulted in increased numbers of intestinal TRM cells and their precursors as well as decreased splenic effector and circulating memory cells and precursors. Loss of circulating memory cells was in part due to increased intestinal homing of Bcl11b-/- circulating precursors, with no major alterations in their programs. Bcl11b-/- TRM cells had altered transcriptional programs, with diminished expression of multipotent/multifunctional (MP/MF) program genes, including Tcf7, and up-regulation of the effector program genes, including Prdm1. Bcl11b also limits the expression of Ahr, another TF with a role in intestinal CD8+ TRM cell differentiation. Deregulation of TRM programs translated into a poor recall response despite TRM cell accumulation in the intestine. Reduced expression of MP/MF program genes in Bcl11b-/- TRM cells was linked to decreased chromatin accessibility and a reduction in activating histone marks at these loci. In contrast, the effector program genes displayed increased activating epigenetic status. These findings demonstrate that Bcl11b is a frontrunner in the tissue residency program of intestinal memory cells upstream of Tcf1 and Blimp1, promoting multipotency and restricting the effector program.
Collapse
Affiliation(s)
- Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tomas Zelenka
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Valeriu B Cismasiu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Shamima Islam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Leonardo Silvane
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Beatrice Zitti
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Tim D Holmes
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
| | - Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Christine Tao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joseph Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Alyssa N Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, S-14186 Stockholm, Sweden
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| |
Collapse
|
36
|
Uyehara CM, Apostolou E. 3D enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles. Cell Rep 2023; 42:112068. [PMID: 37059094 PMCID: PMC10556201 DOI: 10.1016/j.celrep.2023.112068] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 04/16/2023] Open
Abstract
The spatiotemporal control of gene expression is dependent on the activity of cis-acting regulatory sequences, called enhancers, which regulate target genes over variable genomic distances and, often, by skipping intermediate promoters, suggesting mechanisms that control enhancer-promoter communication. Recent genomics and imaging technologies have revealed highly complex enhancer-promoter interaction networks, whereas advanced functional studies have started interrogating the forces behind the physical and functional communication among multiple enhancers and promoters. In this review, we first summarize our current understanding of the factors involved in enhancer-promoter communication, with a particular focus on recent papers that have revealed new layers of complexities to old questions. In the second part of the review, we focus on a subset of highly connected enhancer-promoter "hubs" and discuss their potential functions in signal integration and gene regulation, as well as the putative factors that might determine their dynamics and assembly.
Collapse
Affiliation(s)
- Christopher M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
37
|
Liu J, Zhu S, Hu W, Zhao X, Shan Q, Peng W, Xue HH. CTCF mediates CD8+ effector differentiation through dynamic redistribution and genomic reorganization. J Exp Med 2023; 220:e20221288. [PMID: 36752796 PMCID: PMC9948760 DOI: 10.1084/jem.20221288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/12/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Differentiation of effector CD8+ T cells is instructed by stably and dynamically expressed transcription regulators. Here we show that naive-to-effector differentiation was accompanied by dynamic CTCF redistribution and extensive chromatin architectural changes. Upon CD8+ T cell activation, CTCF acquired de novo binding sites and anchored novel chromatin interactions, and these changes were associated with increased chromatin accessibility and elevated expression of cytotoxic program genes including Tbx21, Ifng, and Klrg1. CTCF was also evicted from its ex-binding sites in naive state, with concomitantly reduced chromatin interactions in effector cells, as observed at memory precursor-associated genes including Il7r, Sell, and Tcf7. Genetic ablation of CTCF indeed diminished cytotoxic gene expression, but paradoxically elevated expression of memory precursor genes. Comparative Hi-C analysis revealed that key memory precursor genes were harbored within insulated neighborhoods demarcated by constitutive CTCF binding, and their induction was likely due to disrupted CTCF-dependent insulation. CTCF thus promotes cytotoxic effector differentiation by integrating local chromatin accessibility control and higher-order genomic reorganization.
Collapse
Affiliation(s)
- Jia Liu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| |
Collapse
|
38
|
Rangel Rivera GO, Dwyer CJ, Knochelmann HM, Smith AS, Aksoy A, Cole AC, Wyatt MM, Thaxton JE, Lesinski GB, Paulos CM. The degree of T cell stemness differentially impacts the potency of adoptive cancer immunotherapy in a Lef-1 and Tcf-1 dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531589. [PMID: 36945574 PMCID: PMC10028919 DOI: 10.1101/2023.03.08.531589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Generating stem memory T cells (T SCM ) is a key goal for improving cancer immunotherapy. Yet, the optimal way to modulate signaling pathways that enrich T SCM properties remains elusive. Here, we discovered that the degree to which the PI3Kδ pathway is blocked pharmaceutically can generate T cells with differential levels of stemness properties. This observation was based on the progressive enrichment of transcriptional factors of stemness (Tcf-1 and Lef-1). Additional investigation revealed that T cells with high stemness features had enhanced metabolic plasticity, marked by heightened mitochondrial function and glucose uptake. Conversely, T cells with low or medium features of stemness expressed more inhibitory checkpoint receptors (Tim-3, CD39) and were vulnerable to antigen-induced cell death. Only TCR-antigen specific T cells with high stemness persisted following adoptive transfer in vivo and mounted protective immunity to melanoma tumors. Likewise, the strongest level of PI3Kδ blockade in vitro generated human tumor infiltrating lymphocytes (TILs) and CAR T cells with heightened stemness properties, in turn bolstering their capacity to regress human mesothelioma tumors. We find that the level of stemness T cells possess in vitro differentially impacts their potency upon transfer in three tumor models. Mechanistically, both Lef-1 and Tcf-1 sustain anti-tumor protection by high T SCM , as deletion of either one compromised cellular therapy. Collectively, these findings highlight the therapeutic potential of carefully modulating PI3Kδ signaling in T cells to confer high stemness and mediate protective responses to solid tumors.
Collapse
|
39
|
Russ BE, Tsyganov K, Quon S, Yu B, Li J, Lee JKC, Olshansky M, He Z, Harrison PF, Barugahare A, See M, Nussing S, Morey AE, Udupa VA, Bennett T.J, Kallies A, Murre C, Collas P, Powell D, Goldrath AW, Turner SJ. Active maintenance of CD8 + T cell naïvety through regulation of global genome architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530139. [PMID: 36909629 PMCID: PMC10002700 DOI: 10.1101/2023.02.26.530139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The differentiation of naïve CD8+ cytotoxic T lymphocytes (CTLs) into effector and memory states results in large scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organisation reflect or underpin these transcriptional programs. We utilised Hi-C to map changes in the spatial organisation of long-range genome contacts within naïve, effector and memory virus-specific CD8+ T cells. We observed that the architecture of the naive CD8+ T cell genome was distinct from effector and memory genome configurations with extensive changes within discrete functional chromatin domains. However, deletion of the BACH2 or SATB1 transcription factors was sufficient to remodel the naïve chromatin architecture and engage transcriptional programs characteristic of differentiated cells. This suggests that the chromatin architecture within naïve CD8+ T cells is preconfigured to undergo autonomous remodelling upon activation, with key transcription factors restraining differentiation by actively enforcing the unique naïve chromatin state.
Collapse
Affiliation(s)
- Brendan E. Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Kirril Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Sara Quon
- Department of Biological Sciences, University of California, San Diego, USA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, USA
| | - Jasmine Li
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Department of Molecular Biology, University of California, San Diego, USA
| | - Jason K. C. Lee
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Zhaohren He
- Department of Molecular Biology, University of California, San Diego, USA
| | - Paul F. Harrison
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Adele Barugahare
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Michael See
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | | | - Alison E. Morey
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Vibha A. Udupa
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Taylah .J Bennett
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, USA
| | - Phillipe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - David Powell
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Ananda W. Goldrath
- Department of Biological Sciences, University of California, San Diego, USA
| | - Stephen J. Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| |
Collapse
|
40
|
Santosa EK, Lau CM, Sahin M, Leslie CS, Sun JC. 3D Chromatin Dynamics during Innate and Adaptive Immune Memory Acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524322. [PMID: 36711541 PMCID: PMC9882143 DOI: 10.1101/2023.01.16.524322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immune cells responding to pathogens undergo molecular changes that are intimately linked to genome organization. Recent work has demonstrated that natural killer (NK) and CD8 + T cells experience substantial transcriptomic and epigenetic rewiring during their differentiation from naïve to effector to memory cells. Whether these molecular adaptations are accompanied by changes in three-dimensional (3D) chromatin architecture is unknown. In this study, we combine histone profiling, ATAC-seq, RNA-seq and high-throughput chromatin capture (HiC) assay to investigate the dynamics of one-dimensional (1D) and 3D chromatin during the differentiation of innate and adaptive lymphocytes. To this end, we discovered a coordinated 1D and 3D epigenetic remodeling during innate immune memory differentiation, and demonstrate that effector CD8 + T cells adopt an NK-like architectural program that is maintained in memory cells. Altogether, our study reveals the dynamic nature of the 1D and 3D genome during the formation of innate and adaptive immunological memory.
Collapse
|
41
|
Chen GD, Fatima I, Xu Q, Rozhkova E, Fessing MY, Mardaryev AN, Sharov AA, Xu GL, Botchkarev VA. DNA dioxygenases Tet2/3 regulate gene promoter accessibility and chromatin topology in lineage-specific loci to control epithelial differentiation. SCIENCE ADVANCES 2023; 9:eabo7605. [PMID: 36630508 PMCID: PMC9833667 DOI: 10.1126/sciadv.abo7605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/05/2022] [Indexed: 05/03/2023]
Abstract
Execution of lineage-specific differentiation programs requires tight coordination between many regulators including Ten-eleven translocation (TET) family enzymes, catalyzing 5-methylcytosine oxidation in DNA. Here, by using Keratin 14-Cre-driven ablation of Tet genes in skin epithelial cells, we demonstrate that ablation of Tet2/Tet3 results in marked alterations of hair shape and length followed by hair loss. We show that, through DNA demethylation, Tet2/Tet3 control chromatin accessibility and Dlx3 binding and promoter activity of the Krt25 and Krt28 genes regulating hair shape, as well as regulate interactions between the Krt28 gene promoter and distal enhancer. Moreover, Tet2/Tet3 also control three-dimensional chromatin topology in Keratin type I/II gene loci via DNA methylation-independent mechanisms. These data demonstrate the essential roles for Tet2/3 in establishment of lineage-specific gene expression program and control of Dlx3/Krt25/Krt28 axis in hair follicle epithelial cells and implicate modulation of DNA methylation as a novel approach for hair growth control.
Collapse
Affiliation(s)
- Guo-Dong Chen
- Department of Dermatology, Boston University, Boston, MA, USA
| | - Iqra Fatima
- Department of Dermatology, Boston University, Boston, MA, USA
| | - Qin Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Elena Rozhkova
- Department of Dermatology, Boston University, Boston, MA, USA
| | - Michael Y. Fessing
- Centre for Skin Sciences, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Andrei N. Mardaryev
- Centre for Skin Sciences, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | | | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai, China
| | | |
Collapse
|
42
|
Du W, Menjivar RE, Donahue KL, Kadiyala P, Velez-Delgado A, Brown KL, Watkoske HR, He X, Carpenter ES, Angeles CV, Zhang Y, Pasca di Magliano M. WNT signaling in the tumor microenvironment promotes immunosuppression in murine pancreatic cancer. J Exp Med 2023; 220:e20220503. [PMID: 36239683 PMCID: PMC9577101 DOI: 10.1084/jem.20220503] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/06/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is associated with activation of WNT signaling. Whether this signaling pathway regulates the tumor microenvironment has remained unexplored. Through single-cell RNA sequencing of human pancreatic cancer, we discovered that tumor-infiltrating CD4+ T cells express TCF7, encoding for the transcription factor TCF1. We conditionally inactivated Tcf7 in CD4 expressing T cells in a mouse model of pancreatic cancer and observed changes in the tumor immune microenvironment, including more CD8+ T cells and fewer regulatory T cells, but also compensatory upregulation of PD-L1. We then used a clinically available inhibitor of Porcupine, a key component of WNT signaling, and observed similar reprogramming of the immune response. WNT signaling inhibition has limited therapeutic window due to toxicity, and PD-L1 blockade has been ineffective in PDA. Here, we show that combination targeting reduces pancreatic cancer growth in an experimental model and might benefit the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Rosa E. Menjivar
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | | | - Padma Kadiyala
- Immunology Program, University of Michigan, Ann Arbor, MI
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | | | - Xi He
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Christina V. Angeles
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
43
|
Schönung M, Hartmann M, Krämer S, Stäble S, Hakobyan M, Kleinert E, Aurich T, Cobanoglu D, Heidel FH, Fröhling S, Milsom MD, Schlesner M, Lutsik P, Lipka DB. Dynamic DNA methylation reveals novel cis-regulatory elements in mouse hematopoiesis. Exp Hematol 2023; 117:24-42.e7. [PMID: 36368558 DOI: 10.1016/j.exphem.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Differentiation of hematopoietic stem and progenitor cells to terminally differentiated immune cells is accompanied by large-scale remodeling of the DNA methylation landscape. Although significant insights into the molecular mechanisms of hematopoietic tissue regeneration were derived from mouse models, profiling of DNA methylation has been hampered by high cost or low resolution using available methods. The recent development of the Infinium Mouse Methylation BeadChip (MMBC) array facilitates methylation profiling of the mouse genome at a single CpG resolution at affordable cost. We extended the RnBeads package to provide a computational framework for the analysis of MMBC data. This framework was applied to a newly generated reference map of mouse hematopoiesis encompassing nine different cell types. Analysis of dynamically regulated CpG sites showed progressive and unidirectional DNA methylation changes from hematopoietic stem and progenitor cells to differentiated hematopoietic cells and allowed the identification of lineage- and cell type-specific DNA methylation programs. Comparison with previously published catalogs of cis-regulatory elements (CREs) revealed 12,856 novel putative CREs that were dynamically regulated by DNA methylation (mdCREs). These mdCREs were predominantly associated with patterns of cell type-specific DNA hypomethylation and could be identified as epigenetic control regions regulating the expression of key hematopoietic genes during differentiation. In summary, we established an analysis pipeline for MMBC data sets and provide a DNA methylation atlas of mouse hematopoiesis. This resource allowed us to identify novel putative CREs involved in hematopoiesis and will serve as a platform to study epigenetic regulation of normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Maximilian Schönung
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mark Hartmann
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephen Krämer
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Sina Stäble
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Mariam Hakobyan
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Emely Kleinert
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Theo Aurich
- Division of Experimental Hematology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Defne Cobanoglu
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Florian H Heidel
- Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany; Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany.
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
44
|
Zhao X, Zhu S, Peng W, Xue HH. The Interplay of Transcription and Genome Topology Programs T Cell Development and Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2269-2278. [PMID: 36469845 PMCID: PMC9731349 DOI: 10.4049/jimmunol.2200625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023]
Abstract
T cells are essential for mounting defense against various pathogens and malignantly transformed cells. Thymic development and peripheral T cell differentiation are highly orchestrated biological processes that require precise gene regulation. Higher-order genome organization on multiple scales, in the form of chromatin loops, topologically associating domains and compartments, provides pivotal control of T cell gene expression. CTCF and the cohesin machinery are ubiquitously expressed architectural proteins responsible for establishing chromatin structures. Recent studies indicate that transcription factors, such as T lineage-defining Tcf1 and TCR-induced Batf, may have intrinsic ability and/or engage CTCF to shape chromatin architecture. In this article, we summarize current knowledge on the dynamic changes in genome topology that underlie normal or leukemic T cell development, CD4+ helper T cell differentiation, and CD8+ cytotoxic T cell functions. The knowledge lays a solid foundation for elucidating the causative link of spatial chromatin configuration to transcriptional and functional output in T cells.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
- New Jersey Veterans Affairs Health Care System, East Orange, NJ 07018
| |
Collapse
|
45
|
Wiarda JE, Trachsel JM, Sivasankaran SK, Tuggle CK, Loving CL. Intestinal single-cell atlas reveals novel lymphocytes in pigs with similarities to human cells. Life Sci Alliance 2022; 5:e202201442. [PMID: 35995567 PMCID: PMC9396248 DOI: 10.26508/lsa.202201442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphocytes can heavily influence intestinal health, but resolving intestinal lymphocyte function is challenging as the intestine contains a vastly heterogeneous mixture of cells. Pigs are an advantageous biomedical model, but deeper understanding of intestinal lymphocytes is warranted to improve model utility. Twenty-six cell types were identified in the porcine ileum by single-cell RNA sequencing and further compared with cells in human and murine ileum. Though general consensus of cell subsets across species was revealed, some porcine-specific lymphocyte subsets were identified. Differential tissue dissection and in situ analyses conferred spatial context, revealing similar locations of lymphocyte subsets in Peyer's patches and epithelium in pig-to-human comparisons. Like humans, activated and effector lymphocytes were abundant in the ileum but not periphery of pigs, suggesting tissue-specific and/or activation-associated gene expression. Gene signatures for peripheral and ileal innate lymphoid cells newly discovered in pigs were defined and highlighted similarities to human innate lymphoid cells. Overall, we reveal novel lymphocyte subsets in pigs and highlight utility of pigs for intestinal research applications.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Julian M Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | | | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
46
|
Liu C, Omilusik K, Toma C, Kurd NS, Chang JT, Goldrath AW, Wang W. Systems-level identification of key transcription factors in immune cell specification. PLoS Comput Biol 2022; 18:e1010116. [PMID: 36156073 PMCID: PMC9536753 DOI: 10.1371/journal.pcbi.1010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/06/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Transcription factors (TFs) are crucial for regulating cell differentiation during the development of the immune system. However, the key TFs for orchestrating the specification of distinct immune cells are not fully understood. Here, we integrated the transcriptomic and epigenomic measurements in 73 mouse and 61 human primary cell types, respectively, that span the immune cell differentiation pathways. We constructed the cell-type-specific transcriptional regulatory network and assessed the global importance of TFs based on the Taiji framework, which is a method we have previously developed that can infer the global impact of TFs using integrated transcriptomic and epigenetic data. Integrative analysis across cell types revealed putative driver TFs in cell lineage-specific differentiation in both mouse and human systems. We have also identified TF combinations that play important roles in specific developmental stages. Furthermore, we validated the functions of predicted novel TFs in murine CD8+ T cell differentiation and showed the importance of Elf1 and Prdm9 in the effector versus memory T cell fate specification and Kdm2b and Tet3 in promoting differentiation of CD8+ tissue resident memory (Trm) cells, validating the approach. Thus, we have developed a bioinformatic approach that provides a global picture of the regulatory mechanisms that govern cellular differentiation in the immune system and aids the discovery of novel mechanisms in cell fate decisions.
Collapse
Affiliation(s)
- Cong Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Kyla Omilusik
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Clara Toma
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nadia S. Kurd
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ananda W. Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
47
|
Shan Q, Zhu S, Chen X, Liu J, Yuan S, Li X, Peng W, Xue HH. Tcf1-CTCF cooperativity shapes genomic architecture to promote CD8 + T cell homeostasis. Nat Immunol 2022; 23:1222-1235. [PMID: 35882936 PMCID: PMC9579964 DOI: 10.1038/s41590-022-01263-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/09/2022] [Indexed: 02/03/2023]
Abstract
CD8+ T cell homeostasis is maintained by the cytokines IL-7 and IL-15. Here we show that transcription factors Tcf1 and Lef1 were intrinsically required for homeostatic proliferation of CD8+ T cells. Multiomics analyses showed that Tcf1 recruited the genome organizer CTCF and that homeostatic cytokines induced Tcf1-dependent CTCF redistribution in the CD8+ T cell genome. Hi-C coupled with network analyses indicated that Tcf1 and CTCF acted cooperatively to promote chromatin interactions and form highly connected, dynamic interaction hubs in CD8+ T cells before and after cytokine stimulation. Ablating CTCF phenocopied the proliferative defects caused by Tcf1 and Lef1 deficiency. Tcf1 and CTCF controlled a similar set of genes that regulated cell cycle progression and promoted CD8+ T cell homeostatic proliferation in vivo. These findings identified CTCF as a Tcf1 cofactor and uncovered an intricate interplay between Tcf1 and CTCF that modulates the genomic architecture of CD8+ T cells to preserve homeostasis.
Collapse
Affiliation(s)
- Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110,These authors contributed equally to this work
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington DC, 20052,These authors contributed equally to this work
| | - Xia Chen
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Jia Liu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Shuang Yuan
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Xiang Li
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington DC, 20052,Corresponding authors: Hai-Hui Xue, 111 Ideation Way, Bldg. 102, Rm. A417, Nutley, NJ 07110, Tel: 201-880-3550; ; Weiqun Peng, Science & Engineering Hall 4790, 800 22nd St NW, Washington, DC 20052, Tel: 202-994-0129;
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110,New Jersey Veterans Affairs Health Care System, East Orange, NJ 07018,Corresponding authors: Hai-Hui Xue, 111 Ideation Way, Bldg. 102, Rm. A417, Nutley, NJ 07110, Tel: 201-880-3550; ; Weiqun Peng, Science & Engineering Hall 4790, 800 22nd St NW, Washington, DC 20052, Tel: 202-994-0129;
| |
Collapse
|
48
|
Altered Transcriptional Regulation of Glycolysis in Circulating CD8+ T Cells of Rheumatoid Arthritis Patients. Genes (Basel) 2022; 13:genes13071216. [PMID: 35886000 PMCID: PMC9323564 DOI: 10.3390/genes13071216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral T lymphocytes of rheumatoid arthritis (RA) patients show pathological changes in their metabolic pathways, especially glycolysis. These changes may drive the increased proliferation and tissue invasiveness of RA T cells. In order to study the transcriptional regulation underlying these alterations, we analysed publicly available RNA sequencing data from circulating T lymphocyte subsets of healthy individuals, untreated RA patients, and patients undergoing treatment for RA. Differential co-expression networks were created using sample-wise edge weights from an analysis called “linear interpolation to obtain network estimates for single sample” (lionessR), and annotated using the Gene Transcription Regulation Database (GTRD). Genes with high centrality scores were identified. CD8+ effector memory cells (Tem) and CD8+CD45RA+ effector memory cells (Temra) showed large changes in the transcriptional regulation of glycolysis in untreated RA. PFKFB3 and GAPDH were differentially regulated and had high centrality scores in CD8+ Tem cells. PFKFB3 downregulation may be due to HIF1A post transcriptional inhibition. Tocilizumab treatment partially reversed the RA-associated differential expression of several metabolic and regulatory genes. MYC was upregulated and had high centrality scores in RA CD8+ Temra cells; however, its glycolysis targets were unaltered. The upregulation of the PI3K-AKT and mTOR pathways may explain MYC upregulation.
Collapse
|
49
|
Wang W, Chandra A, Goldman N, Yoon S, Ferrari EK, Nguyen SC, Joyce EF, Vahedi G. TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors. Nat Immunol 2022; 23:1052-1062. [PMID: 35726060 PMCID: PMC9728953 DOI: 10.1038/s41590-022-01232-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
The high mobility group (HMG) transcription factor TCF-1 is essential for early T cell development. Although in vitro biochemical assays suggest that HMG proteins can serve as architectural elements in the assembly of higher-order nuclear organization, the contribution of TCF-1 on the control of three-dimensional (3D) genome structures during T cell development remains unknown. Here, we investigated the role of TCF-1 in 3D genome reconfiguration. Using gain- and loss-of-function experiments, we discovered that the co-occupancy of TCF-1 and the architectural protein CTCF altered the structure of topologically associating domains in T cell progenitors, leading to interactions between previously insulated regulatory elements and target genes at late stages of T cell development. The TCF-1-dependent gain in long-range interactions was linked to deposition of active enhancer mark H3K27ac and recruitment of the cohesin-loading factor NIPBL at active enhancers. These data indicate that TCF-1 has a role in controlling global genome organization during T cell development.
Collapse
Affiliation(s)
- Wenliang Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aditi Chandra
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naomi Goldman
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sora Yoon
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily K Ferrari
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Son C Nguyen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
50
|
TCF-1: a maverick in T cell development and function. Nat Immunol 2022; 23:671-678. [PMID: 35487986 PMCID: PMC9202512 DOI: 10.1038/s41590-022-01194-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
The T cell-specific DNA-binding protein TCF-1 is a central regulator of T cell development and function along multiple stages and lineages. Because it interacts with β-catenin, TCF-1 has been classically viewed as a downstream effector of canonical Wnt signaling, although there is strong evidence for β-catenin-independent TCF-1 functions. TCF-1 co-binds accessible regulatory regions containing or lacking its conserved motif and cooperates with other nuclear factors to establish context-dependent epigenetic and transcription programs that are essential for T cell development and for regulating immune responses to infection, autoimmunity and cancer. Although it has mostly been associated with positive regulation of chromatin accessibility and gene expression, TCF-1 has the potential to reduce chromatin accessibility and thereby suppress gene expression. In addition, the binding of TCF-1 bends the DNA and affects the chromatin conformation genome wide. This Review discusses the current understanding of the multiple roles of TCF-1 in T cell development and function and their mechanistic underpinnings.
Collapse
|