1
|
Charron R, Lemée P, Huguet A, Minlong O, Boulanger M, Houée P, Soumet C, Briandet R, Bridier A. Strain-dependent emergence of aminoglycoside resistance in Escherichia coli biofilms. Biofilm 2025; 9:100273. [PMID: 40161323 PMCID: PMC11952850 DOI: 10.1016/j.bioflm.2025.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
In most Earth environments, bacteria predominantly exist within surface-associated communities known as biofilms, where they are embedded in an extracellular matrix. These collective structures play a critical role in bacterial physiology and significantly shape their evolutionary trajectories, contributing to the development of antimicrobial resistance and enhancing bacterial resilience to treatments, with profound implications for public health. This study assessed the impact of the biofilm lifestyle on the emergence of resistance to gentamicin, an aminoglycoside antibiotic, in one laboratory reference strain and seven Escherichia coli isolates from food-processing environments. Throughout a one-month evolution experiment, we observed that certain strains showed a markedly higher emergence of gentamicin-resistant variants in biofilms than in planktonic states, with the emergence of stable variants being closely linked to biofilm maturation. Genomic and phenotypic analyses of gentamicin-resistant (GenR) variants uncovered varied adaptive strategies among the strains. GenR variants from two food-processing isolates (Ec709 and Ec478) displayed point mutations in genes associated with central carbon metabolism (aceE, ygfZ, …) and cell respiration (atpG, cydA, …), while retaining relative growth and colonization capacities. Conversely, GenR variants from the reference strain (Ec1655) adapted preferentially through large genomic deletions, including consistent loss of the peptide transporter gene sbmA, significantly altering cellular fitness. These findings highlight the complexity of adaptive evolution in biofilms and underscore the importance of investigating diverse strains to grasp the full spectrum of adaptation in natural bacterial populations.
Collapse
Affiliation(s)
- Raphaël Charron
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Pierre Lemée
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Antoine Huguet
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Ornella Minlong
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Marine Boulanger
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Paméla Houée
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Christophe Soumet
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| |
Collapse
|
2
|
Vareschi S, Jaut V, Vijay S, Allen RJ, Schreiber F. Antimicrobial efflux and biofilms: an interplay leading to emergent resistance evolution. Trends Microbiol 2025:S0966-842X(25)00123-4. [PMID: 40410028 DOI: 10.1016/j.tim.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/25/2025]
Abstract
The biofilm mode of growth and drug efflux are both important factors that impede the treatment of bacterial infections with antimicrobials. Decades of work have uncovered the mechanisms involved in both efflux and biofilm-mediated antimicrobial tolerance, but links between these phenomena have only recently been discovered. Novel findings show how efflux impacts global cellular physiology and antibiotic tolerance, underpinned by phenotypic heterogeneity. In addition efflux can mediate cell-to-cell interactions, relevant in biofilms, via mechanisms including efflux of signaling molecules and metabolites, signaling using pump components and the establishment of local antibiotic gradients via pumping. These recent findings suggest that biofilm antibiotic tolerance and efflux are closely coupled, with synergistic effects leading to the evolution of antimicrobial resistance in the biofilm environment.
Collapse
Affiliation(s)
- Silvia Vareschi
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Valerie Jaut
- Division Biodeterioration and Reference Organisms, Department of Materials and the Environment, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Srinivasan Vijay
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Rosalind J Allen
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Frank Schreiber
- Division Biodeterioration and Reference Organisms, Department of Materials and the Environment, Federal Institute for Materials Research and Testing, Berlin, Germany
| |
Collapse
|
3
|
Johnson GE, Fei C, Wingreen NS, Bassler BL. Analysis of gene expression within individual cells reveals spatiotemporal patterns underlying Vibrio cholerae biofilm development. PLoS Biol 2025; 23:e3003187. [PMID: 40378130 DOI: 10.1371/journal.pbio.3003187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
Bacteria commonly exist in multicellular, surface-attached communities called biofilms. Biofilms are central to ecology, medicine, and industry. The Vibrio cholerae pathogen forms biofilms from single founder cells that, via cell division, mature into three-dimensional structures with distinct, yet reproducible, regional architectures. To define mechanisms underlying biofilm developmental transitions, we establish a single-molecule fluorescence in situ hybridization (smFISH) approach that enables accurate quantitation of spatiotemporal gene-expression patterns in biofilms at cell-scale resolution. smFISH analyses of V. cholerae biofilm regulatory and structural genes demonstrate that, as biofilms mature, overall matrix gene expression decreases, and simultaneously, a pattern emerges in which matrix gene expression becomes largely confined to peripheral biofilm cells. Both quorum sensing and c-di-GMP-signaling are required to generate the proper temporal pattern of matrix gene expression. Quorum sensing signaling is uniform across the biofilm, and thus, c-di-GMP-signaling alone sets the regional matrix gene expression pattern. The smFISH strategy provides insight into mechanisms conferring particular fates to individual biofilm cells.
Collapse
Affiliation(s)
- Grace E Johnson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
4
|
Hernández-Villamor D, Li P, Aydogan M, Verhelst M, Van de Wiele T, Rabaey K, Prévoteau A. Low electrode potentials enhance current generation by Geobacter sulfurreducens biofilms: A high-throughput study. Biosens Bioelectron 2025; 276:117232. [PMID: 39954521 DOI: 10.1016/j.bios.2025.117232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
The microbial species Geobacter sulfurreducens uses different extracellular electron transfer (EET) pathways depending on the potential of the final electron acceptor, yet a complete understanding of EET mechanisms and the impact of thermodynamically limiting potentials remains elusive. Here, we employ a custom-designed high-throughput system that enables the simultaneous and continuous execution of 128 parallel experiments to investigate the complete spectrum of potentials ([-0.25 to 0] V vs. SHE) impacting the metabolic energy generation in axenic G. sulfurreducens electroactive biofilms (EABs). These were grown for 500 h in three consecutive stages and characterized electrochemically. The EABs grown on electrodes poised below the apparent midpoint potential ([-0.18 to -0.16] V) grew slower than those grown at conventional, non-limiting potential (0 V), developing 50% smaller biofilms and 2.4-fold higher anodic plateau currents on average ([0.1 vs. 0.04] mA cm-2). These also exhibited enhanced charge transport coupled to higher average concentrations of charge carriers ([1.6 vs. 0.4] mMe-), the latter impacting linearly the anodic plateau current. Low- and high-potential redox pools were discriminated with the former comprising 50%-70% of storable charge. Overall, these findings strongly suggest an overexpression of charge carriers in G. sulfurreducens EABs cultivated at lower potentials and highlight the useful contribution of high-throughput tools for boosting research in electromicrobiology.
Collapse
Affiliation(s)
- David Hernández-Villamor
- Center for Microbial Ecology and Technology (CMET), Ghent University, Frieda Saeysstraat 1, Gent, 9052, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, Gent 9052, Belgium
| | - Peishuo Li
- Department of Electrical Engineering (ESAT), Kasteelpark Arenberg 10, Leuven 3001, Belgium
| | - Musa Aydogan
- Department of Electrical Engineering (ESAT), Kasteelpark Arenberg 10, Leuven 3001, Belgium
| | - Marian Verhelst
- Department of Electrical Engineering (ESAT), Kasteelpark Arenberg 10, Leuven 3001, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Ghent University, Frieda Saeysstraat 1, Gent, 9052, Belgium
| | - Korneel Rabaey
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, Gent 9052, Belgium; TRASLab, Department of Biotechnology, Ghent University, Frieda Saeysstraat 1, Gent 9052, Belgium
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (CMET), Ghent University, Frieda Saeysstraat 1, Gent, 9052, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, Gent 9052, Belgium.
| |
Collapse
|
5
|
Djermoun S, Rode DKH, Jiménez-Siebert E, Netter N, Lesterlin C, Drescher K, Bigot S. Biofilm architecture determines the dissemination of conjugative plasmids. Proc Natl Acad Sci U S A 2025; 122:e2417452122. [PMID: 40279390 PMCID: PMC12054802 DOI: 10.1073/pnas.2417452122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/10/2025] [Indexed: 04/27/2025] Open
Abstract
Plasmid conjugation is a contact-dependent horizontal gene transfer mechanism that significantly contributes to the dissemination of antibiotic resistance among bacteria. While the molecular mechanisms of conjugation have been extensively studied, our understanding of plasmid transfer dynamics within spatially structured bacterial communities and the influence of community architecture on plasmid dissemination remains limited. In this study, we use live-cell fluorescence microscopy to investigate the propagation of the broad host range RP4 conjugative plasmid in Escherichia coli populations exhibiting varying levels of spatial organization. In high-density, two-dimensional cell monolayers, direct and tight contact between donors and recipients is not only necessary but also sufficient to trigger RP4 plasmid transfer, ensuring optimal plasmid propagation. In three-dimensional mature biofilms, the emergent community architecture limits the ability of donor cells to enter regions with high cell density, which hinders the establishment of direct contacts with recipients and impedes plasmid transfer in biofilms. In contrast, microcolonies, early-stage biofilms, and biofilms with a lower surface coverage leave open access points for donor cells in regions that later emerge as high-cell-density regions in mature biofilms, which facilitates plasmid transfer. These findings reveal the crucial role of bacterial community architecture in determining the efficiency of plasmid dissemination.
Collapse
Affiliation(s)
- Sarah Djermoun
- Microbiologie Moléculaire et Biochimie Structurale, Université Lyon 1, CNRS, Inserm, Lyon69007, France
| | | | | | - Niklas Netter
- Biozentrum, University of Basel, Basel4056, Switzerland
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale, Université Lyon 1, CNRS, Inserm, Lyon69007, France
| | - Knut Drescher
- Biozentrum, University of Basel, Basel4056, Switzerland
| | - Sarah Bigot
- Microbiologie Moléculaire et Biochimie Structurale, Université Lyon 1, CNRS, Inserm, Lyon69007, France
| |
Collapse
|
6
|
Espinoza Miranda SS, Abbaszade G, Hess WR, Drescher K, Saliba AE, Zaburdaev V, Chai L, Dreisewerd K, Grünberger A, Westendorf C, Müller S, Mascher T. Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges. Microbiol Mol Biol Rev 2025; 89:e0013824. [PMID: 39853129 PMCID: PMC11948493 DOI: 10.1128/mmbr.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole. During colony differentiation, an almost infinite number of ecological and physiological population-forming forces are at work, creating complex, intricate colony structures with divergent functions. Understanding the assembly and dynamics of such populations requires resolving individual cells or cell groups within such macroscopic structures. Addressing how each cell contributes to the collective action requires pushing the resolution boundaries of key technologies that will be presented in this review. In particular, single-cell techniques provide powerful tools for studying bacterial multicellularity with unprecedented spatial and temporal resolution. These advancements include novel microscopic techniques, mass spectrometry imaging, flow cytometry, spatial transcriptomics, single-bacteria RNA sequencing, and the integration of spatiotemporal transcriptomics with microscopy, alongside advanced microfluidic cultivation systems. This review encourages exploring the synergistic potential of the new technologies in the study of bacterial multicellularity, with a particular focus on individuals in differentiated bacterial biofilms (colonies). It highlights how resolving population structures at the single-cell level and understanding their respective functions can elucidate the overarching functions of bacterial multicellular populations.
Collapse
Affiliation(s)
| | | | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Grünberger
- Microsystems in Bioprocess Engineering (μBVT), Institute of Process Engineering in Life Sciences (BLT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christian Westendorf
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Akabuogu E, Carneiro da Cunha Martorelli V, Krašovec R, Roberts IS, Waigh TA. Emergence of ion-channel-mediated electrical oscillations in Escherichia coli biofilms. eLife 2025; 13:RP92525. [PMID: 40117333 PMCID: PMC11928028 DOI: 10.7554/elife.92525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional Escherichia coli biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single E. coli biofilms and long-range coordinated electrical signaling in E. coli biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.
Collapse
Affiliation(s)
- Emmanuel Akabuogu
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
- Biological Physics, Department of Physics and Astronomy, University of ManchesterManchesterUnited Kingdom
| | - Victor Carneiro da Cunha Martorelli
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
- Biological Physics, Department of Physics and Astronomy, University of ManchesterManchesterUnited Kingdom
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health University of ManchesterManchesterUnited Kingdom
| | - Ian S Roberts
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
8
|
Williams I, Tuckerman JS, Peters DI, Bangs M, Williams E, Shin IJ, Kaspar JR. A strain of Streptococcus mitis inhibits biofilm formation of caries pathogens via abundant hydrogen peroxide production. Appl Environ Microbiol 2025; 91:e0219224. [PMID: 39998256 PMCID: PMC11921374 DOI: 10.1128/aem.02192-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Commensal oral streptococci that colonize supragingival biofilms deploy mechanisms to combat competitors within their niche. Here, we determined that Streptococcus mitis more effectively inhibited biofilm formation of Streptococcus mutans compared to other oral streptococci. This phenotype was common among all isolates of S. mutans, but was specific to a single strain of S. mitis, ATCC 49456. We documented ATCC 49456 to accumulate four to five times more hydrogen peroxide (H2O2) than other Streptococcus species tested, and 5-18 times more than other S. mitis strains assayed. S. mutans biofilm formation inhibition was dependent on cell contact/proximity and reduced when grown in media containing catalase or with a S. mitis mutant of pyruvate oxidase (spxB; pox), confirming that SpxB-dependent H2O2 production was a major antagonistic factor. Addition of S. mitis within hours after S. mutans inoculation was effective at reducing biofilm biomass, but not for 24 h pre-formed biofilms in an SpxB-dependent manner. Transcriptome analysis revealed responses for both S. mitis and S. mutans, with several S. mutans differentially expressed genes following a gene expression pattern we have previously described, while others being unique to the interaction with S. mitis. Finally, we show that S. mitis also affected coculture biofilm formation of several other commensal streptococci as well as cariogenic Streptococcus sobrinus. Our study shows that strains with abundant H2O2 production are effective at inhibiting initial growth of caries pathogens like S. mutans, but are less effective at disrupting pre-formed biofilms and have the potential to influence the stability of other oral commensal strains.IMPORTANCEAntagonistic properties displayed by oral bacteria have been sought as therapeutic approaches against dental caries pathogens like Streptococcus mutans. An emergent theme has been the ability of select strains that produce high amounts of hydrogen peroxide to effectively inhibit the growth of S. mutans within in vitro and in vivo models. Our study builds on these previous findings by determining that Streptococcus mitis ATCC 49456 is a high hydrogen peroxide producer, compared to other Streptococcus species as well as additional strains of S. mitis. In addition to S. mutans, we show that ATCC 49456 also affects biofilm formation of other oral streptococci, a non-desirable trait that should be weighed heavily for strains under consideration as probiotics. Further phenotypic characterization of strains like S. mitis ATCC 49456 in mixed-species settings will allow us to hone in on qualities that are optimal for probiotic strains that are intended to prevent the emergence of odontopathogens.
Collapse
Affiliation(s)
- Isabella Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jacob S. Tuckerman
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Madisen Bangs
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Iris J. Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
9
|
Dey S, Nayak AK, Rajaram H, Das S. Exploitative stress within Bacillus subtilis biofilm determines the spatial distribution of pleomorphic cells. Microbiol Res 2025; 292:128034. [PMID: 39729737 DOI: 10.1016/j.micres.2024.128034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Bacteria commonly live in a spatially organized biofilm assemblage. The metabolic activity inside the biofilm leads to segmented physiological microenvironments. In nature, bacteria possess several pleomorphic forms to withstand certain ecological alterations. We hypothesized that pleomorphism also exists within the biofilm, which can be considered as the fundamental niche for bacteria. We report a distinct pattern of cell size variation throughout the biofilm of Bacillus subtilis. Cell size heterogeneity was observed in biofilm development, wherein the frequency of long cells is higher in outer regions, whereas lower in inner regions. Moreover, compared to planktonic cells, bacteria in the biofilm mode reduce their geometric ratio from 8.34 to 3.69 and 2.65 in the outer and inner regions, respectively. There were no significant differences observed in nutrient diffusion from the outer to the inner region, and more than 73 % of cells in the inner region were viable. However, the inner and middle regions were more acidic than the outer of the biofilm. Conclusively, growth rate-independent cell size reduction at low pH suggests that the resulting phenotype switching within biofilm was observed due to the pH gradient of neutral to acidic from the outer to the core of the biofilm. This gradient of H+ ions concentration may create exploitative stress within the biofilm, which could favor specific pleomorphic cells to thrive in their specialized niches. By understanding the cell size variation in response to the local environment, we propose a model of biofilm formation by pleomorphic cells.
Collapse
Affiliation(s)
- Sumon Dey
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ankit Kumar Nayak
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Institute, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
10
|
Degen GD, Stevens CA, Cárcamo-Oyarce G, Song J, Bej R, Tang P, Ribbeck K, Haag R, McKinley GH. Mussel-inspired cross-linking mechanisms enhance gelation and adhesion of multifunctional mucin-derived hydrogels. Proc Natl Acad Sci U S A 2025; 122:e2415927122. [PMID: 39969995 PMCID: PMC11874598 DOI: 10.1073/pnas.2415927122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Mucus supports human health by hydrating, lubricating, and preventing infection of wet epithelial surfaces. The beneficial material properties and bioactivity of mucus stem from glycoproteins called mucins, motivating the development of mucin-derived hydrogels for wound dressings and antifouling coatings. However, these applications require robust gelation and adhesion to a wide range of substrates. Inspired by the chemical cross-linking and water-tolerant adhesion of marine mussel adhesive structures, we use catechol-thiol bonding to drive gelation of native mucin proteins and synthetic mucin-inspired polymers, forming soft, adhesive hydrogels that can be coated onto diverse surfaces. The gelation dynamics and adhesive properties can be systematically tuned by varying the hydrogel composition, polymer architecture, and thiol availability, with gelation timescales adjustable from seconds to hours, and values of elastic modulus, failure stress, and debonding work spanning orders of magnitude. We demonstrate the functionality of these gels in two applications: as tissue adhesives, using porcine skin as a proxy for human skin, and as bioactive surface coatings to prevent bacterial colonization. The results highlight the potential of catechol-thiol cross-linking as a versatile platform for engineering multifunctional glycoprotein hydrogels with applications in wound repair and antimicrobial surface engineering.
Collapse
Affiliation(s)
- George D. Degen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Corey A. Stevens
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Gerardo Cárcamo-Oyarce
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jake Song
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Raju Bej
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Peng Tang
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Gareth H. McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
11
|
Canette A, Boudjemaa R, Deschamps J, Steenkeste K, Marlière C, Briandet R, Fontaine-Aupart MP. Real-time multimodal imaging of daptomycin action on the cell wall of adherent Staphylococcus aureus. BMC Res Notes 2025; 18:54. [PMID: 39910624 PMCID: PMC11796211 DOI: 10.1186/s13104-025-07130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVES This study investigated the efficacy of daptomycin against adherent Staphylococcus aureus (S. aureus), a common colonizer of medical devices that leads to severe infections. For the first time, we evaluated the bactericidal effects of daptomycin on S. aureus immediately after adhesion, mimicking early-stage contamination of biomaterials. Time-kill curve assay and confocal laser scanning microscopy (CLSM) were used to analyze the process dynamics. In addition, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to elucidate daptomycin-induced structural changes in the bacterial cell wall. RESULTS DESCRIPTION Daptomycin, at clinically relevant concentrations, rapidly eradicated adherent bacteria in the exponential growth phase, demonstrating an efficiency comparable to its action against planktonic cells. Prolonged exposure to the antibiotic caused marked alterations in the bacterial cell wall, including surface roughening and perforation, as revealed by multimodal imaging. However, daptomycin effectiveness diminished as biofilm formation progressed, underscoring the need for further exploration of optimized clinical strategies.
Collapse
Affiliation(s)
- Alexis Canette
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de microscopie électronique (IBPS-SME), Paris, F-75005, France.
| | - Rym Boudjemaa
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, 91405, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, F-78350, Île-de-France, France
| | - Karine Steenkeste
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, 91405, France
| | - Christian Marlière
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, 91405, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, F-78350, Île-de-France, France.
| | | |
Collapse
|
12
|
Volk M, Šavli D, Molan K, Terlep S, Levičnik-Höfferle Š, Trost M, Gašpirc B, Lukač M, Jezeršek M, Stopar D. Er:YAG laser biofilm removal from zero-gap periodontal/peri-implant model system mimicking clinical attachment loss. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:025002. [PMID: 40008293 PMCID: PMC11853840 DOI: 10.1117/1.jbo.30.2.025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
Significance Here, we present a photoacoustic method to remove biofilms from periodontal and peri-implant-constrained geometries. Aim We aim to remove biofilms from narrow periodontal and peri-implant model systems with the application of Er:YAG ultrashort laser pulses. Approach Construction of zero-gap model system from PDMS and titanium, growth of biofilms on titanium surfaces, and removal of biofilms with Er:YAG USP, 20 mJ, 15 Hz, and 10 s were performed. Results The results suggest that geometry, the vertical position of the laser fiber tip, and the evolution of the primary cavitation bubble significantly affect cleaning effectiveness. Cleaning was higher in the wedge part of the model system. In the zero-gap part of the model system, biofilm cleaning effectiveness was highest at the position of the laser fiber tip and decreased above and below the fiber tip. The dimension of the space in which the cavitation bubble develops determines the size and dynamics of the expanded cavitation bubble and consequently the biofilm cleaning effectiveness. Conclusions The obtained results suggest a very good biofilm removal effectiveness in difficult-to-reach narrow geometries mimicking clinical attachment loss in the periodontal/peri-implant pocket.
Collapse
Affiliation(s)
- Marko Volk
- University of Ljubljana, Department of Microbiology, Biotechnical Faculty, Ljubljana, Slovenia
| | - Dominik Šavli
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Katja Molan
- University of Novo Mesto, Faculty of Health Sciences, Novo Mesto, Slovenia
| | | | | | - Mojca Trost
- University of Ljubljana, Department of Oral Medicine and Periodontology, Medical Faculty, Ljubljana, Slovenia
| | - Boris Gašpirc
- University of Ljubljana, Department of Oral Medicine and Periodontology, Medical Faculty, Ljubljana, Slovenia
| | - Matjaž Lukač
- Fotona d.o.o., Ljubljana, Slovenia
- Institut Jozef Stefan, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | - Matija Jezeršek
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - David Stopar
- University of Ljubljana, Department of Microbiology, Biotechnical Faculty, Ljubljana, Slovenia
| |
Collapse
|
13
|
Zhang S, Chen T, Lu W, Lin Y, Zhou M, Cai X. Hybrid Cell Membrane-Engineered Nanocarrier for Triple-Action Strategy to Address Pseudomonas aeruginosa Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411261. [PMID: 39721013 PMCID: PMC11809413 DOI: 10.1002/advs.202411261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Bacterial infections resistant to antimicrobial treatments, particularly those caused by Pseudomonas aeruginosa (P. aeruginosa), frequently lead to elevated mortality rates. Tackling this resistance using therapeutic combinations with varied mechanisms has shown considerable promise. In this study, a bioinspired nanocarrier is successfully designed and engineered for targeted antibiotic delivery and toxin/bacteria clearance. This is achieved by encapsulating antibiotic-loaded framework nucleic acids with hybrid cell membranes acquired from neutrophils and platelets. By coating the hybrid membrane outside the shell, nanocarriers are endowed with the function of neutrophil-like chemotaxis and platelet-like bacteria adhesion to achieve the first stage of inflammation targeting. Based on the specific binding of bacteria toxin to the hybrid membrane, the release of antibiotic-loaded framework nucleic acids is triggered by toxin-mediated membrane lysis to fulfill the second stage of toxin neutralization and bacteria killing. Meanwhile, the immunomodulation potential of framework nucleic acids enables nanocarriers to accomplish the third stage of reversing the immunosuppressive microenvironment. In mouse models of acute and chronic P. aeruginosa pneumonia, the nanocarriers can reduce bacterial burden at a low dosage and decrease mortality with negligible toxicity. In sum, these findings have illustrated the remarkable capability of nanocarriers in treating recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Tianyu Chen
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Weitong Lu
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Yunfeng Lin
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuan610041China
- National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Mi Zhou
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuan610041China
| |
Collapse
|
14
|
Johnson GE, Fei C, Wingreen NS, Bassler BL. Cell-scale gene-expression measurements in Vibrio cholerae biofilms reveal spatiotemporal patterns underlying development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.17.603784. [PMID: 39071398 PMCID: PMC11275835 DOI: 10.1101/2024.07.17.603784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bacteria commonly exist in multicellular, surface-attached communities called biofilms. Biofilms are central to ecology, medicine, and industry. The Vibrio cholerae pathogen forms biofilms from single founder cells that, via cell division, mature into three-dimensional structures with distinct, yet reproducible, regional architectures. To define mechanisms underlying biofilm developmental transitions, we establish a single-molecule fluorescence in situ hybridization (smFISH) approach that enables accurate quantitation of spatiotemporal gene-expression patterns in biofilms at cell-scale resolution. smFISH analyses of V. cholerae biofilm regulatory and structural genes demonstrate that, as biofilms mature, overall matrix gene expression decreases, and simultaneously, a pattern emerges in which matrix gene expression becomes largely confined to peripheral biofilm cells. Both quorum sensing and c-di-GMP-signaling are required to generate the proper temporal pattern of matrix gene expression. Quorum sensing autoinducer levels are uniform across the biofilm, and thus, c-di-GMP-signaling alone sets the regional matrix gene expression pattern. The smFISH strategy provides insight into mechanisms conferring particular fates to individual biofilm cells.
Collapse
Affiliation(s)
- Grace E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lead Contact
| |
Collapse
|
15
|
Vice Z, Zhou Y, Chitlapilly Dass S, Wang R. Microscopic Analysis of Temperature Effects on Surface Colonization and Biofilm Morphology of Salmonella enterica. Foods 2025; 14:268. [PMID: 39856935 PMCID: PMC11764560 DOI: 10.3390/foods14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Salmonella enterica represents a diverse group of pathogens commonly associated with food contamination including red meat. Even though pre- and post-harvest cleaning and sanitization procedures are widely implemented at meat processing plants to mitigate the hazard, S. enterica cells may escape the process by colonizing, on contact, surfaces in the form of a biofilm that functions as an aggregated microbial community to facilitate mutual protection, antimicrobial resistance, proliferation and dissemination. Biofilm development is a complex process that can be affected by a variety of factors including environmental temperature. We developed methods using scanning electron microscopy and confocal microscopy with a novel image analysis software tool to investigate the temperature influence on S. enterica cell colonization and biofilm formation by directly visualizing and comparing the biofilm matrix's morphological differences under various temperatures. Cocktails of S. enterica strains belonging to serovars, commonly isolated from meat samples, were applied to develop biofilms on a stainless steel surface at 7, 15, or 37 °C. Results of the microscopy analysis showed that as temperature increased, better-defined biofilm structures with extracellular polymeric structures (EPS) could be identified. However, S. enterica colonization and aggregated bacterial biomass were clearly observed at the low temperature (7 °C) as well. These results demonstrate that the environmental temperature significantly contributes to S. enterica biofilm formation as the higher temperatures encourage bacterial active proliferation and biofilm maturation leading to the development of well-pronounced structures, while the lower temperature may promote cell attachment but, meanwhile, limit the EPS biosynthesis and biofilm maturation. Our study indicates that the mature S. enterica biofilms formed under favorable conditions may protect the pathogens with the well-developed 3-demensional (3D) structure against routine treatment. Furthermore, the low temperatures commonly maintained at meat plants are not able to effectively prevent S. enterica colonization and biofilm formation since at such temperatures there could still be colonized biomass that can contaminate the products. Therefore, the temperature effect on pathogen colonization and biofilm development should be taken into consideration while evaluating hygiene standards and sanitization procedures at the processing facilities.
Collapse
Affiliation(s)
- Zachariah Vice
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
| | | | - Rong Wang
- U.S. Meat Animal Research Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Clay Center, NE 68933, USA
| |
Collapse
|
16
|
Peters DI, Shin IJ, Deever AN, Kaspar JR. Design, Development and Validation of New Fluorescent Strains for Studying Oral Streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632972. [PMID: 39868180 PMCID: PMC11761503 DOI: 10.1101/2025.01.14.632972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Bacterial strains that are genetically engineered to constitutively produce fluorescent proteins have aided our study of bacterial physiology, biofilm formation, and interspecies interactions. Here, we report on the construction and utilization of new strains that produce the blue fluorescent protein mTagBFP2, the green fluorescent protein sfGFP, and the red fluorescent protein mScarlet-I3 in species Streptococcus gordonii, Streptococcus mutans, and Streptococcus sanguinis. Gene fragments, developed to contain the constitutive promoter Pveg, the fluorescent gene of interest as well as aad9, providing resistance to the antibiotic spectinomycin, were inserted into selected open reading frames on the chromosome that were both transcriptionally silent and whose loss caused no measurable changes in fitness. All strains, except for sfGFP in S. sanguinis, were validated to produce a detectable and specific fluorescent signal. Individual stains, along with extracellular polymeric substances (EPS) within biofilms, were visualized and quantified through either widefield or super-resolution confocal microscopy approaches. Finally, to validate the ability to perform single cell-level analysis using the strains, we imaged and analyzed a triculture mixed-species biofilm of S. gordonii, S. mutans, and S. sanguinis grown with and without addition of human saliva. Quantification of the loss in membrane integrity using a SYTOX dye revealed that all strains had increased loss of membrane integrity with water or human saliva added to the growth media, but the proportion of the population stained by the SYTOX dye varied by species. In all, these fluorescent strains will be a valuable resource for the continued study of oral microbial ecology.
Collapse
Affiliation(s)
- Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris J. Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Alyssa N. Deever
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
17
|
Virgo M, Mostowy S, Ho BT. Emerging models to study competitive interactions within bacterial communities. Trends Microbiol 2025:S0966-842X(24)00325-1. [PMID: 39799088 DOI: 10.1016/j.tim.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025]
Abstract
Within both abiotic and host environments, bacteria typically exist as diverse, multispecies communities and have crucial roles in human health, agriculture, and industry. In these communities, bacteria compete for resources, and these competitive interactions can shape the overall population structure and community function. Studying bacterial community dynamics requires experimental model systems that capture the different interaction networks between bacteria and their surroundings. We examine the recent literature advancing such systems, including (i) in silico models establishing the theoretical basis for how cell-to-cell interactions can influence population level dynamics, (ii) in vitro models characterizing specific interbacterial interactions, (iii) organ-on-a-chip models revealing the physiologically relevant parameters, such as spatial structure and mechanical forces, that bacteria encounter within a host, and (iv) in vivo plant and animal models connecting the host responses to interbacterial interactions. Each of these systems has greatly contributed to our understanding of bacterial community dynamics and can be used synergistically to understand how bacterial competition influences population architecture.
Collapse
Affiliation(s)
- Mollie Virgo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | - Brian T Ho
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
18
|
Vaidya S, Saha D, Rode DKH, Torrens G, Hansen MF, Singh PK, Jelli E, Nosho K, Jeckel H, Göttig S, Cava F, Drescher K. Bacteria use exogenous peptidoglycan as a danger signal to trigger biofilm formation. Nat Microbiol 2025; 10:144-157. [PMID: 39753671 PMCID: PMC11726461 DOI: 10.1038/s41564-024-01886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/13/2024] [Indexed: 01/12/2025]
Abstract
For any organism, survival is enhanced by the ability to sense and respond to threats in advance. For bacteria, danger sensing among kin cells has been observed, but the presence or impacts of general danger signals are poorly understood. Here we show that different bacterial species use exogenous peptidoglycan fragments, which are released by nearby kin or non-kin cell lysis, as a general danger signal. Using microscopy and gene expression profiling of Vibrio cholerae, we find that even brief signal exposure results in a regulatory response that causes three-dimensional biofilm formation, which protects cells from a broad range of stresses, including bacteriophage predation. A diverse set of species (Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis) also respond to exogenous peptidoglycan by forming biofilms. As peptidoglycan from different Gram-negative and Gram-positive species triggered three-dimensional biofilm formation, we propose that this danger signal and danger response are conserved among bacteria.
Collapse
Affiliation(s)
- Sanika Vaidya
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Dibya Saha
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Gabriel Torrens
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mads F Hansen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eric Jelli
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Kazuki Nosho
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Knut Drescher
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Agarwal H, Gurnani B, Pippal B, Jain N. Capturing the micro-communities: Insights into biogenesis and architecture of bacterial biofilms. BBA ADVANCES 2024; 7:100133. [PMID: 39839441 PMCID: PMC11750278 DOI: 10.1016/j.bbadva.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Biofilm is an assemblage of microorganisms embedded within the extracellular matrix that provides mechanical stability, nutrient absorption, antimicrobial resistance, cell-cell interactions, and defence against host immune system. Various biomolecules such as lipids, carbohydrates, protein polymers (amyloid), and eDNA are present in the matrix playing significant role in determining the distinctive properties of biofilm. The formation of biofilms contributes to resistance against antimicrobial therapy in most of the human infections and exacerbates existing diseases. Therefore, this field requires several state-of-the-art techniques to fully understand the 3-D organization of biofilms, their cell behaviour and responses to pharmaceutical treatments. Here, we explore the assembly and regulation of biofilm biogenesis in the context of matrix components and highlight the significance of high-resolution imaging and analysing techniques for monitoring complex biofilm architecture. Our review also emphasizes the novelty and advancements in techniques to visualise biofilm structure and composition, providing valuable insights to understand biofilm-related infections.
Collapse
Affiliation(s)
- Harshita Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Bharat Gurnani
- Centre of Excellence-AyurTech, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Bhumika Pippal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
20
|
Dorison L, Béchon N, Martin-Gallausiaux C, Chamorro-Rodriguez S, Vitrenko Y, Ouazahrou R, Villa R, Deschamps J, Briandet R, Gribaldo S, Ghigo JM, Beloin C. Identification of Veillonella parvula and Streptococcus gordonii adhesins mediating co-aggregation and its impact on physiology and mixed biofilm structure. mBio 2024; 15:e0217124. [PMID: 39526776 PMCID: PMC11633186 DOI: 10.1128/mbio.02171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
The dental plaque is a polymicrobial community where biofilm formation and co-aggregation, the ability to bind to other bacteria, play a major role in the construction of an organized consortium. One of its prominent members is the anaerobic diderm Veillonella parvula, considered a bridging species, which growth depends on lactate produced by oral streptococci. Understanding how V. parvula co-aggregates and the impact of aggregation has long been hampered due to the lack of appropriate genetic tools. Here we studied co-aggregation of the naturally competent strain V. parvula SKV38 with various oral bacteria and its effect on cell physiology. We show that V. parvula requires different trimeric autotransporters of the type V secretion system to adhere to oral streptococci and actinomyces. In addition, we describe a novel adhesin of Streptococcus gordonii, VisA (SGO_2004), as the protein responsible for co-aggregation with V. parvula. Finally, we show that co-aggregation does not impact cell-cell communication, which is mainly driven by environmental sensing, but plays an important role in the architecture and species distribution within the biofilm. IMPORTANCE Our research explores the mechanisms of bacterial adhesion within the dental plaque, focusing on Veillonella parvula, a key player in the oral microbiome. Dependent on lactate from streptococci, V. parvula plays a crucial bridging role in the formation of dental biofilms by co-aggregating with other bacteria. Despite its importance, the understanding of the underlying mechanisms of co-aggregation remains limited. Our study shows that V. parvula uses different trimeric autotransporters to adhere to oral Streptococci and Actinomyces. We additionally identify a novel adhesin from S. gordonii, VisA (SGO_2004) facilitating this interaction. We found that although co-aggregation does not affect cell-cell communication, it is critical for biofilm structure and species distribution. This research opens up new avenues for exploring microbial interactions in dental health and diseases.
Collapse
Affiliation(s)
- Louis Dorison
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Nathalie Béchon
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Camille Martin-Gallausiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Susan Chamorro-Rodriguez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Yakov Vitrenko
- Institut Pasteur, Université Paris Cité, C2RT, Biomics Technology Platform, Paris, France
| | - Rania Ouazahrou
- Institut Pasteur, Université Paris Cité, C2RT, Biomics Technology Platform, Paris, France
| | - Romain Villa
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Julien Deschamps
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Romain Briandet
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| |
Collapse
|
21
|
Majumder S, Coull BA, Mark Welch JL, La Riviere PJ, Dewhirst FE, Starr JR, Lee KH. Multivariate Cluster Point Process to Quantify and Explore Multi-Entity Configurations: Application to Biofilm Image Data. Stat Med 2024; 43:5446-5460. [PMID: 39449164 PMCID: PMC11833794 DOI: 10.1002/sim.10261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat each cluster's central object as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects ("parents") differ from peripheral ones ("offspring"). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared a series of models' DIC; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.
Collapse
Affiliation(s)
- Suman Majumder
- Department of Statistics, University of Missouri, Columbia, Missouri, USA
| | - Brent A. Coull
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | - Jacqueline R. Starr
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Kim MK, Chen Q, Echterhof A, Pennetzdorfer N, McBride RC, Banaei N, Burgener EB, Milla CE, Bollyky PL. A blueprint for broadly effective bacteriophage-antibiotic cocktails against bacterial infections. Nat Commun 2024; 15:9987. [PMID: 39609398 PMCID: PMC11604943 DOI: 10.1038/s41467-024-53994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Bacteriophage (phage) therapy is a promising therapeutic modality for multidrug-resistant bacterial infections, but its application is mainly limited to personalized therapy due to the narrow host range of individual phages. While phage cocktails targeting all possible bacterial receptors could theoretically confer broad coverage, the extensive diversity of bacteria and the complexity of phage-phage interactions render this approach challenging. Here, using screening protocols for identifying "complementarity groups" of phages using non-redundant receptors, we generate effective, broad-range phage cocktails that prevent the emergence of bacterial resistance. We also discover characteristic interactions between phage complementarity groups and particular antibiotic classes, facilitating the prediction of phage-antibiotic as well as phage-phage interactions. Using this strategy, we create three phage-antibiotic cocktails, each demonstrating efficacy against ≥96% of 153 Pseudomonas aeruginosa clinical isolates, including biofilm cultures, and demonstrate comparable efficacy in an in vivo wound infection model. We similarly develop effective Staphylococcus aureus phage-antibiotic cocktails and demonstrate their utility of combined cocktails against polymicrobial (mixed P. aeruginosa/S. aureus) cultures, highlighting the broad applicability of this approach. These studies establish a blueprint for the development of effective, broad-spectrum phage-antibiotic cocktails, paving the way for off-the-shelf phage-based therapeutics to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Minyoung Kevin Kim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nina Pennetzdorfer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert C McBride
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Niaz Banaei
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Babeer A, Liu Y, Ren Z, Xiang Z, Oh MJ, Pandey NK, Simon-Soro A, Huang R, Karabucak B, Cormode DP, Chen C, Koo H. Ferumoxytol nanozymes effectively target chronic biofilm infections in apical periodontitis. J Clin Invest 2024; 135:e183576. [PMID: 39589820 PMCID: PMC11785919 DOI: 10.1172/jci183576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Bacterial biofilms are pervasive and recalcitrant to current antimicrobials, causing numerous infections. Iron oxide nanozymes, including an FDA-approved formulation, ferumoxytol (FMX), show potential against biofilm infections via catalytic activation of hydrogen peroxide (H2O2). However, clinical evidence regarding the efficacy and therapeutic mechanisms of FMX is lacking. Here, we investigate whether FMX nanozymes can treat chronic biofilm infections and compare their bioactivity to that of the gold standard sodium hypochlorite (NaOCl), a potent but caustic disinfectant. Clinical performance was assessed in patients with apical periodontitis, an intractable endodontic infection affecting half of the global adult population. Data show robust antibiofilm activity by a single application of FMX with H2O2 achieving results comparable to those seen with NaOCl without adverse effects. FMX binds efficiently to the bacterial pathogens Enterococcus faecalis and Fusobacterium nucleatum and remains catalytically active without being affected by dental tissues. This allows for effective eradication of endodontic biofilms via on-site free radical generation without inducing cytotoxicity. Unexpectedly, FMX promotes growth of stem cells of the apical papilla (SCAPs), with transcriptomic analyses revealing upregulation of proliferation-associated pathways and downregulation of cell cycle suppressor genes. Notably, FMX activates SCAP pluripotency and WNT/NOTCH signaling that induces its osteogenic capacity. Together, these results show that FMX nanozymes are clinically effective against severe chronic biofilm infection with pathogen targeting and unique stem cell-stimulatory properties, offering a regenerative approach to antimicrobial therapy.
Collapse
Affiliation(s)
- Alaa Babeer
- Department of Endodontics, School of Dental Medicine and
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Oral Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Preventive and Restorative Sciences, School of Dental Medicine
| | - Zhi Ren
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences
| | - Zhenting Xiang
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences
| | - Min Jun Oh
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, and
| | - Nil Kanatha Pandey
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aurea Simon-Soro
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Stomatology, Faculty of Dentistry, University of Seville, Seville, Spain
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - David P. Cormode
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chider Chen
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences
| |
Collapse
|
24
|
Weißelberg S, Both A, Failla AV, Huang J, Linder S, Ohnezeit D, Bartsch P, Aepfelbacher M, Rohde H. Staphylococcus epidermidis alters macrophage polarization and phagocytic uptake by extracellular DNA release in vitro. NPJ Biofilms Microbiomes 2024; 10:131. [PMID: 39567551 PMCID: PMC11579364 DOI: 10.1038/s41522-024-00604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Biofilm formation shields Staphylococcus epidermidis from host defense mechanisms, contributing to chronic implant infections. Using wild-type S. epidermidis 1457, a PIA-negative mutant (1457-M10), and an eDNA-negative mutant (1457ΔatlE), this study examined the influence of biofilm matrix components on human monocyte-derived macrophage (hMDM) interactions. The wild-type strain was resistant to phagocytosis and induced an anti-inflammatory response in hMDMs, while both mutants were more susceptible to phagocytosis and triggered a pro-inflammatory response. Removing eDNA from the 1457 biofilm matrix increased hMDM uptake and a pro-inflammatory reaction, whereas adding eDNA to the 1457ΔatlE mutant reduced phagocytosis and promoted an anti-inflammatory response. Inhibiting TLR9 enhanced bacterial uptake and induced a pro-inflammatory response in hMDMs exposed to wild-type S. epidermidis. This study highlights the critical role of eDNA in immune evasion and the central role of TLR9 in modulating macrophage responses, advancing the understanding of implant infections.
Collapse
Affiliation(s)
- Samira Weißelberg
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility (Umif), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jiabin Huang
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Denise Ohnezeit
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Patricia Bartsch
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
25
|
Lyng M, Þórisdóttir B, Sveinsdóttir SH, Hansen ML, Jelsbak L, Maróti G, Kovács ÁT. Taxonomy of Pseudomonas spp. determines interactions with Bacillus subtilis. mSystems 2024; 9:e0021224. [PMID: 39254334 PMCID: PMC11494997 DOI: 10.1128/msystems.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Bacilli and pseudomonads are among the most well-studied microorganisms commonly found in soil and frequently co-isolated. Isolates from these two genera are frequently used as plant beneficial microorganisms; therefore, their interaction in the plant rhizosphere is relevant for agricultural applications. Despite this, no systematic approach has been employed to assess the coexistence of members from these genera. Here, we screened 720 fluorescent soil isolates for their effects on Bacillus subtilis pellicle formation in two types of media and found a predictor for interaction outcome in Pseudomonas taxonomy. Interactions were context-dependent, and both medium composition and culture conditions strongly influenced interactions. Negative interactions were associated with Pseudomonas capeferrum, Pseudomonas entomophila, and Pseudomonas protegens, and 2,4-diacetylphloroglucinol was confirmed as a strong (but not exclusive) inhibitor of B. subtilis. Non-inhibiting strains were closely related to Pseudomonas trivialis and Pseudomonas lini. Using such a non-inhibiting isolate, Pseudomonas P9_31, which increased B. subtilis pellicle formation demonstrated that the two species were spatially segregated in cocultures. Our study is the first one to propose an overall negative outcome from pairwise interactions between B. subtilis and fluorescent pseudomonads; hence, cocultures comprising members from these groups are likely to require additional microorganisms for coexistence. IMPORTANCE There is a strong interest in the microbial ecology field to predict interaction among microorganisms, whether two microbial isolates will promote each other's growth or compete for resources. Numerous studies have been performed based on surveying the available literature or testing phylogenetically diverse sets of species in synthetic communities. Here, a high throughput screening has been performed using 720 Pseudomonas isolates, and their impact on the biofilm formation of Bacillus subtilis was tested. The aim was to determine whether a majority of Pseudomonas will promote or inhibit the biofilms of B. subtilis in the co-cultures. This study reports that Pseudomonas taxonomy is a good predictor of interaction outcome, and only a minority of Pseudomonas isolates promote Bacillus biofilm establishment.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birta Þórisdóttir
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sigrún H. Sveinsdóttir
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten L. Hansen
- Microbiome Interactions and Engineering, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Jelsbak
- Microbiome Interactions and Engineering, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, Szeged, Hungary
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| |
Collapse
|
26
|
Viravathana P, Burbank LP, Jablonska B, Sun Q, Roper MC. A membrane localized RTX-like protein mediates physiochemical properties of the Pantoea stewartii subsp. stewartii cell envelope that impact surface adhesion, cell surface hydrophobicity and plant colonization. BMC Microbiol 2024; 24:369. [PMID: 39342134 PMCID: PMC11438254 DOI: 10.1186/s12866-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Pantoea stewartii subsp. stewartii (Pnss), is the bacterial causal agent of Stewart's wilt of sweet corn. Disease symptoms include systemic wilting and foliar, water-soaked lesions. A Repeat-in-toxin (RTX)-like protein, RTX2, causes cell leakage and collapse in the leaf apoplast of susceptible corn varieties and is a primary mediator of water-soaked lesion formation in the P. stewartii-sweet corn pathosystem. RTX toxins comprise a large family of proteins, which are widely distributed among Gram-negative bacteria. These proteins are generally categorized as cellulolysins, but the Biofilm-Associated Proteins (Bap) subfamily of RTX toxins are implicated in surface adhesion and other biofilm behaviors. The Pnss RTX2 is most phylogenetically related to other Bap proteins suggesting that Pnss RTX2 plays a dual role in adhesion to host surfaces in addition to mediating the host cell lysis that leads to water-soaked lesion formation. Here we demonstrated that RTX2 localizes to the bacterial cell envelope and influences physiochemical properties of the bacterial cell envelope that impact bacterial cell length, cell envelope integrity and overall cellular hydrophobicity. Interestingly, the role of RTX2 as an adhesin was only evident in absence of exopolysaccharide (EPS) production suggesting that RTX2 plays a role as an adhesin early in biofilm development before EPS production is fully induced. However, deletion of rtx2 severely impacted Pnss' colonization of the xylem suggesting that the dual role of RTX2 as a cytolysin and adhesin is a mechanism that links the apoplastic water-soaked lesion phase of infection to the wilting phase of the infection in the xylem.
Collapse
Affiliation(s)
- Polrit Viravathana
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Lindsey P Burbank
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Barbara Jablonska
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Qiang Sun
- Department of Biology, University of Wisconsin, Stevens Point, WI, 54481, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
27
|
Holt JD, Schultz D, Nadell CD. Dispersal of a dominant competitor can drive multispecies coexistence in biofilms. Curr Biol 2024; 34:4129-4142.e4. [PMID: 39163856 PMCID: PMC11686572 DOI: 10.1016/j.cub.2024.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Despite competition for both space and nutrients, bacterial species often coexist within structured, surface-attached communities termed biofilms. While these communities play important, widespread roles in ecosystems and are agents of human infection, understanding how multiple bacterial species assemble to form these communities and what physical processes underpin the composition of multispecies biofilms remains an active area of research. Using a model three-species community composed of Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, we show with cellular-scale resolution that biased dispersal of the dominant community member, P. aeruginosa, prevents competitive exclusion from occurring, leading to the coexistence of the three species. A P. aeruginosa bqsS deletion mutant no longer undergoes periodic mass dispersal, leading to the local competitive exclusion of E. coli. Introducing periodic, asymmetric dispersal behavior into minimal models, parameterized by only maximal growth rate and local density, supports the intuition that biased dispersal of an otherwise dominant competitor can permit coexistence generally. Colonization experiments show that WT P. aeruginosa is superior at colonizing new areas, in comparison to ΔbqsS P. aeruginosa, but at the cost of decreased local competitive ability against E. coli and E. faecalis. Overall, our experiments document how one species' modulation of a competition-dispersal-colonization trade-off can go on to influence the stability of multispecies coexistence in spatially structured ecosystems.
Collapse
Affiliation(s)
- Jacob D Holt
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
28
|
Guéneau V, Jiménez G, Castex M, Briandet R. Insights into the genomic and phenotypic characteristics of Bacillus spp. strains isolated from biofilms in broiler farms. Appl Environ Microbiol 2024; 90:e0066324. [PMID: 39158314 PMCID: PMC11409695 DOI: 10.1128/aem.00663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
The characterization of surface microbiota living in biofilms within livestock buildings has been relatively unexplored, despite its potential impact on animal health. To enhance our understanding of these microbial communities, we characterized 11 spore-forming strains isolated from two commercial broiler chicken farms. Sequencing of the strains revealed them to belong to three species Bacillus velezensis, Bacillus subtilis, and Bacillus licheniformis. Genomic analysis revealed the presence of antimicrobial resistance genes and genes associated with antimicrobial secretion specific to each species. We conducted a comprehensive characterization of the biofilm formed by these strains under various conditions, and we revealed significant structural heterogeneity across the different strains. A macro-colony interaction model was employed to assess the compatibility of these strains to coexist in mixed biofilms. We identified highly competitive B. velezensis strains, which cannot coexist with other Bacillus spp. Using confocal laser scanning microscopy along with a specific dye for extracellular DNA, we uncovered the importance of extracellular DNA for the formation of B. licheniformis biofilms. Altogether, the results highlight the heterogeneity in both genome and biofilm structure among Bacillus spp. isolated from biofilms present within livestock buildings.IMPORTANCELittle is known about the microbial communities that develop on farms in direct contact with animals. Nonpathogenic strains of Bacillus velezensis, Bacillus subtilis, and Bacillus licheniformis were found in biofilm samples collected from surfaces in contact with animals. Significant genetic and phenotypic diversity was described among these Bacillus strains. The strains do not possess mobile antibiotic resistance genes in their genomes and have a strong capacity to form structured biofilms. Among these species, B. velezensis was noted for its high competitiveness compared with the other Bacillus spp. Additionally, the importance of extracellular DNA in the formation of B. licheniformis biofilms was observed. These findings provide insights for the management of these surface microbiota that can influence animal health, such as the use of competitive strains to minimize the establishment of undesirable bacteria or enzymes capable of specifically deconstructing biofilms.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Lallemand SAS, Blagnac, France
| | | | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
29
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhance interspecies antagonism. mBio 2024; 15:e0095624. [PMID: 39105585 PMCID: PMC11389416 DOI: 10.1128/mbio.00956-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili (TFP)-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of TFP motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. Reduced invasion leads to the formation of denser and thicker S. aureus colonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies expand our understanding of how P. aeruginosa TFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCE The polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation of Pseudomonas aeruginosa and Staphylococcus aureus from airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils that P. aeruginosa is attracted to S. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition of P. aeruginosa motility and thus invasion, S. aureus colony architecture changes dramatically, whereby S. aureus is protected from P. aeruginosa antagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B. Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H. Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
30
|
Williams I, Tuckerman JS, Peters DI, Bangs M, Williams E, Shin IJ, Kaspar JR. A Strain of Streptococcus mitis Inhibits Biofilm Formation of Caries Pathogens via Abundant Hydrogen Peroxide Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606862. [PMID: 39149263 PMCID: PMC11326308 DOI: 10.1101/2024.08.06.606862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Commensal oral streptococci that colonize supragingival biofilms deploy mechanisms to combat competitors within their niche. Here, we determined that Streptococcus mitis more effectively inhibited biofilm formation of Streptococcus mutans within a seven species panel. This phenotype was common amongst all assayed isolates of S. mutans, but was specific to a single strain of S. mitis, ATCC 49456. The growth inhibitory factor was not effectively carried in spent supernatants of S. mitis. However, we documented ATCC 49456 to accumulate 4-5 times more hydrogen peroxide (H2O2) than other species tested, and 5-18 times more than other S. mitis strains assayed. The S. mutans biofilm formation inhibitory phenotype was reduced when grown in media containing catalase or with a S. mitis mutant of pyruvate oxidase (spxB; pox), confirming that SpxB-dependent H2O2 production was the main antagonistic factor. Addition of S. mitis within hours after S. mutans inoculation was effective at reducing biofilm biomass, but not for 24 h pre-formed biofilms. Transcriptome analysis revealed responses for both S. mitis and S. mutans, with several S. mutans differentially expressed genes following a gene expression pattern previously described, while others being unique to the interaction with S. mitis. Finally, we show that S. mitis also affected coculture biofilm formation of several other commensal streptococci. Our study shows that strains with abundant H2O2 production are effective at inhibiting initial growth of caries pathogens like S. mutans, but are less effective at disrupting pre-formed biofilms and have the potential to influence the stability of other oral commensal strains.
Collapse
Affiliation(s)
| | | | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Madisen Bangs
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris J. Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
31
|
Clapperton M, Kunanandam T, Florea CD, Douglas CM, McConnell G. Multimodal optical mesoscopy reveals the quantity and spatial distribution of Gram-positive biofilms in ex vivo tonsils. J Microsc 2024; 295:121-130. [PMID: 38296824 DOI: 10.1111/jmi.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
Biofilms are known to be present in tonsils, but little is known about their spatial location and size distribution throughout the tonsil. Studies of the location and distribution of biofilms in tonsil specimens have thus far been limited to either high-magnification methods such as electron microscopy, which enables high-resolution imaging but only from a tiny tissue volume, or lower magnification techniques such as light microscopy, which allow imaging of larger specimens but with poor spatial resolution. To overcome these limitations, we report the use of multimodal optical mesoscopy to visualise and quantify the number and spatial distribution of Gram-positive biofilms in fresh, excised paediatric tonsils. This methodology supports simultaneous imaging of both the tonsil host and biofilms in whole mounts of tissue up to 5 mm × 5 mm × 3 mm with subcellular resolution throughout. A quantitative assessment of 36 tonsil specimens revealed no statistically significant difference between biofilm presence on the tonsil surface and the interior of the tonsil. This new quantitative mesoscale imaging approach may prove useful in understanding the role of biofilms in tonsillar diseases and other infections.
Collapse
Affiliation(s)
- Megan Clapperton
- Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| | - Tash Kunanandam
- Department of Otolaryngology - Head and Neck Surgery, Royal Hospital for Children, Glasgow, UK
| | - Catalina D Florea
- Department of Otolaryngology - Head and Neck Surgery, Royal Hospital for Children, Glasgow, UK
| | - Catriona M Douglas
- Department of Otolaryngology - Head and Neck Surgery, Queen Elizabeth University Hospital, Glasgow, UK
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
32
|
Wang L, Pang Y, Su Z, Xin M, Li M, Mao Y. Synthesis of N-isonicotinic sulfonate chitosan and its antibiofilm activity against E. coli and S.aureus. Carbohydr Res 2024; 542:109194. [PMID: 38897018 DOI: 10.1016/j.carres.2024.109194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
N-(sodium 2-hydroxypropylsulfonate) chitosan (HSCS), N-sulfonate chitosan (SCS) and N-isonicotinic sulfonate chitosan (ISCS) were prepared. The structures of the prepared chitosan derivatives were characterized by nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and elemental analysis (EA). Antibacterial and antibiofilm activities of these chitosan derivatives were evaluated in vitro. The minimum inhibitory concentration (MIC) of HSCS and SCS against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 0.625 mg/mL and 0.156 mg/mL, respectively. ISCS exhibited MIC values of 0.313 mg/mL and 0.078 mg/mL against E. coli and S. aureus, respectively. ISCS demonstrated superior antibacterial and antibiofilm properties compared to SCS and HSCS. These findings suggest that the incorporation of a pyridine structure into sulfonate chitosan enhances its antibacterial and antibiofilm activities, and the prepared ISCS has a promising application prospect for controlling the reproduction of microorganisms in the field of food packaging.
Collapse
Affiliation(s)
- Lin Wang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China
| | - Yu Pang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China
| | - Zhongwen Su
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China.
| | - Yangfan Mao
- The Instrumental Analysis Center, Huaqiao University, Xiamen, 361021, PR China
| |
Collapse
|
33
|
Doloman A, Sousa DZ. Mechanisms of microbial co-aggregation in mixed anaerobic cultures. Appl Microbiol Biotechnol 2024; 108:407. [PMID: 38963458 PMCID: PMC11224092 DOI: 10.1007/s00253-024-13246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Co-aggregation of anaerobic microorganisms into suspended microbial biofilms (aggregates) serves ecological and biotechnological functions. Tightly packed aggregates of metabolically interdependent bacteria and archaea play key roles in cycling of carbon and nitrogen. Additionally, in biotechnological applications, such as wastewater treatment, microbial aggregates provide a complete metabolic network to convert complex organic material. Currently, experimental data explaining the mechanisms behind microbial co-aggregation in anoxic environments is scarce and scattered across the literature. To what extent does this process resemble co-aggregation in aerobic environments? Does the limited availability of terminal electron acceptors drive mutualistic microbial relationships, contrary to the commensal relationships observed in oxygen-rich environments? And do co-aggregating bacteria and archaea, which depend on each other to harvest the bare minimum Gibbs energy from energy-poor substrates, use similar cellular mechanisms as those used by pathogenic bacteria that form biofilms? Here, we provide an overview of the current understanding of why and how mixed anaerobic microbial communities co-aggregate and discuss potential future scientific advancements that could improve the study of anaerobic suspended aggregates. KEY POINTS: • Metabolic dependency promotes aggregation of anaerobic bacteria and archaea • Flagella, pili, and adhesins play a role in the formation of anaerobic aggregates • Cyclic di-GMP/AMP signaling may trigger the polysaccharides production in anaerobes.
Collapse
Affiliation(s)
- Anna Doloman
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| |
Collapse
|
34
|
Aherne O, Mørch M, Ortiz R, Shannon O, Davies JR. A novel multiplex fluorescent-labeling method for the visualization of mixed-species biofilms in vitro. Microbiol Spectr 2024; 12:e0025324. [PMID: 38785429 PMCID: PMC11218471 DOI: 10.1128/spectrum.00253-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
In nature, bacteria usually exist as mixed-species biofilms, where they engage in a range of synergistic and antagonistic interactions that increase their resistance to environmental challenges. Biofilms are a major cause of persistent infections, and dispersal from initial foci can cause new infections at distal sites thus warranting further investigation. Studies of development and spatial interactions in mixed-species biofilms can be challenging due to difficulties in identifying the different bacterial species in situ. Here, we apply CellTrace dyes to studies of biofilm bacteria and present a novel application for multiplex labeling, allowing identification of different bacteria in mixed-species, in vitro biofilm models. Oral bacteria labeled with CellTrace dyes (far red, yellow, violet, and CFSE [green]) were used to create single- and mixed-species biofilms, which were analyzed with confocal spinning disk microscopy (CSDM). Biofilm supernatants were studied with flow cytometry (FC). Both Gram-positive and Gram-negative bacteria were well labeled and CSDM revealed biofilms with clear morphology and stable staining for up to 4 days. Analysis of CellTrace labeled cells in supernatants using FC showed differences in the biofilm dispersal between bacterial species. Multiplexing with different colored dyes allowed visualization of spatial relationships between bacteria in mixed-species biofilms and relative coverage by the different species was revealed through segmentation of the CSDM images. This novel application, thus, offers a powerful tool for studying structure and composition of mixed-species biofilms in vitro.IMPORTANCEAlthough most chronic infections are caused by mixed-species biofilms, much of our knowledge still comes from planktonic cultures of single bacterial species. Studies of formation and development of mixed-species biofilms are, therefore, required. This work describes a method applicable to labeling of bacteria for in vitro studies of biofilm structure and dispersal. Critically, labeled bacteria can be multiplexed for identification of different species in mixed-species biofilms using confocal spinning disk microscopy, facilitating investigation of biofilm development and spatial interactions under different environmental conditions. The study is an important step in increasing the tools available for such complex and challenging studies.
Collapse
Affiliation(s)
- Olivia Aherne
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
- CR Competence, Lund, Sweden
| | - Martina Mørch
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | | | - Oonagh Shannon
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| |
Collapse
|
35
|
Ohmura T, Skinner DJ, Neuhaus K, Choi GPT, Dunkel J, Drescher K. In Vivo Microrheology Reveals Local Elastic and Plastic Responses Inside 3D Bacterial Biofilms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314059. [PMID: 38511867 DOI: 10.1002/adma.202314059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Bacterial biofilms are highly abundant 3D living materials capable of performing complex biomechanical and biochemical functions, including programmable growth, self-repair, filtration, and bioproduction. Methods to measure internal mechanical properties of biofilms in vivo with spatial resolution on the cellular scale have been lacking. Here, thousands of cells are tracked inside living 3D biofilms of the bacterium Vibrio cholerae during and after the application of shear stress, for a wide range of stress amplitudes, periods, and biofilm sizes, which revealed anisotropic elastic and plastic responses of both cell displacements and cell reorientations. Using cellular tracking to infer parameters of a general mechanical model, spatially-resolved measurements of the elastic modulus inside the biofilm are obtained, which correlate with the spatial distribution of the polysaccharides within the biofilm matrix. The noninvasive microrheology and force-inference approach introduced here provides a general framework for studying mechanical properties with high spatial resolution in living materials.
Collapse
Affiliation(s)
- Takuya Ohmura
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60201, USA
| | - Konstantin Neuhaus
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
- Department of Physics, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
| | - Gary P T Choi
- Department of Mathematics, The Chinese University of Hong Kong, N.T., Hong Kong
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
| | - Knut Drescher
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| |
Collapse
|
36
|
Xu F, Jiang M, Li D, Yu P, Ma H, Lu H. Protective effects of antibiotic resistant bacteria on susceptibles in biofilm: Influential factors, mechanism, and modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172668. [PMID: 38663625 DOI: 10.1016/j.scitotenv.2024.172668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
In environmental biofilms, antibiotic-resistant bacteria facilitate the persistence of susceptible counterparts under antibiotic stresses, contributing to increased community-level resistance. However, there is a lack of quantitative understanding of this protective effect and its influential factors, hindering accurate risk assessment of biofilm resistance in diverse environment. This study isolated an opportunistic Escherichia coli pathogen from soil, and engineered it with plasmids conferring antibiotic resistance. Protective effects of the ampicillin resistant strain (AmpR) on their susceptible counterparts (AmpS) were observed in ampicillin-stress colony biofilms. The concentration of ampicillin delineated protective effects into 3 zones: continuous protection (<1 MIC of AmpS), initial AmpS/R dependent (1-8 MIC of AmpS), and ineffective (>8 MIC of AmpS). Intriguingly, Zone 2 exhibited a surprising "less is more" phenomenon tuned by the initial AmpS/R ratio, where biofilm with an initially lower AmpR (1:50 vs 50:1) harbored 30-90 % more AmpR after 24 h growth under antibiotic stress. Compared to AmpS, AmpR displayed superiority in adhesion, antibiotic degradation, motility, and quorum sensing, allowing them to preferentially colonize biofilm edge and areas with higher ampicillin. An agent-based model incorporating protective effects successfully simulated tempo-spatial dynamics of AmpR and AmpS influenced by antibiotic stress and initial AmpS/R. This study provides a holistic view on the pervasive but poorly understood protective effects in biofilm, enabling development of better risk assessment and precisely targeted control strategies of biofilm resistance in diverse environment.
Collapse
Affiliation(s)
- Fengqian Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Minxi Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Pingfeng Yu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - He Ma
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
37
|
Michielsen S, Vercelli GT, Cordero OX, Bachmann H. Spatially structured microbial consortia and their role in food fermentations. Curr Opin Biotechnol 2024; 87:103102. [PMID: 38461750 DOI: 10.1016/j.copbio.2024.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Microbial consortia are important for the fermentation of foods. They bring combined functionalities to the fermented product, but stability and product consistency of fermentations with complex consortia can be hard to control. Some of these consortia, such as water- and milk-kefir and kombucha, grow as multispecies aggregates or biofilms, in which micro-organisms taking part in a fermentation cascade are spatially organized. The spatial organization of micro-organisms in these aggregates can impact what metabolic interactions are realized in the consortia, ultimately affecting the growth dynamics and evolution of microbes. A better understanding of such spatially structured communities is of interest from the perspective of microbial ecology and biotechnology, as multispecies aggregates can be used to valorize energy-rich substrates, such as plant-based substrates or side streams from the food industry.
Collapse
Affiliation(s)
- Sabine Michielsen
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Gabriel T Vercelli
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Herwig Bachmann
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Microbiology Department, NIZO Food Research, Ede, the Netherlands.
| |
Collapse
|
38
|
Gaillac A, Gourin C, Dubreil L, Briandet R, Prévost H, Jaffrès E. Biofilm formation of the food spoiler Brochothrix thermosphacta on different industrial surface materials using a biofilm reactor. Food Microbiol 2024; 120:104457. [PMID: 38431311 DOI: 10.1016/j.fm.2023.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Brochothrix thermosphacta is considered as a major food spoiler bacteria. This study evaluates biofilm formation by B. thermosphacta CD337(2) - a strong biofilm producer strain - on three food industry materials (polycarbonate (PC), polystyrene (PS), and stainless steel (SS)). Biofilms were continuously grown under flow at 25 °C in BHI broth in a modified CDC biofilm reactor. Bacterial cells were enumerated by plate counting, and biofilm spatial organization was deciphered by combining confocal laser scanning microscopy and image analysis. The biofilms had the same growth kinetics on all three materials and reach 8log CFU/cm2 as maximal concentration. Highly structured biofilms were observed on PC and PS, but less structured ones on SS. This difference was confirmed by structural quantification analysis using the image analysis software tool BiofilmQ. Biofilm on SS show less roughness, density, thickness and volume. The biofilm 3D structure seemed to be related to the coupon topography and roughness. The materials used in this study do not affect biofilm growth. However, their roughness and topography affect the biofilm architecture, which could influence biofilm behaviour.
Collapse
Affiliation(s)
| | | | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | |
Collapse
|
39
|
Ma C, Mei C, Liu J, Li H, Jiao M, Hu H, Zhang Y, Xiong J, He Y, Wei W, Yang H, Chen H. Effect of baicalin on eradicating biofilms of bovine milk derived Acinetobacter lwoffii. BMC Vet Res 2024; 20:212. [PMID: 38764041 PMCID: PMC11103975 DOI: 10.1186/s12917-024-04015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.
Collapse
Affiliation(s)
- Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Cui Mei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hui Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
40
|
Lopes AA, Vendrell-Fernández S, Deschamps J, Georgeault S, Cokelaer T, Briandet R, Ghigo JM. Bile-induced biofilm formation in Bacteroides thetaiotaomicron requires magnesium efflux by an RND pump. mBio 2024; 15:e0348823. [PMID: 38534200 PMCID: PMC11078008 DOI: 10.1128/mbio.03488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.
Collapse
Affiliation(s)
- Anne-Aurélie Lopes
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
- Pediatric Emergency, AP-HP, Necker-Enfants-Malades University Hospital, Paris, France
| | - Sol Vendrell-Fernández
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| | - Julien Deschamps
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Sonia Georgeault
- Plateforme IBiSA des Microscopies, Université et CHRU de Tours, Tours, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Center for Technological Resources and Research, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Center for Technological Resources and Research, Paris, France
| | - Romain Briandet
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| |
Collapse
|
41
|
Špacapan M, Myers MP, Braga L, Venturi V. Pseudomonas fuscovaginae quorum sensing studies: 5% dominates cell-to-cell conversations. Microbiol Spectr 2024; 12:e0417923. [PMID: 38511955 PMCID: PMC11064508 DOI: 10.1128/spectrum.04179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
A common feature of N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems is that the AHL signal is autoinducing. Once induced, a cell will further amplify the signal via a positive feedback loop. Pseudomonas fuscovaginae UPB0736 has two fully functional AHL QS systems, called PfsI/R and PfvI/R, which are inactive in a standard laboratory setting. In this work, we induce the QS systems with exogenous AHL signals and characterize the AHL signal amplification effect and QS activation dynamics at community and single-cell level. While the cognate signal is in both cases significantly further amplified to physiologically relevant levels, we observe only a limited response in terms of AHL synthase gene promoter activity. Additionally, the PfsI/R QS system exhibits a unique dramatic phenotypic heterogeneity, where only up to 5% of all cells amplify the signal further and are, thus, considered to be QS active. IMPORTANCE Bacteria use N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems for population-wide phenotypic coordination. The QS configuration in Pseudomonas fuscovaginae is dramatically different from other model examples of AHL QS signaling and, thus, represents an important exception to the norm, which usually states that QS triggers population-wide phenotypic transitions in relation to cell density. We argue that the differences in QS dynamics of P. fuscovaginae highlight its different evolutionary purpose, which is ultimately dictated by the selective pressures of its natural habitat. We hope that this example will further expand our understanding of the complex and yet unknown QS-enabled sociomicrobiology. Furthermore, we argue that exemptions to the QS norm will be found in other plant-pathogenic bacterial strains that grow in similar environments and that molecularly similar QS systems do not necessarily share a similar evolutionary purpose; therefore, generalizations about bacterial cell-to-cell signaling systems function should be avoided.
Collapse
Affiliation(s)
- Mihael Špacapan
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michael P. Myers
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| |
Collapse
|
42
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhances interspecies antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588010. [PMID: 38617332 PMCID: PMC11014535 DOI: 10.1101/2024.04.03.588010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of type IV pilus motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. P. aeruginosa reduced invasion leads to the formation of denser and thicker S. aureus colonies with significantly increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate the effective treatment of infections. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies build on our understanding of how P. aeruginosa type IV pili-mediated interspecies chemotaxis mediates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
43
|
Kulkarni OS, Mazumder M, Kini S, Hill ED, Aow JSB, Phua SML, Elejalde U, Kjelleberg S, Swarup S. Volatile methyl jasmonate from roots triggers host-beneficial soil microbiome biofilms. Nat Chem Biol 2024; 20:473-483. [PMID: 37957272 PMCID: PMC10972745 DOI: 10.1038/s41589-023-01462-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/28/2023] [Indexed: 11/15/2023]
Abstract
The rhizosphere is a niche surrounding plant roots, where soluble and volatile molecules mediate signaling between plants and the associated microbiota. The preferred lifestyle of soil microorganisms is in the form of biofilms. However, less is known about whether root volatile organic compounds (rVOCs) can influence soil biofilms beyond the 2-10 mm rhizosphere zone influenced by root exudates. We report that rVOCs shift the microbiome composition and growth dynamics of complex soil biofilms. This signaling is evolutionarily conserved from ferns to higher plants. Methyl jasmonate (MeJA) is a bioactive signal of rVOCs that rapidly triggers both biofilm and microbiome changes. In contrast to the planktonic community, the resulting biofilm community provides ecological benefits to the host from a distance via growth enhancement. Thus, a volatile host defense signal, MeJA, is co-opted for assembling host-beneficial biofilms in the soil microbiota and extending the sphere of host influence in the rhizosphere.
Collapse
Affiliation(s)
- Omkar S Kulkarni
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mrinmoy Mazumder
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore, Singapore
| | - Shruthi Kini
- Wilmar Innovation Center, Wilmar International Ltd., Singapore, Singapore
| | - Eric D Hill
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore, Singapore
| | - Johanan Shao Bing Aow
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Samantha Mun Lin Phua
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Untzizu Elejalde
- Wilmar Innovation Center, Wilmar International Ltd., Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Biological, Earth Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
| | - Sanjay Swarup
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- NUS Environmental Research Institute, Singapore, Singapore.
| |
Collapse
|
44
|
Lipsman V, Shlakhter O, Rocha J, Segev E. Bacteria contribute exopolysaccharides to an algal-bacterial joint extracellular matrix. NPJ Biofilms Microbiomes 2024; 10:36. [PMID: 38561371 PMCID: PMC10984933 DOI: 10.1038/s41522-024-00510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Marine ecosystems are influenced by phytoplankton aggregation, which affects processes like marine snow formation and harmful events such as marine mucilage outbreaks. Phytoplankton secrete exopolymers, creating an extracellular matrix (ECM) that promotes particle aggregation. This ECM attracts heterotrophic bacteria, providing a nutrient-rich and protective environment. In terrestrial environments, bacterial colonization near primary producers relies on attachment and the formation of multidimensional structures like biofilms. Bacteria were observed attaching and aggregating within algal-derived exopolymers, but it is unclear if bacteria produce an ECM that contributes to this colonization. This study, using Emiliania huxleyi algae and Phaeobacter inhibens bacteria in an environmentally relevant model system, reveals a shared algal-bacterial ECM scaffold that promotes algal-bacterial aggregation. Algal exudates play a pivotal role in promoting bacterial colonization, stimulating bacterial exopolysaccharide (EPS) production, and facilitating a joint ECM formation. A bacterial biosynthetic pathway responsible for producing a specific EPS contributing to bacterial ECM formation is identified. Genes from this pathway show increased expression in algal-rich environments. These findings highlight the underestimated role of bacteria in aggregate-mediated processes in marine environments, offering insights into algal-bacterial interactions and ECM formation, with implications for understanding and managing natural and perturbed aggregation events.
Collapse
Affiliation(s)
- Valeria Lipsman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Olesia Shlakhter
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jorge Rocha
- Programa de Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, 23096, México
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
45
|
Deiss-Yehiely E, Dzordzorme AE, Loiselle ME, Yonker LM, Hammond PT. Carboxylated Nanoparticle Surfaces Enhance Association with Mucoid Pseudomonas aeruginosa Biofilms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14573-14582. [PMID: 38484043 PMCID: PMC10982939 DOI: 10.1021/acsami.3c18656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 04/04/2024]
Abstract
Pseudomonas aeruginosa biofilms comprise three main polysaccharides: alginate, psl, and pel, which all imbue tolerance against exogenous antimicrobials. Nanoparticles (NPs) are an exciting new strategy to overcome the biofilm matrix for therapeutic delivery applications; however, zero existing FDA approvals for biofilm-specific NP formulations can be attributed to the complex interplay of physiochemical forces at the biofilm-NP interface. Here, we leverage a set of inducible, polysaccharide-specific, expressing isogenic P. aeruginosa mutants coupled with an assembled layer-by-layer NP (LbL NP) panel to characterize biofilm-NP interactions. When investigating these interactions using confocal microscopy, alginate-layered NPs associated more than dextran-sulfate-layered NPs with biofilms that had increased alginate production, including biofilms produced by mucoid P. aeruginosa isolates from people with cystic fibrosis. These differences were further confirmed in LbL NPs layered with polysaccharide- or hydrocarbon-based polymers with pendent carboxylate or sulfate functional groups. These data suggest carboxylated NP surfaces have enhanced interactions specifically with mucoid biofilms as compared to sulfated surfaces and lay the foundation for their inclusion as a design element for increasing biofilm-NP interactions and efficacious drug delivery.
Collapse
Affiliation(s)
- Elad Deiss-Yehiely
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Abigail E. Dzordzorme
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maggie Elizabeth Loiselle
- Mucosal
Immunology and Biology Research Center, Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Pediatrics, Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Lael M. Yonker
- Mucosal
Immunology and Biology Research Center, Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Pediatrics, Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Paula T. Hammond
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Institute
for Soldier Nanotechnologies, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Cucić S, Ells T, Guri A, Kropinski AM, Khursigara CM, Anany H. Degradation of Listeria monocytogenes biofilm by phages belonging to the genus Pecentumvirus. Appl Environ Microbiol 2024; 90:e0106223. [PMID: 38315006 PMCID: PMC10952537 DOI: 10.1128/aem.01062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024] Open
Abstract
Listeria monocytogenes is a pathogenic foodborne bacterium that is a significant cause of mortality associated with foodborne illness and causes many food recalls attributed to a bacteriological cause. Their ability to form biofilms contributes to the persistence of Listeria spp. in food processing environments. When growing as biofilms, L. monocytogenes are more resistant to sanitizers used in the food industry, such as benzalkonium chloride (BAC), as well as to physical stresses like desiccation and starvation. Lytic phages of Listeria are antagonistic to a broad range of Listeria spp. and may, therefore, have utility in reducing the occurrence of Listeria-associated food recalls by preventing food contamination. We screened nine closely related Listeria phages, including the commercially available Listex P100, for host range and ability to degrade microtiter plate biofilms of L. monocytogenes ATCC 19111 (serovar 1/2a). One phage, CKA15, was selected and shown to rapidly adsorb to its host under conditions relevant to applying the phage in dairy processing environments. Under simulated dairy processing conditions (SDPC), CKA15 caused a 2-log reduction in Lm19111 biofilm bacteria. This work supports the biosanitation potential of phage CKA15 and provides a basis for further investigation of phage-bacteria interactions in biofilms grown under SDPC. IMPORTANCE Listeria monocytogenes is a pathogenic bacterium that is especially dangerous for children, the elderly, pregnant women, and immune-compromised people. Because of this, the food industry takes its presence in their plants seriously. Food recalls due to L. monocytogenes are common with a high associated economic cost. In food-processing plants, Listeria spp. typically reside in biofilms, which are structures produced by bacteria that shield them from environmental stressors and are often attached to surfaces. The significance of our work is that we show a bacteriophage-a virus-infecting bacteria-can reduce Listeria counts by two orders of magnitude when the bacterial biofilms were grown under simulated dairy processing conditions. This work provides insights into how phages may be tested and used to develop biosanitizers that are effective but are not harmful to the environment or human health.
Collapse
Affiliation(s)
- Stevan Cucić
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Tim Ells
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada
| | - Anilda Guri
- Gay Lea Foods Co-operative, Research and Development Centre, Hamilton, Ontario, Canada
| | - Andrew M. Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
47
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci. mSphere 2024; 9:e0077123. [PMID: 38319113 PMCID: PMC10900908 DOI: 10.1128/msphere.00771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example is the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium without human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight Streptococcus species individually and found saliva to positively benefit growth rates while negatively influencing biofilm biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese leading to an advantage over its opponent. Our report highlights observable changes in microbial behaviors through leveraging environmental- and host-supplied resources over their competitors. IMPORTANCE Dental caries (tooth decay) is the most prevalent disease for both children and adults nationwide. Caries are initiated from demineralization of the enamel due to organic acid production through the metabolic activity of oral bacteria growing in biofilm communities attached to the tooth's surface. Mutans group streptococci are closely associated with caries development and initiation of the cariogenic cycle, which decreases the amount of acid-sensitive, health-associated commensal bacteria while selecting for aciduric and acidogenic species that then further drives the disease process. Defining the exchanges that occur between mutans group streptococci and oral commensals in a condition that closely mimics their natural environment is of critical need toward identifying factors that can influence odontopathogen establishment, persistence, and outgrowth. The goal of our research is to develop strategies, potentially through manipulation of microbial interactions characterized here, that prevent the emergence of mutans group streptococci while keeping the protective flora intact.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
48
|
Gallucci S. DNA at the center of mammalian innate immune recognition of bacterial biofilms. Trends Immunol 2024; 45:103-112. [PMID: 38281884 PMCID: PMC11032746 DOI: 10.1016/j.it.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Historically, the study of innate immune detection of bacterial infections has focused on the recognition of pathogen-associated molecular patterns (PAMPs) from bacteria growing as single cells in planktonic phase. However, over the past two decades, studies have highlighted an adaptive advantage of bacteria: the formation of biofilms. These structures are complex fortresses that stand against a hostile environment, including antibiotics and immune responses. Extracellular DNA (eDNA) is a crucial component of the matrix of most known biofilms. In this opinion article, I propose that eDNA is a universal PAMP that the immune system uses to recognize biofilms. Outstanding questions concern the discrimination between biofilm-associated eDNA and DNA from planktonic bacteria, the innate receptors involved, and the immune response to biofilms.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
49
|
Hall JM, Gutiérrez-Ferman JL, Shamseldin MM, Guo M, Gupta YA, Deora R, Dubey P. Opposing effects of acellular and whole cell pertussis vaccines on Bordetella pertussis biofilm formation, Siglec-F+ neutrophil recruitment and bacterial clearance in mouse nasal tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576795. [PMID: 38328073 PMCID: PMC10849580 DOI: 10.1101/2024.01.23.576795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Despite global vaccination, pertussis caused by Bordetella pertussis (Bp) is resurging. Pertussis resurgence is correlated with the switch from whole cell vaccines (wPV) that elicit TH1/TH17 polarized immune responses to acellular pertussis vaccines (aPV) that elicit primarily TH2 polarized immune responses. One explanation for the increased incidence in aPV-immunized individuals is the lack of bacterial clearance from the nose. To understand the host and bacterial mechanisms that contribute to Bp persistence, we evaluated bacterial localization and the immune response in the nasal associated tissues (NT) of naïve and immunized mice following Bp challenge. Bp resided in the NT of unimmunized and aPV-immunized mice as biofilms. In contrast, Bp biofilms were not observed in wPV-immunized mice. Following infection, Siglec-F+ neutrophils, critical for eliminating Bp from the nose, were recruited to the nose at higher levels in wPV immunized mice compared to aPV immunized mice. Consistent with this observation, the neutrophil chemokine CXCL1 was only detected in the NT of wPV immunized mice. Importantly, the bacteria and immune cells were primarily localized within the NT and were not recovered by nasal lavage (NL). Together, our data suggest that the TH2 polarized immune response generated by aPV vaccination facilitates persistence in the NT by impeding the infiltration of immune effectors and the eradication of biofilms In contrast, the TH1/TH17 immune phenotype generated by wPV, recruits Siglec-F+ neutrophils that rapidly eliminate the bacterial burden and prevent biofilm establishment. Thus, our work shows that aPV and wPV have opposing effects on Bp biofilm formation in the respiratory tract and provides a mechanistic explanation for the inability of aPV vaccination to control bacterial numbers in the nose and prevent transmission.
Collapse
Affiliation(s)
- Jesse M. Hall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | | | - Mohamed M. Shamseldin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Microbiology, The Ohio State University, Columbus, OH
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University Ain Helwan, Helwan, 11795, Egypt
| | - Myra Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Yash A. Gupta
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Microbiology, The Ohio State University, Columbus, OH
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|
50
|
Hunault L, Auria E, England P, Deschamps J, Briandet R, Kremer V, Iannascoli B, Vidal-Maison L, Guo C, Macdonald L, Péchiné S, Denève-Larrazet C, Dupuy B, Gorochov G, Bruhns P, Sterlin D. Anti-S-layer monoclonal antibodies impact Clostridioides difficile physiology. Gut Microbes 2024; 16:2301147. [PMID: 38289292 PMCID: PMC10829821 DOI: 10.1080/19490976.2023.2301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Clostridioides difficile (C. difficile), a gram-positive anaerobic and spore-forming bacterium, is the leading cause of nosocomial antibiotic-associated diarrhea in adults which is characterized by high levels of recurrence and mortality. Surface (S)-layer Protein A (SlpA), the most abundantly expressed protein on the bacterial surface, plays a crucial role in the early stages of infection although the nature of its involvement in C. difficile physiology is yet to be fully understood. Anti-S-layer antibodies have been identified in the sera of convalescent patients and have been correlated with improved outcomes of C. difficile infection (CDI). However, the precise mechanisms by which anti-S-layer antibodies confer protection to the host remain unknown. In this study, we report the first monoclonal antibodies (mAbs) targeting the S-layer of reference strain 630. Characterization of these mAbs unraveled important roles for the S-layer protein in growth, toxin secretion, and biofilm formation by C. difficile, with differential and even opposite effects of various anti-SlpA mAbs on these functions. Moreover, one anti-SlpA mAb impaired C. difficile growth and conferred sensitivity to lysozyme-induced lysis. The results of this study show that anti-S-layer antibody responses can be beneficial or harmful for the course of CDI and provide important insights for the development of adequate S-layer-targeting therapeutics.
Collapse
Affiliation(s)
- Lise Hunault
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
- Collège doctoral, Sorbonne Université, Paris, France
| | - Emile Auria
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Patrick England
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Plateforme de Biophysique Moléculaire, Paris, France
| | - Julien Deschamps
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Romain Briandet
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Vanessa Kremer
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Inserm, Châtenay-Malabry, France
| | - Bruno Iannascoli
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
| | - Léo Vidal-Maison
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
| | | | | | - Séverine Péchiné
- Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Orsay, France
| | - Cécile Denève-Larrazet
- Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Orsay, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Guy Gorochov
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
| | - Pierre Bruhns
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
| | - Delphine Sterlin
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
| |
Collapse
|