1
|
Li D, Zhu J, Zhang M, Shi Q, Guo R, Zhang D, Zheng P, Zhang H, Li G, Wu J, Sun G, Wen Q, Tan J, Liu Z, Liu X, Yang H, Lu H, Cao G, Yin Z, Wang Q. SOSTDC1 downregulation in CD4 + T cells confers protection against obesity-induced insulin resistance. Cell Rep 2025; 44:115496. [PMID: 40173040 DOI: 10.1016/j.celrep.2025.115496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/28/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
Adipose-resident T cells play a crucial role in the development of obesity-induced insulin resistance. However, the specific mechanisms, particularly those involving non-immune cytokines, remain unclear. Here, we report significantly elevated levels of sclerostin domain-containing protein 1 (SOSTDC1) in individuals with type 2 diabetes (T2D), showing positive correlations with fasting glucose and HbA1c. T cell-specific Sostdc1-deficient mice exhibit resistance to age-induced adipose lipid accumulation and glucose dysregulation at 12 months and protect against obesity-induced insulin resistance without affecting proinflammatory macrophage infiltration or adipose inflammation. Mechanistically, SOSTDC1 disrupts the lipid balance in adipocytes by promoting lipogenesis and inhibiting lipolysis through the LRP5/6-β-catenin pathway. Furthermore, T cell receptor (TCR) signaling significantly amplifies SOSTDC1 secretion in CD4+ T cells. In summary, our study uncovers an additional mechanism by which T cells contribute to obesity and insulin resistance, suggesting that inhibiting SOSTDC1 could be a promising immunotherapeutic strategy for metabolic disorders.
Collapse
Affiliation(s)
- Dehai Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jing Zhu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Mingyue Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Qiping Shi
- Department of Endocrinology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Rong Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Daming Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Pei Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hua Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Guangqiang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Jie Wu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Guodong Sun
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Qiong Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Jingyi Tan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Zonghua Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hengwen Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| | - Hongyun Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China.
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| | - Qian Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
2
|
Bjørgen H, Rimstad E, Koppang EO. Melanisation in Salmonid Skeletal Muscle: A Review. JOURNAL OF FISH DISEASES 2025; 48:e14063. [PMID: 39660508 PMCID: PMC11837458 DOI: 10.1111/jfd.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Melanisation can occur in the musculature of fish. A well-known form is the melanised focal changes, or 'black spots', in the fillet of farmed Atlantic salmon (Salmo salar). The aetiology of black spots has not been fully determined, though recent research has emphasised the role of fat necrosis in their development. The initial stages of the changes are observed as focal haemorrhages or 'red spots', and these can progress into melanised focal changes (MFCs). The focal haemorrhages are acute changes characterised by necrotic myocytes and adipocytes and diffuse haemorrhage in the tissue. These changes evolve into a chronic inflammation dominated by fibrosis, encapsulated lipid droplets or pseudocysts, presence of epithelioid cells, granulomas of varying character, giant cells and melano-macrophages, whose presence accounts for the discolouration. The inflammation ranges from mild to severe, and the severity of the lesion has been associated with localised piscine orthoreovirus 1 (PRV 1) replication in macrophages and melano-macrophages within granulomas. The possibility of a genetic impact on the condition has not been supported by available data. The lipid composition and the antioxidative properties of the feed have been shown to affect the development of the changes. Physiological and environmental factors are also believed to influence the prevalence and severity of the condition. Here, we review the current state of knowledge concerning melanisation in fish skeletal musculature, with a special emphasis on the MFCs in Atlantic salmon.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | - Espen Rimstad
- Unit of Virology, Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
3
|
Scheidl TB, Wager JL, Thompson JA. Adipose Tissue Stromal Cells: Rheostats for Adipose Tissue Function and Metabolic Disease Risk. Can J Cardiol 2025:S0828-282X(25)00137-0. [PMID: 39986382 DOI: 10.1016/j.cjca.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
The transition from metabolically healthy obesity to the development of obesity-associated metabolic syndrome and cardiovascular disease is thought to be triggered by a loss in the functional integrity of adipose tissue. Although mature adipocytes are the primary functional units that carry out lipid partitioning in adipose tissue for the promotion of whole-body energy balance, they are supported by a heterogenous collection of nonadipocytes in the stroma. Research over the past couple of decades has expanded perspectives on the homeostatic and pathological roles of the nonadipocyte compartment. Adipose progenitors originate in the embryonic period and drive the developmental adipogenesis that establishes the set point of adiposity. A population of adipocyte progenitors reside in adult depots and serve an important homeostatic role as a reservoir to support adipocyte turnover. Adipocyte hypertrophy in obesity increases the rate of adipocyte death and the ability of progenitors to support this high rate of adipocyte turnover is important for the preservation of the lipid-buffering function of adipose tissue. Some evidence exists to suggest that impaired adipogenesis or a decline in progenitors capable of differentiation is a key event in the development of adipose dysfunction. The efficiency of macrophages to clear the debris and toxic lipids released from dead adipocytes lies at the fulcrum between preservation of adipose function and the progression toward chronic inflammation. Although macrophages in collaboration with other immune cells propagate the inflammation that underlies adipose dysfunction, there is now a greater appreciation for the diverse and unique roles of immune cells within adipose tissue.
Collapse
Affiliation(s)
- Taylor B Scheidl
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. https://twitter.com/TaylorScheidl
| | - Jessica L Wager
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Suchta K, Zeber-Lubecka N, Grymowicz M, Smolarczyk R, Kulecka M, Hennig EE. Autoimmune Processes and Chronic Inflammation as Independent Risk Factors for Metabolic Complications in Women with Polycystic Ovary Syndrome. Metabolites 2025; 15:141. [PMID: 40137106 PMCID: PMC11943895 DOI: 10.3390/metabo15030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) and autoimmune thyroid disease (AITD) have a high prevalence in women of reproductive age. PCOS can lead to long-term adverse health effects such as obesity, diabetes, and increased metabolic and cardiovascular risk. Although it is known that subclinical and clinical hypothyroidism may also worsen body mass index (BMI), lipid profile, and metabolic risk, there are few studies on the impact of elevated thyroid autoantibodies alone and associated chronic inflammation on metabolic complications in women with PCOS. The main aim of the study was to assess the prevalence of AITD among Polish women with PCOS and the metabolic impact of the co-occurrence of both diseases in euthyroid individuals. The additional aim was a review of the literature on the prevalence of co-occurrence of PCOS and AITD and the metabolic consequences of this condition. METHODS A total of 424 women aged 16-46 years were recruited into the study-230 women diagnosed with PCOS and 194 women diagnosed with PCOS and co-occurrence of euthyroid AITD. Before participating in the study, patients signed a written informed consent. The study was approved by the local ethics committee. Statistical analysis was performed using IBM SPSS Statistics (v.25). A mini-review of the literature was performed using the PubMed database. RESULTS Women with co-occurrence of PCOS and euthyroid AITD had statistically significantly higher serum levels of total cholesterol (189.57 mg/dL vs. 180.16 mg/dL; p = 0.005; d Cohen's = -0.278), LDL-cholesterol (109.80 mg/dL vs. 102.01 mg/dL; p = 0.009; d Cohen's = -0.256), and triglycerides (107.77 mg/dL vs. 96.82 mg/dL; p = 0.027; d Cohen's = -0.219) compared to women with PCOS. The difference was observed regardless of body weight. BMI was also statistically significantly higher in the PCOS-AITD group (27.55 kg/m2 vs. 25.46 kg/m2; p = 0.003; d Cohen's = -0.319), as was the prevalence of obesity (32.5% vs. 20.7%; Chi-square = 7.956; p = 0.047). The mini-review of the literature did not find many studies evaluating the impact of thyroid autoantibodies on metabolic outcomes in PCOS euthyroid women, and the data are still inconclusive. CONCLUSIONS The presence of elevated serum concentrations of thyroid autoantibodies in euthyroid women with PCOS increases the risk of obesity and metabolic consequences. It is observed even in euthyroid and non-obese individuals. Consequently, the cardiovascular risk in these women may be higher than in PCOS women without elevated thyroid autoantibodies. It is important to assess thyroid autoantibodies in all women with PCOS. In euthyroid PCOS women with co-occurrence of elevated serum levels of thyroid autoantibodies, it is crucial to pay more attention to maintaining an appropriate body mass index. There is an urgent need for further studies in large groups of women assessing the impact of elevated thyroid autoantibodies alone on metabolic outcomes in euthyroid women with PCOS to confirm and clarify the results.
Collapse
Affiliation(s)
- Katarzyna Suchta
- Department of Gynecological Endocrinology, Medical University of Warsaw, 2 Karowa Street, 00-315 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 5 Roentgena Street, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgena Street, 02-781 Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 2 Karowa Street, 00-315 Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 2 Karowa Street, 00-315 Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 5 Roentgena Street, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgena Street, 02-781 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 5 Roentgena Street, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgena Street, 02-781 Warsaw, Poland
| |
Collapse
|
5
|
de Andrade AG, Vanderley SER, de Farias Marques L, Almeida FS, Cavalcante-Silva LHA, Keesen TSL. Leptin, NK cells, and the weight of immunity: Insights into obesity. Int Immunopharmacol 2025; 147:113992. [PMID: 39755107 DOI: 10.1016/j.intimp.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a chronic inflammatory disease that affects more than 1 billion people worldwide and is associated with various metabolic and physiological dysfunctions, directly impacting the dynamics of the immune response, partly due to elevated leptin levels. Leptin is an important peptide hormone that regulates neuroendocrine function and energy homeostasis, with its blood levels reflecting energy reserves, fat mass, or energy deprivation. This hormone also plays a fundamental role in regulating immune function, including the activity of NK cells, which are essential components in antiviral and antitumor activity. In obese individuals, leptin resistance is commonly established, however, NK cells and other immune components remain responsive to this hormone. So far, leptin has demonstrated paradoxical activities of these cells, often associated with a dysfunctional profile when associated with obesity. The excessive fat is usually related to metabolic remodeling in NK cells, resulting in compromised antitumor responses due to reduced cytotoxic capacity and decreased expression of cytokines important for these defense mechanisms, such as IFN-γ. Therefore, this review approaches a better understanding of the immunoendocrine interactions between leptin and NK cells in the context of obesity.
Collapse
Affiliation(s)
- Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Lorrane de Farias Marques
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Fernanda Silva Almeida
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
6
|
Samiea A, Celis G, Yadav R, Rodda LB, Moreau JM. B cells in non-lymphoid tissues. Nat Rev Immunol 2025:10.1038/s41577-025-01137-6. [PMID: 39910240 DOI: 10.1038/s41577-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
B cells have long been understood to be drivers of both humoral and cellular immunity. Recent advances underscore this importance but also indicate that in infection, inflammatory disease and cancer, B cells function directly at sites of inflammation and form tissue-resident memory populations. The spatial organization and cellular niches of tissue B cells have profound effects on their function and on disease outcome, as well as on patient response to therapy. Here we review the role of B cells in peripheral tissues in homeostasis and disease, and discuss the newly identified cellular and molecular signals that are involved in regulating their activity. We integrate emerging data from multi-omic human studies with experimental models to propose a framework for B cell function in tissue inflammation and homeostasis.
Collapse
Affiliation(s)
- Abrar Samiea
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - George Celis
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Rashi Yadav
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lauren B Rodda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
| | - Joshua M Moreau
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Liu Y, Zhao Y, Zhou C, Zhu H, Pan J, Fu J, Huang H, Lin H, Jin L. Immune imbalance in the pre-ovulatory follicular microenvironment of overweight and obese women during IVF. J Ovarian Res 2025; 18:23. [PMID: 39910676 DOI: 10.1186/s13048-025-01606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Overweight and obesity can induce an inflammatory milieu in the oocyte microenvironment and are closely associated with reduced assisted reproductive outcomes. OBJECTIVE How are immune cells, cytokines and lipid profiles altered in the pre-ovulatory microenvironment of overweight and obese women? METHODS 32 women undergoing in vitro fertilization (IVF) were included, with 14 overweight or obese (OW) and 18 normal weight (NW) participants. Serum was collected before ovulation induction, follicular fluid (FF) and aspirates were obtained during oocyte retrieval for flow cytometry, cytokines, hormone, and lipid profiles measurement. Clinical outcomes were recorded through a one-year follow-up. RESULTS The percentage of T cells in the pre-ovulatory follicular microenvironment, especially CD4+ T cells, increased significantly in the OW group, which positively related with BMI. Notably, type 2 cytokine IL4 and IL13 transcription level in OW group had significantly increased, while the type 1 cytokine IFNG only showed a non-statistically significant upward trend. Lipid profiles were screened, revealing no difference between the two groups, however, levels were higher in serum compared to FF. Additionally, the concentration gradient of TG between serum and FF was 22-fold in OW group (2.92 ± 3.66 vs. 0.13 ± 0.03), which was significantly higher than the 12-fold gradient observed in NW group (1.72 ± 0.95 vs. 0.14 ± 0.08). Furthermore, day 3 high quality embryos rate is negatively associated with BMI and exhibits a decreasing trend in OW group. CONCLUSION Overweight and obesity can disrupt immune hemostasis in the pre-ovulatory follicular microenvironment, potentially leading to adverse effects on assisted reproductive outcomes.
Collapse
Affiliation(s)
- Yang Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Yiran Zhao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Chengliang Zhou
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200003, China
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Jing Fu
- Shanghai JiAi Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, 200030, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 311399, China
| | - Hui Lin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
| | - Li Jin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai JiAi Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
8
|
Jiang L, Baker SF, Ceccarelil M, Guo Y. Comprehensive Profiling of Computational Techniques for Sequencing-Based HLA Immune Signatures Extraction. HLA 2025; 105:e70049. [PMID: 39957309 PMCID: PMC11839181 DOI: 10.1111/tan.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/18/2025]
Abstract
HLA typing is crucial for clinical and research applications, including transplantation, disease association studies and personalised medicine. This study provides an in-depth analysis of five key challenges in computational HLA typing methods: varying lengths, high polymorphism, complex phylogenetic structures, high sequence similarity and the requirement for frequent updates. This study evaluates 27 computation-based HLA typing tools developed over the past 12 years, using a novel sequencing dataset of A549 cell lines with matched short-read RNA-Seq and long-read Iso-Seq data. We comprehensively investigated these 27 tools in terms of accessibility, capability, reliability, reproducibility, scalability and performance. In addition, we discuss the advantages and disadvantages of current tools and identify critical areas for future research and development to advance HLA typing technologies.
Collapse
Affiliation(s)
- Limin Jiang
- Department of Public Health and Sciences, University of Miami, Miami, Florida, USA
| | - Steven F Baker
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
- Department of Molecular Genetics & Microbiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Michele Ceccarelil
- Department of Public Health and Sciences, University of Miami, Miami, Florida, USA
| | - Yan Guo
- Department of Public Health and Sciences, University of Miami, Miami, Florida, USA
| |
Collapse
|
9
|
Jiang Y, Zhang R, Xu X, Wang X, Tian Y, Zhang W, Ma X, Man C. Chicken adipose tissue is differentially involved in primary and secondary regional immune response to NDV through miR-20a-5p-NR4A3 pathway. Vet Immunol Immunopathol 2025; 280:110884. [PMID: 39813891 DOI: 10.1016/j.vetimm.2025.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The mammalian adipose tissue (AT) plays a key role in regulating immune function and anti-infective protection to maintain tissue regional homeostasis. However, it is still unclear whether there are differences in the participation of AT in primary and secondary immune response, and whether avian AT has the similar immune function characteristics to mammals. In this study, we used Newcastle disease virus (NDV) attenuated vaccine to induce primary and secondary immune response in chickens, and the changes of the key regulatory gene NR4A3 (nuclear receptor subfamily 4 group A member 3) of T cells activation and its targeted miR-20a-5p were detected by quantitative real-time PCR (qRT-PCR). The results showed that NR4A3 actively participated in immune response of AT, and showed significant differences in expression activities between the two immune processes. "MiR-20a-5p/NR4A3" pathway was a potential molecular mechanism involved in the regulation of immune function in AT. Moreover, AT responded differently to the primary and secondary immune response possibly through the different patterns of source, apoptosis and migration for lymphocytes (such as CD8β+ T cells). This study can provide directional guidance for further studying immune functions of avian AT.
Collapse
Affiliation(s)
- Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiaoli Ma
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
10
|
De Sanctis JB, Balda Noria G, García AH. Exploring How Adipose Tissue, Obesity, and Gender Influence the Immune Response to Vaccines: A Comprehensive Narrative Review. Int J Mol Sci 2025; 26:862. [PMID: 39859575 PMCID: PMC11765591 DOI: 10.3390/ijms26020862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
Vaccines represent an essential tool for the prevention of infectious diseases. Upon administration, a complex interaction occurs between the vaccine formulation and the recipient's immune system, ultimately resulting in protection against disease. Significant variability exists in individual and population responses to vaccination, and these differences remain the focus of the ongoing research. Notably, well-documented factors, such as age, gender, and genetic predisposition, influence immune responses. In contrast, the effects of overweight and obesity have not been as thoroughly investigated. The evidence indicates that a high body mass index (BMI) constitutes a significant risk factor for infections in general, with adipose tissue playing a crucial role in modulating the immune response. Furthermore, suboptimal levels of vaccine seroconversion have been observed among individuals with obesity. This review provides a plausible examination of the immunity and protection conferred by various vaccines in individuals with an overweight status, offering a comprehensive analysis of the mechanisms to enhance vaccination efficiency.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Germán Balda Noria
- Institute of Immunology Nicolás Enrique Bianco, Faculty of Medicine, Universidad Central de Venezuela Los Chaguaramos, Caracas 1040, Venezuela;
| | - Alexis Hipólito García
- Institute of Immunology Nicolás Enrique Bianco, Faculty of Medicine, Universidad Central de Venezuela Los Chaguaramos, Caracas 1040, Venezuela;
| |
Collapse
|
11
|
Wang Y, Bo Y, Liu Y, Zhou J, Nguyen D, Baskaran D, Liu Y, Wang H. Metabolic labeling and targeted modulation of adipocytes. Biomater Sci 2025; 13:434-445. [PMID: 39648977 PMCID: PMC11758917 DOI: 10.1039/d4bm01352b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Adipocytes play a critical role in energy storage and endocrine signaling and are associated with various diseases such as cancer and diabetes. Facile strategies to engineer adipocytes have long been pursued for elucidating adipocyte biology and developing adipocyte-based therapies. Herein, we report metabolic glycan labeling of adipocytes and subsequent targeted modulation of adipocytes via click chemistry. We show that azido tags expressed on the surface of adipocytes can persist for over 4 days. By conjugating dibenzocyclooctyne (DBCO)-cargos onto azido-labeled adipocytes via click chemistry, the cargos can be retained on the adipocyte membrane for over 12 hours. We further show that signaling molecules including adiponectin, calreticulin, mannose-binding lectin 2, and milk fat globule-EGF factor 8 protein can be conjugated to adipocytes to orchestrate their phagocytosis by macrophages. The azido-labeled adipocytes grafted into mice can also mediate targeted conjugation of DBCO-cargos in vivo. This adipocyte labeling and targeting technology will facilitate the development of adipocyte-based therapies and provides a new platform for manipulating the interaction between adipocytes and other types of cells.
Collapse
Affiliation(s)
- Yueji Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jiadiao Zhou
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel Nguyen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dhyanesh Baskaran
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Adilović M, Hromić-Jahjefendić A, Mahmutović L, Šutković J, Rubio-Casillas A, Redwan EM, Uversky VN. Intrinsic Factors Behind the Long-COVID: V. Immunometabolic Disorders. J Cell Biochem 2025; 126:e30683. [PMID: 39639607 DOI: 10.1002/jcb.30683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The complex link between COVID-19 and immunometabolic diseases demonstrates the important interaction between metabolic dysfunction and immunological response during viral infections. Severe COVID-19, defined by a hyperinflammatory state, is greatly impacted by underlying chronic illnesses aggravating the cytokine storm caused by increased levels of Pro-inflammatory cytokines. Metabolic reprogramming, including increased glycolysis and altered mitochondrial function, promotes viral replication and stimulates inflammatory cytokine production, contributing to illness severity. Mitochondrial metabolism abnormalities, strongly linked to various systemic illnesses, worsen metabolic dysfunction during and after the pandemic, increasing cardiovascular consequences. Long COVID-19, defined by chronic inflammation and immune dysregulation, poses continuous problems, highlighting the need for comprehensive therapy solutions that address both immunological and metabolic aspects. Understanding these relationships shows promise for effectively managing COVID-19 and its long-term repercussions, which is the focus of this review paper.
Collapse
Affiliation(s)
- Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jasmin Šutković
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
13
|
Lv Y, Zheng Y, Su S, Xiao J, Yang J, Xiong L, Guo Y, Zhou X, Guo N, Lei P. CD14 loCD301b + macrophages gathering as a proangiogenic marker in adipose tissues. J Lipid Res 2025; 66:100720. [PMID: 39645040 PMCID: PMC11745947 DOI: 10.1016/j.jlr.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
The role of the monocyte marker CD14 in the regulation of obesity is increasingly recognized. Our observations indicated that Cd14-/- mice exhibited a leaner body shape compared to their wild-type (WT) counterparts. And the loss of CD14 alleviated high-fat diet-induced obesity in mice. In human subjects, CD14 level was tested to be positively correlated with overweight and obesity. However, the relationship between CD14 and the development of obesity remains only partially understood. To investigate the underlying mechanisms, adipose tissues (ATs) from Cd14-/- and WT mice were subjected to deep RNA sequencing. Gene Ontology enrichment analysis revealed a significant enhancement of angiogenesis-related function in the Cd14-/- epididymal adipose tissues compared to WT counterpart, which was accompanied by an upregulation of Cd301b. Subsequent assays confirmed the enhanced angiogenesis and more accumulation of CD301b+ macrophages in Cd14-/- epididymal adipose tissues. Because Igf1 expression has been suggested to be associated with Cd301b expression through pseudotime analysis, we found it was insulin-like growth factor 1 secreted from Cd14-/- macrophages that mediated the angiogenesis enhancement. Collectively, our findings indicate that CD14 deficiency increased the accumulation of CD14loCD301b+ macrophages in ATs, which may serve as a proangiogenic marker, providing novel insights into the relationship between CD14 and obesity development.
Collapse
Affiliation(s)
- Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidan Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Su
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Xiong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Zhou
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nengqiang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Wei L, Zhang B, Tu Y, Liu A. Research Progress on Glycolysis Mechanism of Psoriasis. PSORIASIS (AUCKLAND, N.Z.) 2024; 14:195-206. [PMID: 39759475 PMCID: PMC11699830 DOI: 10.2147/ptt.s493315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Psoriasis is a chronic inflammatory disease with a complex pathogenesis. Hyperplasia of glycolytic-dependent epidermal keratinocytes (KCs) is a new hallmark of psoriasis pathogenesis. Meanwhile, immune cells undergo metabolic reprogramming similar to KCs. Glycolysis provides energy for the proliferation of KCs, while it also releases lactic acid to facilitate the differentiation of immune cells. In turn, differentiated immune cells further promote KCs glycolysis by releasing inflammatory factors, thus forming an immunometabolism loop. The interaction between immune response and metabolic pathways jointly promotes the sustained proliferation of KCs and the secretion of various inflammatory factors by immune cells. Understanding the role of glycolysis in immunometabolism of psoriasis may provide new ideas for non-immunosuppressive treatment of psoriasis. This article aims to review the role of glycolysis in the pathogenesis of psoriasis and attempts to summarize the key enzymes and regulatory factors involved in psoriasis glycolysis, as well as their interactions. Finally, we discuss the pharmacological modulators of glycolysis in psoriasis.
Collapse
Affiliation(s)
- Lu Wei
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Buxin Zhang
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| | - Yuanhui Tu
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| | - Aimin Liu
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
15
|
Chen Q, Xiang D, Liang Y, Meng H, Zhang X, Lu J. Interleukin-33: Expression, regulation and function in adipose tissues. Int Immunopharmacol 2024; 143:113285. [PMID: 39362016 DOI: 10.1016/j.intimp.2024.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine of the IL-1 family that plays a key role in innate and adaptive immune responses and contributes to tissue homeostasis. Its role in adipose tissue function has been extensively studied, as adipose tissue serves as an important mediator of metabolic dysfunction. In adipose tissue, IL-33 is primarily produced by stromal cells. Its production is regulated by factors, such as androgens, aging, sympathetic innervation, and various inflammatory stimuli that affect the proliferation and differentiation of IL-33-producing stromal cells. Many studies have elucidated the mechanisms by which IL-33 interacts with the immune system components, local nerve fibers, and adipocytes to influence energy balance, with important consequences in obesity, cold-induced thermogenesis, and aging-related metabolic dysfunction. Here, we detail our current understanding of the molecular events that regulate the production of IL-33 within adipose tissue and discuss its role in regulating adipose function.
Collapse
Affiliation(s)
- Qianjiang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaofen Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
16
|
Liu C, Ni C, Li C, Tian H, Jian W, Zhong Y, Zhou Y, Lyu X, Zhang Y, Xiang XJ, Cheng C, Li X. Lactate-related gene signatures as prognostic predictors and comprehensive analysis of immune profiles in nasopharyngeal carcinoma. J Transl Med 2024; 22:1116. [PMID: 39707377 DOI: 10.1186/s12967-024-05935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVES Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high rates of morbidity and mortality, largely because of its late diagnosis and metastatic potential. Lactate metabolism and protein lactylation are thought to play roles in NPC pathogenesis by modulating the tumor microenvironment and immune evasion. However, research specifically linking lactate-related mechanisms to NPC remains limited. This study aimed to identify lactate-associated biomarkers in NPC and explore their underlying mechanisms, with a particular focus on immune modulation and tumor progression. METHODS To achieve these objectives, we utilized a bioinformatics approach in which publicly available gene expression datasets related to NPC were analysed. Differential expression analysis revealed differentially expressed genes (DEGs) between NPC and normal tissues. We performed weighted gene coexpression network analysis (WGCNA) to identify module genes significantly associated with NPC. Overlaps among DEGs, key module genes and lactate-related genes (LRGs) were analysed to derive lactate-related differentially expressed genes (LR-DEGs). Machine learning algorithms can be used to predict potential biomarkers, and immune infiltration analysis can be used to examine the relationships between identified biomarkers and immune cell types, particularly M0 macrophages and B cells. RESULTS A total of 1,058 DEGs were identified between the NPC and normal tissue groups. From this set, 372 key module genes associated with NPC were isolated. By intersecting the DEGs, key module genes and lactate-related genes (LRGs), 17 lactate-related DEGs (LR-DEGs) were identified. Using three machine learning algorithms, this list was further refined, resulting in three primary lactate-related biomarkers: TPPP3, MUC4 and CLIC6. These biomarkers were significantly enriched in pathways related to "immune cell activation" and the "extracellular matrix environment". Additionally, M0 and B macrophages were found to be closely associated with these biomarkers, suggesting their involvement in shaping the NPC immune microenvironment. CONCLUSION In summary, this study identified TPPP3, MUC4 and CLIC6 as lactate-associated clinical modelling indicators linked to NPC, providing a foundation for advancing diagnostic and therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Changlin Liu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuping Ni
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Department of Oncology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hu Tian
- Department of Urology Surgery, Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Weiquan Jian
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yuping Zhong
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Yanqing Zhou
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao-Jun Xiang
- Department of Healthcare-associated Infection Management, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China.
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Morris I, Vrieling F, Bouwman A, Stienstra R, Kalkhoven E. Lipid accumulation in adipose tissue-resident iNKT cells contributes to an inflammatory phenotype. Adipocyte 2024; 13:2421750. [PMID: 39484712 PMCID: PMC11540091 DOI: 10.1080/21623945.2024.2421750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Reciprocal communication between adipocytes and immune cells is essential to maintain optimal adipose tissue (AT) functionality. Amongst others, adipocytes directly interact with invariant NKT cells (iNKT cells), which in turn secrete various cytokines. A lipid-rich microenvironment, as observed in obesity, skews this adipocyte-driven cytokine output towards a more inflammatory output. Whether a lipid-rich microenvironment also affects iNKT cells directly, however, is unknown. Here, we show that primary mouse iNKT cells isolated from AT can accumulate lipids in lipid droplets (LDs), more so than liver- and spleen-resident iNKT cells. Furthermore, a lipid-rich microenvironment increased the production of the proinflammatory cytokine IFNγ. Next, to an indirect, adipocyte-mediated cue, iNKT cells can directly respond to environmental lipid changes, supporting a potential role as nutrient sensors.
Collapse
Affiliation(s)
- Imogen Morris
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Annemieke Bouwman
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Kalkhoven
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Douglas A, Stevens B, Rendas M, Kane H, Lynch E, Kunkemoeller B, Wessendorf-Rodriguez K, Day EA, Sutton C, Brennan M, O'Brien K, Kohlgruber AC, Prendeville H, Garza AE, O'Neill LAJ, Mills KHG, Metallo CM, Veiga-Fernandes H, Lynch L. Rhythmic IL-17 production by γδ T cells maintains adipose de novo lipogenesis. Nature 2024; 636:206-214. [PMID: 39478228 PMCID: PMC11618085 DOI: 10.1038/s41586-024-08131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
The circadian rhythm of the immune system helps to protect against pathogens1-3; however, the role of circadian rhythms in immune homeostasis is less well understood. Innate T cells are tissue-resident lymphocytes with key roles in tissue homeostasis4-7. Here we use single-cell RNA sequencing, a molecular-clock reporter and genetic manipulations to show that innate IL-17-producing T cells-including γδ T cells, invariant natural killer T cells and mucosal-associated invariant T cells-are enriched for molecular-clock genes compared with their IFNγ-producing counterparts. We reveal that IL-17-producing γδ (γδ17) T cells, in particular, rely on the molecular clock to maintain adipose tissue homeostasis, and exhibit a robust circadian rhythm for RORγt and IL-17A across adipose depots, which peaks at night. In mice, loss of the molecular clock in the CD45 compartment (Bmal1∆Vav1) affects the production of IL-17 by adipose γδ17 T cells, but not cytokine production by αβ or IFNγ-producing γδ (γδIFNγ) T cells. Circadian IL-17 is essential for de novo lipogenesis in adipose tissue, and mice with an adipocyte-specific deficiency in IL-17 receptor C (IL-17RC) have defects in de novo lipogenesis. Whole-body metabolic analysis in vivo shows that Il17a-/-Il17f-/- mice (which lack expression of IL-17A and IL-17F) have defects in their circadian rhythm for de novo lipogenesis, which results in disruptions to their whole-body metabolic rhythm and core-body-temperature rhythm. This study identifies a crucial role for IL-17 in whole-body metabolic homeostasis and shows that de novo lipogenesis is a major target of IL-17.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adipose Tissue/metabolism
- Adipose Tissue/immunology
- Circadian Rhythm/genetics
- Circadian Rhythm/immunology
- Homeostasis
- Interferon-gamma/metabolism
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Lipogenesis
- Mice, Inbred C57BL
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Single-Cell Gene Expression Analysis
- Biological Clocks/genetics
- Biological Clocks/immunology
- Receptors, Interleukin-17/deficiency
- Receptors, Interleukin-17/metabolism
- Body Temperature
- Leukocyte Common Antigens/metabolism
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
Collapse
Affiliation(s)
- Aaron Douglas
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Brenneth Stevens
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Miguel Rendas
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Harry Kane
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evan Lynch
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Emily A Day
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Caroline Sutton
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Martin Brennan
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Katie O'Brien
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Hannah Prendeville
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Amanda E Garza
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Cancer Research Institute, Princeton Branch, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
19
|
Wang X, Jiang Y, Zhang Y, Xia M, Li J, Man C. Adipose tissue responds to stress-induced immunosuppression affecting immune response partially by miR-145-5p/S1PR1 pathway. Poult Sci 2024; 103:104431. [PMID: 39418791 PMCID: PMC11530903 DOI: 10.1016/j.psj.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
Stress-induced immunosuppression (SIIS) is one of the most common problems in intensive poultry production, which can cause immunized chickens to still develop diseases and bring huge losses to production. Recently, adipose tissue, as an immunomodulatory organ, has become a hot topic of attention. However, the function and mechanism of adipose tissue involved in SIIS and its influence on the immune response are still unclear. In this study, we dynamically analyzed the correlations between the T cells migration and change of sphingosine-1-phosphate receptor 1(S1PR1) gene in adipose tissue using chicken models with different immune states, and further explored the regulatory mechanisms and application. The results showed that SIIS could significantly change the expressions of lymphocytes migration related S1PR1 gene, and SIIS could inhibit the Newcastle disease virus (NDV) immune response partially by affecting the migration and proliferation of TCRα+ T cells in adipose tissue. Moreover, the miR-145-5p/S1PR1 pathway was a potential key mechanism to regulate T cells migration in adipose tissue, and circulating miR-145-5p had potential value as a molecular marker. This research can provide innovative reference for in-depth studying the immunoregulatory function and mechanism of adipose tissue.
Collapse
Affiliation(s)
- Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yuxin Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Meiqi Xia
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jia Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
20
|
Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024; 20:565-584. [PMID: 39112603 DOI: 10.1038/s41584-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Sorbonne University, INSERM UMRS_959, I3 Lab Immunology Immunopathology Immunotherapy, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France.
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David T Felson
- Boston University School of Medicine, Department of Medicine, Section of Rheumatology, Boston, MA, USA
| |
Collapse
|
21
|
Tang X, Wang J, Wu Y, Huang Z, Ouyang X, Wu H, Chen Q, Zhong J, Peng L, Lu Y, Wu B, Ling Y, Li S. Perirenal Fat Thickness Is Associated With Contrast-Induced Nephropathy in Type 2 Diabetic Patients Undergoing Coronary Catheterization. J Diabetes Res 2024; 2024:4905669. [PMID: 39219990 PMCID: PMC11362576 DOI: 10.1155/2024/4905669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Deposition of adipose tissue may have a promoting role in the development of diabetic complications. This study is aimed at investigating the relationship between adipose tissue thickness and risk of contrast-induced nephropathy (CIN) in patients with Type 2 diabetes mellitus (T2DM). Methods: A total of 603 T2DM patients undergoing percutaneous coronary angiography or angioplasty with suspicious or confirmed stable coronary artery disease were enrolled in this study. The thicknesses of perirenal fat (PRF), subcutaneous fat (SCF), intraperitoneal fat (IPF), and epicardial fat (ECF) were measured by color Doppler ultrasound, respectively. The association of various adipose tissues with CIN was analyzed. Results: Seventy-seven patients (12.8%) developed CIN in this cohort. Patients who developed CIN had significantly thicker PRF (13.7 ± 4.0 mm vs. 8.9 ± 3.6 mm, p < 0.001), slightly thicker IPF (p = 0.046), and similar thicknesses of SCF (p = 0.782) and ECF (p = 0.749) compared to those who did not develop CIN. Correlation analysis showed that only PRF was positively associated with postoperation maximal serum creatinine (sCr) (r = 0.18, p = 0.012), maximal absolute change in sCr (r = 0.33, p < 0.001), and maximal percentage of change in sCr (r = 0.36, p < 0.001). In receiver operating characteristic (ROC) analysis, the area under the curve (AUC) of PRF (0.809) for CIN was significantly higher than those of SCF (0.490), IPF (0.594), and ECF (0.512). Multivariate logistic regression analysis further confirmed that thickness of PRF, rather than other adipose tissues, was independently associated with the development of CIN after adjusted for confounding factors (odds ratio (OR) = 1.53, 95% CI: 1.38-1.71, p < 0.001). Conclusions: PRF is independently associated with the development of CIN in T2DM patients undergoing coronary catheterization.
Collapse
Affiliation(s)
- Xixiang Tang
- VIP Medical Service CenterThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Wang
- Department of Cardiovascular MedicineThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuman Wu
- Department of Clinical ImmunologyThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuoshan Huang
- Department of Cardiovascular MedicineThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaolan Ouyang
- Department of Cardiovascular MedicineThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongxing Wu
- Department of Cardiovascular MedicineThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qian Chen
- Department of Cardiovascular MedicineThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junlin Zhong
- Department of UltrasonographyThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Long Peng
- Department of Cardiovascular MedicineThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Lu
- Guangdong Provincial Key Laboratory of Allergy & Clinical ImmunologySecond Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bingyuan Wu
- Department of Cardiovascular MedicineThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yesheng Ling
- Department of Cardiovascular MedicineThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Suhua Li
- Department of Cardiovascular MedicineThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Chen V, Zhang J, Chang J, Beg MA, Vick L, Wang D, Gupta A, Wang Y, Zhang Z, Dai W, Kim M, Song S, Pereira D, Zheng Z, Sodhi K, Shapiro JI, Silverstein RL, Malarkannan S, Chen Y. CD36 restricts lipid-associated macrophages accumulation in white adipose tissues during atherogenesis. Front Cardiovasc Med 2024; 11:1436865. [PMID: 39156133 PMCID: PMC11327822 DOI: 10.3389/fcvm.2024.1436865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Visceral white adipose tissues (WAT) regulate systemic lipid metabolism and inflammation. Dysfunctional WAT drive chronic inflammation and facilitate atherosclerosis. Adipose tissue-associated macrophages (ATM) are the predominant immune cells in WAT, but their heterogeneity and phenotypes are poorly defined during atherogenesis. The scavenger receptor CD36 mediates ATM crosstalk with other adipose tissue cells, driving chronic inflammation. Here, we combined the single-cell RNA sequencing technique with cell metabolic and functional assays on major WAT ATM subpopulations using a diet-induced atherosclerosis mouse model (Apoe-null). We also examined the role of CD36 using Apoe/Cd36 double-null mice. Based on transcriptomics data and differential gene expression analysis, we identified a previously undefined group of ATM displaying low viability and high lipid metabolism and labeled them as "unhealthy macrophages". Their phenotypes suggest a subpopulation of ATM under lipid stress. We also identified lipid-associated macrophages (LAM), which were previously described in obesity. Interestingly, LAM increased 8.4-fold in Apoe/Cd36 double-null mice on an atherogenic diet, but not in Apoe-null mice. The increase in LAM was accompanied by more ATM lipid uptake, reduced adipocyte hypertrophy, and less inflammation. In conclusion, CD36 mediates a delicate balance between lipid metabolism and inflammation in visceral adipose tissues. Under atherogenic conditions, CD36 deficiency reduces inflammation and increases lipid metabolism in WAT by promoting LAM accumulation.
Collapse
Affiliation(s)
- Vaya Chen
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Jackie Chang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Mirza Ahmar Beg
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Lance Vick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dandan Wang
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ankan Gupta
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yaxin Wang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Mindy Kim
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Duane Pereira
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Komal Sodhi
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Joseph I. Shapiro
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
23
|
Travers RL, Trim WV, Motta AC, Betts JA, Thompson D. Calorie restriction-induced leptin reduction and T-lymphocyte activation in blood and adipose tissue in men with overweight and obesity. Int J Obes (Lond) 2024; 48:993-1002. [PMID: 38538853 PMCID: PMC11216992 DOI: 10.1038/s41366-024-01513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND T-Lymphocyte activation is modulated by the adipokine leptin and serum concentrations of this hormone can be reduced with short-term calorie restriction. The aim of this study was to understand whether leptin per se is important in determining levels of T-lymphocyte activation in humans, by investigating whether the reduction in leptin concentration following calorie restriction is associated with a decrease in T-Lymphocyte activation in blood and adipose tissue. METHODS Twelve men with overweight and obesity (age 35-55 years, waist circumference 95-115 cm) reduced their calorie intake by 50% for 3 consecutive days. Blood and subcutaneous adipose tissue were obtained for isolation of immune cells and cytokine analysis. CD4+ and CD8 + T-Lymphocytes were identified and characterised according to their expression of activation markers CD25 and CD69 by flow cytometry. RESULTS Serum leptin was reduced by (mean ± SEM) 31 ± 16% (p < 0.001) following calorie restriction. The percentage of blood CD4 + CD25 + T-lymphocytes and level of CD25 expression on these lymphocytes were significantly reduced by 8 ± 10% (p = 0.016) and 8 ± 4% (p = 0.058), respectively. After calorie restriction, ex vivo leptin secretion from abdominal subcutaneous adipose tissue explants was not changed, and this corresponded with a lack of change in adipose tissue resident T-Lymphocyte activation. CONCLUSIONS Serum leptin was reduced after calorie restriction and this was temporally associated with a reduction in activation of blood CD4 + CD25 + T-Lymphocytes. In abdominal subcutaneous adipose tissue, however, leptin secretion was unaltered, and there were no observed changes in adipose resident T-Lymphocyte activation.
Collapse
Affiliation(s)
- Rebecca L Travers
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - William V Trim
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department of Systems Biology, Harvard Medical School, Boston, MA, MA02115, USA
| | - Alexandre C Motta
- Unilever Food & Health Research Institute R&D, Vlaardingen, The Netherlands
- IMcoMET BV, Vlaardingen, The Netherlands
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
24
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
25
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
26
|
Pan Y, Xu Y, Fan C, Miao X, Shen Y, Wang Q, Wu J, Hu H, Wang H, Xiang M, Ye B. The role of neck adipose tissue in lymph node metastasis of head and neck cancer. Front Oncol 2024; 14:1390824. [PMID: 38800384 PMCID: PMC11116645 DOI: 10.3389/fonc.2024.1390824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Previous studies indicated that adipose tissue significantly influences cancer invasion and lymphatic metastasis. However, the impact of neck adipose tissue (NAT) on lymph node metastasis associated with head and neck cancer remains ambiguous. Here, we systematically assess the classification and measurement criteria of NAT and evaluate the association of adipose tissue and cancer-associated adipocytes with head and neck cancer. We delve into the potential mechanisms by which NAT facilitate cervical lymph node metastasis in head and neck cancer, particularly through the secretion of adipokines such as leptin, adiponectin, and Interleukin-6. Our aim is to elucidate the role of NAT in the progression and metastasis of head and neck cancer, offering new insights into prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Bibha K, Akhigbe TM, Hamed MA, Akhigbe RE. Metabolic Derangement by Arsenic: a Review of the Mechanisms. Biol Trace Elem Res 2024; 202:1972-1982. [PMID: 37670201 DOI: 10.1007/s12011-023-03828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Studies have implicated arsenic exposure in various pathological conditions, including metabolic disorders, which have become a global phenomenon, affecting developed, developing, and under-developed nations. Despite the huge risks associated with arsenic exposure, humans remain constantly exposed to it, especially through the consumption of contaminated water and food. This present study provides an in-depth insight into the mechanistic pathways involved in the metabolic derangement by arsenic. Compelling pieces of evidence demonstrate that arsenic induces metabolic disorders via multiple pathways. Apart from the initiation of oxidative stress and inflammation, arsenic prevents the phosphorylation of Akt at Ser473 and Thr308, leading to the inhibition of PDK-1/Akt insulin signaling, thereby reducing GLUT4 translocation through the activation of Nrf2. Also, arsenic downregulates mitochondrial deacetylase Sirt3, decreasing the ability of its associated transcription factor, FOXO3a, to bind to the agents that support the genes for manganese superoxide dismutase and PPARg co-activator (PGC)-1a. In addition, arsenic activates MAPKs, modulates p53/ Bcl-2 signaling, suppresses Mdm-2 and PARP, activates NLRP3 inflammasome and caspase-mediated apoptosis, and induces ER stress, and ox-mtDNA-dependent mitophagy and autophagy. More so, arsenic alters lipid metabolism by decreasing the presence of 3-hydroxy-e-methylglutaryl-CoA synthase 1 and carnitine O-octanoyl transferase (Crot) and increasing the presence of fatty acid-binding protein-3 mRNA. Furthermore, arsenic promotes atherosclerosis by inducing endothelial damage. This cascade of pathophysiological events promotes metabolic derangement. Although the pieces of evidence provided by this study are convincing, future studies evaluating the involvement of other likely mechanisms are important. Also, epidemiological studies might be necessary for the translation of most of the findings in animal models to humans.
Collapse
Affiliation(s)
- K Bibha
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
28
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Oliveira BM, Sidónio B, Correia A, Pinto A, Azevedo MM, Sampaio P, Ferreira PG, Vilanova M, Teixeira L. Cytokine production by bovine adipose tissue stromal vascular fraction cells upon Neospora caninum stimulation. Sci Rep 2024; 14:8444. [PMID: 38600105 PMCID: PMC11006870 DOI: 10.1038/s41598-024-58885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
In bovines few studies addressed the contribution of adipose tissue to the host immune response to infection. Here we evaluated the in vitro response of bovine adipose tissue stromal vascular fraction (SVF) cells to the protozoan parasite Neospora caninum, using live and freeze-killed tachyzoites. Live N. caninum induced the production of IL-6, IL-1β and IL-10 by SVF cells isolated from subcutaneous adipose tissue (SAT), while in mesenteric adipose tissue (MAT) SVF cell cultures only IL-1β and IL-10 production was increased, showing slight distinct responses between adipose tissue depots. Whereas a clear IL-8 increase was detected in peripheral blood leucocytes (PBL) culture supernatants in response to live N. caninum, no such increase was observed in SAT or MAT SVF cell cultures. Nevertheless, in response to LPS, increased IL-8 levels were detected in all cell cultures. IL-10 levels were always increased in response to stimulation (live, freeze-killed N. caninum and LPS). Overall, our results show that bovine adipose tissue SVF cells produce cytokines in response to N. caninum and can therefore be putative contributors to the host immune response against this parasite.
Collapse
Affiliation(s)
- Bárbara M Oliveira
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Beatriz Sidónio
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Alexandra Correia
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Ana Pinto
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal
| | - Maria M Azevedo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Paula Sampaio
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Paula G Ferreira
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal
| | - Manuel Vilanova
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Luzia Teixeira
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal.
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal.
| |
Collapse
|
30
|
Zhang H, Li Y, Ibáñez CF, Xie M. Perirenal adipose tissue contains a subpopulation of cold-inducible adipocytes derived from brown-to-white conversion. eLife 2024; 13:RP93151. [PMID: 38470102 PMCID: PMC10932542 DOI: 10.7554/elife.93151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Perirenal adipose tissue (PRAT) is a unique visceral depot that contains a mixture of brown and white adipocytes. The origin and plasticity of such cellular heterogeneity remains unknown. Here, we combine single-nucleus RNA sequencing with genetic lineage tracing to reveal the existence of a distinct subpopulation of Ucp1-&Cidea+ adipocytes that arises from brown-to-white conversion during postnatal life in the periureter region of mouse PRAT. Cold exposure restores Ucp1 expression and a thermogenic phenotype in this subpopulation. These cells have a transcriptome that is distinct from subcutaneous beige adipocytes and may represent a unique type of cold-recruitable adipocytes. These results pave the way for studies of PRAT physiology and mechanisms controlling the plasticity of brown/white adipocyte phenotypes.
Collapse
Affiliation(s)
- Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science ParkBeijingChina
- Peking University Academy for Advanced Interdisciplinary StudiesBeijingChina
| | - Yan Li
- Chinese Institute for Brain Research, Zhongguancun Life Science ParkBeijingChina
- Peking University Academy for Advanced Interdisciplinary StudiesBeijingChina
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science ParkBeijingChina
- Peking University School of Life Sciences, Peking-Tsinghua Center for Life SciencesBeijingChina
- PKU-IDG/McGovern Institute for Brain ResearchBeijingChina
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Meng Xie
- PKU-IDG/McGovern Institute for Brain ResearchBeijingChina
- Peking University School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental HealthBeijingChina
- Department of Biosciences and Nutrition, Karolinska InstituteFlemingsbergSweden
| |
Collapse
|
31
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
32
|
Ngo TB, Josyula A, DeStefano S, Fertil D, Faust M, Lokwani R, Sadtler K. Intersection of Immunity, Metabolism, and Muscle Regeneration in an Autoimmune-Prone MRL Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306961. [PMID: 38192168 PMCID: PMC10953568 DOI: 10.1002/advs.202306961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Due to the limited capacity of mammals to regenerate complex tissues, researchers have worked to understand the mechanisms of tissue regeneration in organisms that maintain that capacity. One example is the MRL/MpJ mouse strain with unique regenerative capacity in ear pinnae that is absent from other strains, such as the common C57BL/6 strain. The MRL/MpJ mouse has also been associated with an autoimmune phenotype even in the absence of the mutant Fas gene described in its parent strain MRL/lpr. Due to these findings, the differences between the responses of MRL/MpJ versus C57BL/6 strain are evaluated in volumetric muscle injury and subsequent material implantation. One salient feature of the MRL/MpJ response to injury is robust adipogenesis within the muscle. This is associated with a decrease in M2-like polarization in response to biologically derived extracellular matrix scaffolds. In pro-fibrotic materials, such as polyethylene, there are fewer foreign body giant cells in the MRL/MpJ mice. As there are reports of both positive and negative influences of adipose tissue and adipogenesis on wound healing, this model can provide an important lens to investigate the interplay between stem cells, adipose tissue, and immune responses in trauma and material implantation.
Collapse
Affiliation(s)
- Tran B. Ngo
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Aditya Josyula
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Sabrina DeStefano
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Daphna Fertil
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Mondreakest Faust
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Ravi Lokwani
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Kaitlyn Sadtler
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| |
Collapse
|
33
|
Teixeira L, Whitmire JK, Bourgeois C. Editorial: The role of adipose tissue and resident immune cells in infections. Front Immunol 2024; 15:1360262. [PMID: 38464526 PMCID: PMC10920208 DOI: 10.3389/fimmu.2024.1360262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Affiliation(s)
- Luzia Teixeira
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Jason K. Whitmire
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Christine Bourgeois
- Université Paris-Saclay, French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| |
Collapse
|
34
|
Reinisch I, Michenthaler H, Sulaj A, Moyschewitz E, Krstic J, Galhuber M, Xu R, Riahi Z, Wang T, Vujic N, Amor M, Zenezini Chiozzi R, Wabitsch M, Kolb D, Georgiadi A, Glawitsch L, Heitzer E, Schulz TJ, Schupp M, Sun W, Dong H, Ghosh A, Hoffmann A, Kratky D, Hinte LC, von Meyenn F, Heck AJR, Blüher M, Herzig S, Wolfrum C, Prokesch A. Adipocyte p53 coordinates the response to intermittent fasting by regulating adipose tissue immune cell landscape. Nat Commun 2024; 15:1391. [PMID: 38360943 PMCID: PMC10869344 DOI: 10.1038/s41467-024-45724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.
Collapse
Affiliation(s)
- Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Alba Sulaj
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ruonan Xu
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Zina Riahi
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Tongtong Wang
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Dagmar Kolb
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Anastasia Georgiadi
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lisa Glawitsch
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wenfei Sun
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hua Dong
- Stem Cell Biology and Regenerative Medicine Institute, University of Stanford, Stanford, CA, USA
| | - Adhideb Ghosh
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
35
|
Bradford BJ, Contreras GA. Adipose Tissue Inflammation: Linking Physiological Stressors to Disease Susceptibility. Annu Rev Anim Biosci 2024; 12:261-281. [PMID: 38064480 DOI: 10.1146/annurev-animal-021122-113212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The study of adipose tissue (AT) is enjoying a renaissance. White, brown, and beige adipocytes are being investigated in adult animals, and the critical roles of small depots like perivascular AT are becoming clear. But the most profound revision of the AT dogma has been its cellular composition and regulation. Single-cell transcriptomic studies revealed that adipocytes comprise well under 50% of the cells in white AT, and a substantial portion of the rest are immune cells. Altering the function of AT resident leukocytes can induce or correct metabolic syndrome and, more surprisingly, alter adaptive immune responses to infection. Although the field is dominated by obesity research, conditions such as rapid lipolysis, infection, and heat stress impact AT immune dynamics as well. Recent findings in rodents lead to critical questions that should be explored in domestic livestock as potential avenues for improved animal resilience to stressors, particularly as animals age.
Collapse
Affiliation(s)
- Barry J Bradford
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA;
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
36
|
Zhang Y, Du C, Wang W, Qiao W, Li Y, Zhang Y, Sheng S, Zhou X, Zhang L, Fan H, Yu Y, Chen Y, Liao Y, Chen S, Chang Y. Glucocorticoids increase adiposity by stimulating Krüppel-like factor 9 expression in macrophages. Nat Commun 2024; 15:1190. [PMID: 38331933 PMCID: PMC10853261 DOI: 10.1038/s41467-024-45477-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The mechanisms underlying glucocorticoid (GC)-induced obesity are poorly understood. Macrophages are the primary targets by which GCs exert pharmacological effects and perform critical functions in adipose tissue homeostasis. Here, we show that macrophages are essential for GC-induced obesity. Dexamethasone (Dex) strongly induced Krüppel-like factor 9 (Klf9) expression in macrophages. Similar to Dex, lentivirus-mediated Klf9 overexpression inhibits M1 and M2a markers expression, causing macrophage deactivation. Furthermore, the myeloid-specific Klf9 transgene promotes obesity. Conversely, myeloid-specific Klf9-knockout (mKlf9KO) mice are lean. Moreover, myeloid Klf9 knockout largely blocks obesity induced by chronic GC treatment. Mechanistically, GC-inducible KLF9 recruits the SIN3A/HDAC complex to the promoter regions of Il6, Ptgs2, Il10, Arg1, and Chil3 to inhibit their expression, subsequently reducing thermogenesis and increasing lipid accumulation by inhibiting STAT3 signaling in adipocytes. Thus, KLF9 in macrophages integrates the beneficial anti-inflammatory and adverse metabolic effects of GCs and represents a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Yinliang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Chunyuan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Wei Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yuhui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Sufang Sheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Xuenan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Lei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yong Chen
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China.
| | - Yongsheng Chang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
37
|
Jiang Y, Gong F. Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine 2024; 83:10-25. [PMID: 37768512 DOI: 10.1007/s12020-023-03521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE This review will focus on the immune cells in adipose tissue microenvironment and their regulatory roles in metabolic homeostasis of adipose tissue and even the whole body under physiological and obese conditions. METHODS This review used PubMed searches of current literature to examine adipose tissue immune cells and cytokines, as well as the complex interactions between them. RESULTS Aside from serving as a passive energy depot, adipose tissue has shown specific immunological function. Adipose tissue microenvironment is enriched with a large number of immune cells and cytokines, whose physiological regulation plays a crucial role for metabolic homeostasis. However, obesity causes pro-inflammatory alterations in these adipose tissue immune cells, which have detrimental effects on metabolism and increase the susceptibility of individuals to the obesity related diseases. CONCLUSIONS Adipose tissue microenvironment is enriched with various immune cells and cytokines, which regulate metabolic homeostasis of adipose tissue and even the whole body, whether under physiological or obese conditions. Targeting key immune cells and cytokines in adipose tissue microenvironment for obesity treatment becomes an attractive research point.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
38
|
Han SM, Park ES, Park J, Nahmgoong H, Choi YH, Oh J, Yim KM, Lee WT, Lee YK, Jeon YG, Shin KC, Huh JY, Choi SH, Park J, Kim JK, Kim JB. Unique adipose tissue invariant natural killer T cell subpopulations control adipocyte turnover in mice. Nat Commun 2023; 14:8512. [PMID: 38129377 PMCID: PMC10739728 DOI: 10.1038/s41467-023-44181-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue invariant natural killer T (iNKT) cells are a crucial cell type for adipose tissue homeostasis in obese animals. However, heterogeneity of adipose iNKT cells and their function in adipocyte turnover are not thoroughly understood. Here, we investigate transcriptional heterogeneity in adipose iNKT cells and their hierarchy using single-cell RNA sequencing in lean and obese mice. We report that distinct subpopulations of adipose iNKT cells modulate adipose tissue homeostasis through adipocyte death and birth. We identify KLRG1+ iNKT cells as a unique iNKT cell subpopulation in adipose tissue. Adoptive transfer experiments showed that KLRG1+ iNKT cells are selectively generated within adipose tissue microenvironment and differentiate into a CX3CR1+ cytotoxic subpopulation in obese mice. In addition, CX3CR1+ iNKT cells specifically kill enlarged and inflamed adipocytes and recruit macrophages through CCL5. Furthermore, adipose iNKT17 cells have the potential to secrete AREG, and AREG is involved in stimulating adipose stem cell proliferation. Collectively, our data suggest that each adipose iNKT cell subpopulation plays key roles in the control of adipocyte turnover via interaction with adipocytes, adipose stem cells, and macrophages in adipose tissue.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeu Park
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kyung Min Yim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Taek Lee
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Yong Geun Jeon
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Cheul Shin
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea.
| | - Jae Bum Kim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
39
|
Caslin HL, Bolus WR, Thomas C, Toki S, Norlander AE, Peebles RS, Hasty AH. Bovine Serum Albumin Elicits IL-33-Dependent Adipose Tissue Eosinophilia: Potential Relevance to Ovalbumin-induced Models of Allergic Disease. Immunohorizons 2023; 7:842-852. [PMID: 38095595 PMCID: PMC10759155 DOI: 10.4049/immunohorizons.2300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
All cells of the immune system reside in adipose tissue (AT), and increasing type 2 immune cells may be a therapeutic strategy to improve metabolic health. In our previous study using i.p. IL-5 injections to increase eosinophils, we observed that a standard vehicle control of 0.1% BSA also elicited profound AT eosinophilia. In this study, we aimed to determine whether BSA-induced AT eosinophilia results in metabolic benefits in murine models of diet-induced obesity. I.p. 0.1% BSA injections increased AT eosinophils after 4 wk. Despite elevating eosinophils to >50% of immune cells in the AT, body weight and glucose tolerance were not different between groups. Interestingly, BSA elicited epithelial IL-33 production, as well as gene expression for type 2 cytokines and IgE production that were dependent on IL-33. Moreover, multiple models of OVA sensitization also drove AT eosinophilia. Following transplantation of a donor fat pad with BSA-induced eosinophilia, OVA-sensitized recipient mice had higher numbers of bronchoalveolar lavage eosinophils that were recipient derived. Interestingly, lungs of recipient mice contained eosinophils, macrophages, and CD8 T cells from the donor AT. These trafficked similarly from BSA- and non-BSA-treated AT, suggesting even otherwise healthy AT serves as a reservoir of immune cells capable of migrating to the lungs. In conclusion, our studies suggest that i.p. injections of BSA and OVA induce an allergic response in the AT that elicits eosinophil recruitment, which may be an important consideration for those using OVA in animal models of allergic disease.
Collapse
Affiliation(s)
- Heather L. Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Health and Human Performance, University of Houston, Houston, TX
| | - W. Reid Bolus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA
| | - Christopher Thomas
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Allison E. Norlander
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
40
|
Woodward B, Hillyer LM, Monk JM. The Tolerance Model of Non-Inflammatory Immune Competence in Acute Pediatric Malnutrition: Origins, Evidence, Test of Fitness and Growth Potential. Nutrients 2023; 15:4922. [PMID: 38068780 PMCID: PMC10707886 DOI: 10.3390/nu15234922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The tolerance model rests on the thesis of a physiologically regulated, albeit unsustainable, systemic attempt to adapt to the catabolic challenge posed by acute prepubescent malnutrition even in its severe forms. The model centers on the immunological component of the attempt, positing reorientation toward a non-inflammatory form of competence in place of the classic paradigm of immunological attrition and exhaustion. The foundation of the model was laid in 1990, and sixteen years later it was articulated formally on the basis of a body of evidence centered on T cell cytokines and interventions with cytokine and hormonal mediators. The benefit originally suggested was a reduced risk of autoimmune pathologies consequent to the catabolic release of self-antigens, hence the designation highlighting immune tolerance. Herein, the emergence of the tolerance model is traced from its roots in the recognition that acute malnutrition elicits an endocrine-based systemic adaptive attempt. Thereafter, the growth of the evidence base supporting the model is outlined, and its potential to shed new light on existing information is tested by application to the findings of a published clinical study of acutely malnourished children. Finally, some knowledge gaps pertinent to the model are identified and its potential for growth consonant with evolving perceptions of immunobiology is illustrated.
Collapse
Affiliation(s)
- Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.M.H.); (J.M.M.)
| | | | | |
Collapse
|
41
|
Redruello-Romero A, Benitez-Cantos MS, Lopez-Perez D, García-Rubio J, Tamayo F, Pérez-Bartivas D, Moreno-SanJuan S, Ruiz-Palmero I, Puentes-Pardo JD, Vilchez JR, López-Nevot MÁ, García F, Cano C, León J, Carazo Á. Human adipose tissue as a major reservoir of cytomegalovirus-reactive T cells. Front Immunol 2023; 14:1303724. [PMID: 38053998 PMCID: PMC10694288 DOI: 10.3389/fimmu.2023.1303724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Cytomegalovirus (CMV) is a common herpesvirus with a high prevalence worldwide. After the acute infection phase, CMV can remain latent in several tissues. CD8 T cells in the lungs and salivary glands mainly control its reactivation control. White adipose tissue (WAT) contains a significant population of memory T cells reactive to viral antigens, but CMV specificity has mainly been studied in mouse WAT. Therefore, we obtained blood, omental WAT (oWAT), subcutaneous WAT (sWAT), and liver samples from 11 obese donors to characterize the human WAT adaptive immune landscape from a phenotypic and immune receptor specificity perspective. Methods We performed high-throughput sequencing of the T cell receptor (TCR) locus to analyze tissue and blood TCR repertoires of the 11 donors. The presence of TCRs specific to CMV epitopes was tested through ELISpot assays. Moreover, phenotypic characterization of T cells was carried out through flow cytometry. Results High-throughput sequencing analyses revealed that tissue TCR repertoires in oWAT, sWAT, and liver samples were less diverse and dominated by hyperexpanded clones when compared to blood samples. Additionally, we predicted the presence of TCRs specific to viral epitopes, particularly from CMV, which was confirmed by ELISpot assays. Remarkably, we found that oWAT has a higher proportion of CMV-reactive T cells than blood or sWAT. Finally, flow cytometry analyses indicated that most WAT-infiltrated lymphocytes were tissue-resident effector memory CD8 T cells. Discussion Overall, these findings postulate human oWAT as a major reservoir of CMV-specific T cells, presumably for latent viral reactivation control. This study enhances our understanding of the adaptive immune response in human WAT and highlights its potential role in antiviral defense.
Collapse
Affiliation(s)
| | - Maria S. Benitez-Cantos
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - David Lopez-Perez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | | | - Daniel Pérez-Bartivas
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Sara Moreno-SanJuan
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Cytometry and Microscopy Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Isabel Ruiz-Palmero
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Jose D. Puentes-Pardo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose R. Vilchez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Miguel Á. López-Nevot
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Federico García
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Josefa León
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Digestive Unit, San Cecilio University Hospital, Granada, Spain
| | - Ángel Carazo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
42
|
Hu Y, Chakarov S. Eosinophils in obesity and obesity-associated disorders. DISCOVERY IMMUNOLOGY 2023; 2:kyad022. [PMID: 38567054 PMCID: PMC10917198 DOI: 10.1093/discim/kyad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 04/04/2024]
Abstract
Despite the rising prevalence and costs for the society, obesity etiology, and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis, and progression of obesity and related metabolic disorders. We summarize eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how the adipose tissue environments shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.
Collapse
Affiliation(s)
- Yanan Hu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| |
Collapse
|
43
|
Ngo TB, Josyula A, DeStefano S, Fertil D, Faust M, Lokwani R, Sadtler K. Ectopic adipogenesis in response to injury and material implantation in an autoimmune mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561105. [PMID: 37986843 PMCID: PMC10659416 DOI: 10.1101/2023.10.05.561105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Due to the limited capacity of mammals to regenerate complex tissues, researchers have worked to understand the mechanisms of tissue regeneration in organisms that maintain that capacity. One example is the MRL/MpJ mouse strain with unique regenerative capacity in ear pinnae that is absent from other strains, such as the common C57BL/6 strain. The MRL/MpJ mouse has also been associated with an autoimmune phenotype even in the absence of the mutant Fas gene described in its parent strain MRL/lpr. Due to these findings, we evaluated the differences between the responses of MRL/MpJ versus C57BL/6 strain in traumatic muscle injury and subsequent material implantation. One salient feature of the MRL/MpJ response to injury was a robust adipogenesis within the muscle. This was associated with a decrease in M2-like polarization in response to biologically derived extracellular matrix scaffolds. In pro-fibrotic materials, such as polyethylene, there were fewer foreign body giant cells in the MRL/MpJ mice. As there are reports of both positive and negative influences of adipose tissue and adipogenesis on wound healing, this model could provide an important lens to investigate the interplay between stem cells, adipose tissue, and immune responses in trauma and materials implantation.
Collapse
Affiliation(s)
- Tran B. Ngo
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Aditya Josyula
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Sabrina DeStefano
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Daphna Fertil
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Mondreakest Faust
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Ravi Lokwani
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Kaitlyn Sadtler
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| |
Collapse
|
44
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
45
|
Mazitova AM, Márquez-Sánchez AC, Koltsova EK. Fat and inflammation: adipocyte-myeloid cell crosstalk in atherosclerosis. Front Immunol 2023; 14:1238664. [PMID: 37781401 PMCID: PMC10540690 DOI: 10.3389/fimmu.2023.1238664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Adipose tissue inflammation has been implicated in various chronic inflammatory diseases and cancer. Perivascular adipose tissue (PVAT) surrounds the aorta as an extra layer and was suggested to contribute to atherosclerosis development. PVAT regulates the function of endothelial and vascular smooth muscle cells in the aorta and represent a reservoir for various immune cells which may participate in aortic inflammation. Recent studies demonstrate that adipocytes also express various cytokine receptors and, therefore, may directly respond to inflammatory stimuli. Here we will summarize current knowledge on immune mechanisms regulating adipocyte activation and the crosstalk between myeloid cells and adipocytes in pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra M. Mazitova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ana Cristina Márquez-Sánchez
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
46
|
Chia DKA, Demuytere J, Ernst S, Salavati H, Ceelen W. Effects of Hyperthermia and Hyperthermic Intraperitoneal Chemoperfusion on the Peritoneal and Tumor Immune Contexture. Cancers (Basel) 2023; 15:4314. [PMID: 37686590 PMCID: PMC10486595 DOI: 10.3390/cancers15174314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Hyperthermia combined with intraperitoneal (IP) drug delivery is increasingly used in the treatment of peritoneal metastases (PM). Hyperthermia enhances tumor perfusion and increases drug penetration after IP delivery. The peritoneum is increasingly recognized as an immune-privileged organ with its own distinct immune microenvironment. Here, we review the immune landscape of the healthy peritoneal cavity and immune contexture of peritoneal metastases. Next, we review the potential benefits and unwanted tumor-promoting effects of hyperthermia and the associated heat shock response on the tumor immune microenvironment. We highlight the potential modulating effect of hyperthermia on the biomechanical properties of tumor tissue and the consequences for immune cell infiltration. Data from translational and clinical studies are reviewed. We conclude that (mild) hyperthermia and HIPEC have the potential to enhance antitumor immunity, but detailed further studies are required to distinguish beneficial from tumor-promoting effects.
Collapse
Affiliation(s)
- Daryl K. A. Chia
- Department of Surgery, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Jesse Demuytere
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Sam Ernst
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Hooman Salavati
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
47
|
Bubnovskaya L, Ganusevich I, Merentsev S, Osinsky D. CANCER-ASSOCIATED ADIPOCYTES AND PROGNOSTIC VALUE OF PREOPERATIVE NEUTROPHIL-LYMPHOCYTE RATIO IN GASTRIC CANCER. Exp Oncol 2023; 45:88-98. [PMID: 37417278 DOI: 10.15407/exp-oncology.2023.01.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) turned out to be a routinely available marker capable to reflect the systemic inflammatory response created by a tumor. Gastric cancer (GC) grows in the anatomical vicinity of adipose tissue, which is also associated with low-grade inflammation. AIM To investigate the usefulness of the combined use of preoperative NLR and density of intratumoral cancer-associated adipocytes (CAAs) for predicting the disease outcome in GC patients. MATERIALS AND METHODS A total of 151 patients with GC were eligible for retrospective analysis between 2009 and 2015.NLR preoperative values were calculated. Perilipin expression in tumor tissue was examined immunohistochemically. RESULTS Low preoperative NLR is the most reliable prognostic factor for the favorable outcome for patients with low density of intratumoral CAAs. Patients with a high density of CCAs are at high risk of lethal outcomes independently of the value of preoperative NLR. CONCLUSION The results have clearly shown an association between preoperative NLR and the density of CAAs in the primary tumor of GC patients. The prognostic value of NLR is essentially modified by means of the individual density of intratumoral CAAs in GC patients.The elevated NLR could be of significant predictive potential for a negative prognosis for patients with tumors characterized by the high density of CAAs independently of BMI.
Collapse
Affiliation(s)
- L Bubnovskaya
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| | - I Ganusevich
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| | - S Merentsev
- City Clinical Oncological Center, Kyiv 03115, Ukraine
| | - D Osinsky
- City Clinical Oncological Center, Kyiv 03115, Ukraine
| |
Collapse
|
48
|
Li JH, Hepworth MR, O'Sullivan TE. Regulation of systemic metabolism by tissue-resident immune cell circuits. Immunity 2023; 56:1168-1186. [PMID: 37315533 PMCID: PMC10321269 DOI: 10.1016/j.immuni.2023.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within these cell circuits, immune cells integrate cues from dietary contents and commensal microbes in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate structural cell metabolism. These tissue-resident immune circuits can become dysregulated during inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the evidence describing key cellular networks within and between the liver, gastrointestinal tract, and adipose tissue that control systemic metabolism and how these cell circuits become dysregulated during certain metabolic diseases. We also identify open questions in the field that have the potential to enhance our understanding of metabolic health and disease.
Collapse
Affiliation(s)
- Joey H Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA; Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
49
|
Ijaz MU, Vaziri F, Wan YJY. Effects of Bacillus Calmette-Guérin on immunometabolism, microbiome and liver diseases ⋆. LIVER RESEARCH 2023; 7:116-123. [PMID: 38223885 PMCID: PMC10786626 DOI: 10.1016/j.livres.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/22/2023] [Accepted: 05/16/2023] [Indexed: 01/16/2024]
Abstract
Metabolic diseases have overtaken infectious diseases as the most serious public health issue and economic burden in most countries. Moreover, metabolic diseases increase the risk of having infectious diseases. The treatment of metabolic disease may require a long-term strategy of taking multiple medications, which can be costly and have side effects. Attempts to expand the therapeutic use of vaccination to prevent or treat metabolic diseases have attracted significant interest. A growing body of evidence indicates that Bacillus Calmette-Guérin (BCG) offers protection against non-infectious diseases. The non-specific effects of BCG occur likely due to the induction of trained immunity. In this regard, understanding how BCG influences the development of chronic metabolic health including liver diseases would be important. This review focuses on research on BCG, the constellation of disorders associated with metabolic health issues including liver diseases and diabetes as well as how BCG affects the gut microbiome, immunity, and metabolism.
Collapse
Affiliation(s)
- Muhammad Umair Ijaz
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
50
|
Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol 2023; 14:1169232. [PMID: 37215125 PMCID: PMC10196194 DOI: 10.3389/fimmu.2023.1169232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive endocrine disorder affecting women, which can lead to infertility. Infertility, obesity, hirsutism, acne, and irregular menstruation are just a few of the issues that PCOS can be linked to. PCOS has a complicated pathophysiology and a range of clinical symptoms. Chronic low-grade inflammation is one of the features of PCOS. The inflammatory environment involves immune and metabolic disturbances. Numerous organ systems across the body, in addition to the female reproductive system, have been affected by the pathogenic role of immunological dysregulation in PCOS in recent years. Insulin resistance and hyperandrogenism are associated with immune cell dysfunction and cytokine imbalance. More importantly, obesity is also involved in immune dysfunction in PCOS, leading to an inflammatory environment in women with PCOS. Hormone, obesity, and metabolic interactions contribute to the pathogenesis of PCOS. Hormone imbalance may also contribute to the development of autoimmune diseases. The aim of this review is to summarize the pathophysiological role of immune dysregulation in various organ systems of PCOS patients and provide new ideas for systemic treatment of PCOS in the future.
Collapse
Affiliation(s)
- Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|