1
|
Simberg D, Barenholz Y, Roffler SR, Landfester K, Kabanov AV, Moghimi SM. PEGylation technology: addressing concerns, moving forward. Drug Deliv 2025; 32:2494775. [PMID: 40264371 PMCID: PMC12020137 DOI: 10.1080/10717544.2025.2494775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
PEGylation technology, that is grafting of poly(ethylene glycol)(PEG) to biologics, vaccines and nanopharmaceuticals, has become a cornerstone of modern medicines with over thirty products used in the clinic. PEGylation of therapeutic proteins, nucleic acids and nanopharmaceuticals improves their stability, pharmacokinetic and biodistribution. While PEGylated medicines are safe in the majority of patients, there are growing concerns about the emergence of anti-PEG antibodies and their impact on the therapeutic efficacy of PEGylated medicines as well as broader immune responses, particularly in complement activation and hypersensitivity reactions. These concerns are beginning to scrutinize the future viability of PEGylation technology in medicine design. Here, we outline these concerns, encourage more efforts into looking for comprehensive scientific evidence on the role of anti-PEG antibodies in hypersensitivity reactions, discuss alternatives to PEG and propose strategies for moving PEGylation technology forward.
Collapse
Affiliation(s)
- Dmitri Simberg
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences and Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yechezkel Barenholz
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Seyed M. Moghimi
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences and Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Ngo TH, Menon S, Rivero-Müller A. Nano-immunotherapy: Merging immunotherapy precision with nanomaterial delivery. iScience 2025; 28:112319. [PMID: 40292310 PMCID: PMC12033950 DOI: 10.1016/j.isci.2025.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
In current landscape of cancer treatment, nanotherapy and cellular therapy stand out as promising and innovative approaches. Nanotherapy have excelled in delivering functional molecules effectively to target cancer cells, however the targetability is mostly the result of the enhanced permeability and retention effect. Meanwhile, cellular therapies such recently emerging chimeric antigen receptor (CAR)-T therapy are proficient at specifically targeting cancer cells by using engineered receptors on T cells. Yet, cellular therapies preform poor in solid tumors due to immunosuppression and cancer cell resistance to immuno-stimulation, in other words their delivery of deadly cargo is deficient. Therefore, combining nanotherapy and immunotherapy is an emerging trend, with ongoing clinical trials exploring their synergistic effects. This 2-input approach holds promise for enhancing treatment efficacy and overcoming limitations in cancer therapy. In this review, we will discuss two aspects: targetability and delivery for each individual therapy and what the combined nano-immunotherapy strategies have achieved up to now. In the last section, some future perspectives for this combination are suggested.
Collapse
Affiliation(s)
- Thu Ha Ngo
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Soumya Menon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Guo H, Hong J, Zhu Y, Gui H, Liu H, Ren R, Li Y, Shan S, Guan Z, Liu M, Yang Z. A Mannosylated peptidyl lipid CManDA doped into cytidinyl/cationic lipids efficiently delivers siG12Ss to lung cancer in vivo. J Control Release 2025; 381:113624. [PMID: 40073943 DOI: 10.1016/j.jconrel.2025.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Gene therapy has attracted widespread attention in recent years, and one of the important delivery systems is the LNP. However, many LNPs have potential toxicity and accumulate in the liver. Here, we designed and synthesized a Gemini-type mannosylated peptidyl lipid called CManDA(M), which, in combination with the cytidinyl lipid DNCA(D) and the peptidyl lipid CLD(C) (D/50C/50M), could transfect siRNA (siG12S) into A549 cells to target and silence the KRASG12S gene. The fluorescence intensity in the tumor area of the D/50C/50M/Cy5.5-siG12S group increased by approximately 2.5 times. Furthermore, full 2'-F/2'-OMe-modified siG12Ss could also be transfected by D/50C/50M into cells, resulting in target gene silencing. The tumor weight in the D/50C/50M/M3 group (1.5 mg/kg, i.v.) was reduced by 50 % after administration in a mouse axillary tumor (A549) model, whereas the tumor bioluminescence intensity was only approximately 30 % of that in the blank group in a mouse orthotopic lung cancer model and showed no significant toxicity. Further studies revealed that the mannose groups of CManDA can be exposed on the nanoparticle surface to bind lectins, and CManDA can also shield the formation of a protein corona and alter the composition of the protein corona, which aids in the enhancement of its active targeting function. CManDA is expected to be a safe and effective helper lipid for tumor-targeted delivery of siRNA in vivo.
Collapse
Affiliation(s)
- Hua Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiamei Hong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Genable (Beijing) Biotechnology Co., Ltd, (#)38 Yongda Road, Beijing 102609, China
| | - Hongzhe Gui
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hongyi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Runan Ren
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Saijun Shan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mingzhe Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Genable (Beijing) Biotechnology Co., Ltd, (#)38 Yongda Road, Beijing 102609, China.
| |
Collapse
|
5
|
Li Z, Xiao C, Yang X, Li Z. Progress in the mechanical properties of nanoparticles for tumor-targeting delivery. Chem Soc Rev 2025. [PMID: 40341776 DOI: 10.1039/d3cs00912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Cancer nanomedicines have attracted significant attention in the past several decades, and the physicochemical properties, such as the size, shape, composition, surface charge, hydrophobicity, and mechanical properties, of nanoparticles have been optimized for potent cancer therapy. Since publishing our 2020 tutorial review "Influence of nanomedicine mechanical properties on tumor targeting delivery" in Chemical Society Reviews, substantial advancements have been made in understanding the role of mechanical properties in cancer nanomedicine. Notably, in vivo transport processes that are dependent on the mechanical properties of nanomedicine, including long circulation, tumor accumulation, and deep penetration, have been extensively studied using various nano-drug delivery systems. These studies have demonstrated that leveraging these mechanical properties can significantly enhance the antitumor efficacy of nanomedicine. In this review, we categorize the advancements in the mechanical properties of cancer nanomedicine into three distinct themes: the interactions between nanoparticles with varied mechanical properties and cells (2002 - present), the impact of these properties on in vivo delivery processes (2007 - present), and the strategic use of mechanical properties to boost cancer therapy (2023 - present). We analyze how different mechanical properties of organic, inorganic, hybrid, and biological nanoparticles affect their delivery processes at the macroscopic level, i.e., in tissues, organs and cells. At the microscopic level, their biological and physical interactions with biological barriers, physiological structures, cell membranes, organelles, and other structures reveal the potential mechanism of nanoparticles' mechanical properties in determining their antitumor efficacy. Furthermore, we address the current challenges and future prospects in the mechanical properties of cancer nanomedicine, as well as the clinical translation potential of nanoparticles with diverse mechanical characteristics.
Collapse
Affiliation(s)
- Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
6
|
Baek MJ, Hur W, Kashiwagi S, Choi HS. Design Considerations for Organ-Selective Nanoparticles. ACS NANO 2025; 19:14605-14626. [PMID: 40193849 DOI: 10.1021/acsnano.5c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Nanoparticles (NPs) have been extensively researched for targeted diagnostic imaging and drug delivery, yet their clinical translation remains limited, with only a few achieving Food and Drug Administration approval. This limited success is primarily due to challenges in achieving precise organ- or tissue-specific targeting, which arise from off-target tissue accumulation and suboptimal clearance profiles. Herein we examine the critical role of physicochemical properties, including size, surface charge, shape, elasticity, hardness, and density, in governing the biodistribution, targetability, and clearance of NPs. We highlight recent advancements in engineering NPs for targeted imaging and drug delivery, showcasing both significant progress and the remaining challenges in the field of nanomedicine. Additionally, we discuss emerging tools and technologies that are being developed to address these challenges. Based on recent insights from materials science, biomedical engineering, computational biology, and clinical research, we propose key design considerations for next-generation nanomedicines with enhanced organ selectivity.
Collapse
Affiliation(s)
- Min-Jun Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Won Hur
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
7
|
Yang L, Wang S, Deng C, Chen J, Zhao J, Yan B, Yue T. Boosting Cancer Cell Uptake of Gold Nanoparticles by Light-Modulated Protein Corona Reorganization for Tumor Ablation. ACS NANO 2025; 19:14351-14365. [PMID: 40173212 DOI: 10.1021/acsnano.5c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nanoparticles (NPs) administered into the human body are spontaneously modified by forming a protein corona, which is crucial for their biological activity. While NP-based photothermal therapy is an established noninvasive modality for tumor ablation, the impact of light irradiation on protein corona formation and clinical outcomes is unclear. This study unveils the promotive role of light irradiation in cancer cell uptake of gold nanoparticles (GNPs) by modulating the GNP-protein and protein-protein interactions within the corona. Specifically, infrared light irradiation increases the local temperature around GNPs to induce partial unfolding of corona proteins, increasing the availability of binding sites and enhancing adsorption. Additionally, light intensifies competition among different proteins for adsorption, resulting in a 25% increase in the abundance of higher molecular weight proteins, such as human serum albumin (HSA), on the GNP surface after irradiation. Notably, GNPs with positively charged surfaces, compared to GNPs with other modifications, exhibit more significant changes in the protein corona due to stronger electrostatic interactions with proteins (1.32 ± 0.17 × 103 kJ/mol). These variations in the amount, structure, and composition of associated proteins result in a 14.26% increase in GNP uptake by cancer cells, likely due to modifications at the GNP-cell membrane interface. Our findings highlight the critical role of light irradiation in influencing protein corona dynamics and cellular interactions, suggesting its potential as a valuable engineering tool in nanomedicine.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Shenqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Chaofan Deng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Jie Chen
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P.R. China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P.R. China
| |
Collapse
|
8
|
Larreina Vicente N, Srinivas M, Tagit O. Perfluorocarbon-Loaded Poly(lactide- co-glycolide) Nanoparticles from Core to Crust: Multifaceted Impact of Surfactant on Particle Ultrastructure, Stiffness, and Cell Uptake. ACS APPLIED POLYMER MATERIALS 2025; 7:2864-2878. [PMID: 40110246 PMCID: PMC11915196 DOI: 10.1021/acsapm.4c03360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Poly(lactide-co-glycolide) nanoparticles (PLGA NPs) loaded with Perfluoro-15-crown-5-ether (PFCE) have been developed for imaging applications. A slight modification of the formulation led to the formation of two distinct particle ultrastructures: multicore particles (MCPs) and core-shell particles (CSPs), where poly(vinyl alcohol) (PVA), a nonionic surfactant, and sodium cholate (NaCh), an anionic surfactant, were used, respectively. Despite their similar composition and colloidal characteristics, these particles have previously demonstrated significant differences in their in vivo distribution and clearance. We hypothesize that these differences are collectively driven by variations in their structural, chemical, and mechanical properties, which are investigated in this study. Nanomechanical characterizations of MCPs and CSPs by atomic force microscopy (AFM) revealed elastic modulus values of 54 and 270 MPa in water, respectively, indicating a better permeability and deformability of the multicore ultrastructure. The impact of the surfactant on the NP surface chemistry was evidenced by their protein corona, which was significantly greater in the CSPs. Additionally, an important amount of residual NaCh was found on the surface of CSPs, which formed strong interactions with bovine serum albumin (BSA), accounting for the difference in protein coronas and surface chemistry. Surprisingly, in vitro cell uptake studies showed a higher uptake of MCPs by RAW macrophages but a preference for CSPs by HeLa cells. We conclude that for this specific formulation and in this stiffness range, mechanical differences have a stronger impact in HeLa cells, while surface properties and chemical recognition play a more important role in uptake by macrophages. Overall, the extent to which a physical factor impacts cell uptake is highly dependent on the specific uptake mechanism. With this study, we provide an integrated perspective on the role of different surfactants in the particle formation process, their impact on particle ultrastructure, mechanical properties, and surface chemistry, and the overall effect on cell uptake in vitro.
Collapse
Affiliation(s)
- Naiara Larreina Vicente
- Cell Biology and Immunology (CBI), Wageningen University, De Elst 1, Wageningen 6708 WD, Netherlands
| | - Mangala Srinivas
- Cell Biology and Immunology (CBI), Wageningen University, De Elst 1, Wageningen 6708 WD, Netherlands
| | - Oya Tagit
- Group of Biointerfaces, Institute for Chemistry and Bioanalytics, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz 4132, Switzerland
| |
Collapse
|
9
|
Lu C, Li C, Gu N, Yang F. Emerging Elastic Micro-Nano Materials for Diagnosis and Treatment of Thrombosis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0614. [PMID: 40028043 PMCID: PMC11868703 DOI: 10.34133/research.0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Thrombus is a blood clot that forms in a blood vessel at the point of flaking. Thrombosis is closely associated with cardiovascular diseases caused by different sources and factors. However, the current clinical methods of thrombus diagnosis and treatment still have problems with targeting, permeability, stability, and biosafety. Therefore, in recent years, based on the development of micro/nano technology, researchers have tried to develop some new strategies for the diagnosis and treatment of thrombosis. Due to the unique structural characteristics, the micro-nano materials in physiological environments show excellent transport and delivery properties such as better in vivo circulation, longer life span, better targeting ability, and controllable cellular internalization. Especially, elasticity and stiffness are inherent mechanical properties of some well-designed micro-nano materials, which can make them better adapted to the needs of thrombosis diagnosis and treatment. Herein, this review first introduces the thrombotic microenvironment to characterize the thrombus development process. Then, to fine-tune the pathological occurrence and development of thrombosis, the role of elastic micro-nano materials for thrombus diagnosis and treatment is summarized. The properties, preparation methods, and biological fate of these materials have been discussed in detail. Following, the applications of elastic micro-nano materials in biomedical imaging, drug delivery, and therapy of thrombosis are highlighted. Last, the shortcomings and future design strategies of elastic micro-nano materials in diagnosis and treatment of clinical thrombosis are discussed. This review will provide new ideas for the use of nanotechnology in clinical diagnosis and treatment of thrombus in the future.
Collapse
Affiliation(s)
- Chenxin Lu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, P. R. China
| | - Chunjian Li
- Department of Cardiology,
The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School,
Nanjing University, Nanjing 210093, P. R. China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
10
|
Jin Y, Han G, Gao Y, Cheng H, Sun C, Ni J, Zhou J, Zhang H, Ding Y. Serum-tolerant polymeric complex for stem-cell transfection and neural differentiation. Nat Commun 2025; 16:2022. [PMID: 40016275 PMCID: PMC11868408 DOI: 10.1038/s41467-025-57278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Mesenchymal stem cell (MSC) therapy holds promise in biomedical applications but faces challenges in efficient transfection without compromising cell viability. Here, we show a serum-tolerant MSC transfection nanotool, APOs@BP, composed of an apolipoprotein (APO) corona and a boronated polyethyleneimine (BP) core. The APOs corona's serum-protein resistance and cytomembrane affinity enable APOs@BP to achieve 10.4-fold higher transfection efficiency and improved cytocompatibility in serum-containing medium compared to high-molecular-weight polycationic transfectants. For MSC neural differentiation, miRNA-124 and all-trans retinoic acid derivative (atRAN) are further loaded into APOs@BP, forming a polymeric complex for sequential drug release triggered by lysosomal acid and cytosolic reactive oxygen species post-transplantation. Transcriptomic analysis confirms that this system enhances MSC neural differentiation through sequential activation of atRAN-induced differentiation potential and miRNA-124-directed neurogenesis via cGMP-PKG, MAPK, and PI3K-Akt pathways. Transplantation of engineered MSCs reconstructs neural circuits and alleviates cognitive impairment in Alzheimer's disease model mice. Collectively, this system provides a robust and convenient method for MSC-based regenerative medicine.
Collapse
Affiliation(s)
- Yi Jin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Guochen Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yuemei Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Chenhua Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China.
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
11
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
12
|
Park W, Choi J, Hwang J, Kim S, Kim Y, Shim MK, Park W, Yu S, Jung S, Yang Y, Kweon DH. Apolipoprotein Fusion Enables Spontaneous Functionalization of mRNA Lipid Nanoparticles with Antibody for Targeted Cancer Therapy. ACS NANO 2025; 19:6412-6425. [PMID: 39908463 PMCID: PMC11841042 DOI: 10.1021/acsnano.4c16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
The mRNA-lipid nanoparticles (mRNA@LNPs) offer a novel opportunity to treat targets previously considered undruggable. Although antibody conjugation is crucial for enhancing the specificity, delivery efficiency, and minimizing the toxicity of mRNA therapeutics, current chemical conjugation methods are complex and produce heterogeneous particles with misoriented antibodies. In this work, we introduce a chemical-free approach to functionalize mRNA@LNPs with antibodies, mimicking protein corona formation for targeted mRNA delivery. By fusing apolipoprotein to the Fc domain of a targeting antibody, we enabled the antibody to spontaneously display on the surface of mRNA@LNPs without altering the existing LNP process or employing complex chemical conjugation techniques. We demonstrated precise protein expression using trastuzumab-bound mRNA@LNPs, facilitating specific mRNA expression in HER2-positive cancer cells. mRNA was efficiently delivered to the tumor site after intravenous administration. While the control LNPs lacking targeting antibodies caused acute liver toxicity, trastuzumab-displayed LNPs showed no systemic toxicity. The tumor-specific delivery of p53 tumor suppressor mRNA led to the complete regression of cancer cells. Thus, apolipoprotein fusion enables a straightforward and scalable production of antibody-functionalized mRNA@LNPs, offering significant therapeutic potential in gene therapy.
Collapse
Affiliation(s)
- Wonbeom Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Jiwoong Choi
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Jaehyeon Hwang
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Suhyun Kim
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Yelee Kim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Department
of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Man Kyu Shim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Wooram Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Seokhyeon Yu
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Sangwon Jung
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Yoosoo Yang
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Division
of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dae-Hyuk Kweon
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| |
Collapse
|
13
|
Kim EH, Wahl K, Guelfi E, Lee D. Engineering the physical characteristics of biomaterials for innate immune-mediated cancer immunotherapy. J Control Release 2025; 378:814-830. [PMID: 39719214 DOI: 10.1016/j.jconrel.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
It has recently been recognized that the physical characteristics of biomaterials - such as size, structure, shape, charge, mechanical strength, hydrophobicity, and multivalency - regulate immunological functions in innate immune cells. In immuno-oncology applications, biomaterials are engineered with distinct physical properties to achieve desired innate immune responses. In this review, we discuss how physical characteristics influence effector functions and innate immune signaling pathways in distinct innate immune cell subtypes. We highlight how physical properties of biomaterials impact phagocytosis regulation, biodistribution, and innate immune cell targeting. We outline the recent advances in physical engineering of biomaterials that directly or indirectly induce desired innate immune responses for cancer immunotherapy. Lastly, we discuss the challenges in current biomaterial approaches that need to be addressed to improve clinical applicability.
Collapse
Affiliation(s)
- Eun-Hye Kim
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Katelyn Wahl
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Erica Guelfi
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - DaeYong Lee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Hui Y, Liu Y, Yang G, Weng Y, Hou F, Wang X, Fang S, Gao H, Zhao CX. Critical Role of Nanomaterial Mechanical Properties in Drug Delivery, Nanovaccines and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413779. [PMID: 39737655 DOI: 10.1002/adma.202413779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/17/2024] [Indexed: 01/01/2025]
Abstract
Nanomaterials have become essential in the daily lives, finding applications in food, skincare, drugs, and vaccines. Traditionally, the surface chemistry of nanoparticles (NPs) is considered the key factor in determining their interactions with biological systems. However, recent studies have shown that the mechanical properties of nanomaterials are equally important in regulating nano-bio interactions, though they have often been overlooked. Tuning the mechanical properties of nanomaterials and designing them for biomedical applications is thus crucial. This review begins by discussing the various mechanical cues in biological processes, including how viruses and cells adjust their mechanical properties throughout their life cycles. Basic concepts and terminology related to NP mechanical properties are introduced. Next, five different groups of nanomaterials with tunable mechanical properties are explored. The review then examines the impact of NP mechanical properties on their interactions in vitro and in vivo, covering tumor-targeted drug delivery, nanovaccines, and emerging applications such as oral and intranasal drug delivery. Current challenges in the field and perspectives on future developments are also provided.
Collapse
Affiliation(s)
- Yue Hui
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Yun Liu
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Yilun Weng
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Fei Hou
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Xing Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajian Gao
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Chun-Xia Zhao
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| |
Collapse
|
15
|
Sukubo NG, Bigini P, Morelli A. Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:97-118. [PMID: 39902342 PMCID: PMC11789677 DOI: 10.3762/bjnano.16.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025]
Abstract
In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential advantages, the interaction with many biological matrices, particularly with existing macrophages, must be considered. In this review, we will explore the dual role of macrophages in NC delivery, highlighting their physiological functions, the challenges posed by the mononuclear phagocyte system, and innovative strategies to exploit macrophage interactions for therapeutic advantage. Recent advancements in treating liver and lung diseases, particularly focusing on macrophage polarization and RNA-based therapies, have highlighted the potential developments in macrophage-NC interaction. Furthermore, we will delve into the intriguing potential of nanomedicine in neurology and traumatology, associated with macrophage interaction, and the exciting possibilities it holds for the future.
Collapse
Affiliation(s)
- Naths Grazia Sukubo
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, Italy
| | - Annalisa Morelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, Italy
| |
Collapse
|
16
|
He S, Li X, He Y, Guo L, Dong Y, Wang L, Yang L, Li L, Huang S, Fu J, Lin Q, Zhang Z, Zhang L. High-density lipoprotein nanoparticles spontaneously target to damaged renal tubules and alleviate renal fibrosis by remodeling the fibrotic niches. Nat Commun 2025; 16:1061. [PMID: 39870661 PMCID: PMC11772610 DOI: 10.1038/s41467-025-56223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization. Thus, we co-load anti-inflammatory drug triptolide (TP) and anti-fibrotic drug nintedanib (BIBF) on bHDL nanoparticles to treat CKD. Based on the targeted delivery and mutual enhancement of the efficacy of co-delivered drugs, the bHDL-based system effectively reduces kidney injury and alleviates renal fibrosis in different CKD mouse models. The mechanistic study shows that BIBF and TP synergistically remodel the fibrotic niches by decreasing inflammatory cytokines, limiting immune cell infiltration and inhibiting the activation of myofibroblasts. The bHDL vehicle also possesses high manufacturability, good safety and adequately reduces the toxicity of TP. Thus, this system is promising for the treatment of CKD and bHDL has good potential for delivering agents to damaged renal tubular epithelial cells.
Collapse
Affiliation(s)
- Shanshan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyang Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ling Guo
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, P. R. China
| | - Yunzhou Dong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Leilei Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lan Yang
- College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lin Li
- College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shiyun Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiali Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
17
|
Lee JK, Guevara V, Akanbi OD, Hoff JD, Kupor D, Brannon ER, Eniola-Adefeso O. Deciphering neutrophil dynamics: Enhanced phagocytosis of elastic particles and impact on vascular-targeted carrier performance. SCIENCE ADVANCES 2025; 11:eadp1461. [PMID: 39752488 PMCID: PMC11698085 DOI: 10.1126/sciadv.adp1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance. Here, we explore the impact of particle elasticity on primary human neutrophil phagocytosis using polyethylene glycol-based particles of different elastic moduli. We found that neutrophils effectively phagocytose deformable particles irrespective of their modulus, indicating a departure from established phagocytosis trends seen with other types of immune cells. These findings highlight the observed phenotypic difference between different types of phagocytes and underscore the need to characterize VTC performance using various cell types and animal models that represent human systems closely.
Collapse
Affiliation(s)
- Jonathan K. Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valentina Guevara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oluwaseun D. Akanbi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - J. Damon Hoff
- Small Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Kupor
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
18
|
Van der Sanden N, Paun RA, Yitayew MY, Boyadjian O, Tabrizian M. An investigation of the effect of the protein corona on the cellular uptake of nanoliposomes under flow conditions using quartz crystal microgravimetry with dissipation. NANOSCALE ADVANCES 2024; 7:169-184. [PMID: 39569329 PMCID: PMC11575535 DOI: 10.1039/d4na00783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
When nanoparticle delivery systems are immersed in biological fluids, a complex assembly of proteins forms on their surface, creating a protein corona. The protein corona alters the physicochemical properties, toxicity, biodistribution, cellular uptake, and immune response of the nanoparticles, and consequently, their therapeutic efficacy. Currently, there is a lack of in vitro methods to assess the effects of the protein corona on nanoparticle uptake under dynamic flow and assess their binding kinetics in real-time. Here, we introduce quartz crystal microbalance with dissipation (QCM-D) as an in vitro technique, capable of incorporating dynamic flow, to study the effect of the protein corona on the binding of nanoliposome (NLP) formulations to cell surfaces as a first step in their cellular uptake. The interactions of four NLP formulations (low PEGylated, high PEGylated, negatively charged and positively charged NLPs) with A375 melanoma and THP1 cell lines were assessed by QCM-D, before and after the formation of a protein corona. Through real-time recording of the frequency and dissipation shifts (Δf and ΔD, respectively), the QCM-D results provided strong evidence of the role of the protein corona in the cellular interaction of these NLP formulations, with a variation in their adsorption kinetics depending on their initial composition. NLP's attachment to the cell surface was the lowest for PEGylated NLPs (<5%), while the positively charged NLPs showed the highest cellular attachment (≈100%), regardless of the presence of the protein corona or cell type. The effect of the protein corona was more pronounced for the negatively charged NLPs, where a significant reduction in the NLP attachment was observed. To complement the QCM-D data on the NLP attachment and to determine whether the NLP attachment leads to cellular uptake, confocal microscopy and flow cytometry were used to confirm NLP uptake by A375 and THP1 cells. Proteomic analysis revealed a differential composition of the protein corona on the various NLPs with possible implications for their sequestration and cellular uptake. Collectively, the findings suggest that QCM-D can be an important tool to study the binding of NLP formulations or other nanoparticles with cell membranes under dynamic flow, which very often differs from nanoparticle uptake under static conditions.
Collapse
Affiliation(s)
- Nicholas Van der Sanden
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
| | - Radu A Paun
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
| | - Michael Y Yitayew
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
| | - Oscar Boyadjian
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University Montreal Canada
| |
Collapse
|
19
|
Li Y, Wu W, Liu Q, Wu Q, Ren P, Xi X, Liu H, Zhao J, Zhang W, Wang Z, Lv Y, Tian B, Sun S, Cui J, Zhao Y, Wu J, Gao M, Chen F. Specific surface-modified iron oxide nanoparticles trigger complement-dependent innate and adaptive antileukaemia immunity. Nat Commun 2024; 15:10400. [PMID: 39613769 PMCID: PMC11607078 DOI: 10.1038/s41467-024-54810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Considerable advances have been achieved in the application of nanomaterials for immunotherapies, yet the precise immune effects induced by protein corona remain elusive. Here, we explore the formation mechanism and immune regulation process of protein corona in acute myeloid leukaemia (AML) mouse models using commercialized iron oxide nanoparticles (IONPs), with different surface modifications, including an FDA-approved variant. Using macrophages depleted or Complement Component 3 (C3) knockout mice, we demonstrate that carboxymethyl dextran-coated IONP (IONP-COOH) reduces leukaemia burden. Mechanistically, IONP-COOH indirectly binds to C3b after activating the complement alternative pathway, subsequently enhancing phagocytosis of macrophages and activating adaptive immunity mediated by complement corona. While aminated dextran-coated IONPs directly absorb C3b and activate the lectin pathway, leading to immune cell exhaustion. Our findings suggest that IONP-COOH may serve as an immune activator for AML treatment, offering a promising approach to developing therapeutic nanomaterials by leveraging surface chemistry to enhance immunotherapy.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wen Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qihui Liu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiong Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Ren
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xi Xi
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haiyan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiarui Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun, China
| | - Zizhun Wang
- Electron Microscopy Center, Jilin University, Changchun, China
| | - Yuanyuan Lv
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bin Tian
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuang Sun
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaqi Cui
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yangyang Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
20
|
Catenacci L, Rossi R, Sechi F, Buonocore D, Sorrenti M, Perteghella S, Peviani M, Bonferoni MC. Effect of Lipid Nanoparticle Physico-Chemical Properties and Composition on Their Interaction with the Immune System. Pharmaceutics 2024; 16:1521. [PMID: 39771501 PMCID: PMC11728546 DOI: 10.3390/pharmaceutics16121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive immune cells mediating a more specific reaction, sometimes leading to potential adverse effects. Recent studies have shown that the innate immune response to LNPs is mediated by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which recognize the lipid components of the nanoparticles. This recognition can trigger the activation of inflammatory pathways and the production of cytokines and chemokines, leading to potential adverse effects such as fever, inflammation, and pain at the injection site. On the other hand, the adaptive immune response to LNPs appears to be primarily directed against the protein encoded by the mRNA cargo, with little evidence of an ongoing adaptive immune response to the components of the LNP itself. Understanding the relationship between LNPs and the immune system is critical for the development of safe and effective nucleic acid-based delivery systems. In fact, targeting the immune system is essential to develop effective vaccines, as well as therapies against cancer or infections. There is a lack of research in the literature that has systematically studied the factors that influence the interaction between LNPs and the immune system and further research is needed to better elucidate the mechanisms underlying the immune response to LNPs. In this review, we discuss LNPs' composition, physico-chemical properties, such as size, shape, and surface charge, and the protein corona formation which can affect the reactivity of the immune system, thus providing a guide for the research on new formulations that could gain a favorable efficacy/safety profile.
Collapse
Affiliation(s)
- Laura Catenacci
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Rachele Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Francesca Sechi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Daniela Buonocore
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Marco Peviani
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| |
Collapse
|
21
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
22
|
Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam MR, Schwendeman AA, La-Beck NM. Immune Implications of Cholesterol-Containing Lipid Nanoparticles. ACS NANO 2024; 18:28480-28501. [PMID: 39388645 PMCID: PMC11505898 DOI: 10.1021/acsnano.4c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The majority of clinically approved nanoparticle-mediated therapeutics are lipid nanoparticles (LNPs), and most of these LNPs are liposomes containing cholesterol. LNP formulations significantly alter the drug pharmacokinetics (PK) due to the propensity of nanoparticles for uptake by macrophages. In addition to readily engulfing LNPs, the high expression of cholesterol hydroxylases and reactive oxygen species (ROS) in macrophages suggests that they will readily produce oxysterols from LNP-associated cholesterol. Oxysterols are a heterogeneous group of cholesterol oxidation products that have potent immune modulatory effects. Oxysterols are implicated in the pathogenesis of atherosclerosis and certain malignancies; they have also been found in commercial liposome preparations. Yet, the in vivo metabolic fate of LNP-associated cholesterol remains unclear. We review herein the mechanisms of cellular uptake, trafficking, metabolism, and immune modulation of endogenous nanometer-sized cholesterol particles (i.e., lipoproteins) that are also relevant for cholesterol-containing nanoparticles. We believe that it would be imperative to better understand the in vivo metabolic fate of LNP-associated cholesterol and the immune implications for LNP-therapeutics. We highlight critical knowledge gaps that we believe need to be addressed in order to develop safer and more efficacious lipid nanoparticle delivery systems.
Collapse
Affiliation(s)
- Patricia
Ines Back
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Minzhi Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shadan Modaresahmadi
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Sahelosadat Hajimirzaei
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Qisheng Zhang
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Rakibul Islam
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Anna A. Schwendeman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, North
Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Ninh M. La-Beck
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
- Department
of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| |
Collapse
|
23
|
Gadalla HH, Yuan Z, Chen Z, Alsuwayyid F, Das S, Mitra H, Ardekani AM, Wagner R, Yeo Y. Effects of nanoparticle deformability on multiscale biotransport. Adv Drug Deliv Rev 2024; 213:115445. [PMID: 39222795 DOI: 10.1016/j.addr.2024.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Deformability is one of the critical attributes of nanoparticle (NP) drug carriers, along with size, shape, and surface properties. It affects various aspects of NP biotransport, ranging from circulation and biodistribution to interactions with biological barriers and target cells. Recent studies report additional roles of NP deformability in biotransport processes, including protein corona formation, intracellular trafficking, and organelle distribution. This review focuses on the literature published in the past five years to update our understanding of NP deformability and its effect on NP biotransport. We introduce different methods of modulating and evaluating NP deformability and showcase recent studies that compare a series of NPs in their performance in biotransport events at all levels, highlighting the consensus and disagreement of the findings. It concludes with a perspective on the intricacy of systematic investigation of NP deformability and future opportunities to advance its control toward optimal drug delivery.
Collapse
Affiliation(s)
- Hytham H Gadalla
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Zhongyue Yuan
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Ziang Chen
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Faisal Alsuwayyid
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Subham Das
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Harsa Mitra
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Ryan Wagner
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, 201 South University Street, West Lafayette, IN, 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Wu J, Bai X, Yan L, Baimanov D, Cong Y, Quan P, Cai R, Guan Y, Bu W, Lin B, Wang J, Yu S, Li S, Chong Y, Li Y, Hu G, Zhao Y, Chen C, Wang L. Selective regulation of macrophage lipid metabolism via nanomaterials' surface chemistry. Nat Commun 2024; 15:8349. [PMID: 39333092 PMCID: PMC11436645 DOI: 10.1038/s41467-024-52609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Understanding the interface between nanomaterials and lipoproteins is crucial for gaining insights into their impact on lipoprotein structure and lipid metabolism. Here, we use graphene oxide (GOs) nanosheets as a controlled carbon nanomaterial model to study how surface properties influence lipoprotein corona formation and show that GOs have strong binding affinity with low-density lipoprotein (LDL). We use advanced techniques including X-ray reflectivity, circular dichroism, and molecular simulations to explore the interfacial interactions between GOs and LDL. Specifically, hydrophobic GOs preferentially associate with LDL's lipid components, whereas hydrophilic GOs tend to bind with apolipoproteins. Furthermore, these GOs distinctly modulate a variety of lipid metabolism pathways, including LDL recognition, uptake, hydrolysis, efflux, and lipid droplet formation. This study underscores the importance of structure analysis at the nano-biomolecule interface, emphasizing how nanomaterials' surface properties critically influence cellular lipid metabolism. These insights will inspire the design and application of future biocompatible nanomaterials and nanomedicines.
Collapse
Affiliation(s)
- Junguang Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xuan Bai
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, PR China
- METiS Pharmaceuticals, Inc, Hangzhou, 310052, PR China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Peiyu Quan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- NSF's ChemMatCARS, The University of Chicago, Chicago, IL, 60637, USA
| | - Rui Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, PR China
| | - Wei Bu
- NSF's ChemMatCARS, The University of Chicago, Chicago, IL, 60637, USA
| | - Binhua Lin
- NSF's ChemMatCARS, The University of Chicago, Chicago, IL, 60637, USA
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Shengtao Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
| | - Shijiao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Radiation Protection, School of Radiation Medicine and Protection, Soochow University, Soochow, 215123, PR China
| | - Yang Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, Guangdong, PR China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China.
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, Guangdong, PR China.
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China.
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
25
|
Ju M, Zhang Z, Gao F, Chen G, Zhao S, Wang D, Wang H, Jia Y, Shen L, Yuan Y, Yao H. Intranasal Delivery of circATF7IP siRNA via Lipid Nanoparticles Alleviates LPS-induced Depressive-Like Behaviors. Adv Healthc Mater 2024:e2402219. [PMID: 39254274 DOI: 10.1002/adhm.202402219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a prevalent mental disorder that significantly impacts social and psychological function, but no effective medication is currently available. Circular RNAs (circRNAs) have been reported to participate in the pathogenesis of MDD which are envisioned as promising therapeutic targets. However, nonviral-based delivery strategies targeting circRNA against MDD are not thoroughly investigated. Here, it is identified that circATF7IP is significantly upregulated in plasma samples and positively correlated with 24-Hamilton Depression Scale (HAMD-24) scores of MDD patients. Synergistic amine lipid nanoparticles (SALNPs) are designed to deliver siRNA targeting circATF7IP (si-circATF7IP) into the hippocampus brain region by intranasal administration. Intranasal delivery of SALNP-si-circATF7IP successfully alleviated the depressive-like behaviors in the LPS-induced mouse depression model via decreasing CD11b+CD45dim microglia population and pro-inflammatory cytokine productions (TNF-α and IL-6). These results indicate that the level of circATF7IP positively correlates with MDD pathogenesis, and SALNP delivery of si-circATF7IP via intranasal administration is an effective strategy to ameliorate LPS-induced depressive-like behaviors.
Collapse
Affiliation(s)
- Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zhongkun Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Feng Gao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Psychiatry, the Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, China
| | - Sibo Zhao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Dan Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Huijuan Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yanpeng Jia
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226019, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
26
|
Yang Z, Zhao Y, Zhang X, Huang L, Wang K, Sun J, Chen N, Yin W, Chen S, Zhi H, Xue L, An L, Li R, Dong H, Xu J, Li Y, Li Y. Nano-mechanical Immunoengineering: Nanoparticle Elasticity Reprograms Tumor-Associated Macrophages via Piezo1. ACS NANO 2024; 18:21221-21235. [PMID: 39079080 DOI: 10.1021/acsnano.4c04614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of nanoparticles play a crucial role in regulating nanobiointeractions, influencing processes such as blood circulation, tumor accumulation/penetration, and internalization into cancer cells. Consequently, they have a significant impact on drug delivery and therapeutic efficacy. However, it remains unclear whether and how macrophages alter their biological function in response to nanoparticle elasticity. Here, we report on the nano-mechanical biological effects resulting from the interactions between elastic silica nanoparticles (SNs) and macrophages. The SNs with variational elasticity Young's moduli ranging from 81 to 837 MPa were synthesized, and it was demonstrated that M2 [tumor-associated macrophages (TAMs)] could be repolarized to M1 by the soft SNs. Additionally, our findings revealed that cell endocytosis, membrane tension, the curvature protein Baiap2, and the cytoskeleton were all influenced by the elasticity of SNs. Moreover, the mechanically sensitive protein Piezo1 on the cell membrane was activated, leading to calcium ion influx, activation of the NF-κB pathway, and the initiation of an inflammatory response. In vivo experiments demonstrated that the softest 81 MPa SNs enhanced tumor penetration and accumulation and repolarized TAMs in intratumoral hypoxic regions, ultimately resulting in a significant inhibition of tumor growth. Taken together, this study has established a cellular feedback mechanism in response to nanoparticle elasticity, which induces plasma membrane deformation and subsequent activation of mechanosensitive signals. This provides a distinctive "nano-mechanical immunoengineering" strategy for reprogramming TAMs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Zichen Yang
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaoyou Zhang
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Huang
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiuyuan Sun
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Nana Chen
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Weimin Yin
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shiyu Chen
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Zhi
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Liangyi Xue
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lulu An
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Rongjie Li
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Li
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
27
|
Cai R, Baimanov D, Yuan H, Xie H, Yu S, Zhang Z, Yang J, Zhao F, You Y, Guan Y, Zheng P, Xu M, Qi M, Zhang Z, Zhong S, Li YF, Wang L. Protein Corona-Directed Cellular Recognition and Uptake of Polyethylene Nanoplastics by Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14158-14168. [PMID: 39088650 DOI: 10.1021/acs.est.4c05215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity. We observed that low-density and high-density lipoprotein receptors (LDLR and SR-B1), facilitated by apolipoproteins, played an essential role in PE-NP recognition. Consequently, PE-NPs activated the caspase-3/GSDME pathway and ultimately led to pyroptosis. Advanced imaging techniques, including label-free scattered light confocal imaging and cryo-soft X-ray transmission microscopy with 3D-tomographic reconstruction (nano-CT), provided powerful insights into visualizing NPs-cell interactions. These findings underscore the potential risks of NPs to macrophages and introduce analytical methods for studying the behavior of NPs in biological systems.
Collapse
Affiliation(s)
- Rui Cai
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Yuan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongxin Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Shengtao Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiacheng Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yue You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Pingping Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ming Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Mengying Qi
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Zhiyong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
28
|
Liu J, Liu J, Mu W, Ma Q, Zhai X, Jin B, Liu Y, Zhang N. Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems. ACS NANO 2024; 18:20861-20885. [PMID: 39082637 DOI: 10.1021/acsnano.4c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Liver fibrosis (LF) is a pathological repair reaction caused by a chronic liver injury that affects the health of millions of people worldwide, progressing to life-threatening cirrhosis and liver cancer without timely intervention. Due to the complexity of LF pathology, multiple etiological characteristics, and the deposited extracellular matrix, traditional drugs cannot reach appropriate targets in a time-space matching way, thus decreasing the therapeutic effect. Nanoparticle drug delivery systems (NDDS) enable multidrug co-therapy and develop multifactor delivery strategies targeting pathological processes, showing great potential in LF therapy. Based on the pathogenesis and the current clinical treatment status of LF, we systematically elucidate the targeting mechanism of NDDS used in the treatment of LF. Subsequently, we focus on the progress of drug delivery applications for LF, including combined delivery for the liver fibrotic pathological environment, overcoming biological barriers, precise intracellular regulation, and intelligent responsive delivery for the liver fibrotic microenvironment. We hope that this review will inspire the rational design of NDDS for LF in the future in order to provide ideas and methods for promoting LF regression and cure.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
29
|
Fu L, Huo S, Lin P, Wang J, Zhao J, You Y, Nie X, Ding S. Precise antibiotic delivery to the lung infection microenvironment boosts the treatment of pneumonia with decreased gut dysbiosis. Acta Biomater 2024; 184:352-367. [PMID: 38909721 DOI: 10.1016/j.actbio.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Bacterial pneumonia is a common disease with significant health risks. However, the overuse antibiotics in clinics face challenges such as inadequate targeting and limited drug utilization, leading to drug resistance and gut dysbiosis. Herein, a dual-responsive lung inflammatory tissue targeted nanoparticle (LITTN), designed for targeting lung tissue and bacteria, is screened from a series of prepared nanoparticles consisting of permanent cationic lipids, acid-responsive lipids, and reactive oxygen species-responsive and phenylboronic acid-modified lipids with different surface properties. Such nanoparticle is further verified to enhance the adsorption of vitronectin in serum. Additionally, the optimized nanoparticle exhibits more positive charge and coordination of boric acid with cis-diol in the infected microenvironment, facilitating electrostatic interactions with bacteria and biofilm penetration. Importantly, the antibacterial efficiency of dual-responsive rifampicin-loaded LITTN (Rif@LITTN) against methicillin-resistant staphylococcus aureus is 10 times higher than that of free rifampicin. In a mouse model of bacterial pneumonia, the intravenous administration of Rif@LITTN could precisely target the lungs, localize in the lung infection microenvironment, and trigger the responsive release of rifampicin, thereby effectively alleviating lung inflammation and reducing damage. Notably, the targeted delivery of rifampicin helps protect against antibiotic-induced changes in the gut microbiota. This study establishes a new strategy for precise delivery to the lung-infected microenvironment, promoting treatment efficacy while minimizing the impact on gut microbiota. STATEMENT OF SIGNIFICANCE: Intravenous antibiotics play a critical role in clinical care, particularly for severe bacterial pneumonia. However, the inability of antibiotics to reach target tissues causes serious side effects, including liver and kidney damage and intestinal dysbiosis. Therefore, achieving precise delivery of antibiotics is of great significance. In this study, we developed a novel lung inflammatory tissue-targeted nanoparticle that could target lung tissue after intravenous administration and then target the inflammatory microenvironment to trigger dual-responsive antibiotics release to synergistically treat pneumonia while maintaining the balance of gut microbiota and reducing the adverse effects of antibiotics. This study provides new ideas for targeted drug delivery and reference for clinical treatment of pneumonia.
Collapse
Affiliation(s)
- Ling Fu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Shaohu Huo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Beijing Children's Hospital, Capital Medical University, China National Clinical, Research Center of Respiratory Diseases, Beijing 100045, PR China
| | - Paiyu Lin
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jing Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jiaying Zhao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and, Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, PR China.
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Beijing Children's Hospital, Capital Medical University, China National Clinical, Research Center of Respiratory Diseases, Beijing 100045, PR China.
| |
Collapse
|
30
|
Gerasimovich E, Kriukova I, Shishkov VV, Efremov YM, Timashev PS, Karaulov A, Nabiev I, Sukhanova A. Interaction of Serum and Plasma Proteins with Polyelectrolyte Microparticles with Core/Shell and Shell-Only Structures. ACS OMEGA 2024; 9:29739-29750. [PMID: 39005812 PMCID: PMC11238302 DOI: 10.1021/acsomega.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Polyelectrolyte microparticles (MPs) synthesized on calcium carbonate cores are considered a promising basis for new drug delivery systems. It is known that microparticles entering a physiological environment absorb proteins on their surface, which can change the properties of the microparticles and alter their functional activity. This study aimed to compare the compositions of the adsorbed protein layer formed on microparticles with the core/shell and shell structures obtained by layer-by-layer deposition. The difference in the microparticle structure was associated with changes in their surface topography and ζ-potential. These microparticles were incubated with human serum or plasma at 37°C for 24 h. The adsorbed proteins were eluted and analyzed by means of SDS-PAGE. The protein composition of the eluates was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS); a total of 357 proteins were identified, and 183 of them were detected in all samples. Our results demonstrate that the relative abundance of proteins of different functional groups (immunoglobulins, complement proteins, and apolipoproteins) varied depending on the structure and surface characteristics of the polyelectrolyte microparticles and the incubation medium. Our findings expand the understanding of the influence of the physicochemical properties of the microparticles on their interaction with proteins, which can help to improve the design of microparticles for drug delivery.
Collapse
Affiliation(s)
- Evgeniia Gerasimovich
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russian Federation
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russian Federation
| | - Vsevolod V Shishkov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russian Federation
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France
| | - Alyona Sukhanova
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France
| |
Collapse
|
31
|
Zhou Z, Li C, Li C, Zhou L, Tan S, Hou W, Xie C, Wang L, Shen J, Xiong W. Mitochondria-Targeted Nanoadjuvants Induced Multi-Functional Immune-Microenvironment Remodeling to Sensitize Tumor Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400297. [PMID: 38704675 PMCID: PMC11234464 DOI: 10.1002/advs.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Indexed: 05/06/2024]
Abstract
It is newly revealed that collagen works as a physical barrier to tumor immune infiltration, oxygen perfusion, and immune depressor in solid tumors. Meanwhile, after radiotherapy (RT), the programmed death ligand-1 (PD-L1) overexpression and transforming growth factor-β (TGF-β) excessive secretion would accelerate DNA damage repair and trigger T cell exclusion to limit RT efficacy. However, existing drugs or nanoparticles can hardly address these obstacles of highly effective RT simultaneously, effectively, and easily. In this study, it is revealed that inducing mitochondria dysfunction by using oxidative phosphorylation inhibitors like Lonidamine (LND) can serve as a highly effective multi-immune pathway regulation strategy through PD-L1, collagen, and TGF-β co-depression. Then, IR-LND is prepared by combining the mitochondria-targeted molecule IR-68 with LND, which then is loaded with liposomes (Lip) to create IR-LND@Lip nanoadjuvants. By doing this, IR-LND@Lip more effectively sensitizes RT by generating more DNA damage and transforming cold tumors into hot ones through immune activation by PD-L1, collagen, and TGF-β co-inhibition. In conclusion, the combined treatment of RT and IR-LND@Lip ultimately almost completely suppressed the growth of bladder tumors and breast tumors.
Collapse
Affiliation(s)
- Zaigang Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Cheng Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Chao Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Lei Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Shuo Tan
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Weibin Hou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyZhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhou key Laboratory of Basic Science and Translational Research of Radiation OncologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Long Wang
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Wei Xiong
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| |
Collapse
|
32
|
Lin X, Li Y, Zhang B, Li J, Ren J, Tang Y, Wu S, Yang J, Wang Q. Alginate nanogel-embedded liposomal drug carriers facilitate drug delivery efficiency in arthritis treatment. Int J Biol Macromol 2024; 273:133065. [PMID: 38866273 DOI: 10.1016/j.ijbiomac.2024.133065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Despite numerous advantages of liposomes in treating rheumatoid arthritis (RA), the in vivo stability remains a critical issue. Current strategies for improving liposomal stability often compromise their original properties. Herein, we designed an alginate nanogel-embedded liposome aiming at retaining those inherent advantages while enhancing their in vivo stability. The introduction of alginate network within the liposome core can provide mechanical support and controlled drug release without affecting the surface properties. Results showed the cross-linking of alginate network within the inner core of liposomes elevated the particle rigidity to 3 times, allowing for improved stability and decreased drug leakage. Moreover, this nanogel-embedded liposome with optimized elasticity obviously facilitated cellular uptake in inflammatory macrophages. When entering blood circulation, increased rigidity altered the composition of protein corona on the particle surface, resulting in 2-fold increase in circulation time and improved drug accumulation in arthritic joints. When anti-inflammatory chlorogenic acid (CA) was encapsulated into the nanogel network, this CA-loaded nanogel-embedded liposome significantly inhibited ROS production and inflammatory response, ultimately achieved superior therapeutic outcome in arthritic rats. Results demonstrated that this nanogel-embedded liposomes can essentially retain the inherent advantages and overcome the drawbacks of liposomes, thereby improving the drug delivery efficiency.
Collapse
Affiliation(s)
- Xin Lin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan Li
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Bin Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianheng Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yao Tang
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Sui Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinming Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
33
|
Jeitler R, Glader C, König G, Kaplan J, Tetyczka C, Remmelgas J, Mußbacher M, Fröhlich E, Roblegg E. On the Structure, Stability, and Cell Uptake of Nanostructured Lipid Carriers for Drug Delivery. Mol Pharm 2024; 21:3674-3683. [PMID: 38838194 PMCID: PMC11220792 DOI: 10.1021/acs.molpharmaceut.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
The efficacy of nanostructured lipid carriers (NLC) for drug delivery strongly depends on their stability and cell uptake. Both properties are governed by their compositions and internal structure. To test the effect of the lipid composition of NLC on cell uptake and stability, three kinds of liquid lipids with different degrees of unsaturation are employed. After ensuring homogeneous size distributions, the thermodynamic characteristics, stability, and mixing properties of NLC are characterized. Then the rates and predominant pathways of cell uptake are determined. Although the same surfactant is used in all cases, different uptake rates are observed. This finding contradicts the view that the surface properties of NLC are dominated by the surfactant. Instead, the uptake rates are explained by the structure of the nanocarrier. Depending on the mixing properties, some liquid lipids remain inside the nanocarrier, while other liquid lipids are present on the surface. Nanocarriers with liquid lipids on the surface are taken up more readily by the cells. This shows that the engineering of efficient lipid nanocarriers requires a delicate balance of interactions between all components of the nanocarrier on the molecular level.
Collapse
Affiliation(s)
- Ramona Jeitler
- Institute
of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Christina Glader
- Institute
of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Gerhard König
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
- Centre
for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United
Kingdom
| | - Jay Kaplan
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Carolin Tetyczka
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Johan Remmelgas
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Marion Mußbacher
- Institute
of Pharmaceutical Sciences, Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center
for
Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Eva Roblegg
- Institute
of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
34
|
Li T, Wang Y, Zhou D. Manipulation of protein corona for nanomedicines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1982. [PMID: 39004508 DOI: 10.1002/wnan.1982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption. As research on the protein corona progresses, manipulating the protein corona to modulate the in vivo behaviors of nanomedicines has become a research focus. In this review, modern strategies focused on influencing the biological efficacy of nanomedicines in vivo by manipulating protein corona, along with their wide-ranging applications across diverse diseases are critically summarized, highlighted and discussed. Finally, future directions for this important yet challenging research area are also briefly discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Tao Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
35
|
Gao Y, Huang Y, Ren C, Chou P, Wu C, Pan X, Quan G, Huang Z. Looking back, moving forward: protein corona of lipid nanoparticles. J Mater Chem B 2024; 12:5573-5588. [PMID: 38757190 DOI: 10.1039/d4tb00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.
Collapse
Affiliation(s)
- Yue Gao
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Yeqi Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chuanyu Ren
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Peiwen Chou
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| |
Collapse
|
36
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
37
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
38
|
Urbano-Gámez JD, Guzzi C, Bernal M, Solivera J, Martínez-Zubiaurre I, Caro C, García-Martín ML. Tumor versus Tumor Cell Targeting in Metal-Based Nanoparticles for Cancer Theranostics. Int J Mol Sci 2024; 25:5213. [PMID: 38791253 PMCID: PMC11121233 DOI: 10.3390/ijms25105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.
Collapse
Affiliation(s)
- Jesús David Urbano-Gámez
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - Cinzia Guzzi
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - Manuel Bernal
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Malaga, Spain
| | - Juan Solivera
- Department of Neurosurgery, Reina Sofia University Hospital, 14004 Cordoba, Spain;
| | - Iñigo Martínez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, 9037 Tromsö, Norway;
| | - Carlos Caro
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - María Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
39
|
Önal Acet B, Gül D, Stauber RH, Odabaşı M, Acet Ö. A Review for Uncovering the "Protein-Nanoparticle Alliance": Implications of the Protein Corona for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:823. [PMID: 38786780 PMCID: PMC11124003 DOI: 10.3390/nano14100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Understanding both the physicochemical and biological interactions of nanoparticles is mandatory for the biomedical application of nanomaterials. By binding proteins, nanoparticles acquire new surface identities in biological fluids, the protein corona. Various studies have revealed the dynamic structure and nano-bio interactions of the protein corona. The binding of proteins not only imparts new surface identities to nanoparticles in biological fluids but also significantly influences their bioactivity, stability, and targeting specificity. Interestingly, recent endeavors have been undertaken to harness the potential of the protein corona instead of evading its presence. Exploitation of this 'protein-nanoparticle alliance' has significant potential to change the field of nanomedicine. Here, we present a thorough examination of the latest research on protein corona, encompassing its formation, dynamics, recent developments, and diverse bioapplications. Furthermore, we also aim to explore the interactions at the nano-bio interface, paving the way for innovative strategies to advance the application potential of the protein corona. By addressing challenges and promises in controlling protein corona formation, this review provides insights into the evolving landscape of the 'protein-nanoparticle alliance' and highlights emerging.
Collapse
Affiliation(s)
- Burcu Önal Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray 68100, Turkey; (B.Ö.A.); (M.O.)
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
| | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray 68100, Turkey; (B.Ö.A.); (M.O.)
| | - Ömür Acet
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus 33100, Turkey
| |
Collapse
|
40
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
41
|
Ma Z, Zeng P, Zhai T, Zhao Y, Liang H. In Situ Mitochondrial Biomineralization for Drug-Free Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310218. [PMID: 38315577 DOI: 10.1002/adma.202310218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/13/2024] [Indexed: 02/07/2024]
Abstract
The common clinical chemotherapy often brings serious side effects to patients, mainly due to the off-target and leakage of toxic drugs. However, this is fatal for some specific clinical tumors, such as brain tumors and neuroma. This study performs a drug-free approach by encapsulating black phosphorus (BP) and calcium peroxide (CaO2) in liposomes with surface-modified triphenylphosphonium (BCLT) to develop mitochondria targeting calcification for cancer therapy without damaging normal cells. BCLT preferentially accumulates inside tumor mitochondria and then is activated by near-infrared (NIR) laser irradiation to produce abundant PO4 3- and Ca2+ to accelerate in situ mitochondrial mineralization, leading to mitochondrial dysfunction and cancer cell death. More importantly, both PO4 3- and Ca2+ are essential components of metabolism in the body, and random gradient diffusion or premature leakage does not cause damage to adjacent normal cells. This achievement promises to be an alternative to conventional chemotherapy in clinical practice for many specific tumor types.
Collapse
Affiliation(s)
- Zhaoyu Ma
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Pei Zeng
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
42
|
Elechalawar CK, Gulla SK, Roy RV, Means N, Zhang Y, Asifa S, Robertson DJ, Xu C, Bhattacharya R, Mukherjee P. Biodistribution and therapeutic efficacy of a gold nanoparticle-based targeted drug delivery system against pancreatic cancer. Cancer Lett 2024; 589:216810. [PMID: 38494151 PMCID: PMC11793163 DOI: 10.1016/j.canlet.2024.216810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Pancreatic cancer is characterized by desmoplasia; crosstalk between pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) leads to the deposition of extracellular matrix proteins in the tumor environment resulting in poor vascularity. Targeting either PCCs or PSCs individually has produced mixed results, and there is currently no effective strategy to target both cell types simultaneously. Previously, we demonstrated, through in vitro cell culture experiments, that a specific gold nanoparticle-based nanoformulation containing the anti-EGFR antibody cetuximab (C225) as a targeting agent and gemcitabine as a chemotherapeutic agent effectively targets both PCCs and PSCs simultaneously. Herein, we extend our studies to test the ability of these in vitro tested nano formulations to inhibit tumor growth in an orthotopic co-implantation model of pancreatic cancer in vivo. Orthotopic tumors were established by co-implantation of equal numbers of PCCs and PSCs in the mouse pancreas. Among the various formulations tested, 5 nm gold nanoparticles coated with gemcitabine, cetuximab and poly-ethylene glycol (PEG) of molecular weight 1000 Da, which we named ACGP441000, demonstrated optimal efficacy in inhibiting tumor growth. The current study reveals an opportunity to target PCCs and PSCs simultaneously, by exploiting their overexpression of EGFR as a target, in order to inhibit pancreatic cancer growth.
Collapse
Affiliation(s)
- Chandra Kumar Elechalawar
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Suresh Kumar Gulla
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ram Vinod Roy
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Nicolas Means
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yushan Zhang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sima Asifa
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - David J Robertson
- Department of Chemistry and University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
43
|
Luo Y, Liu H, Chen M, Zhang Y, Zheng W, Wu L, Liu Y, Liu S, Luo E, Liu X. Immunomodulatory nanomedicine for osteoporosis: Current practices and emerging prospects. Acta Biomater 2024; 179:13-35. [PMID: 38494082 DOI: 10.1016/j.actbio.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Osteoporosis results from the disruption of the balance between bone resorption and bone formation. However, classical anti-osteoporosis drugs exhibit several limitations in clinical applications, such as multiple adverse reactions and poor therapeutic effects. Therefore, there is an urgent need for alternative treatment strategies. With the evolution of immunomodulatory nanomedicine, a variety of nanomaterials have been designed for anti-osteoporosis treatment, offering prospects of minimal adverse reactions, enhanced bone induction, and high osteogenic activity. This review initially provides a brief overview of the fundamental principles of bone reconstruction, current osteogenic clinical methods in osteoporosis treatment, and the significance of osteogenic-angiogenic coupling, laying the groundwork for understanding the pathophysiology and therapeutics of osteoporosis. Subsequently, the article emphasizes the relationship between bone immunity and osteogenesis-angiogenesis coupling and provides a detailed analysis of the application of immunomodulatory nanomedicines in the treatment of osteoporosis, including various types of nanomaterials and their integration with carrier biomaterials. Importantly, we discuss the potential of some emerging strategies in immunomodulatory nanomedicine for osteoporosis treatment. This review introduces the innovative applications of immunomodulatory nanomedicine in the treatment of osteoporosis, aiming to serve as a reference for the application of immunomodulatory nanomedicine strategies in osteoporosis treatment. STATEMENT OF SIGNIFICANCE: Osteoporosis, as one of the most prevalent skeletal disorders, poses a significant threat to public health. To date, conventional anti-osteoporosis strategies have been limited in efficacy and plagued with numerous side effects. Fortunately, with the advancement of research in osteoimmunology and nanomedicine, strategies integrating these two fields show great promise in combating osteoporosis. Nanomedicine with immunomodulatory properties exhibits enhanced efficiency, prolonged effectiveness, and increased safety. However, as of now, there exists no comprehensive review amalgamating immunomodulation with nanomedicine to delineate the progress of immunomodulatory nanomedicine in osteoporosis treatment, as well as the future direction of this strategy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Wu
- College of Electronics Information and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
44
|
Marques C, Borchard G, Jordan O. Unveiling the challenges of engineered protein corona from the proteins' perspective. Int J Pharm 2024; 654:123987. [PMID: 38467206 DOI: 10.1016/j.ijpharm.2024.123987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
It is well known that protein corona affects the "biological identity" of nanoparticles (NPs), which has been seen as both a challenge and an opportunity. Approaches have moved from avoiding protein adsorption to trying to direct it, taking advantage of the formation of a protein corona to favorably modify the pharmacokinetic parameters of NPs. Although promising, the results obtained with engineered NPs still need to be completely understood. While much effort has been put into understanding how the surface of nanomaterials affects protein absorption, less is known about how proteins can affect corona formation due to their specific physicochemical properties. This review addresses this knowledge gap, examining key protein factors influencing corona formation, highlighting current challenges in studying protein-protein interactions, and discussing future perspectives in the field.
Collapse
Affiliation(s)
- Cintia Marques
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland.
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland
| |
Collapse
|
45
|
Zhang Y, Xiao W, He S, Xia X, Yang W, Yang Z, Hu H, Wang Y, Wang X, Li H, Huang Y, Gao H. Lipid-mediated protein corona regulation with increased apolipoprotein A-I recruitment for glioma targeting. J Control Release 2024; 368:42-51. [PMID: 38365180 DOI: 10.1016/j.jconrel.2024.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Protein corona has long been a source of concern, as it might impair the targeting efficacy of targeted drug delivery systems. However, engineered up-regulating the adsorption of certain functional serum proteins could provide nanoparticles with specific targeting drug delivery capacity. Herein, apolipoprotein A-I absorption increased nanoparticles (SPC-PLGA NPs), composed with the Food and Drug Administration approved intravenously injectable soybean phosphatidylcholine (SPC) and poly (DL-lactide-co-glycolide) (PLGA), were fabricated for enhanced glioma targeting. Due to the high affinity of SPC and apolipoprotein A-I, the percentage of apolipoprotein A-I in the protein corona of SPC-PLGA NPs was 2.19-fold higher than that of nanoparticles without SPC, which made SPC-PLGA NPs have superior glioma targeting ability through binding to scavenger receptor class BI on blood-brain barrier and glioma cells both in vitro and in vivo. SPC-PLGA NPs loaded with paclitaxel could effectively reduce glioma invasion and prolong the survival time of glioma-bearing mice. In conclusion, we provided a good example of the direction of achieving targeting drug delivery based on protein corona regulation.
Collapse
Affiliation(s)
- Yiwei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhihang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haili Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yushan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
46
|
El Mohamad M, Han Q, Clulow AJ, Cao C, Safdar A, Stenzel M, Drummond CJ, Greaves TL, Zhai J. Regulating the structural polymorphism and protein corona composition of phytantriol-based lipid nanoparticles using choline ionic liquids. J Colloid Interface Sci 2024; 657:841-852. [PMID: 38091907 DOI: 10.1016/j.jcis.2023.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Lipid-based lyotropic liquid crystalline nanoparticles (LCNPs) face stability challenges in biological fluids during clinical translation. Ionic Liquids (ILs) have emerged as effective solvent additives for tuning the structure of LCNP's and enhancing their stability. We investigated the effect of a library of 21 choline-based biocompatible ILs with 9 amino acid anions as well as 10 other organic/inorganic anions during the preparation of phytantriol (PHY)-based LCNPs, followed by incubation in human serum and serum proteins. Small angle X-ray scattering (SAXS) results show that the phase behaviour of the LCNPs depends on the IL concentration and anion structure. Incubation with human serum led to a phase transition from the inverse bicontinuous cubic (Q2) to the inverse hexagonal (H2) mesophase, influenced by the specific IL present. Liquid chromatography-mass spectrometry (LC-MS) and proteomics analysis of selected samples, including PHY control and those with choline glutamate, choline hexanoate, and choline geranate, identified abundant proteins in the protein corona, including albumin, apolipoproteins, and serotransferrin. The composition of the protein corona varied among samples, shedding light on the intricate interplay between ILs, internal structure and surface chemistry of LCNPs, and biological fluids.
Collapse
Affiliation(s)
- Mohamad El Mohamad
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Qi Han
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aneeqa Safdar
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
47
|
Al-Madani H, Yang Y, Refat M, He Q, Peng H, Wu A, Yang F. Quantification and biological evaluation of Zn xFe 3-xO 4 nanoparticle stiffness in a drug delivery system of MCF-7 cancer cells. J Mater Chem B 2024; 12:1636-1651. [PMID: 38270595 DOI: 10.1039/d3tb02723f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The delivery of nanoparticles (NPs) to tumors remains challenging despite significant advancements in drug delivery technologies. Addressing this issue requires the establishment of quantitative and reliable criteria to evaluate the cellular absorption of NPs. The mechanical characteristics of NPs and their interaction with cells play a crucial role in cellular drug delivery by influencing cellular internalization. In particular, NPs' stiffness has emerged as a key factor affecting cellular uptake and viability. In this study, we synthesized ZnxFe3-xO4 NPs with varying Zn doping concentrations and conducted an extensive measurement process to investigate the impact of NP stiffness on cellular uptake and the viability of cancerous cells. Initially, the stiffness of the NPs was measured using two methods: single-molecule force spectrometry of atomic force microscopy (SMFS-AFM) and cation distribution as chemical structure analysis. The influence of NP stiffness on intracellular behavior was examined by assessing cellular uptake and viability at different time points during the incubation period. The results obtained from both stiffness measurement methods exhibited consistent trends. NPs with higher stiffness exhibited enhanced cellular uptake but exhibited reduced cellular viability compared to the lower-stiffness NPs. Our findings provide valuable insights into the influence of Zn doping concentration on the mechanical properties of ZnxFe3-xO4 NPs and their consequential impacts on cellular internalization. This study contributes to an improved comprehension of the mechanisms underlying cellular uptake and facilitates advancements in the field of drug transport, thereby enhancing the efficiency of NP-based drug delivery.
Collapse
Affiliation(s)
- Hamzah Al-Madani
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiqian Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Moath Refat
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Qingxin He
- Guangxi Vocational & Technical Institute of Industry, Guangxi 530001, P. R. China
| | - Hao Peng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China.
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China.
| |
Collapse
|
48
|
Grundler J, Shin K, Suh HW, Whang CH, Fulgoni G, Pierce RW, Saltzman WM. Nanoscale Surface Topography of Polyethylene Glycol-Coated Nanoparticles Composed of Bottlebrush Block Copolymers Prolongs Systemic Circulation and Enhances Tumor Uptake. ACS NANO 2024; 18:2815-2827. [PMID: 38227820 DOI: 10.1021/acsnano.3c05921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Improving the performance of nanocarriers remains a major challenge in the clinical translation of nanomedicine. Efforts to optimize nanoparticle formulations typically rely on tuning the surface density and thickness of stealthy polymer coatings, such as poly(ethylene glycol) (PEG). Here, we show that modulating the surface topography of PEGylated nanoparticles using bottlebrush block copolymers (BBCPs) significantly enhances circulation and tumor accumulation, providing an alternative strategy to improve nanoparticle coatings. Specifically, nanoparticles with rough surface topography achieve high tumor cell uptake in vivo due to superior tumor extravasation and distribution compared to conventional smooth-surfaced nanoparticles based on linear block copolymers. Furthermore, surface topography profoundly impacts the interaction with serum proteins, resulting in the adsorption of fundamentally different proteins onto the surface of rough-surfaced nanoparticles formed from BBCPs. We envision that controlling the nanoparticle surface topography of PEGylated nanoparticles will enable the design of improved nanocarriers in various biomedical applications.
Collapse
Affiliation(s)
| | - Kwangsoo Shin
- Department of Polymer Science & Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | | | | | | | | | | |
Collapse
|
49
|
Jin X, Wu H, Yu J, Cao Y, Zhang L, Zhang Z, Lv H. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles. J Control Release 2024; 365:802-817. [PMID: 38092255 DOI: 10.1016/j.jconrel.2023.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Melittin (M) has attracted increasing attention for its significant antitumor effects and various immunomodulatory effects. However, various obstacles such as the short plasma half-life and adverse reactions restrict its application. This study aimed to systematically investigate the self-assembly mechanism, components of the protein corona, targeting behavior, and anti-4 T1 tumor effect of vitamin E-succinic acid-(glutamate)n /melittin nanoparticles with varying amounts of glutamic acid. Here, we present a new vitamin E-succinic acid-(glutamate)5 (E5), vitamin E-succinic acid-(glutamate)10 (E10) or vitamin E-succinic acid-(glutamate)15 (E15), and their co-assembly system with positively charged melittin in water. The molecular dynamics simulations demonstrated that the electrostatic energy and van der Waals force in the system decreased significantly with the increase in the amount of glutamic acid. The melittin and E15 system exhibited the optimal stability for nanoparticle self-assembly. When nanoparticles derived from different self-assembly systems were co-incubated with plasma from patients with breast cancer, the protein corona showed heterogeneity. In vivo imaging demonstrated that an increase in the number of glutamic acid residues enhanced circulation duration and tumor-targeting effects. Both in vitro and in vivo antitumor evaluation indicated a significant increase in the antitumor effect with the addition of glutamic acid. According to our research findings, the number of glutamic acid residues plays a crucial role in the targeted delivery of melittin for immunomodulation and inhibition of 4 T1 breast cancer. Due to the self-assembly capabilities of vitamin E-succinic acid-(glutamate)n in water, these nanoparticles carry significant potential for delivering cationic peptides such as melittin.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Pharmaceutics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - Hangyi Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jie Yu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yanni Cao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lanyi Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China.
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
50
|
Paez-Muñoz JM, Gámez F, Fernández-Afonso Y, Gallardo R, Pernia Leal M, Gutiérrez L, de la Fuente JM, Caro C, García-Martín ML. Optimization of iron oxide nanoparticles for MRI-guided magnetic hyperthermia tumor therapy: reassessing the role of shape in their magnetocaloric effect. J Mater Chem B 2023; 11:11110-11120. [PMID: 37947078 DOI: 10.1039/d3tb01821k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Superparamagnetic iron oxide nanoparticles have hogged the limelight in different fields of nanotechnology. Surprisingly, notwithstanding the prominent role played as agents in magnetic hyperthermia treatments, the effects of nanoparticle size and shape on the magnetic hyperthermia performance have not been entirely elucidated yet. Here, spherical or cubical magnetic nanoparticles synthesized by a thermal decomposition method with the same magnetic and hyperthermia properties are evaluated. Interestingly, spherical nanoparticles displayed significantly higher magnetic relaxivity than cubic nanoparticles; however, comparable differences were not observed in specific absorption rate (SAR), pointing out the need for additional research to better understand the connection between these two parameters. Additionally, the as-synthetized spherical nanoparticles showed negligible cytotoxicity and, therefore, were tested in vivo in tumor-bearing mice. Following intratumoral administration of these spherical nanoparticles and a single exposure to alternating magnetic fields (AMF) closely mimicking clinical conditions, a significant delay in tumor growth was observed. Although further in vivo experiments are warranted to optimize the magnetic hyperthermia conditions, our findings support the great potential of these nanoparticles as magnetic hyperthermia mediators for tumor therapy.
Collapse
Affiliation(s)
- José María Paez-Muñoz
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - Francisco Gámez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Yilian Fernández-Afonso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Química Analítica, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Roberto Gallardo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Química Analítica, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| | - Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - María Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|