1
|
Zhang B, Sun Y, Han W, Ge W, Xu Z, Wang S, Yang Z, Yuan L. Interspecies interactions promote dual-species biofilm formation by Lactiplantibacillus plantarum and Limosilactobacillus fermentum: Phenotypic and metabolomic insights. Food Res Int 2025; 211:116388. [PMID: 40356168 DOI: 10.1016/j.foodres.2025.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Probiotics are live microorganisms offering various health benefits to hosts, but exposure to adverse conditions can compromise their viability during gastrointestinal transit. Probiotics in the biofilm state have been proven as an alternative way to the probiotic survival challenge; however, knowledge of mixed-species biofilms by probiotics is limited. This study aimed to examine the ecological interactions between Lactiplantibacillus plantarum LP-52 and Limosilactobacillus fermentum LF-56 from a phenotypic and metabolomics perspective during their mixed-species biofilm development. In specific, we investigated how their interaction changes bacterial growth, biofilm-forming capacity, biofilm structure, biofilm metabolic activity, EPS production, and biofilm tolerance under gastrointestinal conditions. Moreover, a comprehensive metabolomics analysis was conducted to identify different metabolic profiles and elucidate the underlying mechanisms during the development of mixed-species biofilm. Results showed that their cooperative interaction significantly promoted the planktonic cell growth of L. fermentum LF-56 and L. plantarum LP-52 during their co-cultivation. The synergistic effect also markedly improved the biofilm formation, with increased cell counts in biofilms and higher metabolic activity when compared to each single-species biofilm. Confocal laser scanning microscopy imaging showed denser and more diverse structures of mixed-species biofilm with higher coverage and thickness. In addition, dual-species biofilms were best tolerated under simulated gastric and intestinal conditions. Untargeted metabolomics assay identified 852 differential metabolites, primarily associated with seven pathways: two pathways of nucleotide metabolism (purine metabolism, pyrimidine metabolism), two pathways of carbohydrate metabolism (TCA cycle, glycolysis), alanine, aspartate, and glutamate metabolism, riboflavin metabolism, and ABC transporters, which an enhanced energy metabolism, stress adaptation, and potential biofunctional benefits. With this respect, this investigation underscores the benefits of mixed probiotics biofilms and contributes to further application of probiotics in the food and biotechnology industry.
Collapse
Affiliation(s)
- Bingxin Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Key Laboratory of Catering Food Processing and Safety Control, China General Chamber of Commerce, Yangzhou 225127, China
| | - Yuxin Sun
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenyu Han
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenwen Ge
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Key Laboratory of Catering Food Processing and Safety Control, China General Chamber of Commerce, Yangzhou 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Key Laboratory of Catering Food Processing and Safety Control, China General Chamber of Commerce, Yangzhou 225127, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Key Laboratory of Catering Food Processing and Safety Control, China General Chamber of Commerce, Yangzhou 225127, China.
| |
Collapse
|
2
|
Chu P, Zhu J, Ma Z, Fu X. Colony pattern multistability emerges from a bistable switch. Proc Natl Acad Sci U S A 2025; 122:e2424112122. [PMID: 40184178 PMCID: PMC12002352 DOI: 10.1073/pnas.2424112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Microbial colony development hinges upon a myriad of factors, including mechanical, biochemical, and environmental niches, which collectively shape spatial patterns governed by intricate gene regulatory networks. The inherent complexity of this phenomenon necessitates innovative approaches to comprehend and compare the mechanisms driving pattern formation. Here, we unveil the multistability of bacterial colony patterns, where bacterial colony patterns can stabilize into multiple distinct types including ring-like patterns and sector-like patterns on hard agar, orchestrated by a simple synthetic bistable switch. Utilizing quantitative imaging and spatially resolved transcriptome approaches, we explore the deterministic process of a ring-like colony pattern formation from a single cell. This process is primarily driven by bifurcation events programmed by the gene regulatory network and microenvironmental cues. Additionally, we observe a noise-induced process amplified by the founder effect, leading to patterns of symmetry-break during range expansion. The degrees of asymmetry are profoundly influenced by the initial conditions of single progenitor cells during the nascent stages of colony development. These findings underscore how the process of range expansion enables individual cells, exposed to a uniform growth-promoting environment, to exhibit inherent capabilities in generating emergent, self-organized behavior.
Collapse
Affiliation(s)
- Pan Chu
- State Key Laboratory for Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jingwen Zhu
- State Key Laboratory for Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Zhixin Ma
- State Key Laboratory for Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiongfei Fu
- State Key Laboratory for Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
3
|
Hickl V, Khan A, Rossi RM, Silva BFB, Maniura-Weber K. Segmentation of dense and multi-species bacterial colonies using models trained on synthetic microscopy images. PLoS Comput Biol 2025; 21:e1012874. [PMID: 40184377 PMCID: PMC11970677 DOI: 10.1371/journal.pcbi.1012874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/13/2025] [Indexed: 04/06/2025] Open
Abstract
The spread of microbial infections is governed by the self-organization of bacteria on surfaces. Bacterial interactions in clinically relevant settings remain challenging to quantify, especially in systems with multiple species or varied material properties. Quantitative image analysis methods based on machine learning show promise to overcome this challenge and support the development of novel antimicrobial treatments, but are limited by a lack of high-quality training data. Here, novel experimental and image analysis techniques for high-fidelity single-cell segmentation of bacterial colonies are developed. Machine learning-based segmentation models are trained solely using synthetic microscopy images that are processed to look realistic using a state-of-the-art image-to-image translation method (cycleGAN), requiring no biophysical modeling. Accurate single-cell segmentation is achieved for densely packed single-species colonies and multi-species colonies of common pathogenic bacteria, even under suboptimal imaging conditions and for both brightfield and confocal laser scanning microscopy. The resulting data provide quantitative insights into the self-organization of bacteria on soft surfaces. Thanks to their high adaptability and relatively simple implementation, these methods promise to greatly facilitate quantitative descriptions of bacterial infections in varied environments, and may be used for the development of rapid diagnostic tools in clinical settings.
Collapse
Affiliation(s)
- Vincent Hickl
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Abid Khan
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- NASA Ames Research Center, Moffett Field, California, United States of America
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Bruno F. B. Silva
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
4
|
Espinoza Miranda SS, Abbaszade G, Hess WR, Drescher K, Saliba AE, Zaburdaev V, Chai L, Dreisewerd K, Grünberger A, Westendorf C, Müller S, Mascher T. Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges. Microbiol Mol Biol Rev 2025; 89:e0013824. [PMID: 39853129 PMCID: PMC11948493 DOI: 10.1128/mmbr.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole. During colony differentiation, an almost infinite number of ecological and physiological population-forming forces are at work, creating complex, intricate colony structures with divergent functions. Understanding the assembly and dynamics of such populations requires resolving individual cells or cell groups within such macroscopic structures. Addressing how each cell contributes to the collective action requires pushing the resolution boundaries of key technologies that will be presented in this review. In particular, single-cell techniques provide powerful tools for studying bacterial multicellularity with unprecedented spatial and temporal resolution. These advancements include novel microscopic techniques, mass spectrometry imaging, flow cytometry, spatial transcriptomics, single-bacteria RNA sequencing, and the integration of spatiotemporal transcriptomics with microscopy, alongside advanced microfluidic cultivation systems. This review encourages exploring the synergistic potential of the new technologies in the study of bacterial multicellularity, with a particular focus on individuals in differentiated bacterial biofilms (colonies). It highlights how resolving population structures at the single-cell level and understanding their respective functions can elucidate the overarching functions of bacterial multicellular populations.
Collapse
Affiliation(s)
| | | | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Grünberger
- Microsystems in Bioprocess Engineering (μBVT), Institute of Process Engineering in Life Sciences (BLT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christian Westendorf
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Reichhardt C, Matwichuk ML, Lewerke LT, Jacobs HM, Yan J, Parsek MR. Non-disruptive matrix turnover is a conserved feature of biofilm aggregate growth in paradigm pathogenic species. mBio 2025; 16:e0393524. [PMID: 39982068 PMCID: PMC11898600 DOI: 10.1128/mbio.03935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Bacteria form multicellular aggregates called biofilms. A crucial component of these aggregates is a protective matrix that holds the community together. Biofilm matrix composition varies depending upon bacterial species but typically includes exopolysaccharides (EPS), proteins, and extracellular DNA. Pseudomonas aeruginosa is a model organism for the study of biofilms, and in non-mucoid biofilms, it uses the structurally distinct EPS Psl and Pel, the EPS-binding protein CdrA, and eDNA as key matrix components. An interesting phenomenon that we and others have observed is that the periphery of a biofilm aggregate can be EPS-rich and contain very few cells. In this study, we investigated two possible models of assembly and dynamics of this EPS-rich peripheral region: (i) newly synthesized EPS is inserted and incorporated into the existing EPS-rich region at the periphery during biofilm aggregate growth or (ii) EPS is continuously turned over and newly synthesized EPS is deposited at the outermost edge of the aggregate. Our results support the latter model. Specifically, we observed that new EPS is continually deposited at the aggregate periphery, which is necessary for continued aggregate growth but not aggregate stability. We made similar observations in another paradigm biofilm-forming species, Vibrio cholerae. This pattern of deposition raises the question of how EPS is retained. Specifically, for P. aeruginosa biofilms, the matrix adhesin CdrA is thought to retain EPS. However, current thinking is that cell-associated CdrA is responsible for this retention, and it is not clear how CdrA might function in the relatively cell-free aggregate periphery. We observed that CdrA is enzymatically degraded during aggregate growth without negatively impacting biofilm stability and that cell-free CdrA can partially maintain aggregation and Psl retention. Overall, this study shows that the matrix of P. aeruginosa biofilms undergoes both continuous synthesis of matrix material and matrix turnover to accommodate biofilm aggregate growth and that cell-free matrix can at least partially maintain biofilm aggregation and EPS localization. Furthermore, our similar observations for V. cholerae biofilms suggest that our findings may represent basic principles of aggregate assembly in bacteria. IMPORTANCE Here, we show that, to accommodate growing cellular biomass, newly produced Psl is deposited over existing Psl at the periphery of biofilm aggregates. We demonstrated that V. cholerae employs a similar mechanism with its biofilm matrix EPS, VPS. In addition, we found that the protease LasB is present in the biofilm matrix, resulting in degradation of CdrA to lower molecular weight cell-free forms. We then show that the released forms of CdrA are retained in the matrix and remain functional. Together, our findings support that the P. aeruginosa biofilm matrix is dynamic during the course of aggregate growth and that other species may employ similar mechanisms to remodel their matrix.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Lincoln T. Lewerke
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Holly M. Jacobs
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Li MY, Zheng N, Li YW. Migration of an active particle in mixtures of rigid and flexible rings. Phys Rev E 2025; 111:035412. [PMID: 40247538 DOI: 10.1103/physreve.111.035412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
The migration of active particles in slowly moving, crowded, and heterogeneous media is fundamental to various biological processes and technological applications. In this study, we numerically investigate the dynamics of a single active particle in a multicomponent medium composed of mixtures of rigid and flexible rings. We observe a nonmonotonic dependence of diffusivity on the relative fraction of rigid to flexible rings, leading to the identification of an optimal composition for enhanced diffusion. This long-time nonmonotonic diffusion, resulting from the different responses of the active particle to rigid and flexible rings, is coupled with transient short-time trapping. The probability distribution of trapping durations is well described by the herein-proposed extended entropic-trap model. We further theoretically establish a universal relationship between particle activity and the optimal rigid-to-flexible ring ratio for diffusion, which aligns closely with our numerical results.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 100081, China
| | - Ning Zheng
- Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 100081, China
| | - Yan-Wei Li
- Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 100081, China
| |
Collapse
|
7
|
Ardaševa A, Vélez-Cerón I, Pedersen MC, Ignés-Mullol J, Sagués F, Doostmohammadi A. Beyond Dipolar Activity: Quadrupolar Stress Drives Collapse of Nematic Order on Frictional Substrates. PHYSICAL REVIEW LETTERS 2025; 134:088301. [PMID: 40085853 DOI: 10.1103/physrevlett.134.088301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 03/16/2025]
Abstract
The field of active nematics has traditionally employed descriptions based on dipolar activity. However, it is theoretically predicted that interactions with a substrate, prevalent in most biological systems, lead to novel forms of activity, such as quadrupolar activity, that are governed by hydrodynamic screening. Here, combining experiments and numerical simulations, we show that upon light-induced solidification of the underlying medium, microtubule-kinesin mixtures undergo a transformation that leads to a biphasic active suspension. Using an active lyotropic model, we prove that the transition is governed by screening effects that alter the dominant form of active stress. Specifically, the combined effect of friction and quadrupolar activity leads to a hierarchical folding that follows the intrinsic bend instability of the active nematic layer. Our results demonstrate the dynamics of the collapse of orientational order in active nematics and present a new route for controlling active matter by modifying the activity through changing the surrounding environment.
Collapse
Affiliation(s)
- Aleksandra Ardaševa
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark
| | - Ignasi Vélez-Cerón
- Universitat de Barcelona, Department of Materials Science and Physical Chemistry, Barcelona 08028, Spain
- Universitat de Barcelona, Institute of Nanoscience and Nanotechnology, IN2UB, Barcelona 08028, Spain
| | | | - Jordi Ignés-Mullol
- Universitat de Barcelona, Department of Materials Science and Physical Chemistry, Barcelona 08028, Spain
- Universitat de Barcelona, Institute of Nanoscience and Nanotechnology, IN2UB, Barcelona 08028, Spain
| | - Francesc Sagués
- Universitat de Barcelona, Department of Materials Science and Physical Chemistry, Barcelona 08028, Spain
- Universitat de Barcelona, Institute of Nanoscience and Nanotechnology, IN2UB, Barcelona 08028, Spain
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark
| |
Collapse
|
8
|
Nam KM, Yan J. Morphogenesis of confined biofilms: how mechanical interactions determine cellular patterning and global geometry. SOFT MATTER 2025; 21:1436-1450. [PMID: 39901805 PMCID: PMC11791476 DOI: 10.1039/d4sm01180e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Biofilms are surface-attached bacterial communities encased within extracellular matrices that play significant roles in health and society and serve as prototypical examples of proliferating active nematics. Recent advances in fluorescence microscopy have facilitated an unprecedented view of biofilm development at the single-cell level, thus providing the opportunity to develop a mechanistic understanding of how biofilm development is influenced by mechanical interactions with the environment. Here, we review recent studies that examined the morphogenesis of Vibrio cholerae biofilms under confinement at both single-cell and continuum levels. We describe how biofilms under different confinement modes-embedded and interstitial-can acquire various global geometries and forms of cell orientational ordering different from those in unconfined biofilms, and we demonstrate how these properties arise from the mechanical interplay between the biofilm and its confining medium. We also discuss how this interplay is fundamentally governed by the extracellular matrix, which facilitates the transmission of mechanical stress from the medium into the biofilm via adhesion and friction, and serves as the key feature that distinguishes biofilms from classical bacterial colonies. These studies lay the groundwork for many potential future directions, all of which will contribute to the establishment of a new "developmental biology" of biofilms.
Collapse
Affiliation(s)
- Kee-Myoung Nam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
9
|
McMahon SG, Neu JC, Chen J. Kinking and buckling instability in growing bacterial chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632655. [PMID: 39868156 PMCID: PMC11761795 DOI: 10.1101/2025.01.12.632655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Many gram-positive bacteria like Bacillus subtilis and Clostridium species, exhibit a growing chain-mediated sliding motility that is driven entirely by the force of cell growth. Particularly, the bacteria maintain cell-cell linkage after cell division and form long chains of many cells. The cells in a chain are continuously pushed outward by the mechanical force of cell growth. As the cell number in a chain grows, the cells toward the tip of the chain accelerate, and can in principle reach very high speeds. Although this seems to suggest a highly efficient motility mechanism, recent modeling work predicted mechanical stress builds up in the growing chain and the resulting chain breakage beyond a critical chain length, which ultimately sets a mechanical limitation in the maximum speed of the chain-mediated sliding. In this work we developed models to show that under different conditions the chain can either form sharp kinks or smooth buckles under the increasing stress. This can explain differential behaviors observed in different bacterial species. Our model further predicted how kinking and buckling affect the susceptibility of the chain to breakage. Our model provides a theoretical framework for predicting the dynamics and efficiency of growing chain-mediated bacterial sliding, and suggest cell properties that can optimize sliding efficiency.
Collapse
|
10
|
Vaidya S, Saha D, Rode DKH, Torrens G, Hansen MF, Singh PK, Jelli E, Nosho K, Jeckel H, Göttig S, Cava F, Drescher K. Bacteria use exogenous peptidoglycan as a danger signal to trigger biofilm formation. Nat Microbiol 2025; 10:144-157. [PMID: 39753671 PMCID: PMC11726461 DOI: 10.1038/s41564-024-01886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/13/2024] [Indexed: 01/12/2025]
Abstract
For any organism, survival is enhanced by the ability to sense and respond to threats in advance. For bacteria, danger sensing among kin cells has been observed, but the presence or impacts of general danger signals are poorly understood. Here we show that different bacterial species use exogenous peptidoglycan fragments, which are released by nearby kin or non-kin cell lysis, as a general danger signal. Using microscopy and gene expression profiling of Vibrio cholerae, we find that even brief signal exposure results in a regulatory response that causes three-dimensional biofilm formation, which protects cells from a broad range of stresses, including bacteriophage predation. A diverse set of species (Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis) also respond to exogenous peptidoglycan by forming biofilms. As peptidoglycan from different Gram-negative and Gram-positive species triggered three-dimensional biofilm formation, we propose that this danger signal and danger response are conserved among bacteria.
Collapse
Affiliation(s)
- Sanika Vaidya
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Dibya Saha
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Gabriel Torrens
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mads F Hansen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eric Jelli
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Kazuki Nosho
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Knut Drescher
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Li J, Wang J, Wu J, Wang X. Matrix-producing cells' orientation order facilitates Bacillus subtilis biofilm self-healing. Arch Microbiol 2024; 207:19. [PMID: 39739119 DOI: 10.1007/s00203-024-04224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
During the self-healing process of Bacillus subtilis biofilms on a solid MSgg substrate, large-scale ordered clusters emerge within the biofilm, providing an invasive advantages. To investigate the self-healing mechanism, an agent-based model is employed to simulate the self-healing processes of biofilms at two ages. The study reveals that a uniform cell distribution facilitates the healing of biofilm incisions. The nutrient diffusion rate within the biofilm and the elastic modulus (comprising cell and EPS) play a dominant role in the healing of circumferential incisions, while the diffusion rate outside the biofilm governs the healing of radial and penetrating incisions. These influencing factors can adjust cellular ordering, providing valuable insights for controlling the self-healing of Bacillus subtilis biofilms.
Collapse
Affiliation(s)
- Jin Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
12
|
Mulder OJ, Kostman MP, Almodaimegh A, Edge MD, Larkin JW. An Agent-Based Model of Metabolic Signaling Oscillations in Bacillus subtilis Biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629727. [PMID: 39763919 PMCID: PMC11702635 DOI: 10.1101/2024.12.20.629727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms. In this process, glutamate-starved interior cells release potassium, triggering a depolarizing wave that spreads to exterior cells and limits their glutamate uptake. More nutrients diffuse to the interior, temporarily reducing glutamate stress and leading to oscillations. In our model, each cell has a membrane potential coupled to metabolism. As a simulated biofilm grows, collective membrane potential oscillations arise spontaneously as cells deplete nutrients and trigger potassium release, reproducing experimental observations. We further validate our model by comparing spatial signaling patterns and cellular signaling rates with those observed experimentally. By oscillating external glutamate and potassium, we find that biofilms synchronize to external potassium more strongly than to glutamate, providing a potential mechanism for previously observed biofilm synchronization. By tracking cellular glutamate concentrations, we find that oscillations evenly distribute nutrients in space: non-oscillating biofilms have an external layer of well-fed cells surrounding a starved core, whereas oscillating biofilms exhibit a relatively uniform distribution of glutamate. Our work shows the potential of agent-based models to connect cellular properties to collective phenomena and facilitates studies of how inheritance of cellular traits can affect the evolution of group behaviors.
Collapse
Affiliation(s)
- Obadiah J. Mulder
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Joseph W. Larkin
- Departments of Biology and Physics, Boston University, Boston, MA, USA
| |
Collapse
|
13
|
Prentice JA, Kasivisweswaran S, van de Weerd R, Bridges AA. Biofilm dispersal patterns revealed using far-red fluorogenic probes. PLoS Biol 2024; 22:e3002928. [PMID: 39585926 PMCID: PMC11627390 DOI: 10.1371/journal.pbio.3002928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/09/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious due to the limitations of traditional fluorescent proteins, which lose functionality in large, oxygen-deprived biofilms. To overcome this challenge, we developed a cell-labeling strategy utilizing fluorogen-activating proteins (FAPs) and cognate far-red dyes, which remain functional throughout biofilm development, enabling long-term imaging. Using this approach, we characterize dispersal at unprecedented resolution for the global pathogen Vibrio cholerae. We reveal that dispersal initiates at the biofilm periphery and approximately 25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression during cell departure and regional heterogeneity in cell motions. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate. Moreover, we demonstrate the broad applicability of FAPs as a powerful tool for high-resolution studies of microbial dynamics in complex environments.
Collapse
Affiliation(s)
- Jojo A. Prentice
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Sandhya Kasivisweswaran
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Robert van de Weerd
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Andrew A. Bridges
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
14
|
Chen H, Xia A, Yan H, Huang Y, Zhu X, Zhu X, Liao Q. Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100480. [PMID: 39309319 PMCID: PMC11416670 DOI: 10.1016/j.ese.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties. In this review, we explore six biofilm reactor configurations and their potential combinations, emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance. Furthermore, we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance. This review highlights the role of biofilm reactors in environmental and energy sectors, paving the way for future innovations in biofilm-based technologies and their broader applications.
Collapse
Affiliation(s)
- Huize Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Huchao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
15
|
Chen Y, Chauhan S, Gong C, Dayton H, Xu C, De La Cruz ED, Tsai YYW, Datta MS, Rosoklija GB, Dwork AJ, Mann JJ, Boldrini M, Leong KW, Dietrich LEP, Tomer R. Low-cost and scalable projected light-sheet microscopy for the high-resolution imaging of cleared tissue and living samples. Nat Biomed Eng 2024; 8:1109-1123. [PMID: 39209948 DOI: 10.1038/s41551-024-01249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Light-sheet fluorescence microscopy (LSFM) is a widely used technique for imaging cleared tissue and living samples. However, high-performance LSFM systems are typically expensive and not easily scalable. Here we introduce a low-cost, scalable and versatile LSFM framework, which we named 'projected light-sheet microscopy' (pLSM), with high imaging performance and small device and computational footprints. We characterized the capabilities of pLSM, which repurposes readily available consumer-grade components, optimized optics, over-network control architecture and software-driven light-sheet modulation, by performing high-resolution mapping of cleared mouse brains and of post-mortem pathological human brain samples, and via the molecular phenotyping of brain and blood-vessel organoids derived from human induced pluripotent stem cells. We also report a method that leverages pLSM for the live imaging of the dynamics of sparsely labelled multi-layered bacterial pellicle biofilms at an air-liquid interface. pLSM can make high-resolution LSFM for biomedical applications more accessible, affordable and scalable.
Collapse
Affiliation(s)
- Yannan Chen
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Cheng Gong
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Yu-Young Wesley Tsai
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Malika S Datta
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Gorazd B Rosoklija
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J John Mann
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Pokhrel AR, Steinbach G, Krueger A, Day TC, Tijani J, Bravo P, Ng SL, Hammer BK, Yunker PJ. The biophysical basis of bacterial colony growth. NATURE PHYSICS 2024; 20:1509-1517. [PMID: 39866329 PMCID: PMC11756906 DOI: 10.1038/s41567-024-02572-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/28/2024] [Indexed: 01/28/2025]
Abstract
Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its "range expansion" rate. One factor that limits the range expansion rate is vertical growth; at the biofilm edge there is a direct trade-off between horizontal and vertical growth-the more a biofilm grows up, the less it can grow out. Thus, the balance of horizontal and vertical growth impacts the range expansion rate and, crucially, the overall biofilm growth rate. However, the biophysical connection between horizontal and vertical growth remains poorly understood, due in large part to difficulty in resolving biofilm shape with sufficient spatial and temporal resolution from small length scales to macroscopic sizes. Here, we experimentally show that the horizontal expansion rate of bacterial colonies is strongly coupled to vertical expansion via the contact angle at the biofilm edge. Using white light interferometry, we measure the three-dimensional surface morphology of growing colonies, and find that small colonies are surprisingly well-described as spherical caps. At later times, nutrient diffusion and uptake prevent the tall colony center from growing exponentially. However, the colony edge always has a region short enough to grow exponentially; the size and shape of this region, characterized by its contact angle, along with cellular doubling time, determines the range expansion rate. We found that the geometry of the exponentially growing biofilm edge is well-described as a spherical-cap-napkin-ring, i.e., a spherical cap with a cylindrical hole in its center (where the biofilm is too tall to grow exponentially). We derive an exact expression for the spherical-cap-napkin-ring-based range expansion rate; further, to first order, the expansion rate only depends on the colony contact angle, the thickness of the exponentially growing region, and the cellular doubling time. We experimentally validate both of these expressions. In line with our theoretical predictions, we find that biofilms with long cellular doubling times and small contact angles do in fact grow faster than biofilms with short cellular doubling times and large contact angles. Accordingly, sensitivity analysis shows that biofilm growth rates are more sensitive to their contact angles than to their cellular growth rates. Finally, we show that a simple biophysical model connecting vertical and horizontal growth dynamics can reproduce the above phenomena, suggesting that the spherical cap and spherical cap napkin ring shapes emerge due to the biophysical consequences of diffusion-limited growth. Thus, to understand the fitness of a growing biofilm, one must account for its shape, not just its cellular doubling time.
Collapse
Affiliation(s)
- Aawaz R. Pokhrel
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabi Steinbach
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adam Krueger
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Julianne Tijani
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pablo Bravo
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
17
|
David A, Tahrioui A, Tareau AS, Forge A, Gonzalez M, Bouffartigues E, Lesouhaitier O, Chevalier S. Pseudomonas aeruginosa Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production. Antibiotics (Basel) 2024; 13:688. [PMID: 39199987 PMCID: PMC11350761 DOI: 10.3390/antibiotics13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections, especially in immunocompromised patients. Its remarkable adaptability and resistance to various antimicrobial treatments make it difficult to eradicate. Its persistence is enabled by its ability to form a biofilm. Biofilm is a community of sessile micro-organisms in a self-produced extracellular matrix, which forms a scaffold facilitating cohesion, cell attachment, and micro- and macro-colony formation. This lifestyle provides protection against environmental stresses, the immune system, and antimicrobial treatments, and confers the capacity for colonization and long-term persistence, often characterizing chronic infections. In this review, we retrace the events of the life cycle of P. aeruginosa biofilm, from surface perception/contact to cell spreading. We focus on the importance of extracellular appendages, mechanical constraints, and the kinetics of matrix component production in each step of the biofilm life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000 Rouen, France
| |
Collapse
|
18
|
van Rossem MT, Wilks S, Kaczmarek M, D'Alessandro G. Modelling the effects of charge on antibiotic diffusion and adsorption in liquid crystalline virus suspensions. SOFT MATTER 2024. [PMID: 39037726 DOI: 10.1039/d4sm00349g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
We develop a microscopic model of antibiotic diffusion in virus suspensions in a liquid crystalline state. We then approximate this with an effective homogenised model that is more amenable to analytical investigation, to understand the effect of charge on the antibiotic tolerance. We show that liquid crystalline virus suspensions slow down antibiotics significantly, and that electric charge strongly contributes to this by influencing the effective diameter and adsorptive capacity of the liquid crystalline viruses so that charged antibiotics diffuse much slower than neutral ones; this can be directly and efficiently derived from the homogenised model and is in good agreement with experiments in microbiology. Charge is also found to affect the relationship between antibiotic diffusion and viral packing density in a nontrivial way. The results elucidate the effect of charge on antibiotic tolerance in liquid crystalline biofilms in a manner that is straightforwardly extendable to other soft matter systems.
Collapse
Affiliation(s)
| | - Sandra Wilks
- University of Southampton, SO17 1BJ Southampton, Hampshire, UK.
| | | | | |
Collapse
|
19
|
Prentice JA, Kasivisweswaran S, van de Weerd R, Bridges AA. Biofilm dispersal patterns revealed using far-red fluorogenic probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603607. [PMID: 39071379 PMCID: PMC11275749 DOI: 10.1101/2024.07.15.603607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious. Here, we characterize dispersal at unprecedented resolution for the global pathogen Vibrio cholerae. To do so, we first developed a far-red cell-labeling strategy that overcomes pitfalls of fluorescent protein-based approaches. We reveal that dispersal initiates at the biofilm periphery and ~25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression and the formation of dynamic channels. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate.
Collapse
Affiliation(s)
- Jojo A. Prentice
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA
| | | | - Robert van de Weerd
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh PA, USA
| | - Andrew A. Bridges
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA
| |
Collapse
|
20
|
Ohmura T, Skinner DJ, Neuhaus K, Choi GPT, Dunkel J, Drescher K. In Vivo Microrheology Reveals Local Elastic and Plastic Responses Inside 3D Bacterial Biofilms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314059. [PMID: 38511867 DOI: 10.1002/adma.202314059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Bacterial biofilms are highly abundant 3D living materials capable of performing complex biomechanical and biochemical functions, including programmable growth, self-repair, filtration, and bioproduction. Methods to measure internal mechanical properties of biofilms in vivo with spatial resolution on the cellular scale have been lacking. Here, thousands of cells are tracked inside living 3D biofilms of the bacterium Vibrio cholerae during and after the application of shear stress, for a wide range of stress amplitudes, periods, and biofilm sizes, which revealed anisotropic elastic and plastic responses of both cell displacements and cell reorientations. Using cellular tracking to infer parameters of a general mechanical model, spatially-resolved measurements of the elastic modulus inside the biofilm are obtained, which correlate with the spatial distribution of the polysaccharides within the biofilm matrix. The noninvasive microrheology and force-inference approach introduced here provides a general framework for studying mechanical properties with high spatial resolution in living materials.
Collapse
Affiliation(s)
- Takuya Ohmura
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60201, USA
| | - Konstantin Neuhaus
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
- Department of Physics, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
| | - Gary P T Choi
- Department of Mathematics, The Chinese University of Hong Kong, N.T., Hong Kong
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
| | - Knut Drescher
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| |
Collapse
|
21
|
Quispe Haro JJ, Chen F, Los R, Shi S, Sun W, Chen Y, Idema T, Wegner SV. Optogenetic Control of Bacterial Cell-Cell Adhesion Dynamics: Unraveling the Influence on Biofilm Architecture and Functionality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310079. [PMID: 38613837 PMCID: PMC11187914 DOI: 10.1002/advs.202310079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The transition of bacteria from an individualistic to a biofilm lifestyle profoundly alters their biology. During biofilm development, the bacterial cell-cell adhesions are a major determinant of initial microcolonies, which serve as kernels for the subsequent microscopic and mesoscopic structure of the biofilm, and determine the resulting functionality. In this study, the significance of bacterial cell-cell adhesion dynamics on bacterial aggregation and biofilm maturation is elucidated. Using photoswitchable adhesins between bacteria, modifying the dynamics of bacterial cell-cell adhesions with periodic dark-light cycles is systematic. Dynamic cell-cell adhesions with liquid-like behavior improve bacterial aggregation and produce more compact microcolonies than static adhesions with solid-like behavior in both experiments and individual-based simulations. Consequently, dynamic cell-cell adhesions give rise to earlier quorum sensing activation, better intermixing of different bacterial populations, improved biofilm maturation, changes in the growth of cocultures, and higher yields in fermentation. The here presented approach of tuning bacterial cell-cell adhesion dynamics opens the door for regulating the structure and function of biofilms and cocultures with potential biotechnological applications.
Collapse
Affiliation(s)
- Juan José Quispe Haro
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
| | - Fei Chen
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| | - Rachel Los
- Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Shuqi Shi
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Wenjun Sun
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Yong Chen
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Timon Idema
- Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
22
|
Li C, Nijjer J, Feng L, Zhang Q, Yan J, Zhang S. Agent-based modeling of stress anisotropy driven nematic ordering in growing biofilms. SOFT MATTER 2024; 20:3401-3410. [PMID: 38563244 PMCID: PMC11041162 DOI: 10.1039/d3sm01535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Living active collectives have evolved with remarkable self-patterning capabilities to adapt to the physical and biological constraints crucial for their growth and survival. However, the intricate process by which complex multicellular patterns emerge from a single founder cell remains elusive. In this study, we utilize an agent-based model, validated through single-cell microscopy imaging, to track the three-dimensional (3D) morphodynamics of cells within growing bacterial biofilms encased by agarose gels. The confined growth conditions give rise to a spatiotemporally heterogeneous stress landscape within the biofilm. In the core of the biofilm, where high hydrostatic and low shear stresses prevail, cell packing appears disordered. In contrast, near the gel-cell interface, a state of high shear stress and low hydrostatic stress emerges, driving nematic ordering, albeit with a time delay inherent to shear stress relaxation. Strikingly, we observe a robust spatiotemporal correlation between stress anisotropy and nematic ordering within these confined biofilms. This correlation suggests a mechanism whereby stress anisotropy plays a pivotal role in governing the spatial organization of cells. The reciprocity between stress anisotropy and cell ordering in confined biofilms opens new avenues for innovative 3D mechanically guided patterning techniques for living active collectives, which hold significant promise for a wide array of environmental and biomedical applications.
Collapse
Affiliation(s)
- Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
| | - Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Luyi Feng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
| | - Qiuting Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Material Science and Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Li ZY, Chen YP, Liu HY, Li B. Three-Dimensional Chiral Morphogenesis of Active Fluids. PHYSICAL REVIEW LETTERS 2024; 132:138401. [PMID: 38613297 DOI: 10.1103/physrevlett.132.138401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
Chirality is an essential nature of biological systems. However, it remains obscure how the handedness at the microscale is translated into chiral morphogenesis at the tissue level. Here, we investigate three-dimensional (3D) tissue morphogenesis using an active fluid theory invoking chirality. We show that the coordination of achiral and chiral stresses, arising from microscopic interactions and energy input of individual cells, can engender the self-organization of 3D papillary and helical structures. The achiral active stress drives the nucleation of asterlike topological defects, which initiate 3D out-of-plane budding, followed by rodlike elongation. The chiral active stress excites vortexlike topological defects, which favor the tip spheroidization and twisting of the elongated rod. These results unravel the chiral morphogenesis observed in our experiments of 3D organoids generated by human embryonic stem cells.
Collapse
Affiliation(s)
- Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yun-Ping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hao-Yu Liu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Ellis JR, Rowley PA. An apparent lack of synergy between degradative enzymes against Staphylococcus aureus biofilms. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001119. [PMID: 38596361 PMCID: PMC11002645 DOI: 10.17912/micropub.biology.001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Enzymes combat bacterial infections by degrading biomolecules to disperse Staphylococcus aureus biofilms. Commercial enzyme mixtures, like cellulase and pepsin, show concentration-dependent dispersion, but low concentrations lack synergy. Only the sequential addition of pepsin followed by Arthrobacter luteus zymolyase 20T displays synergy, effectively dispersing biofilms. Purified zymolyase 100T outperforms zymolyase 20T but lacks synergy with pepsin. This study underscores the complexity of enzymatic biofilm dispersal, highlighting the need for tailored approaches based on enzyme properties and biofilm composition.
Collapse
Affiliation(s)
- Jeremy R. Ellis
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States
- The Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States
| |
Collapse
|
25
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
26
|
Moreno-Fenoll C, Ardré M, Rainey PB. Polar accumulation of pyoverdin and exit from stationary phase. MICROLIFE 2024; 5:uqae001. [PMID: 38370141 PMCID: PMC10873284 DOI: 10.1093/femsml/uqae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Pyoverdin is a water-soluble metal-chelator synthesized by members of the genus Pseudomonas and used for the acquisition of insoluble ferric iron. Although freely diffusible in aqueous environments, preferential dissemination of pyoverdin among adjacent cells, fine-tuning of intracellular siderophore concentrations, and fitness advantages to pyoverdin-producing versus nonproducing cells, indicate control of location and release. Here, using time-lapse fluorescence microscopy to track single cells in growing microcolonies of Pseudomonas fluorescens SBW25, we show accumulation of pyoverdin at cell poles. Accumulation occurs on cessation of cell growth, is achieved by cross-feeding in pyoverdin-nonproducing mutants and is reversible. Moreover, accumulation coincides with localization of a fluorescent periplasmic reporter, suggesting that pyoverdin accumulation at cell poles is part of the general cellular response to starvation. Compatible with this conclusion is absence of non-accumulating phenotypes in a range of pyoverdin mutants. Analysis of the performance of pyoverdin-producing and nonproducing cells under conditions promoting polar accumulation shows an advantage to accumulation on resumption of growth after stress. Examination of pyoverdin polar accumulation in a multispecies community and in a range of laboratory and natural species of Pseudomonas, including P. aeruginosa PAO1 and P. putida KT2440, confirms that the phenotype is characteristic of Pseudomonas.
Collapse
Affiliation(s)
- Clara Moreno-Fenoll
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Maxime Ardré
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Paul B Rainey
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
27
|
Cockx BJR, Foster T, Clegg RJ, Alden K, Arya S, Stekel DJ, Smets BF, Kreft JU. Is it selfish to be filamentous in biofilms? Individual-based modeling links microbial growth strategies with morphology using the new and modular iDynoMiCS 2.0. PLoS Comput Biol 2024; 20:e1011303. [PMID: 38422165 PMCID: PMC10947719 DOI: 10.1371/journal.pcbi.1011303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/18/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Microbial communities are found in all habitable environments and often occur in assemblages with self-organized spatial structures developing over time. This complexity can only be understood, predicted, and managed by combining experiments with mathematical modeling. Individual-based models are particularly suited if individual heterogeneity, local interactions, and adaptive behavior are of interest. Here we present the completely overhauled software platform, the individual-based Dynamics of Microbial Communities Simulator, iDynoMiCS 2.0, which enables researchers to specify a range of different models without having to program. Key new features and improvements are: (1) Substantially enhanced ease of use (graphical user interface, editor for model specification, unit conversions, data analysis and visualization and more). (2) Increased performance and scalability enabling simulations of up to 10 million agents in 3D biofilms. (3) Kinetics can be specified with any arithmetic function. (4) Agent properties can be assembled from orthogonal modules for pick and mix flexibility. (5) Force-based mechanical interaction framework enabling attractive forces and non-spherical agent morphologies as an alternative to the shoving algorithm. The new iDynoMiCS 2.0 has undergone intensive testing, from unit tests to a suite of increasingly complex numerical tests and the standard Benchmark 3 based on nitrifying biofilms. A second test case was based on the "biofilms promote altruism" study previously implemented in BacSim because competition outcomes are highly sensitive to the developing spatial structures due to positive feedback between cooperative individuals. We extended this case study by adding morphology to find that (i) filamentous bacteria outcompete spherical bacteria regardless of growth strategy and (ii) non-cooperating filaments outcompete cooperating filaments because filaments can escape the stronger competition between themselves. In conclusion, the new substantially improved iDynoMiCS 2.0 joins a growing number of platforms for individual-based modeling of microbial communities with specific advantages and disadvantages that we discuss, giving users a wider choice.
Collapse
Affiliation(s)
- Bastiaan J. R. Cockx
- Department of Environmental and Resource Engineering, Technical University of Demark, DTU Lyngby campus, Kgs. Lyngby, Denmark
| | - Tim Foster
- Centre for Computational Biology & Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robert J. Clegg
- Centre for Computational Biology & Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kieran Alden
- Centre for Computational Biology & Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sankalp Arya
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Barth F. Smets
- Department of Environmental and Resource Engineering, Technical University of Demark, DTU Lyngby campus, Kgs. Lyngby, Denmark
| | - Jan-Ulrich Kreft
- Centre for Computational Biology & Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
28
|
Yang H, Ma R, Chen J, Xie Q, Luo W, Sun P, Liu Z, Guo J. Discovery of Melittin as Triple-Action Agent: Broad-Spectrum Antibacterial, Anti-Biofilm, and Potential Anti-Quorum Sensing Activities. Molecules 2024; 29:558. [PMID: 38338303 PMCID: PMC10856726 DOI: 10.3390/molecules29030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The development of antibiotic-resistant microorganisms is a major global health concern. Recently, there has been an increasing interest in antimicrobial peptides as a therapeutic option. This study aimed to evaluate the triple-action (broad-spectrum antibacterial, anti-biofilm, and anti-quorum sensing activities) of melittin, a membrane-active peptide present in bee venom. The minimum inhibitory concentration and minimum bactericidal concentration of the melittin were determined using the microdilution method and agar plate counting. Growth curve analysis revealed that melittin showed a concentration-dependent antibacterial activity. Scanning electron microscope analysis revealed that melittin treatment altered the morphology. Confocal laser scanning microscope revealed that melittin increased the membrane permeability and intracellular ROS generation in bacteria, all of which contribute to bacterial cell death. In addition, the crystal violet (CV) assay was used to test the anti-biofilm activity. The CV assay demonstrated that melittin inhibited biofilm formation and eradicated mature biofilms. Biofilm formation mediated by quorum sensing (QS) plays a major role in this regard, so molecular docking and molecular dynamics analysis confirmed that melittin interacts with LasR receptors through hydrogen bonds, and further evaluates the anti-QS activity of melittin through the production of virulence factors (pyocyanin, elastase, and rhamnolipid), exopolysaccharides secretion, and bacterial motility, that may be the key to inhibiting the biofilm formation mechanism. The present findings highlight the promising role of melittin as a broad-spectrum antibacterial, anti-biofilm agent, and potential QS inhibitor, providing a new perspective and theoretical basis for the development of alternative antibiotics.
Collapse
Affiliation(s)
- Hongyan Yang
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Rong Ma
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Jiarou Chen
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Qian Xie
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Wenhui Luo
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan 528244, China;
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
29
|
Copeland R, Zhang C, Hammer BK, Yunker PJ. Spatial constraints and stochastic seeding subvert microbial arms race. PLoS Comput Biol 2024; 20:e1011807. [PMID: 38277405 PMCID: PMC10849242 DOI: 10.1371/journal.pcbi.1011807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Surface attached communities of microbes grow in a wide variety of environments. Often, the size of these microbial community is constrained by their physical surroundings. However, little is known about how size constraints of a colony impact the outcome of microbial competitions. Here, we use individual-based models to simulate contact killing between two bacterial strains with different killing rates in a wide range of community sizes. We found that community size has a substantial impact on outcomes; in fact, in some competitions the identity of the most fit strain differs in large and small environments. Specifically, when at a numerical disadvantage, the strain with the slow killing rate is more successful in smaller environments than in large environments. The improved performance in small spaces comes from finite size effects; stochastic fluctuations in the initial relative abundance of each strain in small environments lead to dramatically different outcomes. However, when the slow killing strain has a numerical advantage, it performs better in large spaces than in small spaces, where stochastic fluctuations now aid the fast killing strain in small communities. Finally, we experimentally validate these results by confining contact killing strains of Vibrio cholerae in transmission electron microscopy grids. The outcomes of these experiments are consistent with our simulations. When rare, the slow killing strain does better in small environments; when common, the slow killing strain does better in large environments. Together, this work demonstrates that finite size effects can substantially modify antagonistic competitions, suggesting that colony size may, at least in part, subvert the microbial arms race.
Collapse
Affiliation(s)
- Raymond Copeland
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christopher Zhang
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
30
|
Böhning J, Graham M, Letham SC, Davis LK, Schulze U, Stansfeld PJ, Corey RA, Pearce P, Tarafder AK, Bharat TAM. Biophysical basis of filamentous phage tactoid-mediated antibiotic tolerance in P. aeruginosa. Nat Commun 2023; 14:8429. [PMID: 38114502 PMCID: PMC10730611 DOI: 10.1038/s41467-023-44160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Inoviruses are filamentous phages infecting numerous prokaryotic phyla. Inoviruses can self-assemble into mesoscale structures with liquid-crystalline order, termed tactoids, which protect bacterial cells in Pseudomonas aeruginosa biofilms from antibiotics. Here, we investigate the structural, biophysical, and protective properties of tactoids formed by the P. aeruginosa phage Pf4 and Escherichia coli phage fd. A cryo-EM structure of the capsid from fd revealed distinct biochemical properties compared to Pf4. Fd and Pf4 formed tactoids with different morphologies that arise from differing phage geometries and packing densities, which in turn gave rise to different tactoid emergent properties. Finally, we showed that tactoids formed by either phage protect rod-shaped bacteria from antibiotic treatment, and that direct association with a tactoid is required for protection, demonstrating the formation of a diffusion barrier by the tactoid. This study provides insights into how filamentous molecules protect bacteria from extraneous substances in biofilms and in host-associated infections.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Miles Graham
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Suzanne C Letham
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Luke K Davis
- Department of Mathematics, University College London, London, WC1H 0AY, UK
- Institute for the Physics of Living Systems, University College London, London, WC1E 6BT, UK
| | - Ulrike Schulze
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Philip Pearce
- Department of Mathematics, University College London, London, WC1H 0AY, UK
- Institute for the Physics of Living Systems, University College London, London, WC1E 6BT, UK
| | - Abul K Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
31
|
Li J, Wu J, Wang J, Wang X. Phenotypic variations induced emergence of orientation order and morphology in Bacillus subtilis biofilm growth. Biochem Biophys Res Commun 2023; 686:149198. [PMID: 37931362 DOI: 10.1016/j.bbrc.2023.149198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
During the Bacillus subtilis biofilm growth on the solid MSgg substrate, the biofilm exhibits highly ordered structures such as matrix-producing-cell chains and Van Gogh bundles due to bacterial orientation order. These structures make the biofilm have strong mobility and environmental adaptability, thus making bacteria easier to survive and thrive in biofilms comparing to planktonic bacteria. We tested the behaviors of different phenotypes as well as their impacts on bacterial clusters: motile cells arrange disorderly, the biofilm made up of motile cells tends to be circular and isotropic; matrix-producing cells form cellular chains that guide motile cells along the chain to form a locally nematic phase, the morphology of the biofilm made up of both motile cells and matrix-producing cells is rendered irregular. Combining the results of a coarse-grained and individual-based model, we can control the biofilm growth through regulating environmental friction, bacterial growth rate and adhesion between cells.
Collapse
Affiliation(s)
- Jin Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
32
|
Jones EW, Derrick J, Nisbet RM, Ludington WB, Sivak DA. First-passage-time statistics of growing microbial populations carry an imprint of initial conditions. Sci Rep 2023; 13:21340. [PMID: 38049502 PMCID: PMC10696051 DOI: 10.1038/s41598-023-48726-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023] Open
Abstract
In exponential population growth, variability in the timing of individual division events and environmental factors (including stochastic inoculation) compound to produce variable growth trajectories. In several stochastic models of exponential growth we show power-law relationships that relate variability in the time required to reach a threshold population size to growth rate and inoculum size. Population-growth experiments in E. coli and S. aureus with inoculum sizes ranging between 1 and 100 are consistent with these relationships. We quantify how noise accumulates over time, finding that it encodes-and can be used to deduce-information about the early growth rate of a population.
Collapse
Affiliation(s)
- Eric W Jones
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Joshua Derrick
- Department of Biological Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Roger M Nisbet
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - William B Ludington
- Department of Biological Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
33
|
Jeckel H, Nosho K, Neuhaus K, Hastewell AD, Skinner DJ, Saha D, Netter N, Paczia N, Dunkel J, Drescher K. Simultaneous spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development reveal cooperation across generations. Nat Microbiol 2023; 8:2378-2391. [PMID: 37973866 PMCID: PMC10686836 DOI: 10.1038/s41564-023-01518-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Development of microbial communities is a complex multiscale phenomenon with wide-ranging biomedical and ecological implications. How biological and physical processes determine emergent spatial structures in microbial communities remains poorly understood due to a lack of simultaneous measurements of gene expression and cellular behaviour in space and time. Here we combined live-cell microscopy with a robotic arm for spatiotemporal sampling, which enabled us to simultaneously acquire phenotypic imaging data and spatiotemporal transcriptomes during Bacillus subtilis swarm development. Quantitative characterization of the spatiotemporal gene expression patterns revealed correlations with cellular and collective properties, and phenotypic subpopulations. By integrating these data with spatiotemporal metabolome measurements, we discovered a spatiotemporal cross-feeding mechanism fuelling swarm development: during their migration, earlier generations deposit metabolites which are consumed by later generations that swarm across the same location. These results highlight the importance of spatiotemporal effects during the emergence of phenotypic subpopulations and their interactions in bacterial communities.
Collapse
Affiliation(s)
- Hannah Jeckel
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Kazuki Nosho
- Biozentrum, University of Basel, Basel, Switzerland
| | - Konstantin Neuhaus
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Alasdair D Hastewell
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dominic J Skinner
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
| | - Dibya Saha
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Knut Drescher
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Nijjer J, Li C, Kothari M, Henzel T, Zhang Q, Tai JSB, Zhou S, Cohen T, Zhang S, Yan J. Biofilms as self-shaping growing nematics. NATURE PHYSICS 2023; 19:1936-1944. [PMID: 39055904 PMCID: PMC11271743 DOI: 10.1038/s41567-023-02221-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/23/2023] [Indexed: 07/28/2024]
Abstract
Active nematics are the nonequilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. Like liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here, we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.
Collapse
Affiliation(s)
- Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Mrityunjay Kothari
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, University of New Hampshire, Durham, NH, USA
| | - Thomas Henzel
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiuting Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Jung-Shen B Tai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Shuang Zhou
- Department of Physics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Tal Cohen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
35
|
Pokhrel AR, Steinbach G, Krueger A, Day TC, Tijani J, Ng SL, Hammer BK, Yunker PJ. The biophysical basis of bacterial colony growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567592. [PMID: 38014274 PMCID: PMC10680802 DOI: 10.1101/2023.11.17.567592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its "range expansion" rate. One factor that limits the range expansion rate is vertical growth; at the biofilm edge there is a direct trade-off between horizontal and vertical growth-the more a biofilm grows up, the less it can grow out. Thus, the balance of horizontal and vertical growth impacts the range expansion rate and, crucially, the overall biofilm growth rate. However, the biophysical connection between horizontal and vertical growth remains poorly understood, due in large part to difficulty in resolving biofilm shape with sufficient spatial and temporal resolution from small length scales to macroscopic sizes. Here, we experimentally show that the horizontal expansion rate of bacterial colonies is controlled by the contact angle at the biofilm edge. Using white light interferometry, we measure the three-dimensional surface morphology of growing colonies, and find that small colonies are surprisingly well-described as spherical caps. At later times, nutrient diffusion and uptake prevent the tall colony center from growing exponentially. However, the colony edge always has a region short enough to grow exponentially; the size and shape of this region, characterized by its contact angle, along with cellular doubling time, determines the range expansion rate. We found that the geometry of the exponentially growing biofilm edge is well-described as a spherical-cap-napkin-ring, i.e., a spherical cap with a cylindrical hole in its center (where the biofilm is too tall to grow exponentially). We derive an exact expression for the spherical-cap-napkin-ring-based range expansion rate; further, to first order, the expansion rate only depends on the colony contact angle, the thickness of the exponentially growing region, and the cellular doubling time. We experimentally validate both of these expressions. In line with our theoretical predictions, we find that biofilms with long cellular doubling times and small contact angles do in fact grow faster than biofilms with short cellular doubling times and large contact angles. Accordingly, sensitivity analysis shows that biofilm growth rates are more sensitive to their contact angles than to their cellular growth rates. Thus, to understand the fitness of a growing biofilm, one must account for its shape, not just its cellular doubling time.
Collapse
|
36
|
Mishra R, Hannebelle M, Patil VP, Dubois A, Garcia-Mouton C, Kirsch GM, Jan M, Sharma K, Guex N, Sordet-Dessimoz J, Perez-Gil J, Prakash M, Knott GW, Dhar N, McKinney JD, Thacker VV. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell 2023; 186:5135-5150.e28. [PMID: 37865090 PMCID: PMC10642369 DOI: 10.1016/j.cell.2023.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
Collapse
Affiliation(s)
- Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Hannebelle
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anaëlle Dubois
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Gabriela M Kirsch
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kunal Sharma
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jesus Perez-Gil
- Department of Biochemistry, University Complutense Madrid, 28040 Madrid, Spain
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Graham W Knott
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Neeraj Dhar
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - John D McKinney
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
37
|
Ellis JR, Rowley PA. An apparent lack of synergy between degradative enzymes against Staphylococcus aureus biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561034. [PMID: 37873330 PMCID: PMC10592981 DOI: 10.1101/2023.10.05.561034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The use of enzymes represents an approach to combat bacterial infections by degrading extracellular biomolecules to disperse Staphylococcus aureus biofilms. Commercial enzyme preparations, including cellulase, amylase, pectinase, zymolyase, and pepsin, exhibit concentration-dependent dispersion of S. aureus biofilms. Here, we report that low concentrations of these enzymes generally lack synergy when combined or added together sequentially to biofilms. Only the addition of a protease (pepsin) followed by a commercial mixture of degradative enzymes from Arthrobacter luteus (zymolyase 20T), demonstrated synergy and was effective at dispersing S. aureus biofilms. A more purified mixture of Arthrobacter luteus enzymes (zymolyase 100T) showed improved dispersal of S. aureus biofilms compared to zymolyase 20T but lacked synergy with pepsin. This study emphasizes the complexity of enzymatic biofilm dispersal and the need for tailored approaches based on the properties of degradative enzymes and biofilm composition.
Collapse
Affiliation(s)
- Jeremy R Ellis
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
- Johns Hopkins University, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul A Rowley
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| |
Collapse
|
38
|
Lohrmann C, Holm C. A novel model for biofilm initiation in porous media flow. SOFT MATTER 2023; 19:6920-6928. [PMID: 37664878 DOI: 10.1039/d3sm00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Bacteria often form biofilms in porous environments where an external flow is present, such as soil or filtration systems. To understand the initial stages of biofilm formation, one needs to study the interactions between cells, the fluid and the confining geometries. Here, we present an agent based numerical model for bacteria that takes into account the planktonic stage of motile cells as well as surface attachment and biofilm growth in a lattice Boltzmann fluid. In the planktonic stage we show the importance of the interplay between complex flow and cell motility when determining positions of surface attachment. In the growth stage we show the applicability of our model by investigating how external flow and biofilm stiffness determine qualitative colony morphologies as well as quantitative measurements of, e.g., permeability.
Collapse
Affiliation(s)
- Christoph Lohrmann
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany.
| |
Collapse
|
39
|
Skinner DJ, Jeckel H, Martin AC, Drescher K, Dunkel J. Topological packing statistics of living and nonliving matter. SCIENCE ADVANCES 2023; 9:eadg1261. [PMID: 37672580 PMCID: PMC10482333 DOI: 10.1126/sciadv.adg1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/27/2023] [Indexed: 09/08/2023]
Abstract
Complex disordered matter is of central importance to a wide range of disciplines, from bacterial colonies and embryonic tissues in biology to foams and granular media in materials science to stellar configurations in astrophysics. Because of the vast differences in composition and scale, comparing structural features across such disparate systems remains challenging. Here, by using the statistical properties of Delaunay tessellations, we introduce a mathematical framework for measuring topological distances between general three-dimensional point clouds. The resulting system-agnostic metric reveals subtle structural differences between bacterial biofilms as well as between zebrafish brain regions, and it recovers temporal ordering of embryonic development. We apply the metric to construct a universal topological atlas encompassing bacterial biofilms, snowflake yeast, plant shoots, zebrafish brain matter, organoids, and embryonic tissues as well as foams, colloidal packings, glassy materials, and stellar configurations. Living systems localize within a bounded island-like region of the atlas, reflecting that biological growth mechanisms result in characteristic topological properties.
Collapse
Affiliation(s)
- Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Hannah Jeckel
- Department of Physics, Philipps-Universität Marburg, Renthof 6, 35032 Marburg, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Knut Drescher
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Charlton SG, Bible AN, Secchi E, Morrell‐Falvey JL, Retterer ST, Curtis TP, Chen J, Jana S. Microstructural and Rheological Transitions in Bacterial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207373. [PMID: 37522628 PMCID: PMC10520682 DOI: 10.1002/advs.202207373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Biofilms are aggregated bacterial communities structured within an extracellular matrix (ECM). ECM controls biofilm architecture and confers mechanical resistance against shear forces. From a physical perspective, biofilms can be described as colloidal gels, where bacterial cells are analogous to colloidal particles distributed in the polymeric ECM. However, the influence of the ECM in altering the cellular packing fraction (ϕ) and the resulting viscoelastic behavior of biofilm remains unexplored. Using biofilms of Pantoea sp. (WT) and its mutant (ΔUDP), the correlation between biofilm structure and its viscoelastic response is investigated. Experiments show that the reduction of exopolysaccharide production in ΔUDP biofilms corresponds with a seven-fold increase in ϕ, resulting in a colloidal glass-like structure. Consequently, the rheological signatures become altered, with the WT behaving like a weak gel, whilst the ΔUDP displayed a glass-like rheological signature. By co-culturing the two strains, biofilm ϕ is modulated which allows us to explore the structural changes and capture a change in viscoelastic response from a weak to a strong gel, and to a colloidal glass-like state. The results reveal the role of exopolysaccharide in mediating a structural transition in biofilms and demonstrate a correlation between biofilm structure and viscoelastic response.
Collapse
Affiliation(s)
- Samuel G.V. Charlton
- Department of Civil, Environmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurich8049Switzerland
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Amber N. Bible
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurich8049Switzerland
| | | | - Scott T. Retterer
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
- Center for Nanophase Material SciencesOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Thomas P. Curtis
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Jinju Chen
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Saikat Jana
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
- School of EngineeringUlster UniversityBelfastBT15 1APUK
| |
Collapse
|
41
|
Coppens B, Belpaire TE, Pešek J, Steenackers HP, Ramon H, Smeets B. Anomalous diffusion of nanoparticles in the spatially heterogeneous biofilm environment. iScience 2023; 26:106861. [PMID: 37260744 PMCID: PMC10227381 DOI: 10.1016/j.isci.2023.106861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Biofilms contain extracellular polymeric substances (EPS) that provide structural support and restrict penetration of antimicrobial treatment. To overcome limited penetration, functionalized nanoparticles (NPs) have been suggested as carriers for antimicrobial delivery. Using microscopy, we evaluate the diffusion of nanoparticles in function of the structure of Salmonella biofilms. We observe anomalous diffusion and heterogeneous mobility of NPs resulting in distinct NPs distribution that depended on biofilm structure. Through Brownian dynamics modeling with spatially varying viscosity around bacteria, we demonstrated that spatial gradients in diffusivity generate viscous sinks that trap NPs near bacteria. This model replicates the characteristic diffusion signature and vertical distribution of NPs in the biofilm. From a treatment perspective, our work indicates that both biofilm structure and the level of EPS can impact NP drug delivery, where low levels of EPS might benefit delivery by immobilizing NPs closer to bacteria and higher levels hamper delivery due to shielding effects.
Collapse
Affiliation(s)
- Bart Coppens
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Tom E.R. Belpaire
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Jiří Pešek
- Team SIMBIOTX, Inria Saclay, 91120 Palaiseau, France
| | | | - Herman Ramon
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Bart Smeets
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
42
|
Vidakovic L, Mikhaleva S, Jeckel H, Nisnevich V, Strenger K, Neuhaus K, Raveendran K, Ben-Moshe NB, Aznaourova M, Nosho K, Drescher A, Schmeck B, Schulte LN, Persat A, Avraham R, Drescher K. Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae. Cell 2023; 186:2690-2704.e20. [PMID: 37295405 PMCID: PMC10256282 DOI: 10.1016/j.cell.2023.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Biofilm formation is generally recognized as a bacterial defense mechanism against environmental threats, including antibiotics, bacteriophages, and leukocytes of the human immune system. Here, we show that for the human pathogen Vibrio cholerae, biofilm formation is not only a protective trait but also an aggressive trait to collectively predate different immune cells. We find that V. cholerae forms biofilms on the eukaryotic cell surface using an extracellular matrix comprising primarily mannose-sensitive hemagglutinin pili, toxin-coregulated pili, and the secreted colonization factor TcpF, which differs from the matrix composition of biofilms on other surfaces. These biofilms encase immune cells and establish a high local concentration of a secreted hemolysin to kill the immune cells before the biofilms disperse in a c-di-GMP-dependent manner. Together, these results uncover how bacteria employ biofilm formation as a multicellular strategy to invert the typical relationship between human immune cells as the hunters and bacteria as the hunted.
Collapse
Affiliation(s)
| | - Sofya Mikhaleva
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hannah Jeckel
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Valerya Nisnevich
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Konstantin Neuhaus
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | | | - Noa Bossel Ben-Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marina Aznaourova
- Institute for Lung Research, Center for Synthetic Microbiology (SYNMIKRO), Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Kazuki Nosho
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Antje Drescher
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Bernd Schmeck
- Institute for Lung Research, Center for Synthetic Microbiology (SYNMIKRO), Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, 35043 Marburg, Germany; Department of Pulmonary and Critical Care Medicine, University Medical Center Marburg, 35043 Marburg, Germany; German Center for Infection Research (DZIF), 35043 Marburg, Germany; German Center for Lung Research (DZL), 35043 Marburg, Germany; Institute for Lung Health, 35392 Giessen, Germany
| | - Leon N Schulte
- Institute for Lung Research, Center for Synthetic Microbiology (SYNMIKRO), Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, 35043 Marburg, Germany; German Center for Lung Research (DZL), 35043 Marburg, Germany
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Knut Drescher
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
43
|
Kasallis S, Bru JL, Chang R, Zhuo Q, Siryaporn A. Understanding how bacterial collectives organize on surfaces by tracking surfactant flow. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2023; 27:101080. [PMID: 37427092 PMCID: PMC10327653 DOI: 10.1016/j.cossms.2023.101080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Swarming is a collective bacterial behavior in which a dense population of bacterial cells moves over a porous surface, resulting in the expansion of the population. This collective behavior can guide bacteria away from potential stressors such as antibiotics and bacterial viruses. However, the mechanisms responsible for the organization of swarms are not understood. Here, we briefly review models that are based on bacterial sensing and fluid mechanics that are proposed to guide swarming in the pathogenic bacterium Pseudomonas aeruginosa. To provide further insight into the role of fluid mechanics in P. aeruginosa swarms, we track the movement of tendrils and the flow of surfactant using a novel technique that we have developed, Imaging of Reflected Illuminated Structures (IRIS). Our measurements show that tendrils and surfactants form distinct layers that grow in lockstep with each other. The results raise new questions about existing swarming models and the possibility that the flow of surfactants impacts tendril development. These findings emphasize that swarm organization involves an interplay between biological processes and fluid mechanics.
Collapse
Affiliation(s)
- Summer Kasallis
- Department of Physics & Astronomy, University of California Irvine, Irvine, CA 92697, USA
| | - Jean-Louis Bru
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rendell Chang
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Quantum Zhuo
- Department of Physics & Astronomy, University of California Irvine, Irvine, CA 92697, USA
| | - Albert Siryaporn
- Department of Physics & Astronomy, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
44
|
Asp ME, Thanh MTH, Dutta S, Comstock JA, Welch RD, Patteson AE. Mechanobiology as a tool for addressing the genotype-to-phenotype problem in microbiology. BIOPHYSICS REVIEWS 2023; 4:021304. [PMID: 38504926 PMCID: PMC10903382 DOI: 10.1063/5.0142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 03/21/2024]
Abstract
The central hypothesis of the genotype-phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism's genome and phenome.
Collapse
|
45
|
Hallatschek O, Datta SS, Drescher K, Dunkel J, Elgeti J, Waclaw B, Wingreen NS. Proliferating active matter. NATURE REVIEWS. PHYSICS 2023; 5:1-13. [PMID: 37360681 PMCID: PMC10230499 DOI: 10.1038/s42254-023-00593-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
The fascinating patterns of collective motion created by autonomously driven particles have fuelled active-matter research for over two decades. So far, theoretical active-matter research has often focused on systems with a fixed number of particles. This constraint imposes strict limitations on what behaviours can and cannot emerge. However, a hallmark of life is the breaking of local cell number conservation by replication and death. Birth and death processes must be taken into account, for example, to predict the growth and evolution of a microbial biofilm, the expansion of a tumour, or the development from a fertilized egg into an embryo and beyond. In this Perspective, we argue that unique features emerge in these systems because proliferation represents a distinct form of activity: not only do the proliferating entities consume and dissipate energy, they also inject biomass and degrees of freedom capable of further self-proliferation, leading to myriad dynamic scenarios. Despite this complexity, a growing number of studies document common collective phenomena in various proliferating soft-matter systems. This generality leads us to propose proliferation as another direction of active-matter physics, worthy of a dedicated search for new dynamical universality classes. Conceptual challenges abound, from identifying control parameters and understanding large fluctuations and nonlinear feedback mechanisms to exploring the dynamics and limits of information flow in self-replicating systems. We believe that, by extending the rich conceptual framework developed for conventional active matter to proliferating active matter, researchers can have a profound impact on quantitative biology and reveal fascinating emergent physics along the way.
Collapse
Affiliation(s)
- Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, CA US
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Sujit S. Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA
| | | | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Bartek Waclaw
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry PAN, Warsaw, Poland
- School of Physics and Astronomy, The University of Edinburgh, JCMB, Edinburgh, UK
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| |
Collapse
|
46
|
Cremin K, Duxbury SJN, Rosko J, Soyer OS. Formation and emergent dynamics of spatially organized microbial systems. Interface Focus 2023; 13:20220062. [PMID: 36789239 PMCID: PMC9912014 DOI: 10.1098/rsfs.2022.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Spatial organization is the norm rather than the exception in the microbial world. While the study of microbial physiology has been dominated by studies in well-mixed cultures, there is now increasing interest in understanding the role of spatial organization in microbial physiology, coexistence and evolution. Where studied, spatial organization has been shown to influence all three of these aspects. In this mini review and perspective article, we emphasize that the dynamics within spatially organized microbial systems (SOMS) are governed by feedbacks between local physico-chemical conditions, cell physiology and movement, and evolution. These feedbacks can give rise to emergent dynamics, which need to be studied through a combination of spatio-temporal measurements and mathematical models. We highlight the initial formation of SOMS and their emergent dynamics as two open areas of investigation for future studies. These studies will benefit from the development of model systems that can mimic natural ones in terms of species composition and spatial structure.
Collapse
Affiliation(s)
- Kelsey Cremin
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Jerko Rosko
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
47
|
Bravo P, Lung Ng S, MacGillivray KA, Hammer BK, Yunker PJ. Vertical growth dynamics of biofilms. Proc Natl Acad Sci U S A 2023; 120:e2214211120. [PMID: 36881625 PMCID: PMC10089195 DOI: 10.1073/pnas.2214211120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023] Open
Abstract
During the biofilm life cycle, bacteria attach to a surface and then reproduce, forming crowded, growing communities. Many theoretical models of biofilm growth dynamics have been proposed; however, difficulties in accurately measuring biofilm height across relevant time and length scales have prevented testing these models, or their biophysical underpinnings, empirically. Using white light interferometry, we measure the heights of microbial colonies with nanometer precision from inoculation to their final equilibrium height, producing a detailed empirical characterization of vertical growth dynamics. We propose a heuristic model for vertical growth dynamics based on basic biophysical processes inside a biofilm: diffusion and consumption of nutrients and growth and decay of the colony. This model captures the vertical growth dynamics from short to long time scales (10 min to 14 d) of diverse microorganisms, including bacteria and fungi.
Collapse
Affiliation(s)
- Pablo Bravo
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Kathryn A. MacGillivray
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
48
|
Supekar R, Song B, Hastewell A, Choi GPT, Mietke A, Dunkel J. Learning hydrodynamic equations for active matter from particle simulations and experiments. Proc Natl Acad Sci U S A 2023; 120:e2206994120. [PMID: 36763535 PMCID: PMC9963139 DOI: 10.1073/pnas.2206994120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Recent advances in high-resolution imaging techniques and particle-based simulation methods have enabled the precise microscopic characterization of collective dynamics in various biological and engineered active matter systems. In parallel, data-driven algorithms for learning interpretable continuum models have shown promising potential for the recovery of underlying partial differential equations (PDEs) from continuum simulation data. By contrast, learning macroscopic hydrodynamic equations for active matter directly from experiments or particle simulations remains a major challenge, especially when continuum models are not known a priori or analytic coarse graining fails, as often is the case for nondilute and heterogeneous systems. Here, we present a framework that leverages spectral basis representations and sparse regression algorithms to discover PDE models from microscopic simulation and experimental data, while incorporating the relevant physical symmetries. We illustrate the practical potential through a range of applications, from a chiral active particle model mimicking nonidentical swimming cells to recent microroller experiments and schooling fish. In all these cases, our scheme learns hydrodynamic equations that reproduce the self-organized collective dynamics observed in the simulations and experiments. This inference framework makes it possible to measure a large number of hydrodynamic parameters in parallel and directly from video data.
Collapse
Affiliation(s)
- Rohit Supekar
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Boya Song
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alasdair Hastewell
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Gary P. T. Choi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alexander Mietke
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
49
|
Wucher BR, Winans JB, Elsayed M, Kadouri DE, Nadell CD. Breakdown of clonal cooperative architecture in multispecies biofilms and the spatial ecology of predation. Proc Natl Acad Sci U S A 2023; 120:e2212650120. [PMID: 36730197 PMCID: PMC9963355 DOI: 10.1073/pnas.2212650120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/06/2022] [Indexed: 02/03/2023] Open
Abstract
Biofilm formation, including adherence to surfaces and secretion of extracellular matrix, is common in the microbial world, but we often do not know how interaction at the cellular spatial scale translates to higher-order biofilm community ecology. Here we explore an especially understudied element of biofilm ecology, namely predation by the bacterium Bdellovibrio bacteriovorus. This predator can kill and consume many different Gram-negative bacteria, including Vibrio cholerae and Escherichia coli. V. cholerae can protect itself from predation within densely packed biofilm structures that it creates, whereas E. coli biofilms are highly susceptible to B. bacteriovorus. We explore how predator-prey dynamics change when V. cholerae and E. coli are growing in biofilms together. We find that in dual-species prey biofilms, E. coli survival under B. bacteriovorus predation increases, whereas V. cholerae survival decreases. E. coli benefits from predator protection when it becomes embedded within expanding groups of highly packed V. cholerae. But we also find that the ordered, highly packed, and clonal biofilm structure of V. cholerae can be disrupted if V. cholerae cells are directly adjacent to E. coli cells at the start of biofilm growth. When this occurs, the two species become intermixed, and the resulting disordered cell groups do not block predator entry. Because biofilm cell group structure depends on initial cell distributions at the start of prey biofilm growth, the surface colonization dynamics have a dramatic impact on the eventual multispecies biofilm architecture, which in turn determines to what extent both species survive exposure to B. bacteriovorus.
Collapse
Affiliation(s)
| | - James B. Winans
- Department of Biological Sciences, Dartmouth, Hanover, NH03755
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ07101
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ07101
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth, Hanover, NH03755
| |
Collapse
|
50
|
Moreau A, Mukherjee S, Yan J. Mechanical Characterization and Single‐Cell Imaging of Bacterial Biofilms. Isr J Chem 2023. [DOI: 10.1002/ijch.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Alexis Moreau
- Department of Molecular, Cellular and Developmental Biology, Quantitative Biology Institute Yale University 260 Whitney Ave. New Haven CT 06511 USA
| | - Sampriti Mukherjee
- Department of Molecular Genetics & Cell Biology University of Chicago 920 E. 58th Street, Suite 1106 Chicago IL 60637
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Quantitative Biology Institute Yale University 260 Whitney Ave. New Haven CT 06511 USA
| |
Collapse
|