1
|
Tavakoli MR, Lyudchik J, Januszewski M, Vistunou V, Agudelo Dueñas N, Vorlaufer J, Sommer C, Kreuzinger C, Oliveira B, Cenameri A, Novarino G, Jain V, Danzl JG. Light-microscopy-based connectomic reconstruction of mammalian brain tissue. Nature 2025:10.1038/s41586-025-08985-1. [PMID: 40335689 DOI: 10.1038/s41586-025-08985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
The information-processing capability of the brain's cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale resolution1,2 with dense cellular labelling. Light microscopy is uniquely positioned to visualize specific molecules, but dense, synapse-level circuit reconstruction by light microscopy has been out of reach, owing to limitations in resolution, contrast and volumetric imaging capability. Here we describe light-microscopy-based connectomics (LICONN). We integrated specifically engineered hydrogel embedding and expansion with comprehensive deep-learning-based segmentation and analysis of connectivity, thereby directly incorporating molecular information into synapse-level reconstructions of brain tissue. LICONN will allow synapse-level phenotyping of brain tissue in biological experiments in a readily adoptable manner.
Collapse
Affiliation(s)
| | - Julia Lyudchik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Vitali Vistunou
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Jakob Vorlaufer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Bárbara Oliveira
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alban Cenameri
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Johann G Danzl
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
2
|
Grison MS, Maucort G, Dumazel A, Champelovier D, Shimizu Y, Boutté Y, Fernández-Monreal M, Bayer EM. Root expansion microscopy: A robust method for super resolution imaging in Arabidopsis. THE PLANT CELL 2025; 37:koaf050. [PMID: 40207705 DOI: 10.1093/plcell/koaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 04/11/2025]
Abstract
Expansion microscopy (ExM) has revolutionized biological imaging by physically enlarging samples, surpassing the light diffraction limit, and enabling nanoscale visualization using standard microscopes. While extensively employed across a wide range of biological samples, its application to plant tissues is sparse. In this work, we present ROOT-ExM, an expansion method suited for stiff and intricate multicellular plant tissues, focusing on the primary root of Arabidopsis (Arabidopsis thaliana). ROOT-ExM achieves isotropic expansion with a 4-fold increase in resolution, enabling super-resolution microscopy comparable to stimulated emission depletion (STED) microscopy. Labeling is achieved through immunolocalization, compartment-specific dyes, and native fluorescence preservation, while N-hydroxysuccinimide ester-dye conjugates reveal the ultrastructural context of cells alongside specific labeling. We successfully applied ROOT-ExM to image various organelles and subcellular compartments, including the Golgi apparatus, the endoplasmic reticulum, the cytoskeleton, and tiny wall-embedded structures such as plasmodesmata. Combination of ROOT-ExM with STED enabled reaching an unprecedented resolution of plasmodesmata by light microscopy. When combined with lattice light sheet microscopy, ROOT-ExM enabled 3D quantitative analysis of nanoscale cellular processes, such as the size quantification of vesicles near the cell plate during cell division. Achieving super-resolution fluorescence imaging in plant biology remains a formidable challenge. Our findings underscore that ROOT-ExM provides a remarkable, cost-effective solution to this challenge, paving the way for valuable insights into plant subcellular architecture.
Collapse
Affiliation(s)
- Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | - Guillaume Maucort
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), US4, UAR 3420, 33000 Bordeaux, France
- France-BioImaging Core - UAR2057 CNRS UM, France
| | - Amandine Dumazel
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | - Dorian Champelovier
- TEFOR Paris-Saclay, CNRS UAR2010, Université Paris-Saclay, Saclay 91400, France
| | - Yutaro Shimizu
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | - Mónica Fernández-Monreal
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), US4, UAR 3420, 33000 Bordeaux, France
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, 33140 Villenave d'Ornon, France
| |
Collapse
|
3
|
Zhang Z, Xu A, Bai Y, Chen Y, Cates K, Kerr C, Bermudez A, Susanto TT, Wysong K, García Marqués FJ, Nolan GP, Pitteri S, Barna M. A subcellular map of translational machinery composition and regulation at the single-molecule level. Science 2025; 387:eadn2623. [PMID: 40048539 DOI: 10.1126/science.adn2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 04/23/2025]
Abstract
Millions of ribosomes are packed within mammalian cells, yet we lack tools to visualize them in toto and characterize their subcellular composition. In this study, we present ribosome expansion microscopy (RiboExM) to visualize individual ribosomes and an optogenetic proximity-labeling technique (ALIBi) to probe their composition. We generated a super-resolution ribosomal map, revealing subcellular translational hotspots and enrichment of 60S subunits near polysomes at the endoplasmic reticulum (ER). We found that Lsg1 tethers 60S to the ER and regulates translation of select proteins. Additionally, we discovered ribosome heterogeneity at mitochondria guiding translation of metabolism-related transcripts. Lastly, we visualized ribosomes in neurons, revealing a dynamic switch between monosomes and polysomes in neuronal translation. Together, these approaches enable exploration of ribosomal localization and composition at unprecedented resolution.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Adele Xu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kitra Cates
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Craig Kerr
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Kelsie Wysong
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Guo J, Yang H, Lu C, Cui D, Zhao M, Li C, Chen W, Yang Q, Li Z, Chen M, Zhao SC, Zhou J, He J, Jiang H. BOOST: a robust ten-fold expansion method on hour-scale. Nat Commun 2025; 16:2107. [PMID: 40025036 PMCID: PMC11873231 DOI: 10.1038/s41467-025-57350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025] Open
Abstract
Expansion microscopy enhances the microscopy resolution by physically expanding biological specimens and improves the visualization of structural and molecular details. Numerous expansion microscopy techniques and labeling methods have been developed over the past decade to cater to specific research needs. Nonetheless, a shared limitation among current protocols is the extensive sample processing time, particularly for challenging-to-expand biological specimens (e.g., formalin-fixed paraffin-embedded (FFPE) sections and large three-dimensional specimens). Here we present BOOST, a rapid and robust expansion microscopy workflow that leverages a series of microwave-accelerated expansion microscopy chemistry. Specifically, BOOST enables a single-step 10-fold expansion of cultured cells, tissue sections, and even the challenging-to-expand FFPE sections under 90 minutes. Notably, BOOST pioneers a 10-fold expansion of large millimeter-sized three-dimensional specimens, previously unattainable to the best of our knowledge. The workflow is also easily adaptable based on stable and common reagents, thus boosting the potential adoption of expansion microscopy for applications.
Collapse
Affiliation(s)
- Jinyu Guo
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Hui Yang
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chixiang Lu
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Di Cui
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Murong Zhao
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Cun Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Weihua Chen
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Qian Yang
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Zhijie Li
- Department of Geriatrics, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Mingkun Chen
- Department of Urology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shan-Chao Zhao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Urology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jiaye He
- Institute of Scientific Instrumentation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
5
|
Jia D, Cui M, Divsalar A, Khattab TA, Al-Qahtani SD, Cheung E, Ding X. Derivative Technologies of Expansion Microscopy and Applications in Biomedicine. Chembiochem 2025; 26:e202400795. [PMID: 39681518 DOI: 10.1002/cbic.202400795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Expansion microscopy (ExM) is an innovative super-resolution imaging technique that utilizes physical expansion to magnify biological samples, facilitating the visualization of cellular structures that are challenging to observe using traditional optical microscopes. The fundamental principle of ExM revolves around employing a specialized hydrogel to uniformly expand biological samples, thereby achieving super-resolution imaging under conventional optical imaging conditions. This technology finds application not only in various biological samples such as cells and tissue sections, but also enables super-resolution imaging of large biological molecules including proteins, nucleic acids, and metabolite molecules. In recent years, numerous researchers have delved into ExM, resulting in the continuous development of a range of derivative technologies that optimize experimental protocols and broaden practical application fields. This article presents a comprehensive review of these derivative technologies, highlighting the utilization of ExM for anchoring nucleic acids, proteins, and other biological molecules, as well as its applications in biomedicine. Furthermore, this review offers insights into the future development prospects of ExM technology.
Collapse
Affiliation(s)
- Dongling Jia
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Minhui Cui
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute National Research Centre, Cairo, 12622, Egypt
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Edwin Cheung
- Cancer Centre, Centre for Precision Medicine Research and Training, Faculty of Health Science, University of Macau Taipa, 999078, Macau, SAR
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
6
|
Shin TW, Wang H, Zhang C, An B, Lu Y, Zhang E, Lu X, Karagiannis ED, Kang JS, Emenari A, Symvoulidis P, Asano S, Lin L, Costa EK, Marblestone AH, Kasthuri N, Tsai LH, Boyden ES. Dense, continuous membrane labeling and expansion microscopy visualization of ultrastructure in tissues. Nat Commun 2025; 16:1579. [PMID: 39939319 PMCID: PMC11821914 DOI: 10.1038/s41467-025-56641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Lipid membranes are key to the nanoscale compartmentalization of biological systems, but fluorescent visualization of them in intact tissues, with nanoscale precision, is challenging to do with high labeling density. Here, we report ultrastructural membrane expansion microscopy (umExM), which combines an innovative membrane label and optimized expansion microscopy protocol, to support dense labeling of membranes in tissues for nanoscale visualization. We validate the high signal-to-background ratio, and uniformity and continuity, of umExM membrane labeling in brain slices, which supports the imaging of membranes and proteins at a resolution of ~60 nm on a confocal microscope. We demonstrate the utility of umExM for the segmentation and tracing of neuronal processes, such as axons, in mouse brain tissue. Combining umExM with optical fluctuation imaging, or iterating the expansion process, yields ~35 nm resolution imaging, pointing towards the potential for electron microscopy resolution visualization of brain membranes on ordinary light microscopes.
Collapse
Affiliation(s)
- Tay Won Shin
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA
| | - Hao Wang
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chi Zhang
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bobae An
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yangning Lu
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elizabeth Zhang
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiaotang Lu
- Department of Cellular and Molecular Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Jeong Seuk Kang
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Amauche Emenari
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Shoh Asano
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Pfizer Inc, Cambridge, MA, 02139, USA
| | - Leanne Lin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emma K Costa
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Adam H Marblestone
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Convergent Research, Cambridge, MA, 02140, USA
| | - Narayanan Kasthuri
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward S Boyden
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- K. Lisa Yang Center for Bionics, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Gao HC, Xu F, Cheng X, Bi C, Zheng Y, Li Y, Chen T, Li Y, Chubykin AA, Huang F. Interferometric Ultra-High Resolution 3D Imaging through Brain Sections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636258. [PMID: 39975253 PMCID: PMC11838448 DOI: 10.1101/2025.02.03.636258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Single-molecule super-resolution microscopy allows pin-pointing individual molecular positions in cells with nanometer precision. However, achieving molecular resolution through tissues is often difficult because of optical scattering and aberrations. We introduced 4Pi single-molecule nanoscopy for brain with in-situ point spread function retrieval through opaque tissue (4Pi-BRAINSPOT), integrating 4Pi single-molecule switching nanoscopy with dynamic in-situ coherent PSF modeling, single-molecule compatible tissue clearing, light-sheet illumination, and a novel quantitative analysis pipeline utilizing the highly accurate 3D molecular coordinates. This approach enables the quantification of protein distribution with sub-15-nm resolution in all three dimensions in complex tissue specimens. We demonstrated 4Pi-BRAINSPOT's capacities in revealing the molecular arrangements in various sub-cellular organelles and resolved the membrane morphology of individual dendritic spines through 50-μm transgenic mouse brain slices. This ultra-high-resolution approach allows us to decipher nanoscale organelle architecture and molecular distribution in both isolated cells and native tissue environments with precision down to a few nanometers.
Collapse
Affiliation(s)
- Hao-Cheng Gao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fan Xu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xi Cheng
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Cheng Bi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yue Zheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yilun Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tailong Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yumian Li
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | | | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Sarfatis A, Wang Y, Twumasi-Ankrah N, Moffitt JR. Highly multiplexed spatial transcriptomics in bacteria. Science 2025; 387:eadr0932. [PMID: 39847624 DOI: 10.1126/science.adr0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/07/2024] [Indexed: 01/25/2025]
Abstract
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH. This method enables high-throughput, spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-MERFISH, we dissected the response of Escherichia coli to carbon starvation, systematically mapped subcellular RNA organization, and charted the adaptation of a gut commensal Bacteroides thetaiotaomicron to micrometer-scale niches in the mammalian colon. We envision that bacterial-MERFISH will be broadly applicable to the study of bacterial single-cell heterogeneity in diverse, spatially structured, and native environments.
Collapse
Affiliation(s)
- Ari Sarfatis
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuanyou Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Nana Twumasi-Ankrah
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
9
|
Kang J, Schroeder ME, Lee Y, Kapoor C, Yu E, Tarr TB, Titterton K, Zeng M, Park D, Niederst E, Wei D, Feng G, Boyden ES. Multiplexed expansion revealing for imaging multiprotein nanostructures in healthy and diseased brain. Nat Commun 2024; 15:9722. [PMID: 39521775 PMCID: PMC11550395 DOI: 10.1038/s41467-024-53729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Proteins work together in nanostructures in many physiological contexts and disease states. We recently developed expansion revealing (ExR), which expands proteins away from each other, in order to support better labeling with antibody tags and nanoscale imaging on conventional microscopes. Here, we report multiplexed expansion revealing (multiExR), which enables high-fidelity antibody visualization of >20 proteins in the same specimen, over serial rounds of staining and imaging. Across all datasets examined, multiExR exhibits a median round-to-round registration error of 39 nm, with a median registration error of 25 nm when the most stringent form of the protocol is used. We precisely map 23 proteins in the brain of 5xFAD Alzheimer's model mice, and find reductions in synaptic protein cluster volume, and co-localization of specific AMPA receptor subunits with amyloid-beta nanoclusters. We visualize 20 synaptic proteins in specimens of mouse primary somatosensory cortex. multiExR may be of broad use in analyzing how different kinds of protein are organized amidst normal and pathological processes in biology.
Collapse
Affiliation(s)
- Jinyoung Kang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
| | - Margaret E Schroeder
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Youngmi Lee
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Chaitanya Kapoor
- Department of Electrical and Electronics Engineering, BITS Pilani, Rajasthan, India
| | - Eunah Yu
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Tyler B Tarr
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kat Titterton
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Menglong Zeng
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Demian Park
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Emily Niederst
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | - Donglai Wei
- Department of Computer Science, Boston College, Chestnut Hill, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
- Yang Tan Collective, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Koch Institute, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Media Arts and Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
10
|
Wang S, Shin TW, Yoder HB, McMillan RB, Su H, Liu Y, Zhang C, Leung KS, Yin P, Kiessling LL, Boyden ES. Single-shot 20-fold expansion microscopy. Nat Methods 2024; 21:2128-2134. [PMID: 39394503 PMCID: PMC11541206 DOI: 10.1038/s41592-024-02454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/09/2024] [Indexed: 10/13/2024]
Abstract
Expansion microscopy (ExM) is in increasingly widespread use throughout biology because its isotropic physical magnification enables nanoimaging on conventional microscopes. To date, ExM methods either expand specimens to a limited range (~4-10× linearly) or achieve larger expansion factors through iterating the expansion process a second time (~15-20× linearly). Here, we present an ExM protocol that achieves ~20× expansion (yielding <20-nm resolution on a conventional microscope) in a single expansion step, achieving the performance of iterative expansion with the simplicity of a single-shot protocol. This protocol, which we call 20ExM, supports postexpansion staining for brain tissue, which can facilitate biomolecular labeling. 20ExM may find utility in many areas of biological investigation requiring high-resolution imaging.
Collapse
Affiliation(s)
- Shiwei Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tay Won Shin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harley B Yoder
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan B McMillan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Biophysics PhD Program, Harvard University, Cambridge, MA, USA
| | - Hanquan Su
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Yixi Liu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chi Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kylie S Leung
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Edward S Boyden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
11
|
Delling JP, Bauer HF, Gerlach-Arbeiter S, Schön M, Jacob C, Wagner J, Pedro MT, Knöll B, Boeckers TM. Combined expansion and STED microscopy reveals altered fingerprints of postsynaptic nanostructure across brain regions in ASD-related SHANK3-deficiency. Mol Psychiatry 2024; 29:2997-3009. [PMID: 38649753 PMCID: PMC11449788 DOI: 10.1038/s41380-024-02559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Synaptic dysfunction is a key feature of SHANK-associated disorders such as autism spectrum disorder, schizophrenia, and Phelan-McDermid syndrome. Since detailed knowledge of their effect on synaptic nanostructure remains limited, we aimed to investigate such alterations in ex11|SH3 SHANK3-KO mice combining expansion and STED microscopy. This enabled high-resolution imaging of mosaic-like arrangements formed by synaptic proteins in both human and murine brain tissue. We found distinct shape-profiles as fingerprints of the murine postsynaptic scaffold across brain regions and genotypes, as well as alterations in the spatial and molecular organization of subsynaptic domains under SHANK3-deficient conditions. These results provide insights into synaptic nanostructure in situ and advance our understanding of molecular mechanisms underlying synaptic dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, 89081, Germany.
- Max Planck Institute of Psychiatry, Munich, 80804, Germany.
| | | | | | - Michael Schön
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, 89081, Germany
| | - Christian Jacob
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, 89081, Germany
| | - Jan Wagner
- Department of Neurology, Ulm University, Ulm, 89081, Germany
| | | | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Ulm, 89081, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, 89081, Germany.
- Ulm Site, DZNE, Ulm, 89081, Germany.
| |
Collapse
|
12
|
Mu X, Ma C, Mei X, Liao J, Bojar R, Kuang S, Rong Q, Yao J, Zhang YS. On-demand expansion fluorescence and photoacoustic microscopy (ExFLPAM). PHOTOACOUSTICS 2024; 38:100610. [PMID: 38726025 PMCID: PMC11079527 DOI: 10.1016/j.pacs.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/04/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
Expansion microscopy (ExM) is a promising technology that enables nanoscale imaging on conventional optical microscopes by physically magnifying the specimens. Here, we report the development of a strategy that enables i) on-demand labeling of subcellular organelles in live cells for ExM through transfection of fluorescent proteins that are well-retained during the expansion procedure; and ii) non-fluorescent chromogenic color-development towards efficient bright-field and photoacoustic imaging in both planar and volumetric formats, which is applicable to both cultured cells and biological tissues. Compared to the conventional ExM methods, our strategy provides an expanded toolkit, which we term as expansion fluorescence and photoacoustic microscopy (ExFLPAM), by allowing on-demand fluorescent protein labeling of cultured cells, as well as non-fluorescent absorption contrast-imaging of biological samples.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Junlong Liao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Rebecca Bojar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- Barnard College, Columbia University, New York, NY 10027, USA
| | - Sizhe Kuang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Glaser A, Chandrashekar J, Vasquez S, Arshadi C, Ouellette N, Jiang X, Baka J, Kovacs G, Woodard M, Seshamani S, Cao K, Clack N, Recknagel A, Grim A, Balaram P, Turschak E, Hooper M, Liddell A, Rohde J, Hellevik A, Takasaki K, Erion Barner L, Logsdon M, Chronopoulos C, de Vries S, Ting J, Perlmutter S, Kalmbach B, Dembrow N, Tasic B, Reid RC, Feng D, Svoboda K. Expansion-assisted selective plane illumination microscopy for nanoscale imaging of centimeter-scale tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544277. [PMID: 37425699 PMCID: PMC10327101 DOI: 10.1101/2023.06.08.544277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across intact, three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with aberration-free 1×1×3 μm optical resolution over a large field of view (10.6×8.0 mm 2 ) and working distance (35 mm) at speeds up to 946 megavoxels/sec. Combined with new tissue clearing and expansion methods, the microscope allows imaging centimeter-scale samples with 250×250×750 nm optical resolution (4× expansion), including entire mouse brains, with high contrast and without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and visualizing axons in human white matter.
Collapse
|
14
|
Miski M, Weber Á, Fekete-Molnár K, Keömley-Horváth BM, Csikász-Nagy A, Gáspári Z. Simulated complexes formed from a set of postsynaptic proteins suggest a localised effect of a hypomorphic Shank mutation. BMC Neurosci 2024; 25:32. [PMID: 38971749 PMCID: PMC11227168 DOI: 10.1186/s12868-024-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND The postsynaptic density is an elaborate protein network beneath the postsynaptic membrane involved in the molecular processes underlying learning and memory. The postsynaptic density is built up from the same major proteins but its exact composition and organization differs between synapses. Mutations perturbing protein: protein interactions generally occurring in this network might lead to effects specific for cell types or processes, the understanding of which can be especially challenging. RESULTS In this work we use systems biology-based modeling of protein complex distributions in a simplified set of major postsynaptic proteins to investigate the effect of a hypomorphic Shank mutation perturbing a single well-defined interaction. We use data sets with widely variable abundances of the constituent proteins. Our results suggest that the effect of the mutation is heavily dependent on the overall availability of all the protein components of the whole network and no trivial correspondence between the expression level of the directly affected proteins and overall complex distribution can be observed. CONCLUSIONS Our results stress the importance of context-dependent interpretation of mutations. Even the weakening of a generally occurring protein: protein interaction might have well-defined effects, and these can not easily be predicted based only on the abundance of the proteins directly affected. Our results provide insight on how cell-specific effects can be exerted by a mutation perturbing a generally occurring interaction even when the wider interaction network is largely similar.
Collapse
Affiliation(s)
- Marcell Miski
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Áron Weber
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Cytocast Hungary Kft, Budapest, Hungary
| | - Krisztina Fekete-Molnár
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Bence Márk Keömley-Horváth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Cytocast Hungary Kft, Budapest, Hungary
| | - Attila Csikász-Nagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
- Cytocast Hungary Kft, Budapest, Hungary.
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| |
Collapse
|
15
|
Sarfatis A, Wang Y, Twumasi-Ankrah N, Moffitt JR. Highly Multiplexed Spatial Transcriptomics in Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601034. [PMID: 38979245 PMCID: PMC11230453 DOI: 10.1101/2024.06.27.601034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial mRNA. To overcome this challenge, we combine 1000-fold volumetric expansion with multiplexed error robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH. This method enables high-throughput, spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-MERFISH, we dissect the response of E. coli to carbon starvation, systematically map subcellular RNA organization, and chart the adaptation of a gut commensal B. thetaiotaomicron to micron-scale niches in the mammalian colon. We envision bacterial-MERFISH will be broadly applicable to the study of bacterial single-cell heterogeneity in diverse, spatially structured, and native environments.
Collapse
Affiliation(s)
- Ari Sarfatis
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Yuanyou Wang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Nana Twumasi-Ankrah
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Jeffrey R. Moffitt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| |
Collapse
|
16
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
17
|
Takita S, Jahan S, Imanishi S, Harikrishnan H, LePage D, Mann RJ, Conlon RA, Miyagi M, Imanishi Y. Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model. FASEB J 2024; 38:e23606. [PMID: 38648465 PMCID: PMC11047207 DOI: 10.1096/fj.202302260rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.
Collapse
Affiliation(s)
- Shimpei Takita
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sultana Jahan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanae Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hemavathy Harikrishnan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Rachel J. Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ronald A. Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Dharmasri PA, Levy AD, Blanpied TA. Differential nanoscale organization of excitatory synapses onto excitatory vs. inhibitory neurons. Proc Natl Acad Sci U S A 2024; 121:e2315379121. [PMID: 38625946 PMCID: PMC11047112 DOI: 10.1073/pnas.2315379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters (NCs) whose precise alignment across the cleft in a transsynaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses-those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses, presynaptic Munc13-1 and postsynaptic PSD-95 both form NCs that demonstrate alignment, underscoring synaptic nanostructure and the transsynaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell was also represented in Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses.
Collapse
Affiliation(s)
- Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
- University of Maryland-Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD21201
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
- University of Maryland-Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD21201
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
- University of Maryland-Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
19
|
Delhaye M, LeDue J, Robinson K, Xu Q, Zhang Q, Oku S, Zhang P, Craig AM. Adaptation of Magnified Analysis of the Proteome for Excitatory Synaptic Proteins in Varied Samples and Evaluation of Cell Type-Specific Distributions. J Neurosci 2024; 44:e1291232024. [PMID: 38360747 PMCID: PMC10993037 DOI: 10.1523/jneurosci.1291-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Growing evidence suggests a remarkable diversity and complexity in the molecular composition of synapses, forming the basis for the brain to execute complex behaviors. Hence, there is considerable interest in visualizing the spatial distribution of such molecular diversity at individual synapses within intact brain circuits. Yet this task presents significant technical challenges. Expansion microscopy approaches have revolutionized our view of molecular anatomy. However, their use to study synapse-related questions outside of the labs developing them has been limited. Here we independently adapted a version of Magnified Analysis of the Proteome (MAP) and present a step-by-step protocol for visualizing over 40 synaptic proteins in brain circuits. Surprisingly, our findings show that the advantage of MAP over conventional immunolabeling was primarily due to improved antigen recognition and secondarily physical expansion. Furthermore, we demonstrated the versatile use of MAP in brains perfused with paraformaldehyde or fresh-fixed with formalin and in formalin-fixed paraffin-embedded tissue. These tests expand the potential applications of MAP to combinations with slice electrophysiology or clinical pathology specimens. Using male and female mice expressing YFP-ChR2 exclusively in interneurons, we revealed a distinct composition of AMPA and NMDA receptors and Shank family members at synapses on hippocampal interneurons versus on pyramidal neurons. Quantitative single synapse analyses yielded comprehensive cell type distributions of synaptic proteins and their relationships. These findings exemplify the value of the versatile adapted MAP procedure presented here as an accessible tool for the broad neuroscience community to unravel the complexity of the "synaptome" across brain circuits and disease states.
Collapse
Affiliation(s)
- Mathias Delhaye
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Jeffrey LeDue
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaylie Robinson
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Qin Xu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
20
|
Hümpfer N, Thielhorn R, Ewers H. Expanding boundaries - a cell biologist's guide to expansion microscopy. J Cell Sci 2024; 137:jcs260765. [PMID: 38629499 PMCID: PMC11058692 DOI: 10.1242/jcs.260765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Expansion microscopy (ExM) is a revolutionary novel approach to increase resolution in light microscopy. In contrast to super-resolution microscopy methods that rely on sophisticated technological advances, including novel instrumentation, ExM instead is entirely based on sample preparation. In ExM, labeled target molecules in fixed cells are anchored in a hydrogel, which is then physically enlarged by osmotic swelling. The isotropic swelling of the hydrogel pulls the labels apart from one another, and their relative organization can thus be resolved using conventional microscopes even if it was below the diffraction limit of light beforehand. As ExM can additionally benefit from the technical resolution enhancements achieved by super-resolution microscopy, it can reach into the nanometer range of resolution with an astoundingly low degree of error induced by distortion during the physical expansion process. Because the underlying chemistry is well understood and the technique is based on a relatively simple procedure, ExM is easily reproducible in non-expert laboratories and has quickly been adopted to address an ever-expanding spectrum of problems across the life sciences. In this Review, we provide an overview of this rapidly expanding new field, summarize the most important insights gained so far and attempt to offer an outlook on future developments.
Collapse
Affiliation(s)
- Nadja Hümpfer
- Department of Biology, Chemistry and Pharmacy, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ria Thielhorn
- Department of Biology, Chemistry and Pharmacy, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Helge Ewers
- Department of Biology, Chemistry and Pharmacy, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
21
|
Shin TW, Wang H, Zhang C, An B, Lu Y, Zhang E, Lu X, Karagiannis ED, Kang JS, Emenari A, Symvoulidis P, Asano S, Lin L, Costa EK, Marblestone AH, Kasthuri N, Tsai LH, Boyden ES. Dense, Continuous Membrane Labeling and Expansion Microscopy Visualization of Ultrastructure in Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583776. [PMID: 38496681 PMCID: PMC10942445 DOI: 10.1101/2024.03.07.583776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Lipid membranes are key to the nanoscale compartmentalization of biological systems, but fluorescent visualization of them in intact tissues, with nanoscale precision, is challenging to do with high labeling density. Here, we report ultrastructural membrane expansion microscopy (umExM), which combines a novel membrane label and optimized expansion microscopy protocol, to support dense labeling of membranes in tissues for nanoscale visualization. We validated the high signal-to-background ratio, and uniformity and continuity, of umExM membrane labeling in brain slices, which supported the imaging of membranes and proteins at a resolution of ~60 nm on a confocal microscope. We demonstrated the utility of umExM for the segmentation and tracing of neuronal processes, such as axons, in mouse brain tissue. Combining umExM with optical fluctuation imaging, or iterating the expansion process, yielded ~35 nm resolution imaging, pointing towards the potential for electron microscopy resolution visualization of brain membranes on ordinary light microscopes.
Collapse
Affiliation(s)
- Tay Won Shin
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hao Wang
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Picower Inst. for Learning and Memory, Cambridge
| | - Chi Zhang
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bobae An
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yangning Lu
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elizabeth Zhang
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xiaotang Lu
- Department of Cellular and Molecular Biology, Harvard University, Cambridge, MA, United States
| | | | - Jeong Seuk Kang
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Amauche Emenari
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Panagiotis Symvoulidis
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Shoh Asano
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Leanne Lin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emma K. Costa
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Adam H. Marblestone
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- present address: Convergent Research
| | - Narayanan Kasthuri
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Picower Inst. for Learning and Memory, Cambridge
| | - Edward S. Boyden
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
22
|
Sachs S, Reinhard S, Eilts J, Sauer M, Werner C. Visualizing the trans-synaptic arrangement of synaptic proteins by expansion microscopy. Front Cell Neurosci 2024; 18:1328726. [PMID: 38486709 PMCID: PMC10937466 DOI: 10.3389/fncel.2024.1328726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
High fidelity synaptic neurotransmission in the millisecond range is provided by a defined structural arrangement of synaptic proteins. At the presynapse multi-epitope scaffolding proteins are organized spatially at release sites to guarantee optimal binding of neurotransmitters at receptor clusters. The organization of pre- and postsynaptic proteins in trans-synaptic nanocolumns would thus intuitively support efficient information transfer at the synapse. Visualization of these protein-dense regions as well as the minute size of protein-packed synaptic clefts remains, however, challenging. To enable efficient labeling of these protein complexes, we developed post-gelation immunolabeling expansion microscopy combined with Airyscan super-resolution microscopy. Using ~8-fold expanded samples, Airyscan enables multicolor fluorescence imaging with 20-40 nm spatial resolution. Post-immunolabeling of decrowded (expanded) samples provides increased labeling efficiency and allows the visualization of trans-synaptic nanocolumns. Our approach is ideally suited to investigate the pathological impact on nanocolumn arrangement e.g., in limbic encephalitis with autoantibodies targeting trans-synaptic leucine-rich glioma inactivated 1 protein (LGI1).
Collapse
Affiliation(s)
| | | | | | | | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Valdes PA, Yu CC(J, Aronson J, Ghosh D, Zhao Y, An B, Bernstock JD, Bhere D, Felicella MM, Viapiano MS, Shah K, Chiocca EA, Boyden ES. Improved immunostaining of nanostructures and cells in human brain specimens through expansion-mediated protein decrowding. Sci Transl Med 2024; 16:eabo0049. [PMID: 38295184 PMCID: PMC10911838 DOI: 10.1126/scitranslmed.abo0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens. Immunostaining of dExPath-expanded specimens reveals, with nanoscale precision, previously unobserved cellular structures, as well as more continuous patterns of staining. This enhanced molecular staining results in observation of previously invisible disease marker-positive cell populations in human glioma specimens, with potential implications for tumor aggressiveness. dExPath results in improved fluorescence signals even as it eliminates lipofuscin-associated autofluorescence. Thus, this form of expansion-mediated protein decrowding may, through improved epitope access for antibodies, render immunohistochemistry more powerful in clinical science and, perhaps, diagnosis.
Collapse
Affiliation(s)
- Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77555
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
| | - Chih-Chieh (Jay) Yu
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Jenna Aronson
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Debarati Ghosh
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
| | - Yongxin Zhao
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA, 15213
| | - Bobae An
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Koch Institute, MIT, Cambridge, MA, USA, 02139
| | - Deepak Bhere
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA, 29209
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - Michelle M. Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA, 77555
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA, 13210
| | - Khalid Shah
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Edward S. Boyden
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
- Koch Institute, MIT, Cambridge, MA, USA, 02139
- MIT Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA, 02139
- Howard Hughes Medical Institute, Cambridge, MA, USA, 02139
| |
Collapse
|
24
|
Wang UTT, Tian X, Liou YH, Lee SP, Hu HT, Lu CH, Lin PT, Cheng YJ, Chen P, Chen BC. Protein and lipid expansion microscopy with trypsin and tyramide signal amplification for 3D imaging. Sci Rep 2023; 13:21922. [PMID: 38081848 PMCID: PMC10713663 DOI: 10.1038/s41598-023-48959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Expansion microscopy, whereby the relative positions of biomolecules are physically increased via hydrogel expansion, can be used to reveal ultrafine structures of cells under a conventional microscope. Despite its utility for achieving super-resolution imaging, expansion microscopy suffers a major drawback, namely reduced fluorescence signals caused by excessive proteolysis and swelling effects. This caveat results in a lower photon budget and disfavors fluorescence imaging over a large field of view that can cover an entire expanded cell, especially in 3D. In addition, the complex procedures and specialized reagents of expansion microscopy hinder its popularization. Here, we modify expansion microscopy by deploying trypsin digestion to reduce protein loss and tyramide signal amplification to enhance fluorescence signal for point-scanning-based imaging. We name our new methodology TT-ExM to indicate dual trypsin and tyramide treatments. TT-ExM may be applied for both antibody and lipid staining. TT-ExM displayed enhanced protein retention for endoplasmic reticulum and mitochondrial markers in COS-7 cell cultures. Importantly, TT-ExM-based lipid staining clearly revealed the complex 3D membrane structures in entire expanded cells. Through combined lipid and DNA staining, our TT-ExM methodology highlighted mitochondria by revealing their DNA and membrane structures in cytoplasm, as well as the lipid-rich structures formed via phase separation in nuclei at interphase. We also observed lipid-rich chromosome matrices in the mitotic cells. These high-quality 3D images demonstrate the practicality of TT-ExM. Thus, readily available reagents can be deployed in TT-ExM to significantly enhance fluorescence signals and generate high-quality and ultrafine-resolution images under confocal microscopy.
Collapse
Affiliation(s)
- Ueh-Ting Tim Wang
- Affiliated Senior High School of National Taiwan Normal University, Taipei, 106348, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chieh-Han Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Institute and Undergraduate Program of Electro-Optical Engineering, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Po-Ting Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ya-Jen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
- Neuroscience Program, NPAS, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
25
|
Lavekar SS, Patel MD, Montalvo-Parra MD, Krencik R. Asteroid impact: the potential of astrocytes to modulate human neural networks within organoids. Front Neurosci 2023; 17:1305921. [PMID: 38075269 PMCID: PMC10702564 DOI: 10.3389/fnins.2023.1305921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 02/12/2024] Open
Abstract
Astrocytes are a vital cellular component of the central nervous system that impact neuronal function in both healthy and pathological states. This includes intercellular signals to neurons and non-neuronal cells during development, maturation, and aging that can modulate neural network formation, plasticity, and maintenance. Recently, human pluripotent stem cell-derived neural aggregate cultures, known as neurospheres or organoids, have emerged as improved experimental platforms for basic and pre-clinical neuroscience compared to traditional approaches. Here, we summarize the potential capability of using organoids to further understand the mechanistic role of astrocytes upon neural networks, including the production of extracellular matrix components and reactive signaling cues. Additionally, we discuss the application of organoid models to investigate the astrocyte-dependent aspects of neuropathological diseases and to test astrocyte-inspired technologies. We examine the shortcomings of organoid-based experimental platforms and plausible improvements made possible by cutting-edge neuroengineering technologies. These advancements are expected to enable the development of improved diagnostic strategies and high-throughput translational applications regarding neuroregeneration.
Collapse
Affiliation(s)
| | | | | | - R. Krencik
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
26
|
Balaram P, Takasaki K, Hellevik A, Tandukar J, Turschak E, MacLennan B, Ouellette N, Torres R, Laughland C, Gliko O, Seshamani S, Perlman E, Taormina M, Peterson E, Juneau Z, Potekhina L, Glaser A, Chandrashekar J, Logsdon M, Cao K, Dylla C, Hatanaka G, Chatterjee S, Ting J, Vumbaco D, Waters J, Bair W, Tsao D, Gao R, Reid C. Microscale visualization of cellular features in adult macaque visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565381. [PMID: 37961179 PMCID: PMC10635096 DOI: 10.1101/2023.11.02.565381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys. This process may be combined with multiphoton or magnetic resonance imaging to produce multimodal atlases in large, gyrencephalic brains.
Collapse
|
27
|
Wen G, Lycas MD, Jia Y, Leen V, Sauer M, Hofkens J. Trifunctional Linkers Enable Improved Visualization of Actin by Expansion Microscopy. ACS NANO 2023; 17:20589-20600. [PMID: 37787755 DOI: 10.1021/acsnano.3c07510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Expansion microscopy (ExM) revolutionized the field of super-resolution microscopy by allowing for subdiffraction resolution fluorescence imaging on standard fluorescence microscopes. However, it has been found that it is hard to visualize actin filaments efficiently using ExM. To improve actin imaging, multifunctional molecules have been designed with moderate success. Here, we present optimized methods for phalloidin conjugate grafting that have a high efficiency for both cellular and tissue samples. Our optimized strategy improves anchoring and signal retention by ∼10 times. We demonstrate the potential of optimized trifunctional linkers (TRITON) for actin imaging in combination with immunolabeling using different ExM protocols. 10X ExM of actin labeled with optimized TRITON enabled us to visualize the periodicity of actin rings in cultured hippocampal neurons and brain slices by Airyscan confocal microscopy. Thus, TRITON linkers provide an efficient grafting method, especially in cases in which the concentration of target-bound monomers is insufficient for high-quality ExM.
Collapse
Affiliation(s)
- Gang Wen
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthew Domenic Lycas
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Yuqing Jia
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| | - Volker Leen
- Chrometra Scientific, Kortenaken 3470, Belgium
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
28
|
Eilts J, Reinhard S, Michetschläger N, Werner C, Sauer M. Enhanced synaptic protein visualization by multicolor super-resolution expansion microscopy. NEUROPHOTONICS 2023; 10:044412. [PMID: 37886043 PMCID: PMC10599331 DOI: 10.1117/1.nph.10.4.044412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Significance Understanding the organization of biomolecules into complexes and their dynamics is crucial for comprehending cellular functions and dysfunctions, particularly in neuronal networks connected by synapses. In the last two decades, various powerful super-resolution (SR) microscopy techniques have been developed that produced stunning images of synapses and their molecular organization. However, current SR microscopy methods do not permit multicolor fluorescence imaging with 20 to 30 nm spatial resolution. Aim We developed a method that enables 4-color fluorescence imaging of synaptic proteins in neurons with 20 to 30 nm lateral resolution. Approach We used post-expansion immunolabeling of eightfold expanded hippocampal neurons in combination with Airyscan and structured illumination microscopy (SIM). Results We demonstrate that post-expansion immunolabeling of approximately eightfold expanded hippocampal neurons enables efficient labeling of synaptic proteins in crowded compartments with minimal linkage error and enables in combination with Airyscan and SIM four-color three-dimensional fluorescence imaging with 20 to 30 nm lateral resolution. Using immunolabeling of Synaptobrevin 2 as an efficient marker of the vesicle pool allowed us to identify individual synaptic vesicles colocalized with Rab3-interacting molecule 1 and 2 (RIM1/2), a marker of pre-synaptic fusion sites. Conclusions Our optimized expansion microscopy approach improves the visualization and location of pre- and post-synaptic proteins and can thus provide invaluable insights into the spatial organization of proteins at synapses.
Collapse
Affiliation(s)
- Janna Eilts
- University of Würzburg, Department of Biotechnology and Biophysics, Biocenter, Würzburg, Germany
| | - Sebastian Reinhard
- University of Würzburg, Department of Biotechnology and Biophysics, Biocenter, Würzburg, Germany
| | - Nikolas Michetschläger
- University of Würzburg, Department of Biotechnology and Biophysics, Biocenter, Würzburg, Germany
| | - Christian Werner
- University of Würzburg, Department of Biotechnology and Biophysics, Biocenter, Würzburg, Germany
| | - Markus Sauer
- University of Würzburg, Department of Biotechnology and Biophysics, Biocenter, Würzburg, Germany
- University of Würzburg, Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, Würzburg, Germany
| |
Collapse
|
29
|
Cui Y, Yang G, Goodwin DR, O’Flanagan CH, Sinha A, Zhang C, Kitko KE, Shin TW, Park D, Aparicio S, Boyden ES. Expansion microscopy using a single anchor molecule for high-yield multiplexed imaging of proteins and RNAs. PLoS One 2023; 18:e0291506. [PMID: 37729182 PMCID: PMC10511132 DOI: 10.1371/journal.pone.0291506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023] Open
Abstract
Expansion microscopy (ExM), by physically enlarging specimens in an isotropic fashion, enables nanoimaging on standard light microscopes. Key to existing ExM protocols is the equipping of different kinds of molecules, with different kinds of anchoring moieties, so they can all be pulled apart from each other by polymer swelling. Here we present a multifunctional anchor, an acrylate epoxide, that enables proteins and RNAs to be equipped with anchors in a single experimental step. This reagent simplifies ExM protocols and reduces cost (by 2-10-fold for a typical multiplexed ExM experiment) compared to previous strategies for equipping RNAs with anchors. We show that this united ExM (uniExM) protocol can be used to preserve and visualize RNA transcripts, proteins in biologically relevant ultrastructures, and sets of RNA transcripts in patient-derived xenograft (PDX) cancer tissues and may support the visualization of other kinds of biomolecular species as well. uniExM may find many uses in the simple, multimodal nanoscale analysis of cells and tissues.
Collapse
Affiliation(s)
- Yi Cui
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Gaojie Yang
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Daniel R. Goodwin
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Ciara H. O’Flanagan
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Anubhav Sinha
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, Massachusetts, United States of America
| | - Chi Zhang
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Kristina E. Kitko
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Tay Won Shin
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Demian Park
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Edward S. Boyden
- McGovern Institute, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Media Arts & Sciences, MIT, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, United States of America
- Koch Institute for Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
30
|
Zhuang Y, Shi X. Expansion microscopy: A chemical approach for super-resolution microscopy. Curr Opin Struct Biol 2023; 81:102614. [PMID: 37253290 PMCID: PMC11103276 DOI: 10.1016/j.sbi.2023.102614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
Super-resolution microscopy is a series of imaging techniques that bypass the diffraction limit of resolution. Since the 1990s, optical approaches, such as single-molecular localization microscopy, have allowed us to visualize biological samples from the sub-organelle to the molecular level. Recently, a chemical approach called expansion microscopy emerged as a new trend in super-resolution microscopy. It physically enlarges cells and tissues, which leads to an increase in the effective resolution of any microscope by the length expansion factor. Compared with optical approaches, expansion microscopy has a lower cost and higher imaging depth but requires a more complex procedure. The integration of expansion microscopy and advanced microscopes significantly pushed forward the boundary of super-resolution microscopy. This review covers the current state of the art in expansion microscopy, including the latest methods and their applications, as well as challenges and opportunities for future research.
Collapse
Affiliation(s)
- Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA. https://twitter.com/YinyinZhuang
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
31
|
Bai Y, Zhu B, Oliveria JP, Cannon BJ, Feyaerts D, Bosse M, Vijayaragavan K, Greenwald NF, Phillips D, Schürch CM, Naik SM, Ganio EA, Gaudilliere B, Rodig SJ, Miller MB, Angelo M, Bendall SC, Rovira-Clavé X, Nolan GP, Jiang S. Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology. Nat Commun 2023; 14:4013. [PMID: 37419873 PMCID: PMC10329015 DOI: 10.1038/s41467-023-39616-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Cellular organization and functions encompass multiple scales in vivo. Emerging high-plex imaging technologies are limited in resolving subcellular biomolecular features. Expansion Microscopy (ExM) and related techniques physically expand samples for enhanced spatial resolution, but are challenging to be combined with high-plex imaging technologies to enable integrative multiscaled tissue biology insights. Here, we introduce Expand and comPRESS hydrOgels (ExPRESSO), an ExM framework that allows high-plex protein staining, physical expansion, and removal of water, while retaining the lateral tissue expansion. We demonstrate ExPRESSO imaging of archival clinical tissue samples on Multiplexed Ion Beam Imaging and Imaging Mass Cytometry platforms, with detection capabilities of > 40 markers. Application of ExPRESSO on archival human lymphoid and brain tissues resolved tissue architecture at the subcellular level, particularly that of the blood-brain barrier. ExPRESSO hence provides a platform for extending the analysis compatibility of hydrogel-expanded biospecimens to mass spectrometry, with minimal modifications to protocols and instrumentation.
Collapse
Affiliation(s)
- Yunhao Bai
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Bokai Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - John-Paul Oliveria
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA, USA
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bryan J Cannon
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | - Darci Phillips
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Christian M Schürch
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Samuel M Naik
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael B Miller
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Xavier Rovira-Clavé
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Sizun Jiang
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
32
|
Klimas A, Gallagher BR, Wijesekara P, Fekir S, DiBernardo EF, Cheng Z, Stolz DB, Cambi F, Watkins SC, Brody SL, Horani A, Barth AL, Moore CI, Ren X, Zhao Y. Magnify is a universal molecular anchoring strategy for expansion microscopy. Nat Biotechnol 2023; 41:858-869. [PMID: 36593399 PMCID: PMC10264239 DOI: 10.1038/s41587-022-01546-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2022] [Indexed: 01/03/2023]
Abstract
Expansion microscopy enables nanoimaging with conventional microscopes by physically and isotropically magnifying preserved biological specimens embedded in a crosslinked water-swellable hydrogel. Current expansion microscopy protocols require prior treatment with reactive anchoring chemicals to link specific labels and biomolecule classes to the gel. We describe a strategy called Magnify, which uses a mechanically sturdy gel that retains nucleic acids, proteins and lipids without the need for a separate anchoring step. Magnify expands biological specimens up to 11 times and facilitates imaging of cells and tissues with effectively around 25-nm resolution using a diffraction-limited objective lens of about 280 nm on conventional optical microscopes or with around 15 nm effective resolution if combined with super-resolution optical fluctuation imaging. We demonstrate Magnify on a broad range of biological specimens, providing insight into nanoscopic subcellular structures, including synaptic proteins from mouse brain, podocyte foot processes in formalin-fixed paraffin-embedded human kidney and defects in cilia and basal bodies in drug-treated human lung organoids.
Collapse
Affiliation(s)
- Aleksandra Klimas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Brendan R Gallagher
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Piyumi Wijesekara
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sinda Fekir
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Emma F DiBernardo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhangyu Cheng
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology/PIND, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christopher I Moore
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yongxin Zhao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Linghu C, An B, Shpokayte M, Celiker OT, Shmoel N, Zhang R, Zhang C, Park D, Park WM, Ramirez S, Boyden ES. Recording of cellular physiological histories along optically readable self-assembling protein chains. Nat Biotechnol 2023; 41:640-651. [PMID: 36593405 PMCID: PMC10188365 DOI: 10.1038/s41587-022-01586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2022] [Indexed: 01/03/2023]
Abstract
Observing cellular physiological histories is key to understanding normal and disease-related processes. Here we describe expression recording islands-a fully genetically encoded approach that enables both continual digital recording of biological information within cells and subsequent high-throughput readout in fixed cells. The information is stored in growing intracellular protein chains made of self-assembling subunits, human-designed filament-forming proteins bearing different epitope tags that each correspond to a different cellular state or function (for example, gene expression downstream of neural activity or pharmacological exposure), allowing the physiological history to be read out along the ordered subunits of protein chains with conventional optical microscopy. We use expression recording islands to record gene expression timecourse downstream of specific pharmacological and physiological stimuli in cultured neurons and in living mouse brain, with a time resolution of a fraction of a day, over periods of days to weeks.
Collapse
Affiliation(s)
- Changyang Linghu
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Cell and Developmental Biology, Program in Single Cell Spatial Analysis, and Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bobae An
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Monika Shpokayte
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Orhan T Celiker
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Nava Shmoel
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Ruihan Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chi Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Demian Park
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Won Min Park
- Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Edward S Boyden
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Biological Engineering, MIT, Cambridge, MA, USA.
- Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA.
- K Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA.
- Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
- Koch Institute, MIT, Cambridge, MA, USA.
| |
Collapse
|
34
|
Laporte MH, Bertiaux É, Hamel V, Guichard P. [Closer to the native architecture of the cell using Cryo-ExM]. Med Sci (Paris) 2023; 39:351-358. [PMID: 37094268 DOI: 10.1051/medsci/2023052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Most cellular imaging techniques, such as light or electron microscopy, require that the biological sample is first fixed by chemical cross-linking agents. This necessary step is also known to damage molecular nanostructures or even sub-cellular organization. To overcome this problem, another fixation approach was invented more than 40 years ago, which consists in cryo-fixing biological samples, thus allowing to preserve their native state. However, this method has been scarcely used in light microscopy due to the complexity of its implementation. In this review, we present a recently developed super-resolution method called expansion microscopy, which, when coupled with cryo-fixation, allows to visualize at a nanometric resolution the cell architecture as close as possible to its native state.
Collapse
Affiliation(s)
- Marine H Laporte
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| | - Éloïse Bertiaux
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève, Suisse
| |
Collapse
|
35
|
Wen G, Leen V, Rohand T, Sauer M, Hofkens J. Current Progress in Expansion Microscopy: Chemical Strategies and Applications. Chem Rev 2023; 123:3299-3323. [PMID: 36881995 DOI: 10.1021/acs.chemrev.2c00711] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Expansion microscopy (ExM) is a newly developed super-resolution technique, allowing visualization of biological targets at nanoscale resolution on conventional fluorescence microscopes. Since its introduction in 2015, many efforts have been dedicated to broaden its application range or increase the resolution that can be achieved. As a consequence, recent years have witnessed remarkable advances in ExM. This review summarizes recent progress in ExM, with the focus on the chemical aspects of the method, from chemistries for biomolecule grafting to polymer synthesis and the impact on biological analysis. The combination of ExM with other microscopy techniques, in search of additional resolution improvement, is also discussed. In addition, we compare pre- and postexpansion labeling strategies and discuss the impact of fixation methods on ultrastructure preservation. We conclude this review with a perspective on existing challenges and future directions. We believe that this review will provide a comprehensive understanding of ExM and facilitate its usage and further development.
Collapse
Affiliation(s)
- Gang Wen
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Volker Leen
- Chrometra Scientific, Kortenaken 3470, Belgium
| | - Taoufik Rohand
- Laboratory of Analytical and Molecular Chemistry, Faculty Polydisciplinaire of Safi, University Cadi Ayyad Marrakech, BP 4162, 46000 Safi, Morocco
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
36
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Droogers WJ, MacGillavry HD. Plasticity of postsynaptic nanostructure. Mol Cell Neurosci 2023; 124:103819. [PMID: 36720293 DOI: 10.1016/j.mcn.2023.103819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The postsynaptic density (PSD) of excitatory synapses is built from a wide variety of scaffolding proteins, receptors, and signaling molecules that collectively orchestrate synaptic transmission. Seminal work over the past decades has led to the identification and functional characterization of many PSD components. In contrast, we know far less about how these constituents are assembled within synapses, and how this organization contributes to synapse function. Notably, recent evidence from high-resolution microscopy studies and in silico models, highlights the importance of the precise subsynaptic structure of the PSD for controlling the strength of synaptic transmission. Even further, activity-driven changes in the distribution of glutamate receptors are acknowledged to contribute to long-term changes in synaptic efficacy. Thus, defining the mechanisms that drive structural changes within the PSD are important for a molecular understanding of synaptic transmission and plasticity. Here, we review the current literature on how the PSD is organized to mediate basal synaptic transmission and how synaptic activity alters the nanoscale organization of synapses to sustain changes in synaptic strength.
Collapse
Affiliation(s)
- W J Droogers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| | - H D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands.
| |
Collapse
|
38
|
Mertz L. Advances in Microscopy Tech Offer Better Views. IEEE Pulse 2023; 14:2-7. [PMID: 37028371 DOI: 10.1109/mpuls.2023.3243316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Microscopes have come a very long way since the 1600s when Henry Power, Robert Hooke, and Anton van Leeuwenhoek began publishing the first views of plant cells and bacteria. The major inventions of contrast, electron, and scanning tunneling microscopes didn't arrive until the 20th century, and the men behind them all earned Nobel Prizes in physics for their efforts. Today, innovations in microscopy are coming at a fast and furious rate with new technologies providing first-time views and information about biological structures and activity, and opening up new avenues for disease therapies.
Collapse
|
39
|
Li X, Hémond G, Godin AG, Doyon N. Computational modeling of trans-synaptic nanocolumns, a modulator of synaptic transmission. Front Comput Neurosci 2022; 16:969119. [PMID: 36249484 PMCID: PMC9554614 DOI: 10.3389/fncom.2022.969119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Understanding synaptic transmission is of crucial importance in neuroscience. The spatial organization of receptors, vesicle release properties and neurotransmitter molecule diffusion can strongly influence features of synaptic currents. Newly discovered structures coined trans-synaptic nanocolumns were shown to align presynaptic vesicles release sites and postsynaptic receptors. However, how these structures, spanning a few tens of nanometers, shape synaptic signaling remains little understood. Given the difficulty to probe submicroscopic structures experimentally, computer modeling is a useful approach to investigate the possible functional impacts and role of nanocolumns. In our in silico model, as has been experimentally observed, a nanocolumn is characterized by a tight distribution of postsynaptic receptors aligned with the presynaptic vesicle release site and by the presence of trans-synaptic molecules which can modulate neurotransmitter molecule diffusion. In this work, we found that nanocolumns can play an important role in reinforcing synaptic current mostly when the presynaptic vesicle contains a small number of neurotransmitter molecules. Our work proposes a new methodology to investigate in silico how the existence of trans-synaptic nanocolumns, the nanometric organization of the synapse and the lateral diffusion of receptors shape the features of the synaptic current such as its amplitude and kinetics.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Mathematics and Statistics, Université Laval, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
| | - Gabriel Hémond
- Department of Physics, Université Laval, Québec City, QC, Canada
| | - Antoine G. Godin
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
- *Correspondence: Antoine G. Godin
| | - Nicolas Doyon
- Department of Mathematics and Statistics, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
- Nicolas Doyon
| |
Collapse
|