1
|
Hicks R, Gozal D, Ahmed S, Khalyfa A. Interplay between gut microbiota and exosome dynamics in sleep apnea. Sleep Med 2025; 131:106493. [PMID: 40203611 DOI: 10.1016/j.sleep.2025.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Sleep-disordered breathing (SDB) is characterized by recurrent reductions or interruptions in airflow during sleep, termed hypopneas and apneas, respectively. SDB impairs sleep quality and is linked to substantive health issues including cardiovascular and metabolic disorders, as well as cognitive decline. Recent evidence suggests a link between gut microbiota (GM) composition and sleep apnea. Indeed, GM, a community of microorganisms residing in the gut, has emerged as a potential player in various diseases, and several studies have identified associations between sleep apnea and GM diversity along with shifts in bacterial populations. Additionally, the concept of "leaky gut," a compromised intestinal barrier with potentially increased inflammation, has emerged as another key player in the potential bidirectional relationship between GM and sleep apnea. One of the potential effectors could be extracellular vesicles (EVs) underlying gut-brain communication pathways that are relevant to sleep regulation and function. Thus, therapeutic implications afforded by targeting the GM or exosomes for sleep apnea management have surfaced as promising areas of research. This review explores current understanding of the relationship between GM, exosomes and sleep apnea, highlighting key research dynamics and potential mechanisms. A comprehensive review of the literature was conducted, focusing on studies investigating GM composition, intestinal barrier function and gut-brain communication in relation to sleep apnea.
Collapse
Affiliation(s)
- Rebecca Hicks
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Sarfraz Ahmed
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
2
|
Song Y, Maley A, Boyineni J, Challa SR, Fornal CA, Soares MB, Malchenko S, Veeravalli KK, Gyarmati P. Effects of co-housing and social isolation on the gut microbiota. Physiol Behav 2025; 299:114980. [PMID: 40472884 DOI: 10.1016/j.physbeh.2025.114980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/23/2025] [Accepted: 06/02/2025] [Indexed: 06/19/2025]
Abstract
It is well documented that both social connection patterns and gut microbiota influence individuals' mental and physical health through multiple systems, such as the neuroendocrine, immune, and metabolic systems. Social connections shape the gut microbiota, and altered gut microbiota in turn modulates the host's social behavior in a feedback loop. We therefore hypothesize that the gut microbiota mediates the interaction between social connection patterns and individual well-being. In this pilot study, the effects of co-housing (CH) and social isolation (SI) on shaping gut microbiota community structure were investigated using a mouse model. Twenty-four 3-week-old mice were randomly divided into CH and SI groups (6/sex/group) for 8 weeks. CH mice were socially housed in cages containing 3 mice per cage, while SI mice were individually housed in cages with opaque barriers to prevent interaction. We found that CH increased gut microbiota diversity and stabilized its composition, whereas SI decreased gut microbiota diversity and resulted in more compositional fluctuations-changes previously associated with immunity, metabolism, and neurodevelopment. Meanwhile, this work also demonstrates that including litter controls may be pivotal in establishing a stable baseline for gut microbiota research.
Collapse
Affiliation(s)
- Yajing Song
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, IL, USA; Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, SC, USA.
| | - Anjani Maley
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, IL, USA
| | - Jerusha Boyineni
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, IL, USA
| | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, IL, USA
| | - Casimir A Fornal
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, IL, USA
| | - Marcelo Bento Soares
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, IL, USA; Department of Neurosurgery, University of Illinois College of Medicine Peoria, IL, USA; Department of Psychiatry and Behavioral Medicine, University of Illinois College of Medicine Peoria, IL, USA
| | - Sergey Malchenko
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, IL, USA
| | - Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, IL, USA; Department of Neurosurgery, University of Illinois College of Medicine Peoria, IL, USA; Department of Pediatrics, University of Illinois College of Medicine Peoria, IL, USA; Department of Neurology, University of Illinois College of Medicine Peoria, IL, USA
| | - Peter Gyarmati
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, IL, USA; Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, SC, USA.
| |
Collapse
|
3
|
Parthasarathy S, Giridharan B, Panigrahi J, Konyak LM, Jamir N, Tharumasivam SV. Abnormal microbiota due to prenatal antibiotic as a possible risk factor for Attention-Deficit / Hyperactivity Disorder (ADHD). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:299-328. [PMID: 40414636 DOI: 10.1016/bs.irn.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
One of the major issues modern medicine faces is the increasing use of antibiotics in reaction to the increased incidence of infectious agents. The current trend of antibiotic overuse contributes to microbial dysbiosis. Recent studies have hypothesized that antibiotic exposure during pregnancy, which alters the composition of the microbiome, might increase the likelihood of attention deficit hyperactivity disorder (ADHD). In addition to the ongoing discussion about the potential links between antibiotic usage, microbiome dysbiosis, and ADHD, there is a rising interest in integrating AI and ML into healthcare practices. Diagnosis, treatment plans, and prognoses are all enhanced by these technological advancements. Remote monitors or telemedicine monitoring are among the management techniques described in this chapter for effectively managing illnesses. Also discussed are ways to halt the progression of diseases by preventative measures that use biosensor technology and dietary approaches. Personalized treatment programs, disease progression stages, and prognosis evaluations are all made possible with the use of artificial intelligence and machine learning. By using these technologies to provide individualized therapy, healthcare practitioners may get a better understanding of ADHD and perhaps improve patient outcomes.
Collapse
Affiliation(s)
| | - Bupesh Giridharan
- Department of Forestry, Nagaland University (Hqrs.), Lumami, Nagaland, India; Department of Biotechnology, Berhampur University, Bhanja Bihar, Ganjam, Odisha, India.
| | - Jogeswar Panigrahi
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Ganjam, Odisha, India
| | - Longnyu M Konyak
- Department of Forestry, Nagaland University (Hqrs.), Lumami, Nagaland, India
| | - Nokenketla Jamir
- Department of Forestry, Nagaland University (Hqrs.), Lumami, Nagaland, India
| | | |
Collapse
|
4
|
Ramadan YN, Alqifari SF, Alshehri K, Alhowiti A, Mirghani H, Alrasheed T, Aljohani F, Alghamdi A, Hetta HF. Microbiome Gut-Brain-Axis: Impact on Brain Development and Mental Health. Mol Neurobiol 2025:10.1007/s12035-025-04846-0. [PMID: 40234288 DOI: 10.1007/s12035-025-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
The current discovery that the gut microbiome, which contains roughly 100 trillion microbes, affects health and disease has catalyzed a boom in multidisciplinary research efforts focused on understanding this relationship. Also, it is commonly demonstrated that the gut and the CNS are closely related in a bidirectional pathway. A balanced gut microbiome is essential for regular brain activities and emotional responses. On the other hand, the CNS regulates the majority of GI physiology. Any disruption in this bidirectional pathway led to a progression of health problems in both directions, neurological and gastrointestinal diseases. In this review, we hope to shed light on the complicated connections of the microbiome-gut-brain axis and the critical roles of gut microbiome in the early development of the brain in order to get a deeper knowledge of microbiome-mediated pathological conditions and management options through rebalancing of gut microbiome.
Collapse
Affiliation(s)
- Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Saleh F Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Khaled Alshehri
- Department of Internal Medicine (Neurology), Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amirah Alhowiti
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Hyder Mirghani
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal Aljohani
- Division of Medicine and Gastroenterology, Department of Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of Medicine, Division of Psychiatry, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
5
|
Johnson KVA, Steenbergen L. Probiotics reduce negative mood over time: the value of daily self-reports in detecting effects. NPJ MENTAL HEALTH RESEARCH 2025; 4:10. [PMID: 40205027 PMCID: PMC11982403 DOI: 10.1038/s44184-025-00123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
The burgeoning field of the microbiome-gut-brain axis has inspired research into how the gut microbiome can affect human emotion. Probiotics offer ways to investigate microbial-based interventions but results have been mixed, with more evidence of beneficial effects in clinically depressed patients. Using a randomised, double-blind, placebo-controlled design in 88 healthy volunteers, we conduct a comprehensive study into effects of a multispecies probiotic on emotion regulation and mood through questionnaires, emotional processing tests and daily reports. We find clear evidence that probiotics reduce negative mood, starting after two weeks, based on daily monitoring, but few other changes. Our findings reconcile inconsistencies of previous studies, revealing that commonly used pre- versus post-intervention assessments cannot reliably detect probiotic-induced changes in healthy subjects' emotional state. We conclude that probiotics can benefit mental health in the general population and identify traits of individuals who derive greatest benefit, allowing future targeting of at-risk individuals.
Collapse
Affiliation(s)
- Katerina V-A Johnson
- Clinical Psychology Unit, Leiden University, Institute of Psychology, Leiden, The Netherlands.
- Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University, Institute of Psychology, Leiden, The Netherlands
| |
Collapse
|
6
|
Anka IZ, Uren Webster T, McLaughlin S, Overland B, Hitchings M, Garcia de Leaniz C, Consuegra S. Gut microbiota diversity affects fish behaviour and is influenced by host genetics and early rearing conditions. Open Biol 2025; 15:240232. [PMID: 40237041 PMCID: PMC12001083 DOI: 10.1098/rsob.240232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
The gut microbiota influences human and animal cognition and behaviour through its effects on the endocrine and immune systems. The microbiome-behaviour relationship may be especially relevant for fish, due to their diverse evolutionary history and potential implications for farming and conservation. Yet, there is limited research on the interaction between gut microbiome and behaviour in non-model fish. We manipulated the rearing environment and diet of fish from two inbred strains of the self-fertilizing mangrove killifish (Kryptolebias marmoratus) and assessed the effects on the gut microbiome and its interactions with anxiety-like behaviours. We found that microbiota composition and alpha diversity were significantly influenced by host genetics (strain), hatching mode (naturally or artificial dechorionation) and diet, but not by environmental enrichment. Fish activity level and inspections of a novel object were strongly associated with microbiota community composition and alpha diversity. The microbial taxa associated with differences in behaviour were dominated by Bacteroidales, potentially related to the production of metabolites affecting neural development. We suggest that the association between microbiome and fish behaviour could be an indirect effect of the modulation of the gut microbiota by host genetics and early rearing conditions, which could be affecting the production of microbial metabolites that interact with the fish physiology.
Collapse
Affiliation(s)
- Ishrat Z. Anka
- Department of Biosciences, Swansea University, Swansea, UK
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | | | - Sam McLaughlin
- Department of Biosciences, Swansea University, Swansea, UK
| | | | | | - Carlos Garcia de Leaniz
- Department of Biosciences, Swansea University, Swansea, UK
- Centro de Investigaciones Marinas, Universidade de Vigo, Vigo, Spain
| | - Sofia Consuegra
- Department of Biosciences, Swansea University, Swansea, UK
- Departamento de Biotecnologia y Acuicultura, Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| |
Collapse
|
7
|
Fischer L, Paschke B, Gareis F, Schumacher M, Liere P, Hiergeist A, Gessner A, Rupprecht R, Neumann ID, Bosch OJ. The translocator protein 18 kDa (TSPO) ligand etifoxine in an animal model of anxiety: Line- and sex-dependent effects on emotionality, stress reactivity, spine density, oxytocin receptors, steroids, and microbiome composition. Neuropharmacology 2025; 266:110282. [PMID: 39725124 DOI: 10.1016/j.neuropharm.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO). We tested the TSPO ligand etifoxine (ETX) in a rat model of hyper-anxiety and depression-like behavior, i.e., in female and male HAB (high anxiety-related behavior) rats, as well as in respective low anxiety (LAB) and non-selected control (NAB) rats for behavioral, molecular, cellular, and physiological parameters. Daily acute i.p. treatment with ETX or vehicle over 5 or 9 days revealed that ETX was most effective in female HAB rats; it reduced anxiety levels (5 days) and OXT-R binding brain site-specifically (5 and 9 days), and increased spine density (5 days). The behavioral ETX effect exclusively found in female HABs was accompanied by increased 3β5α-THDOC levels, without any effect in female LABs and NABs and on other neurosteroids. In males of all breeding lines, ETX changed a total of 10 out of 23 brain steroids. Passive stress-coping during 10-min forced swimming was not affected by 9-day treatment with ETX, the resulting stress-induced plasma corticosterone levels were higher in ETX-treated NAB rats of both sexes compared with their VEH-treated groups. The fecal bacterial composition was similar but beta diversity differed between HABs and LABs and from NABs independent of sex; ETX treatment had no effect. Therefore, we propose considering the aspect of sex in treatment strategies for anxiety disorders. This is particularly important to establish better treatment regimens for women.
Collapse
Affiliation(s)
- Lilith Fischer
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Bjarne Paschke
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Franziska Gareis
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 80 Rue Du Général Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 80 Rue Du Général Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany.
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany.
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
Estevez I, Buckley BD, Lindman M, Panzera N, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. The kinase RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during central nervous system viral infection. Immunity 2025; 58:666-682.e6. [PMID: 39999836 PMCID: PMC11903149 DOI: 10.1016/j.immuni.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
While recent work has identified roles for immune mediators in regulating neural activity, how innate immune signaling within neurons influences neurotransmission remains poorly understood. Emerging evidence suggests that the modulation of neurotransmission may serve important roles in host protection during infection of the central nervous system. Here, we showed that receptor-interacting protein kinase-3 (RIPK3) preserved neuronal survival during flavivirus infection through the suppression of excitatory neurotransmission. These effects occurred independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promoted phosphorylation of the neuronal regulatory kinase calcium/calmodulin-dependent protein kinase II (CaMKII), which in turn activated the transcription factor cyclic AMP response element-binding protein (CREB) to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Boutry J, Rieu O, Guimard L, Meliani J, Nedelcu AM, Tissot S, Stepanskyy N, Ujvari B, Hamede R, Dujon AM, Tökölyi J, Thomas F. First evidence for the evolution of host manipulation by tumors during the long-term vertical transmission of tumor cells in Hydra oligactis. eLife 2025; 13:RP97271. [PMID: 40036153 PMCID: PMC11879105 DOI: 10.7554/elife.97271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Océane Rieu
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Lena Guimard
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Aurora M Nedelcu
- Department of Biology, University of New BrunswickFrederictonCanada
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Nikita Stepanskyy
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
- School of Life and Environmental Sciences, Deakin UniversityWaurn PondsAustralia
| | - Rodrigo Hamede
- School of Biological Sciences, University of TasmaniaHobartAustralia
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
- School of Life and Environmental Sciences, Deakin UniversityWaurn PondsAustralia
| | - Jácint Tökölyi
- MTA-DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of DebrecenDebrecenHungary
| | - Fréderic Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| |
Collapse
|
10
|
Aizpurua O, Botnen AB, Eisenhofer R, Odriozola I, Santos‐Bay L, Bjørnsen MB, Gilbert MTP, Alberdi A. Functional Insights Into the Effect of Feralisation on the Gut Microbiota of Cats Worldwide. Mol Ecol 2025; 34:e17695. [PMID: 39953749 PMCID: PMC11874672 DOI: 10.1111/mec.17695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Successfully adapting to a feral lifestyle with different access to food, shelter and other resources requires rapid physiological and behavioural changes, which could potentially be facilitated by gut microbiota plasticity. To investigate whether alterations in gut microbiota support this transition to a feral lifestyle, we analysed the gut microbiomes of domestic and feral cats from six geographically diverse locations using genome-resolved metagenomics. By reconstructing 229 non-redundant metagenome-assembled genomes from 92 cats, we identified a typical carnivore microbiome structure, with notable diversity and taxonomic differences across regions. While overall diversity metrics did not differ significantly between domestic and feral cats, hierarchical modelling of species communities, accounting for geographic and sex covariates, revealed significantly larger microbial functional capacities among feral cats. The increased capacity for amino acid and lipid degradation corresponds to feral cats' dietary reliance on crude protein and fat. A second modelling analysis, using behavioural phenotype as the main predictor, unveiled a positive association between microbial production of short-chain fatty acids, neurotransmitters and vitamins and cat aggressiveness, suggesting that gut microbes might contribute to heightened aggression and elusiveness observed in feral cats. Functional microbiome shifts may therefore play a significant role in the development of physiological and behavioural traits advantageous for a feral lifestyle, a hypothesis that warrants validation through microbiota manipulation experiments.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Amanda Bolt Botnen
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Raphael Eisenhofer
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Iñaki Odriozola
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Luisa Santos‐Bay
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Mads Bjørn Bjørnsen
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
- University Museum, NTNUTrondheimNorway
| | - Antton Alberdi
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
11
|
Frazier AN, Ferree L, Belk AD, Al-Lakhen K, Cramer MC, Metcalf JL. Stochasticity Highlights the Development of Both the Gastrointestinal and Upper-Respiratory-Tract Microbiomes of Neonatal Dairy Calves in Early Life. Animals (Basel) 2025; 15:361. [PMID: 39943131 PMCID: PMC11816138 DOI: 10.3390/ani15030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
The microbiome of dairy calves undergoes extensive change due to various forces during the first weeks of life. Importantly, diseases such as bovine respiratory disease (BRD) and calf diarrhea can have profound impacts on the early-life microbiome. Therefore, a longitudinal, repeated-measures pilot study was designed to characterize the establishment of nasal and fecal microbiomes of dairy calves, assess the governing forces of microbial assembly, and evaluate how disease states impact these microbial ecologies. Dairy calves (n = 19) were clinically evaluated for gastrointestinal and respiratory disease across three weeks beginning at age ≤ seven days old. Fecal (n = 57) and nasal (n = 57) microbial samples were taken for paired-end 16S rRNA gene amplicon sequencing. Taxonomy and diversity analyses were used to characterize early-life nasal and fecal microbiomes. Stochasticity and determinism were measured using normalized stochasticity testing (NST) and Dirichlet multinomial model (DMM). All analyses were tested for statistical significance. Clinical diarrhea was observed in 11 of the 19 calves. Clinical BRD was not independently observed among the cohort; however, two calves presented clinical signs of both BRD and diarrhea. Taxonomic analysis revealed that fecal samples were highlighted by Bacteroidaceae (40%; relative abundance), Ruminococcaceae (13%), and Lachnospiraceae (10%), with changes in diversity (Kruskal-Wallis; p < 0.05) and composition (PERMANOVA; p < 0.05). Clinical diarrhea reduced diversity in the fecal microbiome but did not impact composition. Nasal samples featured Moraxellaceae (49%), Mycoplasmataceae (16%), and Pasteurellaceae (3%). While no diversity changes were seen in nasal samples, compositional changes were observed (p < 0.05). NST metrics (Kruskal-Wallis; p > 0.01) and DMM (PERMANOVA; p < 0.01) revealed that stochastic, neutral theory-based assembly dynamics govern early-life microbial composition and that distinct microbial populations drive community composition in healthy and diarrheic calves.
Collapse
Affiliation(s)
- A. Nathan Frazier
- United States Department of Agriculture—Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA
| | - Logan Ferree
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Aeriel D. Belk
- Department of Animal Science, Auburn University, Auburn, AL 36849, USA
| | - Khalid Al-Lakhen
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA
| | - M. Caitlin Cramer
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica L. Metcalf
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA
- Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholars Program, CIFAR, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
12
|
Huarcaya LRD. Gut Microbiota and Alzheimer Disease. ACTA NEUROLOGICA TAIWANICA 2025; 34:1-12. [PMID: 40396795 DOI: 10.4103/ant.ant_113_0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 05/22/2025]
Abstract
ABSTRACT The hallmarks of Alzheimer's disease (AD) include brain dysfunction and the buildup of amyloid and tau proteins. The onset of dementia is one of the latter symptoms. Imaging diagnostics allowed for the detection of amyloid buildup in the brain 10-20 years before the emergence of overt signs of the disease. The application of imaging diagnostic techniques allowed for this identification. Within the next few decades, the incidence and frequency of this disease are expected to reach epidemic proportions unless measures are done to stop or slow its growth. However, unless action is taken to slow or stop the disease's progression, it will continue to threaten the health of the general public. Recently, there has been some speculation that the gut flora might contribute to the development of AD. Not only that, but the rapidly expanding ischemia etiology is another possible contributor to the issue. Rumor has it that there's a network connecting the brain and the stomach called the "gut-brain-microbiota axis." The hypothesis is based on this network. Furthermore, a large amount of evidence implies that the gut microbiota (GMB) could potentially contribute to the onset of AD. It has been suggested that the GMB could play a role in the onset of AD. This notion has been bolstered by new studies. It is quite probable that this review will address the prospect of a link between the microbiome and AD. This concept could be explored as a potential therapy or preventative measure. Some techniques that show promise as new treatments for AD include changes to the GMB, which can be achieved through dietary changes or positive microflora interventions, and changes to microbiological partners and their products, like amyloid protein.
Collapse
|
13
|
Zhang W, Zhang Y, Zhao Y, Li L, Zhang Z, Hettinga K, Yang H, Deng J. A Comprehensive Review on Dietary Polysaccharides as Prebiotics, Synbiotics, and Postbiotics in Infant Formula and Their Influences on Gut Microbiota. Nutrients 2024; 16:4122. [PMID: 39683515 DOI: 10.3390/nu16234122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Human milk contains an abundance of nutrients which benefit the development and growth of infants. However, infant formula has to be used when breastfeeding is not possible. The large differences between human milk and infant formula in prebiotics lead to the suboptimal intestinal health of infant formula-fed infants. This functional deficit of infant formula may be overcome through other dietary polysaccharides that have been characterized. The aim of this review was to summarize the potential applications of dietary polysaccharides as prebiotics, synbiotics, and postbiotics in infant formula to better mimic the functionality of human milk prebiotics for infant gut health. Previous studies have demonstrated the influences of dietary polysaccharides on gut microbiota, SCFA production, and immune system development. Compared to prebiotics, synbiotics and postbiotics showed better application potential in shaping the gut microbiota, the prevention of pathogen infections, and the development of the immune system. Moreover, the safety issues for biotics still require more clinical trials with a large-scale population and long time duration, and the generally accepted regulations are important to regulate related products. Pectin polysaccharides has similar impacts to human milk oligosaccharides on gut microbiota and the repairing of a damaged gut barrier, with similar functions also being observed for inulin and β-glucan. Prebiotics as an encapsulation material combined with probiotics and postbiotics showed better potential applications compared to traditional material in infant formula.
Collapse
Affiliation(s)
- Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Zhao Z, Zhang X, Zhao F, Luo T. Microbiome-Metabolomics Analysis Insight into the Effects of Starvation and Refeeding on Intestinal Integrity in the Juvenile Largemouth Bass ( Micropterus salmoides). Int J Mol Sci 2024; 25:12500. [PMID: 39684211 DOI: 10.3390/ijms252312500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The effects of starvation and refeeding on the gut condition of juvenile largemouth bass (Micropterus salmoides) remain unclear. Therefore, our research aimed to explore these effects. Amylase and lipase activities were remarkably decreased in the starvation (ST) group, yet prominently increased in the refeeding (RE) group (p < 0.05). In addition to the malondialdehyde (MDA) level, catalase (CAT) and superoxide dismutase (SOD) activities were significantly upregulated in the ST group (p < 0.05) in marked contrast to those in the controls; however, the RE group showed no substantial variations in CAT and SOD activities or the MDA level (p > 0.05). During starvation, the expression of Nrf2-Keap1 pathway-associated genes was significantly upregulated (p < 0.05). The comparative levels of TNF-α, IL-1β, and IL-15 were highly increased, with the levels of TGF-β1 and IL-10 apparently downregulated in the ST group; in contrast, these levels were restored to their original values in the RE group (p < 0.05). In contrast to the controls, the ST group showed significantly lower height and width of the villi, muscle thickness, and crypt depth and a higher goblet cell number; however, these values were recovered to some extent in the RE group (p < 0.05). The dominant bacterial phyla in the intestines of both groups were Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinobacteria, with marked inter-group differences in the genera Serratia and Lactobacillus. Metabolomics analysis showed that amino acid metabolism is disrupted during starvation and is restored after refeeding. In summary, this study expands our comprehension of the interaction between oxidative stress and antioxidant defenses among juvenile largemouth bass subjected to starvation and refeeding.
Collapse
Affiliation(s)
- Zhenxin Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Xianbo Zhang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Fei Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Tianxun Luo
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| |
Collapse
|
15
|
Zhang B, Ma Y, Duan W, Fan Q, Sun J. Pinewood nematode induced changes in the assembly process of gallery microbiomes benefit its vector beetle's development. Microbiol Spectr 2024; 12:e0141224. [PMID: 39258937 PMCID: PMC11448173 DOI: 10.1128/spectrum.01412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024] Open
Abstract
Microbiomes play crucial roles in insect adaptation, especially under stress such as pathogen invasion. Yet, how beneficial microbiomes assemble remains unclear. The wood-boring beetle Monochamus alternatus, a major pest and vector of the pine wilt disease (PWD) nematode, offers a unique model. We conducted controlled experiments using amplicon sequencing (16S rRNA and ITS) within galleries where beetles and microbes interact. PWD significantly altered bacterial and fungal communities, suggesting distinct assembly processes. Deterministic factors like priority effects, host selection, and microbial interactions shaped microbiome composition, distinguishing healthy from PWN-infected galleries. Actinobacteria, Firmicutes, and Ophiostomataceae emerged as potentially beneficial, aiding beetle's development and pathogen resistance. This study unveils how nematode-induced changes in gallery microbiomes influence beetle's development, shedding light on microbiome assembly amid insect-pathogen interactions. Insights gleaned enhance understanding of PWD spread and suggest novel management strategies via microbiome manipulation.IMPORTANCEThis study explores the assembly process of gallery microbiomes associated with a wood-boring beetles, Monochamus alternatus, a vector of the pine wilt disease (PWD). By conducting controlled comparison experiments and employing amplicon approaches, the study reveals significant changes in taxonomic composition and functional adaptation of bacterial and fungal communities induced by PWD. It identifies deterministic processes, including priority effects, host selection, and microbial interactions, as major drivers in microbiome assembly. Additionally, the study highlights the presence of potentially beneficial microbes such as Actinobacteria, Firmicutes, and Ophiostomataceae, which could enhance beetle development and resistance to pathogens. These findings shed light on the intricate interplay among insects, microbiomes, and pathogens, contributing to a deeper understanding of PWD prevalence and suggesting innovative management strategies through microbiome manipulation.
Collapse
Affiliation(s)
- Bin Zhang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yafei Ma
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wenzhao Duan
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Qi Fan
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Sariyati NH, Othman N, Abdullah-Fauzi NAF, Chan E, Md-Zain BM, Karuppannan KV, Abdul-Latiff MAB. Characterizing the gastrointestinal microbiome diversity in endangered Malayan Siamang (Symphalangus syndactylus): Insights into group composition, age variability and sex-related patterns. J Med Primatol 2024; 53:e12730. [PMID: 39148344 DOI: 10.1111/jmp.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The gut morphology of Symphalangus syndactylus exhibits an intermediate structure that aligns with its consumption of fruit and ability to supplement its diet with leaves. The Siamang relies on its gut microbiome for energy extraction, immune system development, and the synthesis of micronutrients. Gut microbiome composition may be structured based on several factors such as age, sex, and habitat. No study has yet been carried out on the gut microbiota of the Hylobatidae members in Malaysia especially S. syndactylus. METHODS This study aims to resolve the gut microbiome composition of S. syndactylus by using a fecal sample as DNA source, adapting high-throughput sequencing, and 16S rRNA as the targeted region. RESULTS A total of 1 272 903 operational taxonomic units (OTUs) reads were assigned to 22 phyla, 139 families, and 210 genera of microbes. The {Unknown Phylum} Bacteria-2 is the dominant phyla found across all samples. Meanwhile, {Unknown Phylum} Bacteria-2 and Firmicutes are genera that have the highest relative abundance found in the Siamang gut. CONCLUSIONS This study yields nonsignificance relationship between Siamang gut microbiome composition with these three factors: group, sex, and age.
Collapse
Affiliation(s)
- Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nurfatiha Akmal Fawwazah Abdullah-Fauzi
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Eddie Chan
- Treks Event Sdn Bhd, Lot AW/G5.00, GF, Awana Hotel Genting Highlands Resort, Genting Highlands, Pahang, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN), Kuala Lumpur, Malaysia
| | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
17
|
Sun Y, Fan C, Lei D. Association between gut microbiota and postpartum depression: A bidirectional Mendelian randomization study. J Affect Disord 2024; 362:615-622. [PMID: 39029663 DOI: 10.1016/j.jad.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUNDS Empirical investigations have shown an association between gut microbiota and postpartum depression (PPD); nevertheless, the precise cause-and-effect relationship between these two variables remains ambiguous. This research aimed to examine the possible reciprocal causal relationship between the gut microbiota and PPD. METHODS In this work, we used Mendelian randomization (MR) to analyze the relationship between the gut microbiota (n = 18,340) and PPD (n = 67,205). We obtained the relevant SNPs from publicly accessible genome-wide association studies (GWAS). The SNP estimations were combined by the inverse-variance weighted (IVW) method, including sensitivity analyses such as weighted median, MR Egger, and MR Pleiotropy Residual Sum and Outlier (PRESSO). RESULTS We have identified strong correlations between six bacterial characteristics and the likelihood of developing PPD. Our research revealed that the genus Ruminococcaceae UCG010, the family Veillonellaceae, and the class Clostridia had a beneficial effect on preventing PPD. The class Alphaproteobacteria, genus Slackia, and order NB1n were found to have a significant negative impact on PPD. The sensitivity studies conducted on these bacterial features consistently confirmed these finding. LIMITATIONS It is crucial to acknowledge that our study was conducted just within a European society, which may restrict its applicability to other groups. CONCLUSIONS The findings from our MR investigation indicate a potential causal relationship between certain kinds of gut bacteria and PPD. Additional investigation is required to elucidate the influence of gut microbiota on the advancement of PPD.
Collapse
Affiliation(s)
- Yonghao Sun
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| | - Di Lei
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
18
|
Yang H, Liu W, Gao T, Liu Q, Zhang M, Liu Y, Ma X, Zhang N, Shi K, Duan M, Ma S, Zhang X, Cheng Y, Qu H, Chen M, Zhan S. Causal associations between gut microbiota, circulating inflammatory proteins, and epilepsy: a multivariable Mendelian randomization study. Front Immunol 2024; 15:1438645. [PMID: 39315097 PMCID: PMC11416947 DOI: 10.3389/fimmu.2024.1438645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have suggested that gut microbiota (GM) may be involved in the pathogenesis of epilepsy through the microbiota-gut-brain axis (MGBA). However, the causal relationship between GM and different epilepsy subtypes and whether circulating inflammatory proteins act as mediators to participate in epileptogenesis through the MGBA remain unclear. Therefore, it is necessary to identify specific GM associated with epilepsy and its subtypes and explore their underlying inflammatory mechanisms for risk prediction, personalized treatment, and prognostic monitoring of epilepsy. Methods We hypothesized the existence of a pathway GM-inflammatory proteins-epilepsy. We found genetic variants strongly associated with GM, circulating inflammatory proteins, epilepsy and its subtypes, including generalized and partial seizures, from large-scale genome-wide association studies (GWAS) summary data and used Multivariate Mendelian Randomization to explore the causal relationship between the three and whether circulating inflammatory proteins play a mediating role in the pathway from GM to epilepsy, with inverse variance weighted (IVW) method as the primary statistical method, supplemented by four methods: MR-Egger, weighted median estimator (WME), Weighted mode and Simple mode. Results 16 positive and three negative causal associations were found between the genetic liability of GM and epilepsy and its subtypes. There were nine positive and nine negative causal associations between inflammatory proteins and epilepsy and its subtypes. Furthermore, we found that C-X-C motif chemokine 11 (CXCL11) levels mediated the causal association between Genus Family XIII AD3011 group and epilepsy. Conclusion Our study highlights the possible causal role of specific GM and specific inflammatory proteins in the development of epilepsy and suggests that circulating inflammatory proteins may mediate epileptogenesis through the MGBA.
Collapse
Affiliation(s)
- Han Yang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Liu
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tiantian Gao
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qifan Liu
- Department of Transplant Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengyuan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yixin Liu
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Ma
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Nan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kaili Shi
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Minyu Duan
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuyin Ma
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuxuan Cheng
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huiyang Qu
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengying Chen
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
19
|
Pereira LTG, Vilela WR, Bellozi PMQ, Engel DF, de Paula GC, de Andrade RR, Mortari MR, de Melo Teixeira M, Coleine C, Figueiredo CP, de Bem AF, Amato AA. Fecal microbiota transplantation ameliorates high-fat diet-induced memory impairment in mice. J Neurochem 2024; 168:2893-2907. [PMID: 38934224 DOI: 10.1111/jnc.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Gut dysbiosis is linked to metabolic and neurodegenerative diseases and comprises a plausible link between high-fat diet (HFD) and brain dysfunction. Here we show that gut microbiota modulation by either antibiotic treatment for 5 weeks or a brief 3-day fecal microbiota transplantation (FMT) regimen from low-fat (control) diet-fed mice decreased weight gain, adipose tissue hypertrophy, and glucose intolerance induced by HFD in C57BL/6 male mice. Notably, gut microbiota modulation by FMT completely reversed impaired recognition memory induced by HFD, whereas modulation by antibiotics had less pronounced effect. Improvement in recognition memory by FMT was accompanied by decreased HFD-induced astrogliosis in the hippocampal cornu ammonis region. Gut microbiome composition analysis indicated that HFD diminished microbiota diversity compared to control diet, whereas FMT partially restored the phyla diversity. Our findings reinforce the role of the gut microbiota on HFD-induced cognitive impairment and suggest that modulating the gut microbiota may be an effective strategy to prevent metabolic and cognitive dysfunction associated with unfavorable dietary patterns.
Collapse
Affiliation(s)
| | - Wembley Rodrigues Vilela
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Paula Maria Quaglio Bellozi
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Daiane Fátima Engel
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | | | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | | | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Cláudia Pinto Figueiredo
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
20
|
Ritz NL, Bastiaanssen TFS, Cowan CSM, Smith L, Theune N, Brocka M, Myers EM, Moloney RD, Moloney GM, Shkoporov AN, Draper LA, Hill C, Dinan TG, Slattery DA, Cryan JF. Social fear extinction susceptibility is associated with Microbiota-Gut-Brain axis alterations. Brain Behav Immun 2024; 120:315-326. [PMID: 38852762 DOI: 10.1016/j.bbi.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Social anxiety disorder is a common psychiatric condition that severely affects quality of life of individuals and is a significant societal burden. Although many risk factors for social anxiety exist, it is currently unknown how social fear sensitivity manifests biologically. Furthermore, since some individuals are resilient and others are susceptible to social fear, it is important to interrogate the mechanisms underpinning individual response to social fear situations. The microbiota-gut-brain axis has been associated with social behaviour, has recently been linked with social anxiety disorder, and may serve as a therapeutic target for modulation. Here, we assess the potential of this axis to be linked with social fear extinction processes in a murine model of social anxiety disorder. To this end, we correlated differential social fear responses with microbiota composition, central gene expression, and immune responses. Our data provide evidence that microbiota variability is strongly correlated with alterations in social fear behaviour. Moreover, we identified altered gene candidates by amygdalar transcriptomics that are linked with social fear sensitivity. These include genes associated with social behaviour (Armcx1, Fam69b, Kcnj9, Maoa, Serinc5, Slc6a17, Spata2, and Syngr1), inflammation and immunity (Cars, Ckmt1, Klf5, Maoa, Map3k12, Pex5, Serinc5, Sidt1, Spata2), and microbe-host interaction (Klf5, Map3k12, Serinc5, Sidt1). Together, these data provide further evidence for a role of the microbiota-gut-brain axis in social fear responses.
Collapse
Affiliation(s)
- Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Caitlin S M Cowan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Linda Smith
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Nigel Theune
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Marta Brocka
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Eibhlís M Myers
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Rachel D Moloney
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12YT20, Ireland
| | - David A Slattery
- Dept. of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt 60528, Germany
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland.
| |
Collapse
|
21
|
O'Malley MA. The concept of balance in microbiome research. Bioessays 2024; 46:e2400050. [PMID: 38924108 DOI: 10.1002/bies.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Microbiome research is changing how ecosystems, including animal bodies, are understood. In the case of humans, microbiome knowledge is transforming medical approaches and applications. However, the field is still young, and many conceptual and explanatory issues need resolving. These include how microbiome causality is understood, and how to conceptualize the role microbiomes have in the health status of their hosts and other ecosystems. A key concept that crops up in the medical microbiome literature is "balance." A balanced microbiome is thought to produce health and an imbalanced one disease. Based on a quantitative and qualitative analysis of how balance is used in the microbiome literature, this "think again" essay critically analyses each of the several subconceptions of balance. As well as identifying problems with these uses, the essay suggests some starting points for filling this conceptual gap in microbiome research.
Collapse
Affiliation(s)
- Maureen A O'Malley
- School of History and Philosophy of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
22
|
Sun H, Chen F, Zheng W, Huang Y, Peng H, Hao H, Wang KJ. Impact of captivity and natural habitats on gut microbiome in Epinephelus akaara across seasons. BMC Microbiol 2024; 24:239. [PMID: 38961321 PMCID: PMC11221007 DOI: 10.1186/s12866-024-03398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The gut microbiota significantly influences the health and growth of red-spotted grouper (Epinephelus akaara), a well-known commercial marine fish from Fujian Province in southern China. However, variations in survival strategies and seasons can impact the stability of gut microbiota data, rendering it inaccurate in reflecting the state of gut microbiota. Which impedes the effective enhancement of aquaculture health through a nuanced understanding of gut microbiota. Inspired by this, we conducted a comprehensive analysis of the gut microbiota of wild and captive E. akaara in four seasons. RESULTS Seventy-two E. akaara samples were collected from wild and captive populations in Dongshan city, during four different seasons. Four sections of the gut were collected to obtain comprehensive information on the gut microbial composition and sequenced using 16S rRNA next-generation Illumina MiSeq. We observed the highest gut microbial diversity in both captive and wild E. akaara during the winter season, and identified strong correlations with water temperature using Mantel analysis. Compared to wild E. akaara, we found a more complex microbial network in captive E. akaara, as evidenced by increased abundance of Bacillaceae, Moraxellaceae and Enterobacteriaceae. In contrast, Vibrionaceae, Clostridiaceae, Flavobacteriaceae and Rhodobacteraceae were found to be more active in wild E. akaara. However, some core microorganisms, such as Firmicutes and Photobacterium, showed similar distribution patterns in both wild and captive groups. Moreover, we found the common community composition and distribution characteristics of top 10 core microbes from foregut to hindgut in E. akaara. CONCLUSIONS Collectively, the study provides relatively more comprehensive description of the gut microbiota in E. akaara, taking into account survival strategies and temporal dimensions, which yields valuable insights into the gut microbiota of E. akaara and provides a valuable reference to its aquaculture.
Collapse
Affiliation(s)
- Hang Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yixin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
23
|
Henry LP, Fernandez M, Wolf S, Abhyankar V, Ayroles JF. Wolbachia impacts microbiome diversity and fitness-associated traits for Drosophila melanogaster in a seasonally fluctuating environment. Ecol Evol 2024; 14:e70004. [PMID: 39041013 PMCID: PMC11262851 DOI: 10.1002/ece3.70004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The microbiome contributes to many different host traits, but its role in host adaptation remains enigmatic. The fitness benefits of the microbiome often depend on ecological conditions, but theory suggests that fluctuations in both the microbiome and environment modulate these fitness benefits. Moreover, vertically transmitted bacteria might constrain the ability of both the microbiome and host to respond to changing environments. Drosophila melanogaster provides an excellent system to investigate the impacts of interactions between the microbiome and the environment. To address this question, we created field mesocosms of D. melanogaster undergoing seasonal environmental change with and without the vertically transmitted bacteria, Wolbachia pipientis. Sampling temporal patterns in the microbiome revealed that Wolbachia constrained microbial diversity. Furthermore, Wolbachia and a dominant member of the microbiome, Commensalibacter, were associated with differences in two higher-order fitness traits, starvation resistance and lifespan. Our work here suggests that the interplay between the abiotic context and microbe-microbe interactions may shape key host phenotypes that underlie adaptation to changing environments. We conclude by exploring the consequences of complex interactions between Wolbachia and the microbiome for our understanding of eco-evolutionary processes that shape host-microbiome interactions.
Collapse
Affiliation(s)
- Lucas P. Henry
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Michael Fernandez
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Scott Wolf
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Varada Abhyankar
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Julien F. Ayroles
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
24
|
Sharon O, Ben Simon E, Shah VD, Desel T, Walker MP. The new science of sleep: From cells to large-scale societies. PLoS Biol 2024; 22:e3002684. [PMID: 38976664 PMCID: PMC11230563 DOI: 10.1371/journal.pbio.3002684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
In the past 20 years, more remarkable revelations about sleep and its varied functions have arguably been made than in the previous 200. Building on this swell of recent findings, this essay provides a broad sampling of selected research highlights across genetic, molecular, cellular, and physiological systems within the body, networks within the brain, and large-scale social dynamics. Based on this raft of exciting new discoveries, we have come to realize that sleep, in this moment of its evolution, is very much polyfunctional (rather than monofunctional), yet polyfunctional for reasons we had never previously considered. Moreover, these new polyfunctional insights powerfully reaffirm sleep as a critical biological, and thus health-sustaining, requisite. Indeed, perhaps the only thing more impressive than the unanticipated nature of these newly emerging sleep functions is their striking divergence, from operations of molecular mechanisms inside cells to entire group societal dynamics.
Collapse
Affiliation(s)
- Omer Sharon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Eti Ben Simon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Vyoma D. Shah
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Tenzin Desel
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Matthew P. Walker
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
25
|
Tamayo M, Olivares M, Ruas-Madiedo P, Margolles A, Espín JC, Medina I, Moreno-Arribas MV, Canals S, Mirasso CR, Ortín S, Beltrán-Sanchez H, Palloni A, Tomás-Barberán FA, Sanz Y. How Diet and Lifestyle Can Fine-Tune Gut Microbiomes for Healthy Aging. Annu Rev Food Sci Technol 2024; 15:283-305. [PMID: 38941492 DOI: 10.1146/annurev-food-072023-034458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Many physical, social, and psychological changes occur during aging that raise the risk of developing chronic diseases, frailty, and dependency. These changes adversely affect the gut microbiota, a phenomenon known as microbe-aging. Those microbiota alterations are, in turn, associated with the development of age-related diseases. The gut microbiota is highly responsive to lifestyle and dietary changes, displaying a flexibility that also provides anactionable tool by which healthy aging can be promoted. This review covers, firstly, the main lifestyle and socioeconomic factors that modify the gut microbiota composition and function during healthy or unhealthy aging and, secondly, the advances being made in defining and promoting healthy aging, including microbiome-informed artificial intelligence tools, personalized dietary patterns, and food probiotic systems.
Collapse
Affiliation(s)
- M Tamayo
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
- Faculty of Medicine, Autonomous University of Madrid (UAM), Spain
| | - M Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
| | | | - A Margolles
- Health Research Institute (ISPA), Asturias, Spain
| | - J C Espín
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - I Medina
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | | | - S Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - C R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - S Ortín
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - H Beltrán-Sanchez
- Department of Community Health Sciences, Fielding School of Public Health and California Center for Population Research, University of California, Los Angeles, California, USA
| | - A Palloni
- Department of Sociology, University of Wisconsin, Madison, Wisconsin, USA
| | - F A Tomás-Barberán
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Y Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
| |
Collapse
|
26
|
Mühlen S, Heroven AK, Elxnat B, Kahl S, Pieper DH, Dersch P. Infection and antibiotic-associated changes in the fecal microbiota of C. rodentium ϕ stx2dact-infected C57BL/6 mice. Antimicrob Agents Chemother 2024; 68:e0005724. [PMID: 38526080 PMCID: PMC11064522 DOI: 10.1128/aac.00057-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/24/2024] [Indexed: 03/26/2024] Open
Abstract
Enterohemorrhagic Escherichia coli causes watery to bloody diarrhea, which may progress to hemorrhagic colitis and hemolytic-uremic syndrome. While early studies suggested that antibiotic treatment may worsen the pathology of an enterohemorrhagic Escherichia coli (EHEC) infection, recent work has shown that certain non-Shiga toxin-inducing antibiotics avert disease progression. Unfortunately, both intestinal bacterial infections and antibiotic treatment are associated with dysbiosis. This can alleviate colonization resistance, facilitate secondary infections, and potentially lead to more severe illness. To address the consequences in the context of an EHEC infection, we used the established mouse infection model organism Citrobacter rodentium ϕstx2dact and monitored changes in fecal microbiota composition during infection and antibiotic treatment. C. rodentium ϕstx2dact infection resulted in minor changes compared to antibiotic treatment. The infection caused clear alterations in the microbial community, leading mainly to a reduction of Muribaculaceae and a transient increase in Enterobacteriaceae distinct from Citrobacter. Antibiotic treatments of the infection resulted in marked and distinct variations in microbiota composition, diversity, and dispersion. Enrofloxacin and trimethoprim/sulfamethoxazole, which did not prevent Shiga toxin-mediated organ damage, had the least disruptive effects on the intestinal microbiota, while kanamycin and tetracycline, which rapidly cleared the infection without causing organ damage, caused a severe reduction in diversity. Kanamycin treatment resulted in the depletion of all but Bacteroidetes genera, whereas tetracycline effects on Clostridia were less severe. Together, these data highlight the need to address the impact of individual antibiotics in the clinical care of life-threatening infections and consider microbiota-regenerating therapies.IMPORTANCEUnderstanding the impact of antibiotic treatment on EHEC infections is crucial for appropriate clinical care. While discouraged by early studies, recent findings suggest certain antibiotics can impede disease progression. Here, we investigated the impact of individual antibiotics on the fecal microbiota in the context of an established EHEC mouse model using C. rodentium ϕstx2dact. The infection caused significant variations in the microbiota, leading to a transient increase in Enterobacteriaceae distinct from Citrobacter. However, these effects were minor compared to those observed for antibiotic treatments. Indeed, antibiotics that most efficiently cleared the infection also had the most detrimental effect on the fecal microbiota, causing a substantial reduction in microbial diversity. Conversely, antibiotics showing adverse effects or incomplete bacterial clearance had a reduced impact on microbiota composition and diversity. Taken together, our findings emphasize the delicate balance required to weigh the harmful effects of infection and antibiosis in treatment.
Collapse
Affiliation(s)
- Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
- German Centre for Infection Research (DZIF), partner site HZI, Braunschweig, and associated site University of Münster, Münster, Germany
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bettina Elxnat
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
- German Centre for Infection Research (DZIF), partner site HZI, Braunschweig, and associated site University of Münster, Münster, Germany
| |
Collapse
|
27
|
Labetoulle M, Baudouin C, Benitez Del Castillo JM, Rolando M, Rescigno M, Messmer EM, Aragona P. How gut microbiota may impact ocular surface homeostasis and related disorders. Prog Retin Eye Res 2024; 100:101250. [PMID: 38460758 DOI: 10.1016/j.preteyeres.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Changes in the bacterial flora in the gut, also described as gut microbiota, are readily acknowledged to be associated with several systemic diseases, especially those with an inflammatory, neuronal, psychological or hormonal factor involved in the pathogenesis and/or the perception of the disease. Maintaining ocular surface homeostasis is also based on all these four factors, and there is accumulating evidence in the literature on the relationship between gut microbiota and ocular surface diseases. The mechanisms involved are mostly interconnected due to the interaction of central and peripheral neuronal networks, inflammatory effectors and the hormonal system. A better understanding of the influence of the gut microbiota on the maintenance of ocular surface homeostasis, and on the onset or persistence of ocular surface disorders could bring new insights and help elucidate the epidemiology and pathology of ocular surface dynamics in health and disease. Revealing the exact nature of these associations could be of paramount importance for developing a holistic approach using highly promising new therapeutic strategies targeting ocular surface diseases.
Collapse
Affiliation(s)
- Marc Labetoulle
- Ophthalmology Départment, Hopital Bicetre, APHP, Université Paris-Saclay, IDMIT Infrastructure, Fontenay-aux-Roses Cedex, France; Hôpital National de la Vision des Quinze, Vingts, IHU ForeSight, Paris Saclay University, Paris, France.
| | - Christophe Baudouin
- Hôpital National de la Vision des Quinze, Vingts, IHU ForeSight, Paris Saclay University, Paris, France
| | - Jose M Benitez Del Castillo
- Departamento de Oftalmología, Hospital Clínico San Carlos, Clínica Rementeria, Instituto Investigaciones Oftalmologicas Ramon Castroviejo, Universidad Complutense, Madrid, Spain
| | - Maurizio Rolando
- Ocular Surface and Dry Eye Center, ISPRE Ophthalmics, Genoa, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20090, MI, Italy
| | | | - Pasquale Aragona
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Messina, Italy
| |
Collapse
|
28
|
Estevez I, Buckley BD, Panzera N, Lindman M, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during CNS viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591333. [PMID: 38712188 PMCID: PMC11071512 DOI: 10.1101/2024.04.26.591333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While recent work has identified roles for immune mediators in the regulation of neural activity, the capacity for cell intrinsic innate immune signaling within neurons to influence neurotransmission remains poorly understood. However, the existing evidence linking immune signaling with neuronal function suggests that modulation of neurotransmission may serve previously undefined roles in host protection during infection of the central nervous system. Here, we identify a specialized function for RIPK3, a kinase traditionally associated with necroptotic cell death, in preserving neuronal survival during neurotropic flavivirus infection through the suppression of excitatory neurotransmission. We show that RIPK3 coordinates transcriptomic changes in neurons that suppress neuronal glutamate signaling, thereby desensitizing neurons to excitotoxic cell death. These effects occur independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promotes phosphorylation of the key neuronal regulatory kinase CaMKII, which in turn activates the transcription factor CREB to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting new mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D. Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J. Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
29
|
Awe T, Fasawe A, Sawe C, Ogunware A, Jamiu AT, Allen M. The modulatory role of gut microbiota on host behavior: exploring the interaction between the brain-gut axis and the neuroendocrine system. AIMS Neurosci 2024; 11:49-62. [PMID: 38617041 PMCID: PMC11007408 DOI: 10.3934/neuroscience.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The brain-gut axis refers to the communication between the central nervous system and the gastrointestinal tract, with the gut microbiome playing a crucial role. While our understanding of the interaction between the gut microbiome and the host's physiology is still in its nascent stage, evidence suggests that the gut microbiota can indeed modulate host behavior. Understanding the specific mechanisms by which the gut microbiota community modulates the host's behavior remains the focus of present and future neuro-gastroenterology studies. This paper reviews several pieces of evidence from the literature on the impact of gut microbiota on host behavior across animal taxa. We explore the different pathways through which this modulation occurs, with the aim of deepening our understanding of the fascinating relationship between the gut microbiome and the central nervous system.
Collapse
Affiliation(s)
- Temitope Awe
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ayoola Fasawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Caleb Sawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Adedayo Ogunware
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Michael Allen
- Department of Physiology, College of Medicine, Lagos State University, Lagos, Nigeria
| |
Collapse
|
30
|
Even C, Magzal F, Shochat T, Haimov I, Agmon M, Tamir S. Microbiota Metabolite Profiles and Dietary Intake in Older Individuals with Insomnia of Short vs. Normal Sleep Duration. Biomolecules 2024; 14:419. [PMID: 38672436 PMCID: PMC11047947 DOI: 10.3390/biom14040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Recent evidence suggests that the gut microbiota plays a role in insomnia pathogenesis. This study compared the dietary habits and microbiota metabolites of older adults with insomnia of short vs. normal sleep duration (ISSD and INSD, respectively). Data collection included sleep assessment through actigraphy, dietary analysis using the Food Frequency Questionnaire, and metabolomic profiling of stool samples. The results show that ISSD individuals had higher body mass index and a greater prevalence of hypertension. Significant dietary differences were observed, with the normal sleep group consuming more kilocalories per day and specific aromatic amino acids (AAAs) phenylalanine and tyrosine and branch-chain amino acid (BCAA) valine per protein content than the short sleep group. Moreover, metabolomic analysis identified elevated levels of the eight microbiota metabolites, benzophenone, pyrogallol, 5-aminopental, butyl acrylate, kojic acid, deoxycholic acid (DCA), trans-anethole, and 5-carboxyvanillic acid, in the short compared to the normal sleep group. The study contributes to the understanding of the potential role of dietary and microbial factors in insomnia, particularly in the context of sleep duration, and opens avenues for targeted dietary interventions and gut microbiota modulation as potential therapeutic approaches for treating insomnia.
Collapse
Affiliation(s)
- Carmel Even
- Nutritional Science Department, Tel Hai College, Upper Galilee, Kiryat Shmona 1220800, Israel (S.T.)
| | - Faiga Magzal
- Nutritional Science Department, Tel Hai College, Upper Galilee, Kiryat Shmona 1220800, Israel (S.T.)
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Tamar Shochat
- The Cheryl Spencer Department of Nursing, University of Haifa, Haifa 3103301, Israel; (T.S.)
| | - Iris Haimov
- Department of Psychology and the Center for Psychobiological Research, The Max Stern Yezreel Valley College, Affula 19300, Israel;
| | - Maayan Agmon
- The Cheryl Spencer Department of Nursing, University of Haifa, Haifa 3103301, Israel; (T.S.)
| | - Snait Tamir
- Nutritional Science Department, Tel Hai College, Upper Galilee, Kiryat Shmona 1220800, Israel (S.T.)
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel
| |
Collapse
|
31
|
Marshall-Jones ZV, Patel KV, Castillo-Fernandez J, Lonsdale ZN, Haydock R, Staunton R, Amos GCA, Watson P. Conserved signatures of the canine faecal microbiome are associated with metronidazole treatment and recovery. Sci Rep 2024; 14:5277. [PMID: 38438389 PMCID: PMC10912219 DOI: 10.1038/s41598-024-51338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Antibiotic resistance is recognised as one of the biggest global threats to human and animal health. Understanding the influence of antibiotics on the canine microbiome is important to know the potential mid-to-long term effects on dysbiosis and mitigate side-effects such as antibiotic-associated diarrhoea. In this study, metronidazole was prescribed to 22 dogs for suspected giardiasis after exhibiting gastrointestinal symptoms such as diarrhoea and/or vomiting. Faecal samples were collected before, during seven days of treatment, and six months post-cessation. Faecal microbiota was assessed with 16S rRNA sequencing. Shannon diversity was reduced for up to three days after the treatment ended, and an altered community persisted for four to six weeks. All dogs recovered to a similar microbiome composition as pre-treatment. Immediately after receiving metronidazole, an increase in the relative abundance of the genera Lactobacillus, Bifidobacterium, and Enterococcus was observed. This may be due to antibiotic resistance commonly exhibited by these organisms. One-to-two weeks post-cessation, several other genera that were sensitive to the antibiotic recovered in abundances, with taxa belonging to the Erysipelotrichaceae family particularly driving composition change. Many of the bacteria initially reduced were associated with carbohydrate fermentation. This suggests scope exists to explore interventions to augment gastrointestinal health and support the re-establishment of the microbiome.
Collapse
Affiliation(s)
- Zoe V Marshall-Jones
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Krusha V Patel
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK.
| | | | - Zoe N Lonsdale
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Richard Haydock
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Ruth Staunton
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Gregory C A Amos
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| |
Collapse
|
32
|
Zhang K, Guo H, Zhang X, Yang H, Yuan G, Zhu Z, Lu X, Zhang J, Du J, Shi H, Jin G, Ren J, Hao J, Sun Y, Su P, Zhang Z. Effects of aerobic exercise or Tai Chi Chuan interventions on problematic mobile phone use and the potential role of intestinal flora: A multi-arm randomized controlled trial. J Psychiatr Res 2024; 170:394-407. [PMID: 38218013 DOI: 10.1016/j.jpsychires.2024.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/16/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Problematic use of mobile phones (PMPU) has been described as a serious public health issue. METHODS This study was a parallel three-arm randomized controlled trial and has completed registration (ClinicalTrials.gov Identifier: NCT05843591). Ninety college students with PMPU were randomly assigned to the aerobic exercise group (AE group, n = 30), the Tai Chi Chuan group (TCC group, n = 30), or the wait-list control group (WLC group, n = 30). At the end of the intervention, stool samples from the study participants were collected for biological analysis based on 16 S rDNA amplicon sequencing technology. The primary outcome was addiction symptoms assessed by the Smartphone Addiction Scale-Short Version (SAS-SV). The secondary outcomes are emotional symptoms, physical symptoms, and flora species. RESULTS Compared with the WLC group, the AE and TCC groups showed reductions in PMPU levels, physical and mental fatigue, but there was no difference between the two groups. Moreover, the effect of increasing self-esteem embodied in the TCC group was not present in the AE group. Compared to the WLC group, the relative abundance of Bacteroidaceae and Bacteroides were lower in the AE group, while the relative abundance of Erysipelotrichaceae and Alistipes were lower in the TCC group. And the relative abundance of Bacteroidaceae, Bacteroides, and Alistipes were significantly and negatively correlated with the decline in PMPU scores. CONCLUSION AE or TCC is an effective, safe and efficient intervention for college students with PMPU, providing some physiological and psychological benefits and having some impact on their intestinal flora.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310003, China.
| | - Haiyun Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Xueqing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huayu Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Guojing Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhihui Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jianghui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jun Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Haiyan Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Guifang Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Juan Ren
- The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jiahu Hao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Ying Sun
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Puyu Su
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China; Center for Evidence Based Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
33
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
34
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Jiang DQY, Guo TL. Interaction between Per- and Polyfluorinated Substances (PFAS) and Acetaminophen in Disease Exacerbation-Focusing on Autism and the Gut-Liver-Brain Axis. TOXICS 2024; 12:39. [PMID: 38250995 PMCID: PMC10818890 DOI: 10.3390/toxics12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
This review presents a new perspective on the exacerbation of autism spectrum disorder (ASD) by per- and polyfluoroalkyl substances (PFAS) through the gut-liver-brain axis. We have summarized evidence reported on the involvement of the gut microbiome and liver inflammation that led to the onset and exacerbation of ASD symptoms. As PFAS are toxicants that particularly target liver, this review has comprehensively explored the possible interaction between PFAS and acetaminophen, another liver toxicant, as the chemicals of interest for future toxicology research. Our hypothesis is that, at acute dosages, acetaminophen has the ability to aggravate the impaired conditions of the PFAS-exposed liver, which would further exacerbate neurological symptoms such as lack of social communication and interest, and repetitive behaviors using mechanisms related to the gut-liver-brain axis. This review discusses their potential interactions in terms of the gut-liver-brain axis and signaling pathways that may contribute to neurological diseases.
Collapse
Affiliation(s)
| | - Tai Liang Guo
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
36
|
Kraimi N, Ross T, Pujo J, De Palma G. The gut microbiome in disorders of gut-brain interaction. Gut Microbes 2024; 16:2360233. [PMID: 38949979 PMCID: PMC11218806 DOI: 10.1080/19490976.2024.2360233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.
Collapse
Affiliation(s)
- Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Taylor Ross
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Julien Pujo
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
37
|
Peng S, Ye L, Li Y, Wang F, Sun T, Wang L, Zhao J, Dong Z. Metagenomic insights into jellyfish-associated microbiome dynamics during strobilation. ISME COMMUNICATIONS 2024; 4:ycae036. [PMID: 38571744 PMCID: PMC10988111 DOI: 10.1093/ismeco/ycae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Host-associated microbiomes can play key roles in the metamorphosis of animals. Most scyphozoan jellyfish undergo strobilation in their life cycles, similar to metamorphosis in classic bilaterians. The exploration of jellyfish microbiomes may elucidate the ancestral mechanisms and evolutionary trajectories of metazoan-microbe associations and interactions during metamorphosis. However, current knowledge of the functional features of jellyfish microbiomes remains limited. Here, we performed a genome-centric analysis of associated microbiota across four successive life stages (polyp, early strobila, advanced strobila, and ephyra) during strobilation in the common jellyfish Aurelia coerulea. We observed shifts in taxonomic and functional diversity of microbiomes across distinct stages and proposed that the low microbial diversity in ephyra stage may be correlated with the high expression of the host-derived antimicrobial peptide aurelin. Furthermore, we recovered 43 high-quality metagenome-assembled genomes and determined the nutritional potential of the dominant Vibrio members. Interestingly, we observed increased abundances of genes related to the biosynthesis of amino acids, vitamins, and cofactors, as well as carbon fixation during the loss of host feeding ability, indicating the functional potential of Aurelia-associated microbiota to support the synthesis of essential nutrients. We also identified several potential mechanisms by which jellyfish-associated microbes establish stage-specific community structures and maintain stable colonization in dynamic host environments, including eukaryotic-like protein production, bacterial secretion systems, restriction-modification systems, and clustered regularly interspaced short palindromic repeats-Cas systems. Our study characterizes unique taxonomic and functional changes in jellyfish microbiomes during strobilation and provides foundations for uncovering the ancestral mechanism of host-microbe interactions during metamorphosis.
Collapse
Affiliation(s)
- Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijing Ye
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanghan Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Bonmatí-Carrión MÁ, Rol MA. Melatonin as a Mediator of the Gut Microbiota-Host Interaction: Implications for Health and Disease. Antioxidants (Basel) 2023; 13:34. [PMID: 38247459 PMCID: PMC10812647 DOI: 10.3390/antiox13010034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the role played by melatonin on the gut microbiota has gained increasingly greater attention. Additionally, the gut microbiota has been proposed as an alternative source of melatonin, suggesting that this antioxidant indoleamine could act as a sort of messenger between the gut microbiota and the host. This review analyses the available scientific literature about possible mechanisms involved in this mediating role, highlighting its antioxidant effects and influence on this interaction. In addition, we also review the available knowledge on the effects of melatonin on gut microbiota composition, as well as its ability to alleviate dysbiosis related to sleep deprivation or chronodisruptive conditions. The melatonin-gut microbiota relationship has also been discussed in terms of its role in the development of different disorders, from inflammatory or metabolic disorders to psychiatric and neurological conditions, also considering oxidative stress and the reactive oxygen species-scavenging properties of melatonin as the main factors mediating this relationship.
Collapse
Affiliation(s)
- María-Ángeles Bonmatí-Carrión
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Angeles Rol
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
39
|
Junrui-Fu, Rong Z, Huang X, Wang J, Long X, Feng Q, Deng H. Gut dysbacteriosis induces expression differences in the adult head transcriptome of Spodoptera frugiperda in a sex-specific manner. BMC Microbiol 2023; 23:388. [PMID: 38057708 PMCID: PMC10702092 DOI: 10.1186/s12866-023-03089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
Mounting evidence indicates that the gut microbiota influences the neurodevelopment and behavior of insects through the gut-brain axis. However, it is currently unclear whether the gut microbiota affect the head profiles and immune pathway in pests. Here, we find that gut bacteria is essential for the immune and neural development of adult Spodoptera frugiperda, which is an extremely destructive agricultural pest worldwide. 16 S rRNA sequencing analysis showed that antibiotics exposure significantly disturbed the composition and diversity of gut bacteria. Further transcriptomic analysis revealed that the adult head transcripts were greatly affected by gut dysbacteriosis, and differently expression genes critical for brain and neural development including A4galt, Tret1, nsun4, Galt, Mitofilin, SLC2A3, snk, GABRB3, Oamb and SLC6A1 were substantially repressed. Interestingly, the dysbacteriosis caused sex-specific differences in immune response. The mRNA levels of pll (serine/threonine protein kinase Pelle), PGRP (peptidoglycan-sensing receptor), CECA (cecropin A) and CECB (cecropin B) involved in Toll and Imd signaling pathway were drastically decreased in treated male adults' heads but not in female adults; however, genes of HIVEP2, ZNF131, inducible zinc finger protein 1-like and zinc finger protein 99-like encoding zinc-finger antiviral protein (ZAP) involved in the interferon (IFNα/β) pathway were significantly inhibited in treated female adults' heads. Collectively, these results demonstrate that gut microbiota may regulate head transcription and impact the S. frugiperda adults' heads through the immune pathway in a sex-specific manner. Our finding highlights the relationship between the gut microbiota and head immune systems of S. frugiperda adults, which is an astonishing similarity with the discoveries of other animals. Therefore, this is the basis for further research to understand the interactions between hosts and microorganisms via the gut-brain axis in S. frugiperda and other insects.
Collapse
Affiliation(s)
- Junrui-Fu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zixia Rong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ximei Huang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Junhan Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Long
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510631, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China.
| |
Collapse
|
40
|
Li Y, Deng Q, Liu Z. The relationship between gut microbiota and insomnia: a bi-directional two-sample Mendelian randomization research. Front Cell Infect Microbiol 2023; 13:1296417. [PMID: 38089822 PMCID: PMC10714008 DOI: 10.3389/fcimb.2023.1296417] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Insomnia is the second most common mental health issue, also is a social and financial burden. Insomnia affects the balance between sleep, the immune system, and the central nervous system, which may raise the risk of different systemic disorders. The gut microbiota, referred to as the "second genome," has the ability to control host homeostasis. It has been discovered that disruption of the gut-brain axis is linked to insomnia. Methods In this study, we conducted MR analysis between large-scale GWAS data of GMs and insomnia to uncover potential associations. Results Ten GM taxa were detected to have causal associations with insomnia. Among them, class Negativicutes, genus Clostridiuminnocuumgroup, genus Dorea, genus Lachnoclostridium, genus Prevotella7, and order Selenomonadalesare were linked to a higher risk of insomnia. In reverse MR analysis, we discovered a causal link between insomnia and six other GM taxa. Conclusion It suggested that the relationship between insomnia and intestinal flora was convoluted. Our findings may offer beneficial biomarkers for disease development and prospective candidate treatment targets for insomnia.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | | | | |
Collapse
|
41
|
Yang RQ, Chen YH, Wu QY, Tang J, Niu SZ, Zhao Q, Ma YC, Zou CG. Indole produced during dysbiosis mediates host-microorganism chemical communication. eLife 2023; 12:e85362. [PMID: 37987602 PMCID: PMC10691800 DOI: 10.7554/elife.85362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
An imbalance of the gut microbiota, termed dysbiosis, has a substantial impact on host physiology. However, the mechanism by which host deals with gut dysbiosis to maintain fitness remains largely unknown. In Caenorhabditis elegans, Escherichia coli, which is its bacterial diet, proliferates in its intestinal lumen during aging. Here, we demonstrate that progressive intestinal proliferation of E. coli activates the transcription factor DAF-16, which is required for maintenance of longevity and organismal fitness in worms with age. DAF-16 up-regulates two lysozymes lys-7 and lys-8, thus limiting the bacterial accumulation in the gut of worms during aging. During dysbiosis, the levels of indole produced by E. coli are increased in worms. Indole is involved in the activation of DAF-16 by TRPA-1 in neurons of worms. Our finding demonstrates that indole functions as a microbial signal of gut dysbiosis to promote fitness of the host.
Collapse
Affiliation(s)
- Rui-Qiu Yang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Yong-Hong Chen
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Qin-yi Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Jie Tang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Shan-Zhuang Niu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Qiu Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Yi-Cheng Ma
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Cheng-Gang Zou
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| |
Collapse
|
42
|
Oyanedel D, Lagorce A, Bruto M, Haffner P, Morot A, Labreuche Y, Dorant Y, de La Forest Divonne S, Delavat F, Inguimbert N, Montagnani C, Morga B, Toulza E, Chaparro C, Escoubas JM, Gueguen Y, Vidal-Dupiol J, de Lorgeril J, Petton B, Degremont L, Tourbiez D, Pimparé LL, Leroy M, Romatif O, Pouzadoux J, Mitta G, Le Roux F, Charrière GM, Travers MA, Destoumieux-Garzón D. Cooperation and cheating orchestrate Vibrio assemblages and polymicrobial synergy in oysters infected with OsHV-1 virus. Proc Natl Acad Sci U S A 2023; 120:e2305195120. [PMID: 37751557 PMCID: PMC10556616 DOI: 10.1073/pnas.2305195120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.
Collapse
Affiliation(s)
- Daniel Oyanedel
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Arnaud Lagorce
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Maxime Bruto
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Philippe Haffner
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Amandine Morot
- Université de Bretagne Occidentale, CNRS, Institut de recherche pour le développement (IRD), Ifremer, Laboratoire des sciences de l'environnement marin (LEMAR), Plouzané,F-29280, France
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, Institut Universitaire Européen de la Mer, LorientF-56100, France
| | - Yannick Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Yann Dorant
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Sébastien de La Forest Divonne
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - François Delavat
- Nantes Université, CNRS, Unité en Sciences Biologiques et Biotechnologies (US2B), UMR6286, Nantes,F-44000, France
| | - Nicolas Inguimbert
- Centre de Recherches Insulaires et OBservatoire de l’Environnement (CRIOBE), UAR3278, Ecole Pratique des Hautes Etudes (EPHE), Université de Perpignan Via Domitia, CNRS, PerpignanF-66860, France
| | - Caroline Montagnani
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Benjamin Morga
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Eve Toulza
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Cristian Chaparro
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Jean-Michel Escoubas
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Yannick Gueguen
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- MARine Biodiversity, Exploitation and Conservation (MARBEC) Univ Montpellier, CNRS, Ifremer, IRD, SèteF-34200, France
| | - Jeremie Vidal-Dupiol
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Julien de Lorgeril
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, Nouméa, Nouvelle-Calédonie,F-98800, France
| | - Bruno Petton
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Université de Bretagne Occidentale, CNRS, Institut de recherche pour le développement (IRD), Ifremer, Laboratoire des sciences de l'environnement marin (LEMAR), Plouzané,F-29280, France
| | - Lionel Degremont
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Delphine Tourbiez
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Léa-Lou Pimparé
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Marc Leroy
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Océane Romatif
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Juliette Pouzadoux
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Guillaume Mitta
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- Ifremer, Université de Polynésie Française, IRD, Institut Louis Malardé (ILM), Ecosystèmes Insulaires Océaniens (EIO), VairaoF-98719, Polynésie Française
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Guillaume M. Charrière
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Marie-Agnès Travers
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Delphine Destoumieux-Garzón
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| |
Collapse
|
43
|
Lares-Michel M, Reyes-Castillo Z, Housni FE. Towards the characterisation of sustainable diet's gut microbiota composition and functions: A narrative review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e15. [PMID: 39295901 PMCID: PMC11406369 DOI: 10.1017/gmb.2023.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2024]
Abstract
The gut microbiome is a key element for health preservation and disease prevention. Nevertheless, defining a healthy gut microbiome is complex since it is modulated by several factors, such as host genetics, sex, age, geographical zone, drug use, and, especially, diet. Although a healthy diet has proven to increase microbial alpha and beta diversity and to promote the proliferation of health-related bacteria, considering the current environmental and nutritional crisis, such as climate change, water shortage, loss of diversity, and the obesity pandemic, it should be highlighted that a healthy diet is not always sustainable. Sustainable diets are dietary patterns that promote all dimensions of people's health and well-being while exerting low pressure on the environment, and being accessible, affordable, safe, equitable, and culturally acceptable. Examples of diets that tend to be sustainable are the Planetary Health Diet of the EAT-Lancet Commission or territorial diets such as the Mediterranean and the Traditional Mexican diet (milpa diet), adapted to specific contexts. These diets are principally plant-based but include small or moderate amounts of animal-based foods. Characterising the effects of sustainable diets on gut microbiota is urgent to ensure that the benefits for human health are aligned with environmental preservation and respect the sociocultural aspects of individuals.
Collapse
Affiliation(s)
- Mariana Lares-Michel
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avenida del Conocimiento S/N, Parque Tecnológico de la Salud, Armilla, 18071 Granada, Spain
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, Col. Centro. 49000, Cd. Guzmán, Jalisco, México
| | - Zyanya Reyes-Castillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, Col. Centro. 49000, Cd. Guzmán, Jalisco, México
| | - Fatima Ezzahra Housni
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, Col. Centro. 49000, Cd. Guzmán, Jalisco, México
| |
Collapse
|
44
|
Rombaut A, Gallet R, Qitout K, Samy M, Guilhot R, Ghirardini P, Lazzaro BP, Becher PG, Xuéreb A, Gibert P, Fellous S. Microbiota-mediated competition between Drosophila species. MICROBIOME 2023; 11:201. [PMID: 37679800 PMCID: PMC10483763 DOI: 10.1186/s40168-023-01617-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The influence of microbiota in ecological interactions, and in particular competition, is poorly known. We studied competition between two insect species, the invasive pest Drosophila suzukii and the model Drosophila melanogaster, whose larval ecological niches overlap in ripe, but not rotten, fruit. RESULTS We discovered D. suzukii females prevent costly interspecific larval competition by avoiding oviposition on substrates previously visited by D. melanogaster. More precisely, D. melanogaster association with gut bacteria of the genus Lactobacillus triggered D. suzukii avoidance. However, D. suzukii avoidance behavior is condition-dependent, and D. suzukii females that themselves carry D. melanogaster bacteria stop avoiding sites visited by D. melanogaster. The adaptive significance of avoiding cues from the competitor's microbiota was revealed by experimentally reproducing in-fruit larval competition: reduced survival of D. suzukii larvae only occurred if the competitor had its normal microbiota. CONCLUSIONS This study establishes microbiotas as potent mediators of interspecific competition and reveals a central role for context-dependent behaviors under bacterial influence. Video Abstract.
Collapse
Affiliation(s)
- Antoine Rombaut
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Romain Gallet
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Kenza Qitout
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Mukherjy Samy
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Pauline Ghirardini
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Brian P Lazzaro
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - Paul G Becher
- Dept Plant Protection Biology - Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anne Xuéreb
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Patricia Gibert
- Laboratoire de Biométrie Et Biologie Evolutive, UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| |
Collapse
|
45
|
Zhu L. Editorial: Animal social behaviour and gut microbiome. Front Microbiol 2023; 14:1210717. [PMID: 37614609 PMCID: PMC10443586 DOI: 10.3389/fmicb.2023.1210717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Lifeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
46
|
Ali Khan A, Valera Vazquez G, Gustems M, Matteoni R, Song F, Gormanns P, Fessele S, Raess M, Hrabĕ de Angelis M. INFRAFRONTIER: mouse model resources for modelling human diseases. Mamm Genome 2023:10.1007/s00335-023-10010-7. [PMID: 37468728 PMCID: PMC10382402 DOI: 10.1007/s00335-023-10010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Over the last decade, INFRAFRONTIER has positioned itself as a world-class Research Infrastructure for the generation, phenotyping, archiving, and distribution of mouse models in Europe. The INFRAFRONTIER network consists of 22 partners from 15 countries, and is continuously enhancing and broadening its portfolio of resources and services that are offered to the research community on a non-profit basis. By bringing together European rodent model expertise and providing valuable disease model services to the biomedical research community, INFRAFRONTIER strives to push the accessibility of cutting-edge human disease modelling technologies across the European research landscape. This article highlights the latest INFRAFRONTIER developments and informs the research community about its extensively utilised services, resources, and technical developments, specifically the intricacies of the INFRAFRONTIER database, use of Curated Disease Models, overview of the INFRAFRONTIER Cancer and Rare Disease resources, and information about its main state-of-the-art services.
Collapse
Affiliation(s)
| | | | | | - Rafaele Matteoni
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo, Rome, Italy
| | - Fei Song
- INFRAFRONTIER GmbH, Neuherberg, Germany
| | | | | | | | - Martin Hrabĕ de Angelis
- INFRAFRONTIER GmbH, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München (HMGU-IEG), Neuherberg, Germany
| |
Collapse
|
47
|
Kay T, Liberti J, Richardson TO, McKenzie SK, Weitekamp CA, La Mendola C, Rüegg M, Kesner L, Szombathy N, McGregor S, Romiguier J, Engel P, Keller L. Social network position is a major predictor of ant behavior, microbiota composition, and brain gene expression. PLoS Biol 2023; 21:e3002203. [PMID: 37486940 PMCID: PMC10399779 DOI: 10.1371/journal.pbio.3002203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/03/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
The physiology and behavior of social organisms correlate with their social environments. However, because social environments are typically confounded by age and physical environments (i.e., spatial location and associated abiotic factors), these correlations are usually difficult to interpret. For example, associations between an individual's social environment and its gene expression patterns may result from both factors being driven by age or behavior. Simultaneous measurement of pertinent variables and quantification of the correlations between these variables can indicate whether relationships are direct (and possibly causal) or indirect. Here, we combine demographic and automated behavioral tracking with a multiomic approach to dissect the correlation structure among the social and physical environment, age, behavior, brain gene expression, and microbiota composition in the carpenter ant Camponotus fellah. Variations in physiology and behavior were most strongly correlated with the social environment. Moreover, seemingly strong correlations between brain gene expression and microbiota composition, physical environment, age, and behavior became weak when controlling for the social environment. Consistent with this, a machine learning analysis revealed that from brain gene expression data, an individual's social environment can be more accurately predicted than any other behavioral metric. These results indicate that social environment is a key regulator of behavior and physiology.
Collapse
Affiliation(s)
- Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Thomas O. Richardson
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Sean K. McKenzie
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Chelsea A. Weitekamp
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christine La Mendola
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Matthias Rüegg
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lucie Kesner
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Natasha Szombathy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Sean McGregor
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jonathan Romiguier
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology and Ecology, University of Montpellier, Montpellier, France
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Khezri MR, Ghasemnejad-Berenji M. Gut microbiota and circadian rhythm in Alzheimer's disease pathophysiology: a review and hypothesis on their association. NPJ AGING 2023; 9:9. [PMID: 37130863 PMCID: PMC10154390 DOI: 10.1038/s41514-023-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia worldwide. Different pathologic changes have been introduced to be involved in its progression. Although amyloid-β (Aβ) deposition and tau hyperphosphorylation and aggregation are mainly considered the main characterizations of AD, several other processes are involved. In recent years, several other changes, including alterations in gut microbiota proportion and circadian rhythms, have been noticed due to their role in AD progression. However, the exact mechanism indicating the association between circadian rhythms and gut microbiota abundance has not been investigated yet. This paper aims to review the role of gut microbiota and circadian rhythm in AD pathophysiology and introduces a hypothesis to explain their association.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
49
|
MUHAMMAD M, MUCHIMAPURA S, WATTANATHORN J. Microbiota-gut-brain axis impairment in the pathogenesis of stroke: implication as a potent therapeutic target. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:143-151. [PMID: 37404572 PMCID: PMC10315190 DOI: 10.12938/bmfh.2022-067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/09/2023] [Indexed: 07/06/2023]
Abstract
The human microbiota-gut-brain axis has an enormous role in the maintenance of homeostasis and health. Over the last two decades, it has received concerted research attention and focus due to a rapidly emerging volume of evidence that has established that impairment within the microbiota-gut-brain axis contributes to the development and progression of various diseases. Stroke is one of the entities identified to be associated with microbiota-gut-brain axis impairment. Currently, there are still limitations in the clinical treatment of stroke, and the presence of a non-nervous factor from gut microbiota that can alter the course of stroke presents a novel strategy towards the search for a therapeutic silver bullet against stroke. Hence, the aim herein, was to focus on the involvement of microbiota-gut-brain axis impairment in the pathogenesis stroke as well as elucidate its implications as a potent therapeutic target against stroke. The findings of studies to date have revealed and extended the role microbiota-gut-brain axis impairment in the pathogenesis of stroke, and studies have identified from both clinical and pre-clinical perspectives targets within the microbiota-gut-brain axis and successfully modulated the outcome of stroke. It was concluded that the microbiota-gut-brain axis stands as potent target to salvage the neurons in the ischemic penumbra for the treatment of stroke. Assessment of the microbiota profile and its metabolites status holds enormous clinical potentials as a non-invasive indicator for the early diagnosis and prognosis of stroke.
Collapse
Affiliation(s)
- Mubarak MUHAMMAD
- Graduate School (Neuroscience Program), Faculty of Medicine,
Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen
40002, Thailand
| | - Supaporn MUCHIMAPURA
- Department of Physiology, Faculty of Medicine, Khon Kaen
University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002,
Thailand
- Integrative Complementary Alternative Medicine Research and
Development Center in the Research Institute for Human High Performance and Health
Promotion, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District,
Khon Kaen 40002, Thailand
| | - Jintanaporn WATTANATHORN
- Department of Physiology, Faculty of Medicine, Khon Kaen
University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002,
Thailand
- Integrative Complementary Alternative Medicine Research and
Development Center in the Research Institute for Human High Performance and Health
Promotion, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District,
Khon Kaen 40002, Thailand
| |
Collapse
|
50
|
Gao J, Zhao L, Cheng Y, Lei W, Wang Y, Liu X, Zheng N, Shao L, Chen X, Sun Y, Ling Z, Xu W. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front Cell Infect Microbiol 2023; 13:1167116. [PMID: 37139495 PMCID: PMC10149938 DOI: 10.3389/fcimb.2023.1167116] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities.
Collapse
Affiliation(s)
- Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xulei Chen
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yilai Sun
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Weijie Xu
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|