1
|
Vogiatzakis IN, Zotos S, Litskas V, Leontiou S, Stamatiou M. Roadkill in a Mediterranean island: Evaluating ten-years of official records. PLoS One 2025; 20:e0322644. [PMID: 40393015 PMCID: PMC12092012 DOI: 10.1371/journal.pone.0322644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/25/2025] [Indexed: 05/22/2025] Open
Abstract
Roadkill is a global issue contributing to biodiversity decline which is increasingly recognized by scientists and decision-makers. In Cyprus, a biodiversity hotspot with one of the highest road densities in Europe, the impact of roads on wildlife has been largely overlooked due to the absence of life-threatening collisions. We analysed data from a 10-year roadkill dataset (2013-2022) collected systematically by the Department of Public Works across 27 main roads, primarily aimed at driver safety. Due to the absence of spatial attributes for roadkill locations, the dataset was analysed to identify taxonomic, seasonal, and temporal roadkill trends in Cyprus for the first time. A total of 1,985 roadkill incidents were recorded, involving seven wildlife taxa: foxes (44%), birds (26%), hedgehogs (11.5%), snakes (7%), hares, rats, and lizards. Most roadkill occurred in the Nicosia district (65%). Statistical analyses using chi-square tests with post-hoc Bonferroni corrections revealed strong associations between road types and taxa. Fox and bird roadkill incidents were most common on highways, while hedgehogs and snakes were frequent on secondary interurban or rural roads. Roads near protected areas exhibited higher roadkill frequencies than highways. A positive relationship between traffic volume and roadkill risk was evident, with higher traffic roads posing greater risks. Seasonal patterns showed increased roadkill during spring and summer, peaking in June. This synthesis provides crucial insights into roadkill patterns, offering guidance for conservation and mitigation actions. However, the current monitoring system, focused on driver safety, is inadequate for comprehensive roadkill reporting. Key limitations, such as the absence of spatial data and weaknesses in the protocol, have been identified, with recommendations for improvement proposed to enhance future monitoring efforts.
Collapse
Affiliation(s)
- Ioannis N. Vogiatzakis
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Savvas Zotos
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus
| | - Vassilis Litskas
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus
- VL Sustainability Metrics LTD, Nicosia, Cyprus.
| | - Stalo Leontiou
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus
| | - Marilena Stamatiou
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Lambert JW, Roeble L, Pannetier T, Etienne RS, Valente L. Using phylogenetic data for island biogeography analyses: The DAISIEprep package. Mol Phylogenet Evol 2025; 206:108324. [PMID: 40068781 DOI: 10.1016/j.ympev.2025.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
New methodologies to infer past evolutionary, ecological and biogeographical processes from molecular phylogenies are rapidly being developed. However, these often employ unfamiliar data structures that may pose a barrier to their use. DAISIE (Dynamic Assembly of Islands through Speciation, Immigration and Extinction) is an island biogeography model that can estimate rates of colonisation, speciation and extinction from molecular phylogenetic data across insular assemblages. The method uses an unconventional phylogenetic data structure: instead of considering a single island lineage, it focuses on multiple independent lineages descending from different colonisation events of the island. While analysing phylogenies from this perspective has plenty of potential, this comes with challenges for the user. Here we describe software DAISIEprep, an R package to aid the extraction of data from one or many phylogenetic trees to generate and visualise data in a format interpretable by macroevolutionary and biogeographical inference models. DAISIEprep includes simple algorithms to extract data on island colonists and account for biogeographical, topological and taxonomic uncertainty. It also allows flexible incorporation of either missing species or entire insular lineages when molecular data are not available. The software enables reproducible and user-friendly data extraction, formatting and visualisation of phylogenetic data from island lineages, and will facilitate addressing questions about island evolution, community ecology and anthropogenic impacts in insular systems. The tools presented here will also be useful for researchers who do not plan to use DAISIE but are interested in how to interpret, visualise and analyse phylogenetic datasets of islands species or island-like environments.
Collapse
Affiliation(s)
- Joshua W Lambert
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700 CC Groningen, the Netherlands
| | - Lizzie Roeble
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700 CC Groningen, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
| | - Théo Pannetier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700 CC Groningen, the Netherlands; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700 CC Groningen, the Netherlands
| | - Luis Valente
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700 CC Groningen, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands.
| |
Collapse
|
3
|
Myers EA, Bell RC, Overcast I, Chaves JA, Torres-Carvajal O. Pleistocene island connectivity did not enhance dispersal or impact population size change in Galápagos geckos. Proc Biol Sci 2025; 292:20250746. [PMID: 40425164 DOI: 10.1098/rspb.2025.0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Patterns of biodiversity on remote archipelagos are largely shaped by intra-archipelago colonization followed by in situ diversification. Pleistocene sea-level fluctuations purportedly enhanced gene flow among terrestrial organisms by increasing connectivity during periods of lower sea level. Furthermore, changes in sea-level are hypothesized to impact population sizes as a result of fluctuations in island sizes. Here, we used genomic data to test the role of Pleistocene island connectivity on the diversification and demographics of leaf-toed geckos (Phyllodactylus) endemic to the Galápagos. Consistent with previous studies, we found that present diversity of Galápagos Phyllodactylus stems from three independent dispersal events. Contrary to the hypothesis of Pleistocene-driven diversification, we found no correspondence between lineage divergence and island connectivity. Furthermore, we found no evidence of introgression; demographic modelling indicated that all species increased rapidly in effective population size in the period 20-150 ka, and these inferred demographic expansions were largely asynchronous and apparently unassociated with species or island age. Collectively, these results indicate that more complex abiotic and/or biotic factors may better explain the recent demographic history of Phyllodactylus and underscore the need for additional population genomic studies of terrestrial taxa to understand the impact of past climate cycles on Galápagos island communities.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Rayna C Bell
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Isaac Overcast
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA
| | - Jaime A Chaves
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
- Biology, San Francisco State University, San Francisco, CA, USA
- Galapagos Science Center, Universidad San Francisco de Quito USFQ and University of North Carolina-Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - Omar Torres-Carvajal
- Museo de Zoología QCAZ, Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
4
|
Kuhnhäuser BG, Bates CD, Dransfield J, Geri C, Henderson A, Julia S, Lim JY, Morley RJ, Rustiami H, Schley RJ, Bellot S, Chomicki G, Eiserhardt WL, Hiscock SJ, Baker WJ. Island geography drives evolution of rattan palms in tropical Asian rainforests. Science 2025; 387:1204-1209. [PMID: 40080567 DOI: 10.1126/science.adp3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025]
Abstract
Distributed across two continents and thousands of islands, the Asian tropics are among the most species-rich areas on Earth. The origins of this diversity, however, remain poorly understood. Here, we reveal and classify contributions of individual tropical Asian regions to their overall diversity by leveraging species-level phylogenomic data and new fossils from the most species-rich Asian palm lineage, the rattans and relatives (Arecaceae, Calamoideae). Radiators (Borneo) generate and distribute diversity, incubators (Indochina, New Guinea, and Sulawesi) produce diversity in isolation, corridors (Java, Maluku, Sumatra, and the Thai-Malay Peninsula) connect neighboring regions, and accumulators (Australia, India, Palawan, and the Philippines) acquire diversity generated elsewhere. These contrasting contributions can be explained by differences in region size and isolation, elucidating how the unique island-dominated geography of the Asian tropics drives their outstanding biodiversity.
Collapse
Affiliation(s)
- Benedikt G Kuhnhäuser
- Royal Botanic Gardens Kew, Richmond, Surrey, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | - Connie Geri
- Sarawak Forestry Corporation, Jalan Sungai Tapang, Kota Sentosa, Kuching, Sarawak, Malaysia
| | | | - Sang Julia
- Sarawak Herbarium, Forest Department Sarawak, Jalan Datuk Amar Kalong Ningkan, Kuching, Malaysia
| | - Jun Ying Lim
- Centre for Nature-based Climate Solutions and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Robert J Morley
- Palynova Ltd, Littleport, UK
- Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey, UK
| | - Himmah Rustiami
- Herbarium Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Bogor, Indonesia
| | - Rowan J Schley
- Department of Geography, University of Exeter, Exeter, UK
| | | | | | - Wolf L Eiserhardt
- Royal Botanic Gardens Kew, Richmond, Surrey, UK
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - William J Baker
- Royal Botanic Gardens Kew, Richmond, Surrey, UK
- Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
De-Kayne R, Schley R, Barth JMI, Campillo LC, Chaparro-Pedraza C, Joshi J, Salzburger W, Van Bocxlaer B, Cotoras DD, Fruciano C, Geneva AJ, Gillespie R, Heras J, Koblmüller S, Matthews B, Onstein RE, Seehausen O, Singh P, Svensson EI, Salazar-Valenzuela D, Vanhove MPM, Wogan GOU, Yamaguchi R, Yoder AD, Cerca J. Why Do Some Lineages Radiate While Others Do Not? Perspectives for Future Research on Adaptive Radiations. Cold Spring Harb Perspect Biol 2025; 17:a041448. [PMID: 38692838 PMCID: PMC11864108 DOI: 10.1101/cshperspect.a041448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Understanding the processes that drive phenotypic diversification and underpin speciation is key to elucidating how biodiversity has evolved. Although these processes have been studied across a wide array of clades, adaptive radiations (ARs), which are systems with multiple closely related species and broad phenotypic diversity, have been particularly fruitful for teasing apart the factors that drive and constrain diversification. As such, ARs have become popular candidate study systems for determining the extent to which ecological features, including aspects of organisms and the environment, and inter- and intraspecific interactions, led to evolutionary diversification. Despite substantial past empirical and theoretical work, understanding mechanistically how ARs evolve remains a major challenge. Here, we highlight a number of understudied components of the environment and of lineages themselves, which may help further our understanding of speciation and AR. We also outline some substantial remaining challenges to achieving a detailed understanding of adaptation, speciation, and the role of ecology in these processes. These major challenges include identifying factors that have a causative impact in promoting or constraining ARs, gaining a more holistic understanding of features of organisms and their environment that interact resulting in adaptation and speciation, and understanding whether the role of these organismal and environmental features varies throughout the radiation process. We conclude by providing perspectives on how future investigations into the AR process can overcome these challenges, allowing us to glean mechanistic insights into adaptation and speciation.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060, USA
| | - Rowan Schley
- University of Exeter, Exeter, Devon EX4 4QE, United Kingdom
| | - Julia M I Barth
- Zoological Institute, Department of Environmental Science, University of Basel, CH-4051 Basel, Switzerland
| | - Luke C Campillo
- Department of Biology, University of Kentucky, Lexington, Kentucky 40508, USA
| | - Catalina Chaparro-Pedraza
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Jahnavi Joshi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Science, University of Basel, CH-4051 Basel, Switzerland
| | | | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California 94118, USA
| | - Carmelo Fruciano
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), 98122 Messina, Italy
- National Biodiversity Future Center, 61 90133 Palermo, Italy
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Anthony J Geneva
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey 08103, USA
| | - Rosemary Gillespie
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California 94720, USA
| | - Joseph Heras
- Department of Biology, California State University, San Bernardino, California 92407, USA
| | | | - Blake Matthews
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Renske E Onstein
- Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
- Aquatic Ecology Division, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Pooja Singh
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
- Aquatic Ecology Division, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Erik I Svensson
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Machala y Sabanilla, Quito EC170103, Ecuador
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Guinevere O U Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Ryo Yamaguchi
- Department of Advanced Transdisciplinary Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, North Carolina 27710, USA
| | - José Cerca
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, NO-0316 Oslo, Norway
| |
Collapse
|
6
|
Ali JR, Hedges SB. Land Bridges and Rafting Theories to Explain Terrestrial-Vertebrate Biodiversity on Madagascar. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:281-299. [PMID: 38876115 DOI: 10.1146/annurev-marine-032223-025654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Madagascar's celebrated land-vertebrate assemblage has long been studied and discussed. How the ancestors of the 30 different lineages arrived on the island, which has existed since 85 Mya and is separated from neighboring Africa by 430 km of water, is a deeply important question. Did the colonizations take place when the landmass formed part of Gondwana, or did they occur later and involve either now-drowned causeways or overwater dispersal (on vegetation rafts or by floating/swimming)? Following a historical review, we appraise the geological-geophysical evidence and the faunal-suite colonization record. Twenty-six of the clades are explained by temporally stochastic overwater dispersals, spanning 69-0 Mya, while two others are considered Gondwanan vicariant relicts. Due to a lack of information, the remaining two groups cannot be evaluated. The findings thus appear to resolve a debate that has rumbled along, with sporadic eruptions, since the mid-1800s.
Collapse
Affiliation(s)
- Jason R Ali
- Museum of Zoology, Senckenberg Dresden, Dresden, Germany;
| | - S Blair Hedges
- Center for Biodiversity, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Lifjeld JT, Cramer ERA, Leder EH, Voje KL. Sperm as a speciation phenotype in promiscuous songbirds. Evolution 2024; 79:134-143. [PMID: 39485024 DOI: 10.1093/evolut/qpae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Sperm morphology varies considerably among species. Sperm traits may contribute to speciation if they diverge fast in allopatry and cause conspecific sperm precedence upon secondary contact. However, their role in driving prezygotic isolation has been poorly investigated. Here we test the hypothesis that, early in the speciation process, female promiscuity promotes a reduction in overlap in sperm length distributions among songbird populations. We assembled a data set of 20 pairs of populations with known sperm length distributions, a published estimate of divergence time, and an index of female promiscuity derived from extrapair paternity rates or relative testis size. We found that sperm length distributions diverged more rapidly in more promiscuous species. Faster divergence between sperm length distributions was caused by the lower variance in the trait in more promiscuous species, and not by faster divergence of the mean sperm lengths. The reduced variance is presumably due to stronger stabilizing selection on sperm length mediated by sperm competition. If divergent sperm length optima in allopatry causes conspecific sperm precedence in sympatry, which remains to be shown empirically, female promiscuity may promote prezygotic isolation, and rapid speciation in songbirds.
Collapse
Affiliation(s)
- Jan T Lifjeld
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Emily R A Cramer
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Erica H Leder
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
- Department of Biology, University of Turku, Turku, Finland
| | - Kjetil Lysne Voje
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Illera JC, Rando JC, Melo M, Valente L, Stervander M. Avian Island Radiations Shed Light on the Dynamics of Adaptive and Nonadaptive Radiation. Cold Spring Harb Perspect Biol 2024; 16:a041451. [PMID: 38621823 PMCID: PMC11610763 DOI: 10.1101/cshperspect.a041451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Understanding the mechanisms underlying species formation and differentiation is a central goal of evolutionary biology and a formidable challenge. This understanding can provide valuable insights into the origins of the astonishing diversity of organisms living on our planet. Avian evolutionary radiations on islands have long fascinated biologists as they provide the ideal variation to study the ecological and evolutionary forces operating on the continuum between incipient lineages to complete speciation. In this review, we summarize the key insights gained from decades of research on adaptive and nonadaptive radiations of both extant and extinct insular bird species. We present a new comprehensive global list of potential avian radiations on oceanic islands, based on published island species checklists, taxonomic studies, and phylogenetic analyses. We demonstrate that our understanding of evolutionary processes is being greatly enhanced through the use of genomic tools. However, to advance the field, it is critical to complement this information with a solid understanding of the ecological and behavioral traits of both extinct and extant avian island species.
Collapse
Affiliation(s)
- Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres 33600, Asturias, Spain
| | - Juan Carlos Rando
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
| | - Martim Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Museu de História Natural e da Ciência da Universidade do Porto, Porto 4050-368, Portugal
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town 7701, South Africa
| | - Luís Valente
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 AB, The Netherlands
| | - Martin Stervander
- Bird Group, Natural History Museum, Tring HP23 6AP, Hertfordshire, United Kingdom
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, United Kingdom
| |
Collapse
|
9
|
Giacomuzzo E, Peller T, Gounand I, Altermatt F. Ecosystem Size Mediates the Effects of Resource Flows on Species Diversity and Ecosystem Function at Different Scales. Ecol Evol 2024; 14:e70709. [PMID: 39691433 PMCID: PMC11650751 DOI: 10.1002/ece3.70709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Ecosystem size and spatial resource flows are key factors driving species diversity and ecosystem function. However, the question of whether and how these drivers interact has been largely overlooked. Here, we investigated how ecosystem size asymmetry affects species diversity and function of two-patch meta-ecosystems connected through flows of nonliving resources. We conducted a microcosm experiment, mimicking resource flows between ecosystems of different sizes yet otherwise identical properties or between ecosystems of the same size. Meta-ecosystems with asymmetric ecosystem sizes displayed higher α-diversity but lower β-diversity and ecosystem function (total biomass) than their unconnected counterparts. At the same time, such an effect was not found for meta-ecosystems of identical patch sizes. Our work demonstrates how the size of ecosystems, interconnected via resource flows, can modulate cross-ecosystem dynamics, having implications for species diversity and function across scales.
Collapse
Affiliation(s)
- Emanuele Giacomuzzo
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Tianna Peller
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Isabelle Gounand
- Institut D'écologie et Des Sciences De L'environnement (iEES Paris)Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRAParisFrance
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
10
|
de Oliveira JVLC, Zeppelini D. A New Perspective to Oncopodura (Collembola: Oncopoduridae) Groups Based on Appendicular Morphology. NEOTROPICAL ENTOMOLOGY 2024; 53:1220-1259. [PMID: 39361111 DOI: 10.1007/s13744-024-01203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/17/2024] [Indexed: 11/05/2024]
Abstract
Oncopodura are rare basal springtails often associated with caves; only O. hyleana and O. itatiaiensis are known to Brazil. Oncopodura specimens from CRFS-UEPB were analyzed. Four new species are described: O. aurea sp. n., O. bauxita sp. n., O. hematita sp. n., and O. turmalina sp. n. The coded description of Symphypleona is adapted to Arthropleona, and 96 morphological characters are listed. Data of habitat and distribution of the new species is presented. A key of Brazilian Oncopodura is provided. Oncopodura groups are analyzed with main morphological characters for the groups classification. The crassicornis group is paraphyletic, tricuspidata group is monophyletic, and cruciata group compounds a new group out tricuspidata, with uncertain classification. The main characters that support crassicornis are the presence of unguiculus basal tubercle, external pretarsal chaeta larger than internal, absence of lateral lamella on unguis and PAO often with 6 + 6 or more lobules; tricuspidata is supported by basal tubercle often absent, pretarsal chaetae with similar length (usually both small), presence of lateral lamella on unguis and PAO often with less than 4 + 4 lobules; cruciata group is supported by absence of lateral lamella on unguis and PAO with less than 4 + 4 lobules and pretarsal chaetae usually with same length, both large. The characters like number of PAO lobes and shape, number of Ant IV transversal sens, and shape of hooks of the dens apparently are adaptive, presenting variations in the species. All the newly described species have reduced abundance and are distributed along two of Brazilian major mining areas, and are subject of habitat loss and degradation.
Collapse
Affiliation(s)
| | - Douglas Zeppelini
- Lab de Sistemática de Collembola E Conservação, Instituto de Biologia de Solo, Univ Estadual da Paraíba, Campina Grande, Brazil
| |
Collapse
|
11
|
Matthews TJ, Triantis KA, Wayman JP, Martin TE, Hume JP, Cardoso P, Faurby S, Mendenhall CD, Dufour P, Rigal F, Cooke R, Whittaker RJ, Pigot AL, Thébaud C, Jørgensen MW, Benavides E, Soares FC, Ulrich W, Kubota Y, Sadler JP, Tobias JA, Sayol F. The global loss of avian functional and phylogenetic diversity from anthropogenic extinctions. Science 2024; 386:55-60. [PMID: 39361743 DOI: 10.1126/science.adk7898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/15/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024]
Abstract
Humans have been driving a global erosion of species richness for millennia, but the consequences of past extinctions for other dimensions of biodiversity-functional and phylogenetic diversity-are poorly understood. In this work, we show that, since the Late Pleistocene, the extinction of 610 bird species has caused a disproportionate loss of the global avian functional space along with ~3 billion years of unique evolutionary history. For island endemics, proportional losses have been even greater. Projected future extinctions of more than 1000 species over the next two centuries will incur further substantial reductions in functional and phylogenetic diversity. These results highlight the severe consequences of the ongoing biodiversity crisis and the urgent need to identify the ecological functions being lost through extinction.
Collapse
Affiliation(s)
- Thomas J Matthews
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Azorean Biodiversity Group, CHANGE - Global Change and Sustainability Institute, and Faculty of Agricultural Sciences and Environment, Universidade dos Açores, Angra do Heroísmo, Açores, Portugal
| | - Kostas A Triantis
- Department of Ecology and Taxonomy, Faculty of Biology, National and Kapodistrian University of Athens, Athens GR-15784, Greece
| | - Joseph P Wayman
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Thomas E Martin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
- Operation Wallacea, Wallace House, Old Bolingbroke, Lincolnshire, UK
| | - Julian P Hume
- Bird Group, Life Sciences, Natural History Museum, Tring, UK
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
- CE3C, CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Chase D Mendenhall
- Physician Assistant Studies, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Paul Dufour
- Center for Functional and Evolutionary Ecology (CEFE), Université de Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- Station Biologique de la Tour du Valat, Arles, France
| | - François Rigal
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Azorean Biodiversity Group, CHANGE - Global Change and Sustainability Institute, and Faculty of Agricultural Sciences and Environment, Universidade dos Açores, Angra do Heroísmo, Açores, Portugal
- CNRS - Université de Pau et des Pays de l'Adour - E2S UPPA, Institut Des Sciences Analytiques et de Physico Chimie pour l'Environnement et les Materiaux, UMR5254, Pau, France
| | - Rob Cooke
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire, UK
| | - Robert J Whittaker
- School of Geography and the Environment, University of Oxford, Oxford, UK
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Christophe Thébaud
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (Toulouse III), Toulouse Cedex 9, France
| | - Maria Wagner Jørgensen
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Eva Benavides
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Filipa C Soares
- CE3C, Departamento de Biologia Animal, CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Werner Ulrich
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland
| | - Yasuhiro Kubota
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Jon P Sadler
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Ferran Sayol
- CREAF, Edifici C Campus UAB, E08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
12
|
Givnish TJ. Global conservation priorities for island plant diversity. Nature 2024; 634:790-792. [PMID: 39414963 DOI: 10.1038/d41586-024-02921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
|
13
|
Guan Y, Wu Y, Cao Z, Wu Z, Yu F, Yu H, Wang T. Island biogeography theory and the habitat heterogeneity jointly explain global patterns of Rhododendron diversity. PLANT DIVERSITY 2024; 46:565-574. [PMID: 39290891 PMCID: PMC11403146 DOI: 10.1016/j.pld.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 09/19/2024]
Abstract
Mountain biodiversity is of great importance to biogeography and ecology. However, it is unclear what ecological and evolutionary processes best explain the generation and maintenance of its high levels of species diversity. In this study, we determined which of six common hypotheses (e.g., climate hypotheses, habitat heterogeneity hypothesis and island biogeography theory) best explain global patterns of species diversity in Rhododendron. We found that Rhododendron diversity patterns were most strongly explained by proxies of island biogeography theory (i.e., mountain area) and habitat heterogeneity (i.e., elevation range). When we examined other relationships important to island biogeography theory, we found that the planimetric area and the volume of mountains were positively correlated with the Rhododendron diversity, whereas the 'mountains-to-mainland' distance was negatively correlated with Rhododendron diversity and shared species. Our findings demonstrate that Rhododendron diversity can be explained by island biogeography theory and habitat heterogeneity, and mountains can be regarded as islands which supported island biogeography theory.
Collapse
Affiliation(s)
- Yanwei Guan
- School of Geographical Sciences and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Yongru Wu
- School of Geographical Sciences and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Zheng Cao
- School of Geographical Sciences and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Zhifeng Wu
- School of Geographical Sciences and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Fangyuan Yu
- School of Geographical Sciences and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Haibin Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Tiejun Wang
- Department of Natural Resources, Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Drienerlolaan 5, Enschede 7522 NB, the Netherlands
| |
Collapse
|
14
|
Roeble L, van Benthem KJ, Weigelt P, Kreft H, Knope ML, Mandel JR, Vargas P, Etienne RS, Valente L. Island biogeography of the megadiverse plant family Asteraceae. Nat Commun 2024; 15:7276. [PMID: 39179568 PMCID: PMC11343744 DOI: 10.1038/s41467-024-51556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
The megadiverse plant family Asteraceae forms an iconic component of island floras including many spectacular radiations, but a global picture of its insular diversity is lacking. Here, we uncover the global biogeographical and evolutionary patterns of Asteraceae on islands to reveal the magnitude and potential causes of their evolutionary success. We compile a global checklist of Asteraceae species native and endemic to islands and combine it with macroecological analyses and a phylogenetic review of island radiations. Asteraceae have a global distribution on islands, comprising approximately 6,000 native island species, with 58% endemics. While diversity of the family on islands is lower than expected given its overall diversity, Asteraceae are the most diverse family on oceanic islands, suggesting an exceptional ability to thrive in isolation. In agreement with island biogeography predictions, native Asteraceae diversity increases with area and decreases with isolation, while endemism increases with both. We identify 39 confirmed island radiations and 69 putative radiations, exceeding numbers for other iconic insular groups. Our results reveal Asteraceae offer immense potential for research in ecology and evolution, given their close tracking of island biogeography expectations, large number of both species and radiations, cosmopolitan distribution, and numerous undiscovered radiations.
Collapse
Affiliation(s)
- Lizzie Roeble
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Koen J van Benthem
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Patrick Weigelt
- Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
- Campus Institute Data Science, Göttingen, Germany
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
- Campus Institute Data Science, Göttingen, Germany
| | - Matthew L Knope
- University of Hawai'i at Hilo, Dept. of Biology, 200 W. Kawili St., Hilo, HI, 96720, USA
| | - Jennifer R Mandel
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Luis Valente
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Hagen O, Viana DS, Wiegand T, Chase JM, Onstein RE. The macro-eco-evolutionary interplay between dispersal, competition and landscape structure in generating biodiversity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230140. [PMID: 38913052 PMCID: PMC11391298 DOI: 10.1098/rstb.2023.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 06/25/2024] Open
Abstract
Theory links dispersal and diversity, predicting the highest diversity at intermediate dispersal levels. However, the modulation of this relationship by macro-eco-evolutionary mechanisms and competition within a landscape is still elusive. We examine the interplay between dispersal, competition and landscape structure in shaping biodiversity over 5 million years in a dynamic archipelago landscape. We model allopatric speciation, temperature niche, dispersal, competition, trait evolution and trade-offs between competitive and dispersal traits. Depending on dispersal abilities and their interaction with landscape structure, our archipelago exhibits two 'connectivity regimes', that foster speciation events among the same group of islands. Peaks of diversity (i.e. alpha, gamma and phylogenetic), occurred at intermediate dispersal; while competition shifted diversity peaks towards higher dispersal values for each connectivity regime. This shift demonstrates how competition can boost allopatric speciation events through the evolution of thermal specialists, ultimately limiting geographical ranges. Even in a simple landscape, multiple intermediate dispersal diversity relationships emerged, all shaped similarly and according to dispersal and competition strength. Our findings remain valid as dispersal- and competitive-related traits evolve and trade-off; potentially leaving identifiable biodiversity signatures, particularly when trade-offs are imposed. Overall, we scrutinize the convoluted relationships between dispersal, species interactions and landscape structure on macro-eco-evolutionary processes, with lasting imprints on biodiversity.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- O Hagen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D S Viana
- Estación Biológica de Doñana, CSIC, Seville, Spain
| | - T Wiegand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - J M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - R E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Naturalis Biodiversity Center, Leiden 2333 CR, Netherlands
| |
Collapse
|
16
|
Chen B, Xue D, Li Z, Jiang L, Tian Y, Zhu J, Jin X, Yang J, Huang C, Liu J, Liu H, Liu J, He Z. Anthropogenic Disturbances Influenced the Island Effect on Both Taxonomic and Phylogenetic Diversity on Subtropical Islands, Pingtan, China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1537. [PMID: 38891345 PMCID: PMC11174741 DOI: 10.3390/plants13111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
The investigation of taxonomic diversity within island plant communities stands as a central focus in the field of island biogeography. Phylogenetic diversity is crucial for unraveling the evolutionary history, ecological functions, and species combinations within island plant communities. Island effects (area and isolation effect) may shape species distribution patterns, habitat heterogeneity affects habitat diversity, and anthropogenic disturbances can lead to species extinction and habitat destruction, thus impacting both species diversity and phylogenetic diversity. To investigate how taxonomic and phylogenetic diversity in island natural plant communities respond to island effects, habitat heterogeneity, and anthropogenic disturbances, we took the main island of Haitan (a land-bridge island) and nine surrounding islands (oceanic islands) of varying sizes as the subjects of our study on the Pingtan islands. We aim to elucidate the influence of island effects, habitat heterogeneity, and anthropogenic disturbances on taxonomic and phylogenetic diversity. The results showed that, (1) Both the taxonomic and phylogenetic diversity of plants on the Pingtan islands followed the island area effect, indicating that as the island area increases, both taxonomic and phylogenetic diversity also increase. (2) Island effects and habitat heterogeneity were found to enhance taxonomic and phylogenetic diversity, whereas anthropogenic disturbances were associated with a decrease in both taxonomic and phylogenetic diversity. Furthermore, the synergistic influence of island effects, habitat heterogeneity, and anthropogenic disturbances collectively exerted a negative impact on both taxonomic and phylogenetic diversity. (3) The contribution of explanatory variables of anthropogenic disturbances for taxonomic and phylogenetic diversity was higher than that of island effects and habitat heterogeneity. Additionally, the contribution of the explanatory variables under the combined influence of island effects, habitat heterogeneity, and anthropogenic disturbances is higher than that of the individual variables for island effects and habitat heterogeneity. These findings suggest that anthropogenic disturbances emerged as the dominant factors influencing both taxonomic and phylogenetic diversity. These findings demonstrate the intricate interplay between island effects, habitat heterogeneity, and anthropogenic disturbances, highlighting their combined influence on both taxonomic and phylogenetic diversity on island.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Z.L.); (L.J.); (Y.T.); (J.Z.); (X.J.); (J.Y.)
| | - Denghong Xue
- Pingtan Comprehensive Experimental Zone Natural Resources Service Center, Fuzhou 350400, China;
| | - Zhihui Li
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Z.L.); (L.J.); (Y.T.); (J.Z.); (X.J.); (J.Y.)
| | - Lan Jiang
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Z.L.); (L.J.); (Y.T.); (J.Z.); (X.J.); (J.Y.)
| | - Yu Tian
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Z.L.); (L.J.); (Y.T.); (J.Z.); (X.J.); (J.Y.)
| | - Jing Zhu
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Z.L.); (L.J.); (Y.T.); (J.Z.); (X.J.); (J.Y.)
| | - Xing Jin
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Z.L.); (L.J.); (Y.T.); (J.Z.); (X.J.); (J.Y.)
| | - Jingjing Yang
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Z.L.); (L.J.); (Y.T.); (J.Z.); (X.J.); (J.Y.)
| | - Chaofa Huang
- Fujian Forestry Prospect and Design Institute, Fuzhou 350001, China;
| | - Jurong Liu
- Fujian Forestry Survey and Planning Institute, Fuzhou 350001, China; (J.L.); (H.L.)
| | - Hai Liu
- Fujian Forestry Survey and Planning Institute, Fuzhou 350001, China; (J.L.); (H.L.)
| | - Jinfu Liu
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Z.L.); (L.J.); (Y.T.); (J.Z.); (X.J.); (J.Y.)
| | - Zhongsheng He
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Z.L.); (L.J.); (Y.T.); (J.Z.); (X.J.); (J.Y.)
| |
Collapse
|
17
|
Beaugrand G, Kléparski L, Luczak C, Goberville E, Kirby RR. A niche-based theory of island biogeography. Ecol Evol 2024; 14:e11540. [PMID: 38932973 PMCID: PMC11199848 DOI: 10.1002/ece3.11540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The equilibrium theory of island biogeography (ETIB) is a widely applied dynamic theory proposed in the 1960s to explain why islands have coherent differences in species richness. The development of the ETIB was temporarily challenged in the 1970s by the alternative static theory of ecological impoverishment (TEI). The TEI suggests that the number of species on an island is determined by its number of habitats or niches but, with no clear evidence relating species richness to the number of niches however, the TEI has been almost dismissed as a theory in favour of the original ETIB. Here, we show that the number of climatic niches on islands is an important predictor of the species richness of plants, herpetofauna and land birds. We therefore propose a model called the niche-based theory of island biogeography (NTIB), based on the MacroEcological Theory on the Arrangement of Life (METAL), which successfully integrates the number of niches sensu Hutchinson into ETIB. To account for greater species turnover at the beginning of colonisation, we include higher initial extinction rates. When we test our NTIB for resident land birds in the Krakatau Islands, it reveals a good correspondence with observed species richness, immigration and extinction rates. Provided the environmental regime remains unchanged, we estimate that the current species richness at equilibrium is ~45 species (range between 38.39 and 61.51). Our NTIB provides better prediction because it counts for changes in species richness with latitude, which is not considered in any theory of island biogeography.
Collapse
Affiliation(s)
- Gregory Beaugrand
- Laboratoire d'Océanologie et de GéosciencesCNRS, Université de Lille, Université du Littoral Côte d'Opale, UMR 8187, LOGWimereuxFrance
| | - Loick Kléparski
- Marine Biological Association, The Continuous Plankton Recorder (CPR) Survey, The LaboratoryPlymouthUK
| | - Christophe Luczak
- Laboratoire d'Océanologie et de GéosciencesCNRS, Université de Lille, Université du Littoral Côte d'Opale, UMR 8187, LOGWimereuxFrance
| | - Eric Goberville
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des AntillesParisFrance
| | | |
Collapse
|
18
|
Vangestel C, Swaegers J, De Corte Z, Dekoninck W, Gharbi K, Gillespie R, Vandekerckhove M, Van Belleghem SM, Hendrickx F. Chromosomal inversions from an initial ecotypic divergence drive a gradual repeated radiation of Galápagos beetles. SCIENCE ADVANCES 2024; 10:eadk7906. [PMID: 38820159 PMCID: PMC11141621 DOI: 10.1126/sciadv.adk7906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Island faunas exhibit some of the most iconic examples where similar forms repeatedly evolve within different islands. Yet, whether these deterministic evolutionary trajectories within islands are driven by an initial, singular divergence and the subsequent exchange of individuals and adaptive genetic variation between islands remains unclear. Here, we study a gradual, repeated evolution of low-dispersive highland ecotypes from a dispersive lowland ecotype of Calosoma beetles along the island progression of the Galápagos. We show that repeated highland adaptation involved selection on multiple shared alleles within extensive chromosomal inversions that originated from an initial adaptation event on the oldest island. These highland inversions first spread through dispersal of highland individuals. Subsequent admixture with the lowland ecotype resulted in polymorphic dispersive populations from which the highland populations evolved on the youngest islands. Our findings emphasize the significance of an ancient divergence in driving repeated evolution and highlight how a mixed contribution of inter-island colonization and within-island evolution can shape parallel species communities.
Collapse
Affiliation(s)
- Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| | - Janne Swaegers
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Ecology, Evolution and Conservation Biology, Biology Department, University of Leuven, Leuven, Belgium
| | - Zoë De Corte
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| | | | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norfolk, United Kingdom
| | - Rosemary Gillespie
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Matthias Vandekerckhove
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| | - Steven M. Van Belleghem
- Ecology, Evolution and Conservation Biology, Biology Department, University of Leuven, Leuven, Belgium
| | - Frederik Hendrickx
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| |
Collapse
|
19
|
Dufour P, Sayol F, Cooke R, Blackburn TM, Gallien L, Griesser M, Steinbauer MJ, Faurby S. The importance of migratory drop-off for island colonization in birds. Proc Biol Sci 2024; 291:20232926. [PMID: 38628117 PMCID: PMC11021927 DOI: 10.1098/rspb.2023.2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Seasonal migration is an underappreciated driver of animal diversification. Changes in migratory behaviour may favour the establishment of sedentary founder populations and promote speciation if there is sufficient reproductive isolation between sedentary and migratory populations. From a systematic literature review, we here quantify the role of migratory drop-off-the loss of migratory behaviour-in promoting speciation in birds on islands. We identify at least 157 independent colonization events likely initiated by migratory species that led to speciation, including 44 cases among recently extinct species. By comparing, for all islands, the proportion of island endemic species that derived from migratory drop-off with the proportion of migratory species among potential colonizers, we showed that seasonal migration has a larger effect on island endemic richness than direct dispersal. We also found that the role of migration in island colonization increases with the geographic isolation of islands. Furthermore, the success of speciation events depends in part on species biogeographic and ecological factors, here positively associated with greater range size and larger flock sizes. These results highlight the importance of shifts in migratory behaviour in the speciation process and calls for greater consideration of migratory drop-off in the biogeographic distribution of birds.
Collapse
Affiliation(s)
- Paul Dufour
- Department of Biological & Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Ferran Sayol
- Centre for Ecological Research and Forestry Applications (CREAF), E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Rob Cooke
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - Tim M. Blackburn
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - Laure Gallien
- LECA, CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Chambéry, France
| | - Michael Griesser
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Manuel J. Steinbauer
- Bayreuth Center of Ecology and Environmental Research (BayCEER) & Bayreuth Center of Sport Science (BaySpo), University of Bayreuth, Bayreuth, Germany
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Søren Faurby
- Department of Biological & Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| |
Collapse
|
20
|
Lindken T, Anderson CV, Ariano-Sánchez D, Barki G, Biggs C, Bowles P, Chaitanya R, Cronin DT, Jähnig SC, Jeschke JM, Kennerley RJ, Lacher TE, Luedtke JA, Liu C, Long B, Mallon D, Martin GM, Meiri S, Pasachnik SA, Reynoso VH, Stanford CB, Stephenson PJ, Tolley KA, Torres-Carvajal O, Waldien DL, Woinarski JCZ, Evans T. What factors influence the rediscovery of lost tetrapod species? GLOBAL CHANGE BIOLOGY 2024; 30. [PMID: 38273552 DOI: 10.1111/gcb.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
We created a database of lost and rediscovered tetrapod species, identified patterns in their distribution and factors influencing rediscovery. Tetrapod species are being lost at a faster rate than they are being rediscovered, due to slowing rates of rediscovery for amphibians, birds and mammals, and rapid rates of loss for reptiles. Finding lost species and preventing future losses should therefore be a conservation priority. By comparing the taxonomic and spatial distribution of lost and rediscovered tetrapod species, we have identified regions and taxa with many lost species in comparison to those that have been rediscovered-our results may help to prioritise search effort to find them. By identifying factors that influence rediscovery, we have improved our ability to broadly distinguish the types of species that are likely to be found from those that are not (because they are likely to be extinct). Some lost species, particularly those that are small and perceived to be uncharismatic, may have been neglected in terms of conservation effort, and other lost species may be hard to find due to their intrinsic characteristics and the characteristics of the environments they occupy (e.g. nocturnal species, fossorial species and species occupying habitats that are more difficult to survey such as wetlands). These lost species may genuinely await rediscovery. However, other lost species that possess characteristics associated with rediscovery (e.g. large species) and that are also associated with factors that negatively influence rediscovery (e.g. those occupying small islands) are more likely to be extinct. Our results may foster pragmatic search protocols that prioritise lost species likely to still exist.
Collapse
Affiliation(s)
- Tim Lindken
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Christopher V Anderson
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
- IUCN SSC Chameleon Specialist Group, Gland, Switzerland
| | - Daniel Ariano-Sánchez
- Centro de Estudios Ambientales y Biodiversidad, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Notodden, Norway
| | - Goni Barki
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | | | - Philip Bowles
- IUCN SSC Snake and Lizard Red List Authority, Gland, Switzerland
| | - Ramamoorthi Chaitanya
- The School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | | | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jonathan M Jeschke
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- IUCN SSC Invasive Species Specialist Group, Gland, Switzerland
| | - Rosalind J Kennerley
- Durrell Wildlife Conservation Trust, Jersey, UK
- IUCN SSC Small Mammal Specialist Group, Gland, Switzerland
| | - Thomas E Lacher
- Re:wild, Austin, Texas, USA
- IUCN SSC Small Mammal Specialist Group, Gland, Switzerland
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Jennifer A Luedtke
- Re:wild, Austin, Texas, USA
- IUCN SSC Amphibian Specialist Group, Gland, Switzerland
| | - Chunlong Liu
- College of Fisheries, Ocean University of China, Qingdao, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - David Mallon
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Gabriel M Martin
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), Esquel, Argentina
- IUCN SSC New World Marsupials Specialist Group, Gland, Switzerland
| | - Shai Meiri
- The School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | | | - Victor Hugo Reynoso
- Departamento de Zoología/Pabellón de la Biodiversidad, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Craig B Stanford
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
- IUCN SSC Tortoise and Freshwater Turtle Specialist Group, Gland, Switzerland
| | - P J Stephenson
- Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- IUCN SSC Species Monitoring Specialist Group, Gland, Switzerland
- IUCN SSC Afrotheria Specialist Group, Gland, Switzerland
| | - Krystal A Tolley
- IUCN SSC Chameleon Specialist Group, Gland, Switzerland
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| | - Omar Torres-Carvajal
- Museo de Zoología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - David L Waldien
- IUCN SSC Bat Specialist Group, Gland, Switzerland
- Christopher Newport University, Newport News, Virginia, USA
- Lubee Bat Conservancy, Gainesville, Florida, USA
- Harrison Institute, Kent, UK
| | | | - Thomas Evans
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- IUCN SSC Invasive Species Specialist Group, Gland, Switzerland
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Zhang J, Zhang Y, Feng C. Genome-Wide Analysis of MYB Genes in Primulina eburnea (Hance) and Identification of Members in Response to Drought Stress. Int J Mol Sci 2023; 25:465. [PMID: 38203634 PMCID: PMC10778706 DOI: 10.3390/ijms25010465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Due to periodic water deficiency in karst environments, Primulina eburnea experiences sporadic drought stress in its habitat. Despite being one of the largest gene families and functionally diverse in terms of plant growth and development, MYB transcription factors in P. eburnea have not been studied. Here, a total of 230 MYB genes were identified in P. eburnea, including 67 1R-MYB, 155 R2R3-MYB, six 3R-MYB, and two 4R-MYB genes. The R2R3-type PebMYB genes could be classified into 16 subgroups, while the remaining PebMYB genes (1R-MYB, 3R-MYB, and 4R-MYB genes) were divided into 10 subgroups. Notably, the results of the phylogenetic analysis were further supported by the motif and gene structure analysis, which showed that individuals in the same subgroup had comparable motif and structure organization. Additionally, gene duplication and synteny analyses were performed to better understand the evolution of PebMYB genes, and 291 pairs of segmental duplicated genes were found. Moreover, RNA-seq analysis revealed that the PebMYB genes could be divided into five groups based on their expression characteristics. Furthermore, 11 PebMYB genes that may be involved in drought stress response were identified through comparative analysis with Arabidopsis thaliana. Notably, seven of these genes (PebMYB3, PebMYB13, PebMYB17, PebMYB51, PebMYB142, PebMYB69, and PebMYB95) exhibited significant differences in expression between the control and drought stress treatments, suggesting that they may play important roles in drought stress response. These findings clarified the characteristics of the MYB gene family in P. eburnea, augmenting our comprehension of their potential roles in drought stress adaptation.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (J.Z.); (Y.Z.)
| | - Yi Zhang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (J.Z.); (Y.Z.)
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (J.Z.); (Y.Z.)
| |
Collapse
|
22
|
Cooke R, Sayol F, Andermann T, Blackburn TM, Steinbauer MJ, Antonelli A, Faurby S. Undiscovered bird extinctions obscure the true magnitude of human-driven extinction waves. Nat Commun 2023; 14:8116. [PMID: 38114469 PMCID: PMC10730700 DOI: 10.1038/s41467-023-43445-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Birds are among the best-studied animal groups, but their prehistoric diversity is poorly known due to low fossilization potential. Hence, while many human-driven bird extinctions (i.e., extinctions caused directly by human activities such as hunting, as well as indirectly through human-associated impacts such as land use change, fire, and the introduction of invasive species) have been recorded, the true number is likely much larger. Here, by combining recorded extinctions with model estimates based on the completeness of the fossil record, we suggest that at least ~1300-1500 bird species (~12% of the total) have gone extinct since the Late Pleistocene, with 55% of these extinctions undiscovered (not yet discovered or left no trace). We estimate that the Pacific accounts for 61% of total bird extinctions. Bird extinction rate varied through time with an intense episode ~1300 CE, which likely represents the largest human-driven vertebrate extinction wave ever, and a rate 80 (60-95) times the background extinction rate. Thus, humans have already driven more than one in nine bird species to extinction, with likely severe, and potentially irreversible, ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Rob Cooke
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden.
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.
| | - Ferran Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Tobias Andermann
- Department of Organismal Biology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Tim M Blackburn
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Manuel J Steinbauer
- Bayreuth Center of Ecology and Environmental Research (BayCEER) & Bayreuth Center of Sport Science (BaySpo), University of Bayreuth, 95447, Bayreuth, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| |
Collapse
|
23
|
Enbody ED, Sendell-Price AT, Sprehn CG, Rubin CJ, Visscher PM, Grant BR, Grant PR, Andersson L. Community-wide genome sequencing reveals 30 years of Darwin's finch evolution. Science 2023; 381:eadf6218. [PMID: 37769091 DOI: 10.1126/science.adf6218] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galápagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd., St. Lucia QLD 4072, Australia
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Pkwy Building 2, College Station, TX 77843, USA
| |
Collapse
|
24
|
Smyčka J, Toszogyova A, Storch D. The relationship between geographic range size and rates of species diversification. Nat Commun 2023; 14:5559. [PMID: 37689787 PMCID: PMC10492861 DOI: 10.1038/s41467-023-41225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Range size is a universal characteristic of every biological species, and is often assumed to affect diversification rate. There are strong theoretical arguments that large-ranged species should have higher rates of diversification. On the other hand, the observation that small-ranged species are often phylogenetically clustered might indicate high diversification of small-ranged species. This discrepancy between theory and the data may be caused by the fact that typical methods of data analysis do not account for range size changes during speciation. Here we use a cladogenetic state-dependent diversification model applied to mammals to show that range size changes during speciation are ubiquitous and small-ranged species indeed diversify generally slower, as theoretically expected. However, both range size and diversification are strongly influenced by idiosyncratic and spatially localized events, such as colonization of an archipelago or a mountain system, which often override the general pattern of range size evolution.
Collapse
Affiliation(s)
- Jan Smyčka
- Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, CZ-11000, Prague, Czech Republic.
| | - Anna Toszogyova
- Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, CZ-11000, Prague, Czech Republic
| | - David Storch
- Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, CZ-11000, Prague, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, CZ-12844, Prague, Czech Republic
| |
Collapse
|
25
|
Martínez AE, Si X, Zhou L, Zeng D, Ding P, Goodale E. Interspecific sociality alters the colonization and extinction rates of birds on subtropical reservoir islands. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220096. [PMID: 37066642 PMCID: PMC10107236 DOI: 10.1098/rstb.2022.0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/25/2022] [Indexed: 04/18/2023] Open
Abstract
Island biogeography theory has proved a robust approach to predicting island biodiversity on the assumption of species equivalency. However, species differ in their grouping behaviour and are entangled by complex interactions in island communities, such as competition and mutualism. We here investigated whether intra- and/or interspecific sociality may influence biogeographic patterns, by affecting movement between islands or persistence on them. We classified bird species in a subtropical reservoir island system into subcommunities based on their propensity to join monospecific and mixed-species flocks. We found that subcommunities which had high propensity to flock interspecifically had higher colonization rates and lower extinction rates over a 10-year period. Intraspecific sociality increased colonization in the same analysis. A phylogenetically corrected analysis confirmed the importance of interspecific sociality, but not intraspecific sociality. Group-living could enable higher risk crossings, with greater vigilance also linked to higher foraging efficiency, enabling colonization or long-term persistence on islands. Further, if group members are other species, competition can be minimized. Future studies should investigate different kinds of island systems, considering positive species interactions driven by social behaviour as potential drivers of community assembly on islands. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- Ari E. Martínez
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 100 DaXue Road, Nanning, Guangxi 530004, People's Republic of China
| | - Xingfeng Si
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Liping Zhou
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 100 DaXue Road, Nanning, Guangxi 530004, People's Republic of China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
| | - Di Zeng
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Eben Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 100 DaXue Road, Nanning, Guangxi 530004, People's Republic of China
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
26
|
Saxton NA, Powell GS, Bybee SM. A story of vicariance? How the geology of oceanic archipelagos influenced the evolutionary history of endemic damselflies. Mol Phylogenet Evol 2023:107831. [PMID: 37257796 DOI: 10.1016/j.ympev.2023.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
South Pacific islands provide an ideal study system to explore patterns of speciation, specifically examining the role of dispersal versus vicariance. Dispersal is often the suggested mechanism of diversification in the South Pacific, specifically among remote island chains. Here, we provide a phylogeny of several related genera of Coenagrionidae (Odonata: Zygoptera) from the South Pacific, based on five molecular loci, in order to examine patterns of speciation in the region. We used the endemic damselfly genera Nesobasis, Nikoulabasis, and Vanuatubasis found across both Fiji and Vanuatu. Knowledge of the geologic history of the region was used to inform our understanding of the evolution of these genera. Both archipelagos used to be part of the Vitiaz arc which spanned from the Solomon Islands to Tonga and began to break apart 10-12 Ma. Results of our divergence-time estimations and biogeographic reconstructions support that the breakup of this arc acted as a significant vicariance event in the evolution of these taxa. Specifically, it led to the extant generic diversity seen in these damselflies. We find that within the archipelago of Vanuatu, that Espiritu Santo served as an important source for dispersal to other islands with Malekula acting as a stepping stone to Efate.
Collapse
Affiliation(s)
- Natalie A Saxton
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA.
| | - Gareth S Powell
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA; Florida State Collection of Arthropods, Gainesville, FL, 32608
| | - Seth M Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
27
|
Mandagi IF, K A Sumarto B, Nuryadi H, Mokodongan DF, Lawelle SA, W A Masengi K, Nagano AJ, Kakioka R, Kitano J, Ansai S, Kusumi J, Yamahira K. Multiple colonizations and hybridization of a freshwater fish group on a satellite island of Sulawesi. Mol Phylogenet Evol 2023; 184:107804. [PMID: 37120113 DOI: 10.1016/j.ympev.2023.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Repeated colonizations and resultant hybridization may increase lineage diversity on an island if introgression occurs only in a portion of the indigenous island lineage. Therefore, to precisely understand how island biodiversity was shaped, it is essential to reconstruct the history of secondary colonization and resultant hybridization both in time and space. In this study, we reconstructed the history of multiple colonizations of the Oryzias woworae species group, a freshwater fish group of the family Adrianichthyidae, from Sulawesi Island to its southeast satellite island, Muna Island. Phylogenetic and species tree analyses using genome-wide single-nucleotide polymorphisms revealed that all local populations on Muna Island were monophyletic, but that there were several genetically distinct lineages within the island. Population structure and phylogenetic network analyses demonstrated that colonization of this island occurred more than once, and that secondary colonization and resultant introgressive hybridization occurred only in one local population on the island. The spatially heterogeneous introgression induced by the multiple colonizations were also supported by differential admixture analyses. In addition, the differential admixture analyses detected reverse colonization from Muna Island to the Sulawesi mainland. Coalescence-based demographic inference estimated that these mutual colonizations occurred during the middle to late Quaternary period, during which sea level repeatedly declined; this indicates that the colonizations occurred via land bridges. We conclude that these mutual colonizations between Muna Island and the Sulawesi mainland, and the resultant spatially heterogeneous introgression shaped the current biodiversity of this species group in this area.
Collapse
Affiliation(s)
- Ixchel F Mandagi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95115, Indonesia.
| | - Bayu K A Sumarto
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Handung Nuryadi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biology, National Research and Innovation Agency, Cibinong 16911, Indonesia.
| | - Sjamsu A Lawelle
- Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari 93232, Indonesia.
| | - Kawilarang W A Masengi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95115, Indonesia.
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan.
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan.
| | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan.
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| |
Collapse
|
28
|
The macroevolutionary impact of recent and imminent mammal extinctions on Madagascar. Nat Commun 2023; 14:14. [PMID: 36627274 PMCID: PMC9832013 DOI: 10.1038/s41467-022-35215-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023] Open
Abstract
Many of Madagascar's unique species are threatened with extinction. However, the severity of recent and potential extinctions in a global evolutionary context is unquantified. Here, we compile a phylogenetic dataset for the complete non-marine mammalian biota of Madagascar and estimate natural rates of extinction, colonization, and speciation. We measure how long it would take to restore Madagascar's mammalian biodiversity under these rates, the "evolutionary return time" (ERT). At the time of human arrival there were approximately 250 species of mammals on Madagascar, resulting from 33 colonisation events (28 by bats), but at least 30 of these species have gone extinct since then. We show that the loss of currently threatened species would have a much deeper long-term impact than all the extinctions since human arrival. A return from current to pre-human diversity would take 1.6 million years (Myr) for bats, and 2.9 Myr for non-volant mammals. However, if species currently classified as threatened go extinct, the ERT rises to 2.9 Myr for bats and 23 Myr for non-volant mammals. Our results suggest that an extinction wave with deep evolutionary impact is imminent on Madagascar unless immediate conservation actions are taken.
Collapse
|
29
|
Belluardo F, Jesus Muñoz-Pajares A, Miralles A, Silvestro D, Cocca W, Mihaja Ratsoavina F, Villa A, Roberts SH, Mezzasalma M, Zizka A, Antonelli A, Crottini A. Slow and steady wins the race: Diversification rate is independent from body size and lifestyle in Malagasy skinks (Squamata: Scincidae: Scincinae). Mol Phylogenet Evol 2023; 178:107635. [PMID: 36208694 DOI: 10.1016/j.ympev.2022.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Most of the unique and diverse vertebrate fauna that inhabits Madagascar derives from in situ diversification from colonisers that reached this continental island through overseas dispersal. The endemic Malagasy Scincinae lizards are amongst the most species-rich squamate groups on the island. They colonised all bioclimatic zones and display many ecomorphological adaptations to a fossorial (burrowing) lifestyle. Here we propose a new phylogenetic hypothesis for their diversification based on the largest taxon sampling so far compiled for this group. We estimated divergence times and investigated several aspects of their diversification (diversification rate, body size and fossorial lifestyle evolution, and biogeography). We found that diversification rate was constant throughout most of the evolutionary history of the group, but decreased over the last 6-4 million years and independently from body size and fossorial lifestyle evolution. Fossoriality has evolved from fully quadrupedal ancestors at least five times independently, which demonstrates that even complex morphological syndromes - in this case involving traits such as limb regression, body elongation, modification of cephalic scalation, depigmentation, and eyes and ear-opening regression - can evolve repeatedly and independently given enough time and eco-evolutionary advantages. Initial diversification of the group likely occurred in forests, and the divergence of sand-swimmer genera around 20 Ma appears linked to a period of aridification. Our results show that the large phenotypic variability of Malagasy Scincinae has not influenced diversification rate and that their rich species diversity results from a constant accumulation of lineages through time. By compiling large geographic and trait-related datasets together with the computation of a new time tree for the group, our study contributes important insights on the diversification of Malagasy vertebrates.
Collapse
Affiliation(s)
- Francesco Belluardo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Praça Gomes Teixeira, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal.
| | - A Jesus Muñoz-Pajares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; Departamento de Genética, Universidad de Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
| | - Aurélien Miralles
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Daniele Silvestro
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Ch. du Musée 10, 1700 Fribourg, Switzerland; Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden
| | - Walter Cocca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Praça Gomes Teixeira, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
| | - Fanomezana Mihaja Ratsoavina
- Mention Zoologie et Biodiversité Animale, Domaine Sciences et Technologies, Université d'Antananarivo, B.P. 906, 101 Antananarivo, Madagascar
| | - Andrea Villa
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, 08193 Cerdanyola del Vallès, Spain
| | - Sam Hyde Roberts
- SEED Madagascar, Unit 7, Beethoven Street 1A, W10 4LG London, UK; Oxford Brookes University, Headington Campus, 0X3 0BP Oxford, UK; Operation Wallacea, Wallace House, Old Bolingbroke, PE23 4EX Spilsby, UK
| | - Marcello Mezzasalma
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| | - Alexander Zizka
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden; Royal Botanic Gardens, Kew, TW9 3AE Richmond, UK; Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Praça Gomes Teixeira, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
| |
Collapse
|
30
|
Jardim de Queiroz L, Doenz CJ, Altermatt F, Alther R, Borko Š, Brodersen J, Gossner MM, Graham C, Matthews B, McFadden IR, Pellissier L, Schmitt T, Selz OM, Villalba S, Rüber L, Zimmermann NE, Seehausen O. Climate, immigration and speciation shape terrestrial and aquatic biodiversity in the European Alps. Proc Biol Sci 2022; 289:20221020. [PMID: 35946161 PMCID: PMC9363983 DOI: 10.1098/rspb.2022.1020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Quaternary climate fluctuations can affect speciation in regional biodiversity assembly in two non-mutually exclusive ways: a glacial species pump, where isolation in glacial refugia accelerates allopatric speciation, and adaptive radiation in underused adaptive zones during ice-free periods. We detected biogeographic and genetic signatures associated with both mechanisms in the assembly of the biota of the European Alps. Age distributions of endemic and widespread species within aquatic and terrestrial taxa (amphipods, fishes, amphibians, butterflies and flowering plants) revealed that endemic fish evolved only in lakes, are highly sympatric, and mainly of Holocene age, consistent with adaptive radiation. Endemic amphipods are ancient, suggesting preglacial radiation with limited range expansion and local Pleistocene survival, perhaps facilitated by a groundwater-dwelling lifestyle. Terrestrial endemics are mostly of Pleistocene age and are thus more consistent with the glacial species pump. The lack of evidence for Holocene adaptive radiation in the terrestrial biome is consistent with faster recolonization through range expansion of these taxa after glacial retreats. More stable and less seasonal ecological conditions in lakes during the Holocene may also have contributed to Holocene speciation in lakes. The high proportion of young, endemic species makes the Alpine biota vulnerable to climate change, but the mechanisms and consequences of species loss will likely differ between biomes because of their distinct evolutionary histories.
Collapse
Affiliation(s)
- Luiz Jardim de Queiroz
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Carmela J Doenz
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Florian Altermatt
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8006 Zürich, Switzerland
| | - Roman Alther
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8006 Zürich, Switzerland
| | - Špela Borko
- SubBio Lab, Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jakob Brodersen
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Catherine Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Blake Matthews
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Ian R McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Thomas Schmitt
- Senckenberg German Entomological Institute, 15374 Müncheberg, Germany.,Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Oliver M Selz
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland
| | - Soraya Villalba
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland
| | - Lukas Rüber
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| | - Niklaus E Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Ole Seehausen
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
31
|
Hay EM, McGee MD, Chown SL. Geographic range size and speciation in honeyeaters. BMC Ecol Evol 2022; 22:86. [PMID: 35768772 PMCID: PMC9245323 DOI: 10.1186/s12862-022-02041-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Darwin and others proposed that a species' geographic range size positively influences speciation likelihood, with the relationship potentially dependent on the mode of speciation and other contributing factors, including geographic setting and species traits. Several alternative proposals for the influence of range size on speciation rate have also been made (e.g. negative or a unimodal relationship with speciation). To examine Darwin's proposal, we use a range of phylogenetic comparative methods, focusing on a large Australasian bird clade, the honeyeaters (Aves: Meliphagidae). RESULTS We consider the influence of range size, shape, and position (latitudinal and longitudinal midpoints, island or continental species), and consider two traits known to influence range size: dispersal ability and body size. Applying several analytical approaches, including phylogenetic Bayesian path analysis, spatiophylogenetic models, and state-dependent speciation and extinction models, we find support for both the positive relationship between range size and speciation rate and the influence of mode of speciation. CONCLUSIONS Honeyeater speciation rate differs considerably between islands and the continental setting across the clade's distribution, with range size contributing positively in the continental setting, while dispersal ability influences speciation regardless of setting. These outcomes support Darwin's original proposal for a positive relationship between range size and speciation likelihood, while extending the evidence for the contribution of dispersal ability to speciation.
Collapse
Affiliation(s)
- Eleanor M Hay
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
32
|
Morlon H, Robin S, Hartig F. Studying speciation and extinction dynamics from phylogenies: addressing identifiability issues. Trends Ecol Evol 2022; 37:497-506. [PMID: 35246322 DOI: 10.1016/j.tree.2022.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
A lot of what we know about past speciation and extinction dynamics is based on statistically fitting birth-death processes to phylogenies of extant species. Despite their wide use, the reliability of these tools is regularly questioned. It was recently demonstrated that vast 'congruent' sets of alternative diversification histories cannot be distinguished (i.e., are not identifiable) using extant phylogenies alone, reanimating the debate about the limits of phylogenetic diversification analysis. Here, we summarize what we know about the identifiability of the birth-death process and how identifiability issues can be addressed. We conclude that extant phylogenies, when combined with appropriate prior hypotheses and regularization techniques, can still tell us a lot about past diversification dynamics.
Collapse
Affiliation(s)
- Hélène Morlon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| | - Stéphane Robin
- UMR MIA-Paris, AgroParisTech, INRA, Paris-Saclay University, 75005 Paris, France; Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, CNRS, Sorbonne University, Paris, France
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Si X, Cadotte MW, Davies TJ, Antonelli A, Ding P, Svenning JC, Faurby S. Phylogenetic and functional clustering illustrate the roles of adaptive radiation and dispersal filtering in jointly shaping late-Quaternary mammal assemblages on oceanic islands. Ecol Lett 2022; 25:1250-1262. [PMID: 35275608 DOI: 10.1111/ele.13997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/29/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
Islands frequently harbour unique assemblages of species, yet their ecological roles and differences are largely ignored in island biogeography studies. Here, we examine eco-evolutionary processes structuring mammal assemblages on oceanic islands worldwide, including all extant and extinct late-Quaternary mammal species. We find island mammal assemblages tend to be phylogenetically clustered (share more recent evolutionary histories), with clustering increasing with island area and isolation. We also observe that mammal assemblages often tend to be functionally clustered (share similar traits), but the strength of clustering is weak and generally independent from island area or isolation. These findings indicate the important roles of in situ speciation and dispersal filtering in shaping island mammal assemblages under pre-anthropogenic conditions, notably through adaptive radiation of a few clades (e.g. bats, with generally high dispersal abilities). Our study demonstrates that considering the functional and phylogenetic axes of diversity can better reveal the eco-evolutionary processes of island community assembly.
Collapse
Affiliation(s)
- Xingfeng Si
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Institute of Eco-Chongming (IEC), Shanghai, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - T Jonathan Davies
- Departments of Botany, and Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexandre Antonelli
- Department of Biological & Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden.,Royal Botanic Gardens, Richmond, Surrey, UK.,Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark.,Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Søren Faurby
- Department of Biological & Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Pavón-Vázquez CJ, Brennan IG, Skeels A, Keogh JS. Competition and geography underlie speciation and morphological evolution in Indo-Australasian monitor lizards. Evolution 2022; 76:476-495. [PMID: 34816437 DOI: 10.1111/evo.14403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 01/21/2023]
Abstract
How biotic and abiotic factors act together to shape biological diversity is a major question in evolutionary biology. The recent availability of large datasets and development of new methodological approaches provide new tools to evaluate the predicted effects of ecological interactions and geography on lineage diversification and phenotypic evolution. Here, we use a near complete phylogenomic-scale phylogeny and a comprehensive morphological dataset comprising more than a thousand specimens to assess the role of biotic and abiotic processes in the diversification of monitor lizards (Varanidae). This charismatic group of lizards shows striking variation in species richness among its clades and multiple instances of endemic radiation in Indo-Australasia (i.e., the Indo-Australian Archipelago and Australia), one of Earth's most biogeographically complex regions. We found heterogeneity in diversification dynamics across the family. Idiosyncratic biotic and geographic conditions appear to have driven diversification and morphological evolution in three endemic Indo-Australasian radiations. Furthermore, incumbency effects partially explain patterns in the biotic exchange between Australia and New Guinea. Our results offer insight into the dynamic history of Indo-Australasia, the evolutionary significance of competition, and the long-term consequences of incumbency effects.
Collapse
Affiliation(s)
- Carlos J Pavón-Vázquez
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.,Current Address: Department of Biological Sciences, New York City College of Technology, City University of New York, Brooklyn, New York, 11201
| | - Ian G Brennan
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Alexander Skeels
- Landscape Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, CH-8092, Switzerland.,Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, CH-8903, Switzerland
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
35
|
Neubauer TA, Hauffe T, Silvestro D, Scotese CR, Stelbrink B, Albrecht C, Delicado D, Harzhauser M, Wilke T. Drivers of diversification in freshwater gastropods vary over deep time. Proc Biol Sci 2022; 289:20212057. [PMID: 35105242 PMCID: PMC8808086 DOI: 10.1098/rspb.2021.2057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Unravelling the drivers of species diversification through geological time is of crucial importance for our understanding of long-term evolutionary processes. Numerous studies have proposed different sets of biotic and abiotic controls of speciation and extinction rates, but typically they were inferred for a single, long geological time frame. However, whether the impact of biotic and abiotic controls on diversification changes over time is poorly understood. Here, we use a large fossil dataset, a multivariate birth-death model and a comprehensive set of biotic and abiotic predictors, including a new index to quantify tectonic complexity, to estimate the drivers of diversification for European freshwater gastropods over the past 100 Myr. The effects of these factors on origination and extinction are estimated across the entire time frame as well as within sequential time windows of 20 Myr each. Our results find support for temporal heterogeneity in the factors associated with changes in diversification rates. While the factors impacting speciation and extinction rates vary considerably over time, diversity-dependence and topography are consistently important. Our study highlights that a high level of heterogeneity in diversification rates is best captured by incorporating time-varying effects of biotic and abiotic factors.
Collapse
Affiliation(s)
- Thomas A. Neubauer
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
- Marine Biodiversity, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Torsten Hauffe
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
| | - Christopher R. Scotese
- Department of Earth and Planetary Sciences, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Björn Stelbrink
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Diana Delicado
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Mathias Harzhauser
- Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| |
Collapse
|
36
|
Pichler TR, Mallinger EC, Farmer MJ, Morrison MJ, Khadka B, Matzinger PJ, Kirschbaum A, Goodwin KR, Route WT, Van Stappen J, Van Deelen TR, Olson ER. Comparative biogeography of volant and nonvolant mammals in a temperate island archipelago. Ecosphere 2022. [DOI: 10.1002/ecs2.3911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Taylor R. Pichler
- Department of Natural Resources Northland College Ashland Wisconsin USA
| | | | - Morgan J. Farmer
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Megan J. Morrison
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Bijit Khadka
- Department of Natural Resources Northland College Ashland Wisconsin USA
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | | | - Alan Kirschbaum
- National Park Service Great Lakes Inventory and Monitoring Network Ashland Wisconsin USA
| | - Katy R. Goodwin
- National Park Service Great Lakes Inventory and Monitoring Network Ashland Wisconsin USA
- Department of Biological Sciences North Dakota State University Fargo North Dakota USA
| | - William T. Route
- National Park Service Great Lakes Inventory and Monitoring Network Ashland Wisconsin USA
| | - Julie Van Stappen
- Planning and Resource Management Apostle Islands National Lakeshore Bayfield Wisconsin USA
| | - Timothy R. Van Deelen
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Erik R. Olson
- Department of Natural Resources Northland College Ashland Wisconsin USA
| |
Collapse
|
37
|
Barreto E, Rangel TF, Pellissier L, Graham CH. Area, isolation and climate explain the diversity of mammals on islands worldwide. Proc Biol Sci 2021; 288:20211879. [PMID: 34905709 PMCID: PMC8670959 DOI: 10.1098/rspb.2021.1879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Insular biodiversity is expected to be regulated differently than continental biota, but their determinants remain to be quantified at a global scale. We evaluated the importance of physical, environmental and historical factors on mammal richness and endemism across 5592 islands worldwide. We fitted generalized linear and mixed models to accommodate variation among biogeographic realms and performed analyses separately for bats and non-volants. Richness on islands ranged from one to 234 species, with up to 177 single island endemics. Diversity patterns were most consistently influenced by the islands' physical characteristics. Area positively affected mammal diversity, in particular the number of non-volant endemics. Island isolation, both current and past, was associated with lower richness but greater endemism. Flight capacity modified the relative importance of past versus current isolation, with bats responding more strongly to current and non-volant mammals to past isolation. Biodiversity relationships with environmental factors were idiosyncratic, with a tendency for greater effects sizes with endemism than richness. The historical climatic change was positively associated with endemism. In line with theory, we found that area and isolation were among the strongest drivers of mammalian biodiversity. Our results support the importance of past conditions on current patterns, particularly of non-volant species.
Collapse
Affiliation(s)
- Elisa Barreto
- Programa de pósgraduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, Brazil.,Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf, Switzerland
| | - Thiago F Rangel
- Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf, Switzerland.,Landscape Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf, Switzerland
| |
Collapse
|
38
|
Spikes M, Rodríguez-Silva R, Bennett KA, Bräger S, Josaphat J, Torres-Pineda P, Ernst A, Havenstein K, Schlupp I, Tiedemann R. A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario. BMC Res Notes 2021; 14:425. [PMID: 34823576 PMCID: PMC8613956 DOI: 10.1186/s13104-021-05843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Miragoâne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Miragoâne, relative to their congeners throughout the Caribbean. RESULTS For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Miragoâne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Miragoâne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Miragoâne clade.
Collapse
Affiliation(s)
- Montrai Spikes
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Rodet Rodríguez-Silva
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Kerri-Ann Bennett
- Department of Life Sciences, The University of the West Indies (Mona Campus), Kingston, Jamaica
| | - Stefan Bräger
- German Oceanographic Museum (DMM), Katharinenberg 14-20, 18439, Stralsund, Germany
| | - James Josaphat
- Caribaea Intitiative and Université Des Antilles, Guadeloupe, Kingston, Jamaica
| | - Patricia Torres-Pineda
- Museo Nacional de Historia Natural Prof. "Eugenio de Jesús Marcano", Avenida Cesar Nicolás Penson, 10204, Santo Domingo, República Dominicana
| | - Anja Ernst
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Katja Havenstein
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Ingo Schlupp
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.
| |
Collapse
|
39
|
Florencio M, Patiño J, Nogué S, Traveset A, Borges PAV, Schaefer H, Amorim IR, Arnedo M, Ávila SP, Cardoso P, de Nascimento L, Fernández-Palacios JM, Gabriel SI, Gil A, Gonçalves V, Haroun R, Illera JC, López-Darias M, Martínez A, Martins GM, Neto AI, Nogales M, Oromí P, Rando JC, Raposeiro PM, Rigal F, Romeiras MM, Silva L, Valido A, Vanderpoorten A, Vasconcelos R, Santos AMC. Macaronesia as a Fruitful Arena for Ecology, Evolution, and Conservation Biology. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.718169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Research in Macaronesia has led to substantial advances in ecology, evolution and conservation biology. We review the scientific developments achieved in this region, and outline promising research avenues enhancing conservation. Some of these discoveries indicate that the Macaronesian flora and fauna are composed of rather young lineages, not Tertiary relicts, predominantly of European origin. Macaronesia also seems to be an important source region for back-colonisation of continental fringe regions on both sides of the Atlantic. This group of archipelagos (Azores, Madeira, Selvagens, Canary Islands, and Cabo Verde) has been crucial to learn about the particularities of macroecological patterns and interaction networks on islands, providing evidence for the development of the General Dynamic Model of oceanic island biogeography and subsequent updates. However, in addition to exceptionally high richness of endemic species, Macaronesia is also home to a growing number of threatened species, along with invasive alien plants and animals. Several innovative conservation and management actions are in place to protect its biodiversity from these and other drivers of global change. The Macaronesian Islands are a well-suited field of study for island ecology and evolution research, mostly due to its special geological layout with 40 islands grouped within five archipelagos differing in geological age, climate and isolation. A large amount of data is now available for several groups of organisms on and around many of these islands. However, continued efforts should be made toward compiling new information on their biodiversity, to pursue various fruitful research avenues and develop appropriate conservation management tools.
Collapse
|
40
|
Abstract
Islands have fascinated biologists since the days of Charles Darwin and Alfred Russel Wallace and before, providing the inspiration for substantial theoretical development that has advanced our understanding of global biodiversity patterns and the mechanisms that underpin them. As such, they are often termed 'natural laboratories', providing the ideal setting to study the interface between ecology, evolution and conservation. Part of this fascination no-doubt arises from islands harboring a disproportionate amount of global biodiversity given the amount of land-mass they occupy (roughly 15-20% of global terrestrial species present in just 3.5% of global land), including large numbers of endemic forms not found anywhere else. Interestingly, more than 25% of human languages, many of which are also threatened with extinction, are also to be found on islands. In this primer, we provide an overview of the field of island biogeography, splitting it into three main sections. First, we explore some of the reasons that make islands, and the species that have evolved on them, unique and scientifically rewarding study systems for ecologists and biogeographers. Second, we delve into the key island biogeography works in order to provide an introductory summary of some of the main theoretical models developed to explain species diversity patterns on islands. Unfortunately, as well as representing captivating environments to study, islands are also highly threatened systems. As such, we end with an overview of the drivers and impacts of anthropogenic environmental change on islands, providing examples of some of the extraordinary island species that humans have driven extinct.
Collapse
Affiliation(s)
- Thomas J Matthews
- School of Geography, Earth and Environmental Sciences, and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK; CE3C - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores - Depto de Ciências Agráriase Engenharia do Ambiente, PT-9700-042 Angra do Heroísmo, Açores, Portugal.
| | - Kostas Triantis
- Department of Ecology and Taxonomy, Faculty of Biology, National and Kapodistrian University, 15784 Athens, Greece
| |
Collapse
|
41
|
Miller SC, Wiethase JH, Motove Etingue A, Franklin E, Fero M, Wolfe JD, Gonder MK, Powell LL. Interactive effects of elevation and newly paved road on avian community composition in a scientific reserve, Bioko Island, Equatorial Guinea. Biotropica 2021. [DOI: 10.1111/btp.13014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven C. Miller
- Department of Biology Drexel University Philadelphia Pennsylvania USA
- Bioko Biodiversity Protection Program Philadelphia Pennsylvania USA
| | - Joris H. Wiethase
- College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Amancio Motove Etingue
- Bioko Biodiversity Protection Program Philadelphia Pennsylvania USA
- Universidad Nacional de Guinea Ecuatorial Malabo Equatorial Guinea
| | | | - Maximilliano Fero
- Bioko Biodiversity Protection Program Philadelphia Pennsylvania USA
- Universidad Nacional de Guinea Ecuatorial Malabo Equatorial Guinea
| | - Jared D. Wolfe
- Biodiversity Initiative Houghton Michigan USA
- Michigan Tech College of Forest Resources and Environmental Science Houghton Michigan USA
| | - Mary K. Gonder
- Department of Biology Drexel University Philadelphia Pennsylvania USA
- Bioko Biodiversity Protection Program Philadelphia Pennsylvania USA
| | - Luke L. Powell
- College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
- Biodiversity Initiative Houghton Michigan USA
- CIBIO‐InBIO Research Centre in Biodiversity and Genetic Resources University of Porto Vairão Portugal
| |
Collapse
|
42
|
Arnedo MA, Hormiga G. Repeated colonization, adaptive radiation and convergent evolution in the sheet-weaving spiders (Linyphiidae) of the south Pacific Archipelago of Juan Fernandez. Cladistics 2021; 37:317-342. [PMID: 34478200 DOI: 10.1111/cla.12437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
We report on the colonization and diversification of linyphiid spiders in the Pacific oceanic archipelago of Juan Fernandez. About 50 spider species occur naturally in these islands, most of them endemic and about half of them are linyphiids. Linyphiidae includes no fewer than 15 species of Laminacauda and three of Neomaso (with several additional undescribed species in the latter genus), all of them single island endemics. There are three additional linyphiid endemic genera, two monotypic and one, Juanfernandezia, with two species. Unlike the rather uniform somatic morphology and small ground sheet webs of the continental Laminacauda and Neomaso species, the Juan Fernandez endemics exhibit morphological features and life history traits that are very rare or unknown in any other linyphiids. A multi-locus phylogenetic analysis confirms at least five independent Juan Fernandez colonizations of Linyphiidae, two within the same genus, and three of which underwent subsequent local diversification. Different calibrations suggest alternative colonization timelines, some at odds with island ages, but all agree on similar diversification timings of the endemic lineages. Rare phenotypic traits (e.g. gigantism, massive chelicerae or elongated legs) evolved multiple times independently within the islands. Based on the remarkable levels of eco-phenotypic differentiation in locally diversified species showing densely packed distributions, we propose that Laminacauda, and probably Neomaso, constitute a case of adaptive radiation.
Collapse
Affiliation(s)
- Miquel A Arnedo
- Department of Evolutionary Biology, Ecology & Environmental Sciences and Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Catalonia, 08028, Spain
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, D.C., 20052, USA
| |
Collapse
|
43
|
Hackel J, Sanmartín I. Modelling the tempo and mode of lineage dispersal. Trends Ecol Evol 2021; 36:1102-1112. [PMID: 34462154 DOI: 10.1016/j.tree.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Lineage dispersal is a basic macroevolutionary process shaping the distribution of biodiversity. Probabilistic approaches in biogeography, epidemiology, and macroecology often model dispersal as a background process to explain extant or infer past distributions. We propose framing questions around the mode, timing, rate, and direction of lineage dispersal itself, from a lineage- or geography-centric perspective. We review available methods for modelling lineage dispersal. Likelihood- and simulation-based approaches to modelling dispersal have made progress in accounting for the variation of lineage dispersal over space, time, and branches of a phylogeny and its interaction with diversification. Methodological improvements, guided by a focus on model adequacy, will lead to more realistic models that can answer fundamental questions about the tempo and mode of lineage dispersal.
Collapse
Affiliation(s)
- Jan Hackel
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, UK.
| | | |
Collapse
|
44
|
Validating species distribution models to illuminate coastal fireflies in the South Pacific (Coleoptera: Lampyridae). Sci Rep 2021; 11:17397. [PMID: 34462462 PMCID: PMC8405826 DOI: 10.1038/s41598-021-96534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022] Open
Abstract
The coastal areas of Vanuatu are under a multitude of threats stemming from commercialization, human development, and climate change. Atyphella Olliff is a genus of firefly that includes species endemic to these coastal areas and will need protection. The research that has already been conducted was affected by accessibility due to the remote nature of the islands which left numerous knowledge gaps caused by a lack of distributional data (e.g., Wallacean shortfall). Species distribution models (SDM) are a powerful tool that allow for the modeling of the broader distribution of a taxon, even with limited distributional data available. SDMs assist in filling the knowledge gap by predicting potential areas that could contain the species of interest, making targeted collecting and conservation efforts more feasible when time, resources, and accessibility are major limiting factors. Here a MaxEnt prediction was used to direct field collecting and we now provide an updated predictive distribution for this endemic firefly genus. The original model was validated with additional fieldwork, ultimately expanding the known range with additional locations first identified using MaxEnt. A bias analysis was also conducted, providing insight into the effect that developments such as roads and settlements have on collecting and therefore the SDM, ultimately allowing for a more critical assessment of the overall model. After demonstrating the accuracy of the original model, this new updated SDM can be used to identify specific areas that will need to be the target of future conservation efforts by local government officials.
Collapse
|
45
|
Recuerda M, Carlos Illera J, Blanco G, Zardoya R, Milá B. Sequential colonization of oceanic archipelagos led to a species-level radiation in the common chaffinch complex (Aves: Fringilla coelebs). Mol Phylogenet Evol 2021; 164:107291. [PMID: 34384903 DOI: 10.1016/j.ympev.2021.107291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Oceanic archipelagos are excellent systems for studying speciation, yet inference of evolutionary process requires that the colonization history of island organisms be known with accuracy. Here, we used phylogenomics and patterns of genetic diversity to infer the sequence and timing of colonization of Macaronesia by mainland common chaffinches (Fringilla coelebs), and assessed whether colonization of the different archipelagos has resulted in a species-level radiation. To reconstruct the evolutionary history of the complex we generated a molecular phylogeny based on genome-wide SNP loci obtained from genotyping-by-sequencing, we ran ancestral range biogeographic analyses, and assessed fine-scale genetic structure between and within archipelagos using admixture analysis. To test for a species-level radiation, we applied a probabilistic tree-based species delimitation method (mPTP) and an integrative taxonomy approach including phenotypic differences. Results revealed a circuitous colonization pathway in Macaronesia, from the mainland to the Azores, followed by Madeira, and finally the Canary Islands. The Azores showed surprisingly high genetic diversity, similar to that found on the mainland, and the other archipelagos showed the expected sequential loss of genetic diversity. Species delimitation methods supported the existence of several species within the complex. We conclude that the common chaffinch underwent a rapid radiation across Macaronesia that was driven by the sequential colonization of the different archipelagos, resulting in phenotypically and genetically distinct, independent evolutionary lineages. We recommend a taxonomic revision of the complex that takes into account its genetic and phenotypic diversity.
Collapse
Affiliation(s)
- María Recuerda
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain.
| | - Juan Carlos Illera
- Biodiversity Research Unit (UO-CSIC-PA), Oviedo University, 33600 Mieres, Asturias, Spain
| | - Guillermo Blanco
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain
| | - Rafael Zardoya
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain
| |
Collapse
|
46
|
Evans T. Quantifying the global threat to native birds from predation by non-native birds on small islands. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1268-1277. [PMID: 33492713 DOI: 10.1111/cobi.13697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 05/25/2023]
Abstract
Although invasive non-native species can adversely affect biodiversity in many ways, predation of native species by non-native species on islands can be severely damaging. Results of numerous studies document non-native birds preying on birds on islands, but our understanding of the number and type of species affected has been limited by the lack of a global review of these impacts. I identified the non-native bird species that have been recorded preying on birds, the locations where this predation occurred, and the bird species affected. Because the impacts of non-native birds can be particularly severe on small islands, I then identified the islands <500 km2 around the world that are occupied by predatory non-native birds. By taking into account their life-history traits and predation history, I also identified the near-threatened and threatened bird species on these islands that they may prey on. The results indicated that predation by non-native birds was primarily a concern for threatened bird conservation on small islands; almost all predation impacts (91%) on near-threatened and threatened birds were recorded on islands, and median island size was 106 km2 . I also found non-native bird predation was a poorly known and widespread potential threat to avian biodiversity; worldwide, 194 islands of <500 km2 were occupied by predatory non-native birds, but information on their impacts was unavailable for most of these islands. On them, where the impacts of non-native species can be severe, non-native birds may be preying on approximately 6% of the world's near-threatened and threatened bird species. Four non-native bird species I identified have been successfully eradicated from islands. If they were eradicated from the small islands they occupy, 70% of the near-threatened and threatened bird species I identified would no longer be affected by nest predation by non-native birds on small islands.
Collapse
Affiliation(s)
- Thomas Evans
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Straße 2-4, Berlin, 14195, Germany
| |
Collapse
|
47
|
Pliego-Sánchez JV, Blair C, Díaz de la Vega-Pérez AH, Jiménez-Arcos VH. The insular herpetofauna of Mexico: Composition, conservation, and biogeographic patterns. Ecol Evol 2021; 11:6579-6592. [PMID: 34141242 PMCID: PMC8207341 DOI: 10.1002/ece3.7513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 12/02/2022] Open
Abstract
We compile a Mexican insular herpetofaunal checklist to estimate endemism, conservation status, island threats, net taxonomic turnover among six biogeographic provinces belonging to the Nearctic and Neotropical regions, and the relationships between island area and mainland distance versus species richness. We compile a checklist of insular herpetofaunal through performing a literature and collection review. We define the conservation status according to conservation Mexican law, the Red List of International Union for Conservation of Nature, and Environmental Vulnerability Scores. We determine threat percentages on islands according to the 11 major classes of threats to biodiversity. We estimate the net taxonomic turnover with beta diversity analysis between the Nearctic and Neotropical provinces. The Mexican insular herpetofauna is composed of 18 amphibian species, 204 species with 101 subspecies of reptiles, and 263 taxa in total. Endemism levels are 11.76% in amphibians, 53.57% in reptiles, and 27.91% being insular endemic taxa. Two conservation status systems classify the species at high extinction risk, while the remaining system suggests less concern. However, all systems indicate species lacking assessment. Human activities and exotic alien species are present on 60% of 131 islands. The taxonomic turnover value is high (0.89), with a clear herpetofaunal differentiation between the two biogeographic regions. The species-area and species-mainland distance relationships are positive. Insular herpetofauna faces a high percentage of threats, with the Neotropical provinces more heavily impacted. It is urgent to explore the remaining islands (3,079 islands) and better incorporate insular populations and species in ecological, evolutionary, and systematic studies. In the face of the biodiversity crisis, islands will play a leading role as a model to apply restoration and conservation strategies.
Collapse
Affiliation(s)
| | - Christopher Blair
- Department of Biological Sciences New York City College of Technology The City University of New York Brooklyn NY USA
- Biology PhD Program, Graduate Center New York NY USA
| | - Aníbal H Díaz de la Vega-Pérez
- Consejo Nacional de Ciencia y Tecnología-Centro Tlaxcala de Biología de la Conducta Universidad Autónoma de Tlaxcala Tlaxcala Mexico
| | - Víctor H Jiménez-Arcos
- Laboratorio de Herpetología Vivario FES Iztacala Universidad Nacional Autónoma de México Tlalnepantla Mexico
- Naturam Sequi AC Naucalpan Mexico Mexico
| |
Collapse
|
48
|
Sedano-Cruz RE, Calero-Mejía H. CARACTERIZACIÓN GENÉTICA DE LA POBLACIÓN DE Heliconius sara (Nymphalidae) EN LA ISLA GORGONA, COLOMBIA. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.86205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La estructura genética de poblaciones de mariposas con distribución en islas y sus pares continentales ha sido poco documentada para el neotrópico. Este estudio presenta la caracterización de una población de Heliconius sara con distribución en la Isla Gorgona, ubicada en la región del Pacífico Oriental Colombiano. Para esto se examinaron secuencias parciales de un marcador mitocondrial incluyendo información obtenida del GenBank. Se comparó la diversidad y estructura genética con sus conespecíficos continentales y también con congéneres, con los que comparte un ancestro común cercano en el clado Sapho-Sara. Para el análisis de diversidad y estructura genética se realizó un análisis molecular de varianza. Este análisis muestra que la distancia entre la población de la isla y sus pares en el continente es consistente con la variación intraespecífica observada en otras especies del género Heliconius. Para la reconstrucción de la genealogía y datación reciente en el Pleistoceno superior del grupo monofilético de secuencias de H. sara, se realizó un análisis de inferencia bayesiana, así como una de máxima verosimilitud. Del análisis demográfico se seleccionó un modelo histórico de flujo asimétrico desde la isla hacia el continente que sugiere baja resistencia de la discontinuidad geográfica a la dispersión de esta mariposa diurna desde la isla. Este es el primer estudio en examinar un posible evento de aislamiento de una población insular de mariposas en Colombia.
Collapse
|
49
|
Recuerda M, Vizueta J, Cuevas-Caballé C, Blanco G, Rozas J, Milá B. Chromosome-Level Genome Assembly of the Common Chaffinch (Aves: Fringilla coelebs): A Valuable Resource for Evolutionary Biology. Genome Biol Evol 2021; 13:evab034. [PMID: 33616654 PMCID: PMC8046334 DOI: 10.1093/gbe/evab034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
The common chaffinch, Fringilla coelebs, is one of the most common, widespread, and well-studied passerines in Europe, with a broad distribution encompassing Western Europe and parts of Asia, North Africa, and the Macaronesian archipelagos. We present a high-quality genome assembly of the common chaffinch generated using Illumina shotgun sequencing in combination with Chicago and Hi-C libraries. The final genome is a 994.87-Mb chromosome-level assembly, with 98% of the sequence data located in chromosome scaffolds and a N50 statistic of 69.73 Mb. Our genome assembly shows high completeness, with a complete BUSCO score of 93.9% using the avian data set. Around 7.8% of the genome contains interspersed repetitive elements. The structural annotation yielded 17,703 genes, 86.5% of which have a functional annotation, including 7,827 complete universal single-copy orthologs out of 8,338 genes represented in the BUSCO avian data set. This new annotated genome assembly will be a valuable resource as a reference for comparative and population genomic analyses of passerine, avian, and vertebrate evolution.
Collapse
Affiliation(s)
- María Recuerda
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Joel Vizueta
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cuevas-Caballé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Guillermo Blanco
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
50
|
Island songbirds as windows into evolution in small populations. Curr Biol 2021; 31:1303-1310.e4. [PMID: 33476557 DOI: 10.1016/j.cub.2020.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation.1,2 Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (1) lower genetic diversity, (2) less effective natural selection against slightly deleterious mutations,3,4 and (3) a lower rate of adaptive evolution.5-8 Here, we have used a large set of newly sequenced and published whole-genome sequences of Passerida species (14 insular and 11 continental) to test these predictions. We confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology.
Collapse
|