1
|
Huang L, Luo Y, Kuai L, Zhang X, Zhang Y, Yang Z, Fei X, Sun J, Luo Y, Zhao Y, Xue T, Yin W, Chang J, Song J, Li Y, Li B, Li Y. An approach for psoriasis of microneedle patch simultaneously targeting multiple inflammatory cytokines and relapse related T cells. Biomaterials 2025; 318:123120. [PMID: 39923540 DOI: 10.1016/j.biomaterials.2025.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Psoriasis is a chronic inflammatory skin disorder affecting approximately 125 million people globally. Topical medications are a cornerstone of current treatment protocols; however, their efficacy in mitigating inflammation is constrained by their predominantly single-target mechanisms. A significant challenge is the lack of pharmaceuticals specifically targeting CD8+ tissue resident memory T (CD8+ TRM) cells, which are the targets in psoriasis relapse. Consequently, relapse rates can soar to 90% post-treatment discontinuation. In this study, we successfully screened a specific macrophage membrane capable of targeting multiple inflammatory factors at psoriatic sites. This membrane was coextruded with etomoxir, a compound that targets CD8+ TRM cells. To enhance drug retention and penetration, we employed a delivery strategy involving PDA and microneedles, resulting in the synthesis of PDA-Etomoxir-Macrophage membrane@microneedle (PEM@m). In vivo, PEM@m exhibited superior efficacy in alleviating psoriasis symptoms and preventing relapse compared to the clinical drug calcipotriol (Cal). Mechanistically, PEM@m broadly inhibits inflammatory signals, and its reduction of CD8+ TRM cells can be associated with decreased activity in the pentose phosphate pathway (PPP). Our study offers a novel and promising approach for the definitive treatment of psoriasis.
Collapse
Affiliation(s)
- Li Huang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoyou Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zichen Yang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiuyuan Sun
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Tingting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Weimin Yin
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiao Chang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yan Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
2
|
Han T, Zhu W, Xu R, Chiang ST, Jin X, Shen X, Qian C, Yang G, Li R, Ai X. Glycan-Modified Cellular Nanosponges for Enhanced Treatment of Cholera Toxin-Induced Secretory Diarrhea. J Am Chem Soc 2025; 147:16982-16991. [PMID: 40340322 DOI: 10.1021/jacs.5c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Cholera is a severe infectious disease caused by the Gram-negative bacterium Vibrio cholerae after colonization in the intestinal tract. Cholera toxin (CT), a key exotoxin protein, primarily causes acute secretory diarrhea and life-threatening complications in infected patients. Traditional approaches remain insufficient for effectively treating cholera, underscoring the need for innovative countermeasures to eliminate CT-caused symptoms. Here, we report a glycan-modified cellular nanosponge for the enhanced treatment of CT-induced secretory diarrhea. Specifically, intestinal epithelial cell membrane-camouflaged nanosponges are functionalized with a glycan receptor to promote their capability for CT neutralization, thereby competitively inhibiting CT entry into host cells. Moreover, an inhibitor is encapsulated into the cellular nanosponge to synergistically improve the therapeutic effect of diarrhea by blocking the excessive chloride ion efflux from the cystic fibrosis transmembrane conductance regulator (a crucial anion channel) on the membrane of CT-intoxicated epithelial cells. Upon oral administration, the biomimetic nanomedicine effectively eliminates CT-induced secretory diarrhea and intestinal injuries in mice. Overall, this study highlights the potential of glycan-modified cellular nanosponges as promising and broad-spectrum therapeutic agents against secretory diarrhea caused by bacterial exotoxins.
Collapse
Affiliation(s)
- Tianzhen Han
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wangyang Zhu
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Xu
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Seok Theng Chiang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshuai Shen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxi Qian
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Key Raw Material, Shanghai Academy of Experimental Medicine, Shanghai 201401, China
| | - Rongxiu Li
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangzhao Ai
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Wang F, Li L, Wang X, Mo S, Ai J, Deng J, Li Y, Zhang Y, Li Q, Xiao Y, Li Z. A Cytotoxic T Lymphocyte-Inspiring Microscale System for Cancer Immunotherapy. ACS NANO 2025; 19:16554-16568. [PMID: 40268689 DOI: 10.1021/acsnano.4c19012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Adoptive T cell therapy (ACT) is an emerging cancer immunotherapy undergoing clinical evaluation, showing significant promise in the treatment of solid tumors. However, the clinical translation of ACT is hindered by its time-, labor-, and financial-consuming procedures, heterogeneity of cytotoxic T lymphocytes (CTLs), and immunosuppressive tumor microenvironment. Herein, we have developed a bionic cytotoxic T lymphocyte-inspiring microscale system (CTLiMS) composed of mesoporous silica dioxide microspheres containing membrane-disrupting boron clusters (BICs) and proapoptotic monomethyl auristatin E (MMAE) peptides. The BICs were found to disrupt the integrity of cancer cell membranes and enhance the internalization of MMAE, effectively mimicking the biological functions of perforin and granzymes released by CTLs to destroy cancer cells. As expected, the CTLiMSs demonstrated exceptional in vitro anticancer activity, inducing cancer cell apoptosis and exhibiting strong antiproliferative effects. Notably, CTLiMS treatment was demonstrated to induce immunogenic cell death of cancer cells as a result of Ca2+ and MMAE influx and subsequent production of reactive oxygen species. The animal studies demonstrated that the CTLiMS treatment led to efficient repression of the tumor growth. Furthermore, the CTLiMS administration resulted in favorable antitumor immunotherapeutic effects, as shown by significant inhibition of distant tumors, increased immune cell infiltration, and elevated plasma levels of pro-inflammatory cytokines. This pilot study using CTLiMSs for cancer immunotherapy offers an innovative bionic strategy for the future advancement of adoptive T cell therapy.
Collapse
Affiliation(s)
- Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China
| | - Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China
| | - Xueyi Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China
| | - Shushan Mo
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Jiacong Ai
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junyao Deng
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yimin Li
- The First Clinical College of Jinan University, Guangzhou 510632, China
| | - Yixin Zhang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Qishan Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China
| |
Collapse
|
4
|
Liu S, Popowski KD, Eckhardt CM, Zhang W, Li J, Jing Y, Silkstone D, Belcher E, Cislo M, Hu S, Lutz H, Ghodsi A, Liu M, Dinh PC, Cheng K. Inhalable Hsa-miR-30a-3p Liposomes Attenuate Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405434. [PMID: 40119620 PMCID: PMC12097057 DOI: 10.1002/advs.202405434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/08/2024] [Indexed: 03/24/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains an incurable form of interstitial lung disease with sub-optimal treatments that merely address adverse symptoms or slow fibrotic progression. Here, inhalable hsa-miR-30a-3p-loaded liposomes (miR-30a) for the treatment of bleomycin-induced pulmonary fibrosis in mice are presented. It was previously found that exosomes (Exo) derived from lung spheroid cells are therapeutic in multiple animal models of pulmonary fibrosis and are highly enriched for hsa-miR-30a-3p. The present study investigates this miRNA as a singular factor to treat IPF. Liposomes containing miR-30a mimic can be delivered to rodents through dry powder inhalation. Inhaled miR-30a and Exo consistently lead to improved pulmonary function across six consecutive pulmonary function tests and promote de-differentiation of profibrotic myofibroblasts. The heterogenous composure of Exo also promotes reparative alveolar type I and II cell remodeling and vascular wound healing through broad transforming growth factor-beta signaling downregulation, while miR-30a targets myofibroblast de-differentiation through CNPY2/PERK/DDIT3 signaling. Overall, inhaled miR-30a represses the epithelial-mesenchymal transition of myofibroblasts, providing fibrotic attenuation and subsequent improvements in pulmonary function.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Kristen D. Popowski
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27606USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27606USA
| | - Christina M. Eckhardt
- Department of PulmonaryAllergy and Critical Care MedicineColumbia University College of Physicians and SurgeonsNew YorkNY10032USA
| | - Weihang Zhang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | | | | | - Dylan Silkstone
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27606USA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleigh/Chapel HillNC27606USA
| | - Elizabeth Belcher
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleigh/Chapel HillNC27606USA
| | - Megan Cislo
- Department of Biological SciencesNorth Carolina State UniversityRaleighNC27606USA
- Department of FoodBioprocessingand Nutrition SciencesNorth Carolina State UniversityRaleighNC27606USA
| | - Shiqi Hu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Halle Lutz
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27606USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27606USA
| | - Asma Ghodsi
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27606USA
| | - Mengrui Liu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Phuong‐Uyen C. Dinh
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27606USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27606USA
| | - Ke Cheng
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| |
Collapse
|
5
|
Rejinold NS, Jin G, Choy J. Harnessing Nanohybridized Niclosamide for Precision Mpox Therapeutics. Adv Healthc Mater 2025; 14:e2404818. [PMID: 39988865 PMCID: PMC12118342 DOI: 10.1002/adhm.202404818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/28/2025] [Indexed: 02/25/2025]
Abstract
Niclosamide, initially developed as an anthelmintic, has recently emerged as a potential antiviral, showing efficacy against diverse viral threats, including Mpox. As the global health landscape faces recurrent Mpox outbreaks, repurposing niclosamide through advanced material strategies offers promising therapeutic avenues. This article explores the antiviral mechanisms of niclosamide, focusing on how innovative nano-hybrid formulations enhance its bioavailability and pharmacological performance. By leveraging nanohybridization, niclosamide's limitations-such as poor solubility and bioavailability-are addressed, enabling targeted delivery and sustained release. Early preclinical studies reveal that niclosamide disrupts Mpox replication and entry processes, suggesting its utility as a therapeutic option against poxvirus infections. Looking forward, further in vitro, animal models, and clinical investigations are essential to optimize its application and dosing for Mpox. With continued development in advanced materials, nanohybrid niclosamide could become a critical tool in managing Mpox and related viral threats, offering an accessible, cost-effective option for outbreak preparedness.
Collapse
Affiliation(s)
- N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML)Department of ChemistryCollege of Science and TechnologyDankook UniversityCheonan31116Republic of Korea
| | - Geun‐woo Jin
- R&D CenterHyundai Bioscience Co. LTDSeoul03759Republic of Korea
| | - Jin‐Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML)Department of ChemistryCollege of Science and TechnologyDankook UniversityCheonan31116Republic of Korea
- Division of Natural SciencesThe National Academy of SciencesSeoul06579Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI)Institute of Innovative ResearchInstitute of Science TokyoYokohama226‐8503Japan
| |
Collapse
|
6
|
Li L, Wang F, Zhu D, Hu S, Cheng K, Li Z. Engineering exosomes and exosome-like nanovesicles for improving tissue targeting and retention. FUNDAMENTAL RESEARCH 2025; 5:851-867. [PMID: 40242543 PMCID: PMC11997600 DOI: 10.1016/j.fmre.2024.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2025] Open
Abstract
Exosomes are natural nano-size particles secreted by human cells, containing numerous bioactive cargos. Serving as crucial mediators of intercellular communication, exosomes are involved in many physiological and pathological processes, such as inflammation, tissue injury, cardiovascular diseases, tumorigenesis and tumor development. Exosomes have exhibited promising results in the diagnosis and treatment of cancer, cardiovascular diseases and others. They are a rapidly growing class of drug delivery vehicles with many advantages over conventional synthetic carriers. Exosomes used in therapeutic applications encounter several challenges, such as the lack of tissue targeting capabilities and short residence time. In this review, we discuss recent advances in exosome engineering to improve tissue targeting and describe the current types of engineered exosome-like nanovesicles, and summarize their preclinical applications in the treatment of diseases. Further, we also highlight the latest engineering strategies developed to extend exosomes retention time in vivo and exosome-like nanovesicles.
Collapse
Affiliation(s)
- Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| |
Collapse
|
7
|
Yin Y, Liu C, Ji X, Wang Y, Mongkolsapaya J, Screaton GR, Cui Z, Huang WE. Engineering Genome-Free Bacterial Cells for Effective SARS-COV-2 Neutralisation. Microb Biotechnol 2025; 18:e70109. [PMID: 40042439 PMCID: PMC11881285 DOI: 10.1111/1751-7915.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 05/13/2025] Open
Abstract
The COVID-19 pandemic has caused unparalleled impacts on global social dynamics, healthcare systems and economies, highlighting the urgent need for effective interventions to address current challenges and future pandemic preparedness. This study introduces a novel virus neutralisation platform based on SimCells (~1 μm) and mini-SimCells (100-200 nm), which are chromosome-free and non-replicating bacteria from an LPS-free Escherichia coli strain (ClearColi). SimCells and mini-SimCells were engineered to display nanobodies on their surface, specifically targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein - a critical immunogenic fragment essential for viral entry into host cells. It was demonstrated that nanobody-expressing SimCells achieved over 90% blocking efficiency against synthesised RBD from both the original Wuhan and the B.1.351 (Beta) variant using competitive enzyme-linked immunosorbent assay (ELISA) assay. More importantly, live virus neutralisation assays demonstrated that NB6 nanobody-presenting mini-SimCells effectively neutralised the live SARS-CoV-2 Victoria variant with an IC50 of 2.95 × 109 ± 1.40 × 108 mini-SimCells/mL. Similarly, VE nanobody-presenting mini-SimCells effectively neutralised the B.1.351 (Beta) variant of the SARS-CoV-2 virus with an IC50 of 5.68 × 109 ± 9.94 × 108 mini-SimCells/mL. The mini-SimCells successfully protected Vero cells, a cell line derived from the kidney of an African green monkey, from infection by the live virus of SARS-CoV-2 and its variants. These results suggest that SimCell-based neutralisation offers a promising strategy for the prevention and treatment of SARS-CoV-2, and potentially other viral infections.
Collapse
Affiliation(s)
- Yutong Yin
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
| | - Xianglin Ji
- Oxford Suzhou Centre for Advanced Research (OSCAR)University of Oxford, Suzhou Industrial ParkSuzhouJiangsuChina
| | - Yun Wang
- Oxford Suzhou Centre for Advanced Research (OSCAR)University of Oxford, Suzhou Industrial ParkSuzhouJiangsuChina
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
- Mahidol‐Oxford Tropical Medicine Research UnitBangkokThailand
- Department of MedicineUniversity of OxfordOxfordUK
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
| | - Zhanfeng Cui
- Department of Engineering ScienceUniversity of OxfordOxfordUK
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Zhang W, Zhang Y, Hao Z, Yao P, Bai J, Chen H, Wu X, Zhong Y, Xue D. Synthetic nanoparticles functionalized with cell membrane-mimicking, bone-targeting, and ROS-controlled release agents for osteoporosis treatment. J Control Release 2025; 378:306-319. [PMID: 39694070 DOI: 10.1016/j.jconrel.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Postmenopausal osteoporosis is a common degenerative disease, with suboptimal clinical outcomes. The targets of current therapeutic agents are both nonspecific and diverse. We synthesized a novel nanoparticle (NP), ALN@BMSCM@PLGA-TK-PEG-SS31. After intravenous injection, the NP evaded immune phagocytosis, targeted bone tissue, and efficiently downregulated bone reactive oxygen species (ROS) generation. The core PLGA-TK-PEG-SS31 NP was ∼100 nm in diameter. The TK chemical bond breaks on exposure to ROS, releasing the novel mitochondrion-targeting peptide SS31. Outer bone marrow mesenchymal stem cell membranes (BMSCMs) were used to coat the NP with surface proteins to ensure membrane functionality. The circulation time was prolonged and immune phagocytosis was evaded. Embedding the DSPE-PEG-ALN lipid within the cell membrane enhanced the bone-targeting ability of the NP. Our results suggest that ALN@BMSCM@PLGA-TK-PEG-SS31 exerted dual effects on bone tissue in vitro, significantly inhibiting RANKL-induced osteoclastogenesis in the presence of H2O2 and promoting osteogenic differentiation in BMSCs. In a mouse model of ovariectomy-induced osteoporosis, ALN@BMSCM@PLGA-TK-PEG-SS31 significantly ameliorated oxidative stress and increased bone mass with no notable systemic side effects. These results suggest that ALN@BMSCM@PLGA-TK-PEG-SS31 is a promising treatment for osteoporosis.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Ye Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zhengan Hao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Pengjie Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Hongyu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Xiaoyong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Yuliang Zhong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China.
| |
Collapse
|
9
|
Song L, Zhai Z, Ouyang W, Ding J, Wang S, Li S, Liang M, Xu F, Gao C. Inhalation of macrophage membrane-coated hydrogel microparticles for inflammation alleviation of acute lung injury in vivo. Acta Biomater 2025; 192:409-418. [PMID: 39647651 DOI: 10.1016/j.actbio.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Hydrogel microparticles (HMPs) have many advantages for biomedical applications, particularly for minimally invasive therapy, for example, acute lung injury (ALI) that is characterized by high levels of reactive oxygen species (ROS) and pro-inflammatory mediators in the microenvironment. In this study, ROS-scavenging and pro-inflammatory cytokine-neutralizing HMPs were designed and prepared by using a membrane emulsification device. The HMPs were composed of double bond-modified hyaluronic acid and ROS-cleavable hyperbranched poly(acrylate-capped thioketone-containing ethylene glycol) (HBPAK) containing thioketal linkages and unsaturated double bonds. Surface-coating of inflammatory macrophage (M1) cell membranes was performed to obtain the membrane-coated HBPAK HMPs (mem HMPs) via electrostatic force. The mem HMPs exhibited strong ROS-scavenging and anti-inflammatory properties both in vitro and in vivo. After administered by inhalation in an ALI mouse model, the mem HMPs reduced neutrophil infiltration and tissue oxidative damage, thereby alleviating lung inflammation. Our results suggest that the mem HMPs could serve as a potential therapeutic platform for treating inflammatory diseases with high efficiency. STATEMENT OF SIGNIFICANCE: Hydrogel microparticles (HMPs) with minimally invasive delivery are advantageous for acute lung injury (ALI) characterized by high levels of reactive oxygen species (ROS) and pro-inflammatory mediators. Herein, ROS-scavenging and pro-inflammatory cytokine-neutralizing HMPs were prepared by copolymerizing double bond-modified hyaluronic acid and ROS-cleavable hyperbranched poly(acrylate-capped thioketone-containing ethylene glycol) (HBPAK) containing thioketal bonds and unsaturated double bonds in a membrane emulsification device. The HMPs covered with inflammatory macrophage (M1) cell membranes (mem HMPs) exhibited strong ROS-scavenging and anti-inflammation properties, reduced neutrophil infiltration and tissue oxidative damage, thereby alleviating lung inflammation.
Collapse
Affiliation(s)
- Liang Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Liang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312035, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312035, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Liu M, Henick B, Cheng K. Translational inhalable extracellular vesicle-based mRNA therapy for the treatment of lung cancer. Clin Transl Med 2025; 15:e70186. [PMID: 39801009 PMCID: PMC11726640 DOI: 10.1002/ctm2.70186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Affiliation(s)
- Mengrui Liu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Herbert Irving Comprehensive Cancer CenterColumbia UniversityNew YorkNew YorkUSA
| | - Brian Henick
- Herbert Irving Comprehensive Cancer CenterColumbia UniversityNew YorkNew YorkUSA
| | - Ke Cheng
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Herbert Irving Comprehensive Cancer CenterColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
11
|
Chiang ST, Chen Q, Han T, Qian C, Shen X, Lin Y, Xu R, Cao Z, Zhou C, Lu H, Li R, Ai X. Biomimetic Nanovesicles Synergize with Short-Term Fasting for Enhanced Chemotherapy of Triple-Negative Breast Cancer. ACS NANO 2024; 18:33875-33889. [PMID: 39629661 DOI: 10.1021/acsnano.4c07074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and lethal subtype of breast cancer among women. Chemotherapy acts as the standard regimen for TNBC treatment but suffers from limited drug accumulation in tumor regions and undesired side effects. Herein, we developed a synergistic strategy by combining a red blood cell (RBC) membrane-liposome hybrid nanovesicle with short-term fasting (STF) for improved chemotherapy of TNBC. The biomimetic nanovesicles exhibited reduced phagocytosis by macrophages while displaying a significant increase in tumor cell uptake through caveolae/raft-mediated endocytosis under nutrient-deprivation conditions. Importantly, drug-loaded nanovesicles and STF treatment synergistically increased the cytotoxicity of tumor cells by inhibiting their cell cycles and aerobic glycolysis as well as amplifying the reactive oxygen species (ROS) and autophagosomes generation. In the STF-treated mice, biomimetic nanovesicles greatly improved the antitumor efficacy at a lower drug dosage and inhibited the undesired metastasis of TNBC. Overall, we demonstrated that biomimetic nanovesicles synergizing with STF therapy serve as a promising therapeutic strategy for enhanced chemotherapy of malignant TNBC.
Collapse
Affiliation(s)
- Seok Theng Chiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianzhen Han
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxi Qian
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshuai Shen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijing Lin
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Xu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyu Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Haijiao Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rongxiu Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangzhao Ai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Basu S, Biswas P, Anto M, Singh N, Mukherjee K. Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery. 3 Biotech 2024; 14:289. [PMID: 39507057 PMCID: PMC11534931 DOI: 10.1007/s13205-024-04135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Over the years, nanotechnology has gained popularity as a viable solution to address gene and drug delivery challenges over conventional methods. Extensive research has been conducted on nanosystems that consist of organic/inorganic materials, drugs, and its biocompatibility become the primary goal of improving drug delivery. Various surface modification methods help focus targeted and controlled drug release, further enabling multidrug delivery also. This newer technology ensures the stability of drugs that can unravel the mechanisms involved in cellular processes of disease development and its management. Tailored medication delivery provides benefits such as therapy, controlled release, and reduced adverse effects, which are especially important for controlling illnesses like cancer. However, multifunctional nanocarriers that possess high viscoelasticity, extended circulation half-life, biocompatibility, and biodegradability face some challenges and limitations too in human bodies. To produce a consistent therapeutic platform based on complex three-dimensional nanoparticles, careful design and engineering, thorough orthogonal analysis methods, and reproducible scale-up and manufacturing processes will be required in the future. Safety and effectiveness of nano-based drug delivery should be thoroughly investigated in preclinical and clinical trials, especially when considering biodistribution, targeting specific areas, and potential immunological toxicities. Overall, the current review article explores the advancements in nanotechnology, specific to nanomaterial-enabled drug delivery systems, carrier fabrication techniques and modifications, disease management, clinical research, applications, limitations, and future challenges. The work portrays how nanomedicine distribution affects healthcare with an emphasis on the developments in drug delivery techniques.
Collapse
Affiliation(s)
- Shatabdi Basu
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135 India
| | - Pragnya Biswas
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Mariya Anto
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Nandini Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
13
|
Lyu C, He Z, Hu X, Wang S, Qin M, Zhu L, Li Y, Yang F, Jiao Z, Zhang X, Lu G, Wang E, Hu Y, Zhai Y, Wang Y, Huang W, Wang D, Cui Y, Pang X, Liu X, Kamiya H, Ma G, Wei W. Lysosomal "TRAP": a neotype modality for clearance of viruses and variants. Nat Commun 2024; 15:10155. [PMID: 39578473 PMCID: PMC11584657 DOI: 10.1038/s41467-024-54505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
The binding of viruses to host-entry factor receptors is an essential step for viral infection. Many studies have shown that macrophages can internalize viruses and degrade them in lysosomes for clearance in vivo. Inspired by these natural behaviors and using SARS-CoV-2 as a testbed, we harvest lysosomes from activated macrophages and anchor the protein-receptor ACE2 as bait, thus constructing a lysosomal "TRAP" (lysoTRAP) that selectively captures, internalizes, and eventually degrades SARS-CoV-2. Through experiments with cells, female mice, female hamsters, and human lung organoids, we demonstrate that lysoTRAP effectively clears SARS-CoV-2. Importantly, unlike therapeutic agents targeting SARS-CoV-2 spike protein, lysoTRAP remains effective against nine pseudotyped variants and the authentic Omicron variant, demonstrating its resistance to SARS-CoV-2 mutations. In addition to the protein-receptor ACE2, we also extend lysoTRAP with the saccharide-receptor sialic acid and verify its excellent antiviral effect against H1N1, highlighting the flexibility of our "TRAP" platform in fighting against various viruses.
Collapse
Affiliation(s)
- Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Zhanlong He
- Institute of Medical Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Xiaoming Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yanyan Li
- Institute of Medical Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Fengmei Yang
- Institute of Medical Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zhouguang Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Erqiang Wang
- Sinovac Life Sciences Co., Ltd., Beijing, 100085, China
| | - Yaling Hu
- Sinovac Life Sciences Co., Ltd., Beijing, 100085, China
| | - Yu Zhai
- Sinovac Life Sciences Co., Ltd., Beijing, 100085, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, 100191, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, 100191, China
| | - Xiangzheng Liu
- Department of thoracic surgery, Peking University First Hospital, Beijing, 100034, China
| | - Hidehiro Kamiya
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Luo X, McAndrews KM, Arian KA, Morse SJ, Boeker V, Kumbhar SV, Hu Y, Mahadevan KK, Church KA, Chitta S, Ryujin NT, Hensel J, Dai J, Dowlatshahi DP, Sugimoto H, Kirtley ML, LeBleu VS, Shalapour S, Simmons JH, Kalluri R. Development of an engineered extracellular vesicles-based vaccine platform for combined delivery of mRNA and protein to induce functional immunity. J Control Release 2024; 374:550-562. [PMID: 39146981 PMCID: PMC11978227 DOI: 10.1016/j.jconrel.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
mRNA incorporated in lipid nanoparticles (LNPs) became a new class of vaccine modality for induction of immunity against COVID-19 and ushered in a new era in vaccine development. Here, we report a novel, easy-to-execute, and cost effective engineered extracellular vesicles (EVs)-based combined mRNA and protein vaccine platform (EVX-M+P vaccine) and explore its utility in proof-of-concept immunity studies in the settings of cancer and infectious disease. As a first example, we engineered EVs, natural nanoparticle carriers shed by all cells, to contain ovalbumin mRNA and protein (EVOvaM+P vaccine) to serve as cancer vaccine against ovalbumin-expressing melanoma tumors. EVOvaM+P administration to mice with established melanoma tumors resulted in tumor regression associated with effective humoral and adaptive immune responses. As a second example, we generated engineered EVs that contain Spike (S) mRNA and protein to serve as a combined mRNA and protein vaccine (EVSpikeM+P vaccine) against SARS-CoV-2 infection. EVSpikeM+P vaccine administration in mice and baboons elicited robust production of neutralizing IgG antibodies against RBD (receptor binding domain) of S protein and S protein specific T cell responses. Our proof-of-concept study describes a new platform with an ability for rapid development of combination mRNA and protein vaccines employing EVs for deployment against cancer and other diseases.
Collapse
Affiliation(s)
- Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kent A Arian
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sami J Morse
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Viktoria Boeker
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shreyasee V Kumbhar
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Yingying Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Krishnan K Mahadevan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kaira A Church
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sriram Chitta
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
| | - Nicolas T Ryujin
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Janine Hensel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jianli Dai
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Dara P Dowlatshahi
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Michelle L Kirtley
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Internal Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Joe H Simmons
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Bioengineering, Rice University, Houston, TX, United States of America; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
15
|
Du Y, Ding H, Chen Y, Gao B, Mao Z, Wang W, Ding Y. A Genetically Engineered Biomimetic Nanodecoy for the Treatment of Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405026. [PMID: 39206941 PMCID: PMC11516072 DOI: 10.1002/advs.202405026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Liver fibrosis, arising from factors such as viral infections or metabolic disorders, represents an ongoing global health challenge and is a major risk factor for hepatocellular carcinoma. Unfortunately, there are no clinically approved drugs available for its treatment. Recent studies have illuminated the pivotal role of macrophage recruitment in the pathogenesis of liver fibrosis, presenting a potential therapeutic target. Therefore, it holds great promise to develop novel anti-fibrotic therapies capable of inhibiting this process. Herein, a drug-loaded biomimetic nanodecoy (CNV-C) is developed by harnessing genetically engineered cellular vesicles for the treatment of liver fibrosis. CNV-C is equipped with a C-C motif chemokine receptor 2 (CCR2)-overexpressed surface, enabling it to selectively neutralize elevated levels of C-C motif chemokine ligand 2 (CCL2), thereby reducing macrophage infiltration and the subsequent production of the fibrogenic cytokine transforming growth factor β (TGF-β). Moreover, curcumin, an anti-fibrotic agent, is loaded into CNV-C and delivered to the liver, facilitating its efficacy in suppressing the activation of hepatic stellate cells by blocking the downstream TGF-β/Smad signaling. This combinational therapy ultimately culminates in the alleviation of liver fibrosis in a mouse model induced by carbon tetrachloride. Collectively, the findings provide groundbreaking proof-of-concept for employing genetically modified nanodecoys to manage liver fibrosis, which may usher in a new era of anti-fibrotic treatments.
Collapse
Affiliation(s)
- Yang Du
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Hao Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
- State Key Laboratory of Transvascular Implantation DevicesHangzhou310009China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| |
Collapse
|
16
|
Li J, Xiao H, Zhang C, Liu G, Liu X. From virus to immune system: Harnessing membrane-derived vesicles to fight COVID-19 by interacting with biological molecules. Eur J Immunol 2024; 54:e2350916. [PMID: 38778737 DOI: 10.1002/eji.202350916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Emerging and re-emerging viral pandemics have emerged as a major public health concern. Highly pathogenic coronaviruses, which cause severe respiratory disease, threaten human health and socioeconomic development. Great efforts are being devoted to the development of safe and efficacious therapeutic agents and preventive vaccines to combat them. Nevertheless, the highly mutated virus poses a challenge to drug development and vaccine efficacy, and the use of common immunomodulatory agents lacks specificity. Benefiting from the burgeoning intersection of biological engineering and biotechnology, membrane-derived vesicles have shown superior potential as therapeutics due to their biocompatibility, design flexibility, remarkable bionics, and inherent interaction with phagocytes. The interactions between membrane-derived vesicles, viruses, and the immune system have emerged as a new and promising topic. This review provides insight into considerations for developing innovative antiviral strategies and vaccines against SARS-CoV-2. First, membrane-derived vesicles may provide potential biomimetic decoys with a high affinity for viruses to block virus-receptor interactions for early interruption of infection. Second, membrane-derived vesicles could help achieve a balanced interplay between the virus and the host's innate immunity. Finally, membrane-derived vesicles have revealed numerous possibilities for their employment as vaccines.
Collapse
Affiliation(s)
- Jiayuan Li
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Haiqing Xiao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Chang Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xuan Liu
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Shen Zhen Research Institute of Xiamen University, Xiamen University, Shenzhen, China
| |
Collapse
|
17
|
Wang H, Hsu JC, Song W, Lan X, Cai W, Ni D. Nanorepair medicine for treatment of organ injury. Natl Sci Rev 2024; 11:nwae280. [PMID: 39257435 PMCID: PMC11384914 DOI: 10.1093/nsr/nwae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Organ injuries, such as acute kidney injury, ischemic stroke, and spinal cord injury, often result in complications that can be life-threatening or even fatal. Recently, many nanomaterials have emerged as promising agents for repairing various organ injuries. In this review, we present the important developments in the field of nanomaterial-based repair medicine, herein referred to as 'nanorepair medicine'. We first introduce the disease characteristics associated with different types of organ injuries and highlight key examples of relevant nanorepair medicine. We then provide a summary of existing strategies in nanorepair medicine, including organ-targeting methodologies and potential countermeasures against exogenous and endogenous pathologic risk factors. Finally, we offer our perspectives on current challenges and future expectations for the advancement of nanomedicine designed for organ injury repair.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenyu Song
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
18
|
Shukla N, Shamim U, Agarwal P, Pandey R, Narayan J. From bench to bedside: potential of translational research in COVID-19 and beyond. Brief Funct Genomics 2024; 23:349-362. [PMID: 37986554 DOI: 10.1093/bfgp/elad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) have been around for more than 3 years now. However, due to constant viral evolution, novel variants are emerging, leaving old treatment protocols redundant. As treatment options dwindle, infection rates continue to rise and seasonal infection surges become progressively common across the world, rapid solutions are required. With genomic and proteomic methods generating enormous amounts of data to expand our understanding of SARS-CoV-2 biology, there is an urgent requirement for the development of novel therapeutic methods that can allow translational research to flourish. In this review, we highlight the current state of COVID-19 in the world and the effects of post-infection sequelae. We present the contribution of translational research in COVID-19, with various current and novel therapeutic approaches, including antivirals, monoclonal antibodies and vaccines, as well as alternate treatment methods such as immunomodulators, currently being studied and reiterate the importance of translational research in the development of various strategies to contain COVID-19.
Collapse
Affiliation(s)
- Nityendra Shukla
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Uzma Shamim
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Preeti Agarwal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Rajesh Pandey
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| |
Collapse
|
19
|
Jha SK, Imran M, Anwaar S, Hansbro PM, Paudel KR, Mohammed Y. Mesenchymal stem cell membrane-coated nanoconstructs: why have they not yet found a home in clinical practice? Nanomedicine (Lond) 2024; 19:1507-1510. [PMID: 38953891 PMCID: PMC11321396 DOI: 10.1080/17435889.2024.2369495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences & Bioengineering (BSBE), Indian Institute of Technology, Kanpur208016, Uttar Pradesh, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane4102, Australia
| | - Shoaib Anwaar
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane4102, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute & University of Technology Sydney, Sydney2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute & University of Technology Sydney, Sydney2007, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane4102, Australia
| |
Collapse
|
20
|
Liu J, Shen T, Zhang Y, Wei X, Bao Y, Ai R, Gan S, Wang D, Lai X, Zhao L, Zhou W, Fang X. Cell dehydration enables massive production of engineered membrane vesicles with therapeutic functions. J Extracell Vesicles 2024; 13:e12483. [PMID: 39051765 PMCID: PMC11270585 DOI: 10.1002/jev2.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/12/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as promising biomaterials for the treatment of different disease. However, only handful types of EVs with clinical transformation potential have been reported to date, and their preparation on a large scale under biosafety-controlled conditions is limited. In this study, we characterize a novel type of EV with promising clinical application potential: dehydration-induced extracellular vesicles (DIMVs). DIMV is a type of micron-diameter cell vesicle that contains more bioactive molecules, such as proteins and RNA, but not DNA, than previously reported cell vesicles. The preparation of DIMV is extraordinarily straightforward, which possesses a high level of biosafety, and the protein utilization ratio is roughly 600 times greater than that of naturally secreted EVs. Additional experiments demonstrate the viability of pre- or post-isolation DIMV modification, including gene editing, nucleic acid encapsulation or surface anchoring, size adjustment. Finally, on animal models, we directly show the biosafety and immunogenicity of DIMV, and investigate its potential application as tumour vaccine or drug carrier in cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- School of Life SciencesFaculty of MedicineTianjin UniversityTianjinPR China
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Tingting Shen
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Yu Zhang
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Xiaojian Wei
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Yuting Bao
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Rui Ai
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
- School of Molecular MedicineHangzhou Institute for Advanced Study, UCASHangzhouPR China
| | - Shaoju Gan
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Dachi Wang
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Xin Lai
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Libo Zhao
- Department of R&DEcho Biotech Co., LtdBeijingPR China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Xiaohong Fang
- School of Life SciencesFaculty of MedicineTianjin UniversityTianjinPR China
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and NanotechnologyChinese Academy of ScienceBeijingPR China
- School of Molecular MedicineHangzhou Institute for Advanced Study, UCASHangzhouPR China
| |
Collapse
|
21
|
Woodward IR, Fromen CA. Recent Developments in Aerosol Pulmonary Drug Delivery: New Technologies, New Cargos, and New Targets. Annu Rev Biomed Eng 2024; 26:307-330. [PMID: 38424089 PMCID: PMC11222059 DOI: 10.1146/annurev-bioeng-110122-010848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
There is nothing like a global pandemic to motivate the need for improved respiratory treatments and mucosal vaccines. Stimulated by the COVID-19 pandemic, pulmonary aerosol drug delivery has seen a flourish of activity, building on the prior decades of innovation in particle engineering, inhaler device technologies, and clinical understanding. As such, the field has expanded into new directions and is working toward the efficient delivery of increasingly complex cargos to address a wider range of respiratory diseases. This review seeks to highlight recent innovations in approaches to personalize inhalation drug delivery, deliver complex cargos, and diversify the targets treated and prevented through pulmonary drug delivery. We aim to inform readers of the emerging efforts within the field and predict where future breakthroughs are expected to impact the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Ian R Woodward
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| |
Collapse
|
22
|
Xiong M, Zhang Y, Zhang H, Shao Q, Hu Q, Ma J, Wan Y, Guo L, Wan X, Sun H, Yuan Z, Wan H. A Tumor Environment-Activated Photosensitized Biomimetic Nanoplatform for Precise Photodynamic Immunotherapy of Colon Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402465. [PMID: 38728587 PMCID: PMC11267356 DOI: 10.1002/advs.202402465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Indexed: 05/12/2024]
Abstract
Aggressive nature of colon cancer and current imprecise therapeutic scenarios simulate the development of precise and effective treatment strategies. To achieve this, a tumor environment-activated photosensitized biomimetic nanoplatform (PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM) is fabricated by encapsulating metal-organic framework loaded with developed photosensitizer PEG2000-SiNcTI-Ph and immunoadjuvant CpG oligodeoxynucleotide within fusion cell membrane expressing programmed death protein 1 (PD-1) and cluster of differentiation 47 (CD47). By stumbling across, systematic evaluation, and deciphering with quantum chemical calculations, a unique attribute of tumor environment (low pH plus high concentrations of adenosine 5'-triphosphate (ATP))-activated photodynamic effect sensitized by long-wavelength photons is validated for PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM, advancing the precision of cancer therapy. Moreover, PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM evades immune surveillance to target CT26 colon tumors in mice mediated by CD47/signal regulatory proteins α (SIRPα) interaction and PD-1/programmed death ligand 1 (PD-L1) interaction, respectively. Tumor environment-activated photodynamic therapy realized by PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM induces immunogenic cell death (ICD) to elicit anti-tumor immune response, which is empowered by enhanced dendritic cells (DC) uptake of CpG and PD-L1 blockade contributed by the nanoplatform. The photodynamic immunotherapy efficiently combats primary and distant CT26 tumors, and additionally generates immune memory to inhibit tumor recurrence and metastasis. The nanoplatform developed here provides insights for the development of precise cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mengmeng Xiong
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Ying Zhang
- State Key Laboratory of Food Science and ResourcesNanchang UniversityNanchang330047P. R. China
| | - Huan Zhang
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Qiaoqiao Shao
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Qifan Hu
- Postdoctoral Innovation Practice BaseThe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Junjie Ma
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Yiqun Wan
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Lan Guo
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Xin Wan
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Zhongyi Yuan
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Hao Wan
- State Key Laboratory of Food Science and ResourcesNanchang UniversityNanchang330047P. R. China
| |
Collapse
|
23
|
Gao J, Pang Z, Wang Q, Tan Y, Li Q, Tan H, Chen J, Yakufu W, Wang Z, Yang H, Zhang J, Sun D, Weng X, Wang Q, Qian J, Song Y, Huang Z, Ge J. Biomimetic Nano-Degrader Based CD47-SIRPα Immune Checkpoint Inhibition Promotes Macrophage Efferocytosis for Cardiac Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306388. [PMID: 38477522 PMCID: PMC11200091 DOI: 10.1002/advs.202306388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/30/2023] [Indexed: 03/14/2024]
Abstract
CD47-SIRPα axis is an immunotherapeutic target in tumor therapy. However, current monoclonal antibody targeting CD47-SIRPα axis is associated with on-target off-tumor and antigen sink effects, which significantly limit its potential clinical application. Herein, a biomimetic nano-degrader is developed to inhibit CD47-SIRPα axis in a site-specific manner through SIRPα degradation, and its efficacy in acute myocardial infarction (AMI) is evaluated. The nano-degrader is constructed by hybridizing liposome with red blood cell (RBC) membrane (RLP), which mimics the CD47 density of senescent RBCs and possesses a natural high-affinity binding capability to SIRPα on macrophages without signaling capacity. RLP would bind with SIRPα and induce its lysosomal degradation through receptor-mediated endocytosis. To enhance its tissue specificity, Ly6G antibody conjugation (aRLP) is applied, enabling its attachment to neutrophils and accumulation within inflammatory sites. In the myocardial infarction model, aRLP accumulated in the infarcted myocardium blocks CD47-SIRPα axis and subsequently promoted the efferocytosis of apoptotic cardiomyocytes by macrophage, improved heart repair. This nano-degrader efficiently degraded SIRPα in lysosomes, providing a new strategy for immunotherapy with great clinical transformation potential.
Collapse
Affiliation(s)
- Jinfeng Gao
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Zhiqing Pang
- School of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of Education826 Zhangheng RoadShanghai200030China
| | - Qiaozi Wang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Yiwen Tan
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Qiyu Li
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Haipeng Tan
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Jing Chen
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Wusiman Yakufu
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Zhengmin Wang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Hongbo Yang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Jinyan Zhang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Dili Sun
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Xueyi Weng
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Qibing Wang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Juying Qian
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Yanan Song
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Zheyong Huang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
| | - Junbo Ge
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai20032China
- National Clinical Research Center for Interventional MedicineShanghai Clinical Research Center for Interventional Medicine180 Feng Lin RoadShanghai200032China
- Institute of Biomedical SciencesFudan UniversityShanghai20032China
| |
Collapse
|
24
|
Najer A. Pathogen-binding nanoparticles to inhibit host cell infection by heparan sulfate and sialic acid dependent viruses and protozoan parasites. SMART MEDICINE 2024; 3:e20230046. [PMID: 39188697 PMCID: PMC11235646 DOI: 10.1002/smmd.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 08/28/2024]
Abstract
Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative anti-infection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broad-spectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.
Collapse
Affiliation(s)
- Adrian Najer
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
25
|
Liu M, Hu S, Yan N, Popowski KD, Cheng K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. NATURE NANOTECHNOLOGY 2024; 19:565-575. [PMID: 38212521 DOI: 10.1038/s41565-023-01580-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Lung carcinoma is one of the most common cancers and has one of the lowest survival rates in the world. Cytokines such as interleukin-12 (IL-12) have demonstrated considerable potential as robust tumour suppressors. However, their applications are limited due to off-target toxicity. Here we report on a strategy involving the inhalation of IL-12 messenger RNA, encapsulated within extracellular vesicles. Inhalation and preferential uptake by cancer cells results in targeted delivery and fewer systemic side effects. The IL-12 messenger RNA generates interferon-γ production in both innate and adaptive immune-cell populations. This activation consequently incites an intense activation state in the tumour microenvironment and augments its immunogenicity. The increased immune response results in the expansion of tumour cytotoxic immune effector cells, the formation of immune memory, improved antigen presentation and tumour-specific T cell priming. The strategy is demonstrated against primary neoplastic lesions and provides profound protection against subsequent tumour rechallenge. This shows the potential for locally delivered cytokine-based immunotherapies to address orthotopic and metastatic lung tumours.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Na Yan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Kristen D Popowski
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
26
|
Chen Y, Zhang C, Huang Y, Ma Y, Song Q, Chen H, Jiang G, Gao X. Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway. Adv Drug Deliv Rev 2024; 207:115196. [PMID: 38336090 DOI: 10.1016/j.addr.2024.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Intranasal delivery provides a direct and non-invasive method for drugs to reach the central nervous system. Nanoparticles play a crucial role as carriers in augmenting the efficacy of brain delivery. However, the interaction between nanoparticles and the nose-to-brain pathway and how the various biopharmaceutical factors affect brain delivery efficacy remains unclear. In this review, we comprehensively summarized the anatomical and physiological characteristics of the nose-to-brain pathway and the obstacles that hinder brain delivery. We then outlined the interaction between nanoparticles and this pathway and reviewed the biomedical applications of various nanoparticulate drug delivery systems for nose-to-brain drug delivery. This review aims at inspiring innovative approaches for enhancing the effectiveness of nose-to-brain drug delivery in the treatment of different brain disorders.
Collapse
Affiliation(s)
- Yaoxing Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yuxiao Ma
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
27
|
Coulon PG, Prakash S, Dhanushkodi NR, Srivastava R, Zayou L, Tifrea DF, Edwards RA, Figueroa CJ, Schubl SD, Hsieh L, Nesburn AB, Kuppermann BD, Bahraoui E, Vahed H, Gil D, Jones TM, Ulmer JB, BenMohamed L. High frequencies of alpha common cold coronavirus/SARS-CoV-2 cross-reactive functional CD4 + and CD8 + memory T cells are associated with protection from symptomatic and fatal SARS-CoV-2 infections in unvaccinated COVID-19 patients. Front Immunol 2024; 15:1343716. [PMID: 38605956 PMCID: PMC11007208 DOI: 10.3389/fimmu.2024.1343716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.
Collapse
Affiliation(s)
- Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Sebastian D. Schubl
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lanny Hsieh
- Department of Medicine, Division of Infectious Diseases and Hospitalist Program, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | | | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Université Paul Sabatier, Infinity, Inserm, Toulouse, France
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Institute for Immunology, The University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
28
|
Gao R, Xu X, Kumar P, Liu Y, Zhang H, Guo X, Sun M, Colombari FM, de Moura AF, Hao C, Ma J, Turali Emre ES, Cha M, Xu L, Kuang H, Kotov NA, Xu C. Tapered chiral nanoparticles as broad-spectrum thermally stable antivirals for SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2024; 121:e2310469121. [PMID: 38502692 PMCID: PMC10990083 DOI: 10.1073/pnas.2310469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
The incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape. L-penicillamine-stabilized NPs with left-handed curved apexes display half-maximal inhibitory concentrations (IC50) as low as 0.66 pM (1.4 ng/mL) and 0.57 pM (1.2 ng/mL) for pseudo-type SARS-CoV-2 viruses and wild-type Wuhan-1 SARS-CoV-2 viruses, respectively, which are about 1,100 times lower than those for antibodies (0.73 nM). Benefiting from strong NPs-protein interactions, the same particles are also effective against other strains of coronaviruses, such as HCoV-HKU1, HCoV-OC43, HCoV-NL63, and SARS-CoV-2 Omicron variants with IC50 values below 10 pM (21.8 ng/mL). Considering rapid response to outbreaks, exposure to elevated temperatures causes no change in the antiviral activity of NPs while antibodies are completely deactivated. Testing in mice indicates that the chirality-optimized NPs can serve as thermally stable analogs of antiviral biologics complementing the current spectrum of treatments.
Collapse
Affiliation(s)
- Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Prashant Kumar
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan650000, People’s Republic of China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Felippe Mariano Colombari
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13083-100, Brazil
| | - André F. de Moura
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo13565-905, Brazil
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Jessica Ma
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Emine Sumeyra Turali Emre
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Minjeong Cha
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Nicholas A. Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| |
Collapse
|
29
|
Wang Z, Hu S, Popowski KD, Liu S, Zhu D, Mei X, Li J, Hu Y, Dinh PUC, Wang X, Cheng K. Inhalation of ACE2-expressing lung exosomes provides prophylactic protection against SARS-CoV-2. Nat Commun 2024; 15:2236. [PMID: 38472181 PMCID: PMC10933281 DOI: 10.1038/s41467-024-45628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Continued emergence of SARS-CoV-2 variants of concern that are capable of escaping vaccine-induced immunity highlights the urgency of developing new COVID-19 therapeutics. An essential mechanism for SARS-CoV-2 infection begins with the viral spike protein binding to the human ACE2. Consequently, inhibiting this interaction becomes a highly promising therapeutic strategy against COVID-19. Herein, we demonstrate that ACE2-expressing human lung spheroid cells (LSC)-derived exosomes (LSC-Exo) could function as a prophylactic agent to bind and neutralize SARS-CoV-2, protecting the host against SARS-CoV-2 infection. Inhalation of LSC-Exo facilitates its deposition and biodistribution throughout the whole lung in a female mouse model. We show that LSC-Exo blocks the interaction of SARS-CoV-2 with host cells in vitro and in vivo by neutralizing the virus. LSC-Exo treatment protects hamsters from SARS-CoV-2-induced disease and reduced viral loads. Furthermore, LSC-Exo intercepts the entry of multiple SARS-CoV-2 variant pseudoviruses in female mice and shows comparable or equal potency against the wild-type strain, demonstrating that LSC-Exo may act as a broad-spectrum protectant against existing and emerging virus variants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC, 27606, USA.
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York, New York, 10032, USA
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC, 27606, USA
| | - Shuo Liu
- Department of Biomedical Engineering, Columbia University, New York, New York, 10032, USA
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, New York, New York, 10032, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC, 27606, USA
| | - Junlang Li
- Xsome Biotech Inc., Raleigh, North Carolina, 27607, USA
| | - Yilan Hu
- Department of Biomedical Engineering, Columbia University, New York, New York, 10032, USA
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC, 27606, USA
| | - Xiaojie Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, P.R. China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, P.R. China.
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York, 10032, USA.
| |
Collapse
|
30
|
Cheng X, Henick BS, Cheng K. Anticancer Therapy Targeting Cancer-Derived Extracellular Vesicles. ACS NANO 2024; 18:6748-6765. [PMID: 38393984 DOI: 10.1021/acsnano.3c06462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Extracellular vesicles (EVs) are natural lipid nanoparticles secreted by most types of cells. In malignant cancer, EVs derived from cancer cells contribute to its progression and metastasis by facilitating tumor growth and invasion, interfering with anticancer immunity, and establishing premetastasis niches in distant organs. In recent years, multiple strategies targeting cancer-derived EVs have been proposed to improve cancer patient outcomes, including inhibiting EV generation, disrupting EVs during trafficking, and blocking EV uptake by recipient cells. Developments in EV engineering also show promising results in harnessing cancer-derived EVs as anticancer agents. Here, we summarize the current understanding of the origin and functions of cancer-derived EVs and review the recent progress in anticancer therapy targeting these EVs.
Collapse
Affiliation(s)
- Xiao Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical EngineeringNorth Carolina State University, Raleigh, North Carolina 27606, United States
| | - Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
31
|
Li X, Cheng N, Shi D, Li Y, Li C, Zhu M, Jin Q, Wu Z, Zhu L, He Y, Yao H, Ji J. Sulfated liposome-based artificial cell membrane glycocalyx nanodecoys for coronavirus inactivation by membrane fusion. Bioact Mater 2024; 33:1-13. [PMID: 38024234 PMCID: PMC10660003 DOI: 10.1016/j.bioactmat.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
As a broad-spectrum antiviral nanoparticle, the cell membrane nanodecoy is a promising strategy for preventing viral infections. However, most of the cell membrane nanodecoys can only catch virus and cannot induce inactivation, which may bring about a considerably high risk of re-infection owing to the possible viral escape from the nanodecoys. To tackle this challenge, sulfated liposomes are employed to mimic the cell membrane glycocalyx for constructing an artificial cell membrane glycocalyx nanodecoy that exhibits excellent anti-coronavirus activity against HCoV-OC43, wild-type SARS-CoV-2, Alpha and Delta variant SARS-CoV-2 pseudovirus. In addition, this nanodecoy, loaded with surface sulfate groups as SARS-CoV-2 receptor arrays, can enhance the antiviral capability to virus inactivation through destroying the virus membrane structure and transfer the spike protein to postfusion conformation. Integrating bio-inspired recognition and inactivation of viruses in a single supramolecular entity, the artificial cell membrane nanodecoy opens a new avenue for the development of theranostic antiviral nanosystems, whose mass production is favored due to the facile engineering of sulfated liposomes.
Collapse
Affiliation(s)
- Xu Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yutong Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chen Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China
| |
Collapse
|
32
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Wang S, Ding P, Shen L, Fan D, Cheng H, Huo J, Wei X, He H, Zhang G. Inhalable hybrid nanovaccines with virus-biomimetic structure boost protective immune responses against SARS-CoV-2 variants. J Nanobiotechnology 2024; 22:76. [PMID: 38414031 PMCID: PMC10898168 DOI: 10.1186/s12951-024-02345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with different antigenic variants, has posed a significant threat to public health. It is urgent to develop inhalable vaccines, instead of injectable vaccines, to elicit mucosal immunity against respiratory viral infections. METHODS We reported an inhalable hybrid nanovaccine (NVRBD-MLipo) to boost protective immunity against SARS-CoV-2 infection. Nanovesicles derived from genetically engineered 293T cells expressing RBD (NVRBD) were fused with pulmonary surfactant (PS)-biomimetic liposomes containing MPLA (MLipo) to yield NVRBD-MLipo, which possessed virus-biomimetic structure, inherited RBD expression and versatile properties. RESULTS In contrast to subcutaneous vaccination, NVRBD-MLipo, via inhalable vaccination, could efficiently enter the alveolar macrophages (AMs) to elicit AMs activation through MPLA-activated TLR4/NF-κB signaling pathway. Moreover, NVRBD-MLipo induced T and B cells activation, and high level of RBD-specific IgG and secretory IgA (sIgA), thus elevating protective mucosal and systemic immune responses, while reducing side effects. NVRBD-MLipo also demonstrated broad-spectrum neutralization activity against SARS-CoV-2 (WT, Delta, Omicron) pseudovirus, and protected immunized mice against WT pseudovirus infection. CONCLUSIONS This inhalable NVRBD-MLipo, as an effective and safe nanovaccine, holds huge potential to provoke robust mucosal immunity, and might be a promising vaccine candidate to combat respiratory infectious diseases, including COVID-19 and influenza.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Peiyang Ding
- School of Life Science, Zhengzhou University, Zhengzhou, 450046, China
| | - Lingli Shen
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hanghang Cheng
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jian Huo
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xin Wei
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Chen H, Xiong X, Huang Y, Huang B, Luo X, Ke Q, Wu P, Wang S. SARS-CoV-2 Neutralization by Cell Membrane-Coated Antifouling Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:909-917. [PMID: 38273679 DOI: 10.1021/acsabm.3c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The global outbreak of the COVID-19 pandemic has indisputably wreaked havoc on societies worldwide, compelling the scientific community to seek urgently needed therapeutic agents with low-cost and low-side effect profiles. Numerous approaches have been investigated in the quest to prevent or treat COVID-19, but many of them exhibit unwelcome side effects, such as dysfunctional viral immune responses and inflammation. Herein, we present the preparation of solid natural human pulmonary alveolar epithelial cell (ATII) membrane-coated PLGA NPs (PLGA NPs@ATII-M), which demonstrate remarkable affinity and competitiveness to neutralize the SARS-CoV-2 S1 protein-coated NPs (SCMMA NPs-S1), which are employed as a surrogate for coronavirus particles. In addition, we first considered the antifouling properties of these types of NPs, and we found that this membrane-coated NP formulation boasts excellent antifouling capabilities, which serve to protect their neutralization properties out of shielding by protein coronas in blood circulation. Moreover, this formulation is easily prepared and stored with a low-cost profile and exhibits good specificity, high targeting efficiency, and potentially side effect avoiding, thus making it a highly promising candidate for COVID-19 treatment.
Collapse
Affiliation(s)
- Hao Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xilin Xiong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yuan Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Bo Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xinxin Luo
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Qi Ke
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Pengyu Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Suxiao Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
35
|
Qin Q, Jiang X, Huo L, Qian J, Yu H, Zhu H, Du W, Cao Y, Zhang X, Huang Q. Computational design and engineering of self-assembling multivalent microproteins with therapeutic potential against SARS-CoV-2. J Nanobiotechnology 2024; 22:58. [PMID: 38341574 PMCID: PMC10858482 DOI: 10.1186/s12951-024-02329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Multivalent drugs targeting homo-oligomeric viral surface proteins, such as the SARS-CoV-2 trimeric spike (S) protein, have the potential to elicit more potent and broad-spectrum therapeutic responses than monovalent drugs by synergistically engaging multiple binding sites on viral targets. However, rational design and engineering of nanoscale multivalent protein drugs are still lacking. Here, we developed a computational approach to engineer self-assembling trivalent microproteins that simultaneously bind to the three receptor binding domains (RBDs) of the S protein. This approach involves four steps: structure-guided linker design, molecular simulation evaluation of self-assembly, experimental validation of self-assembly state, and functional testing. Using this approach, we first designed trivalent constructs of the microprotein miniACE2 (MP) with different trimerization scaffolds and linkers, and found that one of the constructs (MP-5ff) showed high trimerization efficiency, good conformational homogeneity, and strong antiviral neutralizing activity. With its trimerization unit (5ff), we then engineered a trivalent nanobody (Tr67) that exhibited potent and broad neutralizing activity against the dominant Omicron variants, including XBB.1 and XBB.1.5. Cryo-EM complex structure confirmed that Tr67 stably binds to all three RBDs of the Omicron S protein in a synergistic form, locking them in the "3-RBD-up" conformation that could block human receptor (ACE2) binding and potentially facilitate immune clearance. Therefore, our approach provides an effective strategy for engineering potent protein drugs against SARS-CoV-2 and other deadly coronaviruses.
Collapse
Affiliation(s)
- Qin Qin
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liyun Huo
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiaqiang Qian
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | | | - Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wenhao Du
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhui Cao
- ACROBiosystems Inc, Beijing, 100176, China
| | - Xing Zhang
- ACROBiosystems Inc, Beijing, 100176, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
36
|
Dhar A, Gupta SL, Saini P, Sinha K, Khandelwal A, Tyagi R, Singh A, Sharma P, Jaiswal RK. Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2. Immunol Res 2024; 72:14-33. [PMID: 37682455 DOI: 10.1007/s12026-023-09416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
SARS-CoV-2 (COVID-19) pandemic has been an unpredicted burden on global healthcare system by infecting over 700 million individuals, with approximately 6 million deaths worldwide. COVID-19 significantly impacted all sectors, but it very adversely affected the healthcare system. These effects were much more evident in the resource limited part of the world. Individuals with acute conditions were also severely impacted. Although classical COVID-19 diagnostics such as RT-PCR and rapid antibody testing have played a crucial role in reducing the spread of infection, these diagnostic techniques are associated with certain limitations. For instance, drawback of RT-PCR diagnostics is that due to degradation of viral RNA during shipping, it can give false negative results. Also, rapid antibody testing majorly depends on the phase of infection and cannot be performed on immune compromised individuals. These limitations in current diagnostic tools require the development of nanodiagnostic tools for early detection of COVID-19 infection. Therefore, the SARS-CoV-2 outbreak has necessitated the development of specific, responsive, accurate, rapid, low-cost, and simple-to-use diagnostic tools at point of care. In recent years, early detection has been a challenge for several health diseases that require prompt attention and treatment. Disease identification at an early stage, increased imaging of inner health issues, and ease of diagnostic processes have all been established using a new discipline of laboratory medicine called nanodiagnostics, even before symptoms have appeared. Nanodiagnostics refers to the application of nanoparticles (material with size equal to or less than 100 nm) for medical diagnostic purposes. The special property of nanomaterials compared to their macroscopic counterparts is a lesser signal loss and an enhanced electromagnetic field. Nanosize of the detection material also enhances its sensitivity and increases the signal to noise ratio. Microchips, nanorobots, biosensors, nanoidentification of single-celled structures, and microelectromechanical systems are some of the most modern nanodiagnostics technologies now in development. Here, we have highlighted the important roles of nanotechnology in healthcare sector, with a detailed focus on the management of the COVID-19 pandemic. We outline the different types of nanotechnology-based diagnostic devices for SARS-CoV-2 and the possible applications of nanomaterials in COVID-19 treatment. We also discuss the utility of nanomaterials in formulating preventive strategies against SARS-CoV-2 including their use in manufacture of protective equipment, formulation of vaccines, and strategies for directly hindering viral infection. We further discuss the factors hindering the large-scale accessibility of nanotechnology-based healthcare applications and suggestions for overcoming them.
Collapse
Affiliation(s)
- Atika Dhar
- National Institute of Immunology, New Delhi, India, 110067
| | | | - Pratima Saini
- National Institute of Immunology, New Delhi, India, 110067
| | - Kirti Sinha
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India
| | | | - Rohit Tyagi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alka Singh
- Department of Chemistry, Feroze Gandhi College, Raebareli, U.P, India, 229001
| | - Priyanka Sharma
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India.
| | - Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA.
| |
Collapse
|
37
|
Cui Y, Lv B, Li Z, Ma C, Gui Z, Geng Y, Liu G, Sang L, Xu C, Min Q, Kong L, Zhang Z, Liu Y, Qi X, Fu D. Bone-Targeted Biomimetic Nanogels Re-Establish Osteoblast/Osteoclast Balance to Treat Postmenopausal Osteoporosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303494. [PMID: 37794621 DOI: 10.1002/smll.202303494] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/22/2023] [Indexed: 10/06/2023]
Abstract
Insufficient bone formation and excessive bone resorption caused by estrogen deficiency are the major factors resulting in the incidence of postmenopausal osteoporosis (PMOP). The existing drugs usually fail to re-establish the osteoblast/osteoclast balance from both sides and generate side-effects owing to the lack of bone-targeting ability. Here, engineered cell-membrane-coated nanogels PNG@mR&C capable of scavenging receptor activator of nuclear factor-κB ligand (RANKL) and responsively releasing therapeutic PTH 1-34 in the bone microenvironment are prepared from RANK and CXCR4 overexpressed bone mesenchymal stem cell (BMSC) membrane-coated chitosan biopolymers. The CXCR4 on the coated-membranes confer bone-targeting ability, and abundant RANK effectively absorb RANKL to inhibit osteoclastogenesis. Meanwhile, the release of PTH 1-34 triggered by osteoclast-mediated acid microenvironment promote osteogenesis. In addition, the dose and frequency are greatly reduced due to the smart release property, prolonged circulation time, and bone-specific accumulation. Thus, PNG@mR&C exhibits satisfactory therapeutic effects in the ovariectomized (OVX) mouse model. This study provides a new paradigm re-establishing the bone metabolic homeostasis from multitargets and shows great promise for the treatment of PMOP.
Collapse
Affiliation(s)
- Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Bin Lv
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Zhongying Li
- Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Chunming Ma
- Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Zhengwei Gui
- Department of Thyroid and Breast, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yongtao Geng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Guohui Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Linchao Sang
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Chen Xu
- Department of Spine Surgery, Changzheng hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Qi Min
- Department of Spine Surgery, Changzheng hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yang Liu
- Department of Spine Surgery, Changzheng hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Xiangbei Qi
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
38
|
D’Avila H, Lima CNR, Rampinelli PG, Mateus LCO, de Sousa Silva RV, Correa JR, de Almeida PE. Lipid Metabolism Modulation during SARS-CoV-2 Infection: A Spotlight on Extracellular Vesicles and Therapeutic Prospects. Int J Mol Sci 2024; 25:640. [PMID: 38203811 PMCID: PMC10778989 DOI: 10.3390/ijms25010640] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as potential therapeutic targets against the SARS-CoV-2 infection. Studies on COVID-19 patients have shown that they frequently have dysregulated lipid profiles, which are associated with an increased risk of severe repercussions. Lipid droplets (LDs) serve as organelles with significant roles in lipid metabolism and energy homeostasis as well as having a wide range of functions in infections. The down-modulation of lipids, such as sphingolipid ceramide and eicosanoids, or of the transcriptional factors involved in lipogenesis seem to inhibit the viral multiplication, suggesting their involvement in the virus replication and pathogenesis as well as highlighting their potential as targets for drug development. Hence, this review focuses on the role of modulation of lipid metabolism and EVs in the mechanism of immune system evasion during SARS-CoV-2 infection and explores the therapeutic potential of EVs as well as application for delivering therapeutic substances to mitigate viral infections.
Collapse
Affiliation(s)
- Heloisa D’Avila
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | | | - Pollianne Garbero Rampinelli
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Laiza Camila Oliveira Mateus
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Renata Vieira de Sousa Silva
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, University of Brasília, Brasília 70910-900, Brazil;
| | - Patrícia Elaine de Almeida
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| |
Collapse
|
39
|
Lin CL, Fang ZS, Hsu CY, Liu YH, Lin JC, Yao BY, Li FA, Yen SCB, Chang YC, Hu CMJ. Rapid plasma membrane isolation via intracellular polymerization-mediated biomolecular confinement. Acta Biomater 2024; 173:325-335. [PMID: 38000526 DOI: 10.1016/j.actbio.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Plasma membrane isolation is a foundational process in membrane proteomic research, cellular vesicle studies, and biomimetic nanocarrier development, yet separation processes for this outermost layer are cumbersome and susceptible to impurities and low yield. Herein, we demonstrate that cellular cytosol can be chemically polymerized for decoupling and isolation of plasma membrane within minutes. A rapid, non-disruptive in situ polymerization technique is developed with cell membrane-permeable polyethyleneglycol-diacrylate (PEG-DA) and a blue-light-sensitive photoinitiator, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). The photopolymerization chemistry allows for precise control of intracellular polymerization and tunable confinement of cytosolic molecules. Upon cytosol solidification, plasma membrane proteins and vesicles are rapidly derived and purified as nucleic acids and intracellular proteins as small as 15 kDa are stably entrapped for removal. The polymerization chemistry and membrane derivation technique are broadly applicable to primary and fragile cell types, enabling facile membrane vesicle extraction from shorted-lived neutrophils and human primary CD8 T cells. The study demonstrates tunable intracellular polymerization via optimized live cell chemistry, offers a robust membrane isolation methodology with broad biomedical utility, and reveals insights on molecular crowding and confinement in polymerized cells. STATEMENT OF SIGNIFICANCE: Isolating the minute fraction of plasma membrane proteins and vesicles requires extended density gradient ultracentrifugation processes, which are susceptible to low yield and impurities. The present work demonstrates that the membrane isolation process can be vastly accelerated via a rapid, non-disruptive intracellular polymerization approach that decouples cellular cytosols from the plasma membrane. Following intracellular polymerization, high-yield plasma membrane proteins and vesicles can be derived from lysis buffer and sonication treatment, respectively. And the intracellular content entrapped within the polymerized hydrogel is readily removed within minutes. The technique has broad utility in membrane proteomic research, cellular vesicle studies, and biomimetic materials development, and the work offers insights on intracellular hydrogel-mediated molecular confinement.
Collapse
Affiliation(s)
- Chi-Long Lin
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Yu-Han Liu
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Bing-Yu Yao
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Shin-Chwen Bruce Yen
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Taipei 11529, Taiwan
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica. 128 Academia Road, Sec. 2, Taipei 11529, Taiwan; Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan.
| |
Collapse
|
40
|
Zhang H, Liu Y, Liu Z. Nanomedicine approaches against SARS-CoV-2 and variants. J Control Release 2024; 365:101-111. [PMID: 37951476 DOI: 10.1016/j.jconrel.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The world is grappling with the ongoing crisis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a global pandemic that continues to have a detrimental impact on public health and economies worldwide. The virus's relentless mutation has led to more transmissible, immune-evasive strains, thereby escalating the incidence of reinfection. This underscores the urgent need for highly effective and safe countermeasures against SARS-CoV-2 and its evolving variants. In the current context, nanomedicine presents an innovative and promising alternative to mitigate the impacts of this pandemic wave. It does so by harnessing the structural and functional properties at a nanoscale in a straightforward and adaptable manner. This review emphasizes the most recent progress in the development of nanovaccines, nanodecoys, and nanodisinfectants to tackle SARS-CoV-2 and its variants. Notably, the insights gained and strategies implemented in managing the ongoing pandemic may also offer invaluable guidance for the development of potent nanomedicines to combat future pandemics.
Collapse
Affiliation(s)
- Han Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Yanbin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
41
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
42
|
Hu X, Wang S, Fu S, Qin M, Lyu C, Ding Z, Wang Y, Wang Y, Wang D, Zhu L, Jiang T, Sun J, Ding H, Wu J, Chang L, Cui Y, Pang X, Wang Y, Huang W, Yang P, Wang L, Ma G, Wei W. Intranasal mask for protecting the respiratory tract against viral aerosols. Nat Commun 2023; 14:8398. [PMID: 38110357 PMCID: PMC10728126 DOI: 10.1038/s41467-023-44134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The spread of many infectious diseases relies on aerosol transmission to the respiratory tract. Here we design an intranasal mask comprising a positively-charged thermosensitive hydrogel and cell-derived micro-sized vesicles with a specific viral receptor. We show that the positively charged hydrogel intercepts negatively charged viral aerosols, while the viral receptor on vesicles mediates the entrapment of viruses for inactivation. We demonstrate that when displaying matched viral receptors, the intranasal masks protect the nasal cavity and lung of mice from either severe acute respiratory syndrome coronavirus 2 or influenza A virus. With computerized tomography images of human nasal cavity, we further conduct computational fluid dynamics simulation and three-dimensional printing of an anatomically accurate human nasal cavity, which is connected to human lung organoids to generate a human respiratory tract model. Both simulative and experimental results support the suitability of intranasal masks in humans, as the likelihood of viral respiratory infections induced by different variant strains is dramatically reduced.
Collapse
Affiliation(s)
- Xiaoming Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shaotong Fu
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhaowen Ding
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yishu Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071, Beijing, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100029, Beijing, China
| | - Hui Ding
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 518035, Shenzhen, China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, 100034, Beijing, China
- Institute of Clinical Pharmacology, Peking University, 100191, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, 100034, Beijing, China
- Institute of Clinical Pharmacology, Peking University, 100191, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 102629, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 102629, Beijing, China
| | - Peidong Yang
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Limin Wang
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
43
|
Hasan N, Imran M, Jain D, Jha SK, Nadaf A, Chaudhary A, Rafiya K, Jha LA, Almalki WH, Mohammed Y, Kesharwani P, Ahmad FJ. Advanced targeted drug delivery by bioengineered white blood cell-membrane camouflaged nanoparticulate delivery nanostructures. ENVIRONMENTAL RESEARCH 2023; 238:117007. [PMID: 37689337 DOI: 10.1016/j.envres.2023.117007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Targeted drug delivery has emerged as a pivotal approach within precision medicine, aiming to optimize therapeutic efficacy while minimizing systemic side effects. Leukocyte membrane coated nanoparticles (NPs) have attracted a lot of interest as an effective approach for delivering targeted drugs, capitalizing on the natural attributes of leukocytes to achieve site-specific accumulation, and heightened therapeutic outcomes. An overview of the present state of the targeted medication delivery research is given in this review. Notably, Leukocyte membrane-coated NPs offer inherent advantages such as immune evasion, extended circulation half-life, and precise homing to inflamed or diseased tissues through specific interactions with adhesion molecules. leukocyte membrane-coated NPs hold significant promise in advancing targeted drug delivery for precision medicine. As research progresses, they are anticipated to contribute to improved therapeutic outcomes, enabling personalized and effective treatments for a wide range of diseases and conditions. The review covers the method of preparation, characterization, and biological applications of leucocytic membrane coated NPs. Further, patents related factors, gap of translation from laboratory to clinic, and future prospective were discussed in detail. Overall, the review covers extensive literature to establish leucocytic membrane NPs for targeted drug delivery.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Dhara Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arshi Chaudhary
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Km Rafiya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
44
|
Su Y, Huang T, Sun H, Lin R, Zheng X, Bian Q, Zhang J, Chen S, Wu H, Xu D, Zhang T, Gao J. High Targeting Specificity toward Pulmonary Inflammation Using Mesenchymal Stem Cell-Hybrid Nanovehicle for an Efficient Inflammation Intervention. Adv Healthc Mater 2023; 12:e2300376. [PMID: 37161587 DOI: 10.1002/adhm.202300376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Pulmonary inflammation is one of the most reported tissue inflammations in clinic. Successful suppression of inflammation is vital to prevent further inevitably fatal lung degeneration. Glucocorticoid hormone, such as methylprednisolone (MP), is the most applied strategy to control the inflammatory progression yet faces the challenge of systemic side effects caused by the requirement of large-dosage and frequent administration. Highly efficient delivery of MP specifically targeted to inflammatory lung sites may overcome this challenge. Therefore, the present study develops an inflammation-targeted biomimetic nanovehicle, which hybridizes the cell membrane of mesenchymal stem cell with liposome, named as MSCsome. This hybrid nanovehicle shows the ability of high targeting specificity toward inflamed lung cells, due to both the good lung endothelium penetration and the high uptake by inflamed lung cells. Consequently, a single-dose administration of this MP-loaded hybrid nanovehicle achieves a prominent treatment of lipopolysaccharide-induced lung inflammation, and negligible treatment-induced side effects are observed. The present study provides a powerful inflammation-targeted nanovehicle using biomimetic strategy to solve the current challenges of targeted inflammation intervention.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xixi Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Qiong Bian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shihan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321002, China
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321002, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321002, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
45
|
Aldayel AM, Hufnagel S, O'Mary HL, Valdes SA, Alzhrani RF, Xu H, Cui Z. Effect of nanoparticle size on their distribution and retention in chronic inflammation sites. DISCOVER NANO 2023; 18:105. [PMID: 37606823 PMCID: PMC10444937 DOI: 10.1186/s11671-023-03882-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Nanomedicines are increasingly researched and used for the treatment of chronic inflammatory diseases. Herein, the effect of the size of nanoparticles on their distribution and retention in chronic inflammatory sites, as compared to healthy tissues, was studied in a mouse model with chronic inflammation in one of the hind footpads. Using PEGylated gold nanoparticles of 2, 10, 100, and 200 nm, we found that although the smaller nanoparticles of 2 and 10 nm showed greater distribution and slower clearance in the inflamed footpad than the relatively larger nanoparticles of 100 and 200 nm, the larger nanoparticles of 100 and 200 nm were more selectively distributed in the inflamed hind footpad than in the healthy hind footpad in the same mouse. Based on these findings, we prepared protein nanoparticles of 100-200 nm with albumin, IgG antibody, or anti-TNF-α monoclonal antibody (mAb). The nanoparticles can release proteins in response to high redox activity and/or low pH, conditions seen in chronic inflammation sites. We then showed that upon intravenous injection, those stimuli-responsive protein nanoparticles distributed more selectively in the inflamed footpad than free proteins and remained longer in the inflamed footpad than similar protein nanoparticles that are not sensitive to high redox activity or low pH. These findings support the feasibility of increasing the selectivity of nanomedicines and protein therapeutics to chronic inflammation sites and prolonging their retention at the sites by innovative nanoparticle engineering.
Collapse
Affiliation(s)
- Abdulaziz M Aldayel
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA.
- Nanomedicine Department, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia.
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia.
| | - Stephanie Hufnagel
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hannah L O'Mary
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Solange A Valdes
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Riyad F Alzhrani
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Haiyue Xu
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhengrong Cui
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
46
|
Sudduth ER, Trautmann-Rodriguez M, Gill N, Bomb K, Fromen CA. Aerosol pulmonary immune engineering. Adv Drug Deliv Rev 2023; 199:114831. [PMID: 37100206 PMCID: PMC10527166 DOI: 10.1016/j.addr.2023.114831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Aerosolization of immunotherapies poses incredible potential for manipulating the local mucosal-specific microenvironment, engaging specialized pulmonary cellular defenders, and accessing mucosal associated lymphoid tissue to redirect systemic adaptive and memory responses. In this review, we breakdown key inhalable immunoengineering strategies for chronic, genetic, and infection-based inflammatory pulmonary disorders, encompassing the historic use of immunomodulatory agents, the transition to biological inspired or derived treatments, and novel approaches of complexing these materials into drug delivery vehicles for enhanced release outcomes. Alongside a brief description of key immune targets, fundamentals of aerosol drug delivery, and preclinical pulmonary models for immune response, we survey recent advances of inhaled immunotherapy platforms, ranging from small molecules and biologics to particulates and cell therapies, as well as prophylactic vaccines. In each section, we address the formulation design constraints for aerosol delivery as well as advantages for each platform in driving desirable immune modifications. Finally, prospects of clinical translation and outlook for inhaled immune engineering are discussed.
Collapse
Affiliation(s)
- Emma R Sudduth
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Nicole Gill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
47
|
Wan Q, Zhang X, Zhou D, Xie R, Cai Y, Zhang K, Sun X. Inhaled nano-based therapeutics for pulmonary fibrosis: recent advances and future prospects. J Nanobiotechnology 2023; 21:215. [PMID: 37422665 DOI: 10.1186/s12951-023-01971-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
It is reported that pulmonary fibrosis has become one of the major long-term complications of COVID-19, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. Recently, inhalable nanocarriers have received more attention due to their ability to improve the solubility of insoluble drugs, penetrate biological barriers of the lungs and target fibrotic tissues in the lungs. The inhalation route has many advantages as a non-invasive method of administration and the local delivery of anti-fibrosis agents to fibrotic tissues like direct to the lesion from the respiratory system, high delivery efficiency, low systemic toxicity, low therapeutic dose and more stable dosage forms. In addition, the lung has low biometabolic enzyme activity and no hepatic first-pass effect, so the drug is rapidly absorbed after pulmonary administration, which can significantly improve the bioavailability of the drug. This paper summary the pathogenesis and current treatment of pulmonary fibrosis and reviews various inhalable systems for drug delivery in the treatment of pulmonary fibrosis, including lipid-based nanocarriers, nanovesicles, polymeric nanocarriers, protein nanocarriers, nanosuspensions, nanoparticles, gold nanoparticles and hydrogel, which provides a theoretical basis for finding new strategies for the treatment of pulmonary fibrosis and clinical rational drug use.
Collapse
Affiliation(s)
- Qianyu Wan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dongfang Zhou
- Zhejiang China Resources Sanjiu Zhongyi Pharmaceutical Co., Ltd, Lishui, 323000, China
| | - Rui Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kehao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
48
|
Li C, Wang C, Xie HY, Huang L. Cell-Based Biomaterials for Coronavirus Disease 2019 Prevention and Therapy. Adv Healthc Mater 2023; 12:e2300404. [PMID: 36977465 DOI: 10.1002/adhm.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to threaten human health, economic development, and national security. Although many vaccines and drugs have been explored to fight against the major pandemic, their efficacy and safety still need to be improved. Cell-based biomaterials, especially living cells, extracellular vesicles, and cell membranes, offer great potential in preventing and treating COVID-19 owing to their versatility and unique biological functions. In this review, the characteristics and functions of cell-based biomaterials and their biological applications in COVID-19 prevention and therapy are described. First the pathological features of COVID-19 are summarized, providing enlightenment on how to fight against COVID-19. Next, the classification, organization structure, characteristics, and functions of cell-based biomaterials are focused on. Finally, the progress of cell-based biomaterials in overcoming COVID-19 in different aspects, including the prevention of viral infection, inhibition of viral proliferation, anti-inflammation, tissue repair, and alleviation of lymphopenia are comprehensively described. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
49
|
Wang Z, Li Z, Shi W, Zhu D, Hu S, Dinh PUC, Cheng K. A SARS-CoV-2 and influenza double hit vaccine based on RBD-conjugated inactivated influenza A virus. SCIENCE ADVANCES 2023; 9:eabo4100. [PMID: 37352360 PMCID: PMC10289656 DOI: 10.1126/sciadv.abo4100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/19/2023] [Indexed: 06/25/2023]
Abstract
The circulating flu viruses merging with the ongoing COVID-19 pandemic raises a more severe threat that promotes the infectivity of SARS-CoV-2 associated with higher mortality rates. Here, we conjugated recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein onto inactivated influenza A virus (Flu) to develop a SARS-CoV-2 virus-like particle (VLP) vaccine with two-hit protection. This double-hit vaccine (Flu-RBD) not only induced protective immunities against SARS-CoV-2 but also remained functional as a flu vaccine. The Flu core improved the retention and distribution of Flu-RBD vaccine in the draining lymph nodes, with enhanced immunogenicity. In a hamster model of live SARS-CoV-2 infection, two doses of Flu-RBD efficiently protected animals against viral infection. Furthermore, Flu-RBD VLP elicited a strong neutralization activity against both SARS-CoV-2 Delta pseudovirus and wild-type influenza A H1N1 inactivated virus in mice. Overall, the Flu-RBD VLP vaccine is a promising candidate for combating COVID-19, influenza A, and coinfection.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Weiwei Shi
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Phuong-Uyen C. Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
Meng QF, Tai W, Tian M, Zhuang X, Pan Y, Lai J, Xu Y, Xu Z, Li M, Zhao G, Yu GT, Yu G, Chen R, Jin N, Li X, Cheng G, Chen X, Rao L. Inhalation delivery of dexamethasone with iSEND nanoparticles attenuates the COVID-19 cytokine storm in mice and nonhuman primates. SCIENCE ADVANCES 2023; 9:eadg3277. [PMID: 37315135 PMCID: PMC10266725 DOI: 10.1126/sciadv.adg3277] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Dexamethasone (DEX) is the first drug to show life-saving efficacy in patients with severe coronavirus disease 2019 (COVID-19), while DEX is associated with serious adverse effects. Here, we report an inhaled, Self-immunoregulatory, Extracellular Nanovesicle-based Delivery (iSEND) system by engineering neutrophil nanovesicles with cholesterols to deliver DEX for enhanced treatment of COVID-19. Relying on surface chemokine and cytokine receptors, the iSEND showed improved targeting to macrophages and neutralized broad-spectrum cytokines. The nanoDEX, made by encapsulating DEX with the iSEND, efficiently promoted the anti-inflammation effect of DEX in an acute pneumonia mouse model and suppressed DEX-induced bone density reduction in an osteoporosis rat model. Relative to an intravenous administration of DEX at 0.1 milligram per kilogram, a 10-fold lower dose of nanoDEX administered by inhalation produced even better effects against lung inflammation and injury in severe acute respiratory syndrome coronavirus 2-challenged nonhuman primates. Our work presents a safe and robust inhalation delivery platform for COVID-19 and other respiratory diseases.
Collapse
Affiliation(s)
- Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Jialin Lai
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yangtao Xu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhiqiang Xu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Guocan Yu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Rongchang Chen
- Institute of Respiratory Disease, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Gong Cheng
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|