1
|
Yılmaz S, Eken A, Sezer Z, Bağcı BŞ, Erdem S, Sarıkaya MD, Kaplan B, Inal A, Bayram A, Kalın Unuvar G, Zararsız G, Yerlitas Sİ, Cakir N, Pavel STI, Uygut MA, Yetiskin H, Kara A, Ozdarendeli A. Vaccination with inactivated SARS-CoV-2 vaccine TURKOVAC induces durable humoral and cellular immune responses up to 8 months. Front Med (Lausanne) 2025; 12:1524393. [PMID: 40357274 PMCID: PMC12066321 DOI: 10.3389/fmed.2025.1524393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Background The rapid spread of the SARS-CoV-2 virus has led to a global health crisis, necessitating swift responses in medical science, mainly through vaccination strategies. While short-term vaccine effectiveness is evident, immune protection's long-term effects and duration remain incompletely understood. Systematic monitoring of these responses is essential for optimizing vaccination strategies. Aims This study aimed to explore the durability of antigen-specific T and B cell responses and antibody levels up to 8 months post-immunization with the inactivated TURKOVAC vaccine in volunteers. Additionally, the impact of two versus three doses of vaccination on these parameters was analyzed. Methods Volunteers (n = 80) received two or three doses of TURKOVAC. Spike-specific B cells, CD4+ T cells, CD8+ T cells, and antibody levels were measured at multiple time points post-immunization. Results Spike-specific B cells remained elevated up to 8 months post-immunization. SARS-CoV-2-specific CD4+ and CD8+ T cells peaked at 4 months but declined thereafter. TURKOVAC resulted in durable antigen-specific humoral and cellular immune memory with distinct kinetics. Still, most assessments observed no significant differences between two and three doses, except for antigen specific-IL-2 and CD4+ LAMP1 responses. Conclusion TURKOVAC vaccination induces durable immune responses, with spike-specific B cells persisting up to 8 months and T cell responses peaking at 4 months before declining. These findings suggest that TURKOVAC contributes to long-term immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Seçil Yılmaz
- Genome and Stem Cell Center, Erciyes University, Kayseri, Türkiye
| | - Ahmet Eken
- Genome and Stem Cell Center, Erciyes University, Kayseri, Türkiye
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Zafer Sezer
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri, Türkiye
| | - Burcu Şen Bağcı
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
| | - Serife Erdem
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | | | - Busra Kaplan
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ahmet Inal
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri, Türkiye
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Gamze Kalın Unuvar
- Infectious Diseases Clinic, Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Gokmen Zararsız
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Serra İlayda Yerlitas
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Nuri Cakir
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | | | - Muhammet Ali Uygut
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
| | - Hazel Yetiskin
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
| | - Ates Kara
- Pediatric Infectious Department, Faculty of Medicine, Hacettepe University Hospitals, Ankara, Türkiye
| | - Aykut Ozdarendeli
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
2
|
Karl V, Hofmann M, Thimme R. Role of antiviral CD8+ T cell immunity to SARS-CoV-2 infection and vaccination. J Virol 2025; 99:e0135024. [PMID: 40029063 PMCID: PMC11998524 DOI: 10.1128/jvi.01350-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
The COVID-19 pandemic has greatly enhanced our understanding of CD8+ T cell immunity and their role in natural infection and vaccine-induced protection. Rapid and early SARS-CoV-2-specific CD8+ T cell responses have been associated with efficient viral clearance and mild disease. Virus-specific CD8+ T cell responses can compensate for waning, morbidity-related, and iatrogenic reduction of humoral immunity. After infection or vaccination, SARS-CoV-2-specific memory CD8+ T cells are formed, which mount an efficient recall response in the event of breakthrough infection and help to protect from severe disease. Due to their breadth and ability to target mainly highly conserved epitopes, SARS-CoV-2-specific CD8+ T cells are also able to cross-recognize epitopes of viral variants, thus maintaining immunity even after the emergence of viral evolution. In some cases, however, CD8+ T cells may contribute to the pathogenesis of severe COVID-19. In particular, delayed and uncontrolled, e.g., nonspecific and hyperactivated, cytotoxic CD8+ T cell responses have been linked to poor COVID-19 outcomes. In this minireview, we summarize the tremendous knowledge about CD8+ T cell responses to SARS-CoV-2 infection and COVID-19 vaccination that has been gained over the past 5 years, while also highlighting the critical knowledge gaps that remain.
Collapse
Affiliation(s)
- Vivien Karl
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Zhang Y, Li X, Yang Y, Yin Y, Zhong Y, Xu Q, Tu J, Deng J, Liang H, Shen T. Impact of SARS-CoV-2 inactivated vaccine on symptoms following omicron variant breakthrough infection. Vaccine 2025; 48:126722. [PMID: 39813973 DOI: 10.1016/j.vaccine.2025.126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The SARS-CoV-2 Omicron variant and its sublineages continue to circulate widely. Clinical outcomes with this variant differ among individuals, primarily influenced by host immunity. Previous studies have explored the relationship between immune responses and severe diseases in infected or convalescent patients. However, the impact of vaccine-induced immune responses on disease severity, especially in cases of mild infection following breakthrough infection, remains unclear. This is primarily due to the lack of assessment of immune status in vaccinated individuals before infection. In this study, we aimed to elucidate the causality between virus-specific cellular and humoral immune responses and the severity of symptoms in breakthrough infected patients from a long-term follow-up post-vaccination cohort. A questionnaire survey was conducted to collect general symptoms upon breakthrough infection with the Omicron variants. Plasma levels of specific antibodies (neutralizing antibodies, anti-S IgG, and anti-N IgG) and T cell responses induced by inactivated SARS-CoV-2 vaccine were evaluated. The findings revealed that individuals with milder symptoms, particularly lower peak fever temperatures, exhibited higher antibody levels and enhanced T cell activation and responses prior to infection. This suggests that cellular and humoral immunity induced by inactivated vaccines may provide protection against severe clinical symptoms following breakthrough infection.
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China..
| | - Xinjie Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China..
| | - Yingxiang Yang
- Senior Department of Hepato-Pancreato-Biliary Surgery, The First Medical Center of PLA General Hospital, Beijing 100853, China.
| | - Yue Yin
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China..
| | - Yan Zhong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Qiang Xu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China..
| | - Jing Tu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China..
| | - Juan Deng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China..
| | - Hua Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Tao Shen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China..
| |
Collapse
|
4
|
Tripathy AS, Singh D, Trimbake D, Salwe S, Tripathy S, Kakrani A, Jali P, Chavan H, Yadav P, Sahay R, Sarje P, Babar P, Shete A, Nandapurkar A, Kulkarni M. Humoral and cellular immune response to AZD1222 /Covishield and BV152/Covaxin COVID-19 vaccines among adults in India. Hum Vaccin Immunother 2024; 20:2410579. [PMID: 39434214 PMCID: PMC11497953 DOI: 10.1080/21645515.2024.2410579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Several COVID-19 vaccines were developed using different approaches to prevent both symptomatic COVID-19 cases and fatalities. The adults were vaccinated with two doses of AZD1222/Covishield (n = 77) [manufactured by Serum Institute of India Pvt Ltd] vaccine and BV152/Covaxin (n = 99) [manufactured by Bharat Biotech] vaccine. They were assessed for immune response at pre-vaccination, 1 month post first and 6 months post second dose for anti-SARS-CoV-2 IgG antibody, surrogate neutralizing antibody (NAbs), immune phenotypes, antigen specific NK, B and T cell response, their effector functionality by ELISPOT and plasma cytokine profile. Both vaccines elicited enhanced IgG antibody and Nab levels compared to the baseline. BV152/Covaxin, the whole virus inactivated vaccine exhibited higher IgG (70% vs 100%), Nab (90% vs 100%), and robust T cell (31% vs 96%) responses at 6 months post second dose compared to 1 month post first dose justifying the utility of the second dose. Detection of SARS-CoV-2 WV and S1 specific CD4+ central T cell memory response in AZD1222/Covishield vaccinee at 6 months post second dose and higher CD4+ and CD8+ naïve and central memory T cell response in BV152/Covaxin vaccinee at 1 month post first dose indicated the involvement of memory T cells. Persistent IgG and NAb responses along with IgG+B and IgG+memory B cells in AZD1222/Covishield recipients at 6 months post second dose indicated sustained immune memory response. Continued heightened IFN-γ secreting T cell response (ELISPOT) displayed by both the vaccine platforms could serve as a co correlate of protection, further to evaluation in follow up studies. Overall, our data suggest that coordinated functions of humoral and cellular branches of adaptive immunity may pave ways toward protective immunity against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Srikanth Tripathy
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | - Arjun Kakrani
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | - Priyanka Jali
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | - Hanmant Chavan
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | - Pragya Yadav
- ICMR-National Institute of Virology, Pune, India
| | - Rima Sahay
- ICMR-National Institute of Virology, Pune, India
| | | | - Prasad Babar
- ICMR-National Institute of Virology, Pune, India
| | - Anita Shete
- ICMR-National Institute of Virology, Pune, India
| | | | | |
Collapse
|
5
|
Poh XY, Torres-Ruesta A, Yoong T, Wong N, Tan CW, Rouers A, Chavatte JM, Goh YS, Rao S, Chia PY, Ong SWX, Lee TH, Sadarangani SP, Lin RJH, Neo V, Kam IKJ, Huang Y, Hor PX, Loh CY, Yeoh AYY, Lim DRX, Chia W, Ren EC, Lin RTP, Fong SW, Renia L, Lye DC, Wang LF, Ng LFP, Young BE. Immunogenicity of mRNA vs. BBV152 vaccine boosters against Omicron subvariants: Final results from Phase B of the PRIBIVAC study, a randomized clinical trial. Vaccine 2024; 42:126275. [PMID: 39241318 DOI: 10.1016/j.vaccine.2024.126275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/15/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND BBV152 (Covaxin™) is a whole-virion inactivated SARS-CoV-2 vaccine mixed with an immune adjuvant. We aimed to compare immune responses after booster vaccination with heterologous BBV152 versus homologous mRNA vaccine. METHODS We conducted a randomized, participant-blinded, controlled trial. Fifty mRNA-vaccinated participants were enrolled and randomized to receive an mRNA booster (n = 26) or BBV152 (n = 24). Blood samples were collected pre-vaccination, and at Day 7, 28, 180 and 360 post-booster for analysis of humoral and cellular immune responses. Primary end point was the SARS-CoV-2 anti-spike antibody titer at day 28. RESULTS Recruitment began in January 2022 and was terminated early due to the BBV152 group meeting pre-specified criteria for futility. At Day 28 post-boost, mean SARS-CoV-2 spike antibody titers were lower with BBV152 (2004 IU/mL; 95 % confidence interval [CI], 1132-3548) vs mRNA (26,669 IU/mL; 95 % CI, 21,330-33,266; p < 0.0001), but comparable levels of spike-specific CD4 and cytotoxic T-cells were observed. Anti-spike antibody titers remained significantly different at Day 180: BBV152 4467 IU/mL (95 % CI, 1959-10,186) vs mRNA 20,749 IU/mL (95 % CI, 12,303-35,075; p = 0.0017). Levels of surrogate virus neutralizing antibodies against ancestral and Omicron subvariants BA.1 and BA.2 were significantly higher among mRNA recipients at Day 180, including after adjusting for intercurrent infection. By Day 360, anti-spike antibody titers and neutralizing antibody levels against Omicron subvariants became similar between vaccine groups. By the end of the study, 16 in each arm (mRNA 64 % and BBV152 69.6 %) had breakthrough infections and time to COVID-19 infection between vaccine groups were similar (p = 0.63). CONCLUSIONS Wild-type SARS-CoV-2 anti-spike antibody titer and surrogate virus neutralizing test levels against wild-type SARS-CoV-2 and Omicron subvariants BA.1/BA.2/BA.5 were significantly higher at Day 28 and 180 in individuals who received booster vaccination with an mRNA vaccine compared with BBV152. CLINICAL TRIAL REGISTRATION NUMBER NCT05142319.
Collapse
MESH Headings
- Humans
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Female
- Male
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Adult
- Immunization, Secondary/methods
- Middle Aged
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- mRNA Vaccines/immunology
- Young Adult
- Immunity, Humoral
- Immunity, Cellular
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
| | - Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | | | - Nathan Wong
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | | | - Angeline Rouers
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | - Jean-Marc Chavatte
- National Centre for Infectious Diseases, Singapore; National Public Health Laboratory, Singapore
| | - Yun Shan Goh
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | - Suma Rao
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore
| | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Sean W X Ong
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore
| | - Tau Hong Lee
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore
| | - Sapna P Sadarangani
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ray J H Lin
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore
| | - Vanessa Neo
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | - Isaac Kai Jie Kam
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | - Yuling Huang
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | - Pei Xiang Hor
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | - Chiew Yee Loh
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | | | - Daniel R X Lim
- National Centre for Infectious Diseases, Singapore; National Public Health Laboratory, Singapore
| | | | - Ee Chee Ren
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore
| | - Raymond T P Lin
- National Centre for Infectious Diseases, Singapore; National Public Health Laboratory, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science Technology and Research (A*STAR), Singapore; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK; National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK.
| | - Barnaby E Young
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
6
|
Muthukutty P, MacDonald J, Yoo SY. Combating Emerging Respiratory Viruses: Lessons and Future Antiviral Strategies. Vaccines (Basel) 2024; 12:1220. [PMID: 39591123 PMCID: PMC11598775 DOI: 10.3390/vaccines12111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging viral diseases, including seasonal illnesses and pandemics, pose significant global public health risks. Respiratory viruses, particularly coronaviruses and influenza viruses, are associated with high morbidity and mortality, imposing substantial socioeconomic burdens. This review focuses on the current landscape of respiratory viruses, particularly influenza and SARS-CoV-2, and their antiviral treatments. It also discusses the potential for pandemics and the development of new antiviral vaccines and therapies, drawing lessons from past outbreaks to inform future strategies for managing viral threats.
Collapse
Affiliation(s)
| | | | - So Young Yoo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea; (P.M.); (J.M.)
| |
Collapse
|
7
|
Singh A, Boggiano C, Yin DE, Polakowski L, Majji SP, Leitner WW, Levy O, De Paris K. Precision adjuvants for pediatric vaccines. Sci Transl Med 2024; 16:eabq7378. [PMID: 39231242 PMCID: PMC11911902 DOI: 10.1126/scitranslmed.abq7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Elucidating optimal vaccine adjuvants for harnessing age-specific immune pathways to enhance magnitude, breadth, and durability of immunogenicity remains a key gap area in pediatric vaccine design. A better understanding of age-specific adjuvants will inform precision discovery and development of safe and effective vaccines for protecting children from preventable infectious diseases.
Collapse
Affiliation(s)
- Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - César Boggiano
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Dwight E. Yin
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Laura Polakowski
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Sai P. Majji
- Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - Wolfgang W. Leitner
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Jitender, Vikram Kumar B, Singh S, Verma G, Kumar R, Mishra PM, Kumar S, Nagaraj SK, Nag J, Joy CM, Nikam B, Singh D, Pooja, Kalidas N, Singh S, Mumtaz, Bhardwaj AK, Mankotia DS, Ringe RP, Gupta N, Tripathi S, Mishra RPN. Mammalian cell expressed recombinant trimeric spike protein is a potent vaccine antigen and confers near-complete protection against SARS-CoV-2 infection in Hamster. Vaccine 2024; 42:126099. [PMID: 38981743 DOI: 10.1016/j.vaccine.2024.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Numerous vaccine candidates have emerged in the fight against SARS-CoV-2, yet the challenges posed by viral evolution and the evasion of vaccine-induced immunity persist. The development of broadly protective vaccines is essential in countering the threat posed by variants of concern (VoC) capable of eluding existing vaccine defenses. Among the diverse SARS-CoV-2 vaccine candidates, detailed characterization of those based on the expression of the entire spike protein in mammalian cells have been limited. In our study, we engineered a recombinant prefusion-stabilized trimeric spike protein antigen, IMT-CVAX, encoded by the IMT-C20 gene. This antigen was expressed utilizing a suspension mammalian cell line (CHO-S). The establishment of a stable cell line expressing IMT-CVAX involved the integration of the gene into the CHO genome, followed by the expression, purification, and characterization of the protein. To gauge the vaccine potential of adjuvanted IMT-CVAX, we conducted assessments in small animals. Analyses of blood collected from immunized animals included measurements of anti-spike IgG, SARS-CoV-2 neutralization, and responses from GC-B and Tfh cells. Furthermore, the protective efficacy of IMT-CVAX was evaluated using a Hamster challenge model. Our findings indicate that adjuvanted IMT-CVAX elicits an excellent immune response in both mice and hamsters. Notably, sera from animals immunized with IMT-CVAX effectively neutralize a diverse range of SARS-CoV-2 variants. Moreover, IMT-CVAX immunization conferred complete protection to hamsters against SARS-CoV-2 infection. In hACE2 transgenic mice, IMT-CVAX vaccination induced a robust response from GC-B and Tfh cells. Based on our preclinical model assessments, adjuvanted IMT-CVAX emerges as a highly efficacious vaccine candidate. This protein-subunit-based vaccine exhibits promise for clinical development, offering an affordable solution for both primary and heterologous immunization against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jitender
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - B Vikram Kumar
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sneha Singh
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Geetika Verma
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Reetesh Kumar
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Pranaya M Mishra
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sahil Kumar
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Santhosh K Nagaraj
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Joydeep Nag
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Christy M Joy
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | | | | | - Pooja
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nidhi Kalidas
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shubham Singh
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mumtaz
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashwani K Bhardwaj
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Dhananjay S Mankotia
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rajesh P Ringe
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nimesh Gupta
- National Institute of Immunology, New Delhi, India
| | - Shashank Tripathi
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India; Microbiology & Cell Biology Department, Indian Institute of Science, Bengaluru, India
| | - Ravi P N Mishra
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
9
|
Ansari A, Coshic P, Sharma A, Sette A, Weiskopf D, Gupta N. T-B coculture assay for functional analysis of antigen-specific memory CD4 + T cells. STAR Protoc 2024; 5:103119. [PMID: 38850540 PMCID: PMC11215106 DOI: 10.1016/j.xpro.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
The B cell "help" function of CD4+ T cells is critical in establishing the humoral arm of adaptive immunity. Here, we present a protocol to measure the "help" function of antigen-specific memory T cells using an autologous T-B coculture supplemented with monocytes. We describe steps for cell preparation, human cell sorting, coculture, and a flow cytometry-based assessment of B cell outputs. This protocol demonstrates enhanced sensitivity and proves useful in evaluating T-B collaboration in various contexts of health and disease. For complete details on the use and execution of this protocol, please refer to Ansari et al.1.
Collapse
Affiliation(s)
- Asgar Ansari
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Poonam Coshic
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
10
|
Schüller SS, Barman S, Mendez-Giraldez R, Soni D, Daley J, Baden LR, Levy O, Dowling DJ. Immune profiling of age and adjuvant-specific activation of human blood mononuclear cells in vitro. Commun Biol 2024; 7:709. [PMID: 38851856 PMCID: PMC11162429 DOI: 10.1038/s42003-024-06390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
Vaccination reduces morbidity and mortality due to infections, but efficacy may be limited due to distinct immunogenicity at the extremes of age. This raises the possibility of employing adjuvants to enhance immunogenicity and protection. Early IFNγ production is a hallmark of effective vaccine immunogenicity in adults serving as a biomarker that may predict effective adjuvanticity. We utilized mass cytometry (CyTOF) to dissect the source of adjuvant-induced cytokine production in human blood mononuclear cells (BMCs) from newborns (~39-week-gestation), adults (~18-63 years old) and elders (>65 years of age) after stimulation with pattern recognition receptors agonist (PRRa) adjuvants. Dimensionality reduction analysis of CyTOF data mapped the BMC compartment, elucidated age-specific immune responses and profiled PRR-mediated activation of monocytes and DCs upon adjuvant stimulation. Furthermore, we demonstrated PRRa adjuvants mediated innate IFNγ induction and mapped NK cells as the key source of TLR7/8 agonist (TLR7/8a) specific innate IFNγ responses. Hierarchical clustering analysis revealed age and TLR7/8a-specific accumulation of innate IFNγ producing γδ T cells. Our study demonstrates the application of mass cytometry and cutting-edge computational approaches to characterize immune responses across immunologically distinct age groups and may inform identification of the bespoke adjuvantation systems tailored to enhance immunity in distinct vulnerable populations.
Collapse
Affiliation(s)
- Simone S Schüller
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Neonatal Directorate, Child and Adolescent Health Service, Perth, Australia
| | - Soumik Barman
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Dheeraj Soni
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Sanofi, Cambridge, MA, USA
| | - John Daley
- Dana Farber CyTOF Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lindsey R Baden
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT & Harvard, Cambridge, MA, USA.
| | - David J Dowling
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Lavelle EC, McEntee CP. Vaccine adjuvants: Tailoring innate recognition to send the right message. Immunity 2024; 57:772-789. [PMID: 38599170 DOI: 10.1016/j.immuni.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Adjuvants play pivotal roles in vaccine development, enhancing immunization efficacy through prolonged retention and sustained release of antigen, lymph node targeting, and regulation of dendritic cell activation. Adjuvant-induced activation of innate immunity is achieved via diverse mechanisms: for example, adjuvants can serve as direct ligands for pathogen recognition receptors or as inducers of cell stress and death, leading to the release of immunostimulatory-damage-associated molecular patterns. Adjuvant systems increasingly stimulate multiple innate pathways to induce greater potency. Increased understanding of the principles dictating adjuvant-induced innate immunity will subsequently lead to programming specific types of adaptive immune responses. This tailored optimization is fundamental to next-generation vaccines capable of inducing robust and sustained adaptive immune memory across different cohorts.
Collapse
Affiliation(s)
- Ed C Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Craig P McEntee
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Ahmed N, Athavale A, Tripathi AH, Subramaniam A, Upadhyay SK, Pandey AK, Rai RC, Awasthi A. To be remembered: B cell memory response against SARS-CoV-2 and its variants in vaccinated and unvaccinated individuals. Scand J Immunol 2024; 99:e13345. [PMID: 38441373 DOI: 10.1111/sji.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 03/07/2024]
Abstract
COVID-19 disease has plagued the world economy and affected the overall well-being and life of most of the people. Natural infection as well as vaccination leads to the development of an immune response against the pathogen. This involves the production of antibodies, which can neutralize the virus during future challenges. In addition, the development of cellular immune memory with memory B and T cells provides long-lasting protection. The longevity of the immune response has been a subject of intensive research in this field. The extent of immunity conferred by different forms of vaccination or natural infections remained debatable for long. Hence, understanding the effectiveness of these responses among different groups of people can assist government organizations in making informed policy decisions. In this article, based on the publicly available data, we have reviewed the memory response generated by some of the vaccines against SARS-CoV-2 and its variants, particularly B cell memory in different groups of individuals.
Collapse
Affiliation(s)
- Nafees Ahmed
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Atharv Athavale
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ankita H Tripathi
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Adarsh Subramaniam
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | | | - Ramesh Chandra Rai
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
13
|
Gao M, Xing X, Hao W, Zhang X, Zhong K, Lu C, Deng X, Yu L. Diverse immune responses in vaccinated individuals with and without symptoms after omicron exposure during the recent outbreak in Guangzhou, China. Heliyon 2024; 10:e24030. [PMID: 38293451 PMCID: PMC10827461 DOI: 10.1016/j.heliyon.2024.e24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Objectives During the recent wave of coronavirus disease 2019 (COVID-19) infections in China, most individuals have been vaccinated and exposed to the omicron variant. In the present study, two cohorts were observed in the vaccinated population: vaccinated individuals with symptoms (VIWS) and those without symptoms (VIWOS). Our study aimed to characterize the antibody response in two cohorts: VIWS and VIWOS. Methods A questionnaire survey was conducted in the community. Blood and saliva samples were collected from 124 individuals in the VIWS and VIWOS cohorts. Capture enzyme-linked immunosorbent assay (ELISA) was performed to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibodies. Results The questionnaire survey revealed that 30.0 % (302/1005) of individuals in the older adult group (≥65 years) experienced no symptoms, whereas the rate of individuals without symptoms in the younger group (<65 years) was 17.8 % (166/932). Nucleocapsid (N)-specific IgM (N-IgM) was detected in the blood samples at a rate of 69.2 % (54/78) in the VIWS cohort. The positivity rate for N-specific IgA (N-IgA) was 93.6 % (73/78). In addition, the positivity rates of spike (S)-specific IgA (S-IgA) and N-IgA detected in saliva samples were 42 % (21/50) and 54 % (27/50), respectively. Both N-IgA positivity and negativity were observed in the VIWOS cohort. The detection rate of N-IgM positivity was 57.1 % (12/21) in the N-IgA-positive group. In addition, 54.3 % (25/46) of the vaccinated individuals without symptoms were IgA-negative. Conclusions Our study indicates that substantial N-specific antibodies were induced during omicron infection and that testing for N-IgA in both blood and saliva may aid in the diagnosis of SARS-CoV-2 infection in vaccinated populations.
Collapse
Affiliation(s)
- Ming Gao
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Xiaomin Xing
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Wenbiao Hao
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Xulei Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Kexin Zhong
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Canhui Lu
- Jiahe Community Health Service Center of Baiyun District, Guangzhou 510440, China
| | - Xilong Deng
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Lei Yu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| |
Collapse
|
14
|
Sezer Z, Pavel STI, Inal A, Yetiskin H, Kaplan B, Uygut MA, Aslan AF, Bayram A, Mazicioglu M, Kalin Unuvar G, Yuce ZT, Aydin G, Kaya RK, Ates I, Kara A, Ozdarendeli A. Long-Term Immunogenicity and Safety of a Homologous Third Dose Booster Vaccination with TURKOVAC: Phase 2 Clinical Study Findings with 32-Week Post-Booster Follow-Up. Vaccines (Basel) 2024; 12:140. [PMID: 38400124 PMCID: PMC10893411 DOI: 10.3390/vaccines12020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccine-induced immunity wanes over time and warrants booster doses. We investigated the long-term (32 weeks) immunogenicity and safety of a third, homologous, open-label booster dose of TURKOVAC, administered 12 weeks after completion of the primary series in a randomized, controlled, double-blind, phase 2 study. Forty-two participants included in the analysis were evaluated for neutralizing antibodies (NAbs) (with microneutralization (MNT50) and focus reduction (FRNT50) tests), SARS-CoV-2 S1 RBD (Spike S1 Receptor Binding Domain), and whole SARS-CoV-2 (with ELISA) IgGs on the day of booster injection and at weeks 1, 2, 4, 8, 16, 24, and 32 thereafter. Antibody titers increased significantly from week 1 and remained higher than the pre-booster titers until at least week 4 (week 8 for whole SARS-CoV-2) (p < 0.05 for all). Seroconversion (titers ≥ 4-fold compared with pre-immune status) persisted 16 weeks (MNT50: 6-fold; FRNT50: 5.4-fold) for NAbs and 32 weeks for S1 RBD (7.9-fold) and whole SARS-CoV-2 (9.4-fold) IgGs. Nine participants (20.9%) tested positive for SARS-CoV-2 RT-PCR between weeks 8 and 32 of booster vaccination; none of them were hospitalized or died. These findings suggest that boosting with TURKOVAC can provide effective protection against COVID-19 for at least 8 weeks and reduce the severity of the disease.
Collapse
Affiliation(s)
- Zafer Sezer
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri 38280, Türkiye
| | - Shaikh Terkis Islam Pavel
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Ahmet Inal
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri 38280, Türkiye
| | - Hazel Yetiskin
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Busra Kaplan
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Muhammet Ali Uygut
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Ahmet Furkan Aslan
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Mumtaz Mazicioglu
- Department of Family Medicine, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Gamze Kalin Unuvar
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Zeynep Ture Yuce
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Gunsu Aydin
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
- Department of Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | | | - Ihsan Ates
- Department of Internal Medicine, University of Health Sciences Ankara City Hospital, Ankara 06530, Türkiye
| | - Ates Kara
- Health Institutes of Türkiye (TUSEB), Istanbul 34718, Türkiye
- Department of Pediatrics, Pediatric Infectious Disease, Faculty of Medicine, Hacettepe University, Ankara 06430, Türkiye
| | - Aykut Ozdarendeli
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
- Department of Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| |
Collapse
|
15
|
Luvira V, Pitisuttithum P. Effect of homologous or heterologous vaccine booster over two initial doses of inactivated COVID-19 vaccine. Expert Rev Vaccines 2024; 23:283-293. [PMID: 38369699 DOI: 10.1080/14760584.2024.2320861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Inactivated vaccines were delivered to low- and middle-income countries during the early pandemics of COVID-19. Currently, more than 10 inactivated COVID-19 vaccines have been developed. Most inactivated vaccines contain an inactivated whole-cell index SARS-CoV-2 strain that is adjuvant. Whole virions inactivated with aluminum hydroxide vaccines were among the most commonly used. However, with the emerging of COVID-19 variants and waning of the immunity of two doses of after 3 months, WHO and many local governments have recommended the booster-dose program especially with heterologous platform vaccine. AREA COVERED This review was conducted through a literature search of the MEDLINE database to identify articles published from 2020 to 2023 covered the inactivated COVID-19 vaccines primary series with homologous and heterologous booster focusing on safety, immunogenicity, efficacy, and effectiveness. EXPERT OPINION The inactivated vaccines, especially whole virion inactivated in aluminum hydroxide appeared to be safe and had good priming effects. Immune responses generated after one dose of heterologous boost were high and able to preventing severity of disease and symptomatic infection. A new approach to inactivated vaccine has been developed using inactivating recombinant vector virus-NDV-HXP-S vaccine.
Collapse
Affiliation(s)
- Viravarn Luvira
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Chen C, Wang X, Zhang Z. Humoral and cellular immunity against diverse SARS-CoV-2 variants. J Genet Genomics 2023; 50:934-947. [PMID: 37865193 DOI: 10.1016/j.jgg.2023.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, the virus has rapidly spread worldwide. This has led to an unprecedented global pandemic, marked by millions of COVID-19 cases and a significant number of fatalities. Over a relatively short period, several different vaccine platforms are developed and deployed for use globally to curb the pandemic. However, the genome of SARS-CoV-2 continuously undergoes mutation and/or recombination, resulting in the emergence of several variants of concern (VOC). These VOCs can elevate viral transmission and evade the neutralizing antibodies induced by vaccines, leading to reinfections. Understanding the impact of the SARS-CoV-2 genomic mutation on viral pathogenesis and immune escape is crucial for assessing the threat of new variants to public health. This review focuses on the emergence and pathogenesis of VOC, with particular emphasis on their evasion of neutralizing antibodies. Furthermore, the memory B cell, CD4+, and CD8+ T cell memory induced by different COVID-19 vaccines or infections are discussed, along with how these cells recognize VOC. This review summarizes the current knowledge on adaptive immunology regarding SARS-CoV-2 infection and vaccines. Such knowledge may also be applied to vaccine design for other pathogens.
Collapse
Affiliation(s)
- Changxu Chen
- Center for Infectious Disease Research, School of Life Science, Westlake University, Hangzhou, Zhejiang 310001, China
| | - Xin Wang
- Center for Infectious Disease Research, School of Life Science, Westlake University, Hangzhou, Zhejiang 310001, China
| | - Zeli Zhang
- Center for Infectious Disease Research, School of Life Science, Westlake University, Hangzhou, Zhejiang 310001, China.
| |
Collapse
|
17
|
Mathew DS, Pandya T, Pandya H, Vaghela Y, Subbian S. An Overview of SARS-CoV-2 Etiopathogenesis and Recent Developments in COVID-19 Vaccines. Biomolecules 2023; 13:1565. [PMID: 38002247 PMCID: PMC10669259 DOI: 10.3390/biom13111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
The Coronavirus disease-2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has significantly impacted the health and socioeconomic status of humans worldwide. Pulmonary infection of SARS-CoV-2 results in exorbitant viral replication and associated onset of inflammatory cytokine storm and disease pathology in various internal organs. However, the etiopathogenesis of SARS-CoV-2 infection is not fully understood. Currently, there are no targeted therapies available to cure COVID-19, and most patients are treated empirically with anti-inflammatory and/or anti-viral drugs, based on the disease symptoms. Although several types of vaccines are currently implemented to control COVID-19 and prevent viral dissemination, the emergence of new variants of SARS-CoV-2 that can evade the vaccine-induced protective immunity poses challenges to current vaccination strategies and highlights the necessity to develop better and improved vaccines. In this review, we summarize the etiopathogenesis of SARS-CoV-2 and elaborately discuss various types of vaccines and vaccination strategies, focusing on those vaccines that are currently in use worldwide to combat COVID-19 or in various stages of clinical development to use in humans.
Collapse
Affiliation(s)
- Dona Susan Mathew
- Department of Microbiology, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 608204, India;
| | - Tirtha Pandya
- Public Health Research Institute (PHRI) Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (T.P.); (H.P.); (Y.V.)
| | - Het Pandya
- Public Health Research Institute (PHRI) Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (T.P.); (H.P.); (Y.V.)
| | - Yuzen Vaghela
- Public Health Research Institute (PHRI) Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (T.P.); (H.P.); (Y.V.)
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI) Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (T.P.); (H.P.); (Y.V.)
| |
Collapse
|
18
|
Rakshit S, Babji S, Parthiban C, Madhavan R, Adiga V, J SE, Chetan Kumar N, Ahmed A, Shivalingaiah S, Shashikumar N, V M, Johnson AR, Ramesh N, B RG, Asokan M, Mayor S, Kang G, D'souza G, Dias M, Vyakarnam A. Polyfunctional CD4 T-cells correlating with neutralising antibody is a hallmark of COVISHIELD TM and COVAXIN ® induced immunity in COVID-19 exposed Indians. NPJ Vaccines 2023; 8:134. [PMID: 37709772 PMCID: PMC10502007 DOI: 10.1038/s41541-023-00731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Detailed characterisation of immune responses induced by COVID-19 vaccines rolled out in India: COVISHIELDTM (CS) and COVAXIN® (CO) in a pre-exposed population is only recently being discovered. We addressed this issue in subjects who received their primary series of vaccination between November 2021 and January 2022. Both vaccines are capable of strongly boosting Wuhan Spike-specific neutralising antibody, polyfunctional Th1 cytokine producing CD4+ T-cells and single IFN-γ + CD8+ T-cells. Consistent with inherent differences in vaccine platform, the vector-based CS vaccine-induced immunity was of greater magnitude, breadth, targeting Delta and Omicron variants compared to the whole-virion inactivated vaccine CO, with CS vaccinees showing persistent CD8+ T-cells responses until 3 months post primary vaccination. This study provides detailed evidence on the magnitude and quality of CS and CO vaccine induced responses in subjects with pre-existing SARS-CoV-2 immunity in India, thereby mitigating vaccine hesitancy arguments in such a population, which remains a global health challenge.
Collapse
Affiliation(s)
- Srabanti Rakshit
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Sudhir Babji
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Chaitra Parthiban
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Ramya Madhavan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vasista Adiga
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Sharon Eveline J
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Nirutha Chetan Kumar
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Asma Ahmed
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | | | - Nandini Shashikumar
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
| | - Mamatha V
- St. John's Medical College, Bangalore, Karnataka, India
| | | | - Naveen Ramesh
- St. John's Medical College, Bangalore, Karnataka, India
| | | | | | - Satyajit Mayor
- National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - George D'souza
- Department of Pulmonary Medicine, St. John's Medical College, Bangalore, Karnataka, India
| | - Mary Dias
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India
- St. John's Medical College, Bangalore, Karnataka, India
| | - Annapurna Vyakarnam
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, Karnataka, India.
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King's College, London, UK.
| |
Collapse
|
19
|
Sengupta S, Shaw SK, Chatterjee S, Bhattacharya G, Barik PK, Chattopadhyay S, Devadas S. Perturbations in spike-specific peripheral T follicular helper cells in SARS-CoV2 breakthrough convalescent individuals immunized by BBV152 vaccine. J Med Virol 2023; 95:e29053. [PMID: 37650214 DOI: 10.1002/jmv.29053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2) infection has caused an increase in mortality and morbidity, but with vaccination, the disease severity has significantly reduced. With the emergence of various variants of concern (VOCs), the vaccine breakthrough infection has also increased. Here we studied circulating spike-specific T follicular response (cTfh) in infection-naïve vaccinees and convalescent vaccinees (individuals who got the Delta breakthrough infection after two doses of BBV152 vaccine) to understand their response as they are the most crucial cells that are involved in vaccine-mediated protection by helping in B-cell maturation. Our results indicated that cTfh cells in both the groups recognized the wild-type and Delta spike protein but memory response to the wild-type spike was superior in infection-naïve than in the convalescent group. The cytokine response, particularly interleukin-21 (IL-21) from cTfh, was also higher in infection-naïve than in convalescent vaccinees, indicating a dampened cTfh response in convalescent vaccinees after breakthrough infection. Also, there was a positive correlation between IL-21 from cTfh cells and neutralizing antibodies of infection-naïve vaccinees. Multiple cytokine analysis also revealed higher inflammation in convalescent vaccinees. Our data indicated that the necessity of a third booster dose may be individual-specific depending on the steady-state functional phenotype of immune cells.
Collapse
Affiliation(s)
- Soumya Sengupta
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| | - Shubham K Shaw
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| | - Sanchari Chatterjee
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- Molecular Virology Lab, Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
| | - Gargee Bhattacharya
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| | - Prakash K Barik
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| | - Soma Chattopadhyay
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- Molecular Virology Lab, Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
| | - Satish Devadas
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| |
Collapse
|
20
|
Jiao Y, Xing Y, Sun Y. Impact of E484Q and L452R Mutations on Structure and Binding Behavior of SARS-CoV-2 B.1.617.1 Using Deep Learning AlphaFold2, Molecular Docking and Dynamics Simulation. Int J Mol Sci 2023; 24:11564. [PMID: 37511322 PMCID: PMC10380202 DOI: 10.3390/ijms241411564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
During the outbreak of COVID-19, many SARS-CoV-2 variants presented key amino acid mutations that influenced their binding abilities with angiotensin-converting enzyme 2 (hACE2) and neutralizing antibodies. For the B.1.617 lineage, there had been fears that two key mutations, i.e., L452R and E484Q, would have additive effects on the evasion of neutralizing antibodies. In this paper, we systematically investigated the impact of the L452R and E484Q mutations on the structure and binding behavior of B.1.617.1 using deep learning AlphaFold2, molecular docking and dynamics simulation. We firstly predicted and verified the structure of the S protein containing L452R and E484Q mutations via the AlphaFold2-calculated pLDDT value and compared it with the experimental structure. Next, a molecular simulation was performed to reveal the structural and interaction stabilities of the S protein of the double mutant variant with hACE2. We found that the double mutations, L452R and E484Q, could lead to a decrease in hydrogen bonds and higher interaction energy between the S protein and hACE2, demonstrating the lower structural stability and the worse binding affinity in the long dynamic evolutional process, even though the molecular docking showed the lower binding energy score of the S1 RBD of the double mutant variant with hACE2 than that of the wild type (WT) with hACE2. In addition, docking to three approved neutralizing monoclonal antibodies (mAbs) showed a reduced binding affinity of the double mutant variant, suggesting a lower neutralization ability of the mAbs against the double mutant variant. Our study helps lay the foundation for further SARS-CoV-2 studies and provides bioinformatics and computational insights into how the double mutations lead to immune evasion, which could offer guidance for subsequent biomedical studies.
Collapse
Affiliation(s)
- Yanqi Jiao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yichen Xing
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yao Sun
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
21
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
22
|
Sunagar R, Singh A, Kumar S. SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mucosal Vaccines. Vaccines (Basel) 2023; 11:vaccines11040849. [PMID: 37112761 PMCID: PMC10143972 DOI: 10.3390/vaccines11040849] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The global rollout of COVID-19 vaccines has played a critical role in reducing pandemic spread, disease severity, hospitalizations, and deaths. However, the first-generation vaccines failed to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission, partially due to the limited induction of mucosal immunity, leading to the continuous emergence of variants of concern (VOC) and breakthrough infections. To meet the challenges from VOC, limited durability, and lack of mucosal immune response of first-generation vaccines, novel approaches are being investigated. Herein, we have discussed the current knowledge pertaining to natural and vaccine-induced immunity, and the role of the mucosal immune response in controlling SARS-CoV2 infection. We have also presented the current status of the novel approaches aimed at eliciting both mucosal and systemic immunity. Finally, we have presented a novel adjuvant-free approach to elicit effective mucosal immunity against SARS-CoV-2, which lacks the safety concerns associated with live-attenuated vaccine platforms.
Collapse
Affiliation(s)
| | - Amit Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
23
|
Ning J, Wang Q, Chen Y, He T, Zhang F, Chen X, Shi L, Zhai A, Li B, Wu C. Immunodominant SARS-CoV-2-specific CD4 + and CD8 + T-cell responses elicited by inactivated vaccines in healthy adults. J Med Virol 2023; 95:e28743. [PMID: 37185843 DOI: 10.1002/jmv.28743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
Safety profiles and humoral responses to inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been previously assessed, but cellular immune responses to inactivated SARS-CoV-2 vaccines remain understudied. Here, we report the comprehensive characteristics of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses elicited by the BBIBP-CorV vaccine. A total of 295 healthy adults were recruited, and SARS-CoV-2-specific T-cell responses were detected after stimulation with overlapping peptide pools spanning the entire length of the envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins. Robust and durable CD4+ (p < 0.0001) and CD8+ (p < 0.0001) T-cell responses specific to SARS-CoV-2 were detected following the third vaccination, with an increase in specific CD8+ T-cells, compared to CD4+ T-cells. Cytokine profiles showed that interferon gamma and tumor necrosis factor-α were predominantly expressed with the negligible expression of interleukin (IL)-4 and IL-10, indicating a Th1- or Tc1-biased response. Compared to E and M proteins, N and S activated a higher proportion of specific T-cells with broader functions. The predominant frequency of the N antigen (49/89) was highest for CD4+ T-cell immunity. Furthermore, N19-36 and N391-408 were identified to contain dominant CD8+ and CD4+ T-cell epitopes, respectively. In addition, N19-36 -specific CD8+ T-cells were mainly effector memory CD45RA cells, whereas N391-408 -specific CD4+ T-cells were mainly effector memory cells. Therefore, this study reports comprehensive features of T-cell immunity induced by the inactivated SARS-CoV-2 vaccine BBIBP-CorV and proposes highly conserved candidate peptides which may be beneficial in vaccine optimization.
Collapse
Affiliation(s)
- Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qinjin Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ying Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fang Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xingchi Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Liang Shi
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Chen H, Zhang L, Xu C, Shen X, Lou J, Wu S. Analysing transcriptomic signatures and identifying potential genes for the protective effect of inactivated COVID-19 vaccines. PeerJ 2023; 11:e15155. [PMID: 37096063 PMCID: PMC10122457 DOI: 10.7717/peerj.15155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
Inactivated vaccines are one of the most effective strategies for controlling the coronavirus disease 2019 (COVID-19) pandemic. However, the response genes for the protective effect of inactivated vaccines are still unclear. Herein, we analysed the neutralization antibody responses elicited by vaccine serum and carried out transcriptome sequencing of RNAs isolated from the PBMCs of 29 medical staff receiving two doses of the CoronaVac vaccine. The results showed that SARS-CoV-2 neutralization antibody titers varied considerably among individuals, and revealed that many innate immune pathways were activated after vaccination. Furthermore, the blue module revealed that NRAS, YWHAB, SMARCA5, PPP1CC and CDC5L may be correlated with the protective effect of the inactivated vaccine. Additionally, MAPK1, CDC42, PPP2CA, EP300, YWHAZ and NRAS were demonstrated as the hub genes having a significant association with vaccines. These findings provide a basis for understanding the molecular mechanism of the host immune response induced by inactivated vaccines.
Collapse
Affiliation(s)
- Hongquan Chen
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Chen Xu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaoyun Shen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiazhou Lou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shengjun Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Liang H, Nian X, Wu J, Liu D, Feng L, Lu J, Peng Y, Zhou Z, Deng T, Liu J, Ji D, Qiu R, Lin L, Zeng Y, Xia F, Hu Y, Li T, Duan K, Li X, Wang Z, Zhang Y, Zhang H, Zhu C, Wang S, Wu X, Wang X, Li Y, Huang S, Mao M, Guo H, Yang Y, Jia R, Xufang J, Wang X, Liang S, Qiu Z, Zhang J, Ding Y, Li C, Zhang J, Fu D, He Y, Zhou D, Li C, Zhang J, Yu D, Yang XM. COVID-19 vaccination boosts the potency and breadth of the immune response against SARS-CoV-2 among recovered patients in Wuhan. Cell Discov 2022; 8:131. [PMID: 36494338 PMCID: PMC9734167 DOI: 10.1038/s41421-022-00496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The immunity of patients who recover from coronavirus disease 2019 (COVID-19) could be long lasting but persist at a lower level. Thus, recovered patients still need to be vaccinated to prevent reinfection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or its mutated variants. Here, we report that the inactivated COVID-19 vaccine can stimulate immunity in recovered patients to maintain high levels of anti-receptor-binding domain (RBD) and anti-nucleocapsid protein (NP) antibody titers within 9 months, and high neutralizing activity against the prototype, Delta, and Omicron strains was observed. Nevertheless, the antibody response decreased over time, and the Omicron variant exhibited more pronounced resistance to neutralization than the prototype and Delta strains. Moreover, the intensity of the SARS-CoV-2-specific CD4+ T cell response was also increased in recovered patients who received COVID-19 vaccines. Overall, the repeated antigen exposure provided by inactivated COVID-19 vaccination greatly boosted both the potency and breadth of the humoral and cellular immune responses against SARS-CoV-2, effectively protecting recovered individuals from reinfection by circulating SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Hong Liang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Dong Liu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Lu Feng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yan Peng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Zhijun Zhou
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Tao Deng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Jing Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Deming Ji
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Lianzhen Lin
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Yan Zeng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Fei Xia
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Hu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Taojing Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Hang Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Chen Zhu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Shang Wang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiao Wu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiang Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yuwei Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Min Mao
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Huanhuan Guo
- Wuxue Wusheng Plasma Collection Center, Wuxue, Hubei, China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Rui Jia
- China National Biotec Group Company Limited, Beijing, China
| | - Jingwei Xufang
- China National Biotec Group Company Limited, Beijing, China
| | - Xuewei Wang
- China National Biotec Group Company Limited, Beijing, China
| | | | - Zhixin Qiu
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Juan Zhang
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Yaling Ding
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Chunyan Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Jin Zhang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Daoxing Fu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Yanlin He
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Dongbo Zhou
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Cesheng Li
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China.
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China.
| | - Ding Yu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China.
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China.
| | - Xiao-Ming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
26
|
Salgado Del Riego E, Saiz ML, Corte-Iglesias V, Leoz Gordillo B, Martin-Martin C, Rodríguez-Pérez M, Escudero D, Lopez-Larrea C, Suarez-Alvarez B. Divergent SARS-CoV-2-specific T cell responses in intensive care unit workers following mRNA COVID-19 vaccination. Front Immunol 2022; 13:942192. [PMID: 36275696 PMCID: PMC9582956 DOI: 10.3389/fimmu.2022.942192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The cellular immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in response to full mRNA COVID-19 vaccination could be variable among healthy individuals. Studies based only in specific antibody levels could show an erroneous immune protection at long times. For that, we analyze the antibody levels specific to the S protein and the presence of SARS-CoV-2-specific T cells by ELISpot and AIM assays in intensive care unit (ICU) workers with no antecedents of COVID-19 and vaccinated with two doses of mRNA COVID-19 vaccines. All individuals were seronegative for the SARS-CoV-2 protein S before vaccination (Pre-v), but 34.1% (14/41) of them showed pre-existing T lymphocytes specific for some viral proteins (S, M and N). One month after receiving two doses of COVID-19 mRNA vaccine (Post-v1), all cases showed seroconversion with high levels of total and neutralizing antibodies to the spike protein, but six of them (14.6%) had no T cells reactive to the S protein. Specifically, they lack of specific CD8+ T cells, but maintain the contribution of CD4+ T cells. Analysis of the immune response against SARS-CoV-2 at 10 months after full vaccination (Post-v10), exhibited a significant reduction in the antibody levels (p<0.0001) and protein S-reactive T cells (p=0.0073) in all analyzed individuals, although none of the individuals become seronegative and 77% of them maintained a competent immune response. Thus, we can suggest that the immune response to SARS-CoV-2 elicited by the mRNA vaccines was highly variable among ICU workers. A non-negligible proportion of individuals did not develop a specific T cell response mediated by CD8+ T cells after vaccination, that may condition the susceptibility to further viral infections with SARS-CoV-2. By contrast, around 77% of individuals developed strong humoral and cellular immune responses to SARS-CoV-2 that persisted even after 10 months. Analysis of the cellular immune response is highly recommended for providing exact information about immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Salgado Del Riego
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María Laura Saiz
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Blanca Leoz Gordillo
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Cristina Martin-Martin
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mercedes Rodríguez-Pérez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Spain
- Translational Microbiology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Dolores Escudero
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
- Translational Microbiology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Lopez-Larrea
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
- Servicio de Inmunología, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
27
|
Rabaan AA, Mutair AA, Hajissa K, Alfaraj AH, Al-Jishi JM, Alhajri M, Alwarthan S, Alsuliman SA, Al-Najjar AH, Al Zaydani IA, Al-Absi GH, Alshaikh SA, Alkathlan MS, Almuthree SA, Alawfi A, Alshengeti A, Almubarak FZ, Qashgari MS, Abdalla ANK, Alhumaid S. A Comprehensive Review on the Current Vaccines and Their Efficacies to Combat SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:1655. [PMID: 36298520 PMCID: PMC9611209 DOI: 10.3390/vaccines10101655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Since the first case of Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, SARS-CoV-2 infection has affected many individuals worldwide. Eventually, some highly infectious mutants-caused by frequent genetic recombination-have been reported for SARS-CoV-2 that can potentially escape from the immune responses and induce long-term immunity, linked with a high mortality rate. In addition, several reports stated that vaccines designed for the SARS-CoV-2 wild-type variant have mixed responses against the variants of concern (VOCs) and variants of interest (VOIs) in the human population. These results advocate the designing and development of a panvaccine with the potential to neutralize all the possible emerging variants of SARS-CoV-2. In this context, recent discoveries suggest the design of SARS-CoV-2 panvaccines using nanotechnology, siRNA, antibodies or CRISPR-Cas platforms. Thereof, the present comprehensive review summarizes the current vaccine design approaches against SARS-CoV-2 infection, the role of genetic mutations in the emergence of new viral variants, the efficacy of existing vaccines in limiting the infection of emerging SARS-CoV-2 variants, and efforts or challenges in designing SARS panvaccines.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 635342, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Shahab A. Alsuliman
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 3643, Saudi Arabia
| | - Ibrahim A. Al Zaydani
- Department of Pediatric Infectious Diseases, Abha Maternity and Children Hospital, Abha 62526, Saudi Arabia
| | - Ghadeer Hassan Al-Absi
- Department of Pharmacy Practice, College of Pharmacy, Alfaisal University, Riyadh 325476, Saudi Arabia
| | - Sana A. Alshaikh
- Diagnostic Virology Laboratory, Maternity and Children Hospital, Eastern Health Cluster, Dammam 32253, Saudi Arabia
| | - Mohammed S. Alkathlan
- Infectious Diseases Department, King Fahad Specialist Hospital, Buraydah 52382, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Fatimah Z. Almubarak
- Department of Family Medicine, Family Medicine Academy, Dammam 36365, Saudi Arabia
| | - Mohammed S. Qashgari
- Communicable Diseases Prevention Department, Saudi Public Health Authority, Riyadh 13354, Saudi Arabia
| | - Areeg N. K. Abdalla
- Department of Intensive Care Unit, Saudi German Hospital, Dammam 32313, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
28
|
Helmy SA, El-Morsi RM, Helmy SAM, El-Masry SM. Towards novel nano-based vaccine platforms for SARS-CoV-2 and its variants of concern: Advances, challenges and limitations. J Drug Deliv Sci Technol 2022; 76:103762. [PMID: 36097606 PMCID: PMC9452404 DOI: 10.1016/j.jddst.2022.103762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
Vaccination is the most effective tool available for fighting the spread of COVID-19. Recently, emerging variants of SARS-CoV-2 have led to growing concerns about increased transmissibility and decreased vaccine effectiveness. Currently, many vaccines are approved for emergency use and more are under development. This review highlights the ongoing advances in the design and development of different nano-based vaccine platforms. The challenges, limitations, and ethical consideration imposed by these nanocarriers are also discussed. Further, the effectiveness of the leading vaccine candidates against all SARS-CoV-2 variants of concern are highlighted. The review also focuses on the possibility of using an alternative non-invasive routes of vaccine administration using micro and nanotechnologies to enhance vaccination compliance and coverage.
Collapse
Affiliation(s)
- Sally A Helmy
- Department of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Taibah University, AL-Madinah AL-Munawarah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Egypt
| | - Soha A M Helmy
- Department of Languages and Translation, College of Arts and Humanities, Taibah University, AL-Madinah AL-Munawarah, Saudi Arabia
- Department of Foreign Languages, Faculty of Education, Tanta University, Tanta, Egypt
| | - Soha M El-Masry
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
29
|
Arankalle V, Kulkarni-Munje A, Kulkarni R, Palkar S, Patil R, Oswal J, Lalwani S, Mishra AC. Immunogenicity of two COVID-19 vaccines used in India: An observational cohort study in health care workers from a tertiary care hospital. Front Immunol 2022; 13:928501. [PMID: 36211366 PMCID: PMC9540493 DOI: 10.3389/fimmu.2022.928501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19 pandemic witnessed rapid development and use of several vaccines. In India, a country-wide immunization was initiated in January 2021. COVISHIELD, the chimpanzee adenoviral-vectored vaccine with full-length SARS-COV-2 spike insert and COVAXIN, the whole virus-inactivated vaccines were used. To assess and compare immune response of health-care-workers to COVISHIELD (n=187) and COVAXIN (n=21), blood samples were collected pre-vaccination, 1month post-1/post-2 doses and 6months post-dose-2 and tested for IgG-anti-SARS-CoV-2 (ELISA) and neutralizing (Nab,PRNT50) antibodies. Spike-protein-specific T cells were quantitated by IFN-γ-ELISPOT. In pre-vaccination-antibody-negative COVISHIELD recipients (pre-negatives, n=120), %Nab seroconversion (median, IQR Nab titers) increased from 55.1% (16, 2.5-36.3) post-dose-1 to 95.6% (64.5, 4.5-154.2, p<0.001) post-dose-2 that were independent of age/gender/BMI. Nab response was higher among pre-positives with hybrid immunity at all-time points (p<0.01-0.0001) and independent of age/gender/BMI/Comorbidities. Post-dose-2-seroconversion (50%, p<0.001) and Nab titers (6.75, 2.5-24.8, p<0.001) in COVAXIN-recipients were lower than COVISHIELD. COVAXIN elicited a superior IFN-γ-T cell response as measured by ELISPOT (100%; 1226, 811-1532 spot forming units, SFU/million PBMCs v/s 57.8%; 21.7,1.6-169.2; p<0.001). At 6months, 28.3% (15/53) COVISHIELD and 3/3COVAXIN recipients were Nab-negative. T cell response remained unchanged. During immunization, COVID-19 cases were detected among COVISHIELD (n=4) and COVAXIN (n=2) recipients. At 6months, 9cases were recorded in COVISHIELD-recipients. This first-time, systematic, real-world assessment and long-term follow up revealed generation of higher neutralizing antibody titers by COVISHIELD and stronger T-cell response by COVAXIN. Diminished Nab titers at 6months emphasize early booster. Immunogenicity/efficacy of vaccines will change with the progression of the pandemic needing careful evaluations in the field-settings.
Collapse
Affiliation(s)
- Vidya Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- *Correspondence: Vidya Arankalle, ;
| | - Archana Kulkarni-Munje
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Ruta Kulkarni
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Sonali Palkar
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Rahul Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jitendra Oswal
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Sanjay Lalwani
- Department of Pediatrics, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Bharati Vidyapeeth Medical College, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Akhilesh Chandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| |
Collapse
|
30
|
Chiuppesi F, Zaia JA, Faircloth K, Johnson D, Ly M, Karpinski V, La Rosa C, Drake J, Marcia J, Acosta AM, Dempsey S, Taplitz RA, Zhou Q, Park Y, Ortega Francisco S, Kaltcheva T, Frankel PH, Rosen S, Wussow F, Dadwal S, Diamond DJ. Vaccine-induced spike- and nucleocapsid-specific cellular responses maintain potent cross-reactivity to SARS-CoV-2 Delta and Omicron variants. iScience 2022; 25:104745. [PMID: 35846380 PMCID: PMC9272674 DOI: 10.1016/j.isci.2022.104745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/06/2023] Open
Abstract
Cell-mediated immunity may contribute to providing protection against SARS-CoV-2 and its variants of concern (VOC). We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara (MVA)-based COVID-19 vaccine that stimulated potent spike (S) and nucleocapsid (N) antigen-specific humoral and cellular immunity in a phase 1 clinical trial in healthy adults. Here, we show that individuals vaccinated with COH04S1 or mRNA vaccine BNT162b2 maintain robust cross-reactive cellular immunity for six or more months post-vaccination. Although neutralizing antibodies induced in COH04S1- and BNT162b2-vaccinees showed reduced activity against Delta and Omicron variants compared to ancestral SARS-CoV-2, S-specific T cells elicited in both COH04S1- and BNT162b2-vaccinees and N-specific T cells elicited in COH04S1-vaccinees demonstrated potent and equivalent cross-reactivity against ancestral SARS-CoV-2 and the major VOC. These results suggest that vaccine-induced T cells to S and N antigens may constitute a critical second line of defense to provide long-term protection against SARS-CoV-2 VOC.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - John A. Zaia
- Center for Gene Therapy, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Katelyn Faircloth
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Daisy Johnson
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Minh Ly
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Veronica Karpinski
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Corinna La Rosa
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jennifer Drake
- Clinical Trials Office, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Joan Marcia
- Clinical Trials Office, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ann Marie Acosta
- Clinical Trials Office, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Shannon Dempsey
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Randy A. Taplitz
- Division of Infectious Diseases, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Department of Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Qiao Zhou
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Yoonsuh Park
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Sandra Ortega Francisco
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Teodora Kaltcheva
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Paul H. Frankel
- Department of Biostatistics, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Steven Rosen
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Felix Wussow
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Sanjeet Dadwal
- Division of Infectious Diseases, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Department of Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Don J. Diamond
- Department of Hematology and HCT and Hematologic Malignancies Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Corresponding author
| |
Collapse
|
31
|
Vadrevu KM, Ganneru B, Reddy S, Jogdand H, Raju D, Sapkal G, Yadav P, Reddy P, Verma S, Singh C, Redkar SV, Gillurkar CS, Kushwaha JS, Mohapatra S, Bhate A, Rai SK, Ella R, Abraham P, Prasad S, Ella K. Persistence of immunity and impact of third dose of inactivated COVID-19 vaccine against emerging variants. Sci Rep 2022; 12:12038. [PMID: 35835822 PMCID: PMC9281359 DOI: 10.1038/s41598-022-16097-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/04/2022] [Indexed: 12/30/2022] Open
Abstract
This is a comprehensive report on immunogenicity of COVAXIN® booster dose against ancestral and Variants of Concern (VOCs) up to 12 months. It is well known that neutralizing antibodies induced by COVID-19 vaccines wane within 6 months of vaccination leading to questions on the effectiveness of two-dose vaccination against breakthrough infections. Therefore, we assessed the persistence of immunogenicity up to 6 months after a two or three-dose with BBV152 and the safety of a booster dose in an ongoing phase 2, double-blind, randomized controlled trial (ClinicalTrials.gov: NCT04471519). We report persistence of humoral and cell mediated immunity up to 12 months of vaccination, despite decline in the magnitude of antibody titers. Administration of a third dose of BBV152 increased neutralization titers against both homologous (D614G) and heterologous strains (Alpha, Beta, Delta, Delta Plus and Omicron) with a slight increase in B cell memory responses. Thus, seronversion rate remain high in boosted recipients compared to non-booster, even after 6 months, post third dose against variants. No serious adverse events observed, except pain at the injection site, itching and redness. Hence, these results indicate that a booster dose of BBV152 is safe and necessary to ensure persistent immunity to minimize breakthrough infections of COVID-19, due to newly emerging variants. Trial registration: Registered with the Clinical Trials Registry (India) No. CTRI/2021/04/032942, dated 19/04/2021 and on Clinicaltrials.gov: NCT04471519.
Collapse
Affiliation(s)
| | - Brunda Ganneru
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Siddharth Reddy
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Harsh Jogdand
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Dugyala Raju
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Gajanan Sapkal
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Pragya Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | | | - Savita Verma
- Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, India
| | | | | | | | | | | | | | | | - Raches Ella
- Independent Clinical Development Consultant, Cambridge, USA
| | - Priya Abraham
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Sai Prasad
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Krishna Ella
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| |
Collapse
|