1
|
Bai S, Pan X, Yang T, Gao N, Zhu C, Xia A, Feng M, Zhang M, Zhang X, Xu J. Rabies virus large protein-derived T-cell immunogen facilitates rapid viral clearance and enhances protection against lethal challenge in mice. COMMUNICATIONS MEDICINE 2025; 5:127. [PMID: 40251380 PMCID: PMC12008279 DOI: 10.1038/s43856-025-00851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/05/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Rabies remains a devastating and fatal infectious disease worldwide. To date, vaccination is the most reliable and effective strategy for controlling rabies. However, despite the effectiveness of inactivated vaccines, cumbersome vaccination procedures and the high costs of post-exposure prophylaxis impose a significant economic burden, particularly in developing countries with limited access to vaccines. Therefore, there is an urgent need to develop a novel rabies vaccine that reduces costs while enhancing safety and efficacy. METHODS We developed a novel mRNA rabies vaccine called RABV-G-LT, which incorporates two immunogens: RABV-G, a glycoprotein designed mainly to elicit neutralizing antibody responses, and RABV-LT, a T-cell immunogen derived from the large protein of the rabies virus. Additionally, we evaluated the immunogenicity of RABV-G-LT in both mice and non-human primates. RESULTS The RABV-LT mRNA vaccination alone induced potent RABV-LT-specific T-cell responses and provided modest protection against rabies virus challenge in mice. Importantly, the dual-immunogen mRNA vaccine RABV-G-LT elicited vigorous and persistent neutralization antibody and T-cell responses, resulting in significantly more efficient clearance of the rabies virus in the brain and spinal cord. This conferred enhanced protection, evidenced by lesser initial weight loss and earlier recovery of body weight compared with the RABV-G mRNA or inactivated vaccine groups. Moreover, RABV-G-LT also mounted persistent strong antigen-specific T-cell and antibody immune responses in nonhuman primates. CONCLUSIONS Our study suggested that combining the T-cell immunogen and virus-neutralizing antibody immunogen was a practical approach to strengthening the defense against the rabies virus.
Collapse
Affiliation(s)
- Shimeng Bai
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- Bio-therapeutic Center, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Hospital Affiliated with the School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xinghao Pan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Tianhan Yang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Nan Gao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Ai Xia
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Meiqi Feng
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Miaomiao Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Xiaoyan Zhang
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
| | - Jianqing Xu
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
2
|
Hawman DW, Leventhal S, Meade-White K, Graham W, Gaffney K, Khandhar A, Murray J, Prado-Smith J, Shaia C, Saturday G, Buda H, Moise L, Erasmus J, Feldmann H. A replicating RNA vaccine confers protection against Crimean-Congo hemorrhagic fever in cynomolgus macaques. EBioMedicine 2025; 115:105698. [PMID: 40222105 PMCID: PMC12018191 DOI: 10.1016/j.ebiom.2025.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Crimean-Congo hemorrhagic fever is a tick-borne febrile illness with wide geographic distribution. In recent years the geographic range of CCHFV and its tick vector have increased, placing an increasing number of people at risk of CCHFV infection. Currently there are no widely available vaccines and although the World Health Organization recommends ribavirin for treatment, its efficacy is unclear. Vaccines are critically needed for CCHFV. METHODS Here we evaluated a promising replicating RNA vaccine for CCHFV in a Cynomolgus macaque model of disease. FINDINGS In primed and boosted macaques, we found that our replicating RNA vaccine expressing the CCHFV nucleoprotein (repNP) was highly immunogenic, eliciting a robust non-neutralizing antibody response that conferred significant protection against CCHFV challenge. Macaques receiving a single repNP vaccination were partially protected against CCHFV challenge. INTERPRETATION Our data demonstrate that our repNP vaccine and NP-specific antibody can protect against CCHFV in non-human primates. FUNDING This study was supported by the Intramural Research Program of the NIAID/NIH and the Medical CBRN Defense Consortium grant #MCDC2204-011.
Collapse
Affiliation(s)
- David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA; HDT Bio, Seattle, WA, 98109, USA.
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | | | | | - Justin Murray
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Jessy Prado-Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | | | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
3
|
Cohen CA, Balinandi S, Kuehne AI, Rock ML, Bonagofski LG, Ricks KM, Davis I, Abelson D, Stonier SW, Odongo M, Bornholdt ZA, Zeitlin L, Moyer C, Cose S, Dye JM, Lutwama JJ, Herbert AS. A Longitudinal Analysis of Memory Immune Responses in Convalescent Crimean-Congo Hemorrhagic Fever Survivors in Uganda. J Infect Dis 2025; 231:762-772. [PMID: 39248523 DOI: 10.1093/infdis/jiae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Evaluating the adaptive immune responses to natural infection with Crimean-Congo hemorrhagic fever (CCHF) virus (CCHFV) in human survivors is critical to the development of medical countermeasures. However, the correlates of protection are unknown. As the most prevalent tick-borne human hemorrhagic fever virus with case fatality rates of 5%-30% and worldwide distribution, there is an urgent need to fill these knowledge gaps. Here, we describe adaptive immune responses in a cohort of Ugandan CCHF survivors via serial sampling over 6 years. We demonstrate persistent antibodies after infection and cross-neutralization against various clades of authentic CCHFV, as well as potent effector function. Moreover, we show for the first time persistent, polyfunctional antigen-specific memory T-cell responses to multiple CCHFV proteins up to 9 years after infection. Together, this data provides immunological benchmarks for evaluating CCHFV medical countermeasures and information that can be leveraged toward vaccine immunogen design and viral target identification for monoclonal antibody therapies.
Collapse
Affiliation(s)
- Courtney A Cohen
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, USA
| | - Stephen Balinandi
- Department of Arbovirology, Medical Research Council/Uganda Viral Research Institute, Entebbe, Uganda
| | - Ana I Kuehne
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, USA
| | - Michelle L Rock
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, USA
- The Geneva Foundation, Tacoma, Washington, USA
| | - Luke G Bonagofski
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, USA
| | - Keersten M Ricks
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, USA
| | - Ian Davis
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, USA
| | | | - Spencer W Stonier
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, USA
| | - Matthew Odongo
- Department of Arbovirology, Medical Research Council/Uganda Viral Research Institute, Entebbe, Uganda
| | | | | | | | - Stephen Cose
- Department of Arbovirology, Medical Research Council/Uganda Viral Research Institute, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - John M Dye
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, USA
| | - Julius J Lutwama
- Department of Arbovirology, Medical Research Council/Uganda Viral Research Institute, Entebbe, Uganda
| | - Andrew S Herbert
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, USA
| |
Collapse
|
4
|
Calvo-Pinilla E, Moreno S, Barreiro-Piñeiro N, Sánchez-Puig JM, Blasco R, Martínez-Costas J, Brun A, Lorenzo G. Prime-Boost Vaccination Based on Nanospheres and MVA Encoding the Nucleoprotein of Crimean-Congo Hemorrhagic Fever Virus Elicits Broad Immune Responses. Vaccines (Basel) 2025; 13:291. [PMID: 40266214 PMCID: PMC11946443 DOI: 10.3390/vaccines13030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging, widely distributed zoonotic tick-borne pathogen. The virus causes severe disease in humans, and numerous wild and domestic animals act as reservoirs of it. Unfortunately, there are no effective therapies or safe vaccines commercialized nowadays for this particular virus. As CCHF (Crimean-Congo hemorrhagic fever) is a serious threat to public health, there is an urgent need to investigate the development of safe and effective vaccination strategies further. Methods: In this work, we have employed two immunization platforms based on protein nanoparticles and a modified vaccinia Ankara (MVA) viral vector using the nucleoprotein (NP) as the target antigen. The humoral and cellular immune responses were characterized by ELISA, ICS, and cytokine measurement. Results: This work shows that a single dose of the vaccine candidates was not as immunogenic as the heterologous vaccination using nanoparticles and MVA. A prime with NP nanoparticles (NS-NP) and a boost with MVA-expressing NP were capable of triggering significant levels of humoral and cellular immune responses against CCHFV in mice. Conclusions: Our study shows that the NS-NP/MVA-NP vaccination strategy effectively elicits a robust humoral and cellular immune response in a mouse model, emphasizing its potential as a protective approach against CCHFV lineages.
Collapse
Affiliation(s)
- Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal, INIA, CSIC, Valdeolmos, 28130 Madrid, Spain; (S.M.); (A.B.)
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, INIA, CSIC, Valdeolmos, 28130 Madrid, Spain; (S.M.); (A.B.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (N.B.-P.); (J.M.-C.)
| | - Juana M. Sánchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (J.M.S.-P.); (R.B.)
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (J.M.S.-P.); (R.B.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (N.B.-P.); (J.M.-C.)
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, INIA, CSIC, Valdeolmos, 28130 Madrid, Spain; (S.M.); (A.B.)
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal, INIA, CSIC, Valdeolmos, 28130 Madrid, Spain; (S.M.); (A.B.)
| |
Collapse
|
5
|
Kleymann A, Karaaslan E, Scholte FEM, Sorvillo TE, Welch SR, Bergeron É, Elser S, Almanzar-Jordan MR, Velazquez E, Genzer SC, Jean SM, Spiropoulou CF, Spengler JR. Crimean-Congo hemorrhagic fever virus replicon particle vaccine is safe and elicits functional, non-neutralizing anti-nucleoprotein antibodies and T cell activation in rhesus macaques. Antiviral Res 2025; 233:106045. [PMID: 39626793 PMCID: PMC11871586 DOI: 10.1016/j.antiviral.2024.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
Advancement of vaccine candidates that demonstrate protective efficacy in screening studies necessitates detailed safety and immunogenicity investigations in pre-clinical models. A non-spreading Crimean-Congo hemorrhagic fever virus (CCHFV) viral replicon particle (VRP) vaccine was developed for single-dose administration to protect against disease. To date, several studies have supported safety, immunogenicity, and efficacy of the CCHF VRP in multiple highly sensitive murine models of lethal disease, but the VRP had yet to be evaluated in large animals. Here, we performed studies in non-human primates to further evaluate clinical utility of the VRP vaccine. Twelve adult male and female rhesus macaques were vaccinated intramuscularly and clinical monitoring was performed daily for 28 days. At 3, 7, 14, 21, and 28 days post vaccination, animals were sedated for more detailed clinical assessment; for quantification of vaccine presence in blood and mucosal samples; and for evaluation of hematology, plasma inflammatory markers, and immunogenicity. Consistent with findings in mice, vaccination was well tolerated, with no clinical alterations nor indication of vaccine spread or shedding. In addition, vaccination induced both humoral and cell-mediated responses, with immune profile and kinetics also corroborating data from small animal models. These studies provide key data in non-human primates further supporting development of the VRP for human clinical use.
Collapse
Affiliation(s)
- Alyssa Kleymann
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA; Infectious Disease Department, CDC Foundation, Atlanta, GA, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Elser
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melvyn R Almanzar-Jordan
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Velazquez
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah C Genzer
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sherrie M Jean
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
6
|
Di Bella S, Babich S, Luzzati R, Cavasio RA, Massa B, Braccialarghe N, Zerbato V, Iannetta M. Crimean-Congo haemorrhagic fever (CCHF): present and future therapeutic armamentarium. LE INFEZIONI IN MEDICINA 2024; 32:421-433. [PMID: 39660152 PMCID: PMC11627488 DOI: 10.53854/liim-3204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is an emerging severe tick-borne illness. The expanding habitat of Hyalomma ticks, coupled with migratory birds harbouring CCHF-infected ticks, contributes to an increasing number of potential hosts. The seroprevalence of anti-CCHF virus antibodies in livestock is approximately one-quarter, with a noticeable upward trend in recent years. The management of CCHF patients predominantly relies on supportive therapy, although a potential arsenal of antivirals, convalescent and hyperimmune plasma, monoclonal antibodies, and vaccines exists, both currently and in the future. This review aims to critically examine the current therapeutic approaches to managing CCHF, highlighting both the potential and limitations of existing treatments, and identifying future directions for improving patient outcomes.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, Trieste,
Italy
| | - Stella Babich
- Infectious Diseases Unit, Trieste University Hospital, Trieste,
Italy
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, Trieste,
Italy
| | | | - Barbara Massa
- Department of Systems Medicine, Tor Vergata University, Rome,
Italy
| | | | - Verena Zerbato
- Infectious Diseases Unit, Trieste University Hospital, Trieste,
Italy
| | - Marco Iannetta
- Department of Systems Medicine, Tor Vergata University, Rome,
Italy
- Infectious Disease Clinic, Policlinico Tor Vergata, Rome,
Italy
| |
Collapse
|
7
|
Leventhal SS, Bisom T, Clift D, Rao D, Meade-White K, Shaia C, Murray J, Mihalakakos EA, Hinkley T, Reynolds SJ, Best SM, Erasmus JH, James LC, Feldmann H, Hawman DW. Antibodies targeting the Crimean-Congo Hemorrhagic Fever Virus nucleoprotein protect via TRIM21. Nat Commun 2024; 15:9236. [PMID: 39455551 PMCID: PMC11511847 DOI: 10.1038/s41467-024-53362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a negative-sense RNA virus spread by Hyalomma genus ticks across Europe, Asia, and Africa. CCHF disease begins as a non-specific febrile illness which may progress into a severe hemorrhagic disease with no widely approved or highly efficacious interventions currently available. Recently, we reported a self-replicating, alphavirus-based RNA vaccine that expresses the CCHFV nucleoprotein and is protective against lethal CCHFV disease in mice. This vaccine induces high titers of non-neutralizing anti-NP antibodies and we show here that protection does not require Fc-gamma receptors or complement. Instead, vaccinated mice deficient in the intracellular Fc-receptor TRIM21 were unable to control the infection despite mounting robust CCHFV-specific immunity. We also show that passive transfer of NP-immune sera confers significant TRIM21-dependent protection against lethal CCHFV challenge. Together our data identifies TRIM21-mediated mechanisms as the Fc effector function of protective antibodies against the CCHFV NP and provides mechanistic insight into how vaccines against the CCHFV NP confer protection.
Collapse
Affiliation(s)
- Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Thomas Bisom
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB20QH, UK
| | - Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Justin Murray
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Evan A Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Steven J Reynolds
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sonja M Best
- Laboratory of Neurological Infections and Immunity, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Leo C James
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB20QH, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
8
|
Pirincal A, Doymaz MZ. The Role of Nucleocapsid Protein (NP) in the Immunology of Crimean-Congo Hemorrhagic Fever Virus (CCHFV). Viruses 2024; 16:1547. [PMID: 39459881 PMCID: PMC11512346 DOI: 10.3390/v16101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is an orthonairovirus from the Bunyavirales order that is widely distributed geographically and causes severe or fatal infections in humans. The viral genome consists of three segmented negative-sense RNA molecules. The CCHFV nucleocapsid protein (CCHFV NP) is encoded by the smallest segment of the virus. CCHFV NP, the primary function of which is the encapsidation of viral RNA molecules, plays a critical role in various mechanisms important for viral replication and pathogenesis. This review is an attempt to revisit the literature available on the highly immunogenic and highly conserved CCHFV NP, summarizing the multifunctional roles of this protein in the immunology of CCHFV. Specifically, the review addresses the impact of CCHFV NP on innate, humoral, and cellular immune responses, epitopes recognized by B and T cells that limit viral spread, and its role as a target for diagnostic tests and for vaccine design. Based on the extensive information generated by many research groups, it could be stated that NP constitutes a significant and critical player in the immunology of CCHFV.
Collapse
Affiliation(s)
| | - Mehmet Z. Doymaz
- Department of Medical Microbiology, School of Medicine and Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, Istanbul 34093, Türkiye;
| |
Collapse
|
9
|
Kalkan-Yazıcı M, Karaaslan E, Güler-Çetin NS, Doymaz MZ. Cellular immunity to nucleoproteins (NP) of Crimean-Congo hemorrhagic fever virus (CCHFV) and Hazara Virus (HAZV). Med Microbiol Immunol 2024; 213:20. [PMID: 39320473 DOI: 10.1007/s00430-024-00802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a globally significant vector-borne pathogen with no internationally-licensed preventative and therapeutic interventions. Hazara virus (HAZV), on the other hand, a related Orthonairovirus, has not been reported as a human pathogen. HAZV has been proposed as a surrogate model for studying CCHFV, bisosafety level 4 (BSL-4) agent. Previously, we investigated the humoral immune responses between NPs of these viruses and in this study, we extended the scrutiny to cellular immune responses elicited by NPs of CCHFV and HAZV. Here, mice were immunized with recombinant CCHFV NP and HAZV NP to evaluate the correlates of cell-mediated immunity (CMI). Delayed-type hypersensitivity (DTH) responses were assessed by challenging immunized mice with CCHFV-rNP or HAZV-rNP on the footpad and lymphocyte proliferation assays (LPAs) were performed by stimulating splenocytes in vitro with CCHFV-rNP or HAZV-rNP to compare cellular immune responses. In all test groups, strong DTH and LPA responses were detected against homologous and heterologous challenging antigens. To assess the cytokine response, an RT-qPCR -specific for cytokine mRNAs was utilized. Interestingly, CCHFV NP stimulated groups exhibited a significantly elevated mRNA level of interleukin 17 A (IL-17) compared to HAZV NP, indicating a notable difference in immune responses. This study presents comparison between CMI elicited by NPs of CCHFV and HAZV and contributes to the understanding of a highly pathogenic virus, particularly in the context of the declaration of CCHFV by World Health Organization's (WHO) as a major viral threat to the world.
Collapse
Affiliation(s)
- Merve Kalkan-Yazıcı
- Department of Medical Microbiology, Medical School, Beykoz Institute of Life Sciences & Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Current Address: Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Elif Karaaslan
- Department of Medical Microbiology, Medical School, Beykoz Institute of Life Sciences & Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nesibe Selma Güler-Çetin
- Department of Medical Microbiology, Medical School, Beykoz Institute of Life Sciences & Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Current Address: Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Z Doymaz
- Department of Medical Microbiology, Medical School, Beykoz Institute of Life Sciences & Biotechnology, Bezmialem Vakif University, Istanbul, Turkey.
- Current Address: Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
10
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
11
|
Makoah NA, Litabe MM, Simo FBN, Maboho KK, Burt FJ. Purification and characterization of soluble recombinant Crimean-Congo hemorrhagic fever virus glycoprotein Gc expressed in mammalian 293F cells. BMC Biotechnol 2024; 24:59. [PMID: 39192233 DOI: 10.1186/s12896-024-00885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic disease that presents with severe hemorrhagic manifestations and is associated with significant fatality rates. The causative agent, Crimean-Congo Hemorrhagic Fever Virus (CCHFV), is a high-priority pathogen identified by the World Health Organization with no approved vaccine or specific treatment available. In addition, there is a critical need for enhanced diagnostic tools to improve public health awareness, prevention measures, and disease control strategies. METHODS We designed plasmids to enable the purification of soluble CCHFV glycoprotein Gc expressed in mammalian 293 F cells, followed by purification using affinity and size exclusion chromatography. The purified antigen was analyzed by SDS-PAGE and Western blotting to confirm its reactivity to antibodies from CCHF survivors. Additionally, an in-house indirect ELISA was developed using the purified Gc as a coating antigen. RESULTS The optimized expression system successfully produced soluble and pure Gc antigen after affinity chromatography. The protein showed specific reactivity with CCHFV-positive serum antibodies in Western blot analysis. The indirect ELISA assay demonstrated high efficacy in distinguishing between CCHFV-positive and -negative serum samples, indicating its potential as a valuable diagnostic tool. Size exclusion chromatography further confirmed the presence of aggregates in our protein preparation. CONCLUSIONS The purified Gc antigen shows promise for developing direct diagnostic assays for CCHFV. The antigen's suitability for subunit vaccine development and its application as bait for monoclonal antibody isolation from survivors could be investigated further. This work lays the foundation for future research into the development of rapid diagnostic tests for field deployment.
Collapse
Affiliation(s)
- Nigel Aminake Makoah
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Matefo Millicent Litabe
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Fredy Brice Nemg Simo
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Katlego Keith Maboho
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Felicity Jane Burt
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Division of Virology, National Health Laboratory Service, Bloemfontein, 9301, South Africa
| |
Collapse
|
12
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
13
|
Muzammil K, Rayyani S, Abbas Sahib A, Gholizadeh O, Naji Sameer H, Jwad Kazem T, Badran Mohammed H, Ghafouri Kalajahi H, Zainul R, Yasamineh S. Recent Advances in Crimean-Congo Hemorrhagic Fever Virus Detection, Treatment, and Vaccination: Overview of Current Status and Challenges. Biol Proced Online 2024; 26:20. [PMID: 38926669 PMCID: PMC11201903 DOI: 10.1186/s12575-024-00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, and zoonosis, and affects large regions of Asia, Southwestern and Southeastern Europe, and Africa. CCHFV can produce symptoms, including no specific clinical symptoms, mild to severe clinical symptoms, or deadly infections. Virus isolation attempts, antigen-capture enzyme-linked immunosorbent assay (ELISA), and reverse transcription polymerase chain reaction (RT-PCR) are all possible diagnostic tests for CCHFV. Furthermore, an efficient, quick, and cheap technology, including biosensors, must be designed and developed to detect CCHFV. The goal of this article is to offer an overview of modern laboratory tests available as well as other innovative detection methods such as biosensors for CCHFV, as well as the benefits and limits of the assays. Furthermore, confirmed cases of CCHF are managed with symptomatic assistance and general supportive care. This study examined the various treatment modalities, as well as their respective limitations and developments, including immunotherapy and antivirals. Recent biotechnology advancements and the availability of suitable animal models have accelerated the development of CCHF vaccines by a substantial margin. We examined a range of potential vaccines for CCHF in this research, comprising nucleic acid, viral particles, inactivated, and multi-epitope vaccines, as well as the present obstacles and developments in this field. Thus, the purpose of this review is to present a comprehensive summary of the endeavors dedicated to advancing various diagnostic, therapeutic, and preventive strategies for CCHF infection in anticipation of forthcoming hazards.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, 62561, Saudi Arabia
| | - Saba Rayyani
- Medical Faculty, University of Georgi, Tbilisi, Georgia
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq
| | - Haneen Badran Mohammed
- Optics techniques department, health and medical techniques college, Al-Noor University, Mosul, Iraq
| | | | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
| | - Saman Yasamineh
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMPBIOTICS), Universitas Negeri Padang, Padang, Indonesia.
| |
Collapse
|
14
|
Sorvillo TE, Karaaslan E, Scholte FEM, Welch SR, Coleman-McCray JD, Genzer SC, Ritter JM, Hayes HM, Jain S, Pegan SD, Bergeron É, Montgomery JM, Spiropoulou CF, Spengler JR. Replicon particle vaccination induces non-neutralizing anti-nucleoprotein antibody-mediated control of Crimean-Congo hemorrhagic fever virus. NPJ Vaccines 2024; 9:88. [PMID: 38782933 PMCID: PMC11116556 DOI: 10.1038/s41541-024-00877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe human disease and is considered a WHO priority pathogen due to the lack of efficacious vaccines and antivirals. A CCHF virus replicon particle (VRP) has previously shown protective efficacy in a lethal Ifnar-/- mouse model when administered as a single dose at least 3 days prior to challenge. Here, we determine that non-specific immune responses are not sufficient to confer short-term protection, since Lassa virus VRP vaccination 3 days prior to CCHFV challenge was not protective. We also investigate how CCHF VRP vaccination confers protective efficacy by examining viral kinetics, histopathology, clinical analytes and immunity early after challenge (3 and 6 days post infection) and compare to unvaccinated controls. We characterize how these effects differ based on vaccination period and correspond to previously reported CCHF VRP-mediated protection. Vaccinating Ifnar-/- mice with CCHF VRP 28, 14, 7, or 3 days prior to challenge, all known to confer complete protection, significantly reduced CCHFV viral load, mucosal shedding, and markers of clinical disease, with greater reductions associated with longer vaccination periods. Interestingly, there were no significant differences in innate immune responses, T cell activation, or antibody titers after challenge between groups of mice vaccinated a week or more before challenge, but higher anti-NP antibody avidity and effector function (ADCD) were positively associated with longer vaccination periods. These findings support the importance of antibody-mediated responses in VRP vaccine-mediated protection against CCHFV infection.
Collapse
Affiliation(s)
- Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Infectious Disease Department, CDC Foundation, Atlanta, GA, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah C Genzer
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Heather M Hayes
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shilpi Jain
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Scott D Pegan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
15
|
Hawman DW, Leventhal SS, Meade-White K, Khandhar A, Murray J, Lovaglio J, Shaia C, Saturday G, Hinkley T, Erasmus J, Feldmann H. A replicating RNA vaccine confers protection in a rhesus macaque model of Crimean-Congo hemorrhagic fever. NPJ Vaccines 2024; 9:86. [PMID: 38769294 PMCID: PMC11106275 DOI: 10.1038/s41541-024-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne febrile illness with a wide geographic distribution. In recent years the geographic range of Crimean-Congo hemorrhagic fever virus (CCHFV) and its tick vector have increased, placing an increasing number of people at risk of CCHFV infection. Currently, there are no widely available vaccines, and although the World Health Organization recommends ribavirin for treatment, its efficacy is unclear. Here we evaluate a promising replicating RNA vaccine in a rhesus macaque (Macaca mulatta) model of CCHF. This model provides an alternative to the established cynomolgus macaque model and recapitulates mild-to-moderate human disease. Rhesus macaques infected with CCHFV consistently exhibit viremia, detectable viral RNA in a multitude of tissues, and moderate pathology in the liver and spleen. We used this model to evaluate the immunogenicity and protective efficacy of a replicating RNA vaccine. Rhesus macaques vaccinated with RNAs expressing the CCHFV nucleoprotein and glycoprotein precursor developed robust non-neutralizing humoral immunity against the CCHFV nucleoprotein and had significant protection against the CCHFV challenge. Together, our data report a model of CCHF using rhesus macaques and demonstrate that our replicating RNA vaccine is immunogenic and protective in non-human primates after a prime-boost immunization.
Collapse
Affiliation(s)
- David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| | - Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Justin Murray
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
16
|
Welch SR, Garrison AR, Bente DA, Burt F, D'Addiego J, Devignot S, Dowall S, Fischer K, Hawman DW, Hewson R, Mirazimi A, Oestereich L, Vatansever Z, Spengler JR, Papa A. Third International Conference on Crimean-Congo Hemorrhagic Fever in Thessaloniki, Greece, September 19-21, 2023. Antiviral Res 2024; 225:105844. [PMID: 38428749 PMCID: PMC11931574 DOI: 10.1016/j.antiviral.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
The Third International Conference on Crimean-Congo Hemorrhagic Fever (CCHF) was held in Thessaloniki, Greece, September 19-21, 2023, bringing together a diverse group of international partners, including public health professionals, clinicians, ecologists, epidemiologists, immunologists, and virologists. The conference was attended by 118 participants representing 24 countries and the World Health Organization (WHO). Meeting sessions covered the epidemiology of CCHF in humans; Crimean-Congo hemorrhagic fever virus (CCHFV) in ticks; wild and domestic animal hosts; molecular virology; pathogenesis and animal models; immune response related to therapeutics; and CCHF prevention in humans. The concluding session focused on recent WHO recommendations regarding disease prevention, control strategies, and innovations against CCHFV outbreaks. This meeting report summarizes lectures by the invited speakers and highlights advances in the field.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Dennis A Bente
- Galveston National Laboratory, Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service and Division of Virology, University of the Free State, Bloemfontein, South Africa
| | - Jake D'Addiego
- UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Stephanie Devignot
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Stuart Dowall
- UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald-Insel Riems, Germany
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Roger Hewson
- UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infectious Research, Partner Sites Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Zati Vatansever
- Kafkas University, Faculty of Veterinary Medicine, Dept. of Parasitology, Kars, Turkey
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anna Papa
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Frank MG, Weaver G, Raabe V. Crimean-Congo Hemorrhagic Fever Virus for Clinicians-Diagnosis, Clinical Management, and Therapeutics. Emerg Infect Dis 2024; 30:864-873. [PMID: 38666553 PMCID: PMC11060459 DOI: 10.3201/eid3005.231648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most geographically widespread tickborne viral infection worldwide and has a fatality rate of up to 62%. Despite its widespread range and high fatality rate, no vaccines or treatments are currently approved by regulatory agencies in the United States or Europe. Supportive treatment remains the standard of care, but the use of antiviral medications developed for other viral infections have been considered. We reviewed published literature to summarize the main aspects of CCHFV infection in humans. We provide an overview of diagnostic testing and management and medical countermeasures, including investigational vaccines and limited therapeutics. CCHFV continues to pose a public health threat because of its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, potential for severe and fatal illness, and limited medical countermeasures for prophylaxis and treatment. Clinicians should become familiar with available diagnostic and management tools for CCHFV infections in humans.
Collapse
|
18
|
Mazhar I, Rai MM, Ahmad A, Nadeem N, Javed AS, Mumtaz H. Recent Vaccines against Emerging and Tropical Infectious Diseases. Discoveries (Craiova) 2024; 12:e187. [PMID: 40093847 PMCID: PMC11910014 DOI: 10.15190/d.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 03/19/2025] Open
Abstract
Emerging diseases, re-emerging diseases and tropical diseases are a slowly progressing problem globally. This may in part be the result of shifting population, growing poverty, inadequate distribution of resources, or even complacency against personal hygiene. As a result of the low income and low standards of health in developing countries, they provide the perfect breeding grounds for the pathogens and parasites that are the root cause of Neglected Tropical diseases (NTDs). In the case of emerging diseases, most are of zoonotic origin and the recent COVID-19 pandemic is a key example. However, it is not just new diseases but re-emerging diseases such as Influenza that highlight the relentless nature of these infections. Vaccines represent the ultimate safety net against these diseases by bolstering immune systems and lowering subsequent mortality and morbidity of these conditions. In fact, against diseases with high mortalities such as AIDS, Hepatitis, and Malaria, vaccine development has markedly reduced mortality and prolonged life expectancy of those afflicted with these conditions. However, this research highlights the importance of enhancing vaccine efficacy and response. The review further underscores the necessity of research, the timing of vaccine administration, effective resource management by governments, and the perception of the population. Therefore, the review offers valuable insights for the medical community and the pharmaceutical industry in improving research and management to maximize the potential of vaccines.
Collapse
Affiliation(s)
- Ismail Mazhar
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Mir Muhammad Rai
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Abdullah Ahmad
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Natasha Nadeem
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Aamir Shahid Javed
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Hassan Mumtaz
- Department of Data Analytics, BPP University London, UK
| |
Collapse
|
19
|
Leventhal SS, Meade-White K, Shaia C, Tipih T, Lewis M, Mihalakakos EA, Hinkley T, Khandhar AP, Erasmus JH, Feldmann H, Hawman DW. Single dose, dual antigen RNA vaccines protect against lethal Crimean-Congo haemorrhagic fever virus infection in mice. EBioMedicine 2024; 101:105017. [PMID: 38382314 PMCID: PMC10885550 DOI: 10.1016/j.ebiom.2024.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Crimean-Congo Haemorrhagic Fever Virus is a tick-borne bunyavirus prevalent across Asia, Africa, the Middle East, and Europe. The virus causes a non-specific febrile illness which may develop into severe haemorrhagic disease. To date, there are no widely approved therapeutics. Recently, we reported an alphavirus-based replicon RNA vaccine which expresses the CCHFV nucleoprotein (repNP) or glycoprotein precursor (repGPC) and is protective against lethal disease in mice. METHODS Here, we evaluated engineered GPC constructs to find the minimal enhancing epitope of repGPC and test two RNA vaccine approaches to express multiple antigens in vivo to optimize protective efficacy of our repRNA. FINDINGS Vaccination with repNP and a construct expressing just the Gc antigen (repGc-FL) resulted in equivalent immunogenicity and protective efficacy compared to original repNP + repGPC vaccination. This vaccine was protective when prepared in either of two vaccine approaches, a mixed synthesis reaction producing two RNAs in a single tube and a single RNA expressing two antigens. INTERPRETATION Overall, our data illustrate two vaccine approaches to deliver two antigens in a single immunization. Both approaches induced protective immune responses against CCHFV in this model. These approaches support their continued development for this and future vaccine candidates for CCHFV and other vaccines where inclusion of multiple antigens would be optimal. FUNDING This work was supported by the Intramural Research Program, NIAID/NIH, HDT Bio and MCDC Grant #MCDC2204-011.
Collapse
Affiliation(s)
- Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Thomas Tipih
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Mathew Lewis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Evan A Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | | | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
20
|
Yan J, Bangalore CR, Nikouyan N, Appelberg S, Silva DN, Yao H, Pasetto A, Weber F, Weber S, Larsson O, Höglund U, Bogdanovic G, Grabbe M, Aleman S, Szekely L, Szakos A, Tuvesson O, Gidlund EK, Cadossi M, Salati S, Tegel H, Hober S, Frelin L, Mirazimi A, Ahlén G, Sällberg M. Distinct roles of vaccine-induced SARS-CoV-2-specific neutralizing antibodies and T cells in protection and disease. Mol Ther 2024; 32:540-555. [PMID: 38213030 PMCID: PMC10862018 DOI: 10.1016/j.ymthe.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) lack cross-reactivity between SARS-CoV species and variants and fail to mediate long-term protection against infection. The maintained protection against severe disease and death by vaccination suggests a role for cross-reactive T cells. We generated vaccines containing sequences from the spike or receptor binding domain, the membrane and/or nucleoprotein that induced only T cells, or T cells and NAbs, to understand their individual roles. In three models with homologous or heterologous challenge, high levels of vaccine-induced SARS-CoV-2 NAbs protected against neither infection nor mild histological disease but conferred rapid viral control limiting the histological damage. With no or low levels of NAbs, vaccine-primed T cells, in mice mainly CD8+ T cells, partially controlled viral replication and promoted NAb recall responses. T cells failed to protect against histological damage, presumably because of viral spread and subsequent T cell-mediated killing. Neither vaccine- nor infection-induced NAbs seem to provide long-lasting protective immunity against SARS-CoV-2. Thus, a more realistic approach for universal SARS-CoV-2 vaccines should be to aim for broadly cross-reactive NAbs in combination with long-lasting highly cross-reactive T cells. Long-lived cross-reactive T cells are likely key to prevent severe disease and fatalities during current and future pandemics.
Collapse
Affiliation(s)
- Jingyi Yan
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | | | - Negin Nikouyan
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Daniela Nacimento Silva
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Haidong Yao
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Anna Pasetto
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | | | | | | | - Gordana Bogdanovic
- Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Grabbe
- Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Laszlo Szekely
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Attila Szakos
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | - Hanna Tegel
- Department of Protein Science, KTH - Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH - Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Public Health Agency of Sweden, Stockholm, Sweden
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska ATMP Center, Stockholm, Sweden.
| |
Collapse
|
21
|
Kisakov DN, Belyakov IM, Kisakova LA, Yakovlev VA, Tigeeva EV, Karpenko LI. The use of electroporation to deliver DNA-based vaccines. Expert Rev Vaccines 2024; 23:102-123. [PMID: 38063059 DOI: 10.1080/14760584.2023.2292772] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Nucleic acids represent a promising platform for creating vaccines. One disadvantage of this approach is its relatively low immunogenicity. Electroporation (EP) is an effective way to increase the DNA vaccines immunogenicity. However, due to the different configurations of devices used for EP, EP protocols optimization is required not only to enhance immunogenicity, but also to ensure greater safety and tolerability of the EP procedure. AREA COVERED An data analysis for recent years on the DNA vaccines delivery against viral and parasitic infections using EP was carried out. The study of various EP physical characteristics, such as frequency, pulse duration, pulse interval, should be considered along with the immunogenic construct design and the site of delivery of the vaccine, through the study of the immunogenic and protective characteristics of the latter. EXPERT OPINION Future research should focus on regulating the humoral and cellular response required for protection against infectious agents by modifying the EP protocol. Significant efforts will be directed to establishing the possibility of redirecting the immune response toward the Th1 or Th2 response by changing the EP physical parameters. It will allow for an individual selective approach during EP, depending on the pathogen type of an infectious disease.
Collapse
Affiliation(s)
- Denis N Kisakov
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Igor M Belyakov
- Department of medico-biological disciplines, Moscow University for Industry and Finance "Synergy", Moscow, Russia
| | - Lubov A Kisakova
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Vladimir A Yakovlev
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Elena V Tigeeva
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Larisa I Karpenko
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| |
Collapse
|
22
|
de Lima MR, Leandro ACCS, de Souza AL, Barradas MM, Roma EH, Fernandes ATG, Galdino-Silva G, Carvalho JKMR, Marchevsky RS, Coelho JMCO, Gonçalves EDC, VandeBerg JL, Silva CL, Bonecini-Almeida MDG. Safety and Immunogenicity of an In Vivo Muscle Electroporation Delivery System for DNA- hsp65 Tuberculosis Vaccine in Cynomolgus Monkeys. Vaccines (Basel) 2023; 11:1863. [PMID: 38140266 PMCID: PMC10747856 DOI: 10.3390/vaccines11121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
A Bacille Calmette-Guérin (BCG) is still the only licensed vaccine for the prevention of tuberculosis, providing limited protection against Mycobacterium tuberculosis infection in adulthood. New advances in the delivery of DNA vaccines by electroporation have been made in the past decade. We evaluated the safety and immunogenicity of the DNA-hsp65 vaccine administered by intramuscular electroporation (EP) in cynomolgus macaques. Animals received three doses of DNA-hsp65 at 30-day intervals. We demonstrated that intramuscular electroporated DNA-hsp65 vaccine immunization of cynomolgus macaques was safe, and there were no vaccine-related effects on hematological, renal, or hepatic profiles, compared to the pre-vaccination parameters. No tuberculin skin test conversion nor lung X-ray alteration was identified. Further, low and transient peripheral cellular immune response and cytokine expression were observed, primarily after the third dose of the DNA-hsp65 vaccine. Electroporated DNA-hsp65 vaccination is safe but provides limited enhancement of peripheral cellular immune responses. Preclinical vaccine trials with DNA-hsp65 delivered via EP may include a combination of plasmid cytokine adjuvant and/or protein prime-boost regimen, to help the induction of a stronger cellular immune response.
Collapse
Affiliation(s)
- Monique Ribeiro de Lima
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Cristina C. S. Leandro
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Andreia Lamoglia de Souza
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Marcio Mantuano Barradas
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Eric Henrique Roma
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Teresa Gomes Fernandes
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Gabrielle Galdino-Silva
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Joyce Katiuccia M. Ramos Carvalho
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Renato Sergio Marchevsky
- Laboratory of Neurovirulence, Instituto de Biotecnologia em Imunobiológicos, Biomanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Janice M. C. Oliveira Coelho
- Laboratory of Pathology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | | | - John L. VandeBerg
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Celio Lopes Silva
- Farmacore Biotecnologia Ltda, Ribeirão Preto 14056-680, SP, Brazil; (E.D.C.G.); (C.L.S.)
- Laboratory for Research and Development of Immunobiologicals, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| |
Collapse
|
23
|
Rao D, Meade-White K, Leventhal S, Mihalakakos E, Carmody A, Feldmann H, Hawman DW. CD8 + T-cells target the Crimean-Congo haemorrhagic fever virus Gc protein to control the infection in wild-type mice. EBioMedicine 2023; 97:104839. [PMID: 37866114 PMCID: PMC10623175 DOI: 10.1016/j.ebiom.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Crimean-Congo haemorrhagic fever (CCHF) is a serious viral hemorrhagic fever caused by the CCHF virus (CCHFV). Spread by the bites of infected ticks or handling of viremic livestock, human disease is characterized by a non-specific febrile illness that can rapidly progress to fatal hemorrhagic disease. No vaccines or antivirals are available. Case fatality rates can vary but can be higher than 30%, although sub-clinical infections are often unrecognized and unreported. Yet, while most humans infected with CCHFV will survive the infection, often with little-to-no symptoms, the host responses that control the infection are unknown. METHODS Here we investigated the role of cellular immunity in control of CCHFV infection in an immunocompetent mouse model. FINDINGS We found that CD8+ T-cells are crucial for efficient control of the acute infection and rapidly acquired CCHFV-specific antiviral effector functions such as production of antiviral cytokines and degranulating in response to CCHFV peptides. We further identified the minimal CD8+ T-cell epitopes in the viral Gc proteins and that infection of mice lacking IFNγ resulted in worsened disease and higher viral loads. INTERPRETATION Together our data suggest that CD8+ T-cells are important for control of acute CCHFV infection likely through production of antiviral cytokines. FUNDING This work was supported by the Intramural Research Program of the NIH.
Collapse
Affiliation(s)
- Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Evan Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Aaron Carmody
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| |
Collapse
|
24
|
Ahata B, Akçapınar GB. CCHFV vaccine development, current challenges, limitations, and future directions. Front Immunol 2023; 14:1238882. [PMID: 37753088 PMCID: PMC10518622 DOI: 10.3389/fimmu.2023.1238882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is the most prevalent tick-borne viral disease affecting humans. The disease is life-threatening in many regions of the developing world, including Africa, Asia, the Middle East, and Southern Europe. In line with the rapidly increasing disease prevalence, various vaccine strategies are under development. Despite a large number of potential vaccine candidates, there are no approved vaccines as of yet. This paper presents a detailed comparative analysis of current efforts to develop vaccines against CCHFV, limitations associated with current efforts, and future research directions.
Collapse
Affiliation(s)
- Büşra Ahata
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
- Health Institutes of Turkey, Istanbul, Türkiye
| | - Günseli Bayram Akçapınar
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| |
Collapse
|
25
|
Golden JW, Fitzpatrick CJ, Suschak JJ, Clements TL, Ricks KM, Sanchez-Lockhart M, Garrison AR. Induced protection from a CCHFV-M DNA vaccine requires CD8 + T cells. Virus Res 2023; 334:199173. [PMID: 37459918 PMCID: PMC10388194 DOI: 10.1016/j.virusres.2023.199173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a World Health Organization prioritized disease because its broad distribution and severity of disease make it a global health threat. Despite advancements in preclinical vaccine development for CCHF virus (CCHFV), including multiple platforms targeting multiple antigens, a clear definition of the adaptive immune correlates of protection is lacking. Levels of neutralizing antibodies in vaccinated animal models do not necessarily correlate with protection, suggesting that cellular immunity, such as CD8+ T cells, might have an important role in protection in this model. Using a well-established IFN-I antibody blockade mouse model (IS) and a DNA-based vaccine encoding the CCHFV M-segment glycoprotein precursor, we investigated the role of humoral and T cell immunity in vaccine-mediated protection in mice genetically devoid of these immune compartments. We found that in the absence of the B-cell compartment (µMT knockout mice), protection provided by the vaccine was not reduced. In contrast, in the absence of CD8+ T cells (CD8+ knockout mice) the vaccine-mediated protection was significantly diminished. Importantly, humoral responses to the vaccine in CD8+ T-cell knockout mice were equivalent to wild-type mice. These findings indicated that CD8+ T-cell responses are necessary and sufficient to promote protection in mice vaccinated with the M-segment DNA vaccine. Identifying a crucial role of the cellular immunity to protect against CCHFV should help guide the development of CCHFV-targeting vaccines.
Collapse
Affiliation(s)
- Joseph W Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States.
| | - Collin J Fitzpatrick
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - John J Suschak
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Tamara L Clements
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Keersten M Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States.
| |
Collapse
|
26
|
Scholte FEM, Karaaslan E, O’Neal TJ, Sorvillo TE, Genzer SC, Welch SR, Coleman-McCray JD, Spengler JR, Kainulainen MH, Montgomery JM, Pegan SD, Bergeron E, Spiropoulou CF. Vaccination with the Crimean-Congo hemorrhagic fever virus viral replicon vaccine induces NP-based T-cell activation and antibodies possessing Fc-mediated effector functions. Front Cell Infect Microbiol 2023; 13:1233148. [PMID: 37671145 PMCID: PMC10475602 DOI: 10.3389/fcimb.2023.1233148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 09/07/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV; family Nairoviridae) is a tick-borne pathogen that frequently causes lethal disease in humans. CCHFV has a wide geographic distribution, and cases have been reported in Africa, Asia, the Middle East, and Europe. Availability of a safe and efficacious vaccine is critical for restricting outbreaks and preventing disease in endemic countries. We previously developed a virus-like replicon particle (VRP) vaccine that provides complete protection against homologous and heterologous lethal CCHFV challenge in mice after a single dose. However, the immune responses induced by this vaccine are not well characterized, and correlates of protection remain unknown. Here we comprehensively characterized the kinetics of cell-mediated and humoral immune responses in VRP-vaccinated mice, and demonstrate that they predominantly target the nucleoprotein (NP). NP antibodies are not associated with protection through neutralizing activity, but VRP vaccination results in NP antibodies possessing Fc-mediated antibody effector functions, such as complement activation (ADCD) and antibody-mediated cellular phagocytosis (ADCP). This suggests that Fc-mediated effector functions may contribute to this vaccine's efficacy.
Collapse
Affiliation(s)
- F. E. M. Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - E. Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - T. J. O’Neal
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - T. E. Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - S. C. Genzer
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - S. R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - J. D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - J. R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - M. H. Kainulainen
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - J. M. Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - S. D. Pegan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - E. Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - C. F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| |
Collapse
|
27
|
Ozdarendeli A. Crimean-Congo Hemorrhagic Fever Virus: Progress in Vaccine Development. Diagnostics (Basel) 2023; 13:2708. [PMID: 37627967 PMCID: PMC10453274 DOI: 10.3390/diagnostics13162708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the Nairoviridae family and Bunyavirales order, is transmitted to humans via tick bites or contact with the blood of infected animals. It can cause severe symptoms, including hemorrhagic fever, with a mortality rate between 5 to 30%. CCHFV is classified as a high-priority pathogen by the World Health Organization (WHO) due to its high fatality rate and the absence of effective medical countermeasures. CCHFV is endemic in several regions across the world, including Africa, Europe, the Middle East, and Asia, and has the potential for global spread. The emergence of the disease in new areas, as well as the presence of the tick vector in countries without reported cases, emphasizes the need for preventive measures to be taken. In the past, the lack of a suitable animal model susceptible to CCHFV infection has been a major obstacle in the development of vaccines and treatments. However, recent advances in biotechnology and the availability of suitable animal models have significantly expedited the development of vaccines against CCHF. These advancements have not only contributed to an enhanced understanding of the pathogenesis of CCHF but have also facilitated the evaluation of potential vaccine candidates. This review outlines the immune response to CCHFV and animal models utilized for the study of CCHFV and highlights the progress made in CCHFV vaccine studies. Despite remarkable advancements in vaccine development for CCHFV, it remains crucial to prioritize continued research, collaboration, and investment in this field.
Collapse
Affiliation(s)
- Aykut Ozdarendeli
- Department of Microbiology, Faculty of Medicine, Erciyes University, 38039 Kayseri, Türkiye;
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, 38039 Kayseri, Türkiye
| |
Collapse
|
28
|
Saadh MJ, Ghadimkhani T, Soltani N, Abbassioun A, Daniel Cosme Pecho R, Taha A, Jwad Kazem T, Yasamineh S, Gholizadeh O. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog 2023; 180:106156. [PMID: 37201635 PMCID: PMC10186953 DOI: 10.1016/j.micpath.2023.106156] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The monkeypox virus (MPOX) is an uncommon zoonotic illness brought on by an orthopoxvirus (OPXV). MPOX can occur with symptoms similar to smallpox. Since April 25, 2023, 110 nations have reported 87,113 confirmed cases and 111 fatalities. Moreover, the outspread prevalence of MPOX in Africa and a current outbreak of MPOX in the U.S. have made it clear that naturally occurring zoonotic OPXV infections remain a public health concern. Existing vaccines, though they provide cross-protection to MPOX, are not specific for the causative virus, and their effectiveness in the light of the current multi-country outbreak is still to be verified. Furthermore, as a sequel of the eradication and cessation of smallpox vaccination for four decades, MPOX found a possibility to re-emerge, but with distinct characteristics. The World Health Organization (WHO) suggested that nations use affordable MPOX vaccines within a framework of coordinated clinical effectiveness and safety evaluations. Vaccines administered in the smallpox control program and conferred immunity against MPOX. Currently, vaccines approved by WHO for use against MPOX are replicating (ACAM2000), low replicating (LC16m8), and non-replicating (MVA-BN). Although vaccines are accessible, investigations have demonstrated that smallpox vaccination is approximately 85% efficient in inhibiting MPOX. In addition, developing new vaccine methods against MPOX can help prevent this infection. To recognize the most efficient vaccine, it is essential to assess effects, including reactogenicity, safety, cytotoxicity effect, and vaccine-associated side effects, especially for high-risk and vulnerable people. Recently, several orthopoxvirus vaccines have been produced and are being evaluated. Hence, this review aims to provide an overview of the efforts dedicated to several types of vaccine candidates with different strategies for MPOX, including inactivated, live-attenuated, virus-like particles (VLPs), recombinant protein, nucleic acid, and nanoparticle-based vaccines, which are being developed and launched.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Abbassioun
- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Ali Taha
- Medical Technical College, Al-Farahidi University, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, 51001, Hillah, Babylon, Iraq
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Sokolovska L, Isaguliants M, Buonaguro FM. Proceedings of the Online Conference "Vaccines and Vaccination during and Post COVID Pandemics" (7-9 December 2022). Vaccines (Basel) 2023; 11:1175. [PMID: 37514990 PMCID: PMC10383049 DOI: 10.3390/vaccines11071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The COVID-19 pandemic put focus on various aspects of vaccine research and development. These include mass vaccination strategies, vaccination compliance and hesitancy, acceptance of novel vaccine approaches, preclinical and animal models used to assess vaccine safety and efficacy, and many other related issues. These issues were addressed by the international online conference "Vaccines and Vaccination During and Post COVID Pandemics" (VAC&VAC 2022) held on the platform of Riga Stradins University, Riga, Latvia. Conference was supported by the International Society for Vaccines, the National Cancer Institute "Fondazione Pascale" (Naples, Italy), and the scientific journal VACCINES (mdpi). VAC&VAC 2022 attracted nearly 150 participants from 14 countries. This report summarizes conference presentations and their discussion. Sessions covered the topics of (1) COVID-19 vaccine development, evaluation, and attitude towards these vaccines, (2) HPV and cancer vaccines, (3) progress and challenges of HIV vaccine development, (4) new and re-emerging infectious threats, and (5) novel vaccine vehicles, adjuvants, and carriers. Each session was introduced by a plenary lecture from renowned experts from leading research institutions worldwide. The conference also included sessions on research funding and grant writing and an early career researcher contest in which the winners received monetary awards and a chance to publish their results free of charge in the special issue of VACCINES covering the meeting.
Collapse
Affiliation(s)
- Liba Sokolovska
- Institute of Microbiology and Virology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Maria Isaguliants
- Institute of Microbiology and Virology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Franco M Buonaguro
- Experimental Oncology Department, National Cancer Institute 'Fondazione Pascale', 80131 Naples, Italy
| |
Collapse
|
30
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
31
|
Li H, Smith G, Goolia M, Marszal P, Pickering BS. Comparative characterization of Crimean-Congo hemorrhagic fever virus cell culture systems with application to propagation and titration methods. Virol J 2023; 20:128. [PMID: 37337294 DOI: 10.1186/s12985-023-02089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is a biosafety level 4 and World Health Organization top priority pathogen. Infection leads to an often fatal hemorrhagic fever disease in humans. The tick-borne virus is endemic in countries across Asia, Europe and Africa, with signs of spreading into new regions. Despite the severity of disease and the potential of CCHFV geographic expansion to cause widespread outbreaks, no approved vaccine or treatment is currently available. Critical for basic research and the development of diagnostics or medical countermeasures, CCHFV viral stocks are commonly produced in Vero E6 and SW-13 cell lines. While a variety of in-house methods are being used across different laboratories, there has been no clear, specific consensus on a standard, optimal system for CCHFV growth and titration. In this study, we perform a systematic, side-by-side characterization of Vero E6 and SW-13 cell lines concerning the replication kinetics of CCHFV under different culture conditions. SW-13 cells are typically cultured in a CO2-free condition (SW-13 CO2-) according to the American Type Culture Collection. However, we identify a CO2-compatible culture condition (SW-13 CO2+) that demonstrates the highest viral load (RNA concentration) and titer (infectious virus concentration) in the culture supernatants, in comparison to SW-13 CO2- and Vero E6 cultures. This optimal viral propagation system also leads to the development of two titration methods: an immunostaining-based plaque assay using a commercial CCHFV antibody and a colorimetric readout, and an antibody staining-free, cytopathic effect-based median tissue culture infectious dose assay using a simple excel calculator. These are anticipated to serve as a basis for a reproducible, standardized and user-friendly platform for CCHFV propagation and titration.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Peter Marszal
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
32
|
Tai W, Feng S, Chai B, Lu S, Zhao G, Chen D, Yu W, Ren L, Shi H, Lu J, Cai Z, Pang M, Tan X, Wang P, Lin J, Sun Q, Peng X, Cheng G. An mRNA-based T-cell-inducing antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants. Nat Commun 2023; 14:2962. [PMID: 37221158 PMCID: PMC10204679 DOI: 10.1038/s41467-023-38751-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
Herd immunity achieved through mass vaccination is an effective approach to prevent contagious diseases. Nonetheless, emerging SARS-CoV-2 variants with frequent mutations largely evaded humoral immunity induced by Spike-based COVID-19 vaccines. Herein, we develop a lipid nanoparticle (LNP)-formulated mRNA-based T-cell-inducing antigen, which targeted three SARS-CoV-2 proteome regions that enriched human HLA-I epitopes (HLA-EPs). Immunization of HLA-EPs induces potent cellular responses to prevent SARS-CoV-2 infection in humanized HLA-A*02:01/DR1 and HLA-A*11:01/DR1 transgenic mice. Of note, the sequences of HLA-EPs are highly conserved among SARS-CoV-2 variants of concern. In humanized HLA-transgenic mice and female rhesus macaques, dual immunization with the LNP-formulated mRNAs encoding HLA-EPs and the receptor-binding domain of the SARS-CoV-2 B.1.351 variant (RBDbeta) is more efficacious in preventing infection of SARS-CoV-2 Beta and Omicron BA.1 variants than single immunization of LNP-RBDbeta. This study demonstrates the necessity to strengthen the vaccine effectiveness by comprehensively stimulating both humoral and cellular responses, thereby offering insight for optimizing the design of COVID-19 vaccines.
Collapse
Affiliation(s)
- Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Shengyong Feng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Benjie Chai
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dong Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Liting Ren
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Huicheng Shi
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200438, China
| | - Zhuming Cai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mujia Pang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200438, China.
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Scher G, Bente DA, Mears MC, Cajimat MNB, Schnell MJ. GP38 as a vaccine target for Crimean-Congo hemorrhagic fever virus. NPJ Vaccines 2023; 8:73. [PMID: 37210392 PMCID: PMC10199669 DOI: 10.1038/s41541-023-00663-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/25/2023] [Indexed: 05/22/2023] Open
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a tick-borne virus that causes severe hemorrhagic disease in humans. There is a great need for effective vaccines and therapeutics against CCHFV for humans, as none are currently internationally approved. Recently, a monoclonal antibody against the GP38 glycoprotein protected mice against lethal CCHFV challenge. To show that GP38 is required and sufficient for protection against CCHFV, we used three inactivated rhabdoviral-based CCHFV-M vaccines, with or without GP38 in the presence or absence of the other CCHFV glycoproteins. All three vaccines elicited strong antibody responses against the respective CCHFV glycoproteins. However, only vaccines containing GP38 showed protection against CCHFV challenge in mice; vaccines without GP38 were not protective. The results of this study establish the need for GP38 in vaccines targeting CCHFV-M and demonstrate the efficacy of a CCHFV vaccine candidate based on an established vector platform.
Collapse
Affiliation(s)
- Gabrielle Scher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Dennis A Bente
- Galveston National Laboratory, Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Megan C Mears
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria N B Cajimat
- Galveston National Laboratory, Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Chen T, Ding Z, Lan J, Wong G. Advances and perspectives in the development of vaccines against highly pathogenic bunyaviruses. Front Cell Infect Microbiol 2023; 13:1174030. [PMID: 37274315 PMCID: PMC10234439 DOI: 10.3389/fcimb.2023.1174030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Increased human activities around the globe and the rapid development of once rural regions have increased the probability of contact between humans and wild animals. A majority of bunyaviruses are of zoonotic origin, and outbreaks may result in the substantial loss of lives, economy contraction, and social instability. Many bunyaviruses require manipulation in the highest levels of biocontainment, such as Biosafety Level 4 (BSL-4) laboratories, and the scarcity of this resource has limited the development speed of vaccines for these pathogens. Meanwhile, new technologies have been created, and used to innovate vaccines, like the mRNA vaccine platform and bioinformatics-based antigen design. Here, we summarize current vaccine developments for three different bunyaviruses requiring work in the highest levels of biocontainment: Crimean-Congo Hemorrhagic Fever Virus (CCHFV), Rift Valley Fever Virus (RVFV), and Hantaan virus (HTNV), and provide perspectives and potential future directions that can be further explored to advance specific vaccines for humans and livestock.
Collapse
Affiliation(s)
- Tong Chen
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Ding
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
35
|
Saunders JE, Gilbride C, Dowall S, Morris S, Ulaszewska M, Spencer AJ, Rayner E, Graham VA, Kennedy E, Thomas K, Hewson R, Gilbert SC, Belij-Rammerstorfer S, Lambe T. Adenoviral vectored vaccination protects against Crimean-Congo Haemorrhagic Fever disease in a lethal challenge model. EBioMedicine 2023; 90:104523. [PMID: 36933409 PMCID: PMC10025009 DOI: 10.1016/j.ebiom.2023.104523] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The tick-borne bunyavirus, Crimean-Congo Haemorrhagic Fever virus (CCHFV), can cause severe febrile illness in humans and has a wide geographic range that continues to expand due to tick migration. Currently, there are no licensed vaccines against CCHFV for widespread usage. METHODS In this study, we describe the preclinical assessment of a chimpanzee adenoviral vectored vaccine (ChAdOx2 CCHF) which encodes the glycoprotein precursor (GPC) from CCHFV. FINDINGS We demonstrate here that vaccination with ChAdOx2 CCHF induces both a humoral and cellular immune response in mice and 100% protection in a lethal CCHF challenge model. Delivery of the adenoviral vaccine in a heterologous vaccine regimen with a Modified Vaccinia Ankara vaccine (MVA CCHF) induces the highest levels of CCHFV-specific cell-mediated and antibody responses in mice. Histopathological examination and viral load analysis of the tissues of ChAdOx2 CCHF immunised mice reveals an absence of both microscopic changes and viral antigen associated with CCHF infection, further demonstrating protection against disease. INTERPRETATION There is the continued need for an effective vaccine against CCHFV to protect humans from lethal haemorrhagic disease. Our findings support further development of the ChAd platform expressing the CCHFV GPC to seek an effective vaccine against CCHFV. FUNDING This research was supported by funding from the Biotechnology and Biological Sciences Research Council (UKRI-BBSRC) [BB/R019991/1 and BB/T008784/1].
Collapse
Affiliation(s)
- Jack E Saunders
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Ciaran Gilbride
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Susan Morris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandra J Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Victoria A Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Kelly Thomas
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Roger Hewson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sandra Belij-Rammerstorfer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a severe tick-borne illness with a wide geographical distribution and case fatality rates of 30% or higher. Caused by infection with the CCHF virus (CCHFV), cases are reported throughout Africa, the Middle East, Asia and southern and eastern Europe. The expanding range of the Hyalomma tick vector is placing new populations at risk for CCHF, and no licensed vaccines or specific antivirals exist to treat CCHF. Furthermore, despite cases of CCHF being reported annually, the host and viral determinants of CCHFV pathogenesis are poorly understood. CCHFV can productively infect a multitude of animal species, yet only humans develop a severe illness. Within human populations, subclinical infections are underappreciated and may represent a substantial proportion of clinical outcomes. Compared with other members of the Bunyavirales order, CCHFV has a more complex genomic organization, with many viral proteins having unclear functions in viral pathogenesis. In recent years, improved animal models have led to increased insights into CCHFV pathogenesis, and several antivirals and vaccines for CCHFV have shown robust efficacy in preclinical models. Translation of these insights and candidate therapeutics to the clinic will hopefully reduce the morbidity and mortality caused by CCHFV.
Collapse
|
37
|
Crimean-Congo hemorrhagic fever: Immunopathogenesis and recent advances in the development of vaccines. Microb Pathog 2023; 177:106054. [PMID: 36882130 DOI: 10.1016/j.micpath.2023.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Crimean-Congo hemorrhagic fever is a serious vector-borne zoonotic viral infection which leads to severe illness and fatalities in people living in endemic regions and becoming infected sporadically. Hyalomma ticks are responsible for the transmission of the virus which belongs to the family Nairoviridae. This disease spreads through ticks bite, infected tissues, or blood of viremic animals, and from infected humans to others. Serological studies also indicate the presence of the virus in various domestic and wild animals to be a risk factor for the transmission of the disease. Crimean-Congo hemorrhagic fever virus elicits many immune responses during the infection including inflammatory, innate, and adaptive immune responses. The development of an effective vaccine could be a promising method for the control and prevention of disease in endemic areas. The purpose of this review is to highlight the importance of CCHF, its mode of transmission, the interaction of the virus with the hosts and ticks, immunopathogenesis, and advances in immunization.
Collapse
|
38
|
Hawman DW, Meade-White K, Leventhal S, Appelberg S, Ahlén G, Nikouyan N, Clancy C, Smith B, Hanley P, Lovaglio J, Mirazimi A, Sällberg M, Feldmann H. Accelerated DNA vaccine regimen provides protection against Crimean-Congo hemorrhagic fever virus challenge in a macaque model. Mol Ther 2023; 31:387-397. [PMID: 36184852 PMCID: PMC9931546 DOI: 10.1016/j.ymthe.2022.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is widely distributed throughout Africa, the Middle East, Southern Asia, and Southern and Eastern Europe. Spread by Hyalomma ticks or by contact with infected animals, CCHF begins non-specifically but can rapidly progress to severe, sometimes fatal, disease. Due to the non-specific early symptoms and often unrecognized infections, patients often present to healthcare systems exhibiting later stages of disease, when treatment is limited to supportive care. Consequently, simple vaccines are critically needed to protect populations at risk of CCHFV infection. Currently, there are no widely approved vaccines for CCHFV. We have previously reported significant efficacy of a three-dose DNA-based vaccination regimen for CCHFV in cynomolgus macaques (Macaca fasicularis). Here, we show that in cynomolgus macaques, plasmid-expressed CCHFV nucleoprotein (NP) and glycoprotein precursor (GPC) antigens elicit primarily humoral and cellular immunity, respectively. We found that a two-dose vaccination regimen with plasmids expressing the NP and GPC provides significant protection against CCHFV infection. Studies investigating vaccinations with either antigen alone showed that plasmid-expressed NPs could also confer protection. Cumulatively, our data show that this vaccine confers robust protection against CCHFV and suggest that both humoral and cellular immunity contribute to optimal vaccine-mediated protection.
Collapse
Affiliation(s)
- David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | | | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Negin Nikouyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Chad Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Brian Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden; Public Health Agency of Sweden, 171 82, Solna, Sweden; National Veterinary Institute, 751 89 Uppsala, Sweden.
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| |
Collapse
|
39
|
Doğan K, Bolat S, Öksüz C, Büyüktuna SA. Leukotriene metabolism and proiflammatory cytokines in Crimean Congo hemorrhagic fever. J Med Virol 2023; 95:e28199. [PMID: 36207793 DOI: 10.1002/jmv.28199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an emerging acute viral infection disease, yet its pathophysiology remains largely uncharacterized. Lipid mediators are molecules that play numerous roles in the physiologic and pathophysiologic conditions in certain viral diseases. No previous study evaluated the status of cysteinyl leukotrienes (CYSLT) and 5-lipoxygenase (5-LO) and their relationship with proinflammatory cytokines in CCHF. A total of 90 subjects including 60 CCHF patients and 30 healthy controls were enrolled the study. Serum CYSLT, 5-LO, interleukin-6 (IL-6), and ferritin levels were determined in the study population. Lower median 5-LO level was determined in patients compared to healthy controls (p = 0.0004). Higher ferritin (p < 0.001) and IL-6 (p < 0.001) levels in patients than healthy controls. No statistically significant difference was observed between patients and controls in terms of CYSLT levels. No statistically significant differences were observed between mild, moderate, and severe groups in terms of both 5-LO and CYSLT levels. IL-6 and ferritin levels were higher in severe group compared mild and moderate groups. In conclusion, changes in 5-LO enzyme and increased inflammation are related with the disease molecular mechanism. Higher inflammatory status contributes to the impaired hemostatic balance in CCHF. Thus, treatment strategies to reduce inflammation may help to prevent bleeding and DIC in patients. IL-6 and ferritin can be used to as an additional biomarker in the estmation of the prognosis and diagnosis of the patients.
Collapse
Affiliation(s)
- Kübra Doğan
- Department of Biochemistry, Sivas Numune Hospital, Sivas, Turkey
| | - Serkan Bolat
- Department of Biochemistry, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Caner Öksüz
- Department of Infectious Diseases, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Seyit Ali Büyüktuna
- Department of Infectious Diseases, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| |
Collapse
|
40
|
Hu YL, Zhang LQ, Liu XQ, Ye W, Zhao YX, Zhang L, Qiang ZX, Zhang LX, Lei YF, Jiang DB, Cheng LF, Zhang FL. Construction and evaluation of DNA vaccine encoding Crimean Congo hemorrhagic fever virus nucleocapsid protein, glycoprotein N-terminal and C-terminal fused with LAMP1. Front Cell Infect Microbiol 2023; 13:1121163. [PMID: 37026060 PMCID: PMC10072157 DOI: 10.3389/fcimb.2023.1121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hemorrhagic fever in humans and is mainly transmitted by ticks. There is no effective vaccine for Crimean-Congo hemorrhagic fever (CCHF) at present. We developed three DNA vaccines encoding CCHFV nucleocapsid protein (NP), glycoprotein N-terminal (Gn) and C-terminal (Gc) fused with lysosome-associated membrane protein 1 (LAMP1) and assessed their immunogenicity and protective efficacy in a human MHC (HLA-A11/DR1) transgenic mouse model. The mice that were vaccinated three times with pVAX-LAMP1-CCHFV-NP induced balanced Th1 and Th2 responses and could most effectively protect mice from CCHFV transcription and entry-competent virus-like particles (tecVLPs) infection. The mice vaccinated with pVAX-LAMP1-CCHFV-Gc mainly elicited specific anti-Gc and neutralizing antibodies and provided a certain protection from CCHFV tecVLPs infection, but the protective efficacy was less than that of pVAX-LAMP1-CCHFV-NP. The mice vaccinated with pVAX-LAMP1-CCHFV-Gn only elicited specific anti-Gn antibodies and could not provide sufficient protection from CCHFV tecVLPs infection. These results suggest that pVAX-LAMP1-CCHFV-NP would be a potential and powerful candidate vaccine for CCHFV.
Collapse
Affiliation(s)
- Yong-Liang Hu
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- Department of Dermatology, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Lian-Qing Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| | - Xiao-Qian Liu
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wei Ye
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yue-Xi Zhao
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liang Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Zun-Xian Qiang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Lin-Xuan Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Ying-Feng Lei
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Dong-Bo Jiang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- *Correspondence: Dong-Bo Jiang, ; Lin-Feng Cheng, ; Fang-Lin Zhang,
| | - Lin-Feng Cheng
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- *Correspondence: Dong-Bo Jiang, ; Lin-Feng Cheng, ; Fang-Lin Zhang,
| | - Fang-Lin Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- *Correspondence: Dong-Bo Jiang, ; Lin-Feng Cheng, ; Fang-Lin Zhang,
| |
Collapse
|
41
|
Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus. Nat Commun 2022; 13:7298. [PMID: 36435827 PMCID: PMC9701186 DOI: 10.1038/s41467-022-34923-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.
Collapse
|
42
|
Exotic viral hepatitis: A review on epidemiology, pathogenesis, and treatment. J Hepatol 2022; 77:1431-1443. [PMID: 35817222 DOI: 10.1016/j.jhep.2022.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 12/04/2022]
Abstract
Certain "exotic" viruses are known to cause clinical diseases with potential liver involvement. These include viruses, beyond regular hepatotropic viruses (hepatitis A, -B(D), -C, -E, cytomegalovirus, Epstein-Barr virus), that can be found in (sub)tropical areas and can cause "exotic viral hepatitis". Transmission routes typically involve arthropods (Crimean Congo haemorrhagic fever, dengue, Rift Valley fever, yellow fever). However, some of these viruses are transmitted by the aerosolised excreta of rodents (Hantavirus, Lassa fever), or via direct contact or contact with bodily fluids (Ebola). Although some exotic viruses are associated with high fatality rates, such as Ebola for example, the clinical presentation of most exotic viruses can range from mild flu-like symptoms, in most cases, right through to being potentially fatal. A smaller percentage of people develop severe disease with haemorrhagic fever, possibly with (fulminant) hepatitis. Liver involvement is often caused by direct tropism for hepatocytes and Kupffer cells, resulting in virus-mediated and/or immune-mediated necrosis. In all exotic hepatitis viruses, PCR is the most sensitive diagnostic method. The determination of IgM/IgG antibodies is a reasonable alternative, but cross-reactivity can be a problem in the case of flaviviruses. Licenced vaccines are available for yellow fever and Ebola, and they are currently under development for dengue. Therapy for exotic viral hepatitis is predominantly supportive. To ensure that preventive measures can be introduced to control possible outbreaks, the timely detection of these viruses is very important.
Collapse
|
43
|
Appelberg S, Ahlén G, Yan J, Nikouyan N, Weber S, Larsson O, Höglund U, Aleman S, Weber F, Perlhamre E, Apro J, Gidlund E, Tuvesson O, Salati S, Cadossi M, Tegel H, Hober S, Frelin L, Mirazimi A, Sallberg M. A universal
SARS‐CoV DNA
vaccine inducing highly crossreactive neutralizing antibodies and T cells. EMBO Mol Med 2022; 14:e15821. [PMID: 35986481 PMCID: PMC9538582 DOI: 10.15252/emmm.202215821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
New variants in the SARS‐CoV‐2 pandemic are more contagious (Alpha/Delta), evade neutralizing antibodies (Beta), or both (Omicron). This poses a challenge in vaccine development according to WHO. We designed a more universal SARS‐CoV‐2 DNA vaccine containing receptor‐binding domain loops from the huCoV‐19/WH01, the Alpha, and the Beta variants, combined with the membrane and nucleoproteins. The vaccine induced spike antibodies crossreactive between huCoV‐19/WH01, Beta, and Delta spike proteins that neutralized huCoV‐19/WH01, Beta, Delta, and Omicron virus in vitro. The vaccine primed nucleoprotein‐specific T cells, unlike spike‐specific T cells, recognized Bat‐CoV sequences. The vaccine protected mice carrying the human ACE2 receptor against lethal infection with the SARS‐CoV‐2 Beta variant. Interestingly, priming of cross‐reactive nucleoprotein‐specific T cells alone was 60% protective, verifying observations from humans that T cells protect against lethal disease. This SARS‐CoV vaccine induces a uniquely broad and functional immunity that adds to currently used vaccines.
Collapse
Affiliation(s)
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | - Jingyi Yan
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | - Negin Nikouyan
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | | | | | | | - Soo Aleman
- Department of Infectious Disease Karolinska University Hospital and Department of Medicine Huddinge, Karolinska Institutet Sweden
| | - Friedemann Weber
- Institute for Virology FB10‐Veterinary Medicine, Justus‐Liebing University Giessen Germany
| | - Emma Perlhamre
- Karolinska Trial Alliance Karolinska University Hospital Sweden
| | - Johanna Apro
- Karolinska Trial Alliance Karolinska University Hospital Sweden
| | | | | | | | | | - Hanna Tegel
- Department of Protein Science Royal Institute of Technology Stockholm Sweden
| | - Sophia Hober
- Department of Protein Science Royal Institute of Technology Stockholm Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | - Ali Mirazimi
- Public Health Agency of Sweden Solna Sweden
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | - Matti Sallberg
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| |
Collapse
|
44
|
Leventhal SS, Meade-White K, Rao D, Haddock E, Leung J, Scott D, Archer J, Randall S, Erasmus JH, Feldmann H, Hawman DW. Replicating RNA vaccination elicits an unexpected immune response that efficiently protects mice against lethal Crimean-Congo hemorrhagic fever virus challenge. EBioMedicine 2022; 82:104188. [PMID: 35907368 PMCID: PMC9335360 DOI: 10.1016/j.ebiom.2022.104188] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Crimean-Congo hemorrhagic fever virus is the cause of a severe hemorrhagic fever with cases reported throughout a wide-geographic region. Spread by the bite of infected ticks, contact with infected livestock or in the health care setting, disease begins as a non-specific febrile illness that can rapidly progress to hemorrhagic manifestations. Currently, there are no approved vaccines and antivirals such as ribavirin have unclear efficacy. Thus treatment is mostly limited to supportive care. METHODS In this report we evaluated an alphavirus-based replicon RNA vaccine expressing either the CCHFV nucleoprotein or glycoprotein precursor in a stringent, heterologous lethal challenge mouse model. FINDINGS Vaccination with the RNA expressing the nucleoprotein alone could confer complete protection against clinical disease, but vaccination with a combination of both the nucleoprotein and glycoprotein precursor afforded robust protection against disease and viral replication. Protection from lethal challenge required as little as a single immunization with 100ng of RNA. Unexpectedly, analysis of the immune responses elicited by the vaccine components showed that vaccination resulted in antibodies against the internal viral nucleoprotein and cellular immunity against the virion-exposed glycoproteins. INTERPRETATION Cumulatively this vaccine conferred robust protection against Crimean-Congo hemorrhagic fever virus and supports continued development of this vaccine candidate. FUNDING This research was supported by the Intramural Research Program of the NIAID/NIH and HDT Bio.
Collapse
Affiliation(s)
- Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Jacqueline Leung
- Research Technologies Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | | - Samantha Randall
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| |
Collapse
|
45
|
Wang Q, Wang S, Shi Z, Li Z, Zhao Y, Feng N, Bi J, Jiao C, Li E, Wang T, Wang J, Jin H, Huang P, Yan F, Yang S, Xia X. GEM-PA-Based Subunit Vaccines of Crimean Congo Hemor-Rhagic Fever Induces Systemic Immune Responses in Mice. Viruses 2022; 14:v14081664. [PMID: 36016285 PMCID: PMC9416392 DOI: 10.3390/v14081664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
The Crimean Congo Hemorrhagic Fever Virus (CCHFV) is a tick-borne bunyavirus of the Narovirus genus, which is the causative agent of Crimean Congo Hemorrhagic Fever (CCHF). CCHF is endemic in Africa, the Middle East, Eastern Europe and Asia, with a high case-fatality rate of up to 50% in humans. Currently, there are no approved vaccines or effective therapies available for CCHF. The GEM-PA is a safe, versatile and effective carrier system, which offers a cost-efficient, high-throughput platform for recovery and purification of subunit proteins for vaccines. In the present study, based on a GEM-PA surface display system, a GEM-PA based vaccine expressing three subunit vaccine candidates (G-GP, including G-eGN, G-eGC and G-NAb) of CCHFV was developed, displaying the ectodomains of the structural glycoproteins eGN, eGC and NAb, respectively. According to the immunological assays including indirect-ELISA, a micro-neutralization test of pseudo-virus and ELISpot, 5 μg GPBLP3 combined with Montanide ISA 201VG plus Poly (I:C) adjuvant (A-G-GP-5 μg) elicited GP-specific humoral and cellular immunity in BALB/c mice after three vaccinations via subcutaneous injection (s.c.). The consistent data between IgG subtype and cytokine detection, ELISpot and cytokine detection indicated balanced Th1 and Th2 responses, of which G-eGN vaccines could elicit a stronger T-cell response post-vaccination, respectively. Moreover, all three vaccine candidates elicited high TNF-α, IL-6, and IL-10 cytokine levels in the supernatant of stimulated splenocytes in vitro. However, the neutralizing antibody (nAb) was only detected in A-G-eGC and A-G-eGC vaccination groups with the highest neutralizing titer of 128, suggesting that G-eGC could elicit a stronger humoral immune response. In conclusion, the GEM-PA surface display system could provide an efficient and convenient purification method for CCHFV subunit antigens, and the G-GP subunit vaccine candidates will be promising against CCHFV infections with excellent immunogenicity.
Collapse
Affiliation(s)
- Qi Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Zhikang Shi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China;
| | - Zhengrong Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (C.J.); (H.J.); (P.H.)
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Jinhao Bi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China;
| | - Cuicui Jiao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (C.J.); (H.J.); (P.H.)
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Jianzhong Wang
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China;
| | - Hongli Jin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (C.J.); (H.J.); (P.H.)
| | - Pei Huang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (C.J.); (H.J.); (P.H.)
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Correspondence: (F.Y.); (S.Y.); (X.X.)
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Correspondence: (F.Y.); (S.Y.); (X.X.)
| | - Xianzhu Xia
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Correspondence: (F.Y.); (S.Y.); (X.X.)
| |
Collapse
|
46
|
Imran MA, Islam MR, Saha A, Ferdousee S, Mishu MA, Ghosh A. Development of Multi-epitope Based Subunit Vaccine Against Crimean-Congo Hemorrhagic Fever Virus Using Reverse Vaccinology Approach. Int J Pept Res Ther 2022; 28:124. [PMID: 35789799 PMCID: PMC9244561 DOI: 10.1007/s10989-022-10430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Md. Ashik Imran
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Md. Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Akash Saha
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Shahida Ferdousee
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Moshiul Alam Mishu
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| |
Collapse
|
47
|
Silva DN, Chrobok M, Rovesti G, Healy K, Wagner AK, Maravelia P, Gatto F, Mazza M, Mazzotti L, Lohmann V, Sällberg Chen M, Sällberg M, Buggert M, Pasetto A. Process Development for Adoptive Cell Therapy in Academia: A Pipeline for Clinical-Scale Manufacturing of Multiple TCR-T Cell Products. Front Immunol 2022; 13:896242. [PMID: 35784320 PMCID: PMC9243500 DOI: 10.3389/fimmu.2022.896242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular immunotherapies based on T cell receptor (TCR) transfer are promising approaches for the treatment of cancer and chronic viral infections. The discovery of novel receptors is expanding considerably; however, the clinical development of TCR-T cell therapies still lags. Here we provide a pipeline for process development and clinical-scale manufacturing of TCR-T cells in academia. We utilized two TCRs specific for hepatitis C virus (HCV) as models because of their marked differences in avidity and functional profile in TCR-redirected cells. With our clinical-scale pipeline, we reproduced the functional profile associated with each TCR. Moreover, the two TCR-T cell products demonstrated similar yield, purity, transduction efficiency as well as phenotype. The TCR-T cell products had a highly reproducible yield of over 1.4 × 109 cells, with an average viability of 93%; 97.8–99% of cells were CD3+, of which 47.66 ± 2.02% were CD8+ T cells; the phenotype was markedly associated with central memory (CD62L+CD45RO+) for CD4+ (93.70 ± 5.23%) and CD8+ (94.26 ± 4.04%). The functional assessments in 2D and 3D cell culture assays showed that TCR-T cells mounted a polyfunctional response to the cognate HCV peptide target in tumor cell lines, including killing. Collectively, we report a solid strategy for the efficient large-scale manufacturing of TCR-T cells.
Collapse
Affiliation(s)
| | - Michael Chrobok
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Rovesti
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arnika Kathleen Wagner
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Francesca Gatto
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Massimiliano Mazza
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucia Mazzotti
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | | | - Matti Sällberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Pasetto
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Anna Pasetto,
| |
Collapse
|
48
|
Sana M, Javed A, Babar Jamal S, Junaid M, Faheem M. Development of multivalent vaccine targeting M segment of Crimean Congo Hemorrhagic Fever Virus (CCHFV) using immunoinformatic approaches. Saudi J Biol Sci 2022; 29:2372-2388. [PMID: 35531180 PMCID: PMC9072894 DOI: 10.1016/j.sjbs.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 01/23/2023] Open
Abstract
Crimean-Congo Hemorrhagic Fever (CCHF) is a tick-borne viral infection with no licensed vaccine or therapeutics available for its treatment. In the present study we have developed the first multi-epitope subunit vaccine effective against all the seven genotypes of CCHF virus (CCHFV). The vaccine contains five B-cell, two MHC-II (HTL), and three MHC-I (CTL) epitopes screened from two structural glycoproteins (Gc and Gn in M segment) of CCHFV with an N-terminus human β-defensin as an adjuvant, as well as an N-terminus EAAAK sequence. The epitopes were rigorously investigated for their antigenicity, allergenicity, IFN gamma induction, anti-inflammatory responses, stability, and toxicity. The three-dimensional structure of the vaccine was predicted and docked with TLR-3, TLR-8, and TLR-9 receptors to find the strength of the binding complexes via molecular dynamics simulation. After codon adaptation, the subunit vaccine construct was developed in a pDual-GC plasmid and has population coverage of 98.47% of the world's population (HLA-I & II combined). The immune simulation studies were carried out on the C-ImmSim in-silico interface showing a marked increase in the production of cellular and humoral response (B-cell and T-cell) as well as TGFβ, IL-2, IL-10, and IL-12 indicating that the proposed vaccine would be able to sufficiently provoke both humoral and cell-mediated immune responses. Thus, making it a new and promising vaccine candidate against CCHFV.
Collapse
Affiliation(s)
- Maaza Sana
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Sector H-12, Islamabad, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Sector H-12, Islamabad, Pakistan
| | - Syed Babar Jamal
- Deparment of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Junaid
- Precision Medicine Laboratory, Rehman Medical Institute, Hayatabad, Peshawar, KPK, 25000, Pakistan
| | - Muhammad Faheem
- Deparment of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, Rawalpindi, Punjab 46000, Pakistan
| |
Collapse
|
49
|
Rodriguez SE, Hawman DW, Sorvillo TE, O'Neal TJ, Bird BH, Rodriguez LL, Bergeron É, Nichol ST, Montgomery JM, Spiropoulou CF, Spengler JR. Immunobiology of Crimean-Congo hemorrhagic fever. Antiviral Res 2022; 199:105244. [PMID: 35026307 PMCID: PMC9245446 DOI: 10.1016/j.antiviral.2022.105244] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
Abstract
Human infection with Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne pathogen in the family Nairoviridae, can result in a spectrum of outcomes, ranging from asymptomatic infection through mild clinical signs to severe or fatal disease. Studies of CCHFV immunobiology have investigated the relationship between innate and adaptive immune responses with disease severity, attempting to elucidate factors associated with differential outcomes. In this article, we begin by highlighting unanswered questions, then review current efforts to answer them. We discuss in detail current clinical studies and research in laboratory animals on CCHF, including immune targets of infection and adaptive and innate immune responses. We summarize data about the role of the immune response in natural infections of animals and humans and experimental studies in vitro and in vivo and from evaluating immune-based therapies and vaccines, and present recommendations for future research.
Collapse
Affiliation(s)
- Sergio E Rodriguez
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - David W Hawman
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - T Justin O'Neal
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brian H Bird
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient Point, New York, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.
| |
Collapse
|
50
|
Appelberg S, John L, Pardi N, Végvári Á, Bereczky S, Ahlén G, Monteil V, Abdurahman S, Mikaeloff F, Beattie M, Tam Y, Sällberg M, Neogi U, Weissman D, Mirazimi A. Nucleoside-Modified mRNA Vaccines Protect IFNAR -/- Mice against Crimean-Congo Hemorrhagic Fever Virus Infection. J Virol 2022; 96:e0156821. [PMID: 34817199 PMCID: PMC8826901 DOI: 10.1128/jvi.01568-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/13/2021] [Indexed: 01/11/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF), caused by Crimean-Congo hemorrhagic fever virus (CCHFV), is on the World Health Organizations' list of prioritized diseases and pathogens. With global distribution, high fatality rate, and no approved vaccine or effective treatment, CCHF constitutes a threat against global health. In the current study, we demonstrate that vaccination with nucleoside-modified mRNA-lipid nanoparticles (mRNA-LNP), encoding for the CCHFV nucleoprotein (N) or glycoproteins (GcGn) protect IFNAR-/- mice against lethal CCHFV infection. In addition, we found that both mRNA-LNP induced strong humoral and cellular immune responses in IFNAR-/- and immunocompetent mice and that neutralizing antibodies are not necessary for protection. When evaluating immune responses induced by immunization including CCHFV Gc and Gn antigens, we found the Gc protein to be more immunogenic compared with the Gn protein. Hepatic injury is prevalent in CCHF and contributes to the severity and mortality of the disease in humans. Thus, to understand the immune response in the liver after infection and the potential effect of the vaccine, we performed a proteomic analysis on liver samples from vaccinated and control mice after CCHFV infection. Similar to observations in humans, vaccination affected the metabolic pathways. In conclusion, this study shows that a CCHFV mRNA-LNP vaccine, based on viral nucleo- or glycoproteins, mediate protection against CCHFV induced disease. Consequently, genetic immunization is an attractive approach to prevent disease caused by CCHFV and we believe we have necessary evidence to bring this vaccine platform to the next step in the development of a vaccine against CCHFV infection. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is a zoonotic pathogen causing Crimean-Congo hemorrhagic fever (CCHF), a severe fever disease. CCHFV has a wide distribution and is endemic in several areas around the world. Cases of CCHF are also being reported in new areas, indicating an expansion of the disease, which is of high concern. Dispersion of the disease, high fatality rate, and no approved vaccine makes CCHF a threat to global health. The development of a vaccine is thus of great importance. Here we show 100% protection against lethal CCHFV infection in mice immunized with mRNA-LNP encoding for different CCHFV proteins. The vaccination showed both robust humoral and cellular immunity. mRNA-LNP vaccines combine the ability to induce an effective immune response, the safety of a transient carrier, and the flexibility of genetic vaccines. This and our results from the current study support the development of a mRNA-LNP based vaccine against CCHFV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Computational Biology/methods
- Disease Models, Animal
- Dose-Response Relationship, Immunologic
- Female
- Hemorrhagic Fever Virus, Crimean-Congo/immunology
- Hemorrhagic Fever, Crimean/prevention & control
- High-Throughput Screening Assays
- Immunization
- Immunogenicity, Vaccine
- Liposomes
- Mice
- Mice, Knockout
- Nanoparticles
- Proteomics/methods
- Receptor, Interferon alpha-beta/deficiency
- Vaccination
- Vaccines, Synthetic/immunology
- mRNA Vaccines/immunology
Collapse
Affiliation(s)
| | - Lijo John
- National Veterinary Institute, Uppsala, Sweden
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vanessa Monteil
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Ying Tam
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ali Mirazimi
- Public Health Agency of Sweden, Solna, Sweden
- National Veterinary Institute, Uppsala, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|