1
|
Brazhkina O, Park JH, Brown M, Walcott JC, Han J, Turchetti A, Roychowdhury S, Prasad RS, Kim MJ, Itzhaki I, De Jesus Morales KJ, Hollister SJ, Davis ME. In vivo assessment of iPSC-cardiomyocyte loaded auxetic cardiac patches following chronic myocardial infarction. Biomaterials 2025; 323:123418. [PMID: 40408975 DOI: 10.1016/j.biomaterials.2025.123418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Novel cardiac patch designs achieved by advanced 3D manufacturing continue to have favorable impacts on the repair and regeneration of the myocardium after injury. Briefly, auxetic units with a negative Poisson's ratio have already shown remarkable promise for serving as a next-generation complex scaffold in left ventricular disease. In this study we biofabricated a 3D printed polycaprolactone (PCL) cardiac auxetic patch loaded with high density contractile induced pluripotent stem cell-derived cardiomyocytes (iCMs) and examined the synergist effect of iCM auxetic patches on a chronic myocardial infarct rodent model compared to a stiffer non-auxetic control patch architecture. A week after the induction of a temporary left anterior descending artery ligation, we administered the treatment groups in the form of patch implantation over the ischemic area after initial acute inflammation was complete and prior to granulation tissue formation following the infarct for clinical relevance. Our findings highlight that auxetic patches can provide additional ventricular support and diminished adverse ventricular remodeling, as seen through ejection fraction outputs and histology, and iCM-laden auxetics show localized regenerative potential through increased vascularization compared to controls with no patch or a non-auxetic patch architecture. Exploration on the impact of a negative Poisson's ratio on both global functional outcomes and local therapeutic benefit highlights that iCM-laden auxetics should be further surveyed for other cardiac pathophysiologic conditions, including more in-depth studies on infarction or right ventricular disease.
Collapse
Affiliation(s)
- Olga Brazhkina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States
| | - Jeong Hun Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States; Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, United States
| | - Milton Brown
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States
| | - Jelisha C Walcott
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States
| | - Jonghyeuk Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States
| | - Arianna Turchetti
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States
| | - Swarnima Roychowdhury
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States
| | - Ria Soni Prasad
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States
| | - Matthew J Kim
- Pediatric Children's Heart Center, Emory University School of Medicine, Atlanta, GA, 30332, United States
| | - Ilanit Itzhaki
- Pediatric Children's Heart Center, Emory University School of Medicine, Atlanta, GA, 30332, United States; Children's Heart Research and Outcomes (HeRO) Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, 30322, United States
| | - Kenneth J De Jesus Morales
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States; Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, United States
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States; Children's Heart Research and Outcomes (HeRO) Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
2
|
Qu KY, Cheng HY, Qiao L, Jiao JC, Chang SQ, Peng XF, Cui C, Zhang F, Huang NP. Construction of engineered cardiac tissue on a heart-on-a-chip device enables modeling of arrhythmogenic right ventricular cardiomyopathy. Biosens Bioelectron 2025; 281:117478. [PMID: 40245609 DOI: 10.1016/j.bios.2025.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive cardiac disorder characterized by the replacement of the right ventricular myocardium with fibrofatty tissue, with an incidence rate of approximately 1 in 5000. To advance our understanding of its pathology and facilitate drug screening, there is an urgent need for myocardial models that closely replicate human physiological conditions. In this study, we developed an engineered cardiac tissue (ECT) model on a chip using cardiomyocytes differentiated from induced pluripotent stem cells (iPSCs) derived from ARVC patients. The disease ECT model successfully recapitulated key phenotypic features of ARVC, including reduced contractility, arrhythmic events, and abnormal calcium transients. We further assessed the drug responses of the model to isoproterenol and amiodarone, confirming increased sensitivity to isoproterenol in the ARVC model, while amiodarone effectively alleviated the arrhythmic events. In conclusion, our ECT model successfully reproduced ARVC phenotypes, providing a novel platform for drug screening and pathological studies.
Collapse
Affiliation(s)
- Kai-Yun Qu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hong-Yi Cheng
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Li Qiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jin-Cheng Jiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Shi-Qi Chang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xia-Feng Peng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Chang Cui
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Feng Zhang
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Ning-Ping Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
3
|
Cipriano G, Thum T, Weber N. Exploring hiPSC-CM replacement therapy in ischemic hearts. Basic Res Cardiol 2025:10.1007/s00395-025-01117-w. [PMID: 40493218 DOI: 10.1007/s00395-025-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/26/2025] [Accepted: 05/27/2025] [Indexed: 06/12/2025]
Abstract
Ischemic heart disease is one of the leading causes of heart failure and death worldwide. The loss of cardiomyocytes following a myocardial infarction drives the remodeling process, which, in most cases, ultimately leads to heart failure. Since the available treatment options only slow down the remodeling process without tackling the causes of heart failure onset (i.e., cardiomyocyte loss and inability of the remaining cardiomyocytes to enter the cell cycle and regenerate the heart), in the last two decades, cardiovascular research focused on finding alternative solutions to regenerate the heart. So far, the investigated approaches include a variety of methods aiming at manipulation of non-coding RNAs, such as long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA), and growth factors to enable the cardiomyocytes to re-enter the cell cycle, direct reprogramming of fibroblasts into cardiomyocytes (CM), and CM replacement therapy, all of them with the main goal to replace the loss of cardiomyocytes and restore the heart function. The development of reprogramming protocols from somatic cells to induced pluripotent stem cells (iPSCs) by Yamanaka and Takahashi, along with advancements in differentiation protocols to generate almost pure populations of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), has fostered optimism in cardiac regenerative medicine. Despite these advancements, critical concerns arose regarding the survival and retention of the engrafted cells, arrhythmogenicity, and immune response. Over time, much effort has been put into enhancing iPSC-CM therapy with different methods, ranging from anti-apoptotic small molecule-based approaches to tissue engineering. In this review, we discuss the evolution of cardiac cell therapy, highlighting recent advancements and the remaining challenges that must be overcome to translate this promising approach into clinical practice.
Collapse
Affiliation(s)
- Giuseppe Cipriano
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- Hannover Medical School, Germany, Dean's Office for Academic Career Development, nextGENERATION Medical Scientist Program, Hannover, Germany.
| |
Collapse
|
4
|
Hoffmann S, Seeger T. Advances in human induced pluripotent stem cell (hiPSC)-based disease modelling in cardiogenetics. MED GENET-BERLIN 2025; 37:137-146. [PMID: 40207041 PMCID: PMC11976404 DOI: 10.1515/medgen-2025-2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modelling has significantly advanced the field of cardiogenetics, providing a precise, patient-specific platform for studying genetic causes of heart diseases. Coupled with genome editing technologies such as CRISPR/Cas, hiPSC-based models not only allow the creation of isogenic lines to study mutation-specific cardiac phenotypes, but also enable the targeted modulation of gene expression to explore the effects of genetic and epigenetic deficits at the cellular and molecular level. hiPSC-based models of heart disease range from two-dimensional cultures of hiPSC-derived cardiovascular cell types, such as various cardiomyocyte subtypes, endothelial cells, pericytes, vascular smooth muscle cells, cardiac fibroblasts, immune cells, etc., to cardiac tissue cultures including organoids, microtissues, engineered heart tissues, and microphysiological systems. These models are further enhanced by multi-omics approaches, integrating genomic, transcriptomic, epigenomic, proteomic, and metabolomic data to provide a comprehensive view of disease mechanisms. In particular, advances in cardiovascular tissue engineering enable the development of more physiologically relevant systems that recapitulate native heart architecture and function, allowing for more accurate modelling of cardiac disease, drug screening, and toxicity testing, with the overall goal of personalised medical approaches, where therapies can be tailored to individual genetic profiles. Despite significant progress, challenges remain in the maturation of hiPSC-derived cardiomyocytes and the complexity of reproducing adult heart conditions. Here, we provide a concise update on the most advanced methods of hiPSC-based disease modelling in cardiogenetics, with a focus on genome editing and cardiac tissue engineering.
Collapse
Affiliation(s)
- Sandra Hoffmann
- University Hospital HeidelbergInstitute of Human GeneticsHeidelbergGermany
| | | |
Collapse
|
5
|
Okai Y, Kaushik EP, Sameshima T, Feric N, Singh R, Pallotta I, Bogdanowicz DR, Gustilo MM, Harada K, Baker KS, Shinozawa T. Establishing a context of use for three-dimensional cardiac tissue derived from human-induced pluripotent stem cell-derived cardiomyocytes using inotropes. Toxicol Sci 2025; 205:401-416. [PMID: 40220331 PMCID: PMC12118959 DOI: 10.1093/toxsci/kfaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025] Open
Abstract
Safety attrition due to drug-induced inotropic changes remains a significant risk factor for drug development. Mitigating these events during early screening remains challenging. Several in vitro predictive models have been developed to address these issues, with varying success in detecting drug-induced inotropic changes. In this study, we compared traditional two-dimensional human-induced pluripotent stem cell-derived cardiomyocytes (2D hiPSC-CMs) with three-dimensional engineered cardiac tissues (3D ECTs) to assess their ability to detect drug-induced inotropic changes in 17 drugs with known mechanisms of action. The models were exposed to various test compounds, and their responses were evaluated by measuring either the active force or maximum contraction speed. The 3D ECTs successfully detected all the tested positive inotropes, whereas the 2D hiPSC-CMs failed to detect the 2 compounds. Both models demonstrated high predictability for negative inotropy and showed similar results for detecting non-active compounds, except for higher concentrations of phentolamine, zimelidine, and tamsulosin. Irregular beating was less likely to occur in the 3D ECTs, suggesting that 3D ECTs provided superior detection of contractility compared to 2D hiPSC-CMs. Genetic analysis revealed a more mature phenotype for the 3D ECTs compared to the 2D hiPSC-CMs, and the compound-related target expression was comparable to that in the adult human heart tissues. The 3D ECTs captured inotropic changes more accurately and thus represented a more translatable model than the 2D hiPSC-CMs. Overall, contractility assessment using the 3D ECTs could be advantageous for profiling candidate compounds and mechanistic investigations of hemodynamic changes during in vivo or clinical studies.
Collapse
Affiliation(s)
- Yoshiko Okai
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Japan
| | - Emily Pfeiffer Kaushik
- Drug Safety Research and Evaluation, Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Tomoya Sameshima
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Japan
| | - Nicole Feric
- Valo Health, Inc, New York, NY 10016, United States
| | | | | | | | | | - Kosuke Harada
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Japan
| | - Kevin S Baker
- Drug Safety Research and Evaluation, Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Japan
| |
Collapse
|
6
|
Hang L, Zhang Y, Zhang Z, Jiang H, Xia L. Metabolism Serves as a Bridge Between Cardiomyocytes and Immune Cells in Cardiovascular Diseases. Cardiovasc Drugs Ther 2025; 39:661-676. [PMID: 38236378 DOI: 10.1007/s10557-024-07545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Metabolic disorders of cardiomyocytes play an important role in the progression of various cardiovascular diseases. Metabolic reprogramming can provide ATP to cardiomyocytes and protect them during diseases, but this transformation also leads to adverse consequences such as oxidative stress, mitochondrial dysfunction, and eventually aggravates myocardial injury. Moreover, abnormal accumulation of metabolites induced by metabolic reprogramming of cardiomyocytes alters the cardiac microenvironment and affects the metabolism of immune cells. Immunometabolism, as a research hotspot, is involved in regulating the phenotype and function of immune cells. After myocardial injury, both cardiac resident immune cells and heart-infiltrating immune cells significantly contribute to the inflammation, repair and remodeling of the heart. In addition, metabolites generated by the metabolic reprogramming of immune cells can further affect the microenvironment, thereby affecting the function of cardiomyocytes and other immune cells. Therefore, metabolic reprogramming and abnormal metabolite levels may serve as a bridge between cardiomyocytes and immune cells, leading to the development of cardiovascular diseases. Herein, we summarize the metabolic relationship between cardiomyocytes and immune cells in cardiovascular diseases, and the effect on cardiac injury, which could be therapeutic strategy for cardiovascular diseases, especially in drug research.
Collapse
Affiliation(s)
- Lixiao Hang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, China
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zheng Zhang
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Haiqiang Jiang
- Department of Laboratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, No.130 Renmin Middle Road, Wuxi, 214400, Jiangyin, China.
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, China.
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
7
|
Cha SE, Lee MN, Kim ES. Metabolic impacts of long-chain fatty acids on cardiomyocyte maturation in neonatal mammalian hearts. Methods 2025; 241:S1046-2023(25)00131-8. [PMID: 40449856 DOI: 10.1016/j.ymeth.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/23/2025] [Accepted: 05/25/2025] [Indexed: 06/03/2025] Open
Abstract
Cardiomyocytes are essential models for cardiac disease modeling, drug development, and regenerative therapies. Specifically, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as widely used cellular models with high reproducibility. However, cardiomyocytes generated in vitro tend to remain immature and insufficient in replicating the electrophysiological and mechanical functions of adult cardiomyocytes, limiting the clinical and experimental applications of these models. Thus, various biochemical and biophysical strategies have been explored to promote the maturation of cardiomyocytes, to address these limitations, and more accurately mimic the characteristics of mature cardiomyocytes. This review summarizes recent studies on multiple methodologies employed to induce cardiomyocyte maturation, with a particular emphasis on the role of long-chain fatty acids (LCFAs). The evidence summarized in this review is derived from studies utilizing cardiomyocytes from neonatal mice or rats and hiPSC-CMs. Meanwhile, immature cardiomyocytes have been demonstrated to predominantly rely on glycolysis, transitioning to oxidative phosphorylation through maturation, which enhances electrical stability, contractility, and structural organization. LCFAs play a key role in the cardiomyocyte maturation process by serving as key metabolic factors that generate ATP through mitochondrial β-oxidation, thereby improving metabolic efficiency. Additionally, LCFAs are involved in activating cytoskeletal components and signaling pathways integral to cardiomyocyte contractility. Importantly, studies suggest that when multiple biochemical and biophysical stimuli are simultaneously applied, various aspects of cardiomyocyte maturation are synergistically accelerated. Therefore, future studies focusing on the coordinated application of these regulatory factors are expected to enhance the maturation process, ultimately contributing to the generation of mature cardiomyocytes suitable for regenerative medicine and other advanced applications.
Collapse
Affiliation(s)
- Seong-Eung Cha
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mi Nam Lee
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Research Center of Ecomimetics, Institute of Sustainable Ecological Environment, Chonnam National University, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
8
|
Hong Y, Liu J, Wang W, Li H, Kong W, Li X, Zhang W, Pahlavan S, Tang YD, Wang X, Wang K. Pluripotent stem cell-derived cardiomyocyte transplantation: marching from bench to bedside. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2801-x. [PMID: 40418524 DOI: 10.1007/s11427-024-2801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/12/2024] [Indexed: 05/27/2025]
Abstract
Cardiovascular diseases such as myocardial infarction, heart failure, and cardiomyopathy, persist as a leading global cause of death. Current treatment options have inherent limitations, particularly in terms of cardiac regeneration due to the limited regenerative capacity of adult human hearts. The transplantation of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) has emerged as a promising and potential solution to address this challenge. This review aims to summarize the latest advancements and prospects of PSC-CM transplantation (PCT), along with the existing constraints, such as immune rejection and engraftment arrhythmias, and corresponding solutions. Encompassing a comprehensive range from fundamental research findings and preclinical experiments to ongoing clinical trials, we hope to offer insights into PCT from bench to bedside.
Collapse
Affiliation(s)
- Yi Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Department of Education, Peking University First Hospital, Peking University, Beijing, 100035, China
| | - Jiarui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Weixuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Xiaoxia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing, 102200, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, The Academic Center for Education, Culture and Research, Tehran, 14155-4364, Iran
| | - Yi-da Tang
- Department of Cardiology and Institute of Vascular Medicine, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China.
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
9
|
Dong S, Guo K, Zhao N, Xu Y. Au@Pt Nanoparticles Enhance Maturation and Contraction of Mouse Embryonic Stem Cells-Derived and Neonatal Mouse Cardiomyocytes. Tissue Eng Regen Med 2025:10.1007/s13770-025-00724-x. [PMID: 40392512 DOI: 10.1007/s13770-025-00724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Cardiomyocytes derived from pluripotent stem cells (PSCs) hold great promise in heart damage repair in vivo and drug screening in vitro. However, PSC-derived cardiomyocytes exhibit immature structural and functional properties, which hinder their widespread application. To address this challenge, we designed bimetallic gold-platinum nanoparticles (Au@Pt NPs) endowed with intrinsic oxidase-like, peroxidase-like, and catalase-like activities and high electrical conductivity for promoting cardiomyocyte maturation. METHODS Mouse embryonic stem cell (ESC)-derived and neonatal mouse cardiomyocytes were used to evaluate the effects of Au@Pt NPs on cardiomyocyte maturation. The expression and alignment of cardiomyocyte myofibril proteins were analyzed by qRT-PCR, western blot, and immunofluorescence staining. Cellular functionality was analyzed by the multi-electrode array. RESULTS By adding Au@Pt NPs at different stages of cardiac differentiation of mouse ESCs, we found that treatment with Au@Pt NPs at the late stage could promote the maturation of differentiated cardiomyocytes, evidenced by increased expression of mature myofibril protein isoforms, more aligned myofibrils, and enhanced sarcomere length. Additionally, Au@Pt NPs can enhance the expression of mature sarcomere components, increase sarcomere length, and significantly boost beating amplitude and conduction velocity in neonatal mouse cardiomyocytes. Furthermore, Au@Pt NPs promoted cell cycle arrest, increased intracellular reactive oxygen species levels, and promoted contractility by inducing the ERK1/2 signaling pathway. CONCLUSION Our results indicate that the bimetallic Au@Pt NPs with intrinsic oxidase-like, peroxidase-like, and catalase-like activities and high electrical conductivity could promote the maturation of ESCs-derived and neonatal mouse cardiomyocytes, providing a promising approach for cardiomyocyte maturation and cell therapy for cardiovascular disease.
Collapse
Affiliation(s)
- Shuai Dong
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Kangli Guo
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China.
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yan Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
10
|
Liu Y, Wang TT, Lu Y, Riaz M, Qyang Y. Cardiac macrophage: Insights from murine models to translational potential for human studies. J Mol Cell Cardiol 2025; 204:17-31. [PMID: 40354877 DOI: 10.1016/j.yjmcc.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Macrophages are a cell type that are known to play dynamic roles in acute and progressive pathology. They are highly attuned to their microenvironments throughout maturation, tailoring their functional responses according to the specific tissues in which they reside and their developmental origin. Cardiac macrophages (cMacs) have emerged as focal points of interest for their interactions with the unique electrical and mechanical stimuli of the heart, as well as for their role in maintaining cardiac homeostasis. Through an in-depth analysis of their origin, lineage, and functional significance, this review aims to shed light on cMacs' distinct contributions to both normal physiological maintenance as well as disease progression. Central to our discussion is the comparison of cMac characteristics between mouse and human models, highlighting current challenges and proposing novel experimental tools for deciphering cMac function within the intricate human cardiac microenvironments based on current murine studies. Our review offers valuable insights for identifying novel therapeutic targets and interventions tailored to the distinct roles of these immune cells in cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Yufeng Liu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Tricia T Wang
- Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Yinsheng Lu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Stem Cell Center, New Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Suga T, Kitani T, Kogure M, Oishi M, Ito F, Hoshino A, Ogata T, Ikeda K, Matoba S. Thousand and one amino acid protein kinase 1 suppression improves doxorubicin-induced cardiomyopathy by preventing cardiomyocyte death and dysfunction. Cardiovasc Res 2025; 121:601-613. [PMID: 39964965 DOI: 10.1093/cvr/cvaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/20/2024] [Accepted: 12/05/2024] [Indexed: 02/20/2025] Open
Abstract
AIMS Doxorubicin (DOX) is one of the most effective chemotherapeutic agents for various types of cancers. However, DOX often causes cardiotoxicity, which is referred to as DOX-induced cardiomyopathy (DIC). Despite extensive research, only a limited number of effective treatments are currently available. In this study, we aimed to identify a potential therapeutic target for DIC by preventing DOX-induced cell injury in cardiomyocytes. METHODS AND RESULTS We performed a kinome-wide CRISPR gene knockout screen in human cardiomyocytes derived from pluripotent stem cells (hPSC-CMs) and identified a member of the STE20 kinase family, thousand and one amino acid protein kinase 1 (TAOK1) as a potential regulator of DOX-induced cardiomyocyte death. Using CRISPR-mediated gene knockout and small interfering RNA-mediated gene knockdown, we demonstrated that TAOK1 suppression improved DOX-induced cardiomyocyte death and dysfunction, including sarcomere disarray, contractile dysfunction, DNA damage, and mitochondrial dysfunction in hPSC-CMs. Transcriptome analysis using RNA-seq also showed that DOX-induced mitochondrial dysfunction was attenuated by TAOK1 suppression. In contrast to the protective role of TAOK1 against DOX toxicity in cardiomyocytes, TAOK1 suppression did not induce DOX resistance in human cancer cell lines. DOX-induced activation of p38 mitogen-activated protein kinase (MAPK) was markedly attenuated in TAOK1-knockout hPSC-CMs. Furthermore, DOX-induced cardiomyocyte death and disruption of mitochondrial membrane potential were augmented by TAOK1 overexpression, which was partially attenuated by an inhibitor or knockdown of p38 MAPK or an apoptosis inhibitor. Finally, we demonstrated that TAOK1 suppression using adeno-associated virus (AAV)-mediated gene silencing attenuated DOX-induced myocardial damage, including myocardial fibrosis, apoptosis, and cardiomyocyte atrophy, resulting in improved cardiac function in a mouse model of DIC. CONCLUSION Our results indicate that TAOK1 suppression is a promising therapeutic approach for treating DIC in patients with cancer and highlight the advantages of hPSC-CMs as a platform to study drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Takaomi Suga
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomoya Kitani
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masaya Kogure
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masatsugu Oishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Fumiaki Ito
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Koji Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Epidemiology for Longevity and Regional Health, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
12
|
Xu J, Brown J, Shaik R, Soto-Garcia L, Liao J, Nguyen K, Zhang G, Hong Y. Injectable myocardium-derived hydrogels with SDF-1α releasing for cardiac repair. BIOMATERIALS ADVANCES 2025; 170:214203. [PMID: 39908684 DOI: 10.1016/j.bioadv.2025.214203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
Myocardial infarction (MI) is a predominant cause of morbidity and mortality globally. Therapeutic chemokines, such as stromal cell-derived factor 1α (SDF-1α), present a promising opportunity to treat the profibrotic remodeling post-MI if they can be delivered effectively to the injured tissue. However, direct injection of SDF-1α or physical entrapment in a hydrogel has shown limited efficacy. Here, we developed a sustained-release system consisting of SDF-1α loaded poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) and an injectable porcine cardiac decellularized extracellular matrix (cdECM) hydrogel. This system demonstrated a sustained release of SDF-1α over four weeks while there is one week release for SDF-1α directly encapsulated in the cdECM hydrogel during in vitro testing. The incorporation of PLGA NPs into the cdECM hydrogel significantly enhanced its mechanical properties, increasing the Young's modulus from 561 ± 228 kPa to 1007 ± 2 kPa and the maximum compressive strength from 639 ± 42 kPa to 1014 ± 101 kPa. This nanocomposite hydrogel showed good cell compatibility after 7 days of culture with H9C2 cells, while the released SDF-1α retained its bioactivity, as evidenced by its chemotactic effects in vitro. Furthermore, in vivo studies further highlighted its significant ability to promote angiogenesis in the infarcted area and improve cardiac function after intramyocardial injection. These results demonstrated the therapeutic potential of combining local release of SDF-1α with the cdECM hydrogel for MI treatment.
Collapse
Affiliation(s)
- Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jacob Brown
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States of America
| | - Rubia Shaik
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States of America
| | - Luis Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Kytai Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States of America.
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
13
|
Seth L, Stabellini N, Doss S, Patel V, Shah V, Lip G, Dent S, Fradley MG, Køber L, Guha A. Atrial fibrillation and ischemic stroke in cancer: the latest scientific evidence, current management, and future directions. J Thromb Thrombolysis 2025:10.1007/s11239-025-03104-3. [PMID: 40281267 DOI: 10.1007/s11239-025-03104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Atrial fibrillation is the most common cardiac arrhythmia and is a major risk factor for ischemic stroke. Atrial fibrillation and ischemic stroke are major cardiovascular complications in cancer patients, who have a higher burden and worse outcomes than the general population. Clinical risk stratification scores for stroke and bleeding, commonly used in the general population to estimate thromboembolic and bleeding risk, respectively, are less well validated in cancer patients, who have historically been excluded in clinical trials. There is a lack of consensus opinion on how to effectively risk-stratify cancer patients based on the currently available tools and a need for cancer-specific scores that offer a tailored approach to each patient in order to more effectively stratify ischemic stroke and bleeding risk in this cohort of patients. Cancer-mediated physiologic changes and adverse effects of antineoplastic therapy have been implicated as etiologies of the increased risk for both atrial fibrillation and ischemic stroke. Risk stratifying scores such as CHA2DS2-VASc and HAS-BLED, commonly used in the general population, are less well validated in cancer patients. There is a need for cancer-specific scores that can more effectively stratify ischemic stroke and bleeding risk in cancer patients, although given the heterogeneity of cancers, whether a "one score fits all" is uncertain.
Collapse
Affiliation(s)
- Lakshya Seth
- Department of Medicine, Division of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Nickolas Stabellini
- Department of Medicine, Division of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Hematology-Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Shawn Doss
- Department of Medicine, Division of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Vraj Patel
- Department of Medicine, Division of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Viraj Shah
- Department of Medicine, Division of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Gregory Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Cardiology, Lipidology and Internal Medicine with Intensive Coronary Care Unit, Medical University of Bialystok, Bialystok, Poland
| | - Susan Dent
- Wilmot Cancer Center, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Michael G Fradley
- Thalheimer Center for Cardio-Oncology, Division of Cardiology, Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Avirup Guha
- Department of Medicine, Division of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Cardio-Oncology Program, Department of Medicine, Cardiology Division, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
14
|
Kargaran PK, Garmany A, Garmany R, Stutzman MJ, Sadeghian M, Ackerman MJ, Perez-Terzic CM, Terzic A, Behfar A. Maturation of human induced pluripotent stem cell-derived cardiomyocytes promoted by Brachyury priming. Sci Rep 2025; 15:14399. [PMID: 40275010 PMCID: PMC12022343 DOI: 10.1038/s41598-025-97676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiac differentiation of human induced pluripotent stem cells is readily achievable, yet derivation of mature cardiomyocytes has been a recognized limitation. Here, a mesoderm priming approach was engineered to boost the maturation of cardiomyocyte progeny derived from pluripotent stem cells under standard cardiac differentiation conditions. Functional and structural hallmarks of maturity were assessed through multiparametric evaluation of cardiomyocytes derived from induced pluripotent stem cells following transfection of the mesoderm transcription factor Brachyury prior to initiation of lineage differentiation. Transfection with Brachyury resulted in earlier induction of a cardiopoietic state as hallmarked by early upregulation of the cardiac-specific transcription factors NKX2.5, GATA4, TBX20. Enhanced sarcomere maturity following Brachyury conditioning was documented by an increase in the proportion of cells expressing the ventricular isoform of myosin light chain and an increase in sarcomere length. Mesoderm primed cells displayed increased reliance on mitochondrial respiration as determined by increased mitochondrial size and a greater basal oxygen consumption rate. Further, Brachyury priming drove maturation of calcium handling enabling transfected cells to maintain calcium transient morphology at higher external field stimulation rates and augmented both calcium release and sequestration kinetics. In addition, transfected cells displayed a more mature action potential morphology with increased depolarization and repolarization kinetics. Derived cells transfected with Brachyury demonstrated increased toxicity response to doxorubicin as determined by a compromise in calcium transient morphology. Thus, Brachyury pre-treatment here achieved a streamlined strategy to promote maturity of human pluripotent stem cell-derived cardiomyocytes establishing a generalizable platform ready for deployment.
Collapse
Affiliation(s)
- Parisa K Kargaran
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Armin Garmany
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ramin Garmany
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Windland Smith Rice Sudden Death Genomics Laboratory, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Marissa J Stutzman
- Windland Smith Rice Sudden Death Genomics Laboratory, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Maryam Sadeghian
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Windland Smith Rice Sudden Death Genomics Laboratory, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Gibbs CE, Boyle PM. Population-based computational simulations elucidate mechanisms of focal arrhythmia following stem cell injection. J Mol Cell Cardiol 2025; 204:5-16. [PMID: 40280466 DOI: 10.1016/j.yjmcc.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/02/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Following a myocardial infarction (MI), a large portion of ventricular cells are replaced by scar, leading to adverse structural remodeling and heart failure. The use of stem cell-derived cardiomyocytes has shown promise in restoring cardiac function in animal models following an MI but leads to rapid focal ventricular tachycardia (VT). The VT in these animals can be variable, and its underlying mechanisms remain unknown. In this study, we used three distinct computational models derived from histological images of post-MI non-human primate ventricles to understand how human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) grafts can affect focal VT individually and synergistically. Specifically, we explored whether grafts could work cooperatively to create new arrhythmia and if geometric features such as graft tortuosity, area, host isolation, and amount of surrounding scar inhibited or enhanced the effect. We observed at least one instance of graft-host excitation (GHE) for eleven of the twenty-five individual grafts examined. Since we used a stochastic population-of-models-based approach to generate graft boundaries, we found that the number of configurations with GHE varied from graft to graft. We also examined grafts in aggregate and found that the high prevalence of GHE when all grafts were included arose from combinations of individually arrhythmogenic grafts (i.e., the overall increase in arrhythmogenicity resulted from graft complementarity rather than graft cooperativity). Further analysis of graft spatial features showed that arrhythmogenic grafts tend to be in areas with high host isolation (i.e., spatially confined regions of surviving myocardium interdigitated with engrafted cells) and when graft area and tortuosity were also high. These insights can aid in the design of novel injection schemes that could result in safer therapy for patients.
Collapse
Affiliation(s)
- Chelsea E Gibbs
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA; eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Wen H, Chandrasekaran P, Jin A, Pankin J, Lu M, Liberti DC, Zepp JA, Jain R, Morrisey EE, Michki SN, Frank DB. A spatiotemporal cell atlas of cardiopulmonary progenitor cell allocation during development. Cell Rep 2025; 44:115513. [PMID: 40178979 PMCID: PMC12103214 DOI: 10.1016/j.celrep.2025.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
The heart and lung co-orchestrate their development during organogenesis. The mesoderm surrounding both the developing heart and anterior foregut endoderm provides instructive cues guiding cardiopulmonary development. Additionally, it serves as a source of cardiopulmonary progenitor cells (CPPs) expressing Wnt2 that give rise to both cardiac and lung mesodermal cell lineages. Despite the mesoderm's critical importance to both heart and lung development, mechanisms guiding CPP specification are unclear. To address this, we lineage traced Wnt2+ CPPs at E8.5 and performed single-cell RNA sequencing on collected progeny across the developmental lifespan. Using computational analyses, we created a CPP-derived cell atlas that revealed a previously underappreciated spectrum of CPP-derived cell lineages, including all lung mesodermal lineages, ventricular cardiomyocytes, and epicardial and pericardial cells. By integrating spatial mapping with computational cell trajectory analysis and transcriptional profiling, we have provided a potential molecular and cellular roadmap for cardiopulmonary development.
Collapse
Affiliation(s)
- Hongbo Wen
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Prashant Chandrasekaran
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Annabelle Jin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Josh Pankin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - MinQi Lu
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Derek C Liberti
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Jarod A Zepp
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Medicine, Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvia N Michki
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA.
| | - David B Frank
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Silver SE, Howells AR, Arhontoulis DC, Randolph LN, Hyams NA, Barrs RW, Li M, Kerr CM, Robino RA, Morningstar JE, Bain JD, Floy ME, Norris RA, Bao X, Ruddy JM, Palecek SP, Ferreira LMR, Lian XL, Mei Y. Hypoimmunogenic hPSC-derived cardiac organoids for immune evasion and heart repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648007. [PMID: 40291708 PMCID: PMC12027337 DOI: 10.1101/2025.04.09.648007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Human pluripotent stem cell (hPSC)-derived cardiac therapies hold great promise for heart regeneration but face major translational barriers due to allogeneic immune rejection. Here, we engineered hypoimmunogenic hPSCs using a two-step CRISPR-Cas9 strategy: (1) B2M knockout, eliminating HLA class I surface expression, and (2) knock-in of HLA-E or HLA-G trimer constructs in the AAVS1 safe harbor locus to confer robust immune evasion. Hypoimmunogenic hPSCs maintained pluripotency, efficiently differentiated into cardiac cell types that resisted both T and NK cell-mediated cytotoxicity in vitro , and self-assembled into engineered cardiac organoids. Comprehensive analyses of the hypoimmunogenic cells and organoids revealed preservation of transcriptomic, structural, and functional properties with minimal off-target effects from gene editing. In vivo , hypoimmunogenic cardiac organoids restored contractile function in infarcted rat hearts and demonstrated superior graft retention and immune evasion in humanized mice compared to wild-type counterparts. These findings establish the therapeutic potential of hypoimmunogenic hPSC-CMs in the cardiac organoid platform, laying the foundation for off-the-shelf cardiac cell therapies to treat cardiovascular disease, the leading cause of death worldwide.
Collapse
|
18
|
Barreto-Gamarra C, Domenech M. Integrin stimulation by collagen I at the progenitor stage accelerates maturation of human iPSC-derived cardiomyocytes. J Mol Cell Cardiol 2025; 201:70-86. [PMID: 40023481 DOI: 10.1016/j.yjmcc.2025.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Cell manufacturing challenges have hampered effective preclinical evaluations of mature cardiac cells derived from human-induced pluripotent stem cells (hiPSCs). These challenges mainly stem from standard differentiation methods yielding cardiac cells of an immature phenotype, low cell yields and the need for extended culture for enhanced maturation. Although the intricate relationship between extracellular matrix (ECM) components and integrin expression levels plays a pivotal role during heart development, the impact of differentiation and maturation of cardiac cells on integrin behavior has not been thoroughly studied. This study postulates that cardiac cell maturation is significantly influenced by the timing of integrin stimulation via cell-matrix interactions. We profiled integrin expression levels throughout the differentiation process of cardiac cells and assessed the effects of utilizing defined ECM components as culture substrates on cell adhesion, proliferation, differentiation, and maturation. Our findings reveal that integrins facilitate hiPSC adhesion to ECM coated culture surfaces and underscores dynamic alterations in integrin expression during cardiac cell differentiation. Remarkably, we observed significant enrichments in α2 and β1 collagen integrin levels at the progenitor and differentiated stages. These shifts in collagen integrin levels were associated with enhanced cell seeding efficiency on collagen-type I surfaces and altered population doubling times. The stimulation of collagen integrins at the progenitor stage markedly boosted cardiac cell maturation, demonstrated by a significant (∼3-fold) increase in cardiac troponin I expression compared to the standard method after 15 days of culture. Enhanced maturation levels were further supported by significant increases in sarcomere development, maturation gene expression, morphological features, improved beating potency, and fatty acid metabolism dependency. Cardiac maturation driven by collagen was abrogated upon inhibition of collagen integrins targeted with selective pharmacological blockers, affirming their indispensable role in maturation without affecting cardiac differentiation levels. Our work confirms that stimulating collagen integrins at the progenitor stage is a potential strategy to achieve rapid maturation of hiPSC-derived cardiac cells. STATEMENT OF SIGNIFICANCE: This study offers a novel strategy guided by integrin expression levels for generating hiPSC-CMs with improved maturation features in a short culture period (<16 days). The improvements in cardiac cell maturation were achieved by stimulating collagen type 1 integrin at the progenitor stage. The potential benefits of this method for regenerative cardiac repair will pave the way for the preclinical examination of mature cardiac cells in tissues to advance cell manufacturing and cardiac toxicity studies.
Collapse
Affiliation(s)
- Carlos Barreto-Gamarra
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States..
| |
Collapse
|
19
|
Ni B, Ye L, Zhang Y, Hu S, Lei W. Advances in humanoid organoid-based research on inter-organ communications during cardiac organogenesis and cardiovascular diseases. J Transl Med 2025; 23:380. [PMID: 40156006 PMCID: PMC11951738 DOI: 10.1186/s12967-025-06381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
The intimate correlation between cardiovascular diseases and other organ pathologies, such as metabolic and kidney diseases, underscores the intricate interactions among these organs. Understanding inter-organ communications is crucial for developing more precise drugs and effective treatments for systemic diseases. While animal models have traditionally been pivotal in studying these interactions, human-induced pluripotent stem cells (hiPSCs) offer distinct advantages when constructing in vitro models. Beyond the conventional two-dimensional co-culture model, hiPSC-derived humanoid organoids have emerged as a substantial advancement, capable of replicating essential structural and functional attributes of internal organs in vitro. This breakthrough has spurred the development of multilineage organoids, assembloids, and organoids-on-a-chip technologies, which allow for enhanced physiological relevance. These technologies have shown great potential for mimicking coordinated organogenesis, exploring disease pathogenesis, and facilitating drug discovery. As the central organ of the cardiovascular system, the heart serves as the focal point of an extensively studied network of interactions. This review focuses on the advancements and challenges of hiPSC-derived humanoid organoids in studying interactions between the heart and other organs, presenting a comprehensive exploration of this cutting-edge approach in systemic disease research.
Collapse
Affiliation(s)
- Baoqiang Ni
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Lingqun Ye
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yan Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Wei Lei
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
20
|
Shepherd J. Biomimetic Approaches in the Development of Optimised 3D Culture Environments for Drug Discovery in Cardiac Disease. Biomimetics (Basel) 2025; 10:204. [PMID: 40277603 PMCID: PMC12024959 DOI: 10.3390/biomimetics10040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/09/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide, yet despite massive investment in drug discovery, the progress of cardiovascular drugs from lab to clinic remains slow. It is a complex, costly pathway from drug discovery to the clinic and failure becomes more expensive as a drug progresses along this pathway. The focus has begun to shift to optimisation of in vitro culture methodologies, not only because these must be undertaken are earlier on in the drug discovery pathway, but also because the principles of the 3Rs have become embedded in national and international legislation and regulation. Numerous studies have shown myocyte cell behaviour to be much more physiologically relevant in 3D culture compared to 2D culture, highlighting the advantages of using 3D-based models, whether microfluidic or otherwise, for preclinical drug screening. This review aims to provide an overview of the challenges in cardiovascular drug discovery, the limitations of traditional routes, and the successes in the field of preclinical models for cardiovascular drug discovery. It focuses on the particular role biomimicry can play, but also the challenges around implementation within commercial drug discovery.
Collapse
Affiliation(s)
- Jenny Shepherd
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
21
|
Cai D, Liu C, Li H, Wang C, Bai L, Feng J, Hu M, Wang H, Song S, Xie Y, Chen Z, Zhong J, Lian H, Yang Z, Zhang Y, Nie Y. Foxk1 and Foxk2 promote cardiomyocyte proliferation and heart regeneration. Nat Commun 2025; 16:2877. [PMID: 40128196 PMCID: PMC11933303 DOI: 10.1038/s41467-025-57996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Promoting endogenous cardiomyocyte proliferation is a promising strategy for cardiac repair. Identifying key factors that regulate cardiomyocyte proliferation can advance the development of novel therapies for heart regeneration. Here, we identify Foxk1 and Foxk2 as key regulators of cardiomyocyte proliferation, whose expression declines during postnatal heart development. Cardiomyocyte-specific knockout of Foxk1 or Foxk2 impairs neonatal heart regeneration after myocardial infarction (MI) injury. AAV9-mediated Foxk1 or Foxk2 overexpression extends the postnatal cardiomyocyte proliferative window and enhances cardiac repair in adult mice after MI. Mechanistically, Foxk1 and Foxk2 drive cardiomyocyte cell cycle progression by directly activating CCNB1 and CDK1 expression, forming the CCNB1/CDK1 complex that facilitates G2/M transition. Moreover, Foxk1 and Foxk2 promote cardiomyocyte proliferation by upregulating HIF1α expression, which enhances glycolysis and the pentose phosphate pathway (PPP), which further favors cardiomyocyte proliferation. These findings establish Foxk1 and Foxk2 as promising therapeutic targets for cardiac injury.
Collapse
Affiliation(s)
- Dongcheng Cai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chungeng Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Spine Surgery and Institute for Orthopaedic Research, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, PR China
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chiyin Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Miaoqing Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yifan Xie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiajun Zhong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhiwei Yang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, PR China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, PR China.
| |
Collapse
|
22
|
Akter MZ, Tufail F, Ahmad A, Oh YW, Kim JM, Kim S, Hasan MM, Li L, Lee DW, Kim YS, Lee SJ, Kim HS, Ahn Y, Choi YJ, Yi HG. Harnessing native blueprints for designing bioinks to bioprint functional cardiac tissue. iScience 2025; 28:111882. [PMID: 40177403 PMCID: PMC11964760 DOI: 10.1016/j.isci.2025.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cardiac tissue lacks regenerative capacity, making heart transplantation the primary treatment for end-stage heart failure. Engineered cardiac tissues developed through three-dimensional bioprinting (3DBP) offer a promising alternative. However, reproducing the native structure, cellular diversity, and functionality of cardiac tissue requires advanced cardiac bioinks. Major obstacles in CTE (cardiac tissue engineering) include accurately characterizing bioink properties, replicating the cardiac microenvironment, and achieving precise spatial organization. Optimizing bioink properties to closely mimic the extracellular matrix (ECM) is essential, as deviations may result in pathological effects. This review encompasses the rheological and electromechanical properties of bioinks and the function of the cardiac microenvironment in the design of functional cardiac constructs. Furthermore, it focuses on improving the rheological characteristics, printability, and functionality of bioinks, offering valuable perspectives for developing new bioinks especially designed for CTE.
Collapse
Affiliation(s)
- Mst Zobaida Akter
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Fatima Tufail
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ashfaq Ahmad
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Wha Oh
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Min Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoyeon Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Mehedee Hasan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Su-jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Changwon, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
23
|
Sherer LA, Nagle A, Papadaki M, Edassery S, Yoo D, D’Amico L, Brambila-Diaz D, Regnier M, Kirk JA. Calcium-Activated Sarcomere Contractility Drives Cardiomyocyte Maturation and the Response to External Mechanical Cues but is Dispensable for Sarcomere Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644054. [PMID: 40166280 PMCID: PMC11957071 DOI: 10.1101/2025.03.18.644054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Understanding the mechanisms of cardiomyocyte development is critical for fulfilling the potential of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Although myocyte development is known to depend on internal and external mechanical cues, further investigation is required to understand the contributions of different signals and how they are integrated together to generate an adult cardiomyocyte. Here, we address this gap by examining the role of calcium-activated contractility in sarcomere formation and maturation and its influence on the iPSC-CM response to nanopatterns. Methods We generated iPSCs with homozygous D65A cardiac troponin C (cTnC) mutations. This mutation prevents calcium binding to site II of cTnC, resulting in tropomyosin blocking strong myosin binding to the thin filament and inhibiting sarcomere contraction. The iPSCs were differentiated into cardiomyocytes and matured in culture over 60 days. Cells were characterized via fluorescence imaging and calcium transient analysis. WT and mutant proteomes were examined via mass spectrometry throughout differentiation and maturation. We also replated partially matured cardiomyocytes onto nanopatterned surfaces to investigate how external mechanical signals affect maturation in contractile versus non-contractile cells. Results Surprisingly, we found that sarcomeres formed in the cTnC D65A cardiomyocytes, though these sarcomeres were underdeveloped and disorganized. Mutant cardiomyocytes also exhibited significant proteomic maturation defects and abnormal calcium transients. Plating D65A cardiomyocytes on nanopatterns improved structural and proteomic maturation. However, plating WT cardiomyocytes on nanopatterns led to a reduction in sarcomeric and oxidative phosphorylation protein content. Conclusions Calcium-activated contractility is dispensable for sarcomerogenesis but critical for cardiomyocyte maturation. In non-contractile, mutant cardiomyocytes, nanopatterns enhance maturation, suggesting that external mechanical cues may partially compensate for defective contractility. However, nanopatterns did not facilitate WT maturation and may have hindered it. In addition to these novel findings, these large mass spectrometry datasets cataloging iPSC-CM maturation represent a useful resource for the cardiovascular community.
Collapse
Affiliation(s)
- Laura A. Sherer
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL
| | - Abigail Nagle
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Mary Papadaki
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL
| | - Seby Edassery
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL
| | - Dasom Yoo
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Lauren D’Amico
- Department of Bioengineering, University of Washington, Seattle, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL
| |
Collapse
|
24
|
Bos TA, Polyakova E, van Gils JM, de Vries AAF, Goumans MJ, Freund C, DeRuiter MC, Jongbloed MRM. A systematic review and embryological perspective of pluripotent stem cell-derived autonomic postganglionic neuron differentiation for human disease modeling. eLife 2025; 14:e103728. [PMID: 40071727 PMCID: PMC11961123 DOI: 10.7554/elife.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.
Collapse
Affiliation(s)
- Thomas A Bos
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Elizaveta Polyakova
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Janine Maria van Gils
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | | | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical CentreLeidenNetherlands
| | - Christian Freund
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Leiden hiPSC Centre, Leiden University Medical CentreLeidenNetherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| | - Monique RM Jongbloed
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Department of Cardiology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| |
Collapse
|
25
|
Wang Y, Yemelyanov A, Go CD, Kim SK, Quinn JM, Flozak AS, Le PM, Liang S, Gingras AC, Ikura M, Ishiyama N, Gottardi CJ. α-Catenin force-sensitive binding and sequestration of LZTS2 leads to cytokinesis failure. J Cell Biol 2025; 224:e202308124. [PMID: 39786338 PMCID: PMC11716113 DOI: 10.1083/jcb.202308124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin. We show that LZTS2 enriches not only at midbody/intercellular bridges but also at apical adhering junctions. α-Catenin mutants with persistent M-domain opening show elevated junctional enrichment of LZTS2 compared with wild-type cells. LZTS2 knock-down leads to elevated rates of binucleation. These data implicate LZTS2 as a mechanosensitive effector of α-catenin that is critical for cytokinetic fidelity. This model rationalizes how persistent mechanoactivation of α-catenin may drive tension-induced polyploidization of epithelia after injury and suggests an underlying mechanism for how pathogenic α-catenin M-domain mutations drive macular dystrophy.
Collapse
Affiliation(s)
- Yuou Wang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alex Yemelyanov
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher D. Go
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sun K. Kim
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeanne M. Quinn
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Phuong M. Le
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shannon Liang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mitsu Ikura
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
| | - Noboru Ishiyama
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
26
|
Wang YH, Liu TT, Guo YP, Zhu SJ, Liao ZM, Song JM, Zhu XM, Liang JL, Nasser MI, Liu NB, Chang DH, Zhu P, Yao B. Integrating melt electrospinning writing and microfluidics to engineer a human cardiac microenvironment for high-fidelity drug screening. Bioact Mater 2025; 45:551-566. [PMID: 39759533 PMCID: PMC11696762 DOI: 10.1016/j.bioactmat.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
The preclinical evaluation of drug-induced cardiotoxicity is critical for developing novel drug, helping to avoid drug wastage and post-marketing withdrawal. Although human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and the engineered heart organoid have been used for drug screening and mimicking disease models, they are always limited by the immaturity and lack of functionality of the cardiomyocytes. In this study, we constructed a Cardiomyocytes-on-a-Chip (CoC) that combines micro-grooves (MGs) and circulating mechanical stimulation to recapitulate the well-organized structure and stable beating of myocardial tissue. The phenotypic changes and maturation of CMs cultured on the CoC have been verified and can be used for the evaluation of cardiotoxicity and cardioprotective drug responses. Taken together, these results highlight the ability of our myocardial microarray platform to accurately reflect clinical behaviour, underscoring its potential as a powerful pre-clinical tool for assessing drug response and toxicity.
Collapse
Affiliation(s)
- Yu-hong Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - Ting-ting Liu
- Department of Laboratory Diagnosis, The 971th Hospital, Qingdao, China
| | - Yan-ping Guo
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
- School of Medicine, South China University of Technology, 510641, China
| | - Shuo-ji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
- Department of Cardiac Surgery, The University of Tokyo Hospital, Tokyo, 113-8654, Japan
| | - Zi-ming Liao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Jia-mei Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Xi-ming Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Jia-liang Liang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - Moussa Ide Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - Nan-bo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - De-hua Chang
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8654, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| |
Collapse
|
27
|
Naumov VD, Sinitsyna AP, Semidetnov IS, Bakumenko SS, Berezhnoy AK, Sergeeva TO, Slotvitsky MM, Tsvelaya VA, Agladze KI. Self-organization of conducting pathways explains complex wave trajectories in procedurally interpolated fibrotic cardiac tissue: A virtual replica study. CHAOS (WOODBURY, N.Y.) 2025; 35:033143. [PMID: 40106338 DOI: 10.1063/5.0240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
In precision cardiology, virtual replicas (VRs) hold promise for predicting arrhythmias by leveraging patient-specific data and biophysics knowledge. A crucial first step is creating VRs of cardiac tissue based on retrospective patient data. However, VRs aim to replicate biopotential conduction directly, whereas only non-invasive methods are feasible for clinical use on real organs and tissues. This discrepancy challenges our understanding of VR applicability limits. This study aims to enhance the mathematical template of VR by developing an in vitro validation complement. We performed a frame-by-frame comparison of in vitro optical mapping of biopotential conduction with VR predictions. Patient-specific self-organized tissue samples from human induced pluripotent stem cell-derived cardiomyocytes (CMs) with diffuse fibrosis were utilized as VR prototypes. High-resolution optical mapping recordings (Δx = 117 ± 4 μm, Δt = 7.69 ms) and immunostaining were used to reproduce fibrotic samples of linear size 7.5 mm. We applied data-driven Bayesian optimization of the Cellular Potts model (CPM) to study wave propagation at the subcellular level. The modified CPM accurately reflected the "perinatal window" until the 20th day of differentiation, affecting CMs' self-organization. The percolation threshold of virtual conductive pathways reached 0.26 (0.27 ± 0.03 of CMs in vitro), yielding a spatial correlation of amplitude maps with Pearson's coefficients of 0.83 ± 0.02. As a proof-of-concept, we demonstrated that CPM-enhanced VR could predict wavefront trajectories in optical mapping recordings, showing that approximating fibrosis distribution is crucial for improving VR prediction accuracy.
Collapse
Affiliation(s)
- V D Naumov
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - A P Sinitsyna
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - I S Semidetnov
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - S S Bakumenko
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - A K Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - T O Sergeeva
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - M M Slotvitsky
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
- M.F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow 129110, Russia
- Department of Research and Development, ITMO University, 197101 St. Petersburg, Russia
| | - V A Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
- M.F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow 129110, Russia
- Department of Research and Development, ITMO University, 197101 St. Petersburg, Russia
| | - K I Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
- M.F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow 129110, Russia
| |
Collapse
|
28
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2025; 603:1689-1728. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Wu Y, Wang Y, Xiao M, Zhang G, Zhang F, Tang M, Lei W, Jiang Z, Li X, Zhang H, Ren X, Xu Y, Zhao X, Guo C, Lan H, Shen Z, Zhang J, Hu S. 3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409871. [PMID: 39840547 PMCID: PMC11905000 DOI: 10.1002/advs.202409871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling. RNA sequencing demonstrated that the 45° PCL scaffold promotes the mature phenotype in hiPSC-CMs by upregulating ion channel genes. Using the 45° PCL scaffold, a multi-cellular EHT is successfully constructed, incorporating human cardiomyocytes, endothelial cells, and mesenchymal stem cells. These complex EHTs significantly enhanced hiPSC-CM engraftment in vivo, attenuated ventricular remodeling, and improved cardiac function in mouse myocardial infarction. In summary, the myocardium-specific structured EHT developed in this study represents a promising advancement in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yong Wu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Yaning Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Guangming Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdaoShandong266520China
| | - Feixiang Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Mingliang Tang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu226001China
| | - Wei Lei
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Ziyun Jiang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xiaoyun Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Huiqi Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xiaoyi Ren
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Yue Xu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xiaotong Zhao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Chenxu Guo
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdaoShandong266520China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdaoShandong266520China
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Jianyi Zhang
- Department of Biomedical EngineeringSchool of Medicine and School of EngineeringThe University of Alabama at BirminghamBirminghamAL35233USA
- Department of MedicineDivision of Cardiovascular DiseaseSchool of MedicineThe University of Alabama at BirminghamBirminghamAL35233USA
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| |
Collapse
|
30
|
Mao M, Han K, Gao J, Ren Z, Zhang Y, He J, Li D. Engineering Highly Aligned and Densely Populated Cardiac Muscle Bundles via Fibrin Remodeling in 3D-Printed Anisotropic Microfibrous Lattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419380. [PMID: 39811972 DOI: 10.1002/adma.202419380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles. Compared to lattices with isolated pores, the engineered aligned cardiac tissues from neonatal rat cardiomyocytes exhibit improved electrophysiological properties and synchronous contractions. Using a multiseeding strategy, an equivalent cell seeding density of 8 × 107 cells mL-1, facilitating the formation of multicellular, vascularized cardiac structures with maintained tissue viability and integrity, is achieved. As a demonstration, human-induced pluripotent stem cell-derived cardiac tissues are engineered with progressive maturation and functional integration over time. These findings underscore the potential of InterPore microfibrous lattices for applications in cardiac tissue engineering, drug discovery, and therapeutic development.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Kang Han
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jingyuan Gao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhishuo Ren
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yabo Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
31
|
Mancuso G, Marsan M, Neroni P, Soddu C, Lai F, Serventi L, Cau M, Coiana A, Incani F, Murru S, Savasta S. Clinical and Genetic Heterogeneity of HCM: The Possible Role of a Deletion Involving MYH6 and MYH7. Genes (Basel) 2025; 16:212. [PMID: 40004541 PMCID: PMC11855101 DOI: 10.3390/genes16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pediatric hypertrophic cardiomyopathy (HCM) is the most common genetic myocardial disorder in children and a leading cause of sudden cardiac death (SCD) among the young. Its phenotypic variability, driven by incomplete penetrance and variable expressivity, presents significant challenges in diagnosis and clinical management. METHODS In this study, we report a unique case of a 16-month-old female diagnosed with HCM caused by a rare genetic deletion. Molecular analysis was performed using a multigene panel and chromosomal microarray analysis (CMA). RESULTS Molecular tests identified a 30 kb deletion encompassing the MYH6 and MYH7 genes. These genes are critical components of sarcomeric architecture, with known associations to HCM and other cardiomyopathies. CONCLUSIONS This case underscores the clinical and genetic heterogeneity of HCM, highlighting the importance of considering genomic deletions involving key sarcomeric genes in the diagnostic evaluation.
Collapse
Affiliation(s)
- Giancarlo Mancuso
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.M.)
| | - Marina Marsan
- Pediatric and Rare Diseases Clinic, Microcitemico Hospital “A. Cao”, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
| | - Paola Neroni
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Consolata Soddu
- Pediatric and Rare Diseases Clinic, Microcitemico Hospital “A. Cao”, ASL 8 Cagliari, 09121 Cagliari, Italy
| | - Francesco Lai
- Pediatric and Rare Diseases Clinic, Microcitemico Hospital “A. Cao”, ASL 8 Cagliari, 09121 Cagliari, Italy
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Laura Serventi
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.M.)
| | - Milena Cau
- Genetic and Genomic Laboratory, Pediatric Children Hospital “A. Cao”, ASL 8 Cagliari, 09121 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alessandra Coiana
- Genetic and Genomic Laboratory, Pediatric Children Hospital “A. Cao”, ASL 8 Cagliari, 09121 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Federica Incani
- Genetic and Genomic Laboratory, Pediatric Children Hospital “A. Cao”, ASL 8 Cagliari, 09121 Cagliari, Italy
| | - Stefania Murru
- Genetic and Genomic Laboratory, Pediatric Children Hospital “A. Cao”, ASL 8 Cagliari, 09121 Cagliari, Italy
| | - Salvatore Savasta
- Pediatric and Rare Diseases Clinic, Microcitemico Hospital “A. Cao”, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
| |
Collapse
|
32
|
Dwyer KD, Snyder CA, Coulombe KLK. Cardiomyocytes in Hypoxia: Cellular Responses and Implications for Cell-Based Cardiac Regenerative Therapies. Bioengineering (Basel) 2025; 12:154. [PMID: 40001674 PMCID: PMC11851968 DOI: 10.3390/bioengineering12020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Myocardial infarction (MI) is a severe hypoxic event, resulting in the loss of up to one billion cardiomyocytes (CMs). Due to the limited intrinsic regenerative capacity of the heart, cell-based regenerative therapies, which feature the implantation of stem cell-derived cardiomyocytes (SC-CMs) into the infarcted myocardium, are being developed with the goal of restoring lost muscle mass, re-engineering cardiac contractility, and preventing the progression of MI into heart failure (HF). However, such cell-based therapies are challenged by their susceptibility to oxidative stress in the ischemic environment of the infarcted heart. To maximize the therapeutic benefits of cell-based approaches, a better understanding of the heart environment at the cellular, tissue, and organ level throughout MI is imperative. This review provides a comprehensive summary of the cardiac pathophysiology occurring during and after MI, as well as how these changes define the cardiac environment to which cell-based cardiac regenerative therapies are delivered. This understanding is then leveraged to frame how cell culture treatments may be employed to enhance SC-CMs' hypoxia resistance. In this way, we synthesize both the complex experience of SC-CMs upon implantation and the engineering techniques that can be utilized to develop robust SC-CMs for the clinical translation of cell-based cardiac therapies.
Collapse
Affiliation(s)
| | | | - Kareen L. K. Coulombe
- Institute for Biology, Engineering, and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA; (K.D.D.); (C.A.S.)
| |
Collapse
|
33
|
Seo SJ, Jin Y. Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection. Tissue Eng Regen Med 2025; 22:249-260. [PMID: 39820961 PMCID: PMC11794935 DOI: 10.1007/s13770-024-00696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source. METHODS Primary mouse embryonic fibroblasts (pMEFs) were reprogrammed into CiCMs and subjected to a glucose-depleted, lactate-supplemented medium for 4 days. Afterward, cell viability was analyzed, and cardiomyocyte efficiency was assessed through the expression of cardiac-specific markers. Additionally, electrophysiological function was evaluated by examining drug-induced responses. RESULTS The lactate treatment led to a significant decrease in the viability of non-cardiomyocytes (pMEF-LAC), while CiCMs (CiCM-LAC) showed minimal cell death. Specifically, the expression of all cardiac-related markers was increased in CiCM-LAC. Metabolically purified CiCMs exhibited enhanced contractile force and increased contraction frequency compared to non-purified CiCMs, as well as an elevated responsiveness to drugs. CONCLUSION This study demonstrates that lactate-based metabolic selection is an effective and practical approach for enriching CiCMs, offering a cost-effective alternative to other purification methods. The application of this strategy could potentially broaden the accessibility and utility of reprogrammed cardiomyocytes in cardiac regeneration and therapeutic development.
Collapse
Affiliation(s)
- Seung Ju Seo
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoonhee Jin
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
34
|
Piven OO, Vaičiulevičiūtė R, Bernotiene E, Dobrzyn P. Cardiomyocyte engineering: The meeting point of transcription factors, signaling networks, metabolism and function. Acta Physiol (Oxf) 2025; 241:e14271. [PMID: 39801134 DOI: 10.1111/apha.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 01/01/2025] [Indexed: 05/02/2025]
Abstract
Direct cardiac reprogramming or transdifferentiation is a relatively new and promising area in regenerative therapy, cardiovascular disease modeling, and drug discovery. Effective reprogramming of fibroblasts is limited by their plasticity, that is, their ability to reprogram, and depends on solving several levels of tasks: inducing cardiomyocyte-like cells and obtaining functionally and metabolically mature cardiomyocytes. Currently, in addition to the use of more classical approaches such as overexpression of exogenous transcription factors, activation of endogenous cardiac transcription factors via controlled nucleases, such as CRISPR, represents another interesting way to obtain cardiomyocytes. Therefore, special attention is given to the potential of synthetic biology, in particular the CRISPR system, for the targeted conversion of only certain subpopulations of fibroblasts into cardiomyocytes. However, obtaining functionally and metabolically mature cardiomyocytes remains a challenge despite the range of recently developed approaches. In this review, we summarized current knowledge on the function and diversity of human cardiac fibroblasts and alternative cell sources for in vitro human cardiomyocyte models. We examined in detail the transcription factors that initiate cardiomyogenic reprogramming and their interactions. Additionally, we critically analyzed the strategies used for the metabolic and physiological maturation of induced cardiomyocytes.
Collapse
Affiliation(s)
- Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raminta Vaičiulevičiūtė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Faculty of Fundamental Sciences, VilniusTech University, Vilnius, Lithuania
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Wang X, Tian H, Pan W, Du B, Chen Z, Zhang R, Zhou P. Applications of carbon dot-mediated cardiomyocyte maturation in regenerative medicine: a review. Nanomedicine (Lond) 2025; 20:319-328. [PMID: 39719674 PMCID: PMC11792849 DOI: 10.1080/17435889.2024.2443378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
The maturation of cardiomyocytes (CMs) plays key roles in regenerative medicine and the treatment of cardiovascular diseases via stem cell-derived CMs. Carbon dots (CDs) have good biocompatibility, optical properties, and electrophysical properties and have been widely applied in bioimaging, biosensors, and biotherapy. In this review, we comprehensively summarize recent advances in promoting the maturation of CMs, mainly human pluripotent stem cell-derived CMs, and related regenerative medicine. Moreover, we explore the innovative application of CDs to enhance the maturation of these CMs. Finally, we look forward to the future design and application of CDs in the maturation of CMs in terms of cell therapies.
Collapse
Affiliation(s)
- Xinyuan Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hao Tian
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Wen Pan
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Binhong Du
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhen Chen
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Rongzhi Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu ProvinceChina
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
36
|
Liu B, Wang S, Ma H, Deng Y, Du J, Zhao Y, Chen Y. Heart-on-a-chip: a revolutionary organ-on-chip platform for cardiovascular disease modeling. J Transl Med 2025; 23:132. [PMID: 39885522 PMCID: PMC11780825 DOI: 10.1186/s12967-024-05986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy. Recent years have seen significant strides in HoC technology, driven by advancements in biomaterials, bioelectronics, and tissue engineering. Here, we first review the construction and on-chip detection in HoC. Then we introduce the current proceedings of in vitro models for studying cardiovascular diseases (CVD) based on the HoC platform, including ischemia and myocardial infarction, cardiac fibrosis, cardiac scar, myocardial hypertrophy and other CVD models. Finally, we discuss the future directions of HoC and related emerging technologies.
Collapse
Affiliation(s)
- Beiqin Liu
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Shuyue Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jichen Du
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
- Aerospace School of Clinical Medicine, Peking University, Beijing, China
| | - Yimeng Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Yu Chen
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
37
|
Caballero-Gallardo K, Quintero-Rincón P, Olivero-Verbel J. Aromatherapy and Essential Oils: Holistic Strategies in Complementary and Alternative Medicine for Integral Wellbeing. PLANTS (BASEL, SWITZERLAND) 2025; 14:400. [PMID: 39942962 PMCID: PMC11821193 DOI: 10.3390/plants14030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
Complementary and alternative medicine (CAM) encompasses a variety of ancient therapies with origins in cultures such as those of China, Egypt, Greece, Iran, India, and Rome. The National Institutes of Health (NIH) classifies these integrative therapies into five categories: (1) mind-body therapies, (2) biological practices, (3) manipulative and body practices, (4) energy medicine, and (5) whole medical systems, including traditional Chinese medicine and Ayurvedic medicine. This review explores the role of biological practices utilizing aromatic plants, particularly through inhalation aromatherapy and massage with essential oils, as effective complementary strategies within health systems. The review compiles information on the most commonly used plants and essential oils for holistic health maintenance from a complementary and alternative perspective. Given their accessibility and relative safety compared to conventional treatments, these therapies have gained popularity worldwide. Furthermore, the integration of essential oils has been shown to alleviate various psychological and physiological symptoms, including anxiety, depression, fatigue, sleep disorders, neuropathic pain, nausea, and menopausal symptoms. Among the studied plants, lavender has emerged as being particularly notable due to its broad spectrum of therapeutic effects and its designation by the US Food and Drug Administration (FDA) as "Generally Recognized as Safe". Other essential oils under investigation include eucalyptus, damask rose, sandalwood, vetiver, calamus, frankincense, chamomile, lemon, grapefruit, tangerine, orange, sage, rosemary, garlic, and black pepper. This study emphasizes the potential benefits of these aromatic plants in enhancing patient well-being. Additionally, it underscores the importance of conducting further research to ensure the safety and efficacy of these therapies.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia;
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia;
| | - Patricia Quintero-Rincón
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia;
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia;
| |
Collapse
|
38
|
Shewale B, Ebrahim T, Samal A, Dubois N. Molecular Regulation of Cardiomyocyte Maturation. Curr Cardiol Rep 2025; 27:32. [PMID: 39836238 DOI: 10.1007/s11886-024-02189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE OF THE REVIEW This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart. RECENT FINDINGS Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades. Recently, there has been a renewed, highly focused interest in this process, driven by clinically motivated research areas where enhancing maturation may lead to improved therapeutic opportunities. These include using pluripotent stem cell models for cell therapy and disease modeling, as well as recent advancements in adult cardiac regeneration approaches. We highlight key processes underlying maturation of the heart, including cellular and organ growth, and electrophysiological, metabolic, and contractile maturation. We further discuss how these processes integrate and interact to contribute to the overall complexity of the developing heart. Finally, we emphasize the transformative potential for translating relevant maturation concepts to emerging models of heart disease and regeneration.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tasneem Ebrahim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arushi Samal
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
39
|
Kim M, Hwang DG, Jang J. Bioprinting approaches in cardiac tissue engineering to reproduce blood-pumping heart function. iScience 2025; 28:111664. [PMID: 39868032 PMCID: PMC11763539 DOI: 10.1016/j.isci.2024.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart. In this review, we discuss advancements in cells, biomaterials, and biofabrication in cardiac tissue engineering to achieve cardiac models that closely mimic the pumping function. Moreover, we provide insight into future directions by proposing future perspectives to overcome remaining challenges, such as scaling up and biomimetic patterning of blood vessels and nerves through bioprinting.
Collapse
Affiliation(s)
- Minji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
40
|
Shi X, Xu J, Liu L, Zhao S, Qian Y, Fang Z, Lin L, Zhao X, Xie S, Shi F, Han J. Deubiquitinase MYSM1 drives myocardial ischemia/reperfusion injury by stabilizing STAT1 in cardiomyocytes. Theranostics 2025; 15:1606-1621. [PMID: 39897566 PMCID: PMC11780537 DOI: 10.7150/thno.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Myocardial ischemia/reperfusion (I/R) injury leads to irreversible cardiomyocyte death and aggravates myocardial infarction. Deubiquitinating enzymes (DUBs) are essential for maintaining substrate protein stability and functionality, playing significant roles in cardiac pathophysiology. In this study, we aimed to clarify the regulatory role of a DUB, Myb-like, SWIRM, and MPN domains 1 protein (MYSM1), in myocardial I/R injury and explore the molecular mechanism behind. Methods and Results: Firstly, it was found that the expression of MYSM1 positively correlates with myocardial I/R injury. Genetic knockdown of MYSM1 significantly conferred protection against I/R injury in hearts. Correspondingly, AAV9-mediated cardiomyocyte-specific knockdown of MYSM1 had a therapeutic effect on myocardial I/R injury. Through a comprehensive proteome-wide quantitative analysis, we identified signal transducer and activator of transcription 1 (STAT1) as the direct substrate of MYSM1. Mechanistically, MYSM1 mediated the K63-linked deubiquitination and stabilization of STAT1 at position K379 via its MPN metalloprotease domain. Additionally, MYSM1 initiates the expression of necroptosis-related genes by promoting the transcription factor function of STAT1. Conclusion: This study illustrated a MYSM1-STAT1 axis in regulating myocardial I/R injury and identified MYSM1 as a pharmacological target for myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jianjiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lei Liu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shenggang Zhao
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanyuan Qian
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zimin Fang
- Department of Ultrasound, Puer People's Hospital, Puer, Yunnan, China
| | - Liming Lin
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xia Zhao
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shangcai Xie
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fengjie Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
41
|
Kirkeby A, Main H, Carpenter M. Pluripotent stem-cell-derived therapies in clinical trial: A 2025 update. Cell Stem Cell 2025; 32:10-37. [PMID: 39753110 DOI: 10.1016/j.stem.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
Since the first derivation of human pluripotent stem cells (hPSCs) 27 years ago, technologies to control their differentiation and manufacturing have advanced immensely, enabling increasing numbers of clinical trials with hPSC-derived products. Here, we revew the landscape of interventional hPSC trials worldwide, highlighting available data on clinical safety and efficacy. As of December 2024, we identify 116 clinical trials with regulatory approval, testing 83 hPSC products. The majority of trials are targeting eye, central nervous system, and cancer. To date, more than 1,200 patients have been dosed with hPSC products, accumulating to >1011 clinically administered cells, so far showing no generalizable safety concerns.
Collapse
Affiliation(s)
- Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Heather Main
- HOYA Consulting (ReGenMed Solutions), Stockholm, Sweden
| | | |
Collapse
|
42
|
Qin X, Shi H, Li H, Chu B, Zhang J, Wen Z, Sun X, Wang H, He Y. Wearable electrodriven switch actively delivers macromolecular drugs to fundus in non-invasive and controllable manners. Nat Commun 2025; 16:33. [PMID: 39747871 PMCID: PMC11695998 DOI: 10.1038/s41467-024-55336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Current treatments for fundus disorders, such as intravitreal injections, pose risks, including infection and retinal detachment, and are limited in their ability to deliver macromolecular drugs across the blood‒retinal barrier. Although non-invasive methods are safer, their delivery efficiency remains suboptimal (<5%). We have developed a wearable electrodriven switch (WES) that improves the non-invasive delivery of macromolecules to the fundus. The WES system, which integrates an electrodriven drug delivery lens with a square wave generator, leverages electrical stimulation to enhance drug penetration through the sclera-choroid-retina pathway. In our study, WES achieved a delivery efficiency of 14% for immunoglobulin G, comparable to that of intravitreal injection (16%). Moreover, WES-enhanced anti-VEGF administration resulted in an 86% inhibition of choroidal neovascularization, and anti-PDL1 delivery inhibited choroidal melanoma growth more effectively than intravenous injections, with no adverse effects on ocular health. These findings suggest that WES holds transformative potential for the non-invasive treatment of chronic fundus diseases.
Collapse
Affiliation(s)
- Xuan Qin
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China
| | - Hongyang Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China
| | - Jiawei Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China
| | - Zhen Wen
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China.
| | - Xuhui Sun
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China.
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China.
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China.
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau, SAR, China.
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau, SAR, China.
| |
Collapse
|
43
|
Ewoldt JK, DePalma SJ, Jewett ME, Karakan MÇ, Lin YM, Mir Hashemian P, Gao X, Lou L, McLellan MA, Tabares J, Ma M, Salazar Coariti AC, He J, Toussaint KC, Bifano TG, Ramaswamy S, White AE, Agarwal A, Lejeune E, Baker BM, Chen CS. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: benchmarking progress and ongoing challenges. Nat Methods 2025; 22:24-40. [PMID: 39516564 DOI: 10.1038/s41592-024-02480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
Recent innovations in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs) have unlocked a viable path to creating in vitro cardiac models. Currently, hiPSC-derived cardiomyocytes (hiPSC-CMs) remain immature, leading many in the field to explore approaches to enhance cell and tissue maturation. Here, we systematically analyzed 300 studies using hiPSC-CM models to determine common fabrication, maturation and assessment techniques used to evaluate cardiomyocyte functionality and maturity and compiled the data into an open-access database. Based on this analysis, we present the diversity of, and current trends in, in vitro models and highlight the most common and promising practices for functional assessments. We further analyzed outputs spanning structural maturity, contractile function, electrophysiology and gene expression and note field-wide improvements over time. Finally, we discuss opportunities to collectively pursue the shared goal of hiPSC-CM model development, maturation and assessment that we believe are critical for engineering mature cardiac tissue.
Collapse
Affiliation(s)
- Jourdan K Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Maggie E Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - M Çağatay Karakan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Yih-Mei Lin
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Paria Mir Hashemian
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lihua Lou
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Micheal A McLellan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jonathan Tabares
- Department of Physics, Florida International University, Miami, FL, USA
| | - Marshall Ma
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | | | - Jin He
- Department of Physics, Florida International University, Miami, FL, USA
| | - Kimani C Toussaint
- School of Engineering, Brown University, Providence, RI, USA
- Brown-Lifespan Center for Digital Health, Providence, RI, USA
| | - Thomas G Bifano
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Alice E White
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Arvind Agarwal
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
44
|
Gonzalez G, Molley TG, LaMontagne E, Balayan A, Holman AR, Engler AJ. Conductive Microfibers Improve Stem Cell-Derived Cardiac Spheroid Maturation. J Biomed Mater Res A 2025; 113:e37856. [PMID: 39719888 PMCID: PMC11703634 DOI: 10.1002/jbm.a.37856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Conventional two-dimensional (2D) cardiomyocyte differentiation protocols create cells with limited maturity, which impairs their predictive capacity and has driven interest in three-dimensional (3D) engineered cardiac tissue models of varying maturity and scalability. Cardiac spheroids are attractive high-throughput models that have demonstrated improved functional and transcriptional maturity over conventional 2D differentiations. However, these 3D models still tend to have limited contractile and electrical maturity compared to highly engineered cardiac tissues; hence, we incorporated a library of conductive polymer microfibers in cardiac spheroids to determine if fiber properties could accelerate maturation. Conductive microfibers improved contractility parameters of cardiac spheroids over time versus nonconductive fibers, specifically, when they were short, for example, 5 μm, and when there was moderate fiber mass per spheroid, for example, 20 μg. Spheroids with optimal conductive microfiber length and concentration developed a thicker ring-like perimeter and a less compacted cavity, improving their contractile work compared to control cardiac spheroids. Functional improvements correlated with increased expression of contractility and calcium handling-related cardiac proteins, as well as improved calcium handling abilities and drug response. Taken together, these data suggest that conductive microfibers can improve cardiac spheroid performance to improve cardiac disease modeling.
Collapse
Affiliation(s)
- Gisselle Gonzalez
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego; La Jolla, CA, USA 92093
| | - Thomas G. Molley
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego; La Jolla, CA, USA 92093
| | - Erin LaMontagne
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego; La Jolla, CA, USA 92093
| | - Alis Balayan
- Biomedical Sciences Graduate Program; University of California San Diego; La Jolla, CA, USA 92093
| | - Alyssa R. Holman
- Biomedical Sciences Graduate Program; University of California San Diego; La Jolla, CA, USA 92093
| | - Adam J. Engler
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego; La Jolla, CA, USA 92093
- Biomedical Sciences Graduate Program; University of California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| |
Collapse
|
45
|
Xu J, Gong W, Mo C, Hou X, Ou M. Global Knowledge Map and Emerging Research Trends in Induced Pluripotent Stem Cells and Hereditary Diseases: A CiteSpace-based Visualization and Analysis. Stem Cell Rev Rep 2025; 21:126-146. [PMID: 39377988 DOI: 10.1007/s12015-024-10799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/26/2025]
Abstract
The rise of induced pluripotent stem cells (iPSCs) technology has ushered in a landmark shift in the study of hereditary diseases. However, there is a scarcity of reports that offer a comprehensive and objective overview of the current state of research at the intersection of iPSCs and hereditary diseases. Therefore, this study endeavors to categorize and synthesize the publications in this field over the past decade through bibliometric methods and visual knowledge mapping, aiming to visually analyze their research focus and clinical trends. The English language literature on iPSCs and hereditary diseases, published from 2014 to 2023 in the Web of Science Core Collection (WoSCC), was examined. The CiteSpace (version 6.3.R1) software was utilized to visualize and analyze country/region, institution, scholar, co-cited authors, and co-cited journals. Additionally, the co-occurrence, clustering, and bursting of co-cited references were displayed. Analysis of 347 articles that met the inclusion criteria revealed a steady increase in the number of published articles and citation frequency in the field over the past decade. With regard to the countries/regions, institutions, scholars, and journals where the articles were published, the highest numbers were found in the USA, the University of California System, Suren M. Zakian, and Stem Cell Research, respectively. The current research is focused on the construction of disease models, both before and after correction, as well as drug target testing for single-gene hereditary diseases. Chromosome transplantation genomic therapy for hereditary diseases with abnormal chromosome structures may emerge as a future research hotspot in this field.
Collapse
Affiliation(s)
- Jiajun Xu
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Weiwei Gong
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chune Mo
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xianliang Hou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Minglin Ou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
46
|
Hashemi M, Finklea FB, Hammons H, Tian Y, Young N, Kim E, Halloin C, Triebert W, Zweigerdt R, Mitra AK, Lipke EA. Hydrogel microsphere stem cell encapsulation enhances cardiomyocyte differentiation and functionality in scalable suspension system. Bioact Mater 2025; 43:423-440. [PMID: 39399838 PMCID: PMC11471139 DOI: 10.1016/j.bioactmat.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024] Open
Abstract
A reliable suspension-based platform for scaling engineered cardiac tissue (ECT) production from human induced pluripotent stem cells (hiPSCs) is crucial for regenerative therapies. Here, we compared the production and functionality of ECTs formed using our scaffold-based, engineered tissue microsphere differentiation approach with those formed using the prevalent scaffold-free aggregate platform. We utilized a microfluidic system for the rapid (1 million cells/min), high density (30, 40, 60 million cells/ml) encapsulation of hiPSCs within PEG-fibrinogen hydrogel microspheres. HiPSC-laden microspheres and aggregates underwent suspension-based cardiac differentiation in chemically defined media. In comparison to aggregates, microspheres maintained consistent size and shape initially, over time, and within and between batches. Initial size and shape coefficients of variation for microspheres were eight and three times lower, respectively, compared to aggregates. On day 10, microsphere cardiomyocyte (CM) content was 27 % higher and the number of CMs per initial hiPSC was 250 % higher than in aggregates. Contraction and relaxation velocities of microspheres were four and nine times higher than those of aggregates, respectively. Microsphere contractile functionality also improved with culture time, whereas aggregate functionality remained unchanged. Additionally, microspheres displayed improved β-adrenergic signaling responsiveness and uniform calcium transient propagation. Transcriptomic analysis revealed that while both microspheres and aggregates demonstrated similar gene regulation patterns associated with cardiomyocyte differentiation, heart development, cardiac muscle contraction, and sarcomere organization, the microspheres exhibited more pronounced transcriptional changes over time. Taken together, these results highlight the capability of the microsphere platform for scaling up biomanufacturing of ECTs in a suspension-based culture platform.
Collapse
Affiliation(s)
| | - Ferdous B. Finklea
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Hanna Hammons
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Nathan Young
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Emma Kim
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Amit Kumar Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Elizabeth A. Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| |
Collapse
|
47
|
Carnicer‐Lombarte A, Malliaras GG, Barone DG. The Future of Biohybrid Regenerative Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408308. [PMID: 39564751 PMCID: PMC11756040 DOI: 10.1002/adma.202408308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Indexed: 11/21/2024]
Abstract
Biohybrid regenerative bioelectronics are an emerging technology combining implantable devices with cell transplantation. Once implanted, biohybrid regenerative devices integrate with host tissue. The combination of transplant and device provides an avenue to both replace damaged or dysfunctional tissue, and monitor or control its function with high precision. While early challenges in the fusion of the biological and technological components limited development of biohybrid regenerative technologies, progress in the field has resulted in a rapidly increasing number of applications. In this perspective the great potential of this emerging technology for the delivery of therapy is discussed, including both recent research progress and potential new directions. Then the technology barriers are discussed that will need to be addressed to unlock the full potential of biohybrid regenerative devices.
Collapse
Affiliation(s)
| | - George G. Malliaras
- Department of EngineeringElectrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
| | - Damiano G. Barone
- Department of EngineeringElectrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- Department of Neurosurgery, Houston MethodistHouston77030USA
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| |
Collapse
|
48
|
Shi X, Xu J, Zhong X, Qian Y, Lin L, Fang Z, Ye B, Lyu Y, Zhang R, Zheng Z, Han J. Deubiquitinase MYSM1 promotes doxorubicin-induced cardiotoxicity by mediating TRIM21-ferroptosis axis in cardiomyocytes. Cell Commun Signal 2024; 22:593. [PMID: 39695708 DOI: 10.1186/s12964-024-01955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Anthracycline antitumor drug doxorubicin (DOX) induces severe cardiotoxicity. Deubiquitinating enzymes (DUBs) are crucial for protein stability and function and play a significant role in cardiac pathophysiology. By comparing RNA sequencing datasets and conducting functional screening, we determined that Myb-like, SWIRM, and MPN domains 1 (MYSM1) is a key regulator of DOX-induced cardiotoxicity. In this study, we aimed to explore the function and regulatory mechanisms of MYSM1 in DOX-induced cardiotoxicity. Genetic knockdown of MYSM1 significantly mitigated DOX-induced cardiomyopathy. Correspondingly, cardiomyocyte-specific knockdown of MYSM1 by AAV9 protected the heart from DOX-induced cardiotoxicity. Gain- and loss-of-function analysis verified that MYSM1 mediated DOX-induced cardiomyocyte injury in vitro. Through a Co-IP combined with LC-MS/MS analysis, we discovered that MYSM1 directly interacted with tripartite motif-containing protein 21 (TRIM21). Mechanistic investigations revealed that MYSM1 regulates the deubiquitination and the stability of TRIM21 via its MPN domain. Furthermore, MYSM1 exacerbated DOX-induced cardiotoxicity by enhancing ferroptosis. This study identified MYSM1 as a potential therapeutic target for DOX-induced cardiotoxicity and illustrated a MYSM1-TRIM21-ferroptosis axis in regulating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jianjiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xin Zhong
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanyuan Qian
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liming Lin
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zimin Fang
- Department of Ultrasound, Puer People's Hospital, Puer, Yunnan, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiting Lyu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ran Zhang
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhanxiong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
49
|
Díaz del Moral S, Wagner N, Wagner KD. The Wilms' Tumor Suppressor WT1 in Cardiomyocytes: Implications for Cardiac Homeostasis and Repair. Cells 2024; 13:2078. [PMID: 39768169 PMCID: PMC11674098 DOI: 10.3390/cells13242078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
The Wilms' tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in cardiac homeostasis and repair. In adulthood, WT1-expression levels are lower compared to those observed through development, and WT1 expression is restricted to a few cell types. However, its systemic deletion in adult mice is lethal, demonstrating that its presence is also key for organ maintenance. In response to injury, the epicardium re-activates the expression of WT1, but little is known about the roles it plays in cardiomyocytes, which are the main cell type affected after myocardial infarction. The fact that cardiomyocytes exhibit a low proliferation rate in the adult heart in mammals highlights the need to explore new approaches for cardiac regeneration. The aim of this review is to emphasize the functions carried out by WT1 in cardiomyocytes in cardiac homeostasis and heart regeneration.
Collapse
Affiliation(s)
| | | | - Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (S.D.d.M.); (N.W.)
| |
Collapse
|
50
|
Ramirez-Calderon G, Saleh A, Hidalgo Castillo TC, Druet V, Almarhoon B, Almulla L, Adamo A, Inal S. Enhancing the Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes with an n-Type Organic Semiconductor Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66900-66910. [PMID: 38620064 PMCID: PMC11647761 DOI: 10.1021/acsami.3c18919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are a promising cell source for cardiac regenerative medicine and in vitro modeling. However, hPSC-CMs exhibit immature structural and functional properties compared with adult cardiomyocytes. Various electrical, mechanical, and biochemical cues have been applied to enhance hPSC-CM maturation but with limited success. In this work, we investigated the potential application of the semiconducting polymer poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) as a light-sensitive material to stimulate hPSC-CMs optically. Our results indicated that P(NDI2OD-T2)-mediated photostimulation caused cell damage at irradiances applied long-term above 36 μW/mm2 and did not regulate cardiac monolayer beating (after maturation) at higher intensities applied in a transient fashion. However, we discovered that the cells grown on P(NDI2OD-T2)-coated substrates showed significantly enhanced expression of cardiomyocyte maturation markers in the absence of a light exposure stimulus. A combination of techniques, such as atomic force microscopy, scanning electron microscopy, and quartz crystal microbalance with dissipation monitoring, which we applied to investigate the interface of the cell with the n-type coating, revealed that P(NDI2OD-T2) impacted the nanostructure, adsorption, and viscoelasticity of the Matrigel coating used as a cell adhesion promoter matrix. This modified cellular microenvironment promoted the expression of cardiomyocyte maturation markers related to contraction, calcium handling, metabolism, and conduction. Overall, our findings demonstrate that conjugated polymers such as P(NDI2OD-T2) can be used as passive coatings to direct stem cell fate through interfacial engineering of cell growth substrates.
Collapse
Affiliation(s)
- Gustavo Ramirez-Calderon
- Laboratory
of Stem Cells and Diseases, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Bayan Almarhoon
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Latifah Almulla
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Antonio Adamo
- Laboratory
of Stem Cells and Diseases, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|