1
|
Shi K, Hu L, Cai D, Liu X, Zheng J, Xu D, Yuan Q, Xiong Q, Gong H, Zhu X, Hu N, Qin C. Three-Dimensional-Printed Flexible Nanosilver Electrode Array for Parallel and Robust Intracellular Electrophysiological Recording. ACS NANO 2025; 19:19198-19212. [PMID: 40365958 DOI: 10.1021/acsnano.5c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Cardiac electrophysiology, particularly intracellular action potential (iAP) recordings, is vital for advancing the understanding and treatment of cardiovascular diseases. In this work, we present a 3D-printed flexible nanosilver electrode array (FlexNEA) that enables simple and efficient circuit fabrication within several minutes using a multimaterial electric-field-driven (EFD) micro-jet 3D printing strategy and achieves over 99% success rates in intracellular access through electroporation. The NEA with flexible property creates an enhanced cell-electrode coupling, with the cardiomyocyte membrane wrapping tightly around the nanosilver electrode, leading to superior signal quality in contrast to the conventional planar electrodes. The 3D-printed FlexNEA enables stable, high-fidelity intracellular recordings by multiple consecutive biosafe electroporations over a short or long period of time. Moreover, the platform exhibits a powerful drug screening function by accurately detecting drug-induced iAP alterations, providing a precise and quantitative assessment of ion-channel drug effects. In summary, the 3D-printed FlexNEA device and integrated biosensing-regulating platform present a significant advance in the high-fidelity intracellular recording technology of cardiac electrophysiology. The platform advances the development of low-cost, biocompatible NEA systems for preclinical research in the cardiology and pharmacology fields.
Collapse
Affiliation(s)
- Keda Shi
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liang Hu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Duote Cai
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Xing Liu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Jilin Zheng
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Dongxin Xu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Qunchen Yuan
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Qianwen Xiong
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Haoran Gong
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Ning Hu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Chunlian Qin
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| |
Collapse
|
2
|
Lucarini I, Maita F, Conte G, Saracino E, Formaggio F, Palmieri E, Fabbri R, Konstantoulaki A, Lazzarini C, Caprini M, Benfenati V, Maiolo L, Convertino A. Silicon Nanowire Mats Enable Advanced Bioelectrical Recordings in Primary DRG Cell Cultures. Adv Healthc Mater 2025:e2500379. [PMID: 40411871 DOI: 10.1002/adhm.202500379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/23/2025] [Indexed: 05/26/2025]
Abstract
Primary dorsal root ganglion (DRG) cell cultures provide a valuable model for studying in vitro sensory transduction, neuropathies, and chronic pain, as they replicate the in vivo heterogeneity of DRG neurons and non-neuronal cells. However, traditional patch-clamp techniques are invasive and cannot capture the collective cell dynamics. While planar multielectrode arrays (MEAs) offer a non-invasive alternative, they suffer from poor cell-electrode coupling and limited resolution for identifying specific DRG neuronal types like C-fiber nociceptors, key targets in chronic pain research. This work demonstrates that silicon nanowire (SiNW) mat-based MEAs, while maintaining their reduced invasiveness, enable continuous intracellular recordings from neurons in primary rat DRG cell cultures. Supported by a cortical astrocyte feeder layer, SiNW mats promote DRG neuron and glial cell growth preserving cells' in vivo morphological and functional characteristics. Integrated into a compartmentalized MEA, they enable reliable recordings of drug-modulated neuronal activity alongside a baseline related to the astrocyte layer. The recorded signals exhibit characteristics of intracellular action potentials, suggesting spontaneous intracellular access by SiNWs. Distinct electrophysiological signatures allow identifying C-fiber nociceptors, as confirmed by patch-clamp measurements. This platform represents a powerful tool for investigating in vitro pain mechanisms, with potential applications in preclinical pain research and pharmacological translational studies.
Collapse
Affiliation(s)
- Ivano Lucarini
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Francesco Maita
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Giorgia Conte
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Francesco Formaggio
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, Bologna, 40127, Italy
| | - Elena Palmieri
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Roberta Fabbri
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Aikaterini Konstantoulaki
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Chiara Lazzarini
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, Bologna, 40127, Italy
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Luca Maiolo
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Annalisa Convertino
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| |
Collapse
|
3
|
Yan L, Liu Z, Wang J, Yu L. Integrating Hard Silicon for High-Performance Soft Electronics via Geometry Engineering. NANO-MICRO LETTERS 2025; 17:218. [PMID: 40227525 PMCID: PMC11996752 DOI: 10.1007/s40820-025-01724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/09/2025] [Indexed: 04/15/2025]
Abstract
Soft electronics, which are designed to function under mechanical deformation (such as bending, stretching, and folding), have become essential in applications like wearable electronics, artificial skin, and brain-machine interfaces. Crystalline silicon is one of the most mature and reliable materials for high-performance electronics; however, its intrinsic brittleness and rigidity pose challenges for integrating it into soft electronics. Recent research has focused on overcoming these limitations by utilizing structural design techniques to impart flexibility and stretchability to Si-based materials, such as transforming them into thin nanomembranes or nanowires. This review summarizes key strategies in geometry engineering for integrating crystalline silicon into soft electronics, from the use of hard silicon islands to creating out-of-plane foldable silicon nanofilms on flexible substrates, and ultimately to shaping silicon nanowires using vapor-liquid-solid or in-plane solid-liquid-solid techniques. We explore the latest developments in Si-based soft electronic devices, with applications in sensors, nanoprobes, robotics, and brain-machine interfaces. Finally, the paper discusses the current challenges in the field and outlines future research directions to enable the widespread adoption of silicon-based flexible electronics.
Collapse
Affiliation(s)
- Lei Yan
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zongguang Liu
- College of Physics Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Junzhuan Wang
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Linwei Yu
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
4
|
Jung M, Abu Shihada J, Decke S, Koschinski L, Graff PS, Maruri Pazmino S, Höllig A, Koch H, Musall S, Offenhäusser A, Rincón Montes V. Flexible 3D Kirigami Probes for In Vitro and In Vivo Neural Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418524. [PMID: 40223534 DOI: 10.1002/adma.202418524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/24/2025] [Indexed: 04/15/2025]
Abstract
3D microelectrode arrays (MEAs) are gaining popularity as brain-machine interfaces and platforms for studying electrophysiological activity. Interactions with neural tissue depend on the electrochemical, mechanical, and spatial features of the recording platform. While planar or protruding 2D MEAs are limited in their ability to capture neural activity across layers, existing 3D platforms still require advancements in manufacturing scalability, spatial resolution, and tissue integration. In this work, a customizable, scalable, and straightforward approach to fabricate flexible 3D kirigami MEAs containing both surface and penetrating electrodes, designed to interact with the 3D space of neural tissue, is presented. These novel probes feature up to 512 electrodes distributed across 128 shanks in a single flexible device, with shank heights reaching up to 1 mm. The 3D kirigami MEAs are successfully deployed in several neural applications, both in vitro and in vivo, and identified spatially dependent electrophysiological activity patterns. Flexible 3D kirigami MEAs are therefore a powerful tool for large-scale electrical sampling of complex neural tissues while improving tissue integration and offering enhanced capabilities for analyzing neural disorders and disease models where high spatial resolution is required.
Collapse
Affiliation(s)
- Marie Jung
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Jamal Abu Shihada
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Simon Decke
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Lina Koschinski
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
- Helmholtz Nano Facility (HNF), Forschungszentrum Jülich, Jülich, Germany
| | - Peter Severin Graff
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | | | - Anke Höllig
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Henner Koch
- Department of Epileptology, Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Simon Musall
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
- Institute for Zoology, RWTH Aachen University, Aachen, Germany
- Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Andreas Offenhäusser
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
| | - Viviana Rincón Montes
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
5
|
Zhao L, Zhang H, Wang C, Zhou J, Xiao M, Cheng J, Huang J, Xu L, Gao T, Zhao Z, Li Z, Liu B. On-Demand Contact-Mode Switchable Cerebral Cortex Biosensors Enhanced by Magnetic Actuation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20671-20684. [PMID: 40167048 DOI: 10.1021/acsami.4c21235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Nanomaterial-based field-effect transistors (nano-FETs) are pivotal bioelectronic devices that are employed for the detection of biomolecular signals, cellular interactions, and tissue responses within biosystems. The performance of these nano-FETs is significantly influenced by the interfacial characteristics between the metal electrodes and semiconductor nanomaterials, necessitating precise regulation. While the piezotronic effect is a commonly employed method for regulation, it faces limitations in certain application scenarios, particularly in vivo settings. In this study, a novel magnetically controllable piezoelectric device (MCPD) is designed by combining the principles of piezoelectric nano-FET biosensors with the flexibility of magnetic soft robots. This allows for remote, precise, and stable modulation of the metal-semiconductor interface properties of the MCPD through the magnetic field (MF)-induced piezotronic effect. Consequently, this leads to enhanced sensitivity in the detection of biomolecules such as dopamine and the recording of neural electrical impulses. The MCPD exhibits a reversible transition between a flat and a bent state upon the application of a MF of varying strengths and directions, with a response duration of only a few seconds. Furthermore, the unique structure of MCPD facilitates semi-invasive neural electrodes that can be brought into contact with the cerebral cortex only when required, thereby improving biocompatibility and reducing invasiveness. This innovation not only broadens the application scenarios for piezoelectric devices but also enables remote regulation, offering expanded utility in bioelectronic applications, such as implanted neural interface devices, and provides a potential strategy for the activation of implantable piezoelectric materials.
Collapse
Affiliation(s)
- Luming Zhao
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Hangyu Zhang
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, China
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, China
| | - Meng Xiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jian Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jing Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Lingling Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Tianyu Gao
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zunhui Zhao
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Bo Liu
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
7
|
Shi K, He C, Pan H, Liu D, Zhang J, Han W, Xiang Y, Hu N. Advanced passive 3D bioelectronics: powerful tool for the cardiac electrophysiology investigation. MICROSYSTEMS & NANOENGINEERING 2025; 11:50. [PMID: 40097396 PMCID: PMC11914486 DOI: 10.1038/s41378-025-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Cardiovascular diseases (CVDs) are the first cause of death globally, posing a significant threat to human health. Cardiac electrophysiology is pivotal for the understanding and management of CVDs, particularly for addressing arrhythmias. A significant proliferation of micro-nano bioelectric devices and systems has occurred in the field of cardiomyocyte electrophysiology. These bioelectronic platforms feature distinctive electrode geometries that improve the fidelity of native electrophysiological signals. Despite the prevalence of planar microelectrode arrays (MEAs) for simultaneous multichannel recording of cellular electrophysiological signals, extracellular recordings often yield suboptimal signal quality. In contrast, three-dimensional (3D) MEAs and advanced penetration strategies allow high-fidelity intracellular signal detection. 3D nanodevices are categorized into the active and the passive. Active devices rely on external power sources to work, while passive devices operate without external power. Passive devices possess simplicity, biocompatibility, stability, and lower power consumption compared to active ones, making them ideal for sensors and implantable applications. This review comprehensively discusses the fabrication, geometric configuration, and penetration strategies of passive 3D micro/nanodevices, emphasizing their application in drug screening and disease modeling. Moreover, we summarize existing challenges and future opportunities to develop passive micro/nanobioelectronic devices from cardiac electrophysiological research to cardiovascular clinical practice.
Collapse
Affiliation(s)
- Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengwen He
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Hui Pan
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dong Liu
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ji Zhang
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Weili Han
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Yuting Xiang
- Department of Obstetrics, the Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| |
Collapse
|
8
|
Wang S, Song X, Xu J, Wang J, Yu L. Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. MATERIALS HORIZONS 2025; 12:1106-1132. [PMID: 39688131 DOI: 10.1039/d4mh01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Silicon (Si) is currently the most mature and reliable semiconductor material in the industry, playing a pivotal role in the development of modern microelectronics, renewable energy, and bio-electronic technologies. In recent years, widespread research attention has been devoted to the development of advanced flexible electronics, photovoltaics, and bio-interfaced sensors/detectors, boosting their emerging applications in distributed energy sources, healthcare, environmental monitoring, and brain-computer interfaces (BCIs). Despite the rigid and brittle nature of Si, a series of new fabrication technologies and integration strategies have been developed to enable a wide range of c-Si-based high-performance flexible photovoltaics and electronics, which were previously only achievable with intrinsically soft organic and polymer semiconductors. More interestingly, programmable geometric engineering of crystalline silicon (c-Si) units and logic circuits has been explored to enable the fabrication of various highly flexible nanoprobes for intracellular sensing and the deployment of soft BCI matrices to record and understand brain neural activities for the development of advanced neuroprosthetics. This review will systematically examine the latest progress in the fabrication of Si-based flexible solar cells, photodetectors, and biological probing interfaces over the past decade, identifying key design principles, mechanisms, and technological milestones achieved through novel geometry, morphology, and composition control. These advancements, when combined, will not only promote the practical applications of sustainable energy and wearable electronics but also spur new breakthroughs in emerging human-machine interfaces (HMIs) and artificial intelligence applications, which hold significant implications for understanding neural activities, implementing more efficient artificial Intelligence (AI) algorithms, and developing new therapies or treatments. Finally, we will summarize and provide an outlook on the current challenges and future opportunities of Si-based electronics, flexible optoelectronics, and bio-sensing.
Collapse
Affiliation(s)
- Shuyi Wang
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Xiaopan Song
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Jun Xu
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
- School of Microelectronics and School of Integrated Circuits, Nantong University, 226019, Nantong, P. R. China.
| | - Junzhuan Wang
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Linwei Yu
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| |
Collapse
|
9
|
Vacca F, Galluzzi F, Blanco-Formoso M, Gianiorio T, De Fazio A, Tantussi F, Stürmer S, Haq W, Zrenner E, Chaffiol A, Joffrois C, Picaud S, Benfenati F, De Angelis F, Colombo E. Solid-State Nanopores for Spatially Resolved Chemical Neuromodulation. NANO LETTERS 2024; 24:15215-15225. [PMID: 39561980 PMCID: PMC11622382 DOI: 10.1021/acs.nanolett.4c02604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Most neural prosthetic devices are based on electrical stimulation, although the modulation of neuronal activity by a localized chemical delivery would better mimic physiological synaptic machinery. In the past decade, various drug delivery approaches attempted to emulate synaptic transmission, although they were hampered by poor retention of their cargo while reaching the target destination, low spatial resolution, and poor biocompatibility and stability of the materials involved. Here, we propose a planar solid-state device for multisite neurotransmitter translocation at the nanoscale consisting of a nanopatterned ceramic membrane connected to a reservoir designed to store neurotransmitters. We achieved diffusion-mediated glutamate stimulation of primary neurons, while we showed the feasibility to translocate other molecules through the pores by either pressure or diffusion, proving the versatility of the proposed technology. Finally, the system proved to be a promising neuronal stimulation interface in mice and nonhuman primates ex vivo, paving the way toward a biomimetic chemical stimulation in neural prosthetics and brain machine interfaces.
Collapse
Affiliation(s)
- F. Vacca
- Center for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale
Policlinico San Martino, 16132 Genova, Italy
| | - F. Galluzzi
- Center for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- The
Open
University Affiliated Research Centre at Istituto Italiano di Tecnologia
(ARC@IIT), 16132 Genova, Italy
| | - M. Blanco-Formoso
- Plasmon Nanotechnology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- CINBIO Universidade
de Vigo, 36310 Vigo, Spain
| | - T. Gianiorio
- Center for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- Department
of Neuroscience (DINOGMI), University of
Genoa, 16132 Genova, Italy
| | - A.F. De Fazio
- Plasmon Nanotechnology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - F. Tantussi
- Plasmon Nanotechnology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - S. Stürmer
- Centre for
Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - W. Haq
- Centre for
Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - E. Zrenner
- Centre for
Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - A. Chaffiol
- Institut
de la Vision, Sorbonne Université, 75012 Paris, France
| | - C. Joffrois
- Institut
de la Vision, Sorbonne Université, 75012 Paris, France
| | - S. Picaud
- Institut
de la Vision, Sorbonne Université, 75012 Paris, France
| | - F. Benfenati
- Center for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale
Policlinico San Martino, 16132 Genova, Italy
| | - F. De Angelis
- Plasmon Nanotechnology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - E. Colombo
- Center for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale
Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
10
|
Shao Z, Zhao H, Dunham KE, Cao Q, Lavrik NV, Venton BJ. 3D-Printed Carbon Nanoneedle Electrodes for Dopamine Detection in Drosophila. Angew Chem Int Ed Engl 2024; 63:e202405634. [PMID: 38742923 PMCID: PMC11250930 DOI: 10.1002/anie.202405634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In vivo electrochemistry in small brain regions or synapses requires nanoelectrodes with long straight tips for submicron scale measurements. Nanoelectrodes can be fabricated using a Nanoscribe two-photon printer, but annealed tips curl if they are long and thin. We propose a new pulling-force strategy to fabricate a straight carbon nanoneedle structure. A micron-width bridge is printed between two blocks. The annealed structure shrinks during pyrolysis, and the blocks create a pulling force to form a long, thin, and straight carbon bridge. Parameterization study and COMSOL modeling indicate changes in the block size, bridge size and length affect the pulling force and bridge shrinkage. Electrodes were printed on niobium wires, insulated with aluminum oxide, and the bridge cut with focused ion beam (FIB) to expose the nanoneedle tip. Annealed needle diameters ranged from 400 nm to 5.25 μm and length varied from 50.5 μm to 146 μm. The electrochemical properties are similar to glassy carbon, with good performance for dopamine detection with fast-scan cyclic voltammetry. Nanoelectrodes enable biological applications, such as dopamine detection in a specific Drosophila brain region. Long and thin nanoneedles are generally useful for other applications such as cellular sensing, drug delivery, or gas sensing.
Collapse
Affiliation(s)
- Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - He Zhao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Nickolay V Lavrik
- Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| |
Collapse
|
11
|
Li P, Kim S, Tian B. Beyond 25 years of biomedical innovation in nano-bioelectronics. DEVICE 2024; 2:100401. [PMID: 39119268 PMCID: PMC11308927 DOI: 10.1016/j.device.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Nano-bioelectronics, which blend the precision of nanotechnology with the complexity of biological systems, are evolving with innovations such as silicon nanowires, carbon nanotubes, and graphene. These elements serve applications from biochemical sensing to brain-machine interfacing. This review examines nano-bioelectronics' role in advancing biomedical interventions and discusses their potential in environmental monitoring, agricultural productivity, energy efficiency, and creative fields. The field is transitioning from molecular to ecosystem-level applications, with research exploring complex cellular mechanisms and communication. This fosters understanding of biological interactions at various levels, such as suggesting transformative approaches for ecosystem management and food security. Future research is expected to focus on refining nano-bioelectronic devices for integration with biological systems and on scalable manufacturing to broaden their reach and functionality.
Collapse
Affiliation(s)
- Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Saehyun Kim
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Chemerkouh MJHN, Zhou X, Yang Y, Wang S. Deep Learning Enhanced Label-Free Action Potential Detection Using Plasmonic-Based Electrochemical Impedance Microscopy. Anal Chem 2024; 96:11299-11308. [PMID: 38953225 PMCID: PMC11283340 DOI: 10.1021/acs.analchem.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Measuring neuronal electrical activity, such as action potential propagation in cells, requires the sensitive detection of the weak electrical signal with high spatial and temporal resolution. None of the existing tools can fulfill this need. Recently, plasmonic-based electrochemical impedance microscopy (P-EIM) was demonstrated for the label-free mapping of the ignition and propagation of action potentials in neuron cells with subcellular resolution. However, limited by the signal-to-noise ratio in the high-speed P-EIM video, action potential mapping was achieved by averaging 90 cycles of signals. Such extensive averaging is not desired and may not always be feasible due to factors such as neuronal desensitization. In this study, we utilized advanced signal processing techniques to detect action potentials in P-EIM extracted signals with fewer averaged cycles. Matched filtering successfully detected action potential signals with as few as averaging five cycles of signals. Long short-term memory (LSTM) recurrent neural network achieved the best performance and was able to detect single-cycle stimulated action potential successfully [satisfactory area under the receiver operating characteristic curve (AUC) equal to 0.855]. Therefore, we show that deep learning-based signal processing can dramatically improve the usability of P-EIM mapping of neuronal electrical signals.
Collapse
Affiliation(s)
- Mohammad Javad Haji Najafi Chemerkouh
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xinyu Zhou
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Yunze Yang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
13
|
Zheng J, Fang J, Xu D, Liu H, Wei X, Qin C, Xue J, Gao Z, Hu N. Micronano Synergetic Three-Dimensional Bioelectronics: A Revolutionary Breakthrough Platform for Cardiac Electrophysiology. ACS NANO 2024; 18:15332-15357. [PMID: 38837178 DOI: 10.1021/acsnano.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and therefore pose a significant threat to human health. Cardiac electrophysiology plays a crucial role in the investigation and treatment of CVDs, including arrhythmia. The long-term and accurate detection of electrophysiological activity in cardiomyocytes is essential for advancing cardiology and pharmacology. Regarding the electrophysiological study of cardiac cells, many micronano bioelectric devices and systems have been developed. Such bioelectronic devices possess unique geometric structures of electrodes that enhance quality of electrophysiological signal recording. Though planar multielectrode/multitransistors are widely used for simultaneous multichannel measurement of cell electrophysiological signals, their use for extracellular electrophysiological recording exhibits low signal strength and quality. However, the integration of three-dimensional (3D) multielectrode/multitransistor arrays that use advanced penetration strategies can achieve high-quality intracellular signal recording. This review provides an overview of the manufacturing, geometric structure, and penetration paradigms of 3D micronano devices, as well as their applications for precise drug screening and biomimetic disease modeling. Furthermore, this review also summarizes the current challenges and outlines future directions for the preparation and application of micronano bioelectronic devices, with an aim to promote the development of intracellular electrophysiological platforms and thereby meet the demands of emerging clinical applications.
Collapse
Affiliation(s)
- Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Haitao Liu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| |
Collapse
|
14
|
Chen Y, Shokouhi AR, Voelcker NH, Elnathan R. Nanoinjection: A Platform for Innovation in Ex Vivo Cell Engineering. Acc Chem Res 2024; 57:1722-1735. [PMID: 38819691 PMCID: PMC11191407 DOI: 10.1021/acs.accounts.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
In human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient's own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering. Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies. We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).
Collapse
Affiliation(s)
- Yaping Chen
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), Institute of Aging, Key Laboratory of Alzheimer’s
Disease of Zhejiang Province, Zhejiang Provincial Clinical Research
Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ali-Reza Shokouhi
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Nicolas H. Voelcker
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Department
of Materials Science and Engineering, Monash
University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| | - Roey Elnathan
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- School
of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC 3216, Australia
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, VIC 3216, Australia
- The
Institute for Mental and Physical Health and Clinical Translation,
School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC 3216, Australia
| |
Collapse
|
15
|
Wang C, Gu C, Popp C, Vashisth P, Mustfa SA, Martella DA, Spiteri C, McLennan S, Sun N, Riddle M, Eide CR, Parsons M, Tolar J, McGrath JA, Chiappini C. Integrating Porous Silicon Nanoneedles within Medical Devices for Nucleic Acid Nanoinjection. ACS NANO 2024; 18:14938-14953. [PMID: 38726598 PMCID: PMC11171749 DOI: 10.1021/acsnano.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Porous silicon nanoneedles can interface with cells and tissues with minimal perturbation for high-throughput intracellular delivery and biosensing. Typically, nanoneedle devices are rigid, flat, and opaque, which limits their use for topical applications in the clinic. We have developed a robust, rapid, and precise substrate transfer approach to incorporate nanoneedles within diverse substrates of arbitrary composition, flexibility, curvature, transparency, and biodegradability. With this approach, we integrated nanoneedles on medically relevant elastomers, hydrogels, plastics, medical bandages, catheter tubes, and contact lenses. The integration retains the mechanical properties and transfection efficiency of the nanoneedles. Transparent devices enable the live monitoring of cell-nanoneedle interactions. Flexible devices interface with tissues for efficient, uniform, and sustained topical delivery of nucleic acids ex vivo and in vivo. The versatility of this approach highlights the opportunity to integrate nanoneedles within existing medical devices to develop advanced platforms for topical delivery and biosensing.
Collapse
Affiliation(s)
- Cong Wang
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
- London
Centre for Nanotechnology, King’s
College London, WC2R 2LS London, U.K.
| | - Chenlei Gu
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
- London
Centre for Nanotechnology, King’s
College London, WC2R 2LS London, U.K.
| | - Courtney Popp
- Department
of Pediatrics, Medical School, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Priya Vashisth
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Salman Ahmad Mustfa
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Davide Alessandro Martella
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
- London
Centre for Nanotechnology, King’s
College London, WC2R 2LS London, U.K.
| | - Chantelle Spiteri
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Samuel McLennan
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Ningjia Sun
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Megan Riddle
- Department
of Pediatrics, Medical School, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cindy R. Eide
- Department
of Pediatrics, Medical School, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maddy Parsons
- Randall
Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL London, U.K.
| | - Jakub Tolar
- Department
of Pediatrics, Medical School, University
of Minnesota, Minneapolis, Minnesota 55455, United States
- Stem
Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John A. McGrath
- St
John’s
Institute of Dermatology, King’s
College London, SE1 7EP London, U.K.
| | - Ciro Chiappini
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
- London
Centre for Nanotechnology, King’s
College London, WC2R 2LS London, U.K.
| |
Collapse
|
16
|
Kim M, Lee H, Nam S, Kim DH, Cha GD. Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering. Acc Chem Res 2024; 57:1633-1647. [PMID: 38752397 DOI: 10.1021/acs.accounts.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The identification of neural networks for large areas and the regulation of neuronal activity at the single-neuron scale have garnered considerable attention in neuroscience. In addition, detecting biochemical molecules and electrically, optically, and chemically controlling neural functions are key research issues. However, conventional rigid and bulky bioelectronics face challenges for neural applications, including mechanical mismatch, unsatisfactory signal-to-noise ratio, and poor integration of multifunctional components, thereby degrading the sensing and modulation performance, long-term stability and biocompatibility, and diagnosis and therapy efficacy. Implantable bioelectronics have been developed to be mechanically compatible with the brain environment by adopting advanced geometric designs and utilizing intrinsically stretchable materials, but such advances have not been able to address all of the aforementioned challenges.Recently, the exploration of nanomaterial synthesis and nanoscale fabrication strategies has facilitated the design of unconventional soft bioelectronics with mechanical properties similar to those of neural tissues and submicrometer-scale resolution comparable to typical neuron sizes. The introduction of nanotechnology has provided bioelectronics with improved spatial resolution, selectivity, single neuron targeting, and even multifunctionality. As a result, this state-of-the-art nanotechnology has been integrated with bioelectronics in two main types, i.e., bioelectronics integrated with synthesized nanomaterials and bioelectronics with nanoscale structures. The functional nanomaterials can be synthesized and assembled to compose bioelectronics, allowing easy customization of their functionality to meet specific requirements. The unique nanoscale structures implemented with the bioelectronics could maximize the performance in terms of sensing and stimulation. Such soft nanobioelectronics have demonstrated their applicability for neuronal recording and modulation over a long period at the intracellular level and incorporation of multiple functions, such as electrical, optical, and chemical sensing and stimulation functions.In this Account, we will discuss the technical pathways in soft bioelectronics integrated with nanomaterials and implementing nanostructures for application to neuroengineering. We traced the historical development of bioelectronics from rigid and bulky structures to soft and deformable devices to conform to neuroengineering requirements. Recent approaches that introduced nanotechnology into neural devices enhanced the spatiotemporal resolution and endowed various device functions. These soft nanobioelectronic technologies are discussed in two categories: bioelectronics with synthesized nanomaterials and bioelectronics with nanoscale structures. We describe nanomaterial-integrated soft bioelectronics exhibiting various functionalities and modalities depending on the integrated nanomaterials. Meanwhile, soft bioelectronics with nanoscale structures are explained with their superior resolution and unique administration methods. We also exemplified the neural sensing and stimulation applications of soft nanobioelectronics across various modalities, showcasing their clinical applications in the treatment of neurological diseases, such as brain tumors, epilepsy, and Parkinson's disease. Finally, we discussed the challenges and direction of next-generation technologies.
Collapse
Affiliation(s)
- Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
17
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
18
|
Zhang Z, Li P, Xiong M, Zhang L, Chen J, Lei X, Pan X, Wang X, Deng XY, Shen W, Mei Z, Liu KK, Liu G, Huang Z, Lv S, Shao Y, Lei T. Continuous production of ultratough semiconducting polymer fibers with high electronic performance. SCIENCE ADVANCES 2024; 10:eadk0647. [PMID: 38569023 PMCID: PMC10990280 DOI: 10.1126/sciadv.adk0647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (>200 megapascals) and toughness (>80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.
Collapse
Affiliation(s)
- Zhi Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Miao Xiong
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Liang Zhang
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Jupeng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xun Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiran Pan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Weiyu Shen
- College of Engineering, Peking University, Beijing 100871, China
| | - Zi Mei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Kai-Kai Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Guangchao Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhen Huang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shixian Lv
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuanlong Shao
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Xiang Y, Shi K, Li Y, Xue J, Tong Z, Li H, Li Z, Teng C, Fang J, Hu N. Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording. NANO-MICRO LETTERS 2024; 16:132. [PMID: 38411852 PMCID: PMC10899154 DOI: 10.1007/s40820-024-01336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024]
Abstract
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience. In recent years, active micro/nano-bioelectronic devices have undergone significant advancements, thereby facilitating the study of electrophysiology. The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale. In this paper, we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electro-excitable cells, focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals. Looking forward to the possibilities, challenges, and wide prospects of active micro-nano-devices, we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China
| | - Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China
| | - Zhicheng Tong
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Huiming Li
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China.
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China.
| | - Chong Teng
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China.
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
20
|
Zhang TY, Liu FQ, Li Z, Xu YT, Zhao WW, Chen HY, Xu JJ. A hollow Ag/AgCl nanoelectrode for single-cell chloride detection. Chem Commun (Camb) 2024; 60:2373-2376. [PMID: 38318933 DOI: 10.1039/d3cc06078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This work reports the construction of a miniaturized Ag/AgCl nanoelectrode on a nanopipette, which is capable of dual-functions of single-cell drug infusion and chloride detection and is envisioned to promote the study of chloride-correlated therapeutic effects.
Collapse
Affiliation(s)
- Tian-Yang Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Fang-Qing Liu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zheng Li
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi-Tong Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wei-Wei Zhao
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
21
|
Han H, Qin C, Xu D, Kar S, Castro FA, Wang Z, Fang J, Zhao Y, Hu N. Elevating intracellular action potential recording in cardiomyocytes: A precision-enhanced and biosafe single-pulse electroporation system. Biosens Bioelectron 2024; 246:115860. [PMID: 38039735 DOI: 10.1016/j.bios.2023.115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Action potentials play a pivotal role in diverse cardiovascular physiological mechanisms. A comprehensive understanding of these intricate mechanisms necessitates a high-fidelity intracellular electrophysiological investigative approach. The amalgamation of micro-/nano-electrode arrays and electroporation confers substantial advantages in terms of high-resolution intracellular recording capabilities. Nonetheless, electroporation systems typically lack precise control, and commonly employed electroporation modes, involving tailored sequences, may escalate cellular damage and perturbation of normal physiological functions due to the multiple or higher-intensity electrical pulses. In this study, we developed an innovative electrophysiological biosensing system customized to facilitate precise single-pulse electroporation. This advancement serves to achieve optimal and uninterrupted intracellular action potential recording within cardiomyocytes. The refinement of the single-pulse electroporation technique is realized through the integration of the electroporation and assessment biosensing system, thereby ensuring a consistent and reliable means of achieving stable intracellular access. Our investigation has unveiled that the optimized single-pulse electroporation technique not only maintains robust biosafety standards but also enables the continuous capture of intracellular electrophysiological signals across an expansive three-day period. The universality of this biosensing system, adaptable to various micro/nano devices, furnishes real-time analysis and feedback concerning electroporation efficacy, guaranteeing the sustained, secure, and high-fidelity acquisition of intracellular data, thereby propelling the field of cardiovascular electrophysiological research.
Collapse
Affiliation(s)
- Haote Han
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Surajit Kar
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK; Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Fernando A Castro
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK; Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Precision Medicine Institute, Center for Laboratory Medicine, Allergy Center, Tiantai Branch of Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Taizhou, 317200, China.
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yunlong Zhao
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK; Dyson School of Design Engineering, Imperial College London, London, SW7 2BX, UK.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| |
Collapse
|
22
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
23
|
Zhang Y, Chen D, He W, Chen N, Zhou L, Yu L, Yang Y, Yuan Q. Interface-Engineered Field-Effect Transistor Electronic Devices for Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306252. [PMID: 38048547 DOI: 10.1002/adma.202306252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Indexed: 12/06/2023]
Abstract
Promising advances in molecular medicine have promoted the urgent requirement for reliable and sensitive diagnostic tools. Electronic biosensing devices based on field-effect transistors (FETs) exhibit a wide range of benefits, including rapid and label-free detection, high sensitivity, easy operation, and capability of integration, possessing significant potential for application in disease screening and health monitoring. In this perspective, the tremendous efforts and achievements in the development of high-performance FET biosensors in the past decade are summarized, with emphasis on the interface engineering of FET-based electrical platforms for biomolecule identification. First, an overview of engineering strategies for interface modulation and recognition element design is discussed in detail. For a further step, the applications of FET-based electrical devices for in vitro detection and real-time monitoring in biological systems are comprehensively reviewed. Finally, the key opportunities and challenges of FET-based electronic devices in biosensing are discussed. It is anticipated that a comprehensive understanding of interface engineering strategies in FET biosensors will inspire additional techniques for developing highly sensitive, specific, and stable FET biosensors as well as emerging designs for next-generation biosensing electronics.
Collapse
Affiliation(s)
- Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Liping Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Lilei Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
24
|
Yang N, Kang Y, Cong Y, Wang X, Yao C, Wang S, Li L. Controllable Gold Nanocluster-Emulsion Interface for Direct Cell Penetration and Photothermal Killing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208349. [PMID: 36271742 DOI: 10.1002/adma.202208349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In the view of their ability to be uptaken by cells, colloidal particles can exert diverse physiological effects and are promising vehicles for the intracellular delivery of biologically active substances. Given that the modulation of biomaterial interfaces greatly facilitates the prediction and control of the corresponding cellular responses, the interfacial behavior of hydrophobic dye-modified gold (Au) nanoclusters (Au NCs) is rationally designed to develop Au NC-containing emulsions and control their biointerfacial interactions with cell membranes. The observed biological performance is indicative of a physical penetration mechanism. The amphiphilic Au NCs decrease the interfacial energy of two immiscible liquids and hinder droplet coalescence to facilitate the formation of emulsions thermodynamically stabilized by dipole-dipole and hydrophobic interactions. Moreover, the amphiphilic Au NCs are localized on the emulsion droplet surface and form segregated interfacial microdomains that adapt to the membrane structure and facilitate the traverse of the emulsions across the cell membrane via direct penetration. Fast penetration coupled with excellent photophysical performance endows the emulsions with multifluorescence tracing and efficient photothermal killing capabilities. The successful change of the interaction mode between NCs and biological objects and the provision of a universal formulation to modulate biointerfacial interactions are expected to inspire new bioapplications.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuetong Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yujie Cong
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Chongqing, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
25
|
Zhang A, Zwang TJ, Lieber CM. Biochemically functionalized probes for cell-type-specific targeting and recording in the brain. SCIENCE ADVANCES 2023; 9:eadk1050. [PMID: 38019917 PMCID: PMC10686571 DOI: 10.1126/sciadv.adk1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Selective targeting and modulation of distinct cell types and neuron subtypes is central to understanding complex neural circuitry and could enable electronic treatments that target specific circuits while minimizing off-target effects. However, current brain-implantable electronics have not yet achieved cell-type specificity. We address this challenge by functionalizing flexible mesh electronic probes, which elicit minimal immune response, with antibodies or peptides to target specific cell markers. Histology studies reveal selective association of targeted neurons, astrocytes, and microglia with functionalized probe surfaces without accumulating off-target cells. In vivo chronic electrophysiology further yields recordings consistent with selective targeting of these cell types. Last, probes functionalized to target dopamine receptor 2 expressing neurons show the potential for neuron-subtype-specific targeting and electrophysiology.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Theodore J. Zwang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
26
|
Janićijević Ž, Nguyen-Le TA, Alsadig A, Cela I, Žilėnaite R, Tonmoy TH, Kubeil M, Bachmann M, Baraban L. Methods gold standard in clinic millifluidics multiplexed extended gate field-effect transistor biosensor with gold nanoantennae as signal amplifiers. Biosens Bioelectron 2023; 241:115701. [PMID: 37757510 DOI: 10.1016/j.bios.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
We present a portable multiplexed biosensor platform based on the extended gate field-effect transistor and demonstrate its amplified response thanks to gold nanoparticle-based bioconjugates introduced as a part of the immunoassay. The platform comprises a disposable chip hosting an array of 32 extended gate electrodes, a readout module based on a single transistor operating in constant charge mode, and a multiplexer to scan sensing electrodes one-by-one. Although employing only off-the-shelf electronic components, our platform achieves sensitivities comparable to fully customized nanofabricated potentiometric sensors. In particular, it reaches a detection limit of 0.2 fM for the pure molecular assay when sensing horseradish peroxidase-linked secondary antibody (∼0.4 nM reached by standard microplate methods). Furthermore, with the gold nanoparticle bioconjugation format, we demonstrate ca. 5-fold amplification of the potentiometric response compared to a pure molecular assay, at the detection limit of 13.3 fM. Finally, we elaborate on the mechanism of this amplification and propose that nanoparticle-mediated disruption of the diffusion barrier layer is the main contributor to the potentiometric signal enhancement. These results show the great potential of our portable, sensitive, and cost-efficient biosensor for multidimensional diagnostics in the clinical and laboratory settings, including e.g., serological tests or pathogen screening.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Trang-Anh Nguyen-Le
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Ahmed Alsadig
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Isli Cela
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Rugilė Žilėnaite
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany; Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko g. 24, LT-03225, Vilnius, Lithuania
| | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| |
Collapse
|
27
|
Bartlett M, He M, Ranke D, Wang Y, Cohen-Karni T. A snapshot review on materials enabled multimodal bioelectronics for neurological and cardiac research. MRS ADVANCES 2023; 8:1047-1060. [PMID: 38283671 PMCID: PMC10812139 DOI: 10.1557/s43580-023-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 01/30/2024]
Abstract
Seamless integration of the body and electronics toward the understanding, quantification, and control of disease states remains one of the grand scientific challenges of this era. As such, research efforts have been dedicated to developing bioelectronic devices for chemical, mechanical, and electrical sensing, and cellular and tissue functionality modulation. The technologies developed to achieve these capabilities cross a wide range of materials and scale (and dimensionality), e.g., from micrometer to centimeters (from 2-dimensional (2D) to 3-dimensional (3D) assemblies). The integration into multimodal systems which allow greater insight and control into intrinsically multifaceted biological systems requires careful design and selection. This snapshot review will highlight the state-of-the-art in cellular recording and modulation as well as the material considerations for the design and manufacturing of devices integrating their capabilities.
Collapse
Affiliation(s)
- Mabel Bartlett
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mengdi He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Ranke
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tzahi Cohen-Karni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Zhang A, Zwang TJ, Lieber CM. Biochemically-functionalized probes for cell type-specific targeting and recording in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560579. [PMID: 37873102 PMCID: PMC10592891 DOI: 10.1101/2023.10.02.560579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Selective targeting and modulation of distinct cell types and neuron subtypes is central to understanding complex neural circuitry, and could enable electronic treatments that target specific circuits while minimizing off-target effects. However, current brain-implantable electronics have not yet achieved cell-type specificity. We address this challenge by functionalizing flexible mesh electronic probes, which elicit minimal immune response, with antibodies or peptides to target specific cell markers. Histology studies reveal selective association of targeted neurons, astrocytes and microglia with functionalized probe surfaces without accumulating off-target cells. In vivo chronic electrophysiology further yields recordings consistent with selective targeting of these cell types. Last, probes functionalized to target dopamine 2 receptor expressing neurons show the potential for neuron subtype specific targeting and electrophysiology.
Collapse
|
29
|
Xie X, Xu Z, Yu X, Jiang H, Li H, Feng W. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels. Nat Commun 2023; 14:4289. [PMID: 37463898 DOI: 10.1038/s41467-023-40004-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Conductive hydrogels require tunable mechanical properties, high conductivity and complicated 3D structures for advanced functionality in (bio)applications. Here, we report a straightforward strategy to construct 3D conductive hydrogels by programable printing of aqueous inks rich in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inside of oil. In this liquid-in-liquid printing method, assemblies of PEDOT:PSS colloidal particles originating from the aqueous phase and polydimethylsiloxane surfactants from the other form an elastic film at the liquid-liquid interface, allowing trapping of the hydrogel precursor inks in the designed 3D nonequilibrium shapes for subsequent gelation and/or chemical cross-linking. Conductivities up to 301 S m-1 are achieved for a low PEDOT:PSS content of 9 mg mL-1 in two interpenetrating hydrogel networks. The effortless printability enables us to tune the hydrogels' components and mechanical properties, thus facilitating the use of these conductive hydrogels as electromicrofluidic devices and to customize near-field communication (NFC) implantable biochips in the future.
Collapse
Affiliation(s)
- Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Zhonggang Xu
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Xin Yu
- Department of Pancreatic Surgery, Department of Biotherapy, West China Hospital, Sichuan University, 610065, Chengdu, China
| | - Hong Jiang
- Department of Pancreatic Surgery, Department of Biotherapy, West China Hospital, Sichuan University, 610065, Chengdu, China
| | - Hongjiao Li
- College of Chemical Engineering, Sichuan University, 610065, Chengdu, China.
| | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
30
|
Raveendran R, Prabakaran L, Senthil R, Yesudhason BV, Dharmalingam S, Sathyaraj WV, Atchudan R. Current Innovations in Intraocular Pressure Monitoring Biosensors for Diagnosis and Treatment of Glaucoma-Novel Strategies and Future Perspectives. BIOSENSORS 2023; 13:663. [PMID: 37367028 DOI: 10.3390/bios13060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Biosensors are devices that quantify biologically significant information required for diverse applications, such as disease diagnosis, food safety, drug discovery and detection of environmental pollutants. Recent advancements in microfluidics, nanotechnology and electronics have led to the development of novel implantable and wearable biosensors for the expedient monitoring of diseases such as diabetes, glaucoma and cancer. Glaucoma is an ocular disease which ranks as the second leading cause for loss of vision. It is characterized by the increase in intraocular pressure (IOP) in human eyes, which results in irreversible blindness. Currently, the reduction of IOP is the only treatment used to manage glaucoma. However, the success rate of medicines used to treat glaucoma is quite minimal due to their curbed bioavailability and reduced therapeutic efficacy. The drugs must pass through various barriers to reach the intraocular space, which in turn serves as a major challenge in glaucoma treatment. Rapid progress has been observed in nano-drug delivery systems for the early diagnosis and prompt therapy of ocular diseases. This review gives a deep insight into the current advancements in the field of nanotechnology for detecting and treating glaucoma, as well as for the continuous monitoring of IOP. Various nanotechnology-based achievements, such as nanoparticle/nanofiber-based contact lenses and biosensors that can efficiently monitor IOP for the efficient detection of glaucoma, are also discussed.
Collapse
Affiliation(s)
- Rubiya Raveendran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Lokesh Prabakaran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
31
|
He J, Spanolios E, Froehlich CE, Wouters CL, Haynes CL. Recent Advances in the Development and Characterization of Electrochemical and Electrical Biosensors for Small Molecule Neurotransmitters. ACS Sens 2023; 8:1391-1403. [PMID: 36940263 DOI: 10.1021/acssensors.3c00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Neurotransmitters act as chemical messengers, determining human physiological and psychological function, and abnormal levels of neurotransmitters are related to conditions such as Parkinson's and Alzheimer's disease. Biologically and clinically relevant concentrations of neurotransmitters are usually very low (nM), so electrochemical and electronic sensors for neurotransmitter detection play an important role in achieving sensitive and selective detection. Additionally, these sensors have the distinct advantage to potentially be wireless, miniaturized, and multichannel, providing remarkable opportunities for implantable, long-term sensing capabilities unachievable by spectroscopic or chromatographic detection methods. In this article, we will focus on advances in the development and characterization of electrochemical and electronic sensors for neurotransmitters during the last five years, identifying how the field is progressing as well as critical knowledge gaps for sensor researchers.
Collapse
|
32
|
Gu B, Li X, Yao C, Qu X, Mao M, Li D, He J. Integration of microelectrodes and highly-aligned cardiac constructs for in situ electrophysiological recording. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
33
|
Mintz Hemed N, Melosh NA. An integrated perspective for the diagnosis and therapy of neurodevelopmental disorders - From an engineering point of view. Adv Drug Deliv Rev 2023; 194:114723. [PMID: 36746077 DOI: 10.1016/j.addr.2023.114723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/14/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Neurodevelopmental disorders (NDDs) are complex conditions with largely unknown pathophysiology. While many NDD symptoms are familiar, the cause of these disorders remains unclear and may involve a combination of genetic, biological, psychosocial, and environmental risk factors. Current diagnosis relies heavily on behaviorally defined criteria, which may be biased by the clinical team's professional and cultural expectations, thus a push for new biological-based biomarkers for NDDs diagnosis is underway. Emerging new research technologies offer an unprecedented view into the electrical, chemical, and physiological activity in the brain and with further development in humans may provide clinically relevant diagnoses. These could also be extended to new treatment options, which can start to address the underlying physiological issues. When combined with current speech, language, occupational therapy, and pharmacological treatment these could greatly improve patient outcomes. The current review will discuss the latest technologies that are being used or may be used for NDDs diagnosis and treatment. The aim is to provide an inspiring and forward-looking view for future research in the field.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Shi XM, Xu YT, Zhou BY, Wang B, Yu SY, Zhao WW, Jiang D, Chen HY, Xu JJ. Electrochemical Single-Cell Protein Therapeutics Using a Double-Barrel Nanopipette. Angew Chem Int Ed Engl 2023; 62:e202215801. [PMID: 36550087 DOI: 10.1002/anie.202215801] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Single-cell protein therapeutics is expected to promote our in-depth understanding of how a specific protein with a therapeutic dosage treats the cell without population averaging. However, it has not yet been tackled by current single-cell nanotools. We address this challenge by the use of a double-barrel nanopipette, in which one lumen was used for electroosmotic cytosolic protein delivery and the other was customized for ionic evaluation of the consequence. Upon injection of protein DJ-1 through the delivery lumen, upregulation of the antioxidant protein could protect neural PC-12 cells against oxidative stress from phorbol myristate acetate exposure, as deduced by targeting of the cytosolic hydrogen peroxide by the detecting lumen. The nanotool developed in this study for single-cell protein therapeutics provides a perspective for future single-cell therapeutics involving different therapeutic modalities, such as peptides, enzymes and nucleic acids.
Collapse
Affiliation(s)
- Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bing-Yu Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
35
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
36
|
Lin Y, Zhang B, Shi Y, Zheng Y, Yu J, Jie J, Zhang X. Strain effect on the field-effect sensing property of Si wires. Phys Chem Chem Phys 2023; 25:3279-3286. [PMID: 36629145 DOI: 10.1039/d2cp04805a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Silicon-based field effect transistor (FET) sensors with high sensitivity are emerging as powerful sensors for detecting chemical/biological species. Strain engineering has been demonstrated as an effective means to improve the performance of Si-based devices. However, the strain effect on the field-effect sensing property of silicon materials has not been studied yet. Here, we investigate the strain effect on the field-effect sensing property of silicon wires by taking humidity sensing as an example. The humidity sensitivity of FET sensors based on silicon wires increases with increasing tensile strain but decreases with increasing compressive strain. The sensitivity is very responsive to strain with an enhancement factor of 67 for tensile strain. Theoretical analysis shows that the sensitivity variation under different strains is mainly attributed to the change in adsorption energy between silicon wires and water molecules. This work indicates that strain engineering can be an effective route to modulate the field-effect sensing property of Si wires for constructing highly sensitive Si-based FET sensors.
Collapse
Affiliation(s)
- Yuan Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Bingchang Zhang
- School of Optoelectronic Science and Engineering, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Yihao Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Yongchao Zheng
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
37
|
Cheng Y, Gan X, Liu Z, Wang J, Xu J, Chen K, Yu L. Nanostripe-Confined Catalyst Formation for Uniform Growth of Ultrathin Silicon Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:121. [PMID: 36616032 PMCID: PMC9824257 DOI: 10.3390/nano13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Uniform growth of ultrathin silicon nanowire (SiNW) channels is the key to accomplishing reliable integration of various SiNW-based electronics, but remains a formidable challenge for catalytic synthesis, largely due to the lack of uniform size control of the leading metallic droplets. In this work, we explored a nanostripe-confined approach to produce highly uniform indium (In) catalyst droplets that enabled the uniform growth of an orderly SiNW array via an in-plane solid-liquid-solid (IPSLS) guided growth directed by simple step edges. It was found that the size dispersion of the In droplets could be reduced substantially from Dcatpl = 20 ± 96 nm on a planar surface to only Dcatns = 88 ± 13 nm when the width of the In nanostripe was narrowed to Wstr= 100 nm, which could be qualitatively explained in a confined diffusion and nucleation model. The improved droplet uniformity was then translated into a more uniform growth of ultrathin SiNWs, with diameter of only Dnw= 28 ± 4 nm, which has not been reported for single-edge guided IPSLS growth. These results lay a solid basis for the construction of advanced SiNW-derived field-effect transistors, sensors and display applications.
Collapse
|
38
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
39
|
Wen L, Li G, Huang T, Geng W, Pei H, Yang J, Zhu M, Zhang P, Hou R, Tian G, Su W, Chen J, Zhang D, Zhu P, Zhang W, Zhang X, Zhang N, Zhao Y, Cao X, Peng G, Ren X, Jiang N, Tian C, Chen ZJ. Single-cell technologies: From research to application. Innovation (N Y) 2022; 3:100342. [PMID: 36353677 PMCID: PMC9637996 DOI: 10.1016/j.xinn.2022.100342] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, more and more single-cell technologies have been developed. A vast amount of single-cell omics data has been generated by large projects, such as the Human Cell Atlas, the Mouse Cell Atlas, the Mouse RNA Atlas, the Mouse ATAC Atlas, and the Plant Cell Atlas. Based on these single-cell big data, thousands of bioinformatics algorithms for quality control, clustering, cell-type annotation, developmental inference, cell-cell transition, cell-cell interaction, and spatial analysis are developed. With powerful experimental single-cell technology and state-of-the-art big data analysis methods based on artificial intelligence, the molecular landscape at the single-cell level can be revealed. With spatial transcriptomics and single-cell multi-omics, even the spatial dynamic multi-level regulatory mechanisms can be deciphered. Such single-cell technologies have many successful applications in oncology, assisted reproduction, embryonic development, and plant breeding. We not only review the experimental and bioinformatics methods for single-cell research, but also discuss their applications in various fields and forecast the future directions for single-cell technologies. We believe that spatial transcriptomics and single-cell multi-omics will become the next booming business for mechanism research and commercial industry.
Collapse
Affiliation(s)
- Lu Wen
- Biomedical Pioneering Innovation Centre (BIOPIC), Peking University, Beijing 100871, China
| | - Guoqiang Li
- Biomedical Pioneering Innovation Centre (BIOPIC), Peking University, Beijing 100871, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Hao Pei
- Mozhuo Biotech (Zhejiang) Co., Ltd., Tongxiang, Jiaxing 314500, China
| | | | - Miao Zhu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rui Hou
- Geneis (Beijing) Co., Ltd., Beijing 100102, China
| | - Geng Tian
- Geneis (Beijing) Co., Ltd., Beijing 100102, China
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiuxin Zhang
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunlong Zhao
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangdun Peng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Centre (BIOPIC), Peking University, Beijing 100871, China
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Caihuan Tian
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
40
|
Saleh MS, Ritchie SM, Nicholas MA, Gordon HL, Hu C, Jahan S, Yuan B, Bezbaruah R, Reddy JW, Ahmed Z, Chamanzar M, Yttri EA, Panat RP. CMU Array: A 3D nanoprinted, fully customizable high-density microelectrode array platform. SCIENCE ADVANCES 2022; 8:eabj4853. [PMID: 36197979 PMCID: PMC9534502 DOI: 10.1126/sciadv.abj4853] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/17/2022] [Indexed: 05/27/2023]
Abstract
Microelectrode arrays provide the means to record electrophysiological activity critical to brain research. Despite its fundamental role, there are no means to customize electrode layouts to address specific experimental or clinical needs. Moreover, current electrodes demonstrate substantial limitations in coverage, fragility, and expense. Using a 3D nanoparticle printing approach that overcomes these limitations, we demonstrate the first in vivo recordings from electrodes that make use of the flexibility of the 3D printing process. The customizable and physically robust 3D multi-electrode devices feature high electrode densities (2600 channels/cm2 of footprint) with minimal gross tissue damage and excellent signal-to-noise ratio. This fabrication methodology also allows flexible reconfiguration consisting of different individual shank lengths and layouts, with low overall channel impedances. This is achieved, in part, via custom 3D printed multilayer circuit boards, a fabrication advancement itself that can support several biomedical device possibilities. This effective device design enables both targeted and large-scale recording of electrical signals throughout the brain.
Collapse
Affiliation(s)
- Mohammad Sadeq Saleh
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sandra M. Ritchie
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mark A. Nicholas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, PA 15213, USA
| | - Hailey L. Gordon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sanjida Jahan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Bin Yuan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rriddhiman Bezbaruah
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jay W. Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Eric A. Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rahul P. Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
41
|
Xu D, Fang J, Wang H, Wei X, Yang J, Li H, Yang T, Li Y, Liu C, Hu N. Scalable Nanotrap Matrix Enhanced Electroporation for Intracellular Recording of Action Potential. NANO LETTERS 2022; 22:7467-7476. [PMID: 36069674 DOI: 10.1021/acs.nanolett.2c02398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrophysiological recording, as a long-sought objective, plays a crucial role in fundamental biomedical research and practical clinical applications. The challenge in developing electrophysiological detection platforms is to combine simplicity, stability, and sensitivity in the same device. In this study, we develop a nanotrapped microelectrode based on a porous PET membrane, which is compatible with large-scale microtechnologies. The nanotraps can promote the protrusion of the local cell membrane in the hollow center and offer a unique nanoedge structure for tight sealing and effective electroporation. We demonstrate that scalable nanotraps can enhance cell-electrode coupling and perform high-quality intracellular recording. Further, the nanoedge-enhanced electroporation and minimally invasive nanotrapped recordings afford much longer intracellular access of over 100 min and permit consecutive electroporation events in a short period of time. This study suggests that the geometry-regulating strategy of the cell-electrode nanointerface could significantly improve the intracellular recording performance of a nanopatterned electrode.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xinwei Wei
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, People's Republic of China
| | - Jinhu Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ying Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, People's Republic of China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| |
Collapse
|
42
|
Lee J, Gänswein T, Ulusan H, Emmenegger V, Saguner AM, Duru F, Hierlemann A. Repeated and On-Demand Intracellular Recordings of Cardiomyocytes Derived from Human-Induced Pluripotent Stem Cells. ACS Sens 2022; 7:3181-3191. [PMID: 36166837 PMCID: PMC7613763 DOI: 10.1021/acssensors.2c01678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pharmaceutical compounds may have cardiotoxic properties, triggering potentially life-threatening arrhythmias. To investigate proarrhythmic effects of drugs, the patch clamp technique has been used as the gold standard for characterizing the electrophysiology of cardiomyocytes in vitro. However, the applicability of this technology for drug screening is limited, as it is complex to use and features low throughput. Recent studies have demonstrated that 3D-nanostructured electrodes enable to obtain intracellular signals from many cardiomyocytes in parallel; however, the tedious electrode fabrication and limited measurement duration still remain major issues for cardiotoxicity testing. Here, we demonstrate how porous Pt-black electrodes, arranged in high-density microelectrode arrays, can be used to record intracellular-like signals of cardiomyocytes at large scale repeatedly over an extended period of time. The developed technique, which yields highly parallelized electroporations using stimulation voltages around 1 V peak-to-peak amplitude, enabled intracellular-like recordings at high success rates without causing significant alteration in key electrophysiological features. In a proof-of-concept study, we investigated electrophysiological modulations induced by two clinically applied drugs, nifedipine and quinidine. As the obtained results were in good agreement with previously published data, we are confident that the developed technique has the potential to be routinely used in in vitro platforms for cardiotoxicity screening.
Collapse
Affiliation(s)
- Jihyun Lee
- Corresponding Authors Jihyun Lee — Bio Engineering Laboratory, ETH Zurich, 4058 Basel, Switzerland; ® Phone: +41 (0)61 387 31 28; jihyun.lee@ bsse.ethz.ch; Andreas Hierlemann — Bio Engineering Laboratory, ETH Zurich, 4058 Basel, Switzerland; Phone: +41 (0)61 387 31 50;
| | | | | | | | | | | | - Andreas Hierlemann
- Corresponding Authors Jihyun Lee — Bio Engineering Laboratory, ETH Zurich, 4058 Basel, Switzerland; ® Phone: +41 (0)61 387 31 28; jihyun.lee@ bsse.ethz.ch; Andreas Hierlemann — Bio Engineering Laboratory, ETH Zurich, 4058 Basel, Switzerland; Phone: +41 (0)61 387 31 50;
| |
Collapse
|
43
|
Leva F, Palestri P, Selmi L. Multiscale simulation analysis of passive and active micro/nanoelectrodes for CMOS-based in vitro neural sensing devices. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210013. [PMID: 35658681 DOI: 10.1098/rsta.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/14/2021] [Indexed: 06/15/2023]
Abstract
Neuron and neural network studies are remarkably fostered by novel stimulation and recording systems, which often make use of biochips fabricated with advanced electronic technologies and, notably, micro- and nanoscale complementary metal-oxide semiconductor (CMOS). Models of the transduction mechanisms involved in the sensor and recording of the neuron activity are useful to optimize the sensing device architecture and its coupling to the readout circuits, as well as to interpret the measured data. Starting with an overview of recently published integrated active and passive micro/nanoelectrode sensing devices for in vitro studies fabricated with modern (CMOS-based) micro-nano technology, this paper presents a mixed-mode device-circuit numerical-analytical multiscale and multiphysics simulation methodology to describe the neuron-sensor coupling, suitable to derive useful design guidelines. A few representative structures and coupling conditions are analysed in more detail in terms of the most relevant electrical figures of merit including signal-to-noise ratio. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
Collapse
Affiliation(s)
- Federico Leva
- Dipartimento di ingegneria Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | - Pierpaolo Palestri
- Polytechnical Department of Engineering and Architecture, University of Udine, Udine, Italy
| | - Luca Selmi
- Dipartimento di ingegneria Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
44
|
Zhang A, Fang J, Wang J, Xie X, Chen HJ, He G. Interrogation on the Cellular Nano-Interface and Biosafety of Repeated Nano-Electroporation by Nanostraw System. BIOSENSORS 2022; 12:522. [PMID: 35884325 PMCID: PMC9313307 DOI: 10.3390/bios12070522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cell perforation is a critical step for intracellular drug delivery and real-time biosensing of intracellular signals. In recent years, the nanostraws system has been developed to achieve intracellular drug delivery with minimal invasiveness to the cells. Repeated cell perforation via nano-system could allow delivery of multiple drugs into cells for cell editing, but the biosafety is rarely explored. In this work, a nanostraw-mediated nano-electroporation system was developed, which allowed repeated perforation of the same set of cells in a minimally invasive manner, while the biosafety aspect of this system was investigated. Highly controllable fabrication of Al2O3 nanostraw arrays based on a porous polyethylene terephthalate (PET) membrane was integrated with a microfluidic device to construct the nanostraw-electroporation system. The pulse conditions and intervals of nano-electroporation were systematically optimized to achieve efficient cells perforation and maintain the viability of the cells. The cells proliferation, the early apoptosis activities after nanostraw-electroporation and the changes of gene functions and gene pathways of cells after repeated nano-electroporation were comprehensively analyzed. These results revealed that the repeated nanostraw-electroporation did not induce obvious negative effects on the cells. This work demonstrates the feasibility of repeated nano-electroporation on cells and provides a promising strategy for future biomedical applications.
Collapse
Affiliation(s)
- Aihua Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
| | - Ji Wang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
45
|
Fang J, Huang S, Liu F, He G, Li X, Huang X, Chen HJ, Xie X. Semi-Implantable Bioelectronics. NANO-MICRO LETTERS 2022; 14:125. [PMID: 35633391 PMCID: PMC9148344 DOI: 10.1007/s40820-022-00818-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of "Semi-implantable bioelectronics", summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
46
|
Zhang A, Fang J, Li X, Wang J, Chen M, Chen HJ, He G, Xie X. Cellular nanointerface of vertical nanostructure arrays and its applications. NANOSCALE ADVANCES 2022; 4:1844-1867. [PMID: 36133409 PMCID: PMC9419580 DOI: 10.1039/d1na00775k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/28/2021] [Indexed: 06/16/2023]
Abstract
Vertically standing nanostructures with various morphologies have been developed with the emergence of the micro-/nanofabrication technology. When cells are cultured on them, various bio-nano interfaces between cells and vertical nanostructures would impact the cellular activities, depending on the shape, density, and height of nanostructures. Many cellular pathway activation processes involving a series of intracellular molecules (proteins, RNA, DNA, enzymes, etc.) would be triggered by the cell morphological changes induced by nanostructures, affecting the cell proliferation, apoptosis, differentiation, immune activation, cell adhesion, cell migration, and other behaviors. In addition, the highly localized cellular nanointerface enhances coupled stimulation on cells. Therefore, understanding the mechanism of the cellular nanointerface can not only provide innovative tools for regulating specific cell functions but also offers new aspects to understand the fundamental cellular activities that could facilitate the precise monitoring and treatment of diseases in the future. This review mainly describes the fabrication technology of vertical nanostructures, analyzing the formation of cellular nanointerfaces and the effects of cellular nanointerfaces on cells' fates and functions. At last, the applications of cellular nanointerfaces based on various nanostructures are summarized.
Collapse
Affiliation(s)
- Aihua Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- School of Biomedical Engineering, Sun Yat-Sen University Guangzhou 510006 China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau Taipa Macau SAR China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| |
Collapse
|
47
|
Cox-Pridmore DM, Castro FA, Silva SRP, Camelliti P, Zhao Y. Emerging Bioelectronic Strategies for Cardiovascular Tissue Engineering and Implantation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105281. [PMID: 35119208 DOI: 10.1002/smll.202105281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Heart diseases are currently the leading cause of death worldwide. The ability to create cardiovascular tissue has numerous applications in understanding tissue development, disease progression, pharmacological testing, bio-actuators, and transplantation; yet current cardiovascular tissue engineering (CTE) methods are limited. However, there have been emerging developments in the bioelectronics field, with the creation of biomimetic devices that can intimately interact with cardiac cells, provide monitoring capabilities, and regulate tissue formation. Combining bioelectronics with cardiac tissue engineering can overcome current limitations and produce physiologically relevant tissue that can be used in various areas of cardiovascular research and medicine. This review highlights the recent advances in cardiovascular-based bioelectronics. First, cardiac tissue engineering and the potential of bioelectronic therapies for cardiovascular diseases are discussed. Second, advantageous bioelectronic materials for CTE and implantation and their properties are reviewed. Third, several representative cardiovascular tissue-bioelectronic interface models and the beneficial functions that bioelectronics can demonstrate in in vitro and in vivo applications are explored. Finally, the prospects and remaining challenges for clinical application are discussed.
Collapse
Affiliation(s)
- Dannielle M Cox-Pridmore
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Fernando A Castro
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - S Ravi P Silva
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Yunlong Zhao
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|
48
|
Translational organoid technology – the convergence of chemical, mechanical, and computational biology. Trends Biotechnol 2022; 40:1121-1135. [DOI: 10.1016/j.tibtech.2022.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023]
|
49
|
Zhang M, Xu D, Fang J, Li H, Li Y, Liu C, Cao N, Hu N. A dynamic and quantitative biosensing assessment for electroporated membrane evolution of cardiomyocytes. Biosens Bioelectron 2022; 202:114016. [DOI: 10.1016/j.bios.2022.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 11/26/2022]
|
50
|
Xu D, Fang J, Zhang M, Xia Q, Li H, Hu N. Porous Polyethylene Terephthalate Nanotemplate Electrodes for Sensitive Intracellular Recording of Action Potentials. NANO LETTERS 2022; 22:2479-2489. [PMID: 35254073 DOI: 10.1021/acs.nanolett.2c00258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
New strategies for intracellular electrophysiology break the spatiotemporal limitation of the action potential and lead a notable advance in the investigation of electrically excitable cells and their network. Although successful applications of intracellular recording have been achieved by 3D micro/nanodevices, complex micro/nanofabrication processes preclude the progress of extensive applications. We address this challenge by introducing porous polyethylene terephthalate (PET) membrane to develop a new type of nanotemplate electrode. This nanotemplate electrode is manufactured following a fabrication process on a porous PET membrane by atomic layer deposition. The 3D nanotemplate electrodes afford intracellular access to cardiomyocytes to report intracellular-like action potentials. These controllable nanotemplate electrodes exhibit sensitive and prolonged intracellular recordings of action potentials compared with free-growing 3D nanoelectrodes. This study indicates that the optimized structure of the nanoelectrode significantly promotes the performance of intracellular recording to assess electrophysiology in the fields of cardiology and neuroscience at an action potential level.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyue Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Qijian Xia
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|