1
|
Yan Z, Yang S, Lin C, Yan J, Liu M, Tang S, Jia W, Liu J, Liu H. Advances in plant oxygen sensing: endogenous and exogenous mechanisms. J Genet Genomics 2025; 52:615-627. [PMID: 39638088 DOI: 10.1016/j.jgg.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Oxygen is essential for the biochemical processes that sustain life in eukaryotic organisms. Although plants produce oxygen through photosynthesis, they often struggle to survive in low-oxygen environments, such as during flooding or submergence. To endure these conditions, they must reprogram their developmental and metabolic networks, and the adaptation process involves the continuous detection of both exogenous hypoxic signals and endogenous oxygen gradients. Recent research has significantly advanced our understanding of how plants respond to both endogenous and exogenous hypoxia signals. In this review, we explore advancements in both areas, comparing them to responses in animals, with a primary focus on how plants perceive and respond to exogenous hypoxic conditions, particularly those caused by flooding or submergence, as well as the hypoxia signaling pathways in different crops. Additionally, we discuss the interplay between endogenous and exogenous hypoxia signals in plants. Finally, we discuss future research directions aimed at improving crop resilience to flooding by integrating the perception and responses to both endogenous and exogenous signals. Through these efforts, we aspire to contribute to the development of crop varieties that are not only highly resistant but also experience minimal growth and yield penalties, thereby making substantial contributions to agricultural science.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China
| | - Songyi Yang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jin Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Si Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Xu Z, Jia X, Li R, Wang L, Xu L, Yi K. The basal level of salicylic acid represses the PRT6 N-degron pathway to modulate root growth and stress response in rice. PLANT COMMUNICATIONS 2025; 6:101239. [PMID: 39799397 PMCID: PMC12010376 DOI: 10.1016/j.xplc.2025.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Maintaining a stable basal level of salicylic acid (SA) is crucial for plant growth, development, and stress response, although basal levels of SA vary significantly among plant species. However, the molecular mechanisms by which basal SA regulates plant growth and stress response remain to be clarified. In this study, we performed a genetic screen to identify suppressors of the root growth defect in Osaim1, a rice mutant deficient in basal SA biosynthesis. We found that mutation of the E3 ligase OsPRT6, a key component of the Arg/N-degron pathway, can rescue the root growth defect of Osaim1. Further analysis revealed that OsWRKY62 and OsWRKY76 act as substrates of the OsPRT6 N-degron pathway to modulate root growth. We demonstrated that reducing the basal SA level activates the PRT6 N-degron pathway and that basal SA modulates the stress response in part through the PRT6 N-degron pathway. Importantly, the effects of basal SA levels on the PRT6 N-degron pathway are conserved across plant species. Taken together, these findings reveal a novel regulatory mechanism by which basal SA represses the PRT6 N-degron pathway to modulate root growth and abiotic stress response in rice.
Collapse
Affiliation(s)
- Zhuang Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianqing Jia
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education Provincial Key Laboratory of Biotechnology of Shanxi Province, College of Life Sciences, Northwest University, Xi'an 710075, China
| | - Ruili Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Osborne R, Labandera AM, Ryder AJ, Kanali A, Xu T, Akintewe O, Schwarze MA, Morgan CD, Hartman S, Kaiserli E, Gibbs DJ. VRN2-PRC2 facilitates light-triggered repression of PIF signaling to coordinate growth in Arabidopsis. Dev Cell 2025:S1534-5807(25)00122-4. [PMID: 40147448 DOI: 10.1016/j.devcel.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/29/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
VERNALIZATION2 (VRN2) is a flowering plant-specific subunit of the polycomb-repressive complex 2 (PRC2), a conserved eukaryotic holoenzyme that represses gene expression by depositing the histone H3 lysine 27 trimethylation (H3K27me3) mark in chromatin. Previous work established VRN2 as an oxygen-regulated target of the N-degron pathway that may function as a sensor subunit connecting PRC2 activity to the perception of endogenous and environmental cues. Here, we show that VRN2 is enriched in the hypoxic shoot apex and emerging leaves of Arabidopsis, where it negatively regulates growth by establishing a stable and conditionally repressed chromatin state in key PHYTOCHROME INTERACTING FACTOR (PIF)-regulated genes that promote cell expansion. This function is required to keep these genes poised for repression via a light-responsive signaling cascade later in leaf development. Thus, we identify VRN2-PRC2 as a core component of a developmentally and spatially encoded epigenetic mechanism that coordinates plant growth through facilitating the signal-dependent suppression of PIF signaling.
Collapse
Affiliation(s)
- Rory Osborne
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | | | - Alex J Ryder
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | - Anastasia Kanali
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | - Tianyuan Xu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | - Sjon Hartman
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK.
| |
Collapse
|
4
|
Chen X, Zhao B, Mi J, Xu Z, Liu J. Label-Free Proteomics Reveals the Response of Oat ( Avena sativa L.) Seedling Root Respiratory Metabolism to Salt Stress. Int J Mol Sci 2025; 26:2630. [PMID: 40141272 PMCID: PMC11942509 DOI: 10.3390/ijms26062630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Soil salinity is among the crucial factors influencing agricultural productivity of crops, including oat. The respiratory metabolic pathways are of great significance for plants to adapt to salt stress, but current research is limited and there are few reports on salt-tolerant crops such as oat, which is necessary to conduct in-depth research. In this study, we conducted a pot experiment to determine the effects of salt stress on oat root growth and respiratory metabolism. Three salt stress levels-control (CK), moderate, and severe-were applied to compare the salt tolerance of the salt-tolerant cultivar Bai2 and the salt-sensitive cultivar Bai5. We selected oat roots at the seedling stage as the research focus and analyzed fresh root samples using an Oxytherm liquid-phase oxygen electrode, a digital scanner, and proteomics. The results showed that with an increased concentration of salt stress, the dry and fresh weight, root-shoot ratio, total root length, root surface area, root volume, and average diameter of the two oat cultivars showed a decreasing trend. Compared with CK, the total root respiration rate of Bai2 under moderate and severe stress decreased by 15.6% and 28%, respectively, and that of Bai5 decreased by 70.4% and 79.0%, respectively. After quantitative analysis of 18 oat root samples from the 2 cultivars using the label-free method, 7174 differential proteins were identified and 63 differential proteins were obtained, which involved 7 functional categories. In total, 111 differential proteins were specifically expressed in the root of the salt-tolerant cultivar Bai2, involving 12 functional categories. Through interaction network analysis, the proteins differentially expressed between the salt treatment and CK groups of the salt-tolerant cultivar Bai2 were analyzed. In total, five types of differentially expressed proteins interacting with each other were detected; these mainly involved antioxidant enzymes, pyruvate metabolism, glycolysis, tricarboxylic acid cycle, and energy metabolism pathways. Salt stress promoted the respiration rate of oat root glycolysis. The respiration rate of the tricarboxylic acid pathway decreased with increased salt stress concentration, while the respiration rate of the pentose phosphate pathway increased. Compared with CK, following moderate and severe salt stress treatment, alcohol dehydrogenase activity in Bai2 increased by 384% and 145%, respectively, while that of Bai5 increased by 434% and 157%, respectively. At increased salt stress concentrations, Bai2 mainly used pyruvate-ethanol fermentation for anaerobic respiration, while Bai5 mainly used pyruvate-lactic acid fermentation for anaerobic respiration. This significant discovery revealed for the first time from the perspective of respiratory metabolism that different salt-tolerant oat cultivars adapt to salt stress in different ways to maintain normal growth and development. The experimental results provide new insights into plant adaptation to salt stress from the perspective of respiratory metabolism.
Collapse
Affiliation(s)
- Xiaojing Chen
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot 010019, China; (X.C.); (B.Z.); (J.M.)
- Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot 010019, China
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Baoping Zhao
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot 010019, China; (X.C.); (B.Z.); (J.M.)
- Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot 010019, China
| | - Junzhen Mi
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot 010019, China; (X.C.); (B.Z.); (J.M.)
- Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot 010019, China
| | - Zhongshan Xu
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot 010019, China; (X.C.); (B.Z.); (J.M.)
- Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot 010019, China
| | - Jinghui Liu
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot 010019, China; (X.C.); (B.Z.); (J.M.)
- Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot 010019, China
| |
Collapse
|
5
|
Wang LN, Wang WC, Liao K, Xu LJ, Xie DX, Xie RH, Xiao S. Survival mechanisms of plants under hypoxic stress: Physiological acclimation and molecular regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:440-454. [PMID: 40052431 DOI: 10.1111/jipb.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 03/29/2025]
Abstract
Hypoxia (low-oxygen tension) caused by complete submergence or waterlogging is an abiotic stress factor that severely affects the yield and distribution of plants. To adapt to and survive under hypoxic conditions, plants employ several physiological and molecular strategies that integrate morphological acclimation, metabolic shifts, and signaling networks. Group VII ETHYLENE RESPONSE FACTORS (ERF-VIIs), master transcription factors, have emerged as a molecular hub for regulating plant hypoxia sensing and signaling. Several mitogen-activated protein kinases and calcium-dependent protein kinases have recently been reported to be involved in potentiating hypoxia signaling via interaction with and phosphorylation of ERF-VIIs. Here, we provide an overview of the current knowledge on the regulatory network of ERF-VIIs and their post-translational regulation in determining plant responses to hypoxia and reoxygenation, with a primary focus on recent advancements in understanding how signaling molecules, including ethylene, long-chain acyl-CoA, phosphatidic acid, and nitric oxide, are involved in the regulation of ERV-VII activities. Furthermore, we propose future directions for investigating the intricate crosstalk between plant growth and hypoxic resilience, which is central to guiding breeding and agricultural management strategies for promoting flooding and submergence stress tolerance in plants.
Collapse
Affiliation(s)
- Lin-Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei-Cheng Wang
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ke Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ling-Jing Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dao-Xin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruo-Han Xie
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518017, China
| | - Shi Xiao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518017, China
| |
Collapse
|
6
|
Gunawardana DM, Southern DA, Flashman E. Measuring plant cysteine oxidase interactions with substrates using intrinsic tryptophan fluorescence. Sci Rep 2024; 14:31960. [PMID: 39738385 PMCID: PMC11685595 DOI: 10.1038/s41598-024-83508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Plant Cysteine Oxidases (PCOs) are oxygen-sensing enyzmes that catalyse oxidation of cysteinyl residues at the N-termini of target proteins, triggering their degradation via the N-degron pathway. PCO oxygen sensitivity means that in low oxygen conditions (hypoxia), their activity reduces and target proteins are stabilised. PCO substrates include Group VII Ethylene Response Factors (ERFVIIs) involved in adaptive responses to the acute hypoxia experienced upon plant submergence, as well as Little Zipper 2 (ZPR2) and Vernalisation 2 (VRN2) which are involved in developmental processes in hypoxic niches. The PCOs are potential targets for improving submergence tolerance through enzyme engineering or chemical treatment. To achieve this, a detailed understanding of their biological function is required. Here, we report development of an assay that exploits the intrinsic fluorescence of Arabidopsis thaliana PCO tryptophan residues. By using Ni(II)-substitued enzymes and preparing the assay under anaerobic conditions, tryptophan fluorescence quenching is observed on enzyme:substrate complex formation, allowing quantification of binding affinities. Our assay revealed that, broadly, AtPCO4 and AtPCO5 have stronger interactions with ERFVII substrates than ZPR2 and VRN2, suggesting ERFVIIs are primary targets of these enzymes. It also revealed a positive cooperative binding effect for interactions between AtPCOs4/5 and ERFVIIs and ZPR2. The assay is experimentally straightforward and can be used to further interogate PCO interactions with substrates.
Collapse
Affiliation(s)
| | - Daisy A Southern
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Emily Flashman
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
7
|
Bakshi A, Gilroy S. Calcium signaling in hypoxic response. PLANT PHYSIOLOGY 2024; 197:kiae654. [PMID: 39707915 DOI: 10.1093/plphys/kiae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Plants can experience a lack of oxygen due to environmental conditions, such as flooding events or intense microbial blooms in the soil, and from their own metabolic activities. The associated limit on aerobic respiration can be fatal. Therefore, plants have evolved sensing systems that monitor oxygen levels and trigger a suite of metabolic, physiologic, and developmental responses to endure, or potentially escape, these oxygen-limiting conditions. Low oxygen stress has long been known to trigger changes in cytosolic Ca2+ levels in plants, and recent work has seen some major steps forward in characterizing these events as part of a Ca2+-based signaling system through (1) defining how hypoxia may trigger and then shape the dynamics of these Ca2+ signals, and (2) identifying a host of the downstream elements that allow Ca2+ to regulate a wide-ranging network of hypoxia responses. Calcium transporters such as the CAX family of Ca2+/H+ antiporters at the tonoplast have emerged as important components of the system that forms hypoxia-related Ca2+ signals. Downstream lies a web of Ca2+-responsive proteins such as the calmodulin like proteins, Ca2+-dependent kinases, and the calcineurin-B like proteins along with their interacting kinases. A host of other regulators such as reactive oxygen species and lipid-mediated signals then act in parallel to the Ca2+-dependent events to closely control and coordinate the myriad responses that characterize the plant's low oxygen response.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Department of Botany, University of Wisconsin-Madison, Birge Hall, 430 lincoln Drive, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Birge Hall, 430 lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
8
|
Lavilla-Puerta M, Giuntoli B. Designed to breathe: synthetic biology applications in plant hypoxia. PLANT PHYSIOLOGY 2024; 197:kiae623. [PMID: 39673416 DOI: 10.1093/plphys/kiae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/16/2024]
Abstract
Over the past years, plant hypoxia research has produced a considerable number of new resources to monitor low oxygen responses in model species, mainly Arabidopsis thaliana. Climate change urges the development of effective genetic strategies aimed at improving plant resilience during flooding events. This need pushes forward the search for optimized tools that can reveal the actual oxygen available to plant cells, in different organs or under various conditions, and elucidate the mechanisms underlying plant hypoxic responses, complementing the existing transcriptomics, proteomics, and metabolic analysis methods. Oxygen-responsive reporters, dyes, and nanoprobes are under continuous development, as well as novel synthetic strategies that make precision control of plant hypoxic responses realistic. In this review, we summarize the recent progress made in the definition of tools for oxygen response monitoring in plants, either adapted from bacterial and animal research or peculiar to plants. Moreover, we highlight how adoption of a synthetic biology perspective has enabled the design of novel genetic circuits for the control of oxygen-dependent responses in plants. Finally, we discuss the current limitations and challenges toward the implementation of synbio solutions in the plant low-oxygen biology field.
Collapse
Affiliation(s)
- Mikel Lavilla-Puerta
- Plant Molecular Biology Section, Department of Biology, University of Oxford, OX1 3RB Oxford, UK
| | | |
Collapse
|
9
|
Renziehausen T, Chaudhury R, Hartman S, Mustroph A, Schmidt-Schippers RR. A mechanistic integration of hypoxia signaling with energy, redox, and hormonal cues. PLANT PHYSIOLOGY 2024; 197:kiae596. [PMID: 39530170 DOI: 10.1093/plphys/kiae596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Oxygen deficiency (hypoxia) occurs naturally in many developing plant tissues but can become a major threat during acute flooding stress. Consequently, plants as aerobic organisms must rapidly acclimate to hypoxia and the associated energy crisis to ensure cellular and ultimately organismal survival. In plants, oxygen sensing is tightly linked with oxygen-controlled protein stability of group VII ETHYLENE-RESPONSE FACTORs (ERFVII), which, when stabilized under hypoxia, act as key transcriptional regulators of hypoxia-responsive genes (HRGs). Multiple signaling pathways feed into hypoxia signaling to fine-tune cellular decision-making under stress. First, ATP shortage upon hypoxia directly affects the energy status and adjusts anaerobic metabolism. Secondly, altered redox homeostasis leads to reactive oxygen and nitrogen species (ROS and RNS) accumulation, evoking signaling and oxidative stress acclimation. Finally, the phytohormone ethylene promotes hypoxia signaling to improve acute stress acclimation, while hypoxia signaling in turn can alter ethylene, auxin, abscisic acid, salicylic acid, and jasmonate signaling to guide development and stress responses. In this Update, we summarize the current knowledge on how energy, redox, and hormone signaling pathways are induced under hypoxia and subsequently integrated at the molecular level to ensure stress-tailored cellular responses. We show that some HRGs are responsive to changes in redox, energy, and ethylene independently of the oxygen status, and we propose an updated HRG list that is more representative for hypoxia marker gene expression. We discuss the synergistic effects of hypoxia, energy, redox, and hormone signaling and their phenotypic consequences in the context of both environmental and developmental hypoxia.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Rim Chaudhury
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Romy R Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
10
|
van Veen H, Triozzi PM, Loreti E. Metabolic strategies in hypoxic plants. PLANT PHYSIOLOGY 2024; 197:kiae564. [PMID: 39446413 DOI: 10.1093/plphys/kiae564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/04/2024] [Indexed: 12/25/2024]
Abstract
Complex multicellular organisms have evolved in an oxygen-enriched atmosphere. Oxygen is therefore essential for all aerobic organisms, including plants, for energy production through cellular respiration. However, plants can experience hypoxia following extreme flooding events and also under aerated conditions in proliferative organs or tissues characterized by high oxygen consumption. When oxygen availability is compromised, plants adopt different strategies to cope with hypoxia and limited aeration. A common feature among different plant species is the activation of an anaerobic fermentative metabolism to provide ATP to maintain cellular homeostasis under hypoxia. Fermentation also requires many sugar substrates, which is not always feasible, and alternative metabolic strategies are thus needed. Recent findings have also shown that the hypoxic metabolism is also active in specific organs or tissues of the plant under aerated conditions. Here, we describe the regulatory mechanisms that control the metabolic strategies of plants and how they enable them to thrive despite challenging conditions. A comprehensive mechanistic understanding of the genetic and physiological components underlying hypoxic metabolism should help to provide opportunities to improve plant resilience under the current climate change scenario.
Collapse
Affiliation(s)
- Hans van Veen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Paolo Maria Triozzi
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNR, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
11
|
Gibbs DJ, Theodoulou FL, Bailey-Serres J. Primed to persevere: Hypoxia regulation from epigenome to protein accumulation in plants. PLANT PHYSIOLOGY 2024; 197:kiae584. [PMID: 39479777 DOI: 10.1093/plphys/kiae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 12/24/2024]
Abstract
Plant cells regularly encounter hypoxia (low-oxygen conditions) as part of normal growth and development, or in response to environmental stresses such as flooding. In recent years, our understanding of the multi-layered control of hypoxia-responsive gene expression has greatly increased. In this Update, we take a broad look at the epigenetic, transcriptional, translational, and post-translational mechanisms that regulate responses to low-oxygen levels. We highlight how a network of post-translational modifications (including phosphorylation), secondary messengers, transcriptional cascades, and retrograde signals from the mitochondria and endoplasmic reticulum (ER) feed into the control of transcription factor activity and hypoxia-responsive gene transcription. We discuss epigenetic mechanisms regulating the response to reduced oxygen availability, through focussing on active and repressive chromatin modifications and DNA methylation. We also describe current knowledge of the co- and post-transcriptional mechanisms that tightly regulate mRNA translation to coordinate effective gene expression under hypoxia. Finally, we present a series of outstanding questions in the field and consider how new insights into the molecular workings of the hypoxia-triggered regulatory hierarchy could pave the way for developing flood-resilient crops.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, the Netherlands
| |
Collapse
|
12
|
Fuentes-Terrón A, Latter R, Madden S, Manrique-Gil I, Estrada J, Arteaga N, Sánchez-Vicente I, Lorenzo O, Flashman E. Destined for destruction: The role of methionine aminopeptidases and plant cysteine oxidases in N-degron formation. PLANT PHYSIOLOGY 2024; 197:kiae667. [PMID: 39875105 PMCID: PMC11773813 DOI: 10.1093/plphys/kiae667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions. Modification of their N-termini is under enzymatic control by Met Aminopeptidases (MetAPs) and Plant Cysteine Oxidases (PCOs); therefore, the substrate-binding requirements and catalytic effectiveness of these enzymes are important for defining which Met-Cys-initiating proteins are degraded. Physiological conditions can also impact the activity of these enzymes, and the well-characterized oxygen sensitivity of the PCOs ensures target proteins are stabilized in hypoxia. In this review we compile the functional and structural properties of MetAPs and PCOs, including their interactions with substrates. We also consider the evolution of MetAPs and PCOs through the plant kingdom to highlight their important role in controlling the initial steps of this branch of the N-degron pathway.
Collapse
Affiliation(s)
- Andrea Fuentes-Terrón
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Rebecca Latter
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Samuel Madden
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Isabel Manrique-Gil
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Jessenia Estrada
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Noelia Arteaga
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Inmaculada Sánchez-Vicente
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Emily Flashman
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
13
|
Holdsworth MJ, Liu H, Castellana S, Abbas M, Liu J, Perata P. Geography, altitude, agriculture, and hypoxia. PLANT PHYSIOLOGY 2024; 197:kiae535. [PMID: 39365016 DOI: 10.1093/plphys/kiae535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Reduced oxygen availability (hypoxia) represents a key plant abiotic stress in natural and agricultural systems, but conversely it is also an important component of normal growth and development. We review recent advances that demonstrate how genetic adaptations associated with hypoxia impact the known plant oxygen-sensing mechanism through the PLANT CYSTEINE OXIDASE N-degron pathway. Only 3 protein substrates of this pathway have been identified, and all adaptations identified to date are associated with the most important of these, the group VII ETHYLENE RESPONSE FACTOR transcription factors. We discuss how geography, altitude, and agriculture have all shaped molecular responses to hypoxia and how these responses have emerged at different taxonomic levels through the evolution of land plants. Understanding how ecological and agricultural genetic variation acts positively to enhance hypoxia tolerance will provide novel tools and concepts to improve the performance of crops in the face of increasing extreme flooding events.
Collapse
Affiliation(s)
| | - Huanhuan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Simone Castellana
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | - Mohamad Abbas
- Plant Stress Resilience group, Institute of Environmental Biology, Utrecht University, Utrecht 3541 TR, The Netherlands
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Pierdomenico Perata
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| |
Collapse
|
14
|
Panicucci G, Barreto P, Herzog M, Lichtenauer S, Schwarzländer M, Pedersen O, Weits DA. Tools to understand hypoxia responses in plant tissues. PLANT PHYSIOLOGY 2024; 197:kiae624. [PMID: 39576019 DOI: 10.1093/plphys/kiae624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
Our understanding of how low oxygen (O2) conditions arise in plant tissues and how they shape specific responses has seen major advancement in recent years. Important drivers have been (1) the discovery of the molecular machinery that underpins plant O2 sensing; and (2) a growing set of dedicated tools to define experimental conditions and assess plant responses with increasing accuracy and resolution. While some of those tools, such as the Clark-type O2 electrode, were established decades ago, recent customization has set entirely new standards and enabled novel research avenues in plant hypoxia research. Other tools, such as optical hypoxia reporters and O2 biosensor systems, have been introduced more recently. Yet, their adoption into plant hypoxia research has started to generate novel insight into hypoxia physiology at the tissue and cellular levels. The aim of this update is to provide an overview of the currently available and emerging tools for O2 hypoxia measurements in plants, with an emphasis on high-resolution analyses in living plant tissues and cells. Furthermore, it offers directions for future development and deployment of tools to aid progress with the most pressing questions in plant hypoxia research.
Collapse
Affiliation(s)
- Gabriele Panicucci
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Pedro Barreto
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Max Herzog
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Sophie Lichtenauer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Daan A Weits
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| |
Collapse
|
15
|
Zhang Y, Cheng P, Wang Y, Lu X, Yao W, Li L, Jiang K, Shen W. The activation of autophagy by molecular hydrogen is functionally associated with osmotic tolerance in Arabidopsis. Free Radic Biol Med 2024; 225:63-74. [PMID: 39341299 DOI: 10.1016/j.freeradbiomed.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The role of molecular hydrogen (H2) in autophagy during inflammatory response is controversial in mammalian cells. Although the stimulation of H2 production in response to osmotic stress was observed in plants, its synthetic pathway and the interrelationship between its induction and plant autophagy remain unclear. Here, the induction of autophagy was observed in Arabidopsis upon osmotic stress, assessing by the autophagosome formation and autophagy-related genes expression. Above responses were intensified by H2 fumigation. Meanwhile, the reduction in seedling growth and roots vigor was obviously abolished, accompanied by reestablishing redox balance. These H2 responses were markedly impaired in T-DNA knockout lines atg2, atg5, and atg18. Further evidence showed that the increased endogenous H2 synthesis by genetic manipulation, not only stimulated autophagosome formation, but also triggered various plant responses toward osmotic stress. By contrast, these responses were obviously abolished by the disruption of endogenous H2 synthesis with the addition of 2,6-dichloroindophenol sodium salt. Together, the integrated genetic and molecular evidence clearly illustrated the requirement of autophagy activation in H2 control of plant osmotic tolerance.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Wenrong Yao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Jiang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Yamoune A, Zdarska M, Depaepe T, Rudolfova A, Skalak J, Berendzen KW, Mira-Rodado V, Fitz M, Pekarova B, Nicolas Mala KL, Tarr P, Spackova E, Tomovicova L, Parizkova B, Franczyk A, Kovacova I, Dolgikh V, Zemlyanskaya E, Pernisova M, Novak O, Meyerowitz E, Harter K, Van Der Straeten D, Hejatko J. Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:101013. [PMID: 38961625 PMCID: PMC11589326 DOI: 10.1016/j.xplc.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Two principal growth regulators, cytokinins and ethylene, are known to interact in the regulation of plant growth. However, information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce. We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. By contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis: production of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs) and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3, and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade, and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling, is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.
Collapse
Affiliation(s)
- Amel Yamoune
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marketa Zdarska
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Gent, Belgium
| | - Anna Rudolfova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Skalak
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| | | | | | - Michael Fitz
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Blanka Pekarova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katrina Leslie Nicolas Mala
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Paul Tarr
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Eliska Spackova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| | - Lucia Tomovicova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Parizkova
- Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Abigail Franczyk
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| | - Ingrid Kovacova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| | - Vladislav Dolgikh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Marketa Pernisova
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondrej Novak
- Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Elliot Meyerowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | | | - Jan Hejatko
- CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
17
|
Mooney BC, Doorly CM, Mantz M, García P, Huesgen PF, Graciet E. Hypoxia represses pattern-triggered immune responses in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2064-2077. [PMID: 39158089 PMCID: PMC11531839 DOI: 10.1093/plphys/kiae432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 07/13/2024] [Indexed: 08/20/2024]
Abstract
Biotic and abiotic stresses frequently co-occur in nature, yet relatively little is known about how plants coordinate the response to combined stresses. Protein degradation by the ubiquitin/proteasome system is central to the regulation of multiple independent stress response pathways in plants. The Arg/N-degron pathway is a subset of the ubiquitin/proteasome system that targets proteins based on their N-termini and has been specifically implicated in the responses to biotic and abiotic stresses, including hypoxia, via accumulation of group VII ETHYLENE RESPONSE FACTOR (ERF-VII) transcription factors that orchestrate the onset of the hypoxia response program. Here, we investigated the role of the Arabidopsis (Arabidopsis thaliana) Arg/N-degron pathway in mediating the crosstalk between combined abiotic and biotic stresses using hypoxia treatments and the flg22 elicitor of pattern-triggered immunity (PTI), respectively. We uncovered a link between the plant transcriptional responses to hypoxia and flg22. Combined hypoxia and flg22 treatments showed that hypoxia represses the flg22 transcriptional program, as well as the expression of pattern recognition receptors, mitogen-activated protein kinase (MAPK) signaling and callose deposition during PTI through mechanisms that are mostly independent from the ERF-VIIs. These findings improve our understanding of the tradeoffs between plant responses to combined abiotic and biotic stresses in the context of our efforts to increase crop resilience to global climate change. Our results also show that the well-known repressive effect of hypoxia on innate immunity in animals also applies to plants.
Collapse
Affiliation(s)
- Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, County Kildare, W23 F2H6, Ireland
| | - Catherine M Doorly
- Department of Biology, Maynooth University, Maynooth, County Kildare, W23 F2H6, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52428 Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Pablo García
- Department of Biology, Maynooth University, Maynooth, County Kildare, W23 F2H6, Ireland
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52428 Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, County Kildare, W23 F2H6, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| |
Collapse
|
18
|
Basit F, Khalid M, El-Keblawy A, Sheteiwy MS, Sulieman S, Josko I, Zulfiqar F. Hypoxia stress: plant's sensing, responses, and tolerance mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63458-63472. [PMID: 39489890 DOI: 10.1007/s11356-024-35439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Oxygen (O2) is an inhibiting factor for plant growth and development in submerged and flooding environments. Plants experience different O2 concentrations, such as normoxia, hypoxia, and anoxia, which can change over space and time. Plants have evolved various morphological, physiological, and biochemical adaptations to withstand low O2 stress, many of which have been well investigated. This review provides a detailed analysis of how plants respond to hypoxia, a significant stress factor primarily caused by flooding. Hypoxia affects plants at various cellular, developmental, and environmental levels. This review highlights genetic, molecular, and metabolic adaptations crops employ to cope with O2 deficiency. The roles of various transcription factors (TFs) and gene regulation mechanisms in enabling plants to modulate their physiological responses under hypoxic conditions are notable. The review also identifies a significant gap in research on plant responses during reoxygenation, the phase of returning to normal O2 levels, especially under natural lighting conditions. This transition poses ROS generation and photoinhibition challenges, affecting plant recovery post-hypoxia. We discuss various strategies to enhance plant hypoxia tolerance, including traditional breeding, genetic modification, and grafting techniques. It emphasizes integrating these approaches with a comprehensive understanding of hypoxia sensing and response mechanisms. We underscore the complexity of plant adaptations to hypoxia and the need for continued research in this field, especially in the face of global climate change. This is vital for developing sustainable agricultural practices and ensuring future food security.
Collapse
Affiliation(s)
- Farwa Basit
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Saad Sulieman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314, Shambat, Khartoum North, Sudan
| | - Izabela Josko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
19
|
Considine MJ, Foyer CH. Redox regulation of meristem quiescence: outside/in. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6037-6046. [PMID: 38676562 PMCID: PMC11480653 DOI: 10.1093/jxb/erae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/26/2024] [Indexed: 04/29/2024]
Abstract
Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimizing DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (O2·-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest that ROS are a critical component of the feedback loops that control stem cell identity and fate, and suggest that the ROS/hypoxia interface is an important 'outside/in' positional cue for plant cells, particularly in meristems.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, and the School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- The Department of Primary Industries and Regional Development, Perth, Western Australia 6000, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
20
|
Boutin C, Clément C, Rivoal J. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Int J Mol Sci 2024; 25:9845. [PMID: 39337338 PMCID: PMC11432348 DOI: 10.3390/ijms25189845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Cys is one of the least abundant amino acids in proteins. However, it is often highly conserved and is usually found in important structural and functional regions of proteins. Its unique chemical properties allow it to undergo several post-translational modifications, many of which are mediated by reactive oxygen, nitrogen, sulfur, or carbonyl species. Thus, in addition to their role in catalysis, protein stability, and metal binding, Cys residues are crucial for the redox regulation of metabolism and signal transduction. In this review, we discuss Cys post-translational modifications (PTMs) and their role in plant metabolism and signal transduction. These modifications include the oxidation of the thiol group (S-sulfenylation, S-sulfinylation and S-sulfonylation), the formation of disulfide bridges, S-glutathionylation, persulfidation, S-cyanylation S-nitrosation, S-carbonylation, S-acylation, prenylation, CoAlation, and the formation of thiohemiacetal. For each of these PTMs, we discuss the origin of the modifier, the mechanisms involved in PTM, and their reversibility. Examples of the involvement of Cys PTMs in the modulation of protein structure, function, stability, and localization are presented to highlight their importance in the regulation of plant metabolic and signaling pathways.
Collapse
Affiliation(s)
- Charlie Boutin
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Camille Clément
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
21
|
Hou Z, Huang H, Wang Y, Chen L, Yue L, Liu B, Kong F, Yang H. Molecular Regulation of Shoot Architecture in Soybean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39254042 DOI: 10.1111/pce.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Soybean (Glycine max [L.] Merr.) serves as a major source of protein and oil for humans and animals. Shoot architecture, the spatial arrangement of a plant's above-ground organs, strongly affects crop yield and is therefore a critical agronomic trait. Unlike wheat and rice crops that have greatly benefitted from the Green Revolution, soybean yield has not changed significantly in the past six decades owing to its unique shoot architecture. Soybean is a pod-bearing crop with pods adhered to the nodes, and variation in shoot architecture traits, such as plant height, node number, branch number and number of seeds per pod, directly affects the number of pods and seeds per plant, thereby determining yield. In this review, we summarize the relationship between soybean yield and these major components of shoot architecture. We also describe the latest advances in identifying the genes and molecular mechanisms underlying soybean shoot architecture and discuss possible directions and approaches for breeding new soybean varieties with ideal shoot architecture and improved yield.
Collapse
Affiliation(s)
- Zhihong Hou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Huan Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanan Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Yue
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
22
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
23
|
Zhang H, Rundle C, Winter N, Miricescu A, Mooney BC, Bachmair A, Graciet E, Theodoulou FL. BIG enhances Arg/N-degron pathway-mediated protein degradation to regulate Arabidopsis hypoxia responses and suberin deposition. THE PLANT CELL 2024; 36:3177-3200. [PMID: 38608155 PMCID: PMC11371152 DOI: 10.1093/plcell/koae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BIG/DARK OVEREXPRESSION OF CAB1/TRANSPORT INHIBITOR RESPONSE3 is a 0.5 MDa protein associated with multiple functions in Arabidopsis (Arabidopsis thaliana) signaling and development. However, the biochemical functions of BIG are unknown. We investigated a role for BIG in the Arg/N-degron pathways, in which substrate protein fate is influenced by the N-terminal residue. We crossed a big loss-of-function allele to 2 N-degron pathway E3 ligase mutants, proteolysis6 (prt6) and prt1, and examined the stability of protein substrates. Stability of model substrates was enhanced in prt6-1 big-2 and prt1-1 big-2 relative to the respective single mutants, and the abundance of the PRT6 physiological substrates, HYPOXIA-RESPONSIVE ERF2 (HRE2) and VERNALIZATION2 (VRN2), was similarly increased in prt6 big double mutants. Hypoxia marker expression was enhanced in prt6 big double mutants; this constitutive response required arginyl transferase activity and RAP-type Group VII ethylene response factor (ERFVII) transcription factors. Transcriptomic analysis of roots not only demonstrated increased expression of multiple hypoxia-responsive genes in the double mutant relative to prt6, but also revealed other roles for PRT6 and BIG, including regulation of suberin deposition through both ERFVII-dependent and independent mechanisms, respectively. Our results show that BIG acts together with PRT6 to regulate the hypoxia-response and broader processes in Arabidopsis.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Chelsea Rundle
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
24
|
Yang S, Poretska O, Poppenberger B, Sieberer T. ALTERED MERISTEM PROGRAM1 sustains cellular differentiation by limiting HD-ZIP III transcription factor gene expression. PLANT PHYSIOLOGY 2024; 196:291-308. [PMID: 38781290 PMCID: PMC11376390 DOI: 10.1093/plphys/kiae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Plants show remarkable developmental and regenerative plasticity through the sustained activity of stem cells in meristems. Under certain conditions, pluripotency can even be reestablished in cells that have already entered differentiation. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis (Arabidopsis thaliana) causes a set of hypertrophic phenotypes, indicating a defect in the suppression of pluripotency. A role of AMP1 in the miRNA-mediated inhibition of translation has previously been reported; however, how this activity is related to its developmental functions is unclear. Here, we examined the functional interaction between AMP1 and the Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors, which are miRNA-controlled determinants of shoot meristem specification. We found that the HD-ZIP III transcriptional output is enhanced in the amp1 mutant and that plant lines with increased HD-ZIP III activity not only developed amp1 mutant-like phenotypes but also showed a synergistic genetic interaction with the mutant. Conversely, the reduction of HD-ZIP III function suppressed the shoot hypertrophy defects of the amp1 mutant. We further provide evidence that the expression domains of HD-ZIP III family members are expanded in the amp1 mutant and that this misexpression occurs at the transcriptional level and does not involve the function of miRNA165/166. Finally, amp1 mutant-specific phenotypes cannot be mimicked by a general inhibition of miRNA function in the AMP1 expression domain. These findings lead us to a model in which AMP1 restricts cellular pluripotency upstream of HD-ZIP III proteins, and this control appears to be not directly mediated by the canonical miRNA pathway.
Collapse
Affiliation(s)
- Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Olena Poretska
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Brigitte Poppenberger
- Professorship Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| |
Collapse
|
25
|
Alonso-Serra J, Cheddadi I, Kiss A, Cerutti G, Lang M, Dieudonné S, Lionnet C, Godin C, Hamant O. Water fluxes pattern growth and identity in shoot meristems. Nat Commun 2024; 15:6944. [PMID: 39138210 PMCID: PMC11322635 DOI: 10.1038/s41467-024-51099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/28/2024] [Indexed: 08/15/2024] Open
Abstract
In multicellular organisms, tissue outgrowth creates a new water sink, modifying local hydraulic patterns. Although water fluxes are often considered passive by-products of development, their contribution to morphogenesis remains largely unexplored. Here, we mapped cell volumetric growth across the shoot apex in Arabidopsis thaliana. We found that, as organs grow, a subpopulation of cells at the organ-meristem boundary shrinks. Growth simulations using a model that integrates hydraulics and mechanics revealed water fluxes and predicted a water deficit for boundary cells. In planta, a water-soluble dye preferentially allocated to fast-growing tissues and failed to enter the boundary domain. Cell shrinkage next to fast-growing domains was also robust to different growth conditions and different topographies. Finally, a molecular signature of water deficit at the boundary confirmed our conclusion. Taken together, we propose that the differential sink strength of emerging organs prescribes the hydraulic patterns that define boundary domains at the shoot apex.
Collapse
Affiliation(s)
- Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Ibrahim Cheddadi
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Annamaria Kiss
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Guillaume Cerutti
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Marianne Lang
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Sana Dieudonné
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Claire Lionnet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Christophe Godin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.
| |
Collapse
|
26
|
García P, Singh S, Graciet E. New Insights into the Connections between Flooding/Hypoxia Response and Plant Defenses against Pathogens. PLANTS (BASEL, SWITZERLAND) 2024; 13:2176. [PMID: 39204612 PMCID: PMC11358971 DOI: 10.3390/plants13162176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The impact of global climate change has highlighted the need for a better understanding of how plants respond to multiple simultaneous or sequential stresses, not only to gain fundamental knowledge of how plants integrate signals and mount a coordinated response to stresses but also for applications to improve crop resilience to environmental stresses. In recent years, there has been a stronger emphasis on understanding how plants integrate stresses and the molecular mechanisms underlying the crosstalk between the signaling pathways and transcriptional programs that underpin plant responses to multiple stresses. The combination of flooding (or resulting hypoxic stress) with pathogen infection is particularly relevant due to the frequent co-occurrence of both stresses in nature. This review focuses on (i) experimental approaches and challenges associated with the study of combined and sequential flooding/hypoxia and pathogen infection, (ii) how flooding (or resulting hypoxic stress) influences plant immunity and defense responses to pathogens, and (iii) how flooding contributes to shaping the soil microbiome and is linked to plants' ability to fight pathogen infection.
Collapse
Affiliation(s)
- Pablo García
- Department of Biology, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland; (P.G.); (S.S.)
| | - Shreenivas Singh
- Department of Biology, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland; (P.G.); (S.S.)
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland; (P.G.); (S.S.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
27
|
Huang J, De Veirman L, Van Breusegem F. Cysteine thiol sulfinic acid in plant stress signaling. PLANT, CELL & ENVIRONMENT 2024; 47:2766-2779. [PMID: 38251793 DOI: 10.1111/pce.14827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Cysteine thiols are susceptible to various oxidative posttranslational modifications (PTMs) due to their high chemical reactivity. Thiol-based PTMs play a crucial role in regulating protein functions and are key contributors to cellular redox signaling. Although reversible thiol-based PTMs, such as disulfide bond formation, S-nitrosylation, and S-glutathionylation, have been extensively studied for their roles in redox regulation, thiol sulfinic acid (-SO2H) modification is often perceived as irreversible and of marginal significance in redox signaling. Here, we revisit this narrow perspective and shed light on the redox regulatory roles of -SO2H in plant stress signaling. We provide an overview of protein sulfinylation in plants, delving into the roles of hydrogen peroxide-mediated and plant cysteine oxidase-catalyzed formation of -SO2H, highlighting the involvement of -SO2H in specific regulatory signaling pathways. Additionally, we compile the existing knowledge of the -SO2H reducing enzyme, sulfiredoxin, offering insights into its molecular mechanisms and biological relevance. We further summarize current proteomic techniques for detecting -SO2H and furnish a list of experimentally validated cysteine -SO2H sites across various species, discussing their functional consequences. This review aims to spark new insights and discussions that lead to further investigations into the functional significance of protein -SO2H-based redox signaling in plants.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lindsy De Veirman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
28
|
Liu H, Lin M, Zhou D, Liu B, Li X, Wang H, Bi X. Characterization of the m 6A gene family in switchgrass and functional analysis of PvALKBH10 during flowering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108781. [PMID: 38820914 DOI: 10.1016/j.plaphy.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
N6-methyladenosine (m6A), a nucleotide modification that is frequently seen in RNA, plays a crucial role in plant growth, development and stress resistance. However, the m6A regulatory machinery in switchgrass (Panicum virgatum L.), a model plant for cellulose-to-ethanol conversion, remains largely unknown. In this study, we identified 57 candidate genes involved in m6A-regulation in the switchgrass genome, and analyzed their chromosomal distribution, evolutionary relationships, and functions. Notably, we observed distinct gene expression patterns under salt and drought stress, with salt stress inducing writer and eraser genes, alongside drought stress predominantly affecting reader genes. Additionally, we knocked out PvALKBH10, an m6A demethylase gene, via CRISPR/Cas9 and found its potential function in controlling flowering time. This study provides insight into the genomic organization and evolutionary features of m6A-associated putative genes in switchgrass, and therefore serves as the basis for further functional studies.
Collapse
Affiliation(s)
- Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mengzhuo Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Die Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bowen Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
29
|
Xiao H, Verboven P, Tong S, Pedersen O, Nicolaï B. Hypoxia in tomato (Solanum lycopersicum) fruit during ripening: Biophysical elucidation by a 3D reaction-diffusion model. PLANT PHYSIOLOGY 2024; 195:1893-1905. [PMID: 38546393 DOI: 10.1093/plphys/kiae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/29/2024] [Indexed: 06/30/2024]
Abstract
Respiration provides energy, substrates, and precursors to support physiological changes of the fruit during climacteric ripening. A key substrate of respiration is oxygen that needs to be supplied to the fruit in a passive way by gas transfer from the environment. Oxygen gradients may develop within the fruit due to its bulky size and the dense fruit tissues, potentially creating hypoxia that may have a role in the spatial development of ripening. This study presents a 3D reaction-diffusion model using tomato (Solanum lycopersicum) fruit as a test subject, combining the multiscale fruit geometry generated from magnetic resonance imaging and microcomputed tomography with varying respiration kinetics and contrasting boundary resistances obtained through independent experiments. The model predicted low oxygen levels in locular tissue under atmospheric conditions, and the oxygen level was markedly lower upon scar occlusion, aligning with microsensor profiling results. The locular region was in a hypoxic state, leading to its low aerobic respiration with high CO2 accumulation by fermentative respiration, while the rest of the tissues remained well oxygenated. The model further revealed that the hypoxia is caused by a combination of diffusion resistances and respiration rates of the tissue. Collectively, this study reveals the existence of the respiratory gas gradients and its biophysical causes during tomato fruit ripening, providing richer information for future studies on localized endogenous ethylene biosynthesis and fruit ripening.
Collapse
Affiliation(s)
- Hui Xiao
- BIOSYST-MeBioS, KU Leuven, Leuven B-3001, Belgium
| | | | - Shuai Tong
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bart Nicolaï
- BIOSYST-MeBioS, KU Leuven, Leuven B-3001, Belgium
- Flanders Centre of Postharvest Technology (VCBT), Leuven B-3001, Belgium
| |
Collapse
|
30
|
Chen W, Wang P, Liu C, Han Y, Zhao F. Male Germ Cell Specification in Plants. Int J Mol Sci 2024; 25:6643. [PMID: 38928348 PMCID: PMC11204311 DOI: 10.3390/ijms25126643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Germ cells (GCs) serve as indispensable carriers in both animals and plants, ensuring genetic continuity across generations. While it is generally acknowledged that the timing of germline segregation differs significantly between animals and plants, ongoing debates persist as new evidence continues to emerge. In this review, we delve into studies focusing on male germ cell specifications in plants, and we summarize the core gene regulatory circuits in germ cell specification, which show remarkable parallels to those governing meristem homeostasis. The similarity in germline establishment between animals and plants is also discussed.
Collapse
Affiliation(s)
- Wenqian Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Pan Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Chan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Yuting Han
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Feng Zhao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai 201108, China
| |
Collapse
|
31
|
Ma Y, Chang W, Li Y, Xu J, Song Y, Yao X, Wang L, Sun Y, Guo L, Zhang H, Liu X. Plant cuticles repress organ initiation and development during skotomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100850. [PMID: 38409782 PMCID: PMC11211553 DOI: 10.1016/j.xplc.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
After germination in the dark, plants produce a shoot apical hook and closed cotyledons to protect the quiescent shoot apical meristem (SAM), which is critical for seedling survival during skotomorphogenesis. The factors that coordinate these processes, particularly SAM repression, remain enigmatic. Plant cuticles, multilayered structures of lipid components on the outermost surface of the aerial epidermis of all land plants, provide protection against desiccation and external environmental stresses. Whether and how cuticles regulate plant development are still unclear. Here, we demonstrate that mutants of BODYGUARD1 (BDG1) and long-chain acyl-CoA synthetase2 (LACS2), key genes involved in cutin biosynthesis, produce a short hypocotyl with an opened apical hook and cotyledons in which the SAM is activated during skotomorphogenesis. Light signaling represses expression of BDG1 and LACS2, as well as cutin biosynthesis. Transcriptome analysis revealed that cuticles are critical for skotomorphogenesis, particularly for the development and function of chloroplasts. Genetic and molecular analyses showed that decreased HOOKLESS1 expression results in apical hook opening in the mutants. When hypoxia-induced expression of LITTLE ZIPPER2 at the SAM promotes organ initiation in the mutants, the de-repressed expression of cell-cycle genes and the cytokinin response induce the growth of true leaves. Our results reveal previously unrecognized developmental functions of the plant cuticle during skotomorphogenesis and demonstrate a mechanism by which light initiates photomorphogenesis through dynamic regulation of cuticle synthesis to induce coordinated and systemic changes in organ development and growth during the skotomorphogenesis-to-photomorphogenesis transition.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenwen Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yongli Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xinmiao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
32
|
Rankenberg T, van Veen H, Sedaghatmehr M, Liao CY, Devaiah MB, Stouten EA, Balazadeh S, Sasidharan R. Differential leaf flooding resilience in Arabidopsis thaliana is controlled by ethylene signaling-activated and age-dependent phosphorylation of ORESARA1. PLANT COMMUNICATIONS 2024; 5:100848. [PMID: 38379284 PMCID: PMC11211547 DOI: 10.1016/j.xplc.2024.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/22/2024]
Abstract
The phytohormone ethylene is a major regulator of plant adaptive responses to flooding. In flooded plant tissues, ethylene quickly increases to high concentrations owing to its low solubility and diffusion rates in water. Ethylene accumulation in submerged plant tissues makes it a reliable cue for triggering flood acclimation responses, including metabolic adjustments to cope with flood-induced hypoxia. However, persistent ethylene accumulation also accelerates leaf senescence. Stress-induced senescence hampers photosynthetic capacity and stress recovery. In submerged Arabidopsis, senescence follows a strict age-dependent pattern starting with the older leaves. Although mechanisms underlying ethylene-mediated senescence have been uncovered, it is unclear how submerged plants avoid indiscriminate breakdown of leaves despite high systemic ethylene accumulation. We demonstrate that although submergence triggers leaf-age-independent activation of ethylene signaling via EIN3 in Arabidopsis, senescence is initiated only in old leaves. EIN3 stabilization also leads to overall transcript and protein accumulation of the senescence-promoting transcription factor ORESARA1 (ORE1) in both old and young leaves during submergence. However, leaf-age-dependent senescence can be explained by ORE1 protein activation via phosphorylation specifically in old leaves, independent of the previously identified age-dependent control of ORE1 via miR164. A systematic analysis of the roles of the major flooding stress cues and signaling pathways shows that only the combination of ethylene and darkness is sufficient to mimic submergence-induced senescence involving ORE1 accumulation and phosphorylation. Hypoxia, most often associated with flooding stress in plants, appears to have no role in these processes. Our results reveal a mechanism by which plants regulate the speed and pattern of senescence during environmental stresses such as flooding. Age-dependent ORE1 activity ensures that older, expendable leaves are dismantled first, thus prolonging the life of younger leaves and meristematic tissues that are vital to whole-plant survival.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hans van Veen
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Evolutionary Plant-Ecophysiology, Groningen Institute for Evolutionary LIfe Sciences, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Mastoureh Sedaghatmehr
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Che-Yang Liao
- Experimental and Computational Plant Development, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Muthanna Biddanda Devaiah
- Experimental and Computational Plant Development, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Evelien A Stouten
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Rashmi Sasidharan
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
33
|
Perri M, Licausi F. Thiol dioxygenases: from structures to functions. Trends Biochem Sci 2024; 49:545-556. [PMID: 38622038 DOI: 10.1016/j.tibs.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.
Collapse
Affiliation(s)
- Monica Perri
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK
| | - Francesco Licausi
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Jiménez JDLC, Armstrong W, Colmer TD, Pedersen O. Overcoming constraints to measuring O2 diffusivity and consumption of intact roots. PLANT PHYSIOLOGY 2024; 195:283-286. [PMID: 38366585 PMCID: PMC11060671 DOI: 10.1093/plphys/kiae046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
A method using O2 microsensors enables detailed quantification of respiratory O2 consumption and diffusive resistance to O2 of individual root cell layers.
Collapse
Affiliation(s)
| | - William Armstrong
- Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | - Timothy D Colmer
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
35
|
Zeng J, Geng X, Zhao Z, Zhou W. Tipping the balance: The dynamics of stem cell maintenance and stress responses in plant meristems. CURRENT OPINION IN PLANT BIOLOGY 2024; 78:102510. [PMID: 38266375 DOI: 10.1016/j.pbi.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/24/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Plant meristems contain pools of dividing stem cells that produce new organs for plant growth and development. Environmental factors, including biotic and abiotic stresses and nutrient availability, affect meristem activity and thus the architecture of roots and shoots; understanding how meristems react to changing environmental conditions will shed light on how plants optimize nutrient acquisition and acclimate to different environmental conditions. This review highlights recent exciting advances in this field, mainly in Arabidopsis. We discuss the signaling pathways, genetic regulators, and molecular mechanisms involved in the response of plant meristems to environmental and nutrient cues, and compare the similarities and differences of stress responses between the shoot and root apical meristems.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Xin Geng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhong Zhao
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
36
|
Maciag T, Kozieł E, Otulak-Kozieł K, Jafra S, Czajkowski R. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia. Int J Mol Sci 2024; 25:3757. [PMID: 38612570 PMCID: PMC11011919 DOI: 10.3390/ijms25073757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| |
Collapse
|
37
|
Yoshida T, Fernie AR. Hormonal regulation of plant primary metabolism under drought. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1714-1725. [PMID: 37712613 DOI: 10.1093/jxb/erad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Phytohormones are essential signalling molecules globally regulating many processes of plants, including their growth, development, and stress responses. The promotion of growth and the enhancement of stress resistance have to be balanced, especially under adverse conditions such as drought stress, because of limited resources. Plants cope with drought stress via various strategies, including the transcriptional regulation of stress-responsive genes and the adjustment of metabolism, and phytohormones play roles in these processes. Although abscisic acid (ABA) is an important signal under drought, less attention has been paid to other phytohormones. In this review, we summarize progress in the understanding of phytohormone-regulated primary metabolism under water-limited conditions, especially in Arabidopsis thaliana, and highlight recent findings concerning the amino acids associated with ABA metabolism and signalling. We also discuss how phytohormones function antagonistically and synergistically in order to balance growth and stress responses.
Collapse
Affiliation(s)
- Takuya Yoshida
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
38
|
Xu X, Passalacqua M, Rice B, Demesa-Arevalo E, Kojima M, Takebayashi Y, Harris B, Sakakibara H, Gallavotti A, Gillis J, Jackson D. Large-scale single-cell profiling of stem cells uncovers redundant regulators of shoot development and yield trait variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583414. [PMID: 38496543 PMCID: PMC10942292 DOI: 10.1101/2024.03.04.583414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Stem cells in plant shoots are a rare population of cells that produce leaves, fruits and seeds, vital sources for food and bioethanol. Uncovering regulators expressed in these stem cells will inform crop engineering to boost productivity. Single-cell analysis is a powerful tool for identifying regulators expressed in specific groups of cells. However, accessing plant shoot stem cells is challenging. Recent single-cell analyses of plant shoots have not captured these cells, and failed to detect stem cell regulators like CLAVATA3 and WUSCHEL . In this study, we finely dissected stem cell-enriched shoot tissues from both maize and arabidopsis for single-cell RNA-seq profiling. We optimized protocols to efficiently recover thousands of CLAVATA3 and WUSCHEL expressed cells. A cross-species comparison identified conserved stem cell regulators between maize and arabidopsis. We also performed single-cell RNA-seq on maize stem cell overproliferation mutants to find additional candidate regulators. Expression of candidate stem cell genes was validated using spatial transcriptomics, and we functionally confirmed roles in shoot development. These candidates include a family of ribosome-associated RNA-binding proteins, and two families of sugar kinase genes related to hypoxia signaling and cytokinin hormone homeostasis. These large-scale single-cell profiling of stem cells provide a resource for mining stem cell regulators, which show significant association with yield traits. Overall, our discoveries advance the understanding of shoot development and open avenues for manipulating diverse crops to enhance food and energy security.
Collapse
|
39
|
Triozzi PM, Brunello L, Novi G, Ferri G, Cardarelli F, Loreti E, Perales M, Perata P. Spatiotemporal oxygen dynamics in young leaves reveal cyclic hypoxia in plants. MOLECULAR PLANT 2024; 17:377-394. [PMID: 38243593 DOI: 10.1016/j.molp.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Oxygen is essential for plant growth and development. Hypoxia occurs in plants due to limited oxygen availability following adverse environmental conditions as well in hypoxic niches in otherwise normoxic environments. However, the existence and functional integration of spatiotemporal oxygen dynamics with plant development remains unknown. In animal systems dynamic fluctuations in oxygen availability are known as cyclic hypoxia. In this study, we demonstrate that cyclic fluctuations in internal oxygen levels occur in young emerging leaves of Arabidopsis plants. Cyclic hypoxia in plants is based on a mechanism requiring the ETHYLENE RESPONSE FACTORS type VII (ERFVII) that are central components of the oxygen-sensing machinery in plants. The ERFVII-dependent mechanism allows precise adjustment of leaf growth in response to carbon status and oxygen availability within plant cells. This study thus establishes a functional connection between internal spatiotemporal oxygen dynamics and developmental processes of plants.
Collapse
Affiliation(s)
- Paolo M Triozzi
- PlantLab, Center of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luca Brunello
- PlantLab, Center of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | - Giacomo Novi
- PlantLab, Center of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | | | - Francesco Cardarelli
- Laboratorio NEST, Scuola Normale Superiore, Istituto Nanoscienze-CNR, Piazza S. Silvestro, 12, 56127 Pisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy.
| |
Collapse
|
40
|
Koo D, Lee HG, Bae SH, Lee K, Seo PJ. Callus proliferation-induced hypoxic microenvironment decreases shoot regeneration competence in Arabidopsis. MOLECULAR PLANT 2024; 17:395-408. [PMID: 38297841 DOI: 10.1016/j.molp.2024.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/10/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Plants are aerobic organisms that rely on molecular oxygen for respiratory energy production. Hypoxic conditions, with oxygen levels ranging between 1% and 5%, usually limit aerobic respiration and affect plant growth and development. Here, we demonstrate that the hypoxic microenvironment induced by active cell proliferation during the two-step plant regeneration process intrinsically represses the regeneration competence of the callus in Arabidopsis thaliana. We showed that hypoxia-repressed plant regeneration is mediated by the RELATED TO APETALA 2.12 (RAP2.12) protein, a member of the Ethylene Response Factor VII (ERF-VII) family. We found that the hypoxia-activated RAP2.12 protein promotes salicylic acid (SA) biosynthesis and defense responses, thereby inhibiting pluripotency acquisition and de novo shoot regeneration in calli. Molecular and genetic analyses revealed that RAP2.12 could bind directly to the SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2) gene promoter and activate SA biosynthesis, repressing plant regeneration possibly via a PLETHORA (PLT)-dependent pathway. Consistently, the rap2.12 mutant calli exhibits enhanced shoot regeneration, which is impaired by SA treatment. Taken together, these findings uncover that the cell proliferation-dependent hypoxic microenvironment reduces cellular pluripotency and plant regeneration through the RAP2.12-SID2 module.
Collapse
Affiliation(s)
- Dohee Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyounghee Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
41
|
Fagerstedt KV, Pucciariello C, Pedersen O, Perata P. Recent progress in understanding the cellular and genetic basis of plant responses to low oxygen holds promise for developing flood-resilient crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1217-1233. [PMID: 37991267 PMCID: PMC10901210 DOI: 10.1093/jxb/erad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Chiara Pucciariello
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| |
Collapse
|
42
|
Daniel K, Hartman S. How plant roots respond to waterlogging. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:511-525. [PMID: 37610936 DOI: 10.1093/jxb/erad332] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Plant submergence is a major abiotic stress that impairs plant performance. Under water, reduced gas diffusion exposes submerged plant cells to an environment that is enriched in gaseous ethylene and is limited in oxygen (O2) availability (hypoxia). The capacity for plant roots to avoid and/or sustain critical hypoxia damage is essential for plants to survive waterlogging. Plants use spatiotemporal ethylene and O2 dynamics as instrumental flooding signals to modulate potential adaptive root growth and hypoxia stress acclimation responses. However, how non-adapted plant species modulate root growth behaviour during actual waterlogged conditions to overcome flooding stress has hardly been investigated. Here we discuss how changes in the root growth rate, lateral root formation, density, and growth angle of non-flood adapted plant species (mainly Arabidopsis) could contribute to avoiding and enduring critical hypoxic conditions. In addition, we discuss current molecular understanding of how ethylene and hypoxia signalling control these adaptive root growth responses. We propose that future research would benefit from less artificial experimental designs to better understand how plant roots respond to and survive waterlogging. This acquired knowledge would be instrumental to guide targeted breeding of flood-tolerant crops with more resilient root systems.
Collapse
Affiliation(s)
- Kevin Daniel
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
43
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
44
|
Belato FA, Mello B, Coates CJ, Halanych KM, Brown FD, Morandini AC, de Moraes Leme J, Trindade RIF, Costa-Paiva EM. Divergence time estimates for the hypoxia-inducible factor-1 alpha (HIF1α) reveal an ancient emergence of animals in low-oxygen environments. GEOBIOLOGY 2024; 22:e12577. [PMID: 37750460 DOI: 10.1111/gbi.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Unveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635-560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low-oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia-inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low-oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957-1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole-genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre-Tonian emergence of metazoans under low-oxygen conditions, and an increase in oxygen response elements during animal evolution.
Collapse
Affiliation(s)
- Flavia A Belato
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | - Beatriz Mello
- Biology Institute, Genetics Department, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Christopher J Coates
- Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Federico D Brown
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | - André C Morandini
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | | | - Ricardo I F Trindade
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo, São Paulo - SP, Brazil
| | - Elisa Maria Costa-Paiva
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo, São Paulo - SP, Brazil
| |
Collapse
|
45
|
Lavilla-Puerta M, Latter R, Bellè F, Cervelli T, Galli A, Perata P, Chini A, Flashman E, Giuntoli B. Identification of novel plant cysteine oxidase inhibitors from a yeast chemical genetic screen. J Biol Chem 2023; 299:105366. [PMID: 37863264 PMCID: PMC10692734 DOI: 10.1016/j.jbc.2023.105366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.
Collapse
Affiliation(s)
| | - Rebecca Latter
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Beatrice Giuntoli
- Plantlab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| |
Collapse
|
46
|
Awale P, McSteen P. Hormonal regulation of inflorescence and intercalary meristems in grasses. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102451. [PMID: 37739867 DOI: 10.1016/j.pbi.2023.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Hormones played a fundamental role in improvement of yield in cereal grasses. Natural variants affecting gibberellic acid (GA) and auxin pathways were used to breed semi-dwarf varieties of rice, wheat, and sorghum, during the "Green Revolution" in the 20th century. Since then, variants with altered GA and cytokinin homeostasis have been used to breed cereals with increased grain number. These yield improvements were enabled by hormonal regulation of intercalary and inflorescence meristems. Recent advances have highlighted additional pathways, beyond the traditional CLAVATA-WUSCHEL pathway, in the regulation of auxin and cytokinin in inflorescence meristems, and have expanded our understanding of the role of GA in intercalary meristems.
Collapse
Affiliation(s)
- Prameela Awale
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
47
|
Hunt H, Leape S, Sidhu JS, Ajmera I, Lynch JP, Ratcliffe RG, Sweetlove LJ. A role for fermentation in aerobic conditions as revealed by computational analysis of maize root metabolism during growth by cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1553-1570. [PMID: 37831626 DOI: 10.1111/tpj.16478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional-structural model captured the cell-anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end-products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.
Collapse
Affiliation(s)
- Hilary Hunt
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stefan Leape
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ishan Ajmera
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - R George Ratcliffe
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
48
|
Yemelyanov VV, Puzanskiy RK, Shishova MF. Plant Life with and without Oxygen: A Metabolomics Approach. Int J Mol Sci 2023; 24:16222. [PMID: 38003412 PMCID: PMC10671363 DOI: 10.3390/ijms242216222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oxygen deficiency is an environmental challenge which affects plant growth, the development and distribution in land and aquatic ecosystems, as well as crop yield losses worldwide. The capacity to exist in the conditions of deficiency or the complete lack of oxygen depends on a number of anatomic, developmental and molecular adaptations. The lack of molecular oxygen leads to an inhibition of aerobic respiration, which causes energy starvation and the acceleration of glycolysis passing into fermentations. We focus on systemic metabolic alterations revealed with the different approaches of metabolomics. Oxygen deprivation stimulates the accumulation of glucose, pyruvate and lactate, indicating the acceleration of the sugar metabolism, glycolysis and lactic fermentation, respectively. Among the Krebs-cycle metabolites, only the succinate level increases. Amino acids related to glycolysis, including the phosphoglycerate family (Ser and Gly), shikimate family (Phe, Tyr and Trp) and pyruvate family (Ala, Leu and Val), are greatly elevated. Members of the Asp family (Asn, Lys, Met, Thr and Ile), as well as the Glu family (Glu, Pro, Arg and GABA), accumulate as well. These metabolites are important members of the metabolic signature of oxygen deficiency in plants, linking glycolysis with an altered Krebs cycle and allowing alternative pathways of NAD(P)H reoxidation to avoid the excessive accumulation of toxic fermentation products (lactate, acetaldehyde, ethanol). Reoxygenation induces the downregulation of the levels of major anaerobically induced metabolites, including lactate, succinate and amino acids, especially members of the pyruvate family (Ala, Leu and Val), Tyr and Glu family (GABA and Glu) and Asp family (Asn, Met, Thr and Ile). The metabolic profiles during native and environmental hypoxia are rather similar, consisting in the accumulation of fermentation products, succinate, fumarate and amino acids, particularly Ala, Gly and GABA. The most intriguing fact is that metabolic alterations during oxidative stress are very much similar, with plant response to oxygen deprivation but not to reoxygenation.
Collapse
Affiliation(s)
- Vladislav V. Yemelyanov
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Roman K. Puzanskiy
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (R.K.P.); (M.F.S.)
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Maria F. Shishova
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (R.K.P.); (M.F.S.)
| |
Collapse
|
49
|
Hill RD, Igamberdiev AU, Stasolla C. Preserving root stem cell functionality under low oxygen stress: the role of nitric oxide and phytoglobins. PLANTA 2023; 258:89. [PMID: 37759033 DOI: 10.1007/s00425-023-04246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
MAIN CONCLUSION The preservation of quiescent center stem cell integrity in hypoxic roots by phytoglobins is exercised through their ability to scavenge nitric oxide and attenuate its effects on auxin transport and cell degradation. Under low oxygen stress, the retention or induction of phytoglobin expression maintains cell viability while loss or lack of induction of phytoglobin leads to cell degradation. Plants have evolved unique attributes to ensure survival in the environment in which they must exist. Common among the attributes is the ability to maintain stem cells in a quiescent (or low proliferation) state in unfriendly environments. From the seed embryo to meristematic regions of the plant, quiescent stem cells exist to regenerate the organism when environmental conditions are suitable to allow plant survival. Frequently, plants dispose of mature cells or organs in the process of acclimating to the stresses to ensure survival of meristems, the stem cells of which are capable of regenerating cells and organs that have been sacrificed, a feature not generally available to mammals. Most of the research on plant stress responses has dealt with how mature cells respond because of the difficulty of specifically examining plant meristem responses to stress. This raises the question as to whether quiescent stem cells behave in a similar fashion to mature cells in their response to stress and what factors within these critical cells determine whether they survive or degrade when exposed to environmental stress. This review attempts to examine this question with respect to the quiescent center (QC) stem cells of the root apical meristem. Emphasis is put on how varying levels of nitric oxide, influenced by the expression of phytoglobins, affect QC response to hypoxic stress.
Collapse
Affiliation(s)
- Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
50
|
Mira MM, El-Khateeb EA, Youssef MS, Ciacka K, So K, Duncan RW, Hill RD, Stasolla C. Arabidopsis root apical meristem survival during waterlogging is determined by phytoglobin through nitric oxide and auxin. PLANTA 2023; 258:86. [PMID: 37747517 DOI: 10.1007/s00425-023-04239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
MAIN CONCLUSION Over-expression of phytoglobin mitigates the degradation of the root apical meristem (RAM) caused by waterlogging through changes in nitric oxide and auxin distribution at the root tip. Plant performance to waterlogging is ameliorated by the over-expression of the Arabidopsis Phytoglobin 1 (Pgb1) which also contributes to the maintenance of a functional RAM. Hypoxia induces accumulation of ROS and damage in roots of wild type plants; these events were preceded by the exhaustion of the RAM resulting from the loss of functionality of the WOX5-expressing quiescent cells (QCs). These phenotypic deviations were exacerbated by suppression of Pgb1 and attenuated when the same gene was up-regulated. Genetic and pharmacological studies demonstrated that degradation of the RAM in hypoxic roots is attributed to a reduction in the auxin maximum at the root tip, necessary for the specification of the QC. This reduction was primarily caused by alterations in PIN-mediated auxin flow but not auxin synthesis. The expression and localization patterns of several PINs, including PIN1, 2, 3 and 4, facilitating the basipetal translocation of auxin and its distribution at the root tip, were altered in hypoxic WT and Pgb1-suppressing roots but mostly unchanged in those over-expressing Pgb1. Disruption of PIN1 and PIN2 signal in hypoxic roots suppressing Pgb1 initiated in the transition zone at 12 h and was specifically associated to the absence of Pgb1 protein in the same region. Exogenous auxin restored a functional RAM, while inhibition of the directional auxin flow exacerbated the degradation of the RAM. The regulation of root behavior by Pgb1 was mediated by nitric oxide (NO) in a model consistent with the recognized function of Pgbs as NO scavengers. Collectively, this study contributes to our understanding of the role of Pgbs in preserving root meristem function and QC niche during conditions of stress, and suggests that the root transition zone is most vulnerable to hypoxia.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Eman A El-Khateeb
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed S Youssef
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Kenny So
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|