1
|
Ortega-García S, Tripp-Valdez A, Sepulveda C, Aalbers S, Briones-Hernández SA, Jakes-Cota U. Trophic ecology of roosterfish (Nematistius pectoralis) inferred from stomach content and stable isotope analyses in the southern part of Baja California peninsula. JOURNAL OF FISH BIOLOGY 2025. [PMID: 40369869 DOI: 10.1111/jfb.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/15/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
The roosterfish (Nematistius pectoralis) is a highly prized organism in the sport fleet for its fight to catch and the showiness of its dorsal fin. However, despite its popularity, studies on its basic biology are limited. This study aims to understand the feeding behaviours of the roosterfish by analysing the stomach content (SCA) and performing bulk stable isotope analysis (BSIA). The study also seeks to identify ontogenetic changes in its feeding habits and habitat preferences. To achieve this, 505 stomachs and 165 muscle samples were analysed in three locations in Baja California Sur (Cabo San Lucas, La Paz and Puerto San Carlos) between 2010 and 2017. The SCA determined that the diet consisted mainly of fish from the families Carangidae, Engraulidae and Clupeidae, which together constituted almost 50% of the total diet. Statistical differences in diet composition were found by size class but not by sex or the interaction between these variables. Concerning BSIA, there were no significant differences between males and females; however, differences were observed in the 'undifferentiated sex' grouping, which was comprised largely small juvenile individuals. Concerning size, BSIA values were correlated with roosterfish fork length, so the observed differences for the 'undifferentiated sex' category were related to size variation rather than sexual maturity. The findings from this study suggest that roosterfish experience an ontogenetic increase in trophic position, relying less on sardine-like species as they grow. Furthermore, BSIA values could inform on relative residency of the roosterfish to the Baja California peninsula.
Collapse
Affiliation(s)
- Sofía Ortega-García
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, La Paz, México
| | - Arturo Tripp-Valdez
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, La Paz, México
| | - Chugey Sepulveda
- Marine Biology, Pfleger Institute of Environmental Research, Oceanside, California, USA
| | - Scott Aalbers
- Marine Biology, Pfleger Institute of Environmental Research, Oceanside, California, USA
| | - Sergio A Briones-Hernández
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, La Paz, México
| | - Ulianov Jakes-Cota
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, La Paz, México
| |
Collapse
|
2
|
Arnés-Urgellés C, Galván-Magaña F, Elorriaga-Verplancken FR, Delgado-Huertas A, Páez-Rosas D. Ontogenetic feeding shifts in two thresher shark species in the Galapagos Marine Reserve. PeerJ 2024; 12:e18681. [PMID: 39703910 PMCID: PMC11657203 DOI: 10.7717/peerj.18681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Background The morphology and hunting behavior of thresher sharks make them easily distinguishable. These species are distributed across the Tropical Pacific Ocean feeding on squid and small fish. However, ontogenetic changes in their feeding strategies and habitat use are still unknown in this region. Methods We examined the δ13C and δ15N signatures in vertebral collagen from populations of Alopias pelagicus and Alopias superciliosus inhabiting the Galapagos Marine Reserve, focusing on three maturity stages: neonate, juvenile and adult. The vertebrae samples were taken from the seizure of illegal fishing activities carried out by a foreign fleet within the Galapagos archipelago. A total of thirty-three vertebrae from A. pelagicus and twenty-one from A. superciliosus were analyzed. Results Both species displayed significant differences in their δ15N values (p < 0.001), but not in δ13C (p = 0.230), suggesting a similar habitat use, but different prey consumption. Throughout their ontogeny, A. pelagicus displayed isotopic differences (p < 0.001), where neonates showed lower δ13C values and higher δ15N values compared to juveniles, probably because they still reflect the isotopic signatures of their mothers even after the first year of life. This study highlights trophic differences between both species, accompanied by an ontogenetic variation in A. pelagicus, aspects that allow us to understand the role of these species within the dynamics of the Eastern Tropical Pacific ecosystem.
Collapse
Affiliation(s)
- Camila Arnés-Urgellés
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Baja California Sur, Mexico
- Galapagos Science Center, Universidad San Francisco de Quito, Isla San Cristóbal, Islas Galápagos, Ecuador
| | - Felipe Galván-Magaña
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Baja California Sur, Mexico
| | | | - Antonio Delgado-Huertas
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Universidad de Granada, Granada, Granada, Spain
| | - Diego Páez-Rosas
- Galapagos Science Center, Universidad San Francisco de Quito, Isla San Cristóbal, Islas Galápagos, Ecuador
- Fundación Conservando Galápagos, Galapagos Conservancy, Isla Santa Cruz, Islas Galápagos, Ecuador
- Oficina Técnica San Cristóbal, Direccion Parque Nacional Galápagos, Isla San Cristóbal, Islas Galápagos, Ecuador
| |
Collapse
|
3
|
Le Croizier G, Hoyos-Padilla M, Amezcua-Martínez F, Aquino-Baleytó M, Besnard L, Le Grand F, Le Loc'h F, Mathieu-Resuge M, Munaron JM, Ory A, Sardenne F, Schaal G, Lorrain A. Can biochemical tracers reveal ontogenetic trophic shift and individual prey selection in white sharks from Guadalupe Island, Northeast Pacific? ENVIRONMENTAL RESEARCH 2024; 262:119507. [PMID: 38944105 DOI: 10.1016/j.envres.2024.119507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Refining the role of apex predators in marine food webs is a necessary step in predicting the consequences of their global decline under the footprint of fishing activities. White sharks (Carcharodon carcharias) are vulnerable predators, performing large migrations and able to forage on a variety of prey in different habitats. In the Northeast Pacific, juvenile and adult white sharks are found seasonally at the same aggregation sites, such as Guadalupe Island off Mexico. While adults are thought to target local pinniped colonies, very few predator-prey interactions have been documented and the diet of juveniles in this area remains poorly understood. Here we used carbon/nitrogen stable isotopes and fatty acids to characterize the trophic ecology of white sharks at Guadalupe Island. In contrast to the ontogenetic trophic shift paradigm, we detected no influence of size on muscle stable isotope and fatty acid composition, revealing no significant dietary variation between juvenile and adult sharks. Stable isotopes did not allow definitive conclusions to be drawn regarding the diet of white sharks at Guadalupe Island, due to significant variability in the contribution of different potential prey depending on the trophic discrimination factors used. However, most sharks were rich in polyunsaturated fatty acids (such as long-chain omega 3), suggesting a local diet of mainly pelagic prey (potentially large fish or cephalopods). A few individuals appeared to show recent consumption of pinnipeds, with higher proportions of saturated and monounsaturated fatty acids. These individual differences in fatty acid composition could reflect an ecological trade-off between consumption of prey rich in fat (marine mammals) versus prey rich in polyunsaturated fatty acids (pelagic prey), respectively meeting the energetic and physiological needs of white sharks. Although ontogenetic trophic changes were not able to be discerned, our results provide new insights into the physiological drivers of predator-prey interactions, which can benefit the definition of conservation strategies in a changing ocean.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France.
| | - Mauricio Hoyos-Padilla
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, C.P. 23070, La Paz, B.C.S., Mexico; Fins Attached: Marine Research and Conservation 19675 Still Glen Drive Colorado Springs, CO, 80908, USA.
| | - Felipe Amezcua-Martínez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. Av. Joel Montes Camarena S/N. Mazatlán, Sin., 82040, Mexico
| | - Marc Aquino-Baleytó
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, C.P. 23070, La Paz, B.C.S., Mexico
| | - Lucien Besnard
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | | | | | | | | | - Arthur Ory
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Fany Sardenne
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| |
Collapse
|
4
|
Temple AJ, Berggren P, Jiddawi N, Wambiji N, Poonian CNS, Salmin YN, Berumen ML, Stead SM. Linking extinction risk to the economic and nutritional value of sharks in small-scale fisheries. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14292. [PMID: 38752470 PMCID: PMC11589013 DOI: 10.1111/cobi.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 11/27/2024]
Abstract
To achieve sustainable shark fisheries, it is key to understand not only the biological drivers and environmental consequences of overfishing, but also the social and economic drivers of fisher behavior. The extinction risk of sharks is highest in coastal tropical waters, where small-scale fisheries are most prevalent. Small-scale fisheries provide a critical source of economic and nutritional security to coastal communities, and these fishers are among the most vulnerable social and economic groups. We used Kenya's and Zanzibar's small-scale shark fisheries, which are illustrative of the many data-poor, small-scale shark fisheries worldwide, as case studies to explore the relationship between extinction risk and the economic and nutritional value of sharks. To achieve this, we combined existing data on shark landings, extinction risk, and nutritional value with sales data at 16 key landing sites and information from interviews with 476 fishers. Shark fisheries were an important source of economic and nutritional security, valued at >US$4 million annually and providing enough nutrition for tens of thousands of people. Economically and nutritionally, catches were dominated by threatened species (72.7% and 64.6-89.7%, respectively). The most economically valuable species were large and slow to reproduce (e.g. mobulid rays, wedgefish, and bull, silky, and mako sharks) and therefore more likely to be threatened with extinction. Given the financial incentive and intensive fishing pressure, small-scale fisheries are undoubtedly major contributors to the decline of threatened coastal shark species. In the absence of effective fisheries management and enforcement, we argue that within small-scale fisheries the conditions exist for an economically incentivized feedback loop in which vulnerable fishers are driven to persistently overfish vulnerable and declining shark species. To protect these species from extinction, this feedback loop must be broken.
Collapse
Affiliation(s)
- Andrew J. Temple
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
- Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Per Berggren
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Narriman Jiddawi
- Institute of Marine SciencesUniversity of Dar es SalaamZanzibarUnited Republic of Tanzania
| | - Nina Wambiji
- Kenya Marine and Fisheries Research InstituteMombasaKenya
| | | | - Yussuf N. Salmin
- Tropical Research Centre for Oceanography, Environment and Natural ResourcesThe State University of ZanzibarZanzibarUnited Republic of Tanzania
| | - Michael L. Berumen
- Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Selina M. Stead
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
- Faculty of EnvironmentUniversity of LeedsLeedsUK
- Australian Institute of Marine SciencesTownsvilleQueenslandAustralia
| |
Collapse
|
5
|
Feeney R, Trueman CN, Gargan PG, Roche WK, Shephard S. Body condition of returning Atlantic salmon Salmo salar L. correlates with scale δ 13C and δ 15N content deposited at the last marine foraging location. JOURNAL OF FISH BIOLOGY 2024; 105:1455-1468. [PMID: 34854485 DOI: 10.1111/jfb.14968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Patterns of feeding and growth of Atlantic salmon Salmo salar L. in the marine environment are critical to understanding how observed declines in recruitment may reflect warming or other oceanic drivers. The isotopic composition of scales can provide insight into differences in marine feeding location and possibly temperature regime. The authors used archived scale samples to measure δ13C and δ15N deposited in the scales of one sea-winter (1SW) salmon during their last season of growth at sea before they returned to five Irish rivers. δ13C values were related statistically to observed salmon body condition (Fulton's K), and fish with higher δ13C values tended to show significantly better condition. In contrast, δ15N values were negatively related to body condition. There was no important effect on condition of length at smolt migration, and the effect of duration of marine residence varied among rivers. It is likely that δ13C values partly reflected ambient ocean temperature and recent marine feeding environment before return migration, such that the observed relationship between higher δ13C values and increased body condition may express an advantage for adult fish feeding in warmer, potentially closer, waters. If greater body condition influences fitness, then a changing temperature regime in the Northeast Atlantic may drive shifts in salmon survival and reproduction. This study provides evidence that there is spatial and trophic variation at sea between salmon from rivers of origin that are located relatively close to each other, with potential consequences for body condition and, consequently, fitness and life history; this suggests that salmon populations from geographically proximate rivers within regions may exhibit differential responses to ocean-scale climatic changes across the Northeast Atlantic.
Collapse
Affiliation(s)
| | - Clive N Trueman
- Ocean and Earth Science, University of Southampton Waterfront Campus, Southampton, UK
| | | | | | | |
Collapse
|
6
|
Raoult V, Gaston TF, Smith C, Dolfo V, Park JM, Williamson JE. Patterns of mother-embryo isotope fractionation in batoids vary within and between species. JOURNAL OF FISH BIOLOGY 2024; 105:1368-1376. [PMID: 35249223 DOI: 10.1111/jfb.15034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Patterns of mother-embryo fractionation of 13C and 15N were assessed for their predictability across three species of batoids caught as by-catch in south-eastern Australia. Stable isotope analysis of 24 mothers and their litters revealed that isotope ratios of embryos were significantly different from their corresponding mothers and that the scale and direction of the difference varied within and across species. The range of variation across species was 3.5‰ for δ13C and 4‰ for δ15N, equivalent to a difference in trophic level. In one species (Urolophus paucimaculatus) litters could be significantly enriched or depleted in 13C and 15N relative to their mothers' isotope signatures. These results suggest that patterns of mother-embryo isotope fractionation vary within and between species and that these patterns may not be explained only by developmental mode. Contrasting patterns of fractionation between and within species make it difficult to adjust mother-embryo fractionation with broad-scale correction factors.
Collapse
Affiliation(s)
- Vincent Raoult
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - Catrina Smith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Violaine Dolfo
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Perpignan, France
| | - Joo-Myun Park
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science & Technology, Uljin, Korea
| | - Jane E Williamson
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Dedman S, Moxley JH, Papastamatiou YP, Braccini M, Caselle JE, Chapman DD, Cinner JE, Dillon EM, Dulvy NK, Dunn RE, Espinoza M, Harborne AR, Harvey ES, Heupel MR, Huveneers C, Graham NAJ, Ketchum JT, Klinard NV, Kock AA, Lowe CG, MacNeil MA, Madin EMP, McCauley DJ, Meekan MG, Meier AC, Simpfendorfer CA, Tinker MT, Winton M, Wirsing AJ, Heithaus MR. Ecological roles and importance of sharks in the Anthropocene Ocean. Science 2024; 385:adl2362. [PMID: 39088608 DOI: 10.1126/science.adl2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 08/03/2024]
Abstract
In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.
Collapse
Affiliation(s)
- Simon Dedman
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Jerry H Moxley
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Matias Braccini
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, North Beach, WA 6920, Australia
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Demian D Chapman
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Joshua Eli Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erin M Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ruth Elizabeth Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4BA, UK
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- MigraMar, Bodega Bay, CA 94923, USA
| | - Alastair R Harborne
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, WA, Australia
| | - Michelle R Heupel
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, TAS, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - James T Ketchum
- MigraMar, Bodega Bay, CA 94923, USA
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Natalie V Klinard
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Alison A Kock
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda (Grahamstown), South Africa
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - M Aaron MacNeil
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Elizabeth M P Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Douglas J McCauley
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Amelia C Meier
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Colin A Simpfendorfer
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Megan Winton
- Atlantic White Shark Conservancy, North Chatham, MA 02650, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael R Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
8
|
Costa EFS, Menezes GM, Colaço A. Trait-based insights into sustainable fisheries: A four-decade perspective in Azores archipelago. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173271. [PMID: 38754519 DOI: 10.1016/j.scitotenv.2024.173271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The trait-based approach provides a powerful perspective for analyzing fisheries and their potential impact on marine ecological processes, offering crucial insights into sustainability and ecosystem functioning. This approach was applied to investigate trends in fish assemblages landed by both local and coastal fishing fleets in the Azores archipelago over the past four decades (1980s, 1990s, 2000s, and 2010s). A matrix of ten traits was built to assess functional redundancy (Fred), functional over-redundancy (FOve), and functional vulnerability (FVul) for the fish assemblages caught by every fishing fleet in each decade. The susceptibility of the Azorean fishery to negative impacts on ecosystem functioning was evidenced by low FRed (<1.5 species per functional entity) and high FVul (exceeding 70 %). However, there is reason for optimism, as temporal trends in the 2000s and 2010s showed an increase in FRed and FOve along with a significant decrease in FVul. These trends indicate the adaptation of the fishery to new target species and, notably, the effectiveness of local fish regulations in mitigating the impacts of targeting functionally important species, such as Elasmobranchii, over the past two decades. These regulations have played a pivotal role in preserving ecological functions within the ecosystem, as well as in managing the removal of high biomass of key important species (e.g., Trachurus picturatus, Pagellus bogaraveo, and Katsuwonus pelamis) from the ecosystem. This study contributes to understanding the delicate balance between fishing pressure, ecological resilience, and sustainable resource management in Azorean waters. It also highlights the importance of continued monitoring, adaptive management, and the enforcement of local fishing regulations to ensure the long-term health and sustainability of the fishery and the broader marine ecosystem.
Collapse
Affiliation(s)
- Eudriano F S Costa
- OKEANOS - Institute of Marine Sciences - OKEANOS, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal; IMAR - Instituto do Mar, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal.
| | - Gui M Menezes
- OKEANOS - Institute of Marine Sciences - OKEANOS, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal
| | - Ana Colaço
- OKEANOS - Institute of Marine Sciences - OKEANOS, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal; IMAR - Instituto do Mar, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal
| |
Collapse
|
9
|
Shen Y, Hussey NE, David M, Wu F, Li Y. Vertebral microchemistry as an indicator of habitat use of the oceanic whitetip shark Carcharhinus longimanus in the central and eastern Pacific Ocean. JOURNAL OF FISH BIOLOGY 2024; 104:1732-1742. [PMID: 38445757 DOI: 10.1111/jfb.15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
The oceanic whitetip shark, Carcharhinus longimanus, is a highly migratory, epipelagic top predator that is classified as critically endangered. Although this species is widely distributed throughout the world's tropical oceans, its assumed mobility and pelagic behavior limit studies to derive required lifetime data for management. To address this data deficiency, we assessed variation in the habitat use of C. longimanus by oceanic region and over ontogeny through time series trace element and stable isotope values conserved along the vertebral centra (within translucent annulus bands) of 13 individuals sampled from the central and eastern Pacific Ocean. Elemental ratios of Mg:Ca, Mn:Ca, Fe:Ca, Zn:Ca, and Ba:Ca varied significantly among individuals from both sampling regions while principal component analysis of combined standardized elements revealed minimal overlap between the two areas. The limited overlap was also in agreement with stable isotope niches. These findings indicate that C. longimanus exhibit a degree of fidelity to sampling regions but also connectivity in a proportion of the population. The relatively stable Sr:Ca ratio supports its occurrence in oceanic environments. The decreasing trends in Ba:Ca, Mn:Ca, and Zn:Ca ratios, as well as in carbon and nitrogen isotope values along vertebral transects, indicate that C. longimanus undergo a directional habitat shift with age. Combined elemental and stable isotope values in vertebral centra provide a promising tool for elucidating lifetime data for complex pelagic species. For C. longimanus, management will need to consider subpopulation movement behavior in the Pacific to minimize the potential for localized depletions. Further work is now required to sample individuals across the entire Pacific and to link these findings with genetic and movement data to define population structure.
Collapse
Affiliation(s)
- Yongfu Shen
- College of Marine Living Resources and Management, Shanghai Ocean University, Shanghai, China
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Mboglen David
- College of Marine Living Resources and Management, Shanghai Ocean University, Shanghai, China
| | - Feng Wu
- College of Marine Living Resources and Management, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China
- National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Yunkai Li
- College of Marine Living Resources and Management, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China
- National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Zhang Z, Zhang Q, Chen B, Yu Y, Wang T, Xu N, Fan X, Penuelas J, Fu Z, Deng Y, Zhu YG, Qian H. Global biogeography of microbes driving ocean ecological status under climate change. Nat Commun 2024; 15:4657. [PMID: 38822036 PMCID: PMC11143227 DOI: 10.1038/s41467-024-49124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Microbial communities play a crucial role in ocean ecology and global biogeochemical processes. However, understanding the intricate interactions among diversity, taxonomical composition, functional traits, and how these factors respond to climate change remains a significant challenge. Here, we propose seven distinct ecological statuses by systematically considering the diversity, structure, and biogeochemical potential of the ocean microbiome to delineate their biogeography. Anthropogenic climate change is expected to alter the ecological status of the surface ocean by influencing environmental conditions, particularly nutrient and oxygen contents. Our predictive model, which utilizes machine learning, indicates that the ecological status of approximately 32.44% of the surface ocean may undergo changes from the present to the end of this century, assuming no policy interventions. These changes mainly include poleward shifts in the main taxa, increases in photosynthetic carbon fixation and decreases in nutrient metabolism. However, this proportion can decrease significantly with effective control of greenhouse gas emissions. Our study underscores the urgent necessity for implementing policies to mitigate climate change, particularly from an ecological perspective.
Collapse
Affiliation(s)
- Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310012, PR China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, PR China
| | - Xiaoji Fan
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310012, PR China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Ye Deng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, PR China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, PR China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
11
|
Robinson JPW, Benkwitt CE, Maire E, Morais R, Schiettekatte NMD, Skinner C, Brandl SJ. Quantifying energy and nutrient fluxes in coral reef food webs. Trends Ecol Evol 2024; 39:467-478. [PMID: 38105132 DOI: 10.1016/j.tree.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The movement of energy and nutrients through ecological communities represents the biological 'pulse' underpinning ecosystem functioning and services. However, energy and nutrient fluxes are inherently difficult to observe, particularly in high-diversity systems such as coral reefs. We review advances in the quantification of fluxes in coral reef fishes, focusing on four key frameworks: demographic modelling, bioenergetics, micronutrients, and compound-specific stable isotope analysis (CSIA). Each framework can be integrated with underwater surveys, enabling researchers to scale organismal processes to ecosystem properties. This has revealed how small fish support biomass turnover, pelagic subsidies sustain fisheries, and fisheries benefit human health. Combining frameworks, closing data gaps, and expansion to other aquatic ecosystems can advance understanding of how fishes contribute to ecosystem functions and services.
Collapse
Affiliation(s)
- James P W Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Renato Morais
- Université Paris Sciences et Lettres, École Pratique des Hautes Études, USR 3278 CRIOBE, Perpignan 66860, France
| | | | - Christina Skinner
- School of the Environment, University of Queensland, St Lucia 4072, QLD, Australia
| | - Simon J Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| |
Collapse
|
12
|
Sisma-Ventura G, Silverman J, Segal Y, Hauzer H, Abu Khadra M, Stern N, Guy-Haim T, Herut B. Exceptionally high levels of total mercury in deep-sea sharks of the Southeastern Mediterranean sea over the last ∼ 40 years. ENVIRONMENT INTERNATIONAL 2024; 187:108661. [PMID: 38688233 DOI: 10.1016/j.envint.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Deep-sea habitats are currently recognized as a hot spot for mercury (Hg) accumulation from anthropogenic sources, resulting in elevated concentrations of total mercury (THg) in deep-sea megafauna. Among them, deep-sea sharks (Class Chondrichthyes) are characterized by high trophic position and extended longevity and are, therefore, at high risk for mercury contamination. Despite this, sharks are overexploited by fishing activity in increasingly deeper water, worldwide, imposing health risks to human consumption. While it is imperative to better understand long-term mercury contamination in deep-sea megafauna, few historical data sets exist to capture this process. Here we explore four decades (1985-2022) of THg accumulation in five species of deep-sea sharks (G. melastomus, E. spinax, S. rostratus, C. granulosus, and D. licha) of the ultra-oligotrophic Southeastern Mediterranean Sea (SEMS) sampled during 19 research cruises. We exhibited exceptionally high THg levels (per length/weight), the highest as 16.6 μg g-1 (wet wt.), almost entirely (98.9 %; n = 298 specimens) exceeding the limit for safe consumption (0.3-0.5 μg THg g-1 wet wt.). The maximal THg levels of the long-lived species D. licha and C. granulosus in the SEMS were enriched by a factor of ∼ 7 and >10 compared to counterpart species from other oceanic areas, respectively. We attribute this to the ultra-oligotrophic conditions of the SEMS, which cause slower growth rates and dwarfism in deep-sea sharks, resulting in an extended exposure time to mercury contamination. In the long-lived species, C. granulosus and D. licha, a temporal increase of average THg levels of ∼ 80 % was recorded between 1987-1999 and 2021-2022. This likely reflects the long-term accumulation of historical anthropogenic Hg in deep-sea environments, which is further amplified in marginal seas such as the Mediterranean, impacted by global air pollution crossroads and surrounded by land-based pollution sources. Future consumption of products from deep-sea sharks is potentially high risk to human health.
Collapse
Affiliation(s)
- Guy Sisma-Ventura
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel.
| | - Jacob Silverman
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Yael Segal
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Hagar Hauzer
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Maria Abu Khadra
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Nir Stern
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Barak Herut
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel.
| |
Collapse
|
13
|
Letessier TB, Mouillot D, Mannocci L, Jabour Christ H, Elamin EM, Elamin SM, Friedlander AM, Hearn A, Juhel JB, Kleiven AR, Moland E, Mouquet N, Nillos-Kleiven PJ, Sala E, Thompson CDH, Velez L, Vigliola L, Meeuwig JJ. Divergent responses of pelagic and benthic fish body-size structure to remoteness and protection from humans. Science 2024; 383:976-982. [PMID: 38422147 DOI: 10.1126/science.adi7562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Animal body-size variation influences multiple processes in marine ecosystems, but habitat heterogeneity has prevented a comprehensive assessment of size across pelagic (midwater) and benthic (seabed) systems along anthropic gradients. In this work, we derive fish size indicators from 17,411 stereo baited-video deployments to test for differences between pelagic and benthic responses to remoteness from human pressures and effectiveness of marine protected areas (MPAs). From records of 823,849 individual fish, we report divergent responses between systems, with pelagic size structure more profoundly eroded near human markets than benthic size structure, signifying greater vulnerability of pelagic systems to human pressure. Effective protection of benthic size structure can be achieved through MPAs placed near markets, thereby contributing to benthic habitat restoration and the recovery of associated fishes. By contrast, recovery of the world's largest and most endangered fishes in pelagic systems requires the creation of highly protected areas in remote locations, including on the High Seas, where protection efforts lag.
Collapse
Affiliation(s)
- Tom B Letessier
- CESAB - FRB, Montpellier, France
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
- Marine Futures Lab, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Mouillot
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laura Mannocci
- CESAB - FRB, Montpellier, France
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Hanna Jabour Christ
- Marine Futures Lab, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | | | - Sheikheldin Mohamed Elamin
- Faculty of Marine Science and Fisheries, Red Sea State University, P.O. Box 24, Port Sudan, Red Sea State, Sudan
| | - Alan M Friedlander
- National Geographic Society, Washington, DC 20036, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, Hawai'i, USA
| | - Alex Hearn
- Galapagos Science Center, Universidad San Francisco de Quito, Quito, Ecuador
- MigraMar, Olema, CA, USA
| | - Jean-Baptiste Juhel
- ENTROPIE, Institut de Recherche pour le Développement, IRD-UR-UNC-IFREMER-CNRS, Centre IRD de Nouméa, Nouméa Cedex, New-Caledonia, France
| | - Alf Ring Kleiven
- Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway
| | - Even Moland
- Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway
- Centre for Coastal Research (CCR), Department of Natural Sciences, University of Agder, P.O. Box 422, N-4604 Kristiansand, Norway
| | - Nicolas Mouquet
- CESAB - FRB, Montpellier, France
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Enric Sala
- National Geographic Society, Washington, DC 20036, USA
| | - Christopher D H Thompson
- Marine Futures Lab, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Laure Velez
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laurent Vigliola
- ENTROPIE, Institut de Recherche pour le Développement, IRD-UR-UNC-IFREMER-CNRS, Centre IRD de Nouméa, Nouméa Cedex, New-Caledonia, France
| | - Jessica J Meeuwig
- Marine Futures Lab, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Oceans Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
14
|
Le Croizier G, Lorrain A, Hoyos-Padilla M, Ketchum JT, Amezcua-Martínez F, Le Loc'h F, Munaron JM, Schaal G, Point D. Do marine protected areas influence mercury exposure? Insights from a shark community in the tropical Northeast Pacific. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122352. [PMID: 37562525 DOI: 10.1016/j.envpol.2023.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Biomass depletion caused by overfishing is likely to alter the structure of food webs and impact mercury transfer to marine predators. Although marine protected areas (MPAs) are spared from fishing pressure, their influence on biota mercury levels is poorly understood. Here, we used carbon and nitrogen stable isotope compositions as well as mercury concentrations in fin clips to characterize foraging habitat and mercury exposure of a shark community composed of migratory and resident species of the Revillagigedo archipelago, an offshore MPA in the Northeast Pacific off Mexico. We found that the probability of finding migratory sharks in the isotopic niche of Revillagigedo-resident sharks was low, likely reflecting the use of habitats outside the archipelago by highly mobile species. Community-wide variations in mercury were primarily explained by shark length, revealing that bioaccumulation was the main driver of Hg concentrations. We failed to detect a clear effect of foraging habitat on shark mercury exposure, which may be related to migratory species using both exploited and protected areas when moving outside the Revillagigedo MPA. More similar studies on the potential mitigation of Hg contamination by MPAs are needed in the future if fishing pressure increases to satisfy the growing global human population.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Instituto de Ciencias Del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin, 82040, Mexico.
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Mauricio Hoyos-Padilla
- Pelagios-Kakunjá A.C, Sinaloa 1540, Col. Las Garzas, C.P. 23070, La Paz, B.C.S., Mexico; Fins Attached: Marine Research and Conservation, 19675 Still Glen Drive, Colorado Springs, CO 80908, USA
| | - James T Ketchum
- Pelagios-Kakunjá A.C, Sinaloa 1540, Col. Las Garzas, C.P. 23070, La Paz, B.C.S., Mexico; MigraMar, Bodega Bay, CA, USA; Centro de Investigaciones Biológicas Noroeste (CIBNOR), La Paz, B.C.S., Mexico
| | - Felipe Amezcua-Martínez
- Instituto de Ciencias Del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin, 82040, Mexico
| | | | | | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 Avenue Edouard Belin, 31400, Toulouse, France
| |
Collapse
|
15
|
Briones-Hernández SA, Jakes-Cota U, Elorriaga-Verplancken FR, Galván-Magaña F, Logan JM, O'Sullivan J, Carvajal-Rodríguez JM, Elias E, Alfaro-Shigueto J, Ortega-García S. Movement and population dispersal of dolphinfish (Coryphaena hippurus) across the Eastern Tropical Pacific inferred from carbon and nitrogen stable isotope analyses. JOURNAL OF FISH BIOLOGY 2023; 103:544-556. [PMID: 37212715 DOI: 10.1111/jfb.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
The dolphinfish (Coryphaena hippurus) is a globally distributed marine predator that supports one of the most important coastal fisheries along the Eastern Tropical Pacific (ETP), but its spatial movements in this area are poorly understood. Stable isotope values (δ13 C and δ15 N) of white muscle from dolphinfish (n = 220) captured at different locations across the ETP (i.e., Mexico, Costa Rica, Ecuador, Peru and oceanic areas) were normalized to copepod baseline stable isotope values to estimate dolphinfish trophic position, movements and population dispersal. Movement or residence patterns were inferred from the difference in δ15 N values (Δ15 Ndolphinfish-copepod ‰) between copepods and dolphinfish muscle. Baseline corrected isotope values (δ13 Cdolphinfish-copepod and δ15 Ndolphinfish-copepod ) of dolphinfish muscle were used to estimate isotopic niche metrics and infer population dispersal across isoscapes. Values of δ13 C and δ15 N differed between juvenile and adult dolphinfish and across the ETP. Trophic position estimates ranged from 3.1 to 6.0 with a mean of 4.6. Adults and juveniles had similar trophic position estimates, whereas isotopic niche areas (SEA ‰2 ) of adults were greater relative to juveniles in every location. Adult dolphinfish showed "moderate movement by some individuals" in all locations based on Δ15 Ndolphinfish-copepod values, except for Costa Rica where adults were classified with "high degree of movement by some individuals" whereas juveniles showed "limited movement" in all areas except Mexico. Population dispersal based on Δ15 Ndolphinfish-copepod values showed "moderate" and "high" dispersal for adults and "no dispersal" for most juveniles, except for Mexico. This study provides insight into potential dolphinfish spatial mobility across an area of interest for multiple nations, which can help to improve stock assessments and management of the species.
Collapse
Affiliation(s)
| | - Ulianov Jakes-Cota
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional - CICIMAR, La Paz, Mexico
| | | | - Felipe Galván-Magaña
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional - CICIMAR, La Paz, Mexico
| | - John M Logan
- Massachusetts Division of Marine Fisheries, New Bedford, Massachusetts, USA
| | | | | | - Esteban Elias
- Instituto Público de Investigación de Acuicultura y Pesca, Guayaquil, Ecuador
| | | | - Sofía Ortega-García
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional - CICIMAR, La Paz, Mexico
| |
Collapse
|
16
|
McCormack J, Karnes M, Haulsee D, Fox D, Kim SL. Shark teeth zinc isotope values document intrapopulation foraging differences related to ontogeny and sex. Commun Biol 2023; 6:711. [PMID: 37433835 DOI: 10.1038/s42003-023-05085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Trophic ecology and resource use are challenging to discern in migratory marine species, including sharks. However, effective management and conservation strategies depend on understanding these life history details. Here we investigate whether dental enameloid zinc isotope (δ66Znen) values can be used to infer intrapopulation differences in foraging ecology by comparing δ66Znen with same-tooth collagen carbon and nitrogen (δ13Ccoll, δ15Ncoll) values from critically endangered sand tiger sharks (Carcharias taurus) from Delaware Bay (USA). We document ontogeny and sex-related isotopic differences indicating distinct diet and habitat use at the time of tooth formation. Adult females have the most distinct isotopic niche, likely feeding on higher trophic level prey in a distinct habitat. This multi-proxy approach characterises an animal's isotopic niche in greater detail than traditional isotope analysis alone and shows that δ66Znen analysis can highlight intrapopulation dietary variability thereby informing conservation management and, due to good δ66Znen fossil tooth preservation, palaeoecological reconstructions.
Collapse
Affiliation(s)
- Jeremy McCormack
- Institute of Geosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | - Molly Karnes
- Department of Life and Environmental Sciences, University of California Merced, Merced, CA, 95343, USA
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, USA
| | - Danielle Haulsee
- Department of Biology, Stanford University, Pacific Grove, CA, USA
- Hubbs-Seaworld Research Institute, San Diego, CA, 92109, USA
| | - Dewayne Fox
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, USA
| | - Sora L Kim
- Department of Life and Environmental Sciences, University of California Merced, Merced, CA, 95343, USA
| |
Collapse
|
17
|
López-Romero FA, Stumpf S, Kamminga P, Böhmer C, Pradel A, Brazeau MD, Kriwet J. Shark mandible evolution reveals patterns of trophic and habitat-mediated diversification. Commun Biol 2023; 6:496. [PMID: 37156994 PMCID: PMC10167336 DOI: 10.1038/s42003-023-04882-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Environmental controls of species diversity represent a central research focus in evolutionary biology. In the marine realm, sharks are widely distributed, occupying mainly higher trophic levels and varied dietary preferences, mirrored by several morphological traits and behaviours. Recent comparative phylogenetic studies revealed that sharks present a fairly uneven diversification across habitats, from reefs to deep-water. We show preliminary evidence that morphological diversification (disparity) in the feeding system (mandibles) follows these patterns, and we tested hypotheses linking these patterns to morphological specialisation. We conducted a 3D geometric morphometric analysis and phylogenetic comparative methods on 145 specimens representing 90 extant shark species using computed tomography models. We explored how rates of morphological evolution in the jaw correlate with habitat, size, diet, trophic level, and taxonomic order. Our findings show a relationship between disparity and environment, with higher rates of morphological evolution in reef and deep-water habitats. Deep-water species display highly divergent morphologies compared to other sharks. Strikingly, evolutionary rates of jaw disparity are associated with diversification in deep water, but not in reefs. The environmental heterogeneity of the offshore water column exposes the importance of this parameter as a driver of diversification at least in the early part of clade history.
Collapse
Affiliation(s)
- Faviel A López-Romero
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Palaeontology, Evolutionary Morphology Research Group, Josef-Holaubek-Platz 2, 1190, Vienna, Austria.
- University of Vienna, Vienna Doctoral School of Ecology and Evolution (VDSEE), Djerassiplatz 1, 1030, Vienna, Austria.
| | - Sebastian Stumpf
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Palaeontology, Evolutionary Morphology Research Group, Josef-Holaubek-Platz 2, 1190, Vienna, Austria
| | - Pepijn Kamminga
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Christine Böhmer
- MECADEV UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, CP 55, 57 rue Cuvier, 75231, Paris, France
- Department für Geo- und Umweltwissenschaften und GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333, München, Germany
- Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Alan Pradel
- CR2P, Centre de Recherche en Paléontologie - Paris, Muséum National d'Histoire Naturelle-Sorbonne Université-CNRS, CP 38, 57 rue Cuvier, F75231, Paris, Cedex 05, France
| | - Martin D Brazeau
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, London, UK
- The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jürgen Kriwet
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Palaeontology, Evolutionary Morphology Research Group, Josef-Holaubek-Platz 2, 1190, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution (VDSEE), Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
18
|
Lal DM, Sreekanth GB, Soman C, Sharma A, Abidi ZJ. Delineating the food web structure in an Indian estuary during tropical winter employing stable isotope signatures and mixing model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49412-49434. [PMID: 36773262 DOI: 10.1007/s11356-023-25549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/21/2023] [Indexed: 02/12/2023]
Abstract
The food and feeding links and sources in an impacted tropical estuary situated along India's western coast, the Ulhas River Estuary (URE) was analyzed employing the stable carbon and nitrogen isotopic signatures (δ13C and δ15N). Three basal carbon sources, such as mangrove leaves, particulate organic matter (phytoplankton), and detritus, were analyzed together with eight consumer groups from various trophic guilds. The δ13C varied from - 19.67 to - 24.61‰, whereas δ15N ranged from 6.31 to 15.39‰ from the primary consumer to the top predator species. The stable isotope mixing model developed for URE revealed a phytoplankton based pelagic food chain and detritus based benthic food chain in URE. The fairly larger value of SEA (Standard Ellipse Area) in the URE suggest a much broader food web structure and high trophic diversity in the ecosystem. Higher influence of detritus on the assimilated diet of majority of consumers and evidences of nitrogen enrichment in the basal sources such as detritus and particulate organic matter by anthropogenic activities in URE point towards nitrogen pollution and subsequent trophic disturbance in this tropical estuarine ecosystem.
Collapse
Affiliation(s)
- Dhanya Mohan Lal
- ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | | | - Chitra Soman
- ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | - Anupam Sharma
- Birbal Sahni Institute of Paleosciences, 53 University Road, Lucknow, 226007, India
| | - Zeba Jaffer Abidi
- ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| |
Collapse
|
19
|
Vidal A, Cardador L, Garcia-Barcelona S, Macias D, Druon JN, Coll M, Navarro J. The relative importance of biological and environmental factors on the trophodynamics of a pelagic marine predator, the blue shark (Prionace glauca). MARINE ENVIRONMENTAL RESEARCH 2023; 183:105808. [PMID: 36403409 DOI: 10.1016/j.marenvres.2022.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Marine ecosystems have been significantly altered by the cumulative impacts of human activities. Pelagic sharks have become vulnerable to increases in mortality rates caused by fishing. The decrease in number of these top predators could have substantial cascading effects on wider marine communities. Concerns about these potential impacts, and the critical need for effective management, have led to an increased interest in assessing the trophic ecology of sharks. While stable isotope analyses have been used to provide relevant insights about the trophic ecology of sharks, the causal factors leading to trophic variation between individuals has been largely overlooked. Here, we investigated the relative effect of biological factors, geographic location, and environmental factors on the spatial trophodynamics of the blue shark (Prionace glauca). Specifically, stable isotope values of δ15N and δ13C, and the estimated trophic position (TP) were analysed for 180 blue sharks collected from south of the Canary Islands in the Atlantic Ocean, to the north-western Mediterranean Sea. The results showed that models which included combined variables explained the variation in δ15N, TP and δ13C values better than models which considered only stand-alone predictors. The independent contributions of environmental variables and biological factors seemed to be more important than geographic location for δ15N and TP. δ15N and TP increased in a curvilinear fashion with body size, and TP was higher for females. In the case of δ13C values, only an effect from sex was observed. Among environmental variables, chlorophyll-a, pelagic productivity, and sea-surface temperature proved to be reliable predictors, particularly for δ15N and TP, most likely due to their relationship with productivity and prey availability. This study provides new information on ranking the factors that influence the trophodynamics of the blue shark, namely the environment, the geographic location, and the biological factors of the species.
Collapse
Affiliation(s)
- Alba Vidal
- Institut de Ciències Del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37, 08003, Barcelona, Spain; Ecological and Forestry Applications Research Centre, Campus de Bellaterra (UAB), Edifici C, 08193, Cerdanyola Del Vallès, Spain
| | - Laura Cardador
- Ecological and Forestry Applications Research Centre, Campus de Bellaterra (UAB), Edifici C, 08193, Cerdanyola Del Vallès, Spain
| | | | - David Macias
- Centro Oceanográfico de Málaga (IEO-CSIC), Puerto Pesquero, s/n, 29640, Fuengirola, Spain
| | - Jean-Noel Druon
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Marta Coll
- Institut de Ciències Del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37, 08003, Barcelona, Spain
| | - Joan Navarro
- Institut de Ciències Del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37, 08003, Barcelona, Spain.
| |
Collapse
|
20
|
Unravelling the trophic interaction between a parasitic barnacle ( Anelasma squalicola) and its host Southern lanternshark ( Etmopterus granulosus) using stable isotopes. Parasitology 2022; 149:1976-1984. [PMID: 36076261 PMCID: PMC10090636 DOI: 10.1017/s0031182022001299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The parasitic barnacle, Anelasma squalicola, is a rare and evolutionary fascinating organism. Unlike most other filter-feeding barnacles, A. squalicola has evolved the capability to uptake nutrient from its host, exclusively parasitizing deepwater sharks of the families Etmopteridae and Pentanchidae. The physiological mechanisms involved in the uptake of nutrients from its host are not yet known. Using stable isotopes and elemental compositions, we followed the fate of nitrogen, carbon and sulphur through various tissues of A. squalicola and its host, the Southern lanternshark Etmopterus granulosus, to better understand the trophic relationship between parasite and host. Like most marine parasites, A. squalicola is lipid-rich and clear differences were found in the stable isotope ratios between barnacle organs. It is evident that the deployment of a system of ‘rootlets’, which merge with host tissues, allows A. squalicola to draw nutrients from its host. Through this system, proteins are then rerouted to the exterior structural tissues of A. squalicola while lipids are used for maintenance and egg synthesis. The nutrient requirement of A. squalicola was found to change from protein-rich to lipid-rich between its early development stage and its definitive size.
Collapse
|
21
|
Chan AJ, Raoult V, Jaine FRA, Peddemors VM, Broadhurst MK, Williamson JE. Trophic niche of Australian cownose rays (Rhinoptera neglecta) and whitespotted eagle rays (Aetobatus ocellatus) along the east coast of Australia. JOURNAL OF FISH BIOLOGY 2022; 100:970-978. [PMID: 35225353 PMCID: PMC9310580 DOI: 10.1111/jfb.15028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 05/21/2023]
Abstract
Australian cownose rays (Rhinoptera neglecta) and whitespotted eagle rays (Aetobatus ocellatus) are large myliobatiform rays that co-occur off temperate eastern Australia. Here, we performed stable-isotope analyses (δ13 C, δ15 N and δ34 S) on fin clips of both species to gain insights into their trophic interactions and isotopic niches, and assess the effect of preservation (ethanol-stored versus frozen) on isotopic values of fin-clip tissue of R. neglecta. Linear mixed models identified species as the main factor contributing to variation among δ15 N and δ34 S values, and disc width for δ13 C. Bayesian ecological niche modelling indicated a 57.4% to 74.5% overlap of trophic niches, with the niche of R. neglecta being smaller and more constrained. Because values of δ13 C were similar between species, variation in isotopic niches were due to differences in δ15 N and δ34 S values. Linear mixed models failed to detect differences in isotopic values of ethanol-stored and frozen fin tissue of R. neglecta. This study provides the first examination of the trophic ecology of R. neglecta and the comparison of isotopic niche with A. ocellatus, which will facilitate future research into the trophic interactions of these species and aid better resource management.
Collapse
Affiliation(s)
- Alysha J. Chan
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Vincent Raoult
- School of Environmental and Life SciencesUniversity of NewcastleOurimbahNew South WalesAustralia
| | - Fabrice R. A. Jaine
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceMosmanNew South WalesAustralia
| | - Victor M. Peddemors
- New South Wales Department of Primary Industries, Fisheries ResearchSydney Institute of Marine ScienceMosmanNew South WalesAustralia
| | - Matt K. Broadhurst
- New South Wales Department of Primary Industries, Fisheries Conservation Technology Unit, National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
- Marine and Estuarine Ecology UnitSchool of Biological Sciences, University of QueenslandBrisbaneQueenslandAustralia
| | - Jane E. Williamson
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
22
|
Schaber M, Gastauer S, Cisewski B, Hielscher N, Janke M, Peña M, Sakinan S, Thorburn J. Extensive oceanic mesopelagic habitat use of a migratory continental shark species. Sci Rep 2022; 12:2047. [PMID: 35132104 PMCID: PMC8821621 DOI: 10.1038/s41598-022-05989-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022] Open
Abstract
The identification of movement and behaviour patterns, as well as inter- and intra-population connectivity is crucial in order to implement effective and functional management and conservation measures for threatened migratory species such as tope (Galeorhinus galeus). Yet, previous studies struggled to elucidate clear and consistent movement and depth usage patterns of adult tope in the Northeast Atlantic, suggesting a high plasticity in the migration and behaviour. We deployed pop-up satellite archival tags on adult tope during their seasonal summer aggregations in the inner German Bight of the south-eastern North Sea and near a presumed mating site in southwest Scotland. Depth distribution and migration pathways were derived from time series data with location processing. Four individuals followed migration trajectories leaving coastal areas and crossed the European shelf slope into oceanic areas of the Northeast Atlantic, remaining fully pelagic for the rest of the deployment duration. These sharks showed far-ranging migration trajectories and undertook regular and frequent diel vertical migrations, reaching daytime depths of over 700 m. Vertical migration patterns closely overlapped with biological mesopelagic habitat structures and closely tracked the diel migration of organisms from deep scattering layers derived from hydroacoustic recordings. It is hypothesized that adult tope regularly utilize oceanic habitats, foraging on mesopelagic layers in an environment generally considered of low prey density.
Collapse
|
23
|
Buchanan PJ, Tagliabue A, de la Vega C, Mahaffey C. Oceanographic and biogeochemical drivers cause divergent trends in the nitrogen isoscape in a changing Arctic Ocean. AMBIO 2022; 51:383-397. [PMID: 34628601 PMCID: PMC8692545 DOI: 10.1007/s13280-021-01635-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 05/15/2023]
Abstract
Nitrogen stable isotopes (δ15N) are used to study food web and foraging dynamics due to the step-wise enrichment of tissues with increasing trophic level, but they rely on the isoscape baseline that varies markedly in the Arctic due to the interplay between Atlantic- and Pacific-origin waters. Using a hierarchy of simulations with a state-of-the-art ocean-biogeochemical model, we demonstrate that the canonical isotopic gradient of 2-3‰ between the Pacific and Atlantic sectors of the Arctic Ocean has grown to 3-4‰ and will continue to expand under a high emissions climate change scenario by the end of the twenty-first century. δ15N increases in the Pacific-influenced high Arctic due to increased primary production, while Atlantic sector decreases result from the integrated effects of Atlantic inflow and anthropogenic inputs. While these trends will complicate longitudinal food web studies using δ15N, they may aid those focussed on movement as the Arctic isoscape becomes more regionally distinct.
Collapse
Affiliation(s)
- Pearse James Buchanan
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, L693GP UK
| | - Alessandro Tagliabue
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, L693GP UK
| | - Camille de la Vega
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, L693GP UK
- Leibniz Institute for Baltic Sea Research, Warnemünde, 18119 Rostock, Germany
| | - Claire Mahaffey
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, L693GP UK
| |
Collapse
|
24
|
Drivers of variation in occurrence, abundance, and behaviour of sharks on coral reefs. Sci Rep 2022; 12:728. [PMID: 35031666 PMCID: PMC8760336 DOI: 10.1038/s41598-021-04024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/29/2021] [Indexed: 11/08/2022] Open
Abstract
Quantifying the drivers of population size in reef sharks is critical for the development of appropriate conservation strategies. In north-west Australia, shark populations inhabit coral reefs that border growing centres of human population, industry, and tourism. However, we lack baseline data on reef sharks at large spatial scales (hundreds of km) that might enable managers to assess the status of shark populations in the face of future development in this region. Here, we examined the occurrence, abundance and behaviour of apex (Galeocerdo cuvier, Carcharhinus plumbeus) and reef (C. amblyrhynchos, C. melanopterus, Triaenodon obesus) sharks using > 1200 deployments of baited remote underwater stereo-video systems (stereo-BRUVs) across > 500 km of coastline. We found evidence for species-specific influences of habitat and fishing activities on the occurrence (probability of observation), abundance (MaxN) and behaviour of sharks (time of arrival to the stereo-BRUVs and likelihood of feeding). Although the presence of management zoning (No-take areas) made little difference to most species, C. amblyrhynchos were more common further from boat ramps (a proxy of recreational fishing pressure). Time of arrival for all species was also influenced by distance to boat ramp, although patterns varied among species. Our results demonstrate the capacity for behavioural metrics to complement existing measures of occurrence and abundance in assessing the potential impact of human activities on shark populations.
Collapse
|
25
|
Nikiforov-Nikishin DL, Irkha VA, Kochetkov NI, Kalita TL, Nikiforov-Nikishin AL, Blokhin EE, Antipov SS, Makarenkov DA, Zhavnerov AN, Glebova IA, Smorodinskaya SV, Chebotarev SN. Some Aspects of Development and Histological Structure of the Visual System of Nothobranchius Guentheri. Animals (Basel) 2021; 11:2755. [PMID: 34573720 PMCID: PMC8470241 DOI: 10.3390/ani11092755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/04/2022] Open
Abstract
In this, work some aspects of the development of the visual system of Nothobranchius guentheri at the main stages of ontogenesis were described for the first time. It was possible to establish that the formation of the visual system occurs similarly to other representatives of the order Cyprinodontiformes, but significantly differs in terms of the individual stages of embryogenesis due to the presence of diapause. In the postembryonic period, there is a further increase in the size of the fish's eyes and head, to the proportions characteristic of adult fish. The histological structure of the eye in adult N. guentheri practically does not differ from most teleost fish living in the same environmental conditions. The study of the structure of the retina showed the heterogeneity of the thickness of the temporal and nasal areas, which indicates the predominant role of peripheral vision. Morphoanatomical measurements of the body and eyes of N. guentheri showed that their correlation was conservative. This indicates an important role of the visual system for the survival of fish in natural conditions, both for the young and adults. In individuals of the older age group, a decrease in the amount of sodium (Na) and an increase in magnesium (Mg) and calcium (Ca) were found in the eye lens. Such changes in the elemental composition of the lens can be a sign of the initial stage of cataractogenesis and disturbances in the metabolism of lens fibers as a result of aging. This allows us to propose N. guentheri as a model for studying the structure, formation, and aging of the visual and nervous systems.
Collapse
Affiliation(s)
- Dmitry L. Nikiforov-Nikishin
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Vladimir A. Irkha
- Scientific Department, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (V.A.I.); (S.S.A.)
| | - Nikita I. Kochetkov
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Tatyana L. Kalita
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Alexei L. Nikiforov-Nikishin
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Eduard E. Blokhin
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Science, Chekhova Ave., 41, 344006 Rostov-on-Don, Russia;
| | - Sergei S. Antipov
- Scientific Department, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (V.A.I.); (S.S.A.)
- Department of Biophysics and Biotechnology, Voronezh State University, 1, University Square, 394063 Voronezh, Russia
| | - Dmitry A. Makarenkov
- Institute of Chemical Reagents and High Purity Chemical Substances of the National Research Centre “Kurchatov Institute”, Str. Bogorodsky Val, 3, 107076 Moscow, Russia;
| | - Alexey N. Zhavnerov
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Irina A. Glebova
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Svetlana V. Smorodinskaya
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Sergei N. Chebotarev
- Management Department, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| |
Collapse
|
26
|
Besnard L, Le Croizier G, Galván-Magaña F, Point D, Kraffe E, Ketchum J, Martinez Rincon RO, Schaal G. Foraging depth depicts resource partitioning and contamination level in a pelagic shark assemblage: Insights from mercury stable isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117066. [PMID: 33892372 DOI: 10.1016/j.envpol.2021.117066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
The decline of shark populations in the world ocean is affecting ecosystem structure and function in an unpredictable way and new ecological information is today needed to better understand the role of sharks in their habitats. In particular, the characterization of foraging patterns is crucial to understand and foresee the evolution of dynamics between sharks and their prey. Many shark species use the mesopelagic area as a major foraging ground but the degree to which different pelagic sharks rely on this habitat remains overlooked. In order to depict the vertical dimension of their trophic ecology, we used mercury stable isotopes in the muscle of three pelagic shark species (the blue shark Prionace glauca, the shortfin mako shark Isurus oxyrinchus and the smooth hammerhead shark Sphyrna zygaena) from the northeastern Pacific region. The Δ199Hg values, ranging from 1.40 to 2.13‰ in sharks, suggested a diet mostly based on mesopelagic prey in oceanic habitats. We additionally used carbon and nitrogen stable isotopes (δ13C, δ15N) alone or in combination with Δ199Hg values, to assess resource partitioning between the three shark species. Adding Δ199Hg resulted in a decrease in trophic overlap estimates compared to those based on δ13C/δ15N alone, demonstrating that multi-isotope modeling is needed for accurate trophic description of the three species. Mainly, it reveals that they forage at different average depths and that resource partitioning is mostly expressed through the vertical dimension within pelagic shark assemblages. Concomitantly, muscle total mercury concentration (THg) differed between species and increased with feeding depth. Overall, this study highlights the key role of the mesopelagic zone for shark species foraging among important depth gradients and reports new ecological information on trophic competition using mercury isotopes. It also suggests that foraging depth may play a pivotal role in the differences between muscle THg from co-occurring high trophic level shark species.
Collapse
Affiliation(s)
- Lucien Besnard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France.
| | - Gaël Le Croizier
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 Avenue Edouard Belin, 31400, Toulouse, France
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN S/n, 23096, La Paz, B.C.S., Mexico
| | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 Avenue Edouard Belin, 31400, Toulouse, France
| | - Edouard Kraffe
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - James Ketchum
- Pelagios-Kakunja, Cuauhtémoc 155, 23096, La Paz, B.C.S., Mexico
| | - Raul Octavio Martinez Rincon
- CONACyT-Centro de Investigaciónes Biológicas Del Noroeste, S.C. (CIBNOR), Av. IPN 195, 23096, La Paz, B.C.S., Mexico
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| |
Collapse
|
27
|
Poscai AN, Casas ALS, da Silva JPC, Lenktaitis P, Gadig OB. Inside the mouth of sharks: Comparative data on the morphology of the oropharyngeal cavity. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Shipley ON, Henkes GA, Gelsleichter J, Morgan CR, Schneider EV, Talwar BS, Frisk MG. Shark tooth collagen stable isotopes (δ 15 N and δ 13 C) as ecological proxies. J Anim Ecol 2021; 90:2188-2201. [PMID: 33999410 DOI: 10.1111/1365-2656.13518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/30/2021] [Indexed: 12/01/2022]
Abstract
The isotopic composition of tooth-bound collagen has long been used to reconstruct dietary patterns of animals in extant and palaeoecological systems. For sharks that replace teeth rapidly in a conveyor-like system, stable isotopes of tooth collagen (δ13 CTeeth & δ15 NTeeth ) are poorly understood and lacking in ecological context relative to other non-lethally sampled tissues. This tissue holds promise, because shark jaws may preserve isotopic chronologies from which to infer individual-level ecological patterns across a range of temporal resolutions. Carbon and nitrogen stable isotope values were measured and compared between extracted tooth collagen and four other non-lethally sampled tissues of varying isotopic turnover rates: blood plasma, red blood cells, fin and muscle, from eight species of sharks. Individual-level isotopic variability of shark tooth collagen was evaluated by profiling teeth of different ages across whole jaws for the shortfin mako shark Isurus oxyrinchus and sandbar shark Carcharhinus plumbeus. Measurements of δ13 CTeeth and δ15 NTeeth were positively correlated with isotopic values from the four other tissues. Collagen δ13 C was consistently 13 C-enriched relative to all other tissues. Patterns for δ15 N were slightly less uniform; tooth collagen was generally 15 N-enriched relative to muscle and red blood cells, but congruent with fin and blood plasma (values clustered around a 1:1 relationship). Significant within-individual variability was observed across whole shortfin mako shark (δ13 C range = 1.4‰, δ15 N range = 3.6‰) and sandbar shark (δ13 C range = 1.2‰-2.4‰, δ15 N range = 1.7‰-2.4‰) jaws, which trended with tooth age. We conclude that amino acid composition and associated patterns of isotopic fractionation result in predictable isotopic offsets between tissues. Within-individual variability of tooth collagen stable isotope values suggests teeth of different ages may serve as ecological chronologies, that could be applied to studies on migration and individual-level diet variation across diverse time-scales. Greater understanding of tooth replacement rates, isotopic turnover and associated fractionation of tooth collagen will help refine potential ecological inferences, outlining clear goals for future scientific inquiry.
Collapse
Affiliation(s)
- Oliver N Shipley
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Gregory A Henkes
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.,Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - James Gelsleichter
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - Clark R Morgan
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - Eric V Schneider
- Exuma Sound Ecosystem Research Project, Cape Eleuthera Institute, Eleuthera, The Bahamas
| | - Brendan S Talwar
- Exuma Sound Ecosystem Research Project, Cape Eleuthera Institute, Eleuthera, The Bahamas.,Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, North Miami, FL, USA
| | - Michael G Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
29
|
Rodríguez MA. Measurement error models reveal the scale of consumer movements along an isoscape gradient. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marco A. Rodríguez
- Département des sciences de l'environnement and Centre de Recherche sur les Interactions Bassins Versants – Écosystèmes Aquatiques (RIVE) Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada
| |
Collapse
|
30
|
Madigan DJ, Snodgrass OE, Hyde JR, Dewar H. Stable isotope turnover rates and fractionation in captive California yellowtail (Seriola dorsalis): insights for application to field studies. Sci Rep 2021; 11:4466. [PMID: 33627705 PMCID: PMC7904776 DOI: 10.1038/s41598-021-83880-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/09/2021] [Indexed: 11/09/2022] Open
Abstract
Stable isotope analysis (SIA) measurements from long-term captivity studies provide required parameters for interpretation of consumer SIA data. We raised young-of-the-year (14–19 cm) California yellowtail (Seriola dorsalis) on a low δ15N and δ13C diet (pellet aquaculture feed) for 525 days, then switched to a high δ15N and δ13C diet (mackerel and squid) for 753 days. Yellowtail muscle was sequentially sampled from each individual after the diet switch (0 to 753 days) and analyzed for δ15N and δ13C, allowing for calculation of diet-tissue discrimination factors (DTDFs) from two isotopically different diets (low δ15N and δ13C: pellets; high δ15N and δ13C: fish/squid) and turnover rates of 15N and 13C. DTDFs were diet dependent: Δ15N = 5.1‰, Δ13C = 3.6‰ for pellets and Δ15N = 2.6‰, Δ13C = 1.3‰ for fish/squid. Half-life estimates from 15N and 13C turnover rates for pooled yellowtail were 181 days and 341 days, respectively, but varied considerably by individual (15N: 99–239 d; 13C: 158–899 d). Quantifying DTDFs supports isotopic approaches to field data that assume isotopic steady-state conditions (e.g., mixing models for diet reconstruction). Characterizing and quantifying turnover rates allow for estimates of diet/habitat shifts and “isotopic clock” approaches, and observed inter-individual variability suggests the need for large datasets in field studies. We provide diet-dependent DTDFs and growth effects on turnover rates, and associated error around these parameters, for application to field-collected SIA data from other large teleosts.
Collapse
Affiliation(s)
- Daniel J Madigan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA. .,Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| | - Owyn E Snodgrass
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA, 92037, USA
| | - John R Hyde
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA, 92037, USA
| | - Heidi Dewar
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA, 92037, USA
| |
Collapse
|
31
|
Shipley ON, Kelly JB, Bizzarro JJ, Olin JA, Cerrato RM, Power M, Frisk MG. Evolution of realized Eltonian niches across
Rajidae
species. Ecosphere 2021. [DOI: 10.1002/ecs2.3368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Oliver N. Shipley
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| | - Joseph B. Kelly
- Department for Ecology and Evolution Stony Brook University Stony Brook New York11794USA
| | - Joseph J. Bizzarro
- Moss Landing Marine Laboratories California State University 8272 Moss Landing Road Moss Landing California95039USA
- Cooperative Institute for Marine Ecosystems and Climate University of California, Santa Cruz 110 McAllister Way Santa Cruz California95060USA
| | - Jill A. Olin
- Great Lakes Research Center Michigan Technological University Houghton Michigan49931USA
| | - Robert M. Cerrato
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| | - Michael Power
- Department of Biology University of Waterloo 200 University Avenue West Waterloo OntarioN2L 3G1Canada
| | - Michael G. Frisk
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| |
Collapse
|
32
|
Jorgensen SJ, Micheli F, White TD, Van Houtan KS, Alfaro-Shigueto J, Andrzejaczek S, Arnoldi NS, Baum JK, Block B, Britten GL, Butner C, Caballero S, Cardeñosa D, Chapple TK, Clarke S, Cortés E, Dulvy NK, Fowler S, Gallagher AJ, Gilman E, Godley BJ, Graham RT, Hammerschlag N, Harry AV, Heithaus M, Hutchinson M, Huveneers C, Lowe CG, Lucifora LO, MacKeracher T, Mangel JC, Barbosa Martins AP, McCauley DJ, McClenachan L, Mull C, Natanson LJ, Pauly D, Pazmiño DA, Pistevos JCA, Queiroz N, Roff G, Shea BD, Simpfendorfer CA, Sims DW, Ward-Paige C, Worm B, Ferretti F. Emergent research and priorities for shark and ray conservation. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Le Croizier G, Lorrain A, Sonke JE, Jaquemet S, Schaal G, Renedo M, Besnard L, Cherel Y, Point D. Mercury isotopes as tracers of ecology and metabolism in two sympatric shark species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114931. [PMID: 32590319 DOI: 10.1016/j.envpol.2020.114931] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
In coastal ecosystems, top predators are exposed to a wide variety of nutrient and contaminant sources due to the diversity of trophic webs within inshore marine habitats. Mercury contamination could represent an additional threat to shark populations that are declining worldwide. Here we measured total mercury, carbon and nitrogen isotopes, as well as mercury isotopes, in two co-occurring shark species (the bull shark Carcharhinus leucas and the tiger shark Galeocerdo cuvier) and their potential prey from a coastal ecosystem of the western Indian Ocean (La Réunion Island). Our primary goals were to (i) determine the main trophic Hg sources for sharks and (ii) better characterize their diet composition and foraging habitat. Hg isotope signatures (Δ199Hg and δ202Hg) of shark prey suggested that bull sharks were exposed to methylmercury (MeHg) produced in offshore epipelagic waters, while tiger sharks were exposed to offshore mesopelagic MeHg with additional microbial transformation in slope sediments. Δ199Hg values efficiently traced the ecology of the two predators, demonstrating that bull sharks targeted coastal prey in shallow waters while tiger sharks were mainly foraging on mesopelagic species in the deeper waters of the island slope. Unexpectedly, we found a positive shift in δ202Hg (>1‰) between sharks and their prey, leading to high δ202Hg values in the two shark species (e.g. 1.91 ± 0.52‰ in bull sharks). This large shift in δ202Hg indicates that sharks may display strong MeHg demethylation abilities, possibly reflecting evolutionary pathways for mitigating their MeHg contamination.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France.
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France
| | - Sébastien Jaquemet
- Laboratoire ENTROPIE, UMR 9220 CNRS/IRD/Université de La Réunion, 15 Avenue René Cassin, BP 92003, 97744, Saint-Denis, La Réunion, France
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Marina Renedo
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France
| | - Lucien Besnard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - David Point
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France
| |
Collapse
|
34
|
Le Croizier G, Lorrain A, Schaal G, Ketchum J, Hoyos-Padilla M, Besnard L, Munaron JM, Le Loc'h F, Point D. Trophic resources and mercury exposure of two silvertip shark populations in the Northeast Pacific Ocean. CHEMOSPHERE 2020; 253:126645. [PMID: 32283423 DOI: 10.1016/j.chemosphere.2020.126645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Worldwide shark populations have experienced rapid declines over the last decades, mainly due to overfishing. Marine protected areas (MPAs) have thus become an indispensable tool for the protection of these marine predators. Two recently-created MPAs in the Northeast Pacific Ocean, the Revillagigedo National Park and Clipperton Atoll, are characterized by different trophic structures potentially influencing the trophic niche and contaminant exposure of resident sharks in these two sites. In this context, we used carbon (δ13C) and nitrogen (δ15N) stable isotope analyzes as well as total mercury concentrations ([THg]) to assess the effect of foraging site on the trophic niche and Hg levels of juvenile silvertip (ST) sharks Carcharhinus albimarginatus. Analyzing fin clip samples from Revillagigedo and Clipperton, we found that shark δ15N varied spatially in relation to δ15N baselines, suggesting similar trophic position in both MPAs. Moreover, δ13C values indicated that ST sharks from Revillagigedo would feed on different food webs (i.e. both benthic and pelagic) while individuals from Clipperton would only rely on benthic food webs. These differences between MPAs led to a weak overlap of isotopic niches between the two populations, highlighting the site residency of juvenile ST sharks. Within each population, [THg] was not correlated with trophic tracers (δ15N and δ13C) and was also similar between populations. This study revealed no influence of site or food web in [THg] and raises the question of the origin of Hg exposure for reef shark populations in the Northeast Pacific Ocean.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 Avenue Edouard Belin, 31400, Toulouse, France; Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France.
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - James Ketchum
- Pelagios Kakunjá A.C., Sinaloa 1540, Las Garzas, 23070, La Paz, Baja California Sur, Mexico; Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, Mexico
| | - Mauricio Hoyos-Padilla
- Pelagios Kakunjá A.C., Sinaloa 1540, Las Garzas, 23070, La Paz, Baja California Sur, Mexico; Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, Mexico; Fins Attached Marine Conservation, Colorado Springs, USA
| | - Lucien Besnard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | | | | - David Point
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 Avenue Edouard Belin, 31400, Toulouse, France
| |
Collapse
|
35
|
Morgan C, Shipley ON, Gelsleichter J. Resource-use dynamics of co-occurring chondrichthyans from the First Coast, North Florida, USA. JOURNAL OF FISH BIOLOGY 2020; 96:570-579. [PMID: 31858583 DOI: 10.1111/jfb.14238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Recent studies on shark assemblages on the northeast Florida and southeast Georgia coast (hereafter referred to collectively as the "First Coast") have demonstrated differences in species and age-class composition of catch from previously characterized estuaries and newly surveyed area beaches, demonstrating that these regions may provide a critical habitat to different segments (i.e., life stages) of local shark populations. In this study, carbon and nitrogen stable isotopes (δ13 C and δ15 N) from muscle tissue and blood plasma were used to examine trophic dynamics (and temporal variability thereof) of the three dominant co-occurring species found along First Coast beaches (the Atlantic Sharpnose shark Rhizoprionodon terraenovae, Blacknose shark Carcharhinus acronotus and Blacktip shark Carcharhinus limbatus) to determine if they exhibit overlap in resource use along with spatial and temporal habitat use. Although considered spatially segregated from the beach species, a dominant, age-class species found in First Coast estuaries (juvenile Sandbar sharks Carcharhinus plumbeus) was also included in this analysis for comparison. Temporal variability of resource-use characteristics was detected at the species level. Resource-use overlap among species varied by tissue type and was generally higher for blood plasma, suggesting greater resource sharing over more recent time periods. Over longer time periods Atlantic Sharpnose and Blacktip sharks exhibited resource-use expansion, whereas Blacknose sharks exhibited a narrowing in resource use, suggesting a more specialized foraging strategy compared to the other species. The resource-use breadth of Sandbar sharks also expanded between blood plasma and muscle tissue. Significant size relationships were detected in Blacktip and Sandbar sharks, indicating ontogenetic resource shifts for both species. A diversity of highly productive resource pools likely support shark populations along the First Coast such that resource-use differentiation is not required to facilitate species co-occurrence. This work may shed light on understanding patterns of species co-occurrence as well as aid in future conservation efforts.
Collapse
Affiliation(s)
- Clark Morgan
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Oliver N Shipley
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - James Gelsleichter
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| |
Collapse
|
36
|
|
37
|
Lorrain A, Pethybridge H, Cassar N, Receveur A, Allain V, Bodin N, Bopp L, Choy CA, Duffy L, Fry B, Goñi N, Graham BS, Hobday AJ, Logan JM, Ménard F, Menkes CE, Olson RJ, Pagendam DE, Point D, Revill AT, Somes CJ, Young JW. Trends in tuna carbon isotopes suggest global changes in pelagic phytoplankton communities. GLOBAL CHANGE BIOLOGY 2020; 26:458-470. [PMID: 31578765 DOI: 10.1111/gcb.14858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Considerable uncertainty remains over how increasing atmospheric CO2 and anthropogenic climate changes are affecting open-ocean marine ecosystems from phytoplankton to top predators. Biological time series data are thus urgently needed for the world's oceans. Here, we use the carbon stable isotope composition of tuna to provide a first insight into the existence of global trends in complex ecosystem dynamics and changes in the oceanic carbon cycle. From 2000 to 2015, considerable declines in δ13 C values of 0.8‰-2.5‰ were observed across three tuna species sampled globally, with more substantial changes in the Pacific Ocean compared to the Atlantic and Indian Oceans. Tuna recorded not only the Suess effect, that is, fossil fuel-derived and isotopically light carbon being incorporated into marine ecosystems, but also recorded profound changes at the base of marine food webs. We suggest a global shift in phytoplankton community structure, for example, a reduction in 13 C-rich phytoplankton such as diatoms, and/or a change in phytoplankton physiology during this period, although this does not rule out other concomitant changes at higher levels in the food webs. Our study establishes tuna δ13 C values as a candidate essential ocean variable to assess complex ecosystem responses to climate change at regional to global scales and over decadal timescales. Finally, this time series will be invaluable in calibrating and validating global earth system models to project changes in marine biota.
Collapse
Affiliation(s)
- Anne Lorrain
- IRD, CNRS, Ifremer, LEMAR, Univ Brest, Plouzané, France
| | | | - Nicolas Cassar
- IRD, CNRS, Ifremer, LEMAR, Univ Brest, Plouzané, France
- Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Aurore Receveur
- Pacific Community, Oceanic Fisheries Programme, Nouméa, New Caledonia
| | - Valérie Allain
- Pacific Community, Oceanic Fisheries Programme, Nouméa, New Caledonia
| | - Nathalie Bodin
- IRD, Fishing Port, Victoria, Mahe, Republic of Seychelles
- Seychelles Fishing Authority (SFA), Victoria, Mahe, Republic of Seychelles
| | - Laurent Bopp
- Laboratoire de Météorologie Dynamique (LMD), Institut Pierre-Simon Laplace (IPSL), Ecole Normale Supérieure/PSL Res. Univ., CNRS, Ecole Polytechnique, Sorbonne Université, Paris, France
| | - C Anela Choy
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Leanne Duffy
- Inter-American Tropical Tuna Commission, (IATTC), La Jolla, CA, USA
| | - Brian Fry
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
| | | | - Brittany S Graham
- National Institute of Water and Atmospheric Research, Ltd. (NIWA), Wellington, New Zealand
| | | | - John M Logan
- Massachusetts Division of Marine Fisheries, New Bedford, MA, USA
| | - Frederic Ménard
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, UM110, Marseille, France
| | | | - Robert J Olson
- Inter-American Tropical Tuna Commission, (IATTC), La Jolla, CA, USA
| | - Dan E Pagendam
- CSIRO, Computational Informatics, Brisbane, Qld, Australia
| | - David Point
- Observatoire Midi-Pyrénées, GET, UMR CNRS 5563/IRD 234, Université́ Paul Sabatier Toulouse 3, Toulouse, France
| | | | | | - Jock W Young
- CSIRO Oceans and Atmosphere, Hobart, Tas., Australia
| |
Collapse
|
38
|
Haywood JC, Fuller WJ, Godley BJ, Margaritoulis D, Shutler JD, Snape RTE, Widdicombe S, Zbinden JA, Broderick AC. Spatial ecology of loggerhead turtles: Insights from stable isotope markers and satellite telemetry. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Julia C. Haywood
- Marine Turtle Research Group Centre for Ecology and Conservation University of Exeter Cornwall UK
- Plymouth Marine Laboratory Plymouth UK
| | - Wayne J. Fuller
- Faculty of Veterinary Medicine Near East University North Cyprus
| | - Brendan J. Godley
- Marine Turtle Research Group Centre for Ecology and Conservation University of Exeter Cornwall UK
- Environment and Sustainability Institute University of Exeter Cornwall UK
| | | | - Jamie D. Shutler
- Centre for Geography and Environmental Science University of Exeter Cornwall UK
| | - Robin TE. Snape
- Marine Turtle Research Group Centre for Ecology and Conservation University of Exeter Cornwall UK
- Society for the Protection of Turtles North Cyprus
| | | | | | - Annette C. Broderick
- Marine Turtle Research Group Centre for Ecology and Conservation University of Exeter Cornwall UK
| |
Collapse
|
39
|
Golikov AV, Ceia FR, Sabirov RM, Ablett JD, Gleadall IG, Gudmundsson G, Hoving HJ, Judkins H, Pálsson J, Reid AL, Rosas-Luis R, Shea EK, Schwarz R, Xavier JC. The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda). Sci Rep 2019; 9:19099. [PMID: 31836823 PMCID: PMC6910912 DOI: 10.1038/s41598-019-55719-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022] Open
Abstract
Vampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0–4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.
Collapse
Affiliation(s)
- Alexey V Golikov
- Department of Zoology, Kazan Federal University, 420008, Kazan, Russia.
| | - Filipe R Ceia
- Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Rushan M Sabirov
- Department of Zoology, Kazan Federal University, 420008, Kazan, Russia
| | - Jonathan D Ablett
- Department of Life Sciences, Natural History Museum, SW7 5BD, London, UK
| | - Ian G Gleadall
- Graduate School of Agricultural Science, Tohoku University, 980-0845, Sendai, Japan
| | - Gudmundur Gudmundsson
- Collections and Systematics Department, Icelandic Institute of Natural History, 210, Gardabaer, Iceland
| | - Hendrik J Hoving
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24105, Kiel, Germany
| | - Heather Judkins
- Department of Biological Sciences, University of South Florida St. Petersburg, 33701, St. Petersburg, FL, USA
| | - Jónbjörn Pálsson
- Marine and Freshwater Research Institute, 101, Reykjavik, Iceland
| | - Amanda L Reid
- Australian Museum Research Institute, 2010, Sydney, NSW, Australia
| | - Rigoberto Rosas-Luis
- CONACyT-Tecnológico Nacional de México/I.T.Chetumal, 77013, Chetumal, Quintana Roo, México.,Tecnologico Nacional de Mexico/I. T. Chetumal, 77013, Chetumal, México
| | | | - Richard Schwarz
- Escola do Mar, Ciência e Tecnologia, Universidade do Vale do Itajaí, 88302901, Itajaí, Brazil
| | - José C Xavier
- Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.,British Antarctic Survey, Natural Environment Research Council, CB3 0ET, Cambridge, UK
| |
Collapse
|
40
|
de la Vega C, Jeffreys RM, Tuerena R, Ganeshram R, Mahaffey C. Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies. GLOBAL CHANGE BIOLOGY 2019; 25:4116-4130. [PMID: 31498935 PMCID: PMC6899536 DOI: 10.1111/gcb.14832] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 05/21/2023]
Abstract
The Arctic is undergoing unprecedented environmental change. Rapid warming, decline in sea ice extent, increase in riverine input, ocean acidification and changes in primary productivity are creating a crucible for multiple concurrent environmental stressors, with unknown consequences for the entire arctic ecosystem. Here, we synthesized 30 years of data on the stable carbon isotope (δ13 C) signatures in dissolved inorganic carbon (δ13 C-DIC; 1977-2014), marine and riverine particulate organic carbon (δ13 C-POC; 1986-2013) and tissues of marine mammals in the Arctic. δ13 C values in consumers can change as a result of environmentally driven variation in the δ13 C values at the base of the food web or alteration in the trophic structure, thus providing a method to assess the sensitivity of food webs to environmental change. Our synthesis reveals a spatially heterogeneous and temporally evolving δ13 C baseline, with spatial gradients in the δ13 C-POC values between arctic shelves and arctic basins likely driven by differences in productivity and riverine and coastal influence. We report a decline in δ13 C-DIC values (-0.011‰ per year) in the Arctic, reflecting increasing anthropogenic carbon dioxide (CO2 ) in the Arctic Ocean (i.e. Suess effect), which is larger than predicted. The larger decline in δ13 C-POC values and δ13 C in arctic marine mammals reflects the anthropogenic CO2 signal as well as the influence of a changing arctic environment. Combining the influence of changing sea ice conditions and isotopic fractionation by phytoplankton, we explain the decadal decline in δ13 C-POC values in the Arctic Ocean and partially explain the δ13 C values in marine mammals with consideration of time-varying integration of δ13 C values. The response of the arctic ecosystem to ongoing environmental change is stronger than we would predict theoretically, which has tremendous implications for the study of food webs in the rapidly changing Arctic Ocean.
Collapse
Affiliation(s)
| | | | - Robyn Tuerena
- School of GeosciencesUniversity of EdinburghEdinburghUK
| | | | - Claire Mahaffey
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
41
|
Raoult V, Broadhurst MK, Peddemors VM, Williamson JE, Gaston TF. Resource use of great hammerhead sharks (Sphyrna mokarran) off eastern Australia. JOURNAL OF FISH BIOLOGY 2019; 95:1430-1440. [PMID: 31613987 DOI: 10.1111/jfb.14160] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Great hammerhead sharks Sphyrna mokarran are the largest member of Sphyrnidae, yet the roles of these large sharks in the food webs of coastal ecosystems are still poorly understood. Here we obtained samples of muscle, liver and vertebrae from large S. mokarran (234-383 cm total length; LT ) caught as by-catch off eastern Australia and used stable-isotope analyses of δ15 N, δ13 C and δ34 S to infer their resource use and any associated ontogenetic patterns. The results indicated large S. mokarran are apex predators primarily relying on other sharks and rays for their diet, with a preference for benthic resources such as Australian cownose rays Rhinoperon neglecta during the austral summer. Teleosts, cephalopods and crustaceans were not significant components of S. mokarran diets, though some conspecifics appeared to rely on more diverse resources over the austral summer. Ontogenetic shifts in resource use were detected but trajectories of the increases in trophic level varied among individuals. Most S. mokarran had non-linear trajectories in ontogenetic resource-use shifts implying size was not the main explanatory factor. Stable isotope values of δ13 C and δ34 S in muscle suggest S. mokarran span coastal, pelagic and benthic food webs in eastern Australia.
Collapse
Affiliation(s)
- Vincent Raoult
- School of Environmlental and Life Sciences, University of Newcastle, Ourimbah, Australia
| | - Matt K Broadhurst
- New South Wales Department of Industries, Fisheries Conservation Technology Unit, National Marine Science Centre, Coffs Harbour, Australia
| | - Vic M Peddemors
- New South Wales of Department of Primary Industries, Fisheries, Sydney Institute of Marine Science, Mosman, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Troy F Gaston
- School of Environmlental and Life Sciences, University of Newcastle, Ourimbah, Australia
| |
Collapse
|
42
|
Meyer L, Pethybridge H, Nichols PD, Beckmann C, Huveneers C. Abiotic and biotic drivers of fatty acid tracers in ecology: A global analysis of chondrichthyan profiles. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13328] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lauren Meyer
- Southern Shark Ecology Group College of Science and Engineering, Flinders University Bedford Park South Australia Australia
| | | | | | | | - Charlie Huveneers
- Southern Shark Ecology Group College of Science and Engineering, Flinders University Bedford Park South Australia Australia
| |
Collapse
|
43
|
Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends Ecol Evol 2019; 34:369-383. [PMID: 30857757 DOI: 10.1016/j.tree.2019.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/23/2022]
Abstract
Arguments for the need to conserve aquatic predator (AP) populations often focus on the ecological and socioeconomic roles they play. Here, we summarize the diverse ecosystem functions and services connected to APs, including regulating food webs, cycling nutrients, engineering habitats, transmitting diseases/parasites, mediating ecological invasions, affecting climate, supporting fisheries, generating tourism, and providing bioinspiration. In some cases, human-driven declines and increases in AP populations have altered these ecosystem functions and services. We present a social ecological framework for supporting adaptive management decisions involving APs in response to social and environmental change. We also identify outstanding questions to guide future research on the ecological functions and ecosystem services of APs in a changing world.
Collapse
|
44
|
Matich P, Kiszka JJ, Heithaus MR, Le Bourg B, Mourier J. Inter-individual differences in ontogenetic trophic shifts among three marine predators. Oecologia 2019; 189:621-636. [PMID: 30796523 DOI: 10.1007/s00442-019-04357-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Ontogenetic niche shifts are widespread. However, individual differences in size at birth, morphology, sex, and personalities can cause variability in behavior. As such, inherent inter-individual differences within populations may lead to context-dependent changes in behavior with animal body size, which is of concern for understanding population dynamics and optimizing ecological monitoring. Using stable carbon and nitrogen isotope values from concurrently sampled tissues, we quantified the direction and magnitude of intraspecific variation in trophic shifts among three shark species, and how these changed with body size: spurdogs (Squalus spp.) in deep-sea habitats off La Réunion, bull sharks (Carcharhinus leucas) in estuarine habitats of the Florida Everglades, and blacktip reef sharks (Carcharhinus melanopterus) in coral reef ecosystems of Moorea, French Polynesia. Intraspecific variation in trophic shifts was limited among spurdogs, and decreased with body size, while bull sharks exhibited greater individual differences in trophic shifts, but also decreased in variability through ontogeny. In contrast, blacktip reef sharks exhibited increased intraspecific variation in trophic interactions with body size. Variability in trophic interactions and ontogenetic shifts are known to be associated with changes in energetic requirements, but can vary with ecological context. Our results suggest that environmental stability may affect variability within populations, and ecosystems with greater spatial and/or temporal variability in environmental conditions, and those with more diverse food webs may facilitate greater individual differences in trophic interactions, and thus ontogenetic trophic shifts. In light of concerns over environmental disturbance, elucidating the contexts that promote or dampen phenotypic variability is invaluable for predicting population- and community-level responses to environmental changes.
Collapse
Affiliation(s)
- Philip Matich
- Marine Sciences Program, Florida International University, 3000 NE 151st, North Miami, FL, 33181, USA. .,Texas Research Institute for Environmental Studies, Sam Houston State University, 2424 Sam Houston Avenue, Huntsville, TX, 77341, USA.
| | - Jeremy J Kiszka
- Marine Sciences Program, Florida International University, 3000 NE 151st, North Miami, FL, 33181, USA
| | - Michael R Heithaus
- Marine Sciences Program, Florida International University, 3000 NE 151st, North Miami, FL, 33181, USA
| | - Baptiste Le Bourg
- LIttoral ENvironnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France.,Laboratory of Oceanology, MARE Centre, Université de Liège, 4000, Liège, Belgium
| | - Johann Mourier
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, 66860, Perpignan, France.,Laboratoire d'excellence 'CORAIL', EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia.,UMR MARBEC (IRD, Ifremer, Univ. Montpellier, CNRS), 34203, Sète, France
| |
Collapse
|
45
|
Connan M, Hall G, Smale M. Effects of pre-treatments on bulk stable isotope ratios in fish samples: A cautionary note for studies comparisons. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:291-302. [PMID: 30414205 DOI: 10.1002/rcm.8344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Stable isotope analysis (SIA) has revolutionised ecological studies over the past thirty years. One of the major fields where SIA is applied in the marine environment is related to the definition of ecosystem structure and function. With marine top predators such as sharks, SIA is a method of choice because tissue samples can be collected without the sacrifice of the animal. In elasmobranch research, the influence of compounds such as urea, trimethylamine oxide and lipids must be considered when using stable isotopes as ecological markers. Currently, a range of pre-treatments are used to chemically remove these molecules prior to SIA. METHODS This study investigated the impact of eleven commonly used pre-treatments on carbon and nitrogen contents and C:N atomic ratio, as well as carbon and nitrogen SI ratios in elasmobranch tissues and its prey, measured by isotope ratio mass spectrometry. Three tissues were tested: blood and muscle of the ragged-tooth shark Carcharias taurus, and muscle of one teleost species, the Cape knifejaw Oplegnathus conwayi. RESULTS Compared with untreated samples, no trend or generalisation could be highlighted with the influence of pre-treatments being species-, tissue- and chemical-element-dependent. For the δ13 C and δ15 N values, differences among pre-treatments were as high as 3‰, therefore potentially leading to erroneous ecological interpretation. CONCLUSIONS The chemical properties of compounds (e.g. urea, lipids) combined with the polarity of solutions (e.g. water, solvents) explained a large part of these observations. This study highlights that pre-treatments need to be considered especially when comparing carbon and nitrogen stable isotope ratios between studies. The results of this study provide a call to all stable isotope researchers to make a concerted effort to standardise pre-treatment methods. This is crucial as global reviews are becoming increasingly more informative.
Collapse
Affiliation(s)
- Maëlle Connan
- Institute for Coastal and Marine Research, Marine Apex Predator Research Unit, Department of Zoology, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031, South Africa
| | - Grant Hall
- UP Stable Isotope Laboratory, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Malcolm Smale
- Institute for Coastal and Marine Research, Marine Apex Predator Research Unit, Department of Zoology, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031, South Africa
- Port Elizabeth Museum, PO Box 13147 Humewood, Port Elizabeth, 6013, South Africa
| |
Collapse
|
46
|
Le Croizier G, Schaal G, Point D, Le Loc'h F, Machu E, Fall M, Munaron JM, Boyé A, Walter P, Laë R, Tito De Morais L. Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2129-2140. [PMID: 30290354 DOI: 10.1016/j.scitotenv.2018.09.330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Bioaccumulation of toxic metal elements including mercury (Hg) can be highly variable in marine fish species. Metal concentration is influenced by various species-specific physiological and ecological traits, including individual diet composition and foraging habitat. The impact of trophic ecology and habitat preference on Hg accumulation was analyzed through total Hg concentration and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in the muscle of 132 fish belonging to 23 different species from the Senegalese coast (West Africa), where the marine ecosystem is submitted to nutrient inputs from various sources such as upwelling or rivers. Species-specific ecological traits were first investigated and results showed that vertical (i.e. water column distribution) and horizontal habitat (i.e. distance from the coast) led to differential Hg accumulation among species. Coastal and demersal fish were more contaminated than offshore and pelagic species. Individual characteristics therefore revealed an increase of Hg concentration in muscle that paralleled trophic level for some locations. Considering all individuals, the main carbon source was significantly correlated with Hg concentration, again revealing a higher accumulation for fish foraging in nearshore and benthic habitats. The large intraspecific variability observed in stable isotope signatures highlights the need to conduct ecotoxicological studies at the individual level to ensure a thorough understanding of mechanisms driving metal accumulation in marine fish. For individuals from a same species and site, Hg variation was mainly explained by fish length, in accordance with the bioaccumulation of Hg over time. Finally, Hg concentrations in fish muscle are discussed regarding their human health impact. No individual exceeded the current maximum acceptable limit for seafood consumption set by both the European Union and the Food and Agriculture Organization of the United Nations. However, overconsumption of some coastal demersal species analyzed here could be of concern regarding human exposure to mercury.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France; Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France.
| | - Gauthier Schaal
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - David Point
- Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - François Le Loc'h
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Eric Machu
- Laboratoire d'Océanographie Physique et Spatiale (LOPS), UMR 6523 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29280 Plouzané, France; Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang, Université Cheikh Anta DIOP de Dakar, Ecole Supérieure Polytechnique, BP 5085, Dakar Fann, Sénégal
| | - Massal Fall
- Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang, Université Cheikh Anta DIOP de Dakar, Ecole Supérieure Polytechnique, BP 5085, Dakar Fann, Sénégal; Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT/ISRA), BP 2241, Dakar, Sénégal
| | - Jean-Marie Munaron
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Aurélien Boyé
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Pierre Walter
- Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Raymond Laë
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Luis Tito De Morais
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| |
Collapse
|
47
|
Le Bourg B, Kiszka JJ, Bustamante P, Heithaus MR, Jaquemet S, Humber F. Effect of body length, trophic position and habitat use on mercury concentrations of sharks from contrasted ecosystems in the southwestern Indian Ocean. ENVIRONMENTAL RESEARCH 2019; 169:387-395. [PMID: 30529140 DOI: 10.1016/j.envres.2018.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The non-essential metal mercury (Hg) can have deleterious effects on health of organisms, and tends to bioaccumulate with age in long-lived organisms and to biomagnify along food webs. Because elasmobranchs are fished for human consumption and their Hg levels are frequently above the maximum Hg concentration recommended for fish consumption, understanding the drivers of Hg concentration is of considerable interest. Total Hg concentrations were analysed in muscle tissues of 14 shark and 2 batoid species (n = 339 individuals) sampled across multiple habitats (coastal, open ocean and bathyal) in the southwestern Indian Ocean. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were analysed to assess whether relative trophic position and foraging habitats affected Hg concentrations. Hg concentrations increased with δ15N and body length, highlighting the mechanisms of bioaccumulation and biomagnification in relation with the trophic position and size of the individuals. Habitats where elasmobranchs were collected also affected their Hg concentrations. Bathyal sharks had high Hg concentrations that were almost similar to those of oceanic species, despite their lower relative trophic position. Higher bioavailability of Hg due to its enhanced methylation in deeper waters was considered as the most likely explanation for this result. These results highlight that multiple factors contribute to mercury accumulation in elasmobranchs.
Collapse
Affiliation(s)
- Baptiste Le Bourg
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Université de Liège, Laboratory of Oceanology, MARE Centre, 4000 Liège, Belgium.
| | - Jeremy J Kiszka
- Marine Sciences Program, Department of Biological Sciences, Florida International University, 3000 NE 151 Street, FL-33181 North Miami, USA
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Michael R Heithaus
- Marine Sciences Program, Department of Biological Sciences, Florida International University, 3000 NE 151 Street, FL-33181 North Miami, USA
| | | | - Frances Humber
- Blue Ventures, Level 2 Annex, Omnibus Business Centre, 39-41 North Road, London N7 9DP, United Kingdom
| |
Collapse
|
48
|
Wyatt AS, Matsumoto R, Chikaraishi Y, Miyairi Y, Yokoyama Y, Sato K, Ohkouchi N, Nagata T. Enhancing insights into foraging specialization in the world's largest fish using a multi-tissue, multi-isotope approach. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1339] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alex S.J. Wyatt
- Atmosphere and Ocean Research Institute; The University of Tokyo; 5-1-5 Kashiwanoha Kashiwa Chiba 277-8564 Japan
| | - Rui Matsumoto
- Okinawa Churaumi Aquarium; 424 Ishikawa Motobu Kunigami, Okinawa 905-0206 Japan
| | - Yoshito Chikaraishi
- Japan Agency for Marine-Earth Science and Technology; 2-15 Natsushima Yokosuka Kanagawa 237-0061 Japan
| | - Yosuke Miyairi
- Atmosphere and Ocean Research Institute; The University of Tokyo; 5-1-5 Kashiwanoha Kashiwa Chiba 277-8564 Japan
| | - Yusuke Yokoyama
- Atmosphere and Ocean Research Institute; The University of Tokyo; 5-1-5 Kashiwanoha Kashiwa Chiba 277-8564 Japan
| | - Keiichi Sato
- Okinawa Churashima Research Center; Okinawa Churashima Foundation; 888 Ishikawa Motobu Kunigami, Okinawa 905-0206 Japan
| | - Nao Ohkouchi
- Japan Agency for Marine-Earth Science and Technology; 2-15 Natsushima Yokosuka Kanagawa 237-0061 Japan
| | - Toshi Nagata
- Atmosphere and Ocean Research Institute; The University of Tokyo; 5-1-5 Kashiwanoha Kashiwa Chiba 277-8564 Japan
| |
Collapse
|
49
|
Abstract
Determining the small-scale movement patterns of marine vertebrates usually requires invasive active acoustic tagging or in-water monitoring, with the inherent behavioural impacts of those techniques. In addition, these techniques rarely allow direct continuous behavioural assessments or the recording of environmental interactions, especially for highly mobile species. Here, we trial a novel method of assessing small-scale movement patterns of marine vertebrates using an unmanned aerial vehicle that could complement longer-term tracking approaches. This approach is unlikely to have behavioural impacts and provides high accuracy and high frequency location data (10 Hz), while subsequently allowing quantitative trajectory analysis. Unmanned aerial vehicle tracking is also relatively low cost compared to single-use acoustic and GPS tags. We tracked 14 sharks for up to 10 min in a shallow lagoon of Heron Island, Australia. Trajectory analysis revealed that Epaulette sharks (Hemiscyllium ocellatum) displayed sinusoidal movement patterns, while Blacktip Reef Sharks (Carcharhinus melanopterus) had more linear trajectories that were similar to those of a Lemon shark (Negaprion acutidens). Individual shark trajectory patterns and movement speeds were highly variable. Results indicate that Epaulette sharks may be more mobile during diurnal low tides than previously thought. The approach presented here allows the movements and behaviours of marine vertebrates to be analysed at resolutions not previously possible without complex and expensive acoustic arrays. This method would be useful to assess the habitat use and behaviours of sharks and rays in shallow water environments, where they are most likely to interact with humans.
Collapse
|
50
|
Amino acid isotope discrimination factors for a carnivore: physiological insights from leopard sharks and their diet. Oecologia 2018; 188:977-989. [DOI: 10.1007/s00442-018-4276-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/14/2018] [Indexed: 11/26/2022]
|