1
|
Benemei S, Gatto F, Marcucci R, Gresele P. Emerging Thrombotic Disorders Associated with Virus-Based Innovative Therapies: From VITT to AAV Gene Therapy-Related Thrombotic Microangiopathy. Thromb Haemost 2025; 125:513-522. [PMID: 39260400 DOI: 10.1055/a-2413-4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Gene therapy is a promising therapeutic approach for treating life-threatening disorders. Despite the clinical improvements observed with gene therapy, immune responses either innate or adaptive against the vector used for gene delivery, can affect treatment efficacy and lead to adverse reactions. Thrombotic microangiopathy (TMA) is a thrombosis with thrombocytopenia syndrome (TTS) characterized by microangiopathic hemolytic anemia, thrombocytopenia, and small vessel occlusion known to be elicited by several drugs, that has been recently reported as an adverse event of adeno-associated virus (AAV)-based gene therapy. TMA encompasses a heterogenous group of disorders, its classification and underlining mechanisms are still uncertain, and still lacks validated biomarkers. The identification of predictors of TMA, such as vector dose and patient characteristics, is a pressing need to recognize patients at risk before and after AAV-based gene therapy administration. This review aims to explore the literature on TMA associated with AAV-based gene therapy in the larger context of TMA (i.e., hemolytic-uremic syndrome, thrombotic thrombocytopenic purpura, and other drug-related TMAs). Considering the wide attention recently gained by another TTS associated with a non-gene therapy viral platform (adenovirus, AV COVID-19 vaccine), namely vaccine-induced immune thrombocytopenia and thrombosis (VITT), AAV gene therapy-related TMA mechanisms will be discussed and differentiated from those of VITT to avoid recency bias and favor a correct positioning of these two recently emerged syndromes within the heterogenous group of drug-related TTS. Finally, the review will discuss strategies for enhancing the safety and optimize the management of AAV-based gene therapy that is emerging as an efficacious therapeutic option for disparate, severe, and often orphan conditions.
Collapse
Affiliation(s)
| | | | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence and Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Kaiser R, Gold C, Stark K. Recent Advances in Immunothrombosis and Thromboinflammation. Thromb Haemost 2025. [PMID: 40311639 DOI: 10.1055/a-2523-1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Inflammation and thrombosis are traditionally considered two separate entities of acute host responses to barrier breaks. While inciting inflammatory responses is a prerequisite to fighting invading pathogens and subsequent restoration of tissue homeostasis, thrombus formation is a crucial step of the hemostatic response to prevent blood loss following vascular injury. Though originally designed to protect the host, excessive induction of either inflammatory signaling or thrombus formation and their reciprocal activation contribute to a plethora of disorders, including cardiovascular, autoimmune, and malignant diseases. In this state-of-the-art review, we summarize recent insights into the intricate interplay of inflammation and thrombosis. We focus on the protective aspects of immunothrombosis as well as evidence of detrimental sequelae of thromboinflammation, specifically regarding recent studies that elucidate its pathophysiology beyond coronavirus disease 2019 (COVID-19). We introduce recently identified molecular aspects of key cellular players like neutrophils, monocytes, and platelets that contribute to both immunothrombosis and thromboinflammation. Further, we describe the underlying mechanisms of activation involving circulating plasma proteins and immune complexes. We then illustrate how these factors skew the inflammatory state toward detrimental thromboinflammation across cardiovascular as well as septic and autoimmune inflammatory diseases. Finally, we discuss how the advent of new technologies and the integration with clinical data have been used to investigate the mechanisms and signaling cascades underlying immunothrombosis and thromboinflammation. This review highlights open questions that will need to be addressed by the field to translate our mechanistic understanding into clinically meaningful therapeutic targeting.
Collapse
Affiliation(s)
- Rainer Kaiser
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christoph Gold
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
3
|
Zlamal J, Ripoll VM, Lee CS, Toma F, Althaus K, Rigoni F, Witzemann A, Whittaker S, Capraro D, Uzun G, Bakchoul T, Chen VM. Platelet spleen tyrosine kinase is a key regulator of anti-PF4 antibody-induced immunothrombosis. Blood Adv 2025; 9:1772-1785. [PMID: 39705541 PMCID: PMC12008526 DOI: 10.1182/bloodadvances.2024014167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 12/22/2024] Open
Abstract
ABSTRACT Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but serious prothrombotic adverse event after vaccination with adenovector-based COVID-19 vaccines. Laboratory findings indicate that anti-platelet factor 4 (PF4) immunoglobulin G antibodies are the causing factor for the onset of thromboembolic events in VITT. However, molecular mechanisms of cellular interactions, signaling pathways and involvement of different cell types in VITT antibody-mediated thrombosis are not fully understood. Moreover, uncertainty exists regarding current treatment protocols because the sole anticoagulation was shown to be inefficient to prevent thrombosis progression in severe VITT cases. In this study, we demonstrate that platelet spleen tyrosine kinase (SYK) modulates anti-PF4 VITT-mediated thrombus formation in an ex vivo model of immunothrombosis. Our study showed that the selective inhibition of SYK can abrogate VITT antibody-driven procoagulant platelet formation, activation of plasmatic coagulation as well as platelet-leukocyte interplay. Most importantly, the specific inhibition of SYK in platelets but not in neutrophils prevented VITT antibody-induced multicellular thrombus formation, without perturbing the platelet function. Our findings indicate that the specific targeting of platelet SYK might be a promising therapeutic approach to prevent thrombotic complications in patients with antibody-mediated immunothrombosis.
Collapse
Affiliation(s)
- Jan Zlamal
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, Tuebingen, Germany
- Centre for Clinical Transfusion Medicine, Tübingen, Germany
| | - Vera M. Ripoll
- ANZAC Research Institute, Sydney Local Health District, Sydney, New South Wales, Australia
- Department of Haematology, Concord Repatriation General Hospital and New South Wales Health Pathology, Sydney, New South Wales, Australia
- Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Christine S.M. Lee
- ANZAC Research Institute, Sydney Local Health District, Sydney, New South Wales, Australia
- Department of Haematology, Concord Repatriation General Hospital and New South Wales Health Pathology, Sydney, New South Wales, Australia
- Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Filip Toma
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, Tuebingen, Germany
| | - Karina Althaus
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, Tuebingen, Germany
- Centre for Clinical Transfusion Medicine, Tübingen, Germany
| | - Flavianna Rigoni
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, Tuebingen, Germany
- Centre for Clinical Transfusion Medicine, Tübingen, Germany
| | - Andreas Witzemann
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, Tuebingen, Germany
| | - Shane Whittaker
- ANZAC Research Institute, Sydney Local Health District, Sydney, New South Wales, Australia
- Department of Haematology, Concord Repatriation General Hospital and New South Wales Health Pathology, Sydney, New South Wales, Australia
- Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - David Capraro
- ANZAC Research Institute, Sydney Local Health District, Sydney, New South Wales, Australia
| | - Günalp Uzun
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, Tuebingen, Germany
- Centre for Clinical Transfusion Medicine, Tübingen, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, Tuebingen, Germany
- Centre for Clinical Transfusion Medicine, Tübingen, Germany
| | - Vivien M. Chen
- ANZAC Research Institute, Sydney Local Health District, Sydney, New South Wales, Australia
- Department of Haematology, Concord Repatriation General Hospital and New South Wales Health Pathology, Sydney, New South Wales, Australia
- Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Remez-Gabay L, Vdovich O, Akria L, Kruzel-Davila E. Case Report: Anti-platelet factor 4 -mediated immunothrombosis in a patient with ANCA vasculitis - a shared mechanism of NETosis. Front Immunol 2025; 16:1567999. [PMID: 40276517 PMCID: PMC12018223 DOI: 10.3389/fimmu.2025.1567999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Anti-platelet factor 4 (PF4) immunothrombosis is characterized by thrombocytopenia, thrombosis and enhanced NETosis and has been described in the absence of prior heparin exposure. This case report describes a patient with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) who, while under immunosuppression, developed anti-PF4-mediated immunothrombosis, with NETosis significantly elevated compared to baseline markers observed during AAV. Treatment with intravenous immunoglobulin (IVIG) led to resolution of the syndrome, marked by a reduction in NETosis markers, restoration of platelet counts, and alleviation of the hypercoagulable state. We review the epidemiology, pathogenesis, clinical manifestations, and management strategies of thrombotic anti-PF4 immune disorders, highlighting the roles of AAV and dysregulated NETosis as key triggers. Early recognition of anti-PF4-mediated immunothrombosis without prior heparin exposure is critical, as prompt treatment with IVIG and direct thrombin inhibitors can significantly improve outcomes. This case underscores the interplay between NETosis, ANCA vasculitis, and thrombotic anti-PF4 immune disorders, emphasizing the therapeutic potential of IVIG in mitigating NETosis-related complications.
Collapse
Affiliation(s)
- Lital Remez-Gabay
- Nephrology Laboratory, Research Institute, Galilee Medical Center, Nahariya, Israel
- Nephrology Department, Galilee Medical Center, Nahariya, Israel
| | - Olga Vdovich
- Nephrology Department, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
| | - Luiza Akria
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
- Hematology Unit, Galilee Medical Center, Nahariya, Israel
| | - Etty Kruzel-Davila
- Nephrology Laboratory, Research Institute, Galilee Medical Center, Nahariya, Israel
- Nephrology Department, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
| |
Collapse
|
5
|
Petito E, Gresele P. Vaccine-Induced Immune Thrombotic Thrombocytopenia Two Years Later: Should It Still Be on the Scientific Agenda? Thromb Haemost 2025; 125:97-107. [PMID: 37285904 DOI: 10.1055/a-2107-0891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) was recognized around 2 years ago, at the beginning of the anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) vaccination campaign, as a rare but life-threatening complication of adenoviral vector vaccines. Two years later, the coronavirus disease 2019 (COVID-19) pandemic has been tamed, although not defeated, and the vaccines provoking VITT have been abandoned in most high-income countries, thus why should we still speak about VITT? Because a significant fraction of the world population has not been vaccinated yet, especially in low/middle-income countries that can only afford adenoviral vector-based vaccines, because the adenoviral vector platform is being used for the development of a large series of new vaccines for other transmissible diseases, and lastly because there are some clues suggesting that VITT may not be exclusive to anti-SARS-CoV-2 vaccines. Therefore, a deep understanding of this new syndrome is highly warranted as well as the awareness that we still miss some crucial insight into its pathophysiology and on some aspects of its management. This snapshot review aims to portray our knowledge on VITT, focusing on its clinical presentation, pathophysiological insight, diagnostic and management strategies, and to pinpoint the main unmet needs, highlighting the aspects on which research should focus in the near future.
Collapse
MESH Headings
- Humans
- COVID-19 Vaccines/adverse effects
- COVID-19/prevention & control
- COVID-19/immunology
- SARS-CoV-2/immunology
- Purpura, Thrombocytopenic, Idiopathic/diagnosis
- Purpura, Thrombocytopenic, Idiopathic/therapy
- Purpura, Thrombocytopenic, Idiopathic/chemically induced
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Vaccination/adverse effects
Collapse
Affiliation(s)
- Eleonora Petito
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Stevens H, McFadyen JD, Mellett NA, Lynn DJ, Duong T, Giles C, James J, Botten R, Eden G, Lynn M, Monagle P, Meikle PJ, Chunilal S, Peter K, Tran H. Beyond platelet activation: dysregulated lipid metabolism in defining risk and pathophysiology of VITT. Res Pract Thromb Haemost 2025; 9:102677. [PMID: 40041449 PMCID: PMC11879676 DOI: 10.1016/j.rpth.2025.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 03/06/2025] Open
Abstract
Background VITT has emerged as a rare but serious adverse event linked primarily to adenoviral vector COVID-19 vaccinations, such as ChAdOx1-S (Oxford/AstraZeneca) vaccination. The syndrome is characterized by thrombosis with thrombocytopenia, elevated D-dimer, and pathologic platelet factor 4 antibodies within 42 days of vaccination. Objectives Despite dysregulated lipid metabolism underpinning many thrombotic conditions, the role of lipid alterations in VITT remains unexplored. Here, we examined the plasma lipidome of patients with VITT and compared it with those following ChAdOx1-S vaccination and with unprovoked venous thromboembolism (VTE) to understand the role of lipids in VITT pathophysiology. Methods This was a multicenter, prospective cohort study evaluating plasma lipidomics in newly diagnosed VITT samples, which were compared with both healthy controls following ChAdOx1-S vaccination and with unprovoked VTE. Results Comparison with ChAdOx1-S controls reveals a distinct lipid signature in VITT, characterized by elevations in phosphatidylserine and ceramide species, alongside reductions in several plasmalogens and acylcarnitine species. Notably, similarities between VITT lipid profiles and insulin resistance phenotypes suggest potential metabolic susceptibility. While few significant associations were found between VITT and VTE, an inverse correlation with several acylcarnitine species was demonstrated. Given the known anticoagulant role of acylcarnitine species, these findings suggest a plausible mechanistic pathway elevating the thrombotic potential of VITT above that of standard VTE. Conclusion These findings underscore the important role of lipid metabolism in VITT pathophysiology and highlight the complex interplay between lipids, coagulation, and pathologic thrombosis.
Collapse
Affiliation(s)
- Hannah Stevens
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - James D. McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Natalie A. Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David J. Lynn
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Thy Duong
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Corey Giles
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jane James
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Rochelle Botten
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Georgina Eden
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Miriam Lynn
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Paul Monagle
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Haematology Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Haematology, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Peter J. Meikle
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - Sanjeev Chunilal
- Department of Haematology, Monash Health, Clayton, Victoria, Australia
- School of Clinical Sciences, Monash Health, Monash University, Clayton, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Huyen Tran
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Müller L, Dabbiru VAS, Rutten L, Bos R, Zahn R, Handtke S, Thiele T, Palicio M, Esteban O, Broto M, Gordon TP, Greinacher A, Wang JJ, Schönborn L. Recombinant Anti-PF4 Antibodies Derived from Patients with Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT) Facilitate Research and Laboratory Diagnosis of VITT. Vaccines (Basel) 2024; 13:3. [PMID: 39852782 PMCID: PMC11769302 DOI: 10.3390/vaccines13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Adenoviral vector-based vaccines against COVID-19 rarely cause vaccine-induced immune thrombocytopenia and thrombosis (VITT), a severe adverse reaction caused by IgG antibodies against platelet factor 4 (PF4). To study VITT, patient samples are crucial but have become a scarce resource. Recombinant antibodies (rAbs) derived from VITT patient characteristic amino acid sequences of anti-PF4 IgG are an alternative to study VITT pathophysiology. METHODS Amino acid sequences of the variable region of immunoglobulin light and heavy chain of anti-PF4 IgG derived from VITT patients were obtained by mass spectrometry sequencing and rAbs were synthetized by reverse-engineering. Six different rAbs were produced: CR23003, CR23004, and CR23005 (from a patient vaccinated with Jcovden, Johnson & Johnson-Janssen (Beerse, Belgium)), CR22046, and CR22050 and CR22066 (from two different patients vaccinated with Vaxzevria, AstraZeneca (Cambridge, UK)). These rAbs were further characterized using anti-PF4 and anti-PF4/heparin IgG ELISAs, rapid anti-PF4 and anti-PF4/polyanion chemiluminescence assays, and PF4-induced platelet activation assay (PIPA) and their capacity to induce procoagulant platelets. RESULTS rAbs bound to PF4 alone, but not to PF4/polyanion complexes in rapid chemiluminescence assays. Chemiluminescence assays and both anti-PF4 IgG and anti-PF4 IgG/heparin ELISA showed concentration-dependent PF4 binding of all six rAbs, however, with different reactivities among them. PIPA showed a similar, concentration-dependent platelet activation pattern. rAbs varied in their reactivity and the majority of the tested rAbs were able to induce procoagulant platelets. CONCLUSIONS The six rAbs derived from VITT patients reflect VITT-typical binding capacities and the ability to activate platelets. Therefore, these rAbs offer an attractive new option to study VITT pathophysiology.
Collapse
Affiliation(s)
- Luisa Müller
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Venkata A. S. Dabbiru
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Lucy Rutten
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands; (L.R.); (R.B.); (R.Z.)
| | - Rinke Bos
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands; (L.R.); (R.B.); (R.Z.)
| | - Roland Zahn
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands; (L.R.); (R.B.); (R.Z.)
| | - Stefan Handtke
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Thomas Thiele
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Marta Palicio
- Werfen, Lliçà d’Amunt, 08186 Barcelona, Spain; (M.P.); (M.B.)
| | - Olga Esteban
- Werfen, Lliçà d’Amunt, 08186 Barcelona, Spain; (M.P.); (M.B.)
| | - Marta Broto
- Werfen, Lliçà d’Amunt, 08186 Barcelona, Spain; (M.P.); (M.B.)
| | - Tom Paul Gordon
- Department of Immunology, College of Medicine and Public Health, Flinders University and SA Pathology, Bedford Park, Adelaide, SA 5042, Australia; (T.P.G.); (J.J.W.)
| | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| | - Jing Jing Wang
- Department of Immunology, College of Medicine and Public Health, Flinders University and SA Pathology, Bedford Park, Adelaide, SA 5042, Australia; (T.P.G.); (J.J.W.)
| | - Linda Schönborn
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (L.M.); (V.A.S.D.); (S.H.); (T.T.); (A.G.)
| |
Collapse
|
8
|
Kristyanto H, Slaets L, Braams E, Scheys I, Heesbeen R, Cárdenas V, Shukarev G, Scheper G, Sadoff J, Lühn K, Schuitemaker H, Struyf F, Hendriks J. Assessment of antibodies against platelet factor 4 following vaccination with adenovirus type 26-vectored vaccines. J Thromb Haemost 2024; 22:3532-3541. [PMID: 39278600 DOI: 10.1016/j.jtha.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare adverse event identified following vaccination with some adenovirus-vectored COVID-19 vaccines, including Ad26.COV2.S. VITT is characterized by the presence of antibodies against platelet factor 4 (PF4). OBJECTIVES To evaluate whether PF4 antibodies were generally induced following vaccination with adenovirus type 26 (Ad26)-vectored vaccines. METHODS The study included 913 and 991 healthy participants without thromboembolic (TE) events in Ad26.COV2.S and non-COVID-19 Ad26-vectored vaccine clinical studies, respectively, and 1 participant with VITT following Ad26.COV2.S vaccination. PF4 antibody levels were measured in prevaccination and postvaccination sera. PF4 antibody positivity rates were assessed in a case-control setting in participants who developed TE events during participation in Ad26-vectored vaccine clinical studies. RESULTS In the 1 VITT patient, PF4 antibodies were negative before vaccination. Seroconversion for platelet-activating PF4 antibodies was observed upon Ad26.COV2.S vaccination. In participants without TE events, the PF4 antibody levels and positivity rates were similar before and after Ad26 vaccination. Ad26 vaccination did not increase PF4 antibody levels in participants who were PF4 antibody-positive at baseline (n = 47). Lastly, 1 out of 28 TE cases and 2 out of 156 non-TE controls seroconverted after Ad26.COV2.S vaccination. None of the 15 TE cases and 3 of the 77 non-TE controls seroconverted following non-COVID-19 Ad26 vaccination. CONCLUSION Ad26.COV2.S and the other Ad26-vectored vaccines studied did not generally induce PF4 antibodies or increase preexisting PF4 antibody levels. Moreover, unlike VITT, TE events that occurred at any time following Ad26 vaccination were not associated with PF4 antibodies.
Collapse
Affiliation(s)
| | - Leen Slaets
- Janssen Research & Development, Beerse, Belgium
| | - Esmée Braams
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Ilse Scheys
- Janssen Research & Development, Beerse, Belgium
| | - Roy Heesbeen
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Vicky Cárdenas
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Gert Scheper
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Jerald Sadoff
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Kerstin Lühn
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | - Jenny Hendriks
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands.
| |
Collapse
|
9
|
Smith PP, Chicca IJ, Heaney JLJ, Muchova M, Khanim FL, Shields AM, Drayson MT, Chapple ILC, Hirschfeld J. Paracetamol suppresses neutrophilic oxygen radicals through competitive inhibition and scavenging. Chem Biol Interact 2024; 404:111283. [PMID: 39428054 DOI: 10.1016/j.cbi.2024.111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Neutrophils, pivotal cells of innate and adaptive immune responses, employ reactive oxygen species (ROS) to combat pathogens and control gene expression. Paracetamol (acetaminophen) is widely used as an analgesic and antipyretic medication, yet its precise mechanisms of action are not yet fully understood. Here, we investigate the impact of both ingested and in-vitro paracetamol on neutrophil ROS activity, using flow cytometry and antioxidant assays. Our studies reveal that paracetamol significantly suppresses ROS activity ex-vivo in the short term. Additionally, both paracetamol and its metabolite N-acetyl-p-benzoquinone imine exhibited direct in vitro antioxidant effects, and paracetamol suppressed neutrophil extracellular trap formation ex vivo. These findings suggest a connection between paracetamol use and altered neutrophil responses, with potential implications for use in some patient groups, such as immunocompromised individuals. Further investigation into paracetamol's effects on neutrophil antimicrobial functions is warranted to elucidate possible risks, particularly when taken frequently or in conjunction with other treatments such as vaccinations.
Collapse
Affiliation(s)
- Peter P Smith
- College of Medicine and Health, School of Health Sciences, Dentistry, Periodontal Research Group, University of Birmingham, Birmingham, UK
| | - Ilaria J Chicca
- College of Medical and Health, School of Infection, Inflammation and Immunology, Clinical Immunology Service, University of Birmingham, Birmingham, UK
| | - Jennifer L J Heaney
- College of Medical and Health, School of Infection, Inflammation and Immunology, Clinical Immunology Service, University of Birmingham, Birmingham, UK
| | - Maria Muchova
- College of Medicine and Health, School of Health Sciences, Dentistry, Periodontal Research Group, University of Birmingham, Birmingham, UK
| | - Farhat L Khanim
- College of Medical and Health, School of Infection, Inflammation and Immunology, Clinical Immunology Service, University of Birmingham, Birmingham, UK
| | - Adrian M Shields
- College of Medical and Health, School of Infection, Inflammation and Immunology, Clinical Immunology Service, University of Birmingham, Birmingham, UK
| | - Mark T Drayson
- College of Medical and Health, School of Infection, Inflammation and Immunology, Clinical Immunology Service, University of Birmingham, Birmingham, UK
| | - Iain L C Chapple
- College of Medicine and Health, School of Health Sciences, Dentistry, Periodontal Research Group, University of Birmingham, Birmingham, UK; Birmingham NIHR Biomedical Research Centre in Inflammation, University of Birmingham, Birmingham, UK.
| | - Josefine Hirschfeld
- College of Medicine and Health, School of Health Sciences, Dentistry, Periodontal Research Group, University of Birmingham, Birmingham, UK; Birmingham NIHR Biomedical Research Centre in Inflammation, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Leung HHL, Ahmadi Z, Lee B, Casey J, Ratnasingam S, McKenzie SE, Perdomo J, Chong BH. Antithrombotic efficacy and bleeding risks of vaccine-induced immune thrombotic thrombocytopenia treatments. Blood Adv 2024; 8:5744-5752. [PMID: 39293086 PMCID: PMC11599978 DOI: 10.1182/bloodadvances.2024013883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
ABSTRACT Current guidelines for treating vaccine-induced immune thrombotic thrombocytopenia (VITT) recommend nonheparin anticoagulants and IV immunoglobulin (IVIg). However, the efficacy of these treatments remains uncertain due to case studies involving small patient numbers, confounding factors (eg, concurrent treatments), and a lack of animal studies. A recent study proposed danaparoid and heparin as potential VITT therapies because of their ability to disrupt VITT IgG-platelet factor 4 (PF4) binding. Here, we examined the effects of various anticoagulants (including unfractionated [UF] heparin, danaparoid, bivalirudin, fondaparinux, and argatroban), IVIg, and the FcγRIIa receptor-blocking antibody, IV.3. Our investigation focused on VITT IgG-PF4 binding, platelet activation, thrombocytopenia, and thrombosis. Danaparoid, at therapeutic doses, was the sole anticoagulant that reduced VITT IgG-PF4 binding, verified by affinity-purified anti-PF4 VITT IgG. Although danaparoid and high-dose UF heparin (10 U/mL) inhibited platelet activation, none of the anticoagulants significantly affected thrombocytopenia in our VITT animal model and all prolonged bleeding time. IVIg and all anticoagulants except UF heparin protected the VITT mice from thrombosis. Direct FcγRIIa receptor inhibition with IV.3 antibody is an effective approach for managing both thrombosis and thrombocytopenia in the VITT mouse model. Our results underscore the necessity of animal model investigations to inform and better guide clinicians on treatment choices. This study provides compelling evidence for the development of FcγRIIa receptor blockers to prevent thrombosis in VITT and other FcγRIIa-related inflammatory disorders.
Collapse
Affiliation(s)
- Halina H. L. Leung
- Department of Haematology, St. George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Zohra Ahmadi
- Department of Haematology, St. George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Brendan Lee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - John Casey
- Department of Haematology, Townsville University Hospital and Health Service, Townsville, QLD, Australia
| | - Sumita Ratnasingam
- Department of Haematology, University Hospital Geelong, Geelong, VIC, Australia
| | - Steven E. McKenzie
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | - Jose Perdomo
- Department of Haematology, St. George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Beng H. Chong
- Department of Haematology, St. George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, New South Wales Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
11
|
Bokel J, Martins-Gonçalves R, Grinsztejn E, Mendes-de-Almeida DP, Hoagland B, Cardoso SW, Geraldo KM, Coutinho SN, Georg I, Oliveira MH, Dos Santos Souza F, Sacramento CQ, Rozini SV, Vizzoni AG, Veloso V, Bozza PT, Grinsztejn B. Anti-PF4 positivity and platelet activation after Ad26.COV2·S vaccination in Brazil. Vaccine 2024; 42:126175. [PMID: 39107160 DOI: 10.1016/j.vaccine.2024.126175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
INTRODUCTION The Ad26.COV2·S (Janssen/Johnson & Johnson) COVID-19 vaccine, has been rarely associated with vaccine-induced immune thrombocytopenia and thrombosis (VITT). We investigated the prevalence of anti-PF4 antibody positivity, thrombocytopenia, D-dimer elevation, plasmatic thromboinflammatory markers, and platelet functional assays following Ad26.COV2·S vaccination in Rio de Janeiro, Brazil. METHODS From July to September 2021, participants were assessed prior, 1, and 3 weeks post-vaccination. Platelet count and D-dimer were measured at each visit and anti-PF4 at week 3. A positive anti-PF4 prompted retrospective testing of the sample from week 0. Individuals with new thrombocytopenia or elevated D-dimer, positive anti-PF4, and 38 matched controls without laboratory abnormalities were evaluated for plasmatic p-selectin, tissue factor, and functional platelet activation assays. RESULTS 630 individuals were included; 306 (48.57%) females, median age 28 years. Forty-two (6.67%) presented ≥1 laboratory abnormality in week 1 or 3. Five (0.79%) had thrombocytopenia, 31 (4.91%) elevated D-dimer, and 9 (1.57%) had positive anti-PF4 at week 3. Individuals with laboratory abnormalities and controls showed a slight increase in plasmatic p-selectin and tissue factor. Ten individuals with laboratory abnormalities yielded increased surface expression of p-selectin, and their ability to activate platelets in a FcγRIIa dependent manner was further evaluated. Two were partially inhibited by high concentrations of heparin and blockage of FcγRII with IV.3 antibody. Plasma obtained before vaccination produced similar results, suggesting a lack of association with vaccination. CONCLUSIONS Vaccination with Ad26.COV2·S vaccine led to a very low frequency of low-titer positive anti-PF4 antibodies, elevation of D-dimer, and mild thrombocytopenia, with no associated clinically relevant increase in thromboinflammatory markers and platelet activation.
Collapse
Affiliation(s)
- Joanna Bokel
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| | | | | | - Daniela P Mendes-de-Almeida
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Sandra Wagner Cardoso
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Kim Mattos Geraldo
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Sandro Nazer Coutinho
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ingebourg Georg
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Maria Helena Oliveira
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Flávia Dos Santos Souza
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Q Sacramento
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Stephane V Rozini
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Alexandre G Vizzoni
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Valdiléa Veloso
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Kalinin V, Padnya P, Stoikov I. Romanowsky staining: history, recent advances and future prospects from a chemistry perspective. Biotech Histochem 2024; 99:1-20. [PMID: 37929609 DOI: 10.1080/10520295.2023.2273860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Romanowsky staining was an important methodological breakthrough in diagnostic hematology and cytopathology during the late 19th and early 20th centuries; it has facilitated for decades the work of biologists, hematologists and pathologists working with blood cells. Despite more than a century of studying Romanowsky staining, no systematic review has been published that explains the chemical processes that produce the "Romanowsky effect" or "Romanowsky-Giemsa effect" (RGE), i.e., a purple coloration arising from the interaction of an azure dye with eosin and not due merely to their simultaneous presence. Our review is an attempt to build a bridge between chemists and biomedical scientists and to summarize the available data on methylene blue (MB) demethylation as well as the related reduction and decomposition of MB to simpler compounds by both light and enzyme systems and microorganisms. To do this, we analyze modern data on the mechanisms of MB demethylation both in the presence of acids and bases and by disproportionation due to the action of light. We also offer an explanation for why the RGE occurs only when azure B, or to a lesser extent, azure A is present by applying experimental and calculated physicochemical parameters including dye-DNA binding constants and electron density distributions in the molecules of these ligands. Finally, we discuss modern techniques for obtaining new varieties of Romanowsky dyes by modifying previously known ones. We hope that our critical literature study will help scientists understand better the chemical and physicochemical processes and mechanisms of cell staining with such dyes.
Collapse
Affiliation(s)
- Valeriy Kalinin
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| |
Collapse
|
13
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Ayoub I, Freeman SA, Saoudi A, Liblau R. Infection, vaccination and narcolepsy type 1: Evidence and potential molecular mechanisms. J Neuroimmunol 2024; 393:578383. [PMID: 39032452 DOI: 10.1016/j.jneuroim.2024.578383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024]
Abstract
NT1 is a rare, chronic and disabling neurological disease causing excessive daytime sleepiness and cataplexy. NT1 is characterized pathologically by an almost complete loss of neurons producing the hypocretin (HCRT)/orexin neuropeptides in the lateral hypothalamus. While the exact etiology of NT1 is still unknown, numerous studies have provided compelling evidence supporting its autoimmune origin. The prevailing hypothetical view on the pathogenesis of NT1 involves an immune-mediated loss of HCRT neurons that can be triggered by Pandemrix® vaccination and/or by infection in genetically susceptible patients, specifically carriers of the HLA-DQB1*06:02 MHC class II allele. The molecular mechanisms by which infection/vaccination can induce autoimmunity in the case of NT1 remain to be elucidated. In this review, evidence regarding the involvement of vaccination and infection and the potential mechanisms by which it could be linked to the pathogenesis of NT1 will be discussed in light of the existing findings in other autoimmune diseases.
Collapse
Affiliation(s)
- Ikram Ayoub
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.
| | - Sean A Freeman
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Neurology, Toulouse University Hospitals, Toulouse, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Immunology, Toulouse University Hospitals, Toulouse, France
| |
Collapse
|
15
|
Chen J, Chen C, Wang L, Feng X, Chen Y, Zhang R, Cheng Y, Liu Z, Chen Q. Identification of S100A8/A9 involved in thromboangiitis obliterans development using tandem mass tags-labeled quantitative proteomics analysis. Cell Signal 2024; 120:111199. [PMID: 38697446 DOI: 10.1016/j.cellsig.2024.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Thromboangiitis obliterans (TAO) is characterized by inflammation and obstruction of small-and medium-sized distal arteries, with limited pharmacotherapies and surgical interventions. The precise pathogenesis of TAO remains elusive. By utilizing the technology of tandem mass tags (TMT) for quantitative proteomics and leveraging bioinformatics tools, a comparative analysis of protein profiles was conducted between normal and TAO rats to identify key proteins driving TAO development. The results unveiled 1385 differentially expressed proteins (DEPs) in the TAO compared with the normal group-comprising 365 proteins with upregulated expression and 1020 proteins with downregulated expression. Function annotation through gene ontology indicated these DEPs mainly involved in cell adhesion, positive regulation of cell migration, and cytosol. The principal signaling pathways involved regulation of the actin cytoskeleton, vascular smooth contraction, and focal adhesion. The roles of these DEPs and associated signaling pathways serve as a fundamental framework for comprehending the mechanisms underpinning the onset and progression of TAO. Furthermore, we conducted a comprehensive evaluation of the effects of S100A8/A9 and its inhibitor, paquinimod, on smooth muscle cells (SMCs) and in TAO rats. We observed that paquinimod reduces SMCs proliferation and migration, promotes phenotype switching and alleviates vascular stenosis in TAO rats. In conclusion, our study revealed that the early activation of S100A8/A9 in the femoral artery is implicated in TAO development, targeting S100A8/A9 signaling may provide a novel approach for TAO prevention and treatment.
Collapse
Affiliation(s)
- Jing Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunfang Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyi Feng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinru Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
16
|
Jones C, La Flamme A, Larsen P, Hally K. CPHEN-017: Comprehensive phenotyping of neutrophil extracellular traps (NETs) on peripheral human neutrophils. Cytometry A 2024. [PMID: 38867433 DOI: 10.1002/cyto.a.24851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
With the recent discovery of their ability to produce neutrophil extracellular traps (NETs), neutrophils are increasingly appreciated as active participants in infection and inflammation. NETs are characterized as large, web-like networks of DNA and proteins extruded from neutrophils, and there is considerable interest in how these structures drive disease in humans. Advancing research in this field is contingent on developing novel tools for quantifying NETosis. To this end, we have developed a 7-marker flow cytometry panel for analyzing NETosis on human peripheral neutrophils following in vitro stimulation, and in fresh circulating neutrophils under inflammatory conditions. This panel was optimized on neutrophils isolated from whole blood and analyzed fresh or in vitro stimulated with phorbol 12-myristate 13-acetate (PMA) or ionomycin, two known NET-inducing agonists. Neutrophils were identified as SSChighFSChighCD15+CD66b+. Neutrophils positive for amine residues and 7-Aminoactinomycin D (7-AAD), our DNA dye of choice, were deemed necrotic (Zombie-NIR+7-AAD+) and were removed from downstream analysis. Exclusion of Zombie-NIR and positivity for 7-AAD (Zombie-NIRdim7-AAD+) was used here as a marker of neutrophil-appendant DNA, a key feature of NETs. The presence of two NET-associated proteins - myeloperoxidase (MPO) and neutrophil elastase (NE) - were utilized to identify neutrophil-appendant NET events (SSChighFSChighCD15+CD66b+Zombie NIRdim7-AAD+MPO+NE+). We also demonstrate that NETotic neutrophils express citrullinated histone H3 (H3cit), are concentration-dependently induced by in vitro PMA and ionomycin stimulation but are disassembled with DNase treatment, and are present in both chronic and acute inflammation. This 7-color flow cytometry panel provides a novel tool for examining NETosis in humans.
Collapse
Affiliation(s)
- Ceridwyn Jones
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Anne La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Peter Larsen
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| | - Kathryn Hally
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
17
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
18
|
Yada N, Zhang Q, Bignotti A, Gralnek SH, Sosnovske D, Hogan K, Ye Z, Zheng L, Zheng XL. Targeting neutrophil extracellular trap accumulation under flow in patients with immune-mediated thrombotic thrombocytopenic purpura. Blood Adv 2024; 8:2536-2551. [PMID: 38513079 PMCID: PMC11131081 DOI: 10.1182/bloodadvances.2023011617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Neutrophil NETosis is a unique form of cell death, characterized by the release of decondensed chromatin and antimicrobial contents to the extracellular space, which is involved in inflammation and thrombosis. However, the role of NETosis in the pathogenesis of immune-mediated thrombotic thrombocytopenic purpura (iTTP) and how a targeted therapy affects the accumulation of neutrophil extracellular traps (NETs) under flow remain unknown. Flow cytometry demonstrated that the percentage of neutrophils undergoing NETosis in whole blood from patients with iTTP on admission was significantly increased, with a concurrent decrease in the capacity of inducible NETosis by shigatoxin. After therapy, the percentage of H3Cit+MPO+ neutrophils was significantly reduced, with an improvement in inducible NETosis in these patients. Additionally, little to no NET and thrombus formation was detected underflow in the whole blood from patients with iTTP when platelet counts were very low, but the NET and thrombus formation was dramatically increased following therapy when platelet counts rose to ≥50 × 109/L or were restored to normal with donor platelets. Similarly, there was no thrombus or NET accumulation under flow in the whole blood from vwf-/- mice, but NET accumulation was significantly higher in Adamts13-/- mice than in wild-type mice. Finally, recombinant ADAMTS13 or caplacizumab (or anfibatide) prevented NET and thrombus formation under flow in whole blood from patients with iTTP or from Adamts13-/- mice. These results indicate that neutrophil NETosis and NET formation depend on platelets and von Willebrand factor (VWF) in iTTP, and a targeted therapy such as recombinant ADAMTS13 or caplacizumab may prevent NET and thrombus formation under flow in iTTP.
Collapse
Affiliation(s)
- Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Sarah H. Gralnek
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Dennis Sosnovske
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Keenan Hogan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Zhan Ye
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
19
|
Vera IM, Kessler A, Harawa V, Ahmadu A, Keller TE, Ray ST, Taylor TE, Rogerson SJ, Mandala WL, Reyes Gil M, Seydel KB, Kim K. Prothrombotic autoantibodies targeting platelet factor 4/polyanion are associated with pediatric cerebral malaria. J Clin Invest 2024; 134:e176466. [PMID: 38652559 PMCID: PMC11142751 DOI: 10.1172/jci176466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUNDFeatures of consumptive coagulopathy and thromboinflammation are prominent in cerebral malaria (CM). We hypothesized that thrombogenic autoantibodies contribute to a procoagulant state in CM.METHODSPlasma from children with uncomplicated malaria (UM) (n = 124) and CM (n = 136) was analyzed by ELISA for a panel of 8 autoantibodies including anti-platelet factor 4/polyanion (anti-PF4/P), anti-phospholipid, anti-phosphatidylserine, anti-myeloperoxidase, anti-proteinase 3, anti-dsDNA, anti-β-2-glycoprotein I, and anti-cardiolipin. Plasma samples from individuals with nonmalarial coma (NMC) (n = 49) and healthy controls (HCs) (n = 56) were assayed for comparison. Associations with clinical and immune biomarkers were determined using univariate and logistic regression analyses.RESULTSMedian anti-PF4/P and anti-PS IgG levels were elevated in individuals with malaria infection relative to levels in HCs (P < 0.001) and patients with NMC (PF4/P: P < 0.001). Anti-PF4/P IgG levels were elevated in children with CM (median = 0.27, IQR: 0.19-0.41) compared with those with UM (median = 0.19, IQR: 0.14-0.22, P < 0.0001). Anti-PS IgG levels did not differ between patients with UM and those with CM (P = 0.39). When patients with CM were stratified by malaria retinopathy (Ret) status, the levels of anti-PF4/P IgG correlated negatively with the peripheral platelet count in patients with Ret+ CM (Spearman's rho [Rs] = 0.201, P = 0.04) and associated positively with mortality (OR = 15.2, 95% CI: 1.02-275, P = 0.048). Plasma from patients with CM induced greater platelet activation in an ex vivo assay relative to plasma from patients with UM (P = 0.02), and the observed platelet activation was associated with anti-PF4/P IgG levels (Rs= 0.293, P = 0.035).CONCLUSIONSThrombosis mediated by elevated anti-PF4/P autoantibodies may be one mechanism contributing to the clinical complications of CM.
Collapse
Affiliation(s)
- Iset M. Vera
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Biomedical Department, University of Malawi College of Medicine, Blantyre, Malawi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Ajisa Ahmadu
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Thomas E. Keller
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| | - Stephen T.J. Ray
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Terrie E. Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, USA
| | - Stephen J. Rogerson
- Department of Medicine (RMH), and
- Department of Infectious Diseases, Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Wilson L. Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Biomedical Department, University of Malawi College of Medicine, Blantyre, Malawi
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | - Morayma Reyes Gil
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Karl B. Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, USA
| | - Kami Kim
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
20
|
Ibrahim N, Eilenberg W, Neumayer C, Brostjan C. Neutrophil Extracellular Traps in Cardiovascular and Aortic Disease: A Narrative Review on Molecular Mechanisms and Therapeutic Targeting. Int J Mol Sci 2024; 25:3983. [PMID: 38612791 PMCID: PMC11012109 DOI: 10.3390/ijms25073983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, are released by neutrophils in response to pathogens but are also recognized for their involvement in a range of pathological processes, including autoimmune diseases, cancer, and cardiovascular diseases. This review explores the intricate roles of NETs in different cardiovascular conditions such as thrombosis, atherosclerosis, myocardial infarction, COVID-19, and particularly in the pathogenesis of abdominal aortic aneurysms. We elucidate the mechanisms underlying NET formation and function, provide a foundational understanding of their biological significance, and highlight the contribution of NETs to inflammation, thrombosis, and tissue remodeling in vascular disease. Therapeutic strategies for preventing NET release are compared with approaches targeting components of formed NETs in cardiovascular disease. Current limitations and potential avenues for clinical translation of anti-NET treatments are discussed.
Collapse
Affiliation(s)
| | | | | | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, 1090 Vienna, Austria; (N.I.); (W.E.); (C.N.)
| |
Collapse
|
21
|
Abrams ST, Du M, Shaw RJ, Johnson C, McGuinness D, Schofield J, Yong J, Turtle L, Nicolson PLR, Moxon C, Wang G, Toh CH. Damage-associated cellular markers in the clinical and pathogenic profile of vaccine-induced immune thrombotic thrombocytopenia. J Thromb Haemost 2024; 22:1145-1153. [PMID: 38103733 DOI: 10.1016/j.jtha.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Adenoviral vector-based COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) is rare but carries significant risks of mortality and long-term morbidity. The underlying pathophysiology of severe disease is still not fully understood. The objectives were to explore the pathophysiological profile and examine for clinically informative biomarkers in patients with severe VITT. METHODS Twenty-two hospitalized patients with VITT, 9 pre- and 21 post-ChAdOx1 vaccine controls, were recruited across England, United Kingdom. Admission blood samples were analyzed for cytokine profiles, cell death markers (lactate dehydrogenase and circulating histones), neutrophil extracellular traps, and coagulation parameters. Tissue specimens from deceased patients were analyzed. RESULTS There were strong immune responses characterized by significant elevations in proinflammatory cytokines and T helper 1 and 2 cell activation in patients with VITT. Markers of systemic endothelial activation and coagulation activation in both circulation and organ sections were also significantly elevated. About 70% (n = 15/22) of patients met the International Society for Thrombosis and Haemostasis criteria for disseminated intravascular coagulation despite negligible changes in the prothrombin time. The increased neutrophil extracellular trap formation, in conjunction with marked lymphopenia, elevated lactate dehydrogenase, and circulating histone levels, indicates systemic immune cell injury or death. Both lymphopenia and circulating histone levels independently predicted 28-day mortality in patients with VITT. CONCLUSION The coupling of systemic cell damage and death with strong immune-inflammatory and coagulant responses are pathophysiologically dominant and clinically relevant in severe VITT.
Collapse
Affiliation(s)
- Simon T Abrams
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Haematology Department, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Min Du
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca J Shaw
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Carla Johnson
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Dagmara McGuinness
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Jeremy Schofield
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Jun Yong
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Lance Turtle
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Haemophilia Comprehensive Care Centre, Queen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Christopher Moxon
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Haematology Department, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom.
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Haematology Department, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom; Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom.
| |
Collapse
|
22
|
Hetland G, Fagerhol MK, Mirlashari MR, Nissen-Meyer LSH, Croci S, Lonati PA, Bonacini M, Salvarani C, Marvisi C, Bodio C, Muratore F, Borghi MO, Meroni PL. Elevated NET, Calprotectin, and Neopterin Levels Discriminate between Disease Activity in COVID-19, as Evidenced by Need for Hospitalization among Patients in Northern Italy. Biomedicines 2024; 12:766. [PMID: 38672123 PMCID: PMC11048478 DOI: 10.3390/biomedicines12040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) displays clinical heterogeneity, but little information is available for patients with mild or very early disease. We aimed to characterize biomarkers that are useful for discriminating the hospitalization risk in a COVID-19 cohort from Northern Italy during the first pandemic wave. We enrolled and followed for four weeks 76 symptomatic SARS-CoV-2 positive patients and age/sex-matched healthy controls. Patients with mild disease were discharged (n.42), and the remaining patients were hospitalized (n.34). Blood was collected before any anti-inflammatory/immunosuppressive therapy and assessed for soluble C5b-9/C5a, H3-neutrophil extracellular traps (NETs), calprotectin, and DNase plasma levels via ELISA and a panel of proinflammatory cytokines via ELLA. Calprotectin and NET levels discriminate between hospitalized and non-hospitalized patients, while DNase negatively correlates with NET levels; there are positive correlations between calprotectin and both NET and neopterin levels. Neopterin levels increase in patients at the beginning of the disease and do so more in hospitalized than non-hospitalized patients. C5a and sC5b-9, and other acute phase proteins, correlate with neopterin, calprotectin, and DNase. Both NET and neopterin levels negatively correlate with platelet count. We show that calprotectin, NETs, and neopterin are important proinflammatory parameters potentially useful for discriminating between COVID-19 patients at risk of hospitalization.
Collapse
Affiliation(s)
- Geir Hetland
- Department of Immunology and Transfusion Medicine, Oslo University Hospital Ullevål, 0450 Oslo, Norway; (G.H.); (M.K.F.); (M.R.M.); (L.S.H.N.-M.)
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0451 Oslo, Norway
| | - Magne Kristoffer Fagerhol
- Department of Immunology and Transfusion Medicine, Oslo University Hospital Ullevål, 0450 Oslo, Norway; (G.H.); (M.K.F.); (M.R.M.); (L.S.H.N.-M.)
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0451 Oslo, Norway
| | - Mohammad Reza Mirlashari
- Department of Immunology and Transfusion Medicine, Oslo University Hospital Ullevål, 0450 Oslo, Norway; (G.H.); (M.K.F.); (M.R.M.); (L.S.H.N.-M.)
| | - Lise Sofie Haug Nissen-Meyer
- Department of Immunology and Transfusion Medicine, Oslo University Hospital Ullevål, 0450 Oslo, Norway; (G.H.); (M.K.F.); (M.R.M.); (L.S.H.N.-M.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Paola Adele Lonati
- Research Laboratory of Immunorheumatology, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy; (P.A.L.); (C.B.); or (M.O.B.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Carlo Salvarani
- Azienda USL-IRCCS di Reggio Emilia e Università di Modena e Reggio Emilia, 42123 Reggio Emilia, Italy; (C.S.); (C.M.); (F.M.)
| | - Chiara Marvisi
- Azienda USL-IRCCS di Reggio Emilia e Università di Modena e Reggio Emilia, 42123 Reggio Emilia, Italy; (C.S.); (C.M.); (F.M.)
| | - Caterina Bodio
- Research Laboratory of Immunorheumatology, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy; (P.A.L.); (C.B.); or (M.O.B.)
| | - Francesco Muratore
- Azienda USL-IRCCS di Reggio Emilia e Università di Modena e Reggio Emilia, 42123 Reggio Emilia, Italy; (C.S.); (C.M.); (F.M.)
| | - Maria Orietta Borghi
- Research Laboratory of Immunorheumatology, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy; (P.A.L.); (C.B.); or (M.O.B.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Pier Luigi Meroni
- Research Laboratory of Immunorheumatology, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy; (P.A.L.); (C.B.); or (M.O.B.)
| |
Collapse
|
23
|
Kuo YM, Kang CM, Lai ZY, Huang TY, Tzeng SJ, Hsu CC, Chen SY, Hsieh SC, Chia JS, Jung CJ, Hsueh PR. Temporal changes in biomarkers of neutrophil extracellular traps and NET-promoting autoantibodies following adenovirus-vectored, mRNA, and recombinant protein COVID-19 vaccination. J Med Virol 2024; 96:e29556. [PMID: 38511554 DOI: 10.1002/jmv.29556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Neutrophil extracellular traps (NETs) play a role in innate pathogen defense and also trigger B-cell response by providing antigens. NETs have been linked to vaccine-induced thrombotic thrombocytopenia. We postulated a potential link between NET biomarkers, NET-promoting autoantibodies, and adverse events (AEs) after COVID-19 vaccine boosters. Healthy donors (HDs) who received ChAdOx1-S (A), mRNA-1273 (M), or recombinant protein (MVC-COV1901) vaccines at the National Taiwan University Hospital between 2021 and 2022 were recruited. We measured serial NET-associated biomarkers, citrullinated-histone3 (citH3), and myeloperoxidase (MPO)-DNA. Serum citH3 and MPO-DNA were significantly or numerically higher in HDs who reported AEs (n = 100, booster Day 0/Day 30, p = 0.01/p = 0.03 and p = 0.30/p = 0.35, respectively). We also observed a positive correlation between rash occurrence in online diaries and elevated citH3. A linear mixed model also revealed significantly higher citH3 levels in mRNA-1273/ChAdOx1-S recipients than MVC-COV1901 recipients. Significant positive correlations were observed between the ratios of anti-heparin platelet factor 4 and citH3 levels on Booster Day 0 and naïve and between the ratios of anti-NET IgM and citH3 on Booster Day 30/Day 0 in the AA-M and MM-M group, respectively. The increased levels of citH3/MPO-DNA accompanied by NET-promoting autoantibodies suggest a potential connection between mRNA-1273/ChAdOx1-S vaccines and cardiovascular complications. These findings provide insights for risk assessments of future vaccines.
Collapse
Affiliation(s)
- Yu-Min Kuo
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Min Kang
- Department of Laboratory Medicine, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yun Lai
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Huang
- Department of Internal Medicine, Division of Infection, National Taiwan University, Taipei, Taiwan
| | - Shiang-Jong Tzeng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Chieh Hsu
- Department of Internal Medicine, Division of Infection, National Taiwan University, Taipei, Taiwan
| | - Shey-Ying Chen
- Department of Emergency Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, National Taiwan University, Taipei, Taiwan
| | - Jean-San Chia
- Department of Dentistry, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiau-Jing Jung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Zhang Y, Bissola AL, Treverton J, Hack M, Lychacz M, Kwok S, Arnold A, Nazy I. Vaccine-Induced Immune Thrombotic Thrombocytopenia: Clinicopathologic Features and New Perspectives on Anti-PF4 Antibody-Mediated Disorders. J Clin Med 2024; 13:1012. [PMID: 38398325 PMCID: PMC10889051 DOI: 10.3390/jcm13041012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare yet severe adverse complication first identified during the global vaccination effort against SARS-CoV-2 infection, predominantly observed following administration of the ChAdOx1-S (Oxford-AstraZeneca) and Ad26.CoV2.S (Johnson & Johnson/Janssen) adenoviral vector-based vaccines. Unlike other anti-platelet factor 4 (PF4) antibody-mediated disorders, such as heparin-induced thrombocytopenia (HIT), VITT arises with the development of platelet-activating anti-PF4 antibodies 4-42 days post-vaccination, typically featuring thrombocytopenia and thrombosis at unusual sites. AIM To explore the unique properties, pathogenic mechanisms, and long-term persistence of VITT antibodies in patients, in comparison with other anti-PF4 antibody-mediated disorders. DISCUSSION This review highlights the complexity of VITT as it differs in antibody behavior and clinical presentation from other anti-PF4-mediated disorders, including the high incidence rate of cerebral venous sinus thrombosis (CVST) and the persistence of anti-PF4 antibodies, necessitating a re-evaluation of long-term patient care strategies. The nature of VITT antibodies and the underlying mechanisms triggering their production remain largely unknown. CONCLUSION The rise in awareness and subsequent prompt recognition of VITT is paramount in reducing mortality. As vaccination campaigns continue, understanding the role of adenoviral vector-based vaccines in VITT antibody production is crucial, not only for its immediate clinical implications, but also for developing safer vaccines in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Anna-Lise Bissola
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jared Treverton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Michael Hack
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Mark Lychacz
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sarah Kwok
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Addi Arnold
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5A5, Canada;
| | - Ishac Nazy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
25
|
Greinacher A. Thrombotic anti-PF4 immune disorders: HIT, VITT, and beyond. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:1-10. [PMID: 38066843 PMCID: PMC10727100 DOI: 10.1182/hematology.2023000503] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Antibodies against the chemokine platelet factor 4 (PF4) occur often, but only those that activate platelets induce severe prothrombotic disorders with associated thrombocytopenia. Heparin-induced thrombocytopenia (HIT) is the prototypic anti-PF4 disorder, mediated by strong activation of platelets through their FcγIIa (immunoglobulin G [IgG]) receptors (FcγRIIa). Concomitant pancellular activation (monocytes, neutrophils, endothelium) triggers thromboinflammation with a high risk for venous and arterial thrombosis. The classic concept of HIT is that anti-PF4/heparin IgG, recognizing antigen sites on (cationic) PF4 that form in the presence of (anionic) heparin, constitute the heparin-dependent antibodies that cause HIT. Accordingly, HIT is managed by anticoagulation with a nonheparin anticoagulant. In 2021, adenovirus vector COVID-19 vaccines triggered the rare adverse effect "vaccine-induced immune thrombotic thrombocytopenia" (VITT), also caused by anti-PF4 IgG. VITT is a predominantly heparin-independent platelet-activating disorder that requires both therapeutic-dose anticoagulation and inhibition of FcγRIIa-mediated platelet activation by high-dose intravenous immunoglobulin (IVIG). HIT and VITT antibodies bind to different epitopes on PF4; new immunoassays can differentiate between these distinct HIT-like and VITT-like antibodies. These studies indicate that (1) severe, atypical presentations of HIT ("autoimmune HIT") are associated with both HIT-like (heparin-dependent) and VITT-like (heparin-independent) anti-PF4 antibodies; (2) in some patients with severe acute (and sometimes chronic, recurrent) thrombosis, VITT-like antibodies can be identified independent of proximate heparin exposure or vaccination. We propose to classify anti-PF4 antibodies as type 1 (nonpathogenic, non- platelet activating), type 2 (heparin dependent, platelet activating), and type 3 (heparin independent, platelet activating). A key concept is that type 3 antibodies (autoimmune HIT, VITT) require anticoagulation plus an adjunct treatment, namely high-dose IVIG, to deescalate the severe anti-PF4 IgG-mediated hypercoagulability state.
Collapse
Affiliation(s)
- Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Simpson M, Narwal A, West E, Martin J, Bagot CN, Page AR, Watson HG, Whyte CS, Mutch NJ. Fibrinogenolysis and fibrinolysis in vaccine-induced immune thrombocytopenia and thrombosis. J Thromb Haemost 2023; 21:3589-3596. [PMID: 37734715 DOI: 10.1016/j.jtha.2023.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a rare syndrome associated with adenoviral vector vaccines for COVID-19. The syndrome is characterized by thrombosis, anti-platelet factor 4 (PF4) antibodies, thrombocytopenia, high D-dimer, and hypofibrinogenemia. OBJECTIVES To investigate abnormalities in fibrinolysis that contribute to the clinical features of VITT. METHODS Plasma samples from 18 suspected VITT cases were tested for anti-PF4 by ELISA and characterized as meeting criteria for VITT (11/18) or deemed unlikely (7/18; non-VITT). Antigen levels of PAI-1, factor XIII (FXIII), plasmin-α2antiplasmin (PAP), and inflammatory markers were quantified. Plasmin generation was quantified by chromogenic substrate. Western blotting was performed with antibodies to fibrinogen, FXIII-A, and plasminogen. RESULTS VITT patients 10/11 had scores indicative of overt disseminated intravascular coagulation, while 0/7 non-VITT patients met the criteria. VITT patients had significantly higher levels of inflammatory markers, IL-1β, IL-6, IL-8, TNFα, and C-reactive protein. In VITT patients, both fibrinogen and FXIII levels were significantly lower, while PAP and tPA-mediated plasmin generation were higher compared to non-VITT patients. Evidence of fibrinogenolysis was observed in 9/11 VITT patients but not in non-VITT patients or healthy controls. Fibrinogen degradation products were apparent, with obvious cleavage of the fibrinogen α-chain. PAP complex was evident in those VITT patients with fibrinogenolysis, but not in non-VITT patients or healthy donors. CONCLUSION VITT patients show evidence of overt disseminated intravascular coagulation and fibrinogenolysis, mediated by dysregulated plasmin generation, as evidenced by increased PAP and plasmin generation. These observations are consistent with the clinical presentation of both thrombosis and bleeding in VITT.
Collapse
Affiliation(s)
- Megan Simpson
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK. https://twitter.com/SimpsonMegan8
| | - Anuj Narwal
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Eric West
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Jill Martin
- Department of Haematology Laboratory, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Andrew R Page
- Department of Haematology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Henry G Watson
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Claire S Whyte
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK. https://twitter.com/ClaireW63108369
| | - Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
27
|
Shakeri A, Wang Y, Zhao Y, Landau S, Perera K, Lee J, Radisic M. Engineering Organ-on-a-Chip Systems for Vascular Diseases. Arterioscler Thromb Vasc Biol 2023; 43:2241-2255. [PMID: 37823265 PMCID: PMC10842627 DOI: 10.1161/atvbaha.123.318233] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Vascular diseases, such as atherosclerosis and thrombosis, are major causes of morbidity and mortality worldwide. Traditional in vitro models for studying vascular diseases have limitations, as they do not fully recapitulate the complexity of the in vivo microenvironment. Organ-on-a-chip systems have emerged as a promising approach for modeling vascular diseases by incorporating multiple cell types, mechanical and biochemical cues, and fluid flow in a microscale platform. This review provides an overview of recent advancements in engineering organ-on-a-chip systems for modeling vascular diseases, including the use of microfluidic channels, ECM (extracellular matrix) scaffolds, and patient-specific cells. We also discuss the limitations and future perspectives of organ-on-a-chip for modeling vascular diseases.
Collapse
Affiliation(s)
- Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Ying Wang
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Yimu Zhao
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Shira Landau
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Kevin Perera
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jonguk Lee
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
28
|
Khan S, Marquez-Martinez S, Erkens T, de Wilde A, Costes LMM, Vinken P, De Jonghe S, Roosen W, Talia C, Chamanza R, Serroyen J, Tolboom J, Zahn RC, Wegmann F. Intravenous Administration of Ad26.COV2.S Does Not Induce Thrombocytopenia or Thrombotic Events or Affect SARS-CoV-2 Spike Protein Bioavailability in Blood Compared with Intramuscular Vaccination in Rabbits. Vaccines (Basel) 2023; 11:1792. [PMID: 38140195 PMCID: PMC10747520 DOI: 10.3390/vaccines11121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a very rare but serious adverse reaction that can occur after Ad26.COV2.S vaccination in humans, leading to thrombosis at unusual anatomic sites. One hypothesis is that accidental intravenous (IV) administration of Ad26.COV2.S or drainage of the vaccine from the muscle into the circulatory system may result in interaction of the vaccine with blood factors associated with platelet activation, leading to VITT. Here, we demonstrate that, similar to intramuscular (IM) administration of Ad26.COV2.S in rabbits, IV dosing was well tolerated, with no significant differences between dosing routes for the assessed hematologic, coagulation time, innate immune, or clinical chemistry parameters and no histopathologic indication of thrombotic events. For both routes, all other non-adverse findings observed were consistent with a normal vaccine response and comparable to those observed for unrelated or other Ad26-based control vaccines. However, Ad26.COV2.S induced significantly higher levels of C-reactive protein on day 1 after IM vaccination compared with an Ad26-based control vaccine encoding a different transgene, suggesting an inflammatory effect of the vaccine-encoded spike protein. Although based on a limited number of animals, these data indicate that an accidental IV injection of Ad26.COV2.S may not represent an increased risk for VITT.
Collapse
Affiliation(s)
- Selina Khan
- Janssen Vaccines & Prevention, 2333 CN Leiden, The Netherlands; (S.M.-M.); (A.d.W.); (L.M.M.C.); (J.S.); (J.T.); (F.W.)
| | - Sonia Marquez-Martinez
- Janssen Vaccines & Prevention, 2333 CN Leiden, The Netherlands; (S.M.-M.); (A.d.W.); (L.M.M.C.); (J.S.); (J.T.); (F.W.)
| | - Tim Erkens
- Janssen Research & Development—A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (T.E.); (S.D.J.); (W.R.); (C.T.)
| | - Adriaan de Wilde
- Janssen Vaccines & Prevention, 2333 CN Leiden, The Netherlands; (S.M.-M.); (A.d.W.); (L.M.M.C.); (J.S.); (J.T.); (F.W.)
| | - Lea M. M. Costes
- Janssen Vaccines & Prevention, 2333 CN Leiden, The Netherlands; (S.M.-M.); (A.d.W.); (L.M.M.C.); (J.S.); (J.T.); (F.W.)
| | - Petra Vinken
- Janssen Research & Development—A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (T.E.); (S.D.J.); (W.R.); (C.T.)
| | - Sandra De Jonghe
- Janssen Research & Development—A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (T.E.); (S.D.J.); (W.R.); (C.T.)
| | - Wendy Roosen
- Janssen Research & Development—A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (T.E.); (S.D.J.); (W.R.); (C.T.)
| | - Chiara Talia
- Janssen Research & Development—A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (T.E.); (S.D.J.); (W.R.); (C.T.)
| | - Ronnie Chamanza
- Janssen Research & Development—A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (T.E.); (S.D.J.); (W.R.); (C.T.)
| | - Jan Serroyen
- Janssen Vaccines & Prevention, 2333 CN Leiden, The Netherlands; (S.M.-M.); (A.d.W.); (L.M.M.C.); (J.S.); (J.T.); (F.W.)
| | - Jeroen Tolboom
- Janssen Vaccines & Prevention, 2333 CN Leiden, The Netherlands; (S.M.-M.); (A.d.W.); (L.M.M.C.); (J.S.); (J.T.); (F.W.)
| | - Roland C. Zahn
- Janssen Vaccines & Prevention, 2333 CN Leiden, The Netherlands; (S.M.-M.); (A.d.W.); (L.M.M.C.); (J.S.); (J.T.); (F.W.)
| | - Frank Wegmann
- Janssen Vaccines & Prevention, 2333 CN Leiden, The Netherlands; (S.M.-M.); (A.d.W.); (L.M.M.C.); (J.S.); (J.T.); (F.W.)
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Platelet factor 4 (PF4, CXCL4), the most abundant α-granule platelet-specific chemokine, forms tetramers with an equatorial ring of high positive charge that bind to a wide range of polyanions, after which it changes conformation to expose antigenic epitopes. Antibodies directed against PF4 not only help to clear infection but can also lead to the development of thrombotic disorders such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombocytopenia and thrombosis (VITT). This review will outline the different mechanisms through which PF4 engagement with polyanions combats infection but also contributes to the pathogenesis of inflammatory and thrombotic disease states. RECENT FINDINGS Recent work has shown that PF4 binding to microbial polyanions may improve outcomes in infection by enhancing leukocyte-bacterial binding, tethering pathogens to neutrophil extracellular traps (NETs), decreasing the thrombotic potential of NET DNA, and modulating viral infectivity. However, PF4 binding to nucleic acids may enhance their recognition by innate immune receptors, leading to autoinflammation. Lastly, while HIT is induced by platelet activating antibodies that bind to PF4/polyanion complexes, VITT, which occurs in a small subset of patients treated with COVID-19 adenovirus vector vaccines, is characterized by prothrombotic antibodies that bind to PF4 alone. SUMMARY Investigating the complex interplay of PF4 and polyanions may provide insights relevant to the treatment of infectious disease while also improving our understanding of the pathogenesis of thrombotic disorders driven by anti-PF4/polyanion and anti-PF4 antibodies.
Collapse
Affiliation(s)
- Anh T P Ngo
- Division of Hematology, Children's Hospital of Philadelphia
| | | | - Kandace Gollomp
- Division of Hematology, Children's Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Chu C, Wang X, Yang C, Chen F, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D, Ding W. Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol 2023; 67:102906. [PMID: 37812880 PMCID: PMC10579540 DOI: 10.1016/j.redox.2023.102906] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Microvascular endothelial damage caused by intestinal ischemia‒reperfusion (II/R) is a primary catalyst for microcirculation dysfunction and enterogenous infection. Previous studies have mainly focused on how neutrophil extracellular traps (NETs) and ferroptosis cause intestinal epithelial injury, and little attention has been given to how NETs, mainly from circulatory neutrophils, affect intestinal endothelial cells during II/R. This study aimed to unravel the mechanisms through which NETs cause intestinal microvascular dysfunction. We first detected heightened local NET infiltration around the intestinal microvasculature, accompanied by increased endothelial cell ferroptosis, resulting in microcirculation dysfunction in both human and animal II/R models. However, the administration of the ferroptosis inhibitor ferrostatin-1 or the inhibition of NETs via neutrophil-specific peptidylarginine deiminase 4 (Pad4) deficiency led to positive outcomes, with reduced intestinal endothelial ferroptosis and microvascular function recovery. Moreover, RNA-seq analysis revealed a significant enrichment of mitophagy- and ferroptosis-related signaling pathways in HUVECs incubated with NETs. Mechanistically, elevated NET formation induced Fundc1 phosphorylation at Tyr18 in intestinal endothelial cells, which led to mitophagy inhibition, mitochondrial quality control imbalance, and excessive mitochondrial ROS generation and lipid peroxidation, resulting in endothelial ferroptosis and microvascular dysfunction. Nevertheless, using the mitophagy activator urolithin A or AAV-Fundc1 transfection could reverse this process and ameliorate microvascular damage. We first demonstrate that increased NETosis could result in intestinal microcirculatory dysfunction and conclude that suppressed NET formation can mitigate intestinal endothelial ferroptosis by improving Fundc1-dependent mitophagy. Targeting NETs could be a promising approach for treating II/R-induced intestinal microcirculatory dysfunction.
Collapse
Affiliation(s)
- Chengnan Chu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinyu Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao Yang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Fang Chen
- School of Medicine, Southeast University, Nanjing, 210002, Jiangsu Province, China
| | - Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Weiqi Xu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Baochen Liu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chenyang Wang
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, PR China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
31
|
Leberzammer J, von Hundelshausen P. Chemokines, molecular drivers of thromboinflammation and immunothrombosis. Front Immunol 2023; 14:1276353. [PMID: 37954596 PMCID: PMC10637585 DOI: 10.3389/fimmu.2023.1276353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Blood clotting is a finely regulated process that is essential for hemostasis. However, when dysregulated or spontaneous, it promotes thrombotic disorders. The fact that these are triggered, accompanied and amplified by inflammation is reflected in the term thromboinflammation that includes chemokines. The role of chemokines in thrombosis is therefore illuminated from a cellular perspective, where endothelial cells, platelets, red blood cells, and leukocytes may be both the source and target of chemokines. Chemokine-dependent prothrombotic processes may thereby occur independently of chemokine receptors or be mediated by chemokine receptors, although the binding and activation of classical G protein-coupled receptors and their signaling pathways differ from those of atypical chemokine receptors, which do not function via cell activation and recruitment. Regardless of binding to their receptors, chemokines can induce thrombosis by forming platelet-activating immune complexes with heparin or other polyanions that are pathognomonic for HIT and VITT. In addition, chemokines can bind to NETs and alter their structure. They also change the electrical charge of the cell surface of platelets and interact with coagulation factors, thereby modulating the balance of fibrinolysis and coagulation. Moreover, CXCL12 activates CXCR4 on platelets independently of classical migratory chemokine activity and causes aggregation and thrombosis via the PI3Kβ and Btk signaling pathways. In contrast, typical chemokine-chemokine receptor interactions are involved in the processes that contribute to the adhesiveness of the endothelium in the initial phase of venous thrombosis, where neutrophils and monocytes subsequently accumulate in massive numbers. Later, the reorganization and resolution of a thrombus require coordinated cell migration and invasion of the thrombus, and, as such, indeed, chemokines recruit leukocytes to existing thrombi. Therefore, chemokines contribute in many independent ways to thrombosis.
Collapse
Affiliation(s)
- Julian Leberzammer
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- Department of Cardiology and Angiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
32
|
Aid M, Stephenson KE, Collier ARY, Nkolola JP, Michael JV, McKenzie SE, Barouch DH. Activation of coagulation and proinflammatory pathways in thrombosis with thrombocytopenia syndrome and following COVID-19 vaccination. Nat Commun 2023; 14:6703. [PMID: 37872311 PMCID: PMC10593859 DOI: 10.1038/s41467-023-42559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Thrombosis with thrombocytopenia syndrome (TTS) is a rare but potentially severe adverse event following immunization with adenovirus vector-based COVID-19 vaccines such as Ad26.COV2.S (Janssen) and ChAdOx1 (AstraZeneca). However, no case of TTS has been reported in over 1.5 million individuals who received a second immunization with Ad26.COV2.S in the United States. Here we utilize transcriptomic and proteomic profiling to compare individuals who receive two doses of Ad26.COV2.S with those vaccinated with BNT162b2 or mRNA-1273. Initial Ad26.COV2.S vaccination induces transient activation of platelet and coagulation and innate immune pathways that resolve by day 7; by contrast, patients with TTS show robust upregulation of these pathways on days 15-19 following initial Ad26.COV2.S vaccination. Meanwhile, a second immunization or a reduced initial dose of Ad26.COV2.S induces lower activation of these pathways than does the full initial dose. Our data suggest a role of coagulation and proinflammatory pathways in TTS pathogenesis, which may help optimize vaccination regimens to reduce TTS risk.
Collapse
Affiliation(s)
- Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ai-Ris Y Collier
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - James V Michael
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | - Steven E McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
33
|
Perdomo J, Leung HHL. Immune Thrombosis: Exploring the Significance of Immune Complexes and NETosis. BIOLOGY 2023; 12:1332. [PMID: 37887042 PMCID: PMC10604267 DOI: 10.3390/biology12101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Neutrophil extracellular traps (NETs) are major contributors to inflammation and autoimmunity, playing a key role in the development of thrombotic disorders. NETs, composed of DNA, histones, and numerous other proteins serve as scaffolds for thrombus formation and promote platelet activation, coagulation, and endothelial dysfunction. Accumulating evidence indicates that NETs mediate thrombosis in autoimmune diseases, viral and bacterial infections, cancer, and cardiovascular disease. This article reviews the role and mechanisms of immune complexes in NETs formation and their contribution to the generation of a prothrombotic state. Immune complexes are formed by interactions between antigens and antibodies and can induce NETosis by the direct activation of neutrophils via Fc receptors, via platelet activation, and through endothelial inflammation. We discuss the mechanisms by which NETs induced by immune complexes contribute to immune thrombotic processes and consider the potential development of therapeutic strategies. Targeting immune complexes and NETosis hold promise for mitigating thrombotic events and reducing the burden of immune thrombosis.
Collapse
Affiliation(s)
- José Perdomo
- Haematology Research Group, Faculty Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Halina H. L. Leung
- Haematology Research Unit, St George & Sutherland Clinical Campuses, Faculty of Medicine & Health, School of Clinical Medicine, University of New South Wales, Kogarah, NSW 2217, Australia;
| |
Collapse
|
34
|
Carnevale R, Leopizzi M, Dominici M, d'Amati G, Bartimoccia S, Nocella C, Cammisotto V, D'Amico A, Castellani V, Baratta F, Bertelli A, Arrivi A, Toni D, De Michele M, Pignatelli P, Marcucci R, Violi F. PAD4-Induced NETosis Via Cathepsin G-Mediated Platelet-Neutrophil Interaction in ChAdOx1 Vaccine-Induced Thrombosis-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:e396-e403. [PMID: 37586040 DOI: 10.1161/atvbaha.123.319522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare syndrome characterized by platelet anti-PF4 (platelet-activating antiplatelet factor 4)-related thrombosis. Platelet-neutrophil interaction has been suggested to play a role, but the underlying mechanism has not been fully elucidated. METHODS The study included 10 patients with VITT after ChAdOx1 (chimpanzee adenovirus Oxford 1) nCoV-19 (Oxford-AstraZeneca) vaccine administration, 10 patients with ischemic stroke (IS), 10 patients with acute deep vein thrombosis, and 10 control subjects in whom blood levels of neutrophil extracellular traps (NETs), soluble TF (tissue factor), and thrombin generation were examined. Furthermore, we performed in vitro studies comparing the effect of serum from patients and controls on NETs formation. Finally, immunohistochemistry was performed in cerebral thrombi retrieved from a patients with VITT and 3 patients with IS. RESULTS Compared with patients with IS, patients with deep vein thrombosis, controls, and patients with VITT had significantly higher blood values of CitH3 (citrullinated histone H3), soluble TF, D-dimer, and prothrombin fragment 1+2 (P<0.0001). Blood CitH3 significantly correlated with blood soluble TF (Spearman rank correlation coefficient=0.7295; P=0.0206) and prothrombin fragment 1+2 (Spearman rank correlation coefficient=0.6809; P<0.0350) in patients with VITT. Platelet-neutrophil mixture added with VITT plasma resulted in higher NETs formation, soluble TF and thrombin generation, and platelet-dependent thrombus growth under laminar flow compared with IS and deep vein thrombosis plasma; these effects were blunted by PAD4 (protein arginine deiminase 4) and cathepsin G inhibitors, anti-FcγRIIa (Fc receptor for IgG class IIa), and high doses of heparin. Immunohistochemistry analysis showed a more marked expression of PAD4 along with more diffuse neutrophil infiltration and NETs formation as well as TF and cathepsin expression in VITT thrombus compared with thrombi from patients with IS. CONCLUSIONS Patients with VITT display enhanced thrombogenesis by PAD4-mediated NETs formation via cathepsin G-mediated platelet/neutrophil interaction.
Collapse
Affiliation(s)
- Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, Latina, Italy (R.C., M.L., A.D.A.)
- IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C.)
| | - Martina Leopizzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, Latina, Italy (R.C., M.L., A.D.A.)
| | - Marcello Dominici
- Interventional Cardiology Unit, Santa Maria Hospital, Terni, Italy (M.D., A.A.)
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Italy (G.d.A.)
| | - Simona Bartimoccia
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy (S.B., C.N., V. Cammisotto, F.B., P.P., F.V.)
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy (S.B., C.N., V. Cammisotto, F.B., P.P., F.V.)
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy (S.B., C.N., V. Cammisotto, F.B., P.P., F.V.)
| | - Alessandra D'Amico
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, Latina, Italy (R.C., M.L., A.D.A.)
| | - Valentina Castellani
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, Italy (V. Castellani)
| | - Francesco Baratta
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy (S.B., C.N., V. Cammisotto, F.B., P.P., F.V.)
| | - Alessia Bertelli
- Atherothrombotic Disease Unit, Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliera Universitaria Careggi, Italy (A.B., R.M.)
| | - Alessio Arrivi
- Interventional Cardiology Unit, Santa Maria Hospital, Terni, Italy (M.D., A.A.)
| | - Danilo Toni
- Emergency Department, Stroke Unit, Sapienza University of Rome, Italy (D.T.)
| | - Manuela De Michele
- Department of Human Neurosciences, Sapienza University of Rome, Italy (M.D.M.)
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy (S.B., C.N., V. Cammisotto, F.B., P.P., F.V.)
- Mediterranea Cardiocentro-Napoli, Via Orazio, Naples, Italy (P.P., F.V.)
| | - Rossella Marcucci
- Atherothrombotic Disease Unit, Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliera Universitaria Careggi, Italy (A.B., R.M.)
| | - Francesco Violi
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy (S.B., C.N., V. Cammisotto, F.B., P.P., F.V.)
- Mediterranea Cardiocentro-Napoli, Via Orazio, Naples, Italy (P.P., F.V.)
| |
Collapse
|
35
|
Shafqat A, Omer MH, Albalkhi I, Alabdul Razzak G, Abdulkader H, Abdul Rab S, Sabbah BN, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front Immunol 2023; 14:1254310. [PMID: 37828990 PMCID: PMC10565006 DOI: 10.3389/fimmu.2023.1254310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan. In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID. Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can drive NET formation through their pro-inflammatory secretome in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
36
|
Dabbiru VAS, Müller L, Schönborn L, Greinacher A. Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)-Insights from Clinical Cases, In Vitro Studies and Murine Models. J Clin Med 2023; 12:6126. [PMID: 37834770 PMCID: PMC10573542 DOI: 10.3390/jcm12196126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
An effective worldwide vaccination campaign started and is still being carried out in the face of the coronavirus disease 2019 (COVID-19) pandemic. While vaccines are great tools to confront the pandemic, predominantly adenoviral vector-based vaccines can cause a rare severe adverse effect, termed vaccine-induced immune thrombocytopenia and thrombosis (VITT), in about 1 in 100,000 vaccinated individuals. VITT is diagnosed 5-30 days post-vaccination and clinically characterized by thrombocytopenia, strongly elevated D-dimer levels, platelet-activating anti-platelet factor 4 (PF4) antibodies and thrombosis, especially at atypical sites such as the cerebral venous sinus and/or splanchnic veins. There are striking similarities between heparin-induced thrombocytopenia (HIT) and VITT. Both are caused by anti-PF4 antibodies, causing platelet and leukocyte activation which results in massive thrombo-inflammation. However, it is still to be determined why PF4 becomes immunogenic in VITT and which constituent of the vaccine triggers the immune response. As VITT-like syndromes are increasingly reported in patients shortly after viral infections, direct virus-PF4 interactions might be most relevant. Here we summarize the current information and hypotheses on the pathogenesis of VITT and address in vivo models, especially murine models for further studies on VITT.
Collapse
Affiliation(s)
| | | | | | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (V.A.S.D.); (L.M.); (L.S.)
| |
Collapse
|
37
|
Leung HH, Perdomo J, Ahmadi Z, Chong BH. Determination of Antibody Activity by Platelet Aggregation. Bio Protoc 2023; 13:e4804. [PMID: 37719068 PMCID: PMC10501912 DOI: 10.21769/bioprotoc.4804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Platelets play an important role in hemostasis by forming clots and stopping bleeding. In immune thrombotic conditions, platelets and leukocytes are aberrantly activated by pathogenic antibodies resulting in platelet aggregates and NETosis, leading to thrombosis and thrombocytopenia. A simple assay that assesses platelet function and antibody activity is light transmission aggregometry. This assay can be used to determine antibody activity in patients with disorders such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombotic thrombocytopenia (VITT). Briefly, for detection of pathogenic antibody, platelet-rich plasma (PRP) is treated with a specific agent (e.g., patient sera or purified patient antibodies) with constant stirring. Upon activation, platelets undergo a shape change and adhere to each other forming aggregates. This causes a reduction in opacity allowing more light to pass through PRP. Light transmission through the cuvette is proportional to the degree of platelet aggregation and is measured by the photocell over time. The advantage of this protocol is that it is a simple, reliable assay that can be applied to assess antibody activity in thrombotic conditions. Light transmission aggregometry does not require the use of radioactive reagents and is technically less demanding compared with 14C-serotonin release assay, another common assay for detecting antibody activity. Key features • This protocol can be used to assess platelet function and to detect platelet activating antibodies in diseases such as HIT and VITT. • Does not require radioactive reagents, requires an aggregometer; based on the light transmission aggregometry protocol, adapted for detection of VITT and other platelet-activating antibodies. • Two positive controls are required for reliable detection of antibodies in diseases such as HIT/VITT, namely a weak HIT/VITT antibody and a physiological agonist. • For detection of HIT/VITT antibodies, it is essential to use donors known to have platelets reactive to these antibodies to avoid false negative results.
Collapse
Affiliation(s)
- Halina H.L. Leung
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Zohra Ahmadi
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Beng H. Chong
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
38
|
Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J. 'Spikeopathy': COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines 2023; 11:2287. [PMID: 37626783 PMCID: PMC10452662 DOI: 10.3390/biomedicines11082287] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The COVID-19 pandemic caused much illness, many deaths, and profound disruption to society. The production of 'safe and effective' vaccines was a key public health target. Sadly, unprecedented high rates of adverse events have overshadowed the benefits. This two-part narrative review presents evidence for the widespread harms of novel product COVID-19 mRNA and adenovectorDNA vaccines and is novel in attempting to provide a thorough overview of harms arising from the new technology in vaccines that relied on human cells producing a foreign antigen that has evidence of pathogenicity. This first paper explores peer-reviewed data counter to the 'safe and effective' narrative attached to these new technologies. Spike protein pathogenicity, termed 'spikeopathy', whether from the SARS-CoV-2 virus or produced by vaccine gene codes, akin to a 'synthetic virus', is increasingly understood in terms of molecular biology and pathophysiology. Pharmacokinetic transfection through body tissues distant from the injection site by lipid-nanoparticles or viral-vector carriers means that 'spikeopathy' can affect many organs. The inflammatory properties of the nanoparticles used to ferry mRNA; N1-methylpseudouridine employed to prolong synthetic mRNA function; the widespread biodistribution of the mRNA and DNA codes and translated spike proteins, and autoimmunity via human production of foreign proteins, contribute to harmful effects. This paper reviews autoimmune, cardiovascular, neurological, potential oncological effects, and autopsy evidence for spikeopathy. With many gene-based therapeutic technologies planned, a re-evaluation is necessary and timely.
Collapse
Affiliation(s)
- Peter I. Parry
- Children’s Health Research Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Astrid Lefringhausen
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Conny Turni
- Microbiology Research, QAAFI (Queensland Alliance for Agriculture and Food Innovation), The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Christopher J. Neil
- Department of Medicine, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Robyn Cosford
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Nicholas J. Hudson
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Julian Gillespie
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| |
Collapse
|
39
|
Geeraerts T, Guilbeau-Frugier C, Garcia C, Memier V, Raposo N, Bonneville F, Gales C, Darcourt J, Voisin S, Ribes A, Piel-Julian M, Bounes F, Albucher JF, Roux FE, Izopet J, Telmon N, Olivot JM, Sié P, Bauer J, Payrastre B, Liblau RS. Immunohistologic Features of Cerebral Venous Thrombosis Due to Vaccine-Induced Immune Thrombotic Thrombocytopenia. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/4/e200127. [PMID: 37236806 DOI: 10.1212/nxi.0000000000200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVES Vaccine-induced immune thrombotic thrombocytopenia (VITT), a recently described entity characterized by thrombosis at unusual locations such as cerebral venous sinus and splanchnic vein, has been rarely described after adenoviral-encoded COVID-19 vaccines. In this study, we report the immunohistological correlates in 3 fatal cases of cerebral venous thrombosis related to VITT analyzed at an academic medical center. METHODS Detailed neuropathologic studies were performed in 3 cases of cerebral venous thrombosis related to VITT after adenoviral COVID-19 vaccination. RESULTS Autopsy revealed extensive cerebral vein thrombosis in all 3 cases. Polarized thrombi were observed with a high density of neutrophils in the core and a low density in the tail. Endothelial cells adjacent to the thrombus were largely destroyed. Markers of neutrophil extracellular trap and complement activation were present at the border and within the cerebral vein thrombi. SARS-CoV-2 spike protein was detected within the thrombus and in the adjacent vessel wall. DISCUSSION Data indicate that neutrophils and complement activation associated with antispike immunity triggered by the vaccine is probably involved in the disease process.
Collapse
Affiliation(s)
- Thomas Geeraerts
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Céline Guilbeau-Frugier
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Cédric Garcia
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Vincent Memier
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Nicolas Raposo
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Fabrice Bonneville
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Céline Gales
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Jean Darcourt
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Sophie Voisin
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Agnès Ribes
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Marie Piel-Julian
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Fanny Bounes
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Jean François Albucher
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Franck-Emmanuel Roux
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Jacques Izopet
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Norbert Telmon
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Jean Marc Olivot
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Pierre Sié
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Jan Bauer
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Bernard Payrastre
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France
| | - Roland S Liblau
- From the Department of Anesthesiology and Critical Care (T.G., F. Bounes); Department of Forensic Medicine (C.G.-F., C. Gales, N.T.), Toulouse University Hospital; Institute of Metabolic and Cardiovascular Diseases (C. Garcia, A.R., B.P.), Inserm UMR-1297; Hematology Laboratory (C. Garcia, V.M., S.V., A.R., P.S., B.P.); Department of Neurology (N.R., J.F.A., J.M.O.); Department of Neuroradiology (F. Bonneville, J.D.); Department of Internal Medicine (M.P.-J.); Department of Neurosurgery (F.R.); Department of Virology (J.I.), Toulouse University Hospital, France; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L.), Toulouse University Hospital, France.
| |
Collapse
|
40
|
Fagerhol MK, Schultz NH, Mirlashari MR, Wiedmann MKH, Nissen-Meyer LSH, Søraas AVL, Hetland G. DNase analysed by a novel competitive assay in patients with complications after ChAdOx1 nCoV-19 vaccination and in normal unvaccinated blood donors. Scand J Immunol 2023; 98:e13274. [PMID: 37676118 DOI: 10.1111/sji.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 09/08/2023]
Abstract
Increased levels of neutrophil extracellular traps (NETs) have been detected in individuals with vaccine complications after the ChAdOx1 nCov vaccine with a correlation between the severity of vaccine side effects and the level of NETosis. DNases may disrupt NETs by degrading their content of DNA, and a balance has been reported between NETs and DNases. Because of this and since the inflammatory marker NETs may be used as a confirmatory test in diagnosing VITT, it is of interest to monitor levels of DNase in patients with increased NETs levels. The current novel rapid DNase ELISA was tested in blood samples of patients with known increased levels of NETs with or without VITT after ChAdOx1 nCoV-19 vaccination. DNase levels in VITT patients were significantly increased compared with normal unvaccinated blood donors and compared with patients with post-vaccination symptoms but not VITT. However, since EDTA was found to inhibit DNase, serum and not EDTA-plasma samples should be applied for DNase testing. The novel DNase assay may serve as a supplementary test to the NETs test when analysing samples from patients with suspected increased NETs levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Geir Hetland
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
41
|
Hirsch J, Uzun G, Zlamal J, Singh A, Bakchoul T. Platelet-neutrophil interaction in COVID-19 and vaccine-induced thrombotic thrombocytopenia. Front Immunol 2023; 14:1186000. [PMID: 37275917 PMCID: PMC10237318 DOI: 10.3389/fimmu.2023.1186000] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is known to commonly induce a thrombotic diathesis, particularly in severely affected individuals. So far, this COVID-19-associated coagulopathy (CAC) has been partially explained by hyperactivated platelets as well as by the prothrombotic effects of neutrophil extracellular traps (NETs) released from neutrophils. However, precise insight into the bidirectional relationship between platelets and neutrophils in the pathophysiology of CAC still lags behind. Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare autoimmune disorder caused by auto-antibody formation in response to immunization with adenoviral vector vaccines. VITT is associated with life-threatening thromboembolic events and thus, high fatality rates. Our concept of the thrombophilia observed in VITT is relatively new, hence a better understanding could help in the management of such patients with the potential to also prevent VITT. In this review we aim to summarize the current knowledge on platelet-neutrophil interplay in COVID-19 and VITT.
Collapse
Affiliation(s)
- Johannes Hirsch
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Günalp Uzun
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Jan Zlamal
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anurag Singh
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Tamam Bakchoul
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
42
|
Roytenberg R, García-Sastre A, Li W. Vaccine-induced immune thrombotic thrombocytopenia: what do we know hitherto? Front Med (Lausanne) 2023; 10:1155727. [PMID: 37261122 PMCID: PMC10227460 DOI: 10.3389/fmed.2023.1155727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT), also known as thrombosis with thrombocytopenia syndrome, is a catastrophic and life-threatening reaction to coronavirus disease 2019 (COVID-19) vaccines, which occurs disproportionately in response to vaccination with non-replicating adenovirus vector (AV) vaccines. The mechanism of VITT is not well defined and it has not been resolved why cases of VITT are predominated by vaccination with AV vaccines. However, virtually all VITT patients have positive platelet-activating anti-platelet factor 4 (PF4) antibody titers. Subsequently, platelets are activated and depleted in an Fcγ-receptor IIa (FcγRIIa or CD32a)-dependent manner, but it is not clear why or how the anti-PF4 response is mounted. This review describes the pathogenesis of VITT and provides insight into possible mechanisms that prompt the formation of a PF4/polyanion complex, which drives VITT pathology, as an amalgam of current experimental data or hypotheses.
Collapse
Affiliation(s)
- Renat Roytenberg
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| |
Collapse
|
43
|
Jain N, Chaudhary P, Shrivastava A, Kaur T, Kaur S, Brar HS, Jindal R. Thrombosis with Thrombocytopenia Syndrome (TTS) After ChAdOx1 nCoV-19 Immunization: An Investigative Case Report. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e938878. [PMID: 36932639 PMCID: PMC10037117 DOI: 10.12659/ajcr.938878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/13/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Thrombosis with thrombocytopenia syndrome (TTS), including vaccine-induced immune thrombotic thrombocytopenia (VITT), is an extremely rare adverse effect, mostly seen after initial vaccination with the viral vector-based AstraZeneca-Oxford COVID-19 vaccine. It is characterized by mild to severe thrombocytopenia and venous or arterial thrombosis. CASE REPORT Herein, we present a case of an 18-year-old male patient who developed Level 1 TTS (probable VITT) eight days after immunization with the ChADOx1 nCOV-19 vaccine (Covishield; AZ-Oxford). Initial investigations revealed severe thrombocytopenia, hemiparesis, and intracranial hemorrhage, after which the patient was treated conservatively. However, a decompressive craniotomy was performed later due to patient deterioration. One week after surgery, the patient developed bilious vomiting, lower-gastrointestinal bleeding, and abdominal distension. An abdominal CT scan was performed that showed thrombosis of the portal vein with occlusion of the left iliac vein. The patient underwent an exploratory laparotomy followed by resection and anastomosis of the small bowel due to massive gut gangrene. Due to persistent thrombocytopenia after surgery, intravenous immune globulin (IVIG) was administered. The platelet count increased thereafter, and the patient stabilized. He was discharged on the 33rd day after admission and was followed up for a year. No post-hospitalization complications were observed in the follow-up period. CONCLUSIONS Although vaccines have been proven to be highly safe and effective to end the Coronavirus Disease 2019 (COVID-19) caused pandemic, there is still a small risk of developing rare complications, including TTS and VITT. Early diagnosis and prompt intervention are key for patient management.
Collapse
Affiliation(s)
- Nityanand Jain
- Faculty of Medicine, Riga Stradinš University, Riga, Latvia
- Statistics Unit, Riga Stradinš University, Riga, Latvia
| | - Piyush Chaudhary
- Department of Vascular Surgery, Fortis Hospital Mohali, Sahibzada Ajit Singh Nagar (Mohali), Punjab, India
| | - Amit Shrivastava
- Department of Vascular Surgery, Fortis Hospital Mohali, Sahibzada Ajit Singh Nagar (Mohali), Punjab, India
| | - Taranvir Kaur
- Department of Vascular Surgery, Fortis Hospital Mohali, Sahibzada Ajit Singh Nagar (Mohali), Punjab, India
| | - Shabjot Kaur
- Department of Vascular Surgery, Fortis Hospital Mohali, Sahibzada Ajit Singh Nagar (Mohali), Punjab, India
| | - Harmandeep Singh Brar
- Department of Vascular Surgery, Fortis Hospital Mohali, Sahibzada Ajit Singh Nagar (Mohali), Punjab, India
| | - Ravul Jindal
- Department of Vascular Surgery, Fortis Hospital Mohali, Sahibzada Ajit Singh Nagar (Mohali), Punjab, India
| |
Collapse
|
44
|
Venier LM, Clerici B, Bissola AL, Modi D, Jevtic SD, Radford M, Mahamad S, Nazy I, Arnold DM. Unique features of vaccine-induced immune thrombotic thrombocytopenia; a new anti-platelet factor 4 antibody-mediated disorder. Int J Hematol 2023; 117:341-348. [PMID: 36574172 PMCID: PMC9793819 DOI: 10.1007/s12185-022-03516-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a highly prothrombotic disorder caused by anti-PF4 antibodies that activate platelets and neutrophils, leading to thrombosis. Heparin-induced thrombocytopenia (HIT) is a related anti-PF4 mediated disorder, with similar pathophysiology and clinical manifestations but different triggers (i.e., heparin vs adenoviral vector vaccine). Clinically, both HIT and VITT typically present with thrombocytopenia and thrombosis, although the risk of thrombosis is significantly higher in VITT, and the thromboses occur in unusual anatomical sites (e.g., cerebral venous sinus thrombosis and hepatic vein thrombosis). The diagnostic accuracy of available laboratory testing differs between HIT and VITT; for VITT, ELISAs have better specificity compared to HIT and platelet activation assays require the addition of PF4. Treatment of VITT and HIT is anticoagulation non-heparin anticoagulants; however, heparin may be considered for VITT if no other option is available.
Collapse
Affiliation(s)
- Laura M Venier
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Bianca Clerici
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- McMaster Centre for Transfusion Research, McMaster University, 1280 Main Street West, Room HSC 3H50, Hamilton, ON, L8S 4K1, Canada
| | - Anna-Lise Bissola
- Department of Medicine, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dimpy Modi
- McMaster Centre for Transfusion Research, McMaster University, 1280 Main Street West, Room HSC 3H50, Hamilton, ON, L8S 4K1, Canada
| | - Stefan D Jevtic
- Department of Medicine, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
| | - Michael Radford
- Department of Medicine, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
| | - Syed Mahamad
- McMaster Centre for Transfusion Research, McMaster University, 1280 Main Street West, Room HSC 3H50, Hamilton, ON, L8S 4K1, Canada
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
- McMaster Centre for Transfusion Research, McMaster University, 1280 Main Street West, Room HSC 3H50, Hamilton, ON, L8S 4K1, Canada
| | - Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada.
- McMaster Centre for Transfusion Research, McMaster University, 1280 Main Street West, Room HSC 3H50, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
45
|
Tan JH, Ahmad Azahari AHS, Ali A, Ismail NAS. Scoping Review on Epigenetic Mechanisms in Primary Immune Thrombocytopenia. Genes (Basel) 2023; 14:555. [PMID: 36980827 PMCID: PMC10048672 DOI: 10.3390/genes14030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Immune Thrombocytopenia (ITP) is an autoimmune blood disorder that involves multiple pathways responsible for the homeostasis of the immune system. Numerous pieces of literature have proposed the potential of immune-related genes as diagnostic and prognostic biomarkers, which mostly implicate the role of B cells and T cells in the pathogenesis of ITP. However, a more in-depth understanding is required of how these immune-related genes are regulated. Thus, this scoping review aims to collate evidence and further elucidate each possible epigenetics mechanism in the regulation of immunological pathways pertinent to the pathogenesis of ITP. This encompasses DNA methylation, histone modification, and non-coding RNA. A total of 41 studies were scrutinized to further clarify how each of the epigenetics mechanisms is related to the pathogenesis of ITP. Identifying epigenetics mechanisms will provide a new paradigm that may assist in the diagnosis and treatment of immune thrombocytopenia.
Collapse
Affiliation(s)
- Jian Hong Tan
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Hazim Syakir Ahmad Azahari
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
46
|
Aydemir D, Ulusu NN. People having hematological disorders and hypercoagulability state need extra precautions because of the increased risk of thrombosis after COVID-19 vaccination. Front Med (Lausanne) 2023; 9:1082611. [PMID: 36865660 PMCID: PMC9971818 DOI: 10.3389/fmed.2022.1082611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/29/2022] [Indexed: 02/16/2023] Open
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Koc University, Sariyer, Istanbul, Türkiye,Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Türkiye,*Correspondence: Duygu Aydemir ✉
| | - Nuriye Nuray Ulusu
- School of Medicine, Koc University, Sariyer, Istanbul, Türkiye,Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Türkiye,Nuriye Nuray Ulusu ✉
| |
Collapse
|
47
|
Thomassen MCLGD, Bouwens BRC, Wichapong K, Suylen DP, Bouwman FG, Hackeng TM, Koenen RR. Protein arginine deiminase 4 inactivates tissue factor pathway inhibitor-alpha by enzymatic modification of functional arginine residues. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:1214-1226. [PMID: 36716968 DOI: 10.1016/j.jtha.2023.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is an important regulator of coagulation and a link between inflammation and thrombosis. During thrombotic events, TFPI is proteolytically inactivated by neutrophil elastase while bound to neutrophil extracellular traps (NETs). Protein arginine deiminase 4 (PAD4) catalyzes the conversion of arginine to citrulline and is crucial for NET formation. OBJECTIVES Here, we show that PAD4 inactivates full-length TFPIα by citrullination of its functional arginines. METHODS Citrullination of TFPIα and of TFPI-constructs by PAD4 was studied using western blotting and mass spectrometry. Binding of TFPIα to PAD4 was investigated using a solid-phase assay. Functional consequences were investigated by factor Xa inhibition and thrombin generation assays. RESULTS Nanomolar PAD4 amounts eliminated factor Xa inhibition by TFPIα. A citrullinated mutant Kunitz 2 domain did not inhibit factor Xa. Citrullination of TFPIα was found to be time- and concentration-dependent. Immunoprecipitation of citrullinated proteins from whole blood after neutrophil activation suggested the presence of TFPIα. Negatively charged phospholipids inhibited citrullination and truncated variants K1K2 and TFPI 1-161, and the isolated K2 domain were less efficiently citrullinated by PAD4. TFPIα bound to PAD4 with nanomolar affinity and involved the basic C-terminus. Thrombin generation in TFPI-deficient plasma demonstrated reduced anticoagulant activity of citrullinated TFPI. Mass spectrometry demonstrated citrullination of surface-exposed arginine residues in TFPIα after incubation with PAD4. CONCLUSION Full-length TFPIα is sensitive to citrullination by PAD4, which causes loss of factor Xa inhibition. This process may play a role in the increased thrombosis risk associated with inflammation.
Collapse
Affiliation(s)
- M Christella L G D Thomassen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Bryan R C Bouwens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Dennis P Suylen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.
| |
Collapse
|
48
|
Selvadurai MV, Favaloro EJ, Chen VM. Mechanisms of Thrombosis in Heparin-Induced Thrombocytopenia and Vaccine-Induced Immune Thrombotic Thrombocytopenia. Semin Thromb Hemost 2023. [PMID: 36706782 DOI: 10.1055/s-0043-1761269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombotic thrombocytopenia (VITT) are rare, iatrogenic immune-mediated conditions with high rates of thrombosis-related morbidity and mortality. HIT is a long-recognized reaction to the administration of the common parenterally administered anticoagulant heparin (or its derivatives), while VITT is a new, distinct syndrome occurring in response to adenovirus-based vaccines against coronavirus disease 2019 and potentially other types of vaccines. A feature of both HIT and VITT is paradoxical thrombosis despite a characteristic low platelet count, mediated by the presence of platelet-activating antibodies to platelet factor 4. Several additional factors have also been suggested to contribute to clot formation in HIT and/or VITT, including monocytes, tissue factor, microparticles, endothelium, the formation of neutrophil extracellular traps, complement, procoagulant platelets, and vaccine components. In this review, we discuss the literature to date regarding mechanisms contributing to thrombosis in both HIT and VITT and explore the pathophysiological similarities and differences between the two conditions.
Collapse
Affiliation(s)
- Maria V Selvadurai
- The Alfred Hospital, Melbourne, VIC, Australia.,ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia.,School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Vivien M Chen
- ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.,Department of Haematology, Concord Repatriation General Hospital and NSW Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
49
|
Van Bruggen S, Martinod K. The coming of age of neutrophil extracellular traps in thrombosis: Where are we now and where are we headed? Immunol Rev 2022; 314:376-398. [PMID: 36560865 DOI: 10.1111/imr.13179] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombosis remains a major problem in our society, manifesting across multiple demographic groups and with high associated morbidity and mortality. Thrombus development is the result of a complex mechanism in which multiple cell types and soluble factors play a crucial role. One cell that has gained the most attention in recent years is the neutrophil. This key member of the innate immune system can form neutrophil extracellular traps (NETs) in response to activating stimuli in circulation. NETs form a scaffold for thrombus formation, both initiating the process and stabilizing the final product. As the first responders of the host immune system, neutrophils have the flexibility to recognize a variety of molecules and can quickly interact with a range of different cell types. This trait makes them sensitive to exogenous stimuli. NET formation in response to pathogens is well established, leading to immune-mediated thrombus formation or immunothrombosis. NETs can also be formed during sterile inflammation through the activation of neutrophils by fellow immune cells including platelets, or activated endothelium. In chronic inflammatory settings, NETs can ultimately promote the development of tissue fibrosis, with organ failure as an end-stage outcome. In this review, we discuss the different pathways through which neutrophils can be activated toward NET formation and how these processes can result in a shared outcome: thrombus formation. Finally, we evaluate these different interactions and mechanisms for their potential as therapeutic targets, with neutrophil-targeted therapies providing a future approach to treating thrombosis. In contrast to current practices, such treatment could result in reduced pathogenic blood clot formation without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Buoninfante A, Andeweg A, Baker AT, Borad M, Crawford N, Dogné JM, Garcia-Azorin D, Greinacher A, Helfand R, Hviid A, Kochanek S, López-Fauqued M, Nazy I, Padmanabhan A, Pavord S, Prieto-Alhambra D, Tran H, Wandel Liminga U, Cavaleri M. Understanding thrombosis with thrombocytopenia syndrome after COVID-19 vaccination. NPJ Vaccines 2022; 7:141. [PMID: 36351906 PMCID: PMC9643955 DOI: 10.1038/s41541-022-00569-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Alessandra Buoninfante
- grid.452397.eHealth Threats and Vaccines Strategy, European Medicines Agency, Amsterdam, the Netherlands
| | - Arno Andeweg
- grid.452397.eHealth Threats and Vaccines Strategy, European Medicines Agency, Amsterdam, the Netherlands
| | - Alexander T. Baker
- grid.417468.80000 0000 8875 6339Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ 85054 USA ,grid.5600.30000 0001 0807 5670Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN UK
| | - Mitesh Borad
- grid.417467.70000 0004 0443 9942Mayo Clinic Cancer Center, Phoenix, AZ 85054 USA
| | - Nigel Crawford
- grid.1008.90000 0001 2179 088XRoyal Children’s Hospital, Murdoch Children’s Research Institute, Department Paediatrics, The University of Melbourne, Melbourne, VIC Australia
| | - Jean-Michel Dogné
- grid.6520.10000 0001 2242 8479Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium ,grid.452397.eEMA Pharmacovigilance Risk Assessment Committee member, Amsterdam, The Netherlands
| | - David Garcia-Azorin
- grid.411057.60000 0000 9274 367XDepartment of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - Andreas Greinacher
- grid.5603.0Department of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Rita Helfand
- grid.416738.f0000 0001 2163 0069National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, USA ,grid.3575.40000000121633745WHO’s Global Advisory Committee on Vaccine Safety, WHO, Geneva, Switzerland
| | - Anders Hviid
- grid.5254.60000 0001 0674 042XPharmacovigilance Research Center, Department of Drug Development and Clinical Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.6203.70000 0004 0417 4147Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Stefan Kochanek
- grid.6582.90000 0004 1936 9748Department of Gene Therapy, University of Ulm, Ulm, Germany
| | - Marta López-Fauqued
- grid.452397.eVaccines and Therapies for Infectious Diseases, European Medicines Agency, Amsterdam, the Netherlands
| | - Ishac Nazy
- grid.25073.330000 0004 1936 8227McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON Canada
| | - Anand Padmanabhan
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Sue Pavord
- grid.410556.30000 0001 0440 1440Department Hematology, Oxford University Hospitals NHS Foundation Trust, Oxfordshire, UK
| | - Daniel Prieto-Alhambra
- grid.4991.50000 0004 1936 8948Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDROMS), University of Oxford, Oxford, UK ,grid.5645.2000000040459992XDepartment of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Huyen Tran
- grid.1623.60000 0004 0432 511XDepartment of Clinical Haematology, The Alfred Hospital, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC Australia
| | - Ulla Wandel Liminga
- grid.452397.eEMA Pharmacovigilance Risk Assessment Committee member, Amsterdam, The Netherlands ,grid.415001.10000 0004 0475 6278Medical Products Agency, Uppsala, Sweden
| | - Marco Cavaleri
- grid.452397.eHealth Threats and Vaccines Strategy, European Medicines Agency, Amsterdam, the Netherlands ,grid.452397.eEMA Emergency Task Force Chair, Amsterdam, The Netherlands
| |
Collapse
|