1
|
Omotola EO, Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES. Evidence of the occurrence, detection, and ecotoxicity studies of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in aqueous environments. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:10. [PMID: 40018265 PMCID: PMC11861503 DOI: 10.1007/s40201-025-00934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Perflorochemicals (PFCs), among which are the most commonly detected perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are persistent emergent contaminants of concern in recent times. These compounds have been reported for their cytotoxicity, genotoxicity, carcinogenicity, immunotoxicity, and developmental toxicities. Meanwhile, they have been detected in diverse matrices such as soil, sediment, and, surprisingly, in serum and even breastmilk. Worrisomely, these compounds are detected in drinking water across the globe, aquaculture water, and other surface waters. Thus, it was important to appraise the studies conducted on PFOS and PFOA to provide an overview of the environmental status of contamination regarding them. The present review article sought to provide insights into the occurrence patterns and ecotoxic effects of both pollutants in the water ecosystems within five continents of the world. Based on the information gathered in this article, the ∑ P F O S concentration (ng/L) within the five continents is in the order Europe > Asia > Africa > North America > South America, while the ∑ P F O A level (ng/L) is in the order Europe > Asia > South America > Africa > North America. The study also investigated the previous works that have been conducted regarding the diverse elimination technologies employed for the removal of these pollutants from the aqueous environments, with plasma combined with surfactant process being the most efficient. Generally, studies on PFOS/PFOA are still scanty when compared to those on pharmaceuticals and personal care products (PPCPs), especially in North America. The information gathered in this study could be useful in establishing thresholds of PFOA and PFOS environmental levels and be adopted by appropriate authorities as safety guidelines.
Collapse
Affiliation(s)
| | - Chinemerem Ruth Ohoro
- Department of Environmental Science, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Roodepoort, 1710 Gauteng South Africa
| | - James F. Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
- Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300 South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha, 6031 South Africa
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G. Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300 South Africa
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein, 9300 South Africa
- Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O. Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark, 1911 South Africa
| | - Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, Engineering, Zhenjiang, 212013 People’s Republic of China
| |
Collapse
|
2
|
Wang J, Gai T, Gao S, Qiao L, Shen Y, Zhu K, Li K, Liu M, Li W. Amino-modified high-surface-area radial-pore silica microspheres for efficient perfluorooctanoic acid removal. Chem Commun (Camb) 2025. [PMID: 40420808 DOI: 10.1039/d5cc01878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
We report the synthesis of amino-modified radial-pore silica microspheres with large particle sizes of 1.6 μm and a high surface area of 1300 m2 g-1 for removal of PFOA from water. The microspheres achieve a maximum adsorption capacity of 775 mg g-1, a rapid equilibrium within 30 min, and 88.3% capacity retention after 5 cycles.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, China.
| | - Tianyu Gai
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, China.
| | - Shanbin Gao
- Division of Basic Research, Petrochemical Research Institute, PetroChina, Beijing 102206, China
| | - Liang Qiao
- Division of Basic Research, Petrochemical Research Institute, PetroChina, Beijing 102206, China
| | - Yuge Shen
- Division of Basic Research, Petrochemical Research Institute, PetroChina, Beijing 102206, China
| | - Kerun Zhu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, China.
| | - Kailin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, China.
| | - Minghao Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, China.
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Song C, Zhao Y, Liu Z, Zhang Y, Lai J, Tan C, Song M. Plasma-Generated Free Electrons Induced Perfluorooctanoic Acid Efficient Degradation at the Gas-Liquid Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9332-9343. [PMID: 40172041 DOI: 10.1021/acs.est.5c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Low-temperature plasma, generating both reductive electrons and diverse oxidative species, has demonstrated considerable potential for the degradation of perfluorooctanoic acid (PFOA). However, limited understanding of electron propagation mechanisms during discharge has led previous research to focus on hydrated electrons (eaq-) while neglecting free electrons (e-). In this study, a consistent and modeled dielectric barrier discharge (DBD) plasma was employed to degrade PFOA. Contribution analysis indicated that reactions driven by e- were dominant, with substantial contributions from hydroxyl radical (•OH)-mediated oxidation. By integrating a kinetic model with a streamer solver, a basic discharge unit model was developed. Simulation of e- streamer propagation identified a high-intensity response electric field formed by the e- memory effect, with a peak strength of 1.816 × 106 V/m. This electric field facilitated a secondary acceleration of e-, allowing e- to penetrate the surface water layer and directly attack PFOA via chain-shortening mechanisms. The delocalized state of e- restricted degradation primarily to the gas-liquid interface, minimizing interference from the surrounding medium. This study highlights the previously overlooked role of e- and provides essential theoretical insights for the plasma-based treatment of PFOA-contaminated water.
Collapse
Affiliation(s)
- Chengye Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yan Zhao
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei 230071, China
| | - Zonghao Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yueqing Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiahao Lai
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
4
|
Huang J, Fu K, Liu H, Zhang J, Luo J. Unveiling the Differential Intensity of Fluorous Active Sites Toward Selective Polyfluoroalkyl Substance Removal: Insights into Adsorption and Desorption Trade-Offs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40311092 DOI: 10.1021/acs.est.5c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The design of selective sorption sites for per- and polyfluoroalkyl substance (PFAS) removal, integrated with efficient regenerative strategies, remains a critical yet underexplored challenge. While existing technologies prioritize adsorption capacity over regenerative sustainability, we engineered a fluorinated hydrogel with tailored fluorous binding sites to target PFAS via their hydrophobic C-F termini. This design achieved over 90% PFAS removal efficiency in real water matrices (e.g., tap and lake water), at environmentally relevant concentrations (1 μg L-1), with robust resistance to competing background ions and natural organic matter. Selectivity correlated strongly with PFAS chain length (F9 > F12 > F6), driven by stable adsorption configurations (C-F···F-C vs C-H···F-C) and a favorable adsorption energy of -29.06 kcal mol-1. Leveraging controlled noncovalent F···F interactions, the hydrogel enabled efficient desorption (60-80% efficiency using 1% NaCl, 1% NH4Cl, or 0.5% NH4OH-NH4Cl) without structural degradation. Full regeneration (>92% recovery) was achieved with 50% methanol, supporting five reuse cycles with minimal performance decline. In continuous operation, using 1% NaCl achieved a 10-fold PFAS enrichment, while 50% methanol enabled a significantly higher 51-fold enrichment. Both approaches reduced eluent consumption by 20-50% compared to conventional activated carbon and resins. Overall, balancing PFAS adsorption and desorption trade-offs significantly reduces environmental footprint and operational costs, providing a sustainable strategy for PFAS remediation.
Collapse
Affiliation(s)
- Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hengzhi Liu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Jing Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
5
|
Zhang J, White JC, Lowry GV, He J, Yu X, Yan C, Dong L, Tao S, Wang X. Advanced enzyme-assembled hydrogels for the remediation of contaminated water. Nat Commun 2025; 16:3050. [PMID: 40155380 PMCID: PMC11953241 DOI: 10.1038/s41467-025-58338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Enzyme-catalyzed biodegradation is an emerging green strategy for environmental remediation, although challenged by high cost and poor robustness. Herein, natural biopolymer (cellulose)-derived hydrogels concurrently doped with β-cyclodextrin and montmorillonite nanosheets that are synthesized in one-step demonstrate exceptional pollutant affinity and mechanical strength. Laccase is then stably and effectively assembled onto the hydrogels by a facile strategy based on charge-assisted H-bonding, which can be extended to other enzymes. The advanced laccase-assembled hydrogels display excellent stability and increased degradation activity achieved by strong substrate capture and rapid electron transfer. The laccase-assembled hydrogels exhibit significantly improved removal (62-fold) and degradation (52-fold) performance compared to free laccase for diverse organic pollutants (e.g., polycyclic aromatic hydrocarbons) in real wastewater. This enhanced performance is maintained despite the presence of heavy metals, other organic chemicals or dissolved organic matter. This work provides a practical strategy for designing an advanced and sustainable biodegradation tool for environmental remediation.
Collapse
Affiliation(s)
- Jinlong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jinglei He
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xuefeng Yu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Chuanhao Yan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Liang Dong
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Lee JC, Smaoui S, Duffill J, Marandi B, Varzakas T. Research Progress in Current and Emerging Issues of PFASs' Global Impact: Long-Term Health Effects and Governance of Food Systems. Foods 2025; 14:958. [PMID: 40231978 PMCID: PMC11941069 DOI: 10.3390/foods14060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are found everywhere, including food, cosmetics, and pharmaceuticals. This review introduces PFASs comprehensively, discussing their nature and identifying their interconnection with microplastics and their impacts on public health and the environment. The human cost of decades of delay, cover-ups, and mismanagement of PFASs and plastic waste is outlined and briefly explained. Following that, PFASs and long-term health effects are critically assessed. Risk assessment is then critically reviewed, mentioning different tools and models. Scientific research and health impacts in the United States of America are critically analyzed, taking into consideration the Center for Disease Control (CDC)'s PFAS Medical Studies and Guidelines. PFAS impact and activities studies around the world have focused on PFAS levels in food products and dietary intake in different countries such as China, European countries, USA and Australia. Moreover, PFASs in drinking water and food are outlined with regard to risks, mitigation, and regulatory needs, taking into account chemical contaminants in food and their impact on health and safety. Finally, PFAS impact and activities briefings specific to regions around the world are discussed, referring to Australia, Vietnam, Canada, Europe, the United States of America (USA), South America, and Africa. The PFAS crisis is a multifaceted issue, exacerbated by mismanagement, and it is discussed in the context of applying the following problem-solving analytical tools: the Domino Effect Model of accident causation, the Swiss Cheese Theory Model, and the Ishikawa Fish Bone Root Cause Analysis. Last but not least, PFASs' impacts on the Sustainable Development Goals (SDGs) of 2030 are rigorously discussed.
Collapse
Affiliation(s)
- Jocelyn C. Lee
- Independent Researcher—Food Safety Consultant, San Francisco Bay Area, San Francisco, CA 94121, USA;
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - John Duffill
- John Crop Development Vietnam Co., Ltd., Landmark 81, 720A Dien Bien Phu St., Binh Thanh Dist., Quận Bình Thạnh, Ho Chi Minh City 718900, Vietnam;
| | - Ben Marandi
- Food Scientist Researcher, Food Policy and Legal Advisor, 26 Lauren Beth Dr., Richmond Hill, ON L4E 4K3, Canada;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
7
|
Yu Y, Ding C, Zhang J, Ren N, Tang CY, You S. A filter inspired by deep-sea glass sponges for oil cleanup under turbulent flow. Nat Commun 2025; 16:209. [PMID: 39747061 PMCID: PMC11696985 DOI: 10.1038/s41467-024-55587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (E. aspergillum) by mimicking their exceptional skeletal features and filter-feeding patterns. Results demonstrate that the vortex-anchored filter can retain external turbulent-flow kinetic energy in low-speed vortical flow with small Kolmogorov microscale (85 μm) in the cavity of skeleton, leading to enhanced interfacial mass transfer and residence time by physical field synergy. It improves hydrodynamic stability by reducing Reynolds stresses in nearly quiescent wake flow. The vortex-anchored filter can realize >97% capture of floating, underwater and emulsified oils stably at Reynolds numbers ranging from subcritical to supercritical regimes. This study not only highlights the importance of vortex-anchored mechanism in enhancing interfacial mass transfer and hydrodynamic stability during oil capture beyond previously known benefits of increased residence time, but also represents a paradigm shift to advance biophysically inspired strategies for in-situ, dynamic and robust cleanup of spilled oil, environmental remediation and resource recovery.
Collapse
Affiliation(s)
- Yuan Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Chi Ding
- Beijing Engineering Corporation Limited, Power China, Beijing, 100024, P. R. China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR, 999077, P. R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, 518000, P.R. China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| |
Collapse
|
8
|
Eisenstein M. Self-driving laboratories, advanced immunotherapies and five more technologies to watch in 2025. Nature 2025; 637:1008-1011. [PMID: 39833414 DOI: 10.1038/d41586-025-00075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
|
9
|
Wei Y, Wang W, Dong Q, Fan Q, Zhang M, Li C, Li H. Perfluorooctanoic acid transport and fate difference driven by iron-sulfide minerals transformation interacting with different types of groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135785. [PMID: 39255661 DOI: 10.1016/j.jhazmat.2024.135785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/15/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant that threatens human health and ecosystems. However, the intricate mechanism of the change in PFOA transport behavior that interacts with FexSy minerals under groundwater-type differences is not clear. To address this knowledge gap, multi-scale experiments and multi-process reaction models were constructed to investigate the underlying mechanisms. The results showed that different groundwater (NO3-, Cl--Na+, SO42-, and HCO3- types) had significant effects on PFOA transport. NO3-, Cl--Na+, SO42-, and HCO3- decreased the retardation effect of PFOA in the FexSy media. Compared to other groundwater types, the adsorption sites of FexSy were the least occupied in the NO3- groundwater. This observation was supported by the least inhabition of λ in FexSy-NO3- interaction system, which demonstrated that more PFOA was in a high reaction zone and electrostatic repulsion was weakest. The surface tension of different ion types in groundwater provided evidence explaining the lowest inhibition in the FexSy-NO3- system. The 2D spatiotemporal evolution results showed that in FexSy with NO3- system, the pollutant flux (6.00 ×10-5 mg·(m2·s)-1) was minimal. The pollutant flux in the SO42- groundwater system was 9.95-fold that in FexSy with the NO3- groundwater. These findings provide theoretical support for understanding the transport and fate of PFOA in FexSy transformations that interact with different types of groundwater.
Collapse
Affiliation(s)
- Yongkang Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qifeng Fan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
10
|
Zadehnazari A, Khosropour A, Zarei A, Khazdooz L, Amirjalayer S, Auras F, Abbaspourrad A. Viologen-Derived Covalent Organic Frameworks: Advancing PFAS Removal Technology with High Adsorption Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405176. [PMID: 39115339 DOI: 10.1002/smll.202405176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Indexed: 11/21/2024]
Abstract
The escalating presence of per- and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM-COF and MEL-COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL- and MELEM-COFs achieved 90.0-99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM-COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g-1 adsorption capacity-surpassing all reported COFs to date. MELEM-COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF-based adsorption strategies.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Amin Zarei
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Leila Khazdooz
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Saeed Amirjalayer
- Institute for Solid State Theory, Center for Nanotechnology and Center for Multiscale Theory and Computation, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01217, Dresden, Germany
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Park J, Kim Y, Kwak SY. Cellulose Nanocrystal-in-Solvent Processing for Efficient One-Pot Upcycling of Commercial Polymeric PFAS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57915-57926. [PMID: 39388375 DOI: 10.1021/acsami.4c13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Upcoming regulations aim to ban per- and polyfluoroalkyl substances (PFAS), including commercial polymeric PFAS, or fluoropolymers, such as poly(tetrafluoroethylene) (PTFE) and poly(vinylidene fluoride) (PVDF), due to their environmental and toxicological impacts. However, fluoropolymers also provide crucial properties for clean energy transitions, and their regulation may hinder further technological advancements. Therefore, a facile one-pot recycling-upcycling strategy for fluoropolymers using inexpensive biomass, such as cellulose nanocrystals (CNCs), as absorbents and cocomponents for fluoro-functionalized composites could align with global sustainability goals and technological demands. Herein, we present a closed-loop CNC-in-solvent (CiS) processing system, which involves stirring fluoropolymers and CNCs in only low-polarity solvents like toluene (CiS-T). Our study reveals that CiS-T is a two-step process where the CNC-solvent interaction exposes CNCs' reducing end aldehyde protons due to solvent polarity and promotes H-F bond formation. The solvent used was recollected and reused. Additionally, we demonstrate the practical application of PTFE- and PVDF-CNC hybrids, byproducts of the CiS-T process, as performance-enhancing agents in green-energy-harvesting devices such as triboelectric nanogenerators. Our findings not only offer a sustainable method to overcome challenges from regulations against commercial fluoropolymers but also offer insights into developing an efficient, solvent-mediated CNC functionalization process that addresses forthcoming challenges in key industries.
Collapse
Affiliation(s)
- Jinsu Park
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Youngeun Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seung-Yeop Kwak
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
12
|
Johnson B. Plastic-eating bacteria boost growing business of bioremediation. Nat Biotechnol 2024; 42:1481-1485. [PMID: 39313644 DOI: 10.1038/s41587-024-02401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
|
13
|
Santiago-Cruz HA, Lou Z, Xu J, Sullivan RC, Bowers BB, Molé RA, Zhang W, Li J, Yuan JS, Dai SY, Lowry GV. Carbon Adsorbent Properties Impact Hydrated Electron Activity and Perfluorocarboxylic Acid (PFCA) Destruction. ACS ES&T ENGINEERING 2024; 4:2220-2233. [PMID: 39296420 PMCID: PMC11406532 DOI: 10.1021/acsestengg.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024]
Abstract
Carbon-based adsorbents used to remove recalcitrant water contaminants, including perfluoroalkyl substances (PFAS), are often regenerated using energy-intensive treatments that can form harmful byproducts. We explore mechanisms for sorbent regeneration using hydrated electrons (eaq -) from sulfite ultraviolet photolysis (UV/sulfite) in water. We studied the UV/sulfite treatment on three carbon-based sorbents with varying material properties: granular activated carbon (GAC), carbon nanotubes (CNTs), and polyethylenimine-modified lignin (lignin). Reaction rates and defluorination of dissolved and adsorbed model perfluorocarboxylic acids (PFCAs), perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA), were measured. Monochloroacetic acid (MCAA) was employed to empirically quantify eaq - formation rates in heterogeneous suspensions. Results show that dissolved PFCAs react rapidly compared to adsorbed ones. Carbon particles in solution decreased aqueous reaction rates by inducing light attenuation, eaq - scavenging, and sulfite consumption. The magnitude of these effects depended on adsorbent properties and surface chemistry. GAC lowered PFOA destruction due to strong adsorption. CNT and lignin suspensions decreased eaq - formation rates by attenuating light. Lignin showed high eaq - quenching, likely due to its oxygenated functional groups. These results indicate that desorbing PFAS and separating the adsorbent before initiating PFAS degradation reactions will be the best engineering approach for adsorbent regeneration using UV/sulfite.
Collapse
Affiliation(s)
- Hosea A Santiago-Cruz
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zimo Lou
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiang Xu
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ryan C Sullivan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, United States
| | - Bailey B Bowers
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, United States
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Rachel A Molé
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, United States
| | - Jinghao Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, United States
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Susie Y Dai
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Fu K, Huang J, Luo F, Fang Z, Yu D, Zhang X, Wang D, Xing M, Luo J. Understanding the Selective Removal of Perfluoroalkyl and Polyfluoroalkyl Substances via Fluorine-Fluorine Interactions: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264176 DOI: 10.1021/acs.est.4c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
15
|
Zhang Y, Sun H, Cao Y, Kalinowski MJ, Li M, Marelli B. Directed Assembly of Proteinaceous-Polysaccharide Nanofibrils to Fabricate Membranes for Emerging Contaminant Remediation. ACS NANO 2024; 18:25205-25215. [PMID: 39190742 DOI: 10.1021/acsnano.4c07409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Emerging contaminants, including per- and polyfluoroalkyl substances and heavy metals, are threatening the health of humans and ecosystems. Their removal from the environment remains challenging. Here, we designed silk fibroin-cellulose nanocrystal (silk-CNC) nanofibrillar and nanoporous membranes for emerging contaminant remediation. The protein-polysaccharide nanofibrils were fabricated by templating the assembly of silk fibroin using CNCs. Silk fibroin polymorphic nature combined with surface charge modulation of CNCs produced cationic silk-CNC(+) and anionic silk-CNC(-) nanofibrils that can target a broad spectrum of contaminants. Silk-CNC(+) nanofibrils and membranes exhibited antimicrobial properties and captured both short-chain heptafluorobutyric acid, perfluorobutanesulfonic acid, and long-chain perfluorooctanoic acid by virtue of hydrophobic attraction from β-sheeted silk fibroin and electrostatic interactions with CNC(+). Silk-CNC(-) provided the opportunity to target cations such as heavy metal cocontaminants. The nanofabrication of biopolymer-based membranes combines high performance with environmentally benign and cost-effective removal of emerging contaminants for water purification, wastewater treatment, and remediation.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hui Sun
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Maxwell J Kalinowski
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Meng Li
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Liang RR, Yang Y, Han Z, Bakhmutov VI, Rushlow J, Fu Y, Wang KY, Zhou HC. Zirconium-Based Metal-Organic Frameworks with Free Hydroxy Groups for Enhanced Perfluorooctanoic Acid Uptake in Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407194. [PMID: 38896032 DOI: 10.1002/adma.202407194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a highly recalcitrant organic pollutant, and its bioaccumulation severely endangers human health. While various methods are developed for PFOA removal, the targeted design of adsorbents with high efficiency and reusability remains largely unexplored. Here the rational design and synthesis of two novel zirconium-based metal‒organic frameworks (MOFs) bearing free ortho-hydroxy sites, namely noninterpenetrated PCN-1001 and twofold interpenetrated PCN-1002, are presented. Single crystal analysis of the pure ligand reveals that intramolecular hydrogen bonding plays a pivotal role in directing the formation of MOFs with free hydroxy groups. Furthermore, the transformation from PCN-1001 to PCN-1002 is realized. Compared to PCN-1001, PCN-1002 displays higher chemical stability due to interpenetration, thereby demonstrating an exceptional PFOA adsorption capacity of up to 632 mg g-1 (1.53 mmol g-1), which is comparable to the reported record values. Moreover, PCN-1002 shows rapid kinetics, high selectivity, and long-life cycles in PFOA removal tests. Solid-state nuclear magnetic resonance results and density functional theory calculations reveal that multiple hydrogen bonds between the free ortho-hydroxy sites and PFOA, along with Lewis acid-base interaction, work collaboratively to enhance PFOA adsorption.
Collapse
Affiliation(s)
- Rong-Ran Liang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
17
|
Jung Y, Yoon SJ, Lee Y, Do T, Kim KT, Jung KW, Choi JW. Grapefruit-Inspired Polymeric Capsule with Hierarchical Microstructure: Advanced Nanomaterial Carrier Platform for Energy Storage, Drug Delivery, Catalysis, and Environmental Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400828. [PMID: 38693068 DOI: 10.1002/smll.202400828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Efficient support materials are crucial for maximizing the efficacy of nanomaterials in various applications such as energy storage, drug delivery, catalysis, and environmental remediation. However, traditional supports often hinder nanomaterial performance due to their high weight ratio and limited manageability, leading to issues like tube blocking and secondary pollution. To address this, a novel grapefruit-inspired polymeric capsule (GPC) as a promising carrier platform is introduced. The millimeter-scale GPC features a hydrophilic shell and an internal hierarchical microstructure with 80% void volume, providing ample space for encapsulating diverse nanomaterials including metals, polymers, metal-organic frameworks, and silica. Through liquid-phase bottom-up methods, it is successfully loaded Fe2O3, SiO2, polyacrylic acid, and Prussian blue nanomaterials onto the GPC, achieving high mass ratio (1776, 488, 898, and 634 wt.%, respectively). The GPC shell prevents nanomaterial leakage and the influx of suspended solids, while its internal framework enhances structural stability and mass transfer rates. With long-term storage stability, high carrying capacity, and versatile applicability, the GPC significantly enhances the field applicability of nanomaterials.
Collapse
Affiliation(s)
- Youngkyun Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Su-Jin Yoon
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yun Lee
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taegu Do
- Construction Materials Center, Korea Testing and Research Institute (KTR), Gyeonggi-do, 13810, Republic of Korea
| | - Keun-Tae Kim
- The College of Information Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
18
|
Cao M, Zhang H, Wei X, Tian Y. Ultrafine CuO/graphene oxide cellulose nanocomposites with complementary framework for polycyclic aromatic hydrocarbon pollutants removal. WATER RESEARCH 2024; 258:121816. [PMID: 38823284 DOI: 10.1016/j.watres.2024.121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Efficient and sustainable methods for eliminating polycyclic aromatic hydrocarbon pollutants (PAHPs) are in highly desired. Proven technologies involve physical and chemical reactions that absorb PAHPs, however they encounter formidable challenges. Here, a bottom-up refining-grain strategy is proposed to rationally design ultrafine CuO/graphene oxide-cellulose nanocomposites (LCelCCu) with a mirror-like for tetracycline (TC) to substantially improve the efficient of the purification process by active integrated-sorption. The LCelCCu captures TC with a higher affinity and lower energy demand, as determined by sorption kinetic, isotherms, thermodynamics, and infrared and X-ray Photoelectron Spectroscopy. The resulting material could achieve ultra-high sorption capacity (2775.23 mg/g), kinetic (1.2499 L g-1 h-1) and high selectivity (up to 99.9 %) for TC, nearly surpassing all recent adsorbents. This study simultaneously unveils the pioneering role of simultaneous multi-site match sorption and subsequent advanced oxidation synergistically, fundamentally enhancing understanding of the structure-activity-selectivity relationship and inspires more sustainable water purification applications and broader material design considerations.
Collapse
Affiliation(s)
- Mengbo Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xingyue Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
19
|
Ilango AK, Arathala P, Musah RA, Liang Y. Experimental and density functional theory investigation of surface-modified biopolymer for improved adsorption of mixtures of per- and polyfluoroalkyl substances in water. WATER RESEARCH 2024; 255:121458. [PMID: 38564892 DOI: 10.1016/j.watres.2024.121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Glutaraldehyde (GTH) cross-linked chitosan (CTN) biopolymer-based and polyethyleneimine (PEI) functionalized (GTHCTNPEI) aerogels were proven promising for removing mixtures of long- and short chain per- and polyfluoroalkyl substances (PFAS) in water. In this study, to further improve the performance of the aerogel for short-chain PFAS and undecafluoro-2-methyl-3-oxahexanoic acid (GenX) removal, GTHCTNPEI aerogel chunks with an average size of 13.4 mm were turned into flakes with an average size of 9.1 mm. The GTHCTNPEI flakes achieved >99 % removal of all target PFAS, including long- and short-chain PFAS and >97 % for GenX after 10 h. In addition, the flakes can be regenerated and reused for at least four cycles. When added to tap water spiked with PFAS at initial concentrations of 30, 70, or 100 ng/L, the flakes removed almost 100 % of all tested PFAS. Mechanistic investigations using density functional theory (DFT) revealed strong stabilizing hydrophobic and electrostatic interactions between the aerogels and PFAS, with GTHCTNPEI to PFAS binding energies ranging between -24.0 - -30.1 kcal/mol for PFOA; -41.3 - -48.5 kcal/mol for PFOS; and -40.5 - -47.3 kcal/mol for PFBS. These results demonstrate the great potential of the flakes for removing PFAS from drinking water, surface water, and groundwater.
Collapse
Affiliation(s)
- Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States.
| | - Parandaman Arathala
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Rabi A Musah
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| |
Collapse
|
20
|
Liang RR, Xu S, Han Z, Yang Y, Wang KY, Huang Z, Rushlow J, Cai P, Samorì P, Zhou HC. Exceptionally High Perfluorooctanoic Acid Uptake in Water by a Zirconium-Based Metal-Organic Framework through Synergistic Chemical and Physical Adsorption. J Am Chem Soc 2024; 146:9811-9818. [PMID: 38531024 PMCID: PMC11009951 DOI: 10.1021/jacs.3c14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an environmental contaminant ubiquitous in water resources, which as a xenobiotic and carcinogenic agent, severely endangers human health. The development of techniques for its efficient removal is therefore highly sought after. Herein, we demonstrate an unprecedented zirconium-based MOF (PCN-999) possessing Zr6 and biformate-bridged (Zr6)2 clusters simultaneously, which exhibits an exceptional PFOA uptake of 1089 mg/g (2.63 mmol/g), representing a ca. 50% increase over the previous record for MOFs. Single-crystal X-ray diffraction studies and computational analysis revealed that the (Zr6)2 clusters offer additional open coordination sites for hosting PFOA. The coordinated PFOAs further enhance the interaction between coordinated and free PFOAs for physical adsorption, boosting the adsorption capacity to an unparalleled high standard. Our findings represent a major step forward in the fundamental understanding of the MOF-based PFOA removal mechanism, paving the way toward the rational design of next-generation adsorbents for per- and polyfluoroalkyl substance (PFAS) removal.
Collapse
Affiliation(s)
- Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Shunqi Xu
- Université
de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000 Strasbourg, France
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Yihao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Zhehao Huang
- Department
of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Joshua Rushlow
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Paolo Samorì
- Université
de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000 Strasbourg, France
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| |
Collapse
|
21
|
Ilango AK, Liang Y. Surface modifications of biopolymers for removal of per- and polyfluoroalkyl substances from water: Current research and perspectives. WATER RESEARCH 2024; 249:120927. [PMID: 38042065 DOI: 10.1016/j.watres.2023.120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly recalcitrant organic contaminants that have attracted ever-increasing attention from the general public, government agencies and scientific communities. To remove PFAS from water, especially the enormous volume of drinking water, stormwater, and groundwater, sorption is the most practical approach. Success of this approach demands green, renewable, and sustainable materials for capturing PFAS at ng/L or µg/L levels. To meet this demand, this manuscript critically reviewed sorbents developed from biopolymers, such as chitosan (CTN), alginate (ALG), and cellulose (CEL) covering the period from 2008 to 2023. The use of different cross-linkers for the surface modifications of biopolymers were described. The underlying removal mechanism of biosorbents for PFAS adsorption from molecular perspectives was discussed. Besides reviewing and comparing the performance of different bio-based sorbents with respect to environmental factors like pH, and sorption kinetics and capacity, strategies for modifying biosorbents for better performance were proposed. Additionally, approaches for regeneration and reuse of the biosorbents were discussed. This was followed by further discussion of challenges facing the development of biosorbents for PFAS removal.
Collapse
Affiliation(s)
- Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| |
Collapse
|
22
|
Feng R, Fan Y, Zhang X, Chen L, Zhong ZF, Wang Y, Yu H, Zhang QW, Li G. A Biomimetic Multifunctional Nanoframework for Symptom Relief and Restorative Treatment of Acute Liver Failure. ACS NANO 2024. [PMID: 38294834 PMCID: PMC10883031 DOI: 10.1021/acsnano.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Acute liver failure (ALF) is a rare and serious condition characterized by major hepatocyte death and liver dysfunction. Owing to the limited therapeutic options, this disease generally has a poor prognosis and a high mortality rate. When ALF cannot be reversed by medications, liver transplantation is often needed. However, transplant rejection and the shortage of donor organs still remain major challenges. Most recently, stem cell therapy has emerged as a promising alternative for the treatment of liver diseases. However, the limited cell delivery routes and poor stability of live cell products have greatly hindered the feasibility and therapeutic efficacy of stem cell therapy. Inspired by the functions of mesenchymal stem cells (MSCs) primarily through the secretion of several factors, we developed an MSC-inspired biomimetic multifunctional nanoframework (MBN) that encapsulates the growth-promoting factors secreted by MSCs via combination with hydrophilic or hydrophobic drugs. The red blood cell (RBC) membrane was coated with the MBN to enhance its immunological tolerance and prolong its circulation time in blood. Importantly, the MBN can respond to the oxidative microenvironment, where it accumulates and degrades to release the payload. In this work, two biomimetic nanoparticles, namely, rhein-encapsulated MBN (RMBN) and N-acetylcysteine (NAC)-encapsulated MBN (NMBN), were designed and synthesized. In lipopolysaccharide (LPS)/d-galactosamine (D-GalN)-induced and acetaminophen (APAP)-induced ALF mouse models, RMBN and NMBN could effectively target liver lesions, relieve the acute symptoms of ALF, and promote liver cell regeneration by virtue of their strong antioxidative, anti-inflammatory, and regenerative activities. This study demonstrated the feasibility of the use of an MSC-inspired biomimetic nanoframework for treating ALF.
Collapse
Affiliation(s)
- Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, P.R. China
| | - Xinya Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, P.R. China
| | - Lanmei Chen
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, P.R. China
| |
Collapse
|
23
|
Al-Gethami W, Qamar MA, Shariq M, Alaghaz ANMA, Farhan A, Areshi AA, Alnasir MH. Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: a comprehensive review. RSC Adv 2024; 14:2804-2834. [PMID: 38234871 PMCID: PMC10792434 DOI: 10.1039/d3ra06501d] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Water scarcity will worsen due to population growth, urbanization, and climate change. Addressing this issue requires developing energy-efficient and cost-effective water purification technologies. One approach is to use biomass to make bio-based materials (BBMs) with valuable attributes. This aligns with the goal of environmental conservation and waste management. Furthermore, the use of biomass is advantageous because it is readily available, economical, and has minimal secondary environmental impact. Biomass materials are ideal for water purification because they are abundant and contain important functional groups like hydroxyl, carboxyl, and amino groups. Functional groups are important for modifying and absorbing contaminants in water. Single-sourced biomass has limitations such as weak mechanical strength, limited adsorption capacity, and chemical instability. Investing in research and development is crucial for the development of efficient methods to produce BBMs and establish suitable water purification application models. This review covers BBM production, modification, functionalization, and their applications in wastewater treatment. These applications include oil-water separation, membrane filtration, micropollutant removal, and organic pollutant elimination. This review explores the production processes and properties of BBMs from biopolymers, highlighting their potential for water treatment applications. Furthermore, this review discusses the future prospects and challenges of developing BBMs for water treatment and usage. Finally, this review highlights the importance of BBMs in solving water purification challenges and encourages innovative solutions in this field.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University Al-Hawiah, PO Box 11099 Taif City Saudi Arabia
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University Jazan 45142 Saudi Arabia
| | | | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38040 Pakistan
| | - Ashwaq A Areshi
- Samtah General Hospital, Ministry of Health Jazan 86735 Saudi Arabia
| | - M Hisham Alnasir
- Department of Physics, RIPHAH International University Islamabad 44000 Pakistan
| |
Collapse
|
24
|
Savage N. How to take 'forever' out of forever chemicals. Nature 2023:10.1038/d41586-023-03876-9. [PMID: 38097794 DOI: 10.1038/d41586-023-03876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
|
25
|
Kadri MS, Singhania RR, Haldar D, Patel AK, Bhatia SK, Saratale G, Parameswaran B, Chang JS. Advances in Algomics technology: Application in wastewater treatment and biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129636. [PMID: 37544548 DOI: 10.1016/j.biortech.2023.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Advanced sustainable bioremediation is gaining importance with rising global pollution. This review examines microalgae's potential for sustainable bioremediation and process enhancement using multi-omics approaches. Recently, microalgae-bacterial consortia have emerged for synergistic nutrient removal, allowing complex metabolite exchanges. Advanced bioremediation requires effective consortium design or pure culture based on the treatment stage and specific roles. The strain potential must be screened using modern omics approaches aligning wastewater composition. The review highlights crucial research gaps in microalgal bioremediation. It discusses multi-omics advantages for understanding microalgal fitness concerning wastewater composition and facilitating the design of microalgal consortia based on bioremediation skills. Metagenomics enables strain identification, thereby monitoring microbial dynamics during the treatment process. Transcriptomics and metabolomics encourage the algal cell response toward nutrients and pollutants in wastewater. Multi-omics role is also summarized for product enhancement to make algal treatment sustainable and fit for sustainable development goals and growing circular bioeconomy scenario.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804201, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 805029, Republic of Korea
| | - Ganesh Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan.
| |
Collapse
|
26
|
Deng J, Han J, Hou C, Zhang Y, Fang Y, Du W, Li M, Yuan Y, Tang C, Hu X. Efficient removal of per- and polyfluoroalkyl substances from biochar composites: Cyclic adsorption and spent regenerant degradation. CHEMOSPHERE 2023; 341:140051. [PMID: 37660789 DOI: 10.1016/j.chemosphere.2023.140051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
In order to solve the problem of efficient desorption of per- and polyfluoroalkyl substances (PFAS) and regeneration of adsorbents, a novel biochar composite was prepared based on the quaternary ammonium groups and hydrophobicity of sulfobetaine polymer, which can be used for the efficient removal of various PFASs and has great regeneration ability. Through adsorption, regeneration and degradation experiment, the comprehensive effect of the novel biochar composite on the whole process of removal of PFAS was systematically investigated. The results showed that the maximum adsorption capacity of PFOS, PFOA, PFBS, and PFBA reached 634 mg/g, 536 mg/g, 301 mg/g and 264 mg/g, respectively. The adsorption process involved hydrophobicity, electrostatic, pore diffusion and complexation. The NaI + NaOH solution was used at 50 °C to achieve efficient regeneration of the adsorbent, which can be recycled more than 4 times. When the vacuum-ultraviolet (VUV)/sulfite reduction system was used for deep degradation of the regenerated solution, the effect of hydrated electrons on PFAS was enhanced due to the inclusion of NaI and NaOH in the regeneration reagent, resulting in an increase in the degradation efficiency (89.1%-99.9%) and defluorination efficiency (63.3%-84.1%). Based on the performance of BC-P(SB-co-AM) and the treatment efficiency of PFAS, the design idea of the whole process treatment technology of PFAS proposed in this work is expected to hold great promise in environmental applications. This work provides a novel idea and system for the efficient adsorption removal and desorption of PFAS, and subsequent deep degradation.
Collapse
Affiliation(s)
- Jiaqin Deng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China.
| | - Jianing Han
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Changlan Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China
| | - Ying Fang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - WanXuan Du
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yuan Yuan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
27
|
Wang Q, Hu Z, Li Z, Liu T, Bian G. Exploring the Application and Prospects of Synthetic Biology in Engineered Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305828. [PMID: 37677048 DOI: 10.1002/adma.202305828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
At the intersection of synthetic biology and materials science, engineered living materials (ELMs) exhibit unprecedented potential. Possessing unique "living" attributes, ELMs represent a significant paradigm shift in material design, showcasing self-organization, self-repair, adaptability, and evolvability, surpassing conventional synthetic materials. This review focuses on reviewing the applications of ELMs derived from bacteria, fungi, and plants in environmental remediation, eco-friendly architecture, and sustainable energy. The review provides a comprehensive overview of the latest research progress and emerging design strategies for ELMs in various application fields from the perspectives of synthetic biology and materials science. In addition, the review provides valuable references for the design of novel ELMs, extending the potential applications of future ELMs. The investigation into the synergistic application possibilities amongst different species of ELMs offers beneficial reference information for researchers and practitioners in this field. Finally, future trends and development challenges of synthetic biology for ELMs in the coming years are discussed in detail.
Collapse
Affiliation(s)
- Qiwen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhehui Hu
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430071, China
| | - Zhixuan Li
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
28
|
Ilango AK, Jiang T, Zhang W, Feldblyum JI, Efstathiadis H, Liang Y. Surface-modified biopolymers for removing mixtures of per- and polyfluoroalkyl substances from water: Screening and removal mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121865. [PMID: 37225078 DOI: 10.1016/j.envpol.2023.121865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Green, renewable, and sustainable materials are needed for removing per- and polyfluoroalkyl substances (PFASs) in water. Herein, we synthesized and tested alginate (ALG) and chitosan (CTN) based and polyethyleneimine (PEI) functionalized fibers/aerogels for the adsorption of mixtures of 12 PFASs (9 short- and long-chain PFAAs, GenX, and 2 precursors) from water at an initial concentration of 10 μg/L each. Out of 11 biosorbents, ALGPEI-3 and GTH CTNPEI aerogels had the best sorption performance. Through detailed characterization of the sorbents before and after PFASs sorption, it was revealed that hydrophobic interaction was the dominant mechanism controlling PFASs sorption while electrostatic interactions played a minor role. As a result, both aerogels had fast and superior sorption of relatively hydrophobic PFASs from pH 2 to 10. Even at extreme pH conditions, the aerogels retained their shape perfectly. Based upon the isotherms, the maximum adsorption capacity of ALGPEI-3 and GTH-CTNPEI aerogels towards total PFASs removal was 3045 and 12,133 mg/g, respectively. Although the sorption performance of the GTH-CTNPEI aerogel toward short chain PFAS was less than satisfactory and varied between 70 and 90% in 24 h, it may find its use in removing relatively hydrophobic PFAS at high concentrations in complex and extreme environments.
Collapse
Affiliation(s)
- Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States.
| | - Tao Jiang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States
| | - Jeremy I Feldblyum
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, United States
| | - Haralabos Efstathiadis
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, 12203, United States
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States
| |
Collapse
|
29
|
Cardoso IMF, Pinto da Silva L, Esteves da Silva JCG. Nanomaterial-Based Advanced Oxidation/Reduction Processes for the Degradation of PFAS. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101668. [PMID: 37242085 DOI: 10.3390/nano13101668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
This review focuses on a critical analysis of nanocatalysts for advanced reductive processes (ARPs) and oxidation processes (AOPs) designed for the degradation of poly/perfluoroalkyl substances (PFAS) in water. Ozone, ultraviolet and photocatalyzed ARPs and/or AOPs are the basic treatment technologies. Besides the review of the nanomaterials with greater potential as catalysts for advanced processes of PFAS in water, the perspectives for their future development, considering sustainability, are discussed. Moreover, a brief analysis of the current state of the art of ARPs and AOPs for the treatment of PFAS in water is presented.
Collapse
Affiliation(s)
- Inês M F Cardoso
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
30
|
Wang Y, Xiao Y, Wang Y, Lin Q, Zhu Y, Ni Z, Qiu R. Electroreductive Defluorination of Unsaturated PFAS by a Quaternary Ammonium Surfactant-Modified Cathode via Direct Cathodic Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7578-7589. [PMID: 37116179 DOI: 10.1021/acs.est.2c08182] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Remediation of per- and polyfluoroalkyl substances (PFAS) in groundwater remains a technological challenge due to the trace concentrations of PFAS and the strength of their C-F bonds. This study investigated an electroreductive system with a quaternary ammonium surfactant-modified cathode for degrading (E)-perfluoro(4-methylpent-2-enoic acid) (PFMeUPA) at a low cathodic potential. A removal efficiency of 99.81% and defluorination efficiency of 78.67% were achieved under -1.6 V (vs Ag/AgCl) at the cathode modified by octadecyltrimethylammonium bromide (OTAB). The overall degradation procedure started with the adsorption of PFMeUPA onto the modified cathode. This adsorption process was promoted by hydrophobic and electrostatic interactions between the surfactants and PFMeUPA, of which the binding percentage, binding mode, and binding energy were determined via molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The step-wise degradation pathway of PFMeUPA, including reductive defluorination and hydrogenation, was derived. Meanwhile, C-F bond breaking with direct electron transfer only was achieved for the first time in this study, which also showed that the C═C bond structure of PFAS facilitates the C-F cleavage. Overall, this study highlights the crucial role of quaternary ammonium surfactants in electron transfer and electrocatalytic activities in the electroreductive system and provides insights into novel remediation approaches on PFAS-contaminated groundwater.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Ye Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yafei Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
31
|
Yu J, Lai J, Neal BM, White BJ, Banik MT, Dai SY. Genomic Diversity and Phenotypic Variation in Fungal Decomposers Involved in Bioremediation of Persistent Organic Pollutants. J Fungi (Basel) 2023; 9:418. [PMID: 37108874 PMCID: PMC10145412 DOI: 10.3390/jof9040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Fungi work as decomposers to break down organic carbon, deposit recalcitrant carbon, and transform other elements such as nitrogen. The decomposition of biomass is a key function of wood-decaying basidiomycetes and ascomycetes, which have the potential for the bioremediation of hazardous chemicals present in the environment. Due to their adaptation to different environments, fungal strains have a diverse set of phenotypic traits. This study evaluated 320 basidiomycetes isolates across 74 species for their rate and efficiency of degrading organic dye. We found that dye-decolorization capacity varies among and within species. Among the top rapid dye-decolorizing fungi isolates, we further performed genome-wide gene family analysis and investigated the genomic mechanism for their most capable dye-degradation capacity. Class II peroxidase and DyP-type peroxidase were enriched in the fast-decomposer genomes. Gene families including lignin decomposition genes, reduction-oxidation genes, hydrophobin, and secreted peptidases were expanded in the fast-decomposer species. This work provides new insights into persistent organic pollutant removal by fungal isolates at both phenotypic and genotypic levels.
Collapse
Affiliation(s)
- Jiali Yu
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Jingru Lai
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Brian M. Neal
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Bert J. White
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
| | - Mark T. Banik
- USDA Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, WI 53726, USA
| | - Susie Y. Dai
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
32
|
Wang Q, Guan Z, Xiong Y, Li D. Nanoconfinement-enhanced Fenton-like polymerization via hollow hetero-shell carbon for reducing carbon emissions in organic wastewater purification. J Colloid Interface Sci 2023; 634:231-242. [PMID: 36535161 DOI: 10.1016/j.jcis.2022.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lower reaction speed and excessive oxidant inputs impede the removal of contaminants from water via the advanced oxidation processes based on peroxymonosulfate. Herein, we report a new confined catalysis paradigm via the hollow hetero-shell structured CN@C (H-CN@C), which permits effective decontamination through polymerization with faster reaction rates and lower oxidant dosage. The confined space structures regulated the CN and CO and electron density of the inner shell, which increased the electron transfer rate and mass transfer rate. As a result, CN in H-CN@C-10 reacted with peroxymonosulfate in preference to CO to generate singlet oxygen, improving the second-order reaction kinetics by 503 times. The identification of oxidation products implied that bisphenol AF could effectively remove by polymerization, which could reduce carbon dioxide emissions. These favorable properties make the nanoconfined catalytic polymerization of contaminants a remarkably promising nanocatalytic water purification technology.
Collapse
Affiliation(s)
- Qihui Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Yi Xiong
- School of Mathematical & Physical Sciences, Department of Microelectronics, Wuhan, Hubei 430073, China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China.
| |
Collapse
|
33
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
34
|
Dong T, Ling C, Fu L, Xue Y, Pan Y, Zhang Y, Zhu C. N-doped porous bowl-like carbon with superhigh external surface area for ultrafast degradation of bisphenol A: Key role of site exposure degree. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130562. [PMID: 36502719 DOI: 10.1016/j.jhazmat.2022.130562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
High-temperature nitrogen (N) doping boosts the activity of biochars for peroxymonosulfate (PMS) activation, but the N heat loss causes the unsatisfactory catalytic efficiency. Improving the surface area for obtaining the high exposure of N sites is a promising solution. Herein, a soft template-KHCO3 etching strategy is used to synthesize the N-doped porous bowl-like carbon (NPBC) with ultrahigh external surface area (1610.8 m2 g-1). The bowl-like structure eliminates inert bulk interior and allows unobstructed mass transfer of reactants onto both outer and inner surfaces, while the large pore channels by KHCO3 etching further improves the exposure degree of limited N sites. Although NPBC has only 0.43% N content, 93.1% of bisphenol A (BPA) is removed within 1 min through the electron-transfer pathway by fully utilizing the N active centers, and the kinetic rate constant (k) reaches 5.29 min-1, exceeding reported values by 2-270 times. Moreover, the NPBC/PMS system possesses excellent applicability for various organics and conditions, effectively mineralizes BPA and reduces effluent biotoxicity. A quantitative index W representing N exposure degree is first proposed and shows high linearity with the k values of BPA degradation (R2=0.992, 0 <W<3750 m2 g-1%-1), proving the critical role of W in determining catalytic efficiency.
Collapse
Affiliation(s)
- Tailu Dong
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chen Ling
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Lichun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; School of Iron and Steel, Soochow University, Suzhou 215000, PR China
| | - Yuzhu Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Changqing Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
35
|
Chen X, Lin J, Wang H, Yang Y, Wang C, Sun Q, Shen X, Li Y. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel as adsorbents for carbon dioxide capture. Carbohydr Polym 2023; 302:120389. [PMID: 36604067 DOI: 10.1016/j.carbpol.2022.120389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Developing affordable and effective carbon dioxide (CO2) capture technology has attracted substantial intense attention due to the continued growth of global CO2 emissions. The low-cost and biodegradable cellulosic materials are developed into CO2 adsorbent recently. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel (EBPCa) was synthesized from alkaline cellulose solution, epoxy-functionalized polyethyleneimine (EB-PEI), and epichlorohydrin (ECH) through the freezing-thawing processes and freeze-drying. The Fourier transform infrared spectroscopy confirmed that the cellulose aerogel was successfully modified by EB-PEI. The X-ray photoelectron spectroscopy analyses confirmed the presence of N 1s and Cl 2p in EBPCa, meaning that the chlorine of ECH and the amino groups of EB-PEI exist in the cellulose surface. The obtained sample has a rich porous structure with a specific surface area in the range of 97.5-149.5 m2/g. Owing to its uniformly three-dimensional porous structure, the sample present preferable rigidity and carrying capacity, which 1 g of sample could easily carry the weight of a 3000 ml Erlenmeyer flask filled with water (total 4 kg). The sample showed good adsorption performance, with a maximum adsorption capacity of 6.45 mmol/g. This adsorbent has broad prospects in the CO2 capture process.
Collapse
Affiliation(s)
- Xinjie Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Jian Lin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Hanwei Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Yushan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Chao Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| |
Collapse
|
36
|
Yuan JS, Pavlovich MJ, Ragauskas AJ, Han B. Biotechnology for a sustainable future: biomass and beyond. Trends Biotechnol 2022; 40:1395-1398. [PMID: 36273928 DOI: 10.1016/j.tibtech.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | | | - Arthur J Ragauskas
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Buxing Han
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Zhang W, Zhang P, Wang H, Li J, Dai SY. Design of biomass-based renewable materials for environmental remediation. Trends Biotechnol 2022; 40:1519-1534. [PMID: 36374762 PMCID: PMC9716580 DOI: 10.1016/j.tibtech.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
Various materials have been used to remove environmental contaminants for decades and have been an effective strategy for environmental cleanups. The current nonrenewable materials used for this purpose could impose secondary hazards and challenges in further downstream treatments. Biomass-based materials present viable, renewable, and sustainable solutions for environmental remediation. Recent biotechnology advances have developed biomaterials with new capacities, such as highly efficient biodegradation and treatment train integration. This review systemically discusses how biotechnology has empowered biomass-derived and bioinspired materials for environmental remediation sustainably and cost-effectively.
Collapse
Affiliation(s)
- Wan Zhang
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Peng Zhang
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Huaimin Wang
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Jinghao Li
- Department of Energy, Environmental, and Chemical Engineering, The McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Susie Y Dai
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|