1
|
Hurwitz LM, Chang VC, Beane Freeman LE, Machiela MJ, Zhou W, Andreotti G, Parks CG, Sandler DP, Rothman N, Berndt SI, Hofmann JN, Koutros S. Organochlorine pesticide use and mosaic loss of chromosome Y in a study of male farmers. ENVIRONMENTAL RESEARCH 2025; 277:121539. [PMID: 40187397 PMCID: PMC12124947 DOI: 10.1016/j.envres.2025.121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Organochlorine (OC) insecticides are a class of environmentally persistent chemicals linked to risk of several cancers, including non-Hodgkin lymphoma and prostate cancer. In vitro and animal studies suggest some OCs may be genotoxic, but evidence in humans is limited. Mosaic loss of the Y chromosome (mLOY) is a marker of genotoxicity and genomic instability that has been associated with certain cancers and may reflect intermediate effects of pesticide exposure. We examined associations between OC use and mLOY in circulating blood of male farmers. METHODS This investigation included 1653 male farmers from Iowa and North Carolina in the Biomarkers of Exposure and Effect in Agriculture study, a subcohort of the Agricultural Health Study. Ever use, total lifetime days, and intensity-weighted lifetime days of use of seven OCs (DDT, lindane, aldrin, dieldrin, chlordane, heptachlor, toxaphene) were derived from questionnaires. We detected mLOY using genotyping array intensity data in the pseudoautosomal regions of the sex chromosomes. Logistic regression was used to estimate associations between OC use and mLOY, adjusted for pre-specified confounders. Stratified analyses were performed by factors associated with mLOY (age, smoking status, obesity) and state of residence. RESULTS mLOY was detected in 357 farmers (21.6 %). We observed positive associations with mLOY for ever use of DDT (OR = 1.44 [95 % CI = 1.08-1.92]) and lindane (OR = 1.31 [0.99-1.73]). Associations were stronger among farmers without obesity (DDT: OR = 1.61 [1.12-2.33], p-interaction = 0.20; lindane: OR = 1.82 [1.28-2.59], p-interaction<0.01). For lindane, there was evidence of a positive exposure-response among farmers ≥70 years of age (p-trend = 0.03) and those without obesity (p-trend = 0.05). Other OCs were not consistently associated with mLOY. CONCLUSIONS Use of DDT and lindane was associated with mLOY, particularly in certain subgroups of farmers (e.g., non-obese or age ≥70 years). Our findings suggest that these pesticides could confer genotoxic effects and provide new mechanistic evidence for their associations with cancer risk.
Collapse
Affiliation(s)
- Lauren M Hurwitz
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Vicky C Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Hiitola E, Korhonen J, Kokkonen H, Koskela J, Kankainen M, Alakuijala M, Liu A, Lundgren S, Häppölä P, Almusa H, Ellonen P, Savola P, Kelkka T, Leirisalo-Repo M, Koivuniemi R, Peltomaa R, Pirilä L, Isomäki P, Kauppi M, Kaipiainen-Seppänen O, Starskaia I, Virtanen AT, Lahesmaa R, Silvennoinen O, FinnGen, Genovese G, Ganna A, Rantapää-Dahlqvist S, Mustjoki S, Myllymäki M. Clonal hematopoiesis is associated with distinct rheumatoid arthritis phenotypes. SCIENCE ADVANCES 2025; 11:eadt9846. [PMID: 40305610 PMCID: PMC12042900 DOI: 10.1126/sciadv.adt9846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Clonal hematopoiesis (CH) becomes more prevalent with aging and may influence inflammatory diseases by altering immune function. While CH of indeterminate potential (CHIP) promotes inflammation in nonmalignant conditions, its relationship with rheumatoid arthritis (RA) remains unknown. We analyzed CHIP mutations in RA using two population-level cohorts and patients with newly diagnosed RA. CHIP was associated with prevalent RA in 10,089 FINRISK study participants with whole-exome sequencing (OR, 2.06; P = 0.029) and in the FinnGen cohort (n = 520,210; OR, 1.49; P < 0.001) using single-nucleotide polymorphism array-based CHIP annotation. In FinnGen, CHIP was also associated with inferior overall survival in participants with RA (P = 0.013). In newly diagnosed RA (n = 573), DNMT3A-mutated seropositive patients had increased inflammatory markers and disease activity compared with patients without CHIP. In contrast, TET2 mutations were enriched in seronegative RA (P = 0.009). Our findings provide further evidence for the context-dependent association between CHIP and inflammation, with potential therapeutic implications.
Collapse
Affiliation(s)
- Emil Hiitola
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Juuso Korhonen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research program, University of Helsinki, Helsinki, Finland
| | - Heidi Kokkonen
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - Jukka Koskela
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Milla Alakuijala
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research program, University of Helsinki, Helsinki, Finland
| | - Aoxing Liu
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sofie Lundgren
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Paavo Häppölä
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Paula Savola
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research program, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry and Hematology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research program, University of Helsinki, Helsinki, Finland
| | - Marjatta Leirisalo-Repo
- Inflammation Center, Department of Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Riitta Koivuniemi
- Inflammation Center, Department of Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ritva Peltomaa
- Inflammation Center, Department of Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Pirilä
- Centre for Rheumatology and Clinical Immunology, Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Pia Isomäki
- Centre for Rheumatic Diseases, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markku Kauppi
- Päijät-Häme Central Hospital, Lahti, Finland
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Anniina T. Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- FIMLAB Laboratories, Tampere, Finland
| | | | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | | | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Mikko Myllymäki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
3
|
Stomper J, Niroula A, Belizaire R, McConkey M, Bandaru TS, Ebert BL. Sex differences in DNMT3A-mutant clonal hematopoiesis and the effects of estrogen. Cell Rep 2025; 44:115494. [PMID: 40178977 DOI: 10.1016/j.celrep.2025.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Blood cancers are generally more common in males, and the prevalence of most mutations that drive clonal hematopoiesis and myeloid malignancies is higher in males. In contrast, hematopoietic DNMT3A mutations are more common in females. Among ∼450,000 participants in the UK Biobank, the prevalence of DNMT3A mutations and copy-number abnormalities is higher in females than males. In a murine model, Dnmt3a-mutant hematopoietic stem cells (HSCs) from unperturbed female mice had increased stemness gene expression compared to male and wild-type (WT) mice. Estrogen regulates HSCs, and we found that Dnmt3a mutations maintain stemness in the setting of estrogen-induced proliferative stress. Dnmt3a-mutant myeloid cells outcompeted WT cells under chronic estrogen treatment, an effect that was dependent on cell-intrinsic estrogen receptor alpha activity. Our studies indicate that estrogen might contribute to the female predominance of DNMT3A-mutant clonal hematopoiesis.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Abhishek Niroula
- Broad Institute, Cambridge, MA 02142, USA; Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden; SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tagore Sanketh Bandaru
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Schuermans A, Honigberg MC. Clonal haematopoiesis in cardiovascular disease: prognostic role and novel therapeutic target. Nat Rev Cardiol 2025:10.1038/s41569-025-01148-9. [PMID: 40175709 DOI: 10.1038/s41569-025-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Clonal haematopoiesis is the clonal expansion of blood stem cells with acquired mutations. Clonal haematopoiesis of indeterminate potential (CHIP), traditionally defined as clonal haematopoiesis driven by a pre-leukaemic mutation in at least 2% of sequenced alleles, affects 10-20% of individuals aged >70 years. Although CHIP is considered a precursor condition for haematological malignancies, population-based data suggest that the majority of CHIP-associated mortality is attributable to non-malignant conditions, such as cardiovascular disease. Observational human studies have shown that CHIP is a strong and independent predictor of the onset and progression of atherosclerotic cardiovascular disease, heart failure and arrhythmia. In addition, findings from animal experiments suggest that CHIP is causally involved in these diseases and might be a risk factor that can be targeted with therapeutics. As our understanding of the cardiovascular implications of CHIP and other types of clonal haematopoiesis rapidly expands, it has become increasingly clear that clonal haematopoiesis subtypes have substantial heterogeneity with respect to magnitude of effect and underlying mechanisms for different cardiovascular diseases. In this Review, we discuss clonal haematopoiesis as a prognostic factor for numerous cardiovascular diseases, highlight its potential as a therapeutic target and propose a potential role for CHIP in cardiovascular precision medicine.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Michael C Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Hou W, Fu X, Xie X, Zhang C, Zhang M, Xiao R, Lu Y. Tailoring monogenic disease carrier screening panels for Chinese populations: The importance of considering regional differences. Eur J Med Genet 2025; 74:105002. [PMID: 39978591 DOI: 10.1016/j.ejmg.2025.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Carrier screening for monogenic diseases is becoming increasingly important in preventive medicine, yet selecting appropriate target genes remains a complex task, especially in countries with significant ethnic and geographic diversity such as China. This study aimed to develop a strategy to screen for carrier screening target genes suitable for the Chinese population, considering regional variations in carrier frequencies (CFs). We analyzed a dataset from a large-scale, multicenter carrier screening study, encompassing 33,104 individuals from different regions of China and carrier status for 223 genes. We focused on the CFs of these genes across regions. The study first stratified the population based on participants' self-reported ancestral places and then applied consensus k-means clustering analysis to the CF characteristics of these regions. This approach enabled us to identify distinct regional subpopulations with shared genetic backgrounds. The results showed that the regions clustered into three subpopulations (North, South, and Far South) based on CF characteristics, and 44 genes exhibited significant CF differences across these subpopulations (α = 0.05). Applying an overall CF threshold without considering regional diversity would have excluded 11 regionally prevalent genes from the screening panel. By incorporating regional variations, we accurately identified 58 genes that met the recommended CF criteria (autosomal gene CF > 1/200, X-linked gene CF > 1/40,000) in at least one subpopulation. This study emphasizes the importance of considering regional diversity when designing carrier screening panels for monogenic diseases in China. Our proposed strategy, combining regional stratification and clustering analysis, provides a more precise method for selecting target genes, thereby enhancing the effectiveness and relevance of screening programs across different Chinese populations.
Collapse
Affiliation(s)
- Wei Hou
- Department of Gynecology and Obstetrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaolin Fu
- Department of Gynecology and Obstetrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoxiao Xie
- Department of Gynecology and Obstetrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunyan Zhang
- Birth Defects Prevention and Control Technology Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Manli Zhang
- Birth Defects Prevention and Control Technology Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Rui Xiao
- Zhejiang Biosan Biochemical Technologies Co. Ltd, Hangzhou, Zhejiang, China
| | - Yanping Lu
- Department of Gynecology and Obstetrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
DeBose-Scarlett E, Ressler AK, Friday C, Prickett KK, Roberts JW, Gossage JR, Marchuk DA. Arteriovenous malformation from a patient with JP-HHT harbours two second-hit somatic DNA alterations in SMAD4. J Med Genet 2025; 62:281-288. [PMID: 39939156 PMCID: PMC11925654 DOI: 10.1136/jmg-2024-110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Hereditary haemorrhagic telangiectasia (HHT) is an inherited disorder of vascular malformations. It is caused by inherited loss-of-function mutations in one of three genes, ENG, ACVRL1 or SMAD4. We recently showed that HHT-associated vascular malformations from liver, lung, brain and skin develop via a two-hit genetic mechanism resulting from biallelic loss-of-function mutations in either ENG or ACVRL1. Second-hit somatic mutations in SMAD4 have not been reported in HHT-associated vascular malformations. Here, we investigate a large, aggressively growing craniofacial arteriovenous malformation (AVM) from an individual with juvenile polyposis-HHT caused by a germline mutation in SMAD4. METHODS We sequenced DNA from the AVM using a targeted gene sequencing panel to at least 1000X to identify somatic mutations that might contribute to the development of the AVM. We analysed whole genome SNP genotyping data using the algorithm Mosaic Chromosomal Alterations (MoChA) to identify somatic loss of heterozygosity. RESULTS We confirmed the germline mutation in SMAD4 (c.1610A>T, p.Asp537Val) and identified a second-hit somatic mutation also in SMAD4 (c.350dup, p.Tyr117*) that occurred in trans relative to the germline mutation. We also identified somatic loss of heterozygosity on the q arm of chromosome 18, including SMAD4. Additionally, we confirmed that the loss of heterozygosity causes loss of the wild-type allele. Thus, we identified two independent somatic alterations in SMAD4 causing biallelic loss of SMAD4 function in the AVM tissue. CONCLUSION We identified biallelic loss of function of SMAD4 in a craniofacial AVM, evidence that SMAD4 also follows the two-hit mutation mechanism of HHT-associated vascular malformation pathogenesis.
Collapse
Affiliation(s)
- Evon DeBose-Scarlett
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrew K Ressler
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Kara K Prickett
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James W Roberts
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R Gossage
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Sonehara K, Uwamino Y, Saiki R, Takeshita M, Namba S, Uno S, Nakanishi T, Nishimura T, Naito T, Sato G, Kanai M, Liu A, Uchida S, Kurafuji T, Tanabe A, Arai T, Ohno A, Shibata A, Tanaka S, Wakui M, Kashimura S, Tomi C, Hara A, Yoshikawa S, Gotanda K, Misawa K, Tanaka H, Azekawa S, Wang QS, Edahiro R, Shirai Y, Yamamoto K, Nagao G, Suzuki T, Kiyoshi M, Ishii-Watabe A, Higashiue S, Kobayashi S, Yamaguchi H, Okazaki Y, Matsumoto N, Masumoto A, Koga H, Kanai A, Oda Y, Suzuki Y, Matsuda K, Kitagawa Y, Koike R, Kimura A, Kumanogoh A, Yoshimura A, Imoto S, Miyano S, Kanai T, Fukunaga K, Hasegawa N, Murata M, Matsushita H, Ogawa S, Okada Y, Namkoong H. Germline variants and mosaic chromosomal alterations affect COVID-19 vaccine immunogenicity. CELL GENOMICS 2025; 5:100783. [PMID: 40043710 PMCID: PMC11960526 DOI: 10.1016/j.xgen.2025.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/27/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Vaccine immunogenicity is influenced by the vaccinee's genetic background. Here, we perform a genome-wide association study of vaccine-induced SARS-CoV-2-specific immunoglobulin G (IgG) antibody titers and T cell immune responses in 1,559 mRNA-1273 and 537 BNT162b2 vaccinees of Japanese ancestry. SARS-CoV-2-specific antibody titers are associated with the immunoglobulin heavy chain (IGH) and major histocompatibility complex (MHC) locus, and T cell responses are associated with MHC. The lead variants at IGH contain a population-specific missense variant (rs1043109-C; p.Leu192Val) in the immunoglobulin heavy constant gamma 1 gene (IGHG1), with a strong decreasing effect (β = -0.54). Antibody-titer-associated variants modulate circulating immune regulatory proteins (e.g., LILRB4 and FCRL6). Age-related hematopoietic expanded mosaic chromosomal alterations (mCAs) affecting MHC and IGH also impair antibody production. MHC-/IGH-affecting mCAs confer infectious and immune disease risk, including sepsis and Graves' disease. Impacts of expanded mosaic loss of chromosomes X/Y on these phenotypes were examined. Altogether, both germline and somatic mutations contribute to adaptive immunity functions.
Collapse
Affiliation(s)
- Kyuto Sonehara
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Namba
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Nakanishi
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoyasu Nishimura
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan; Keio University Health Center, Shinjuku-ku, Tokyo, Japan
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Go Sato
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Aoxing Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sho Uchida
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | | | - Akiko Tanabe
- Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Tomoko Arai
- Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Akemi Ohno
- Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Ayako Shibata
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Tanaka
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shoko Kashimura
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Chiharu Tomi
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Akemi Hara
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Shiori Yoshikawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Gotanda
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Kana Misawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan; Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Qingbo S Wang
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; Division of Health Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Genta Nagao
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takuo Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Masato Kiyoshi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | | | | | | | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoyuki Matsumoto
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | | | | | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryuji Koike
- Health Science Research and Development Center (HeRD), Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuru Murata
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan; Research Center of Clinical Medicine, International University of Health and Welfare, Tokyo, Japan
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan; Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan.
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Yata T, Sato G, Ogawa K, Naito T, Sonehara K, Saiki R, Edahiro R, Namba S, Watanabe M, Shirai Y, Yamamoto K, NamKoong H, Nakanishi T, Yamamoto Y, Hosokawa A, Yamamoto M, Oguro-Igashira E, Nii T, Maeda Y, Nakajima K, Nishikawa R, Tanaka H, Nakayamada S, Matsuda K, Nishigori C, Sano S, Kinoshita M, Koike R, Kimura A, Imoto S, Miyano S, Fukunaga K, Mihara M, Shimizu Y, Kawachi I, Miyamoto K, Tanaka Y, Kumanogoh A, Niino M, Nakatsuji Y, Ogawa S, Matsushita T, Kira JI, Mochizuki H, Isobe N, Okuno T, Okada Y. Contribution of germline and somatic mutations to risk of neuromyelitis optica spectrum disorder. CELL GENOMICS 2025; 5:100776. [PMID: 39986280 PMCID: PMC11960548 DOI: 10.1016/j.xgen.2025.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/27/2024] [Accepted: 01/25/2025] [Indexed: 02/24/2025]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune disease characterized by optic neuritis and transverse myelitis, with an unclear genetic background. A genome-wide meta-analysis of NMOSD in Japanese individuals (240 patients and 50,578 controls) identified significant associations with the major histocompatibility complex region and a common variant close to CCR6 (rs12193698; p = 1.8 × 10-8, odds ratio [OR] = 1.73). In single-cell RNA sequencing (scRNA-seq) analysis (25 patients and 101 controls), the CCR6 risk variant showed disease-specific expression quantitative trait loci effects in CD4+ T (CD4T) cell subsets. Furthermore, we detected somatic mosaic chromosomal alterations (mCAs) in various autoimmune diseases and found that mCAs increase the risk of NMOSD (OR = 3.37 for copy number alteration). In scRNA-seq data, CD4T cells with 21q loss, a recurrently observed somatic event in NMOSD, showed dysregulation of type I interferon-related genes. Our integrated study identified novel germline and somatic mutations associated with NMOSD pathogenesis.
Collapse
Affiliation(s)
- Tomohiro Yata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Go Sato
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Children's Health and Genetics, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ho NamKoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Nakanishi
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuji Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akiko Hosokawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Neurology, Suita Municipal Hospital, Suita, Japan
| | - Mamoru Yamamoto
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Eri Oguro-Igashira
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Rika Nishikawa
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryuji Koike
- Health Science Research and Development Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Yuko Shimizu
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan; Department of Medical Safety, Tokyo Women's Medical University, Tokyo, Japan
| | - Izumi Kawachi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan; Medical Education Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsuichi Miyamoto
- Department of Neurology, Kindai University School of Medicine, Osakasayama, Japan; Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan; Center for Hematology and Regenerative Medicine, Department of Medicine (MedH), Karolinska Institutet, Huddinge, Sweden
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, Fukuoka, Japan; Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan.
| |
Collapse
|
9
|
Zhao K, Pershad Y, Poisner HM, Ma X, Quade K, Vlasschaert C, Mack T, Khankari NK, von Beck K, Brogan J, Kishtagari A, Corty RW, Li Y, Xu Y, Reiner AP, Scheet P, Auer PL, Bick AG. Genetic drivers and clinical consequences of mosaic chromosomal alterations in 1 million individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.05.25323443. [PMID: 40093208 PMCID: PMC11908284 DOI: 10.1101/2025.03.05.25323443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Mosaic chromosomal alterations of the autosomes (aut-mCAs) are large structural somatic mutations which cause clonal hematopoiesis and increase cancer risk. Here, we detected aut-mCAs in 1,011,269 participants across four biobanks. Through integrative analysis of the minimum critical region and inherited genetic variation, we found that proto-oncogenes exclusively drive chromosomal gains, tumor suppressors drive losses, and copy-neutral events can be driven by either. We identified three novel inherited risk loci in CHI3L2, HLA class II, and TERT that modulate aut-mCA risk and ten novel aut-mCA-specific loci. We found specific aut-mCAs are associated with cardiovascular, cerebrovascular, or kidney disease incidence. High-risk aut-mCAs were associated with elevated plasma protein levels of therapeutically actionable targets: NPM1, PARP1, and TACI. Participants with multiple high-risk features such as high clonal fraction, more than one aut-mCA, and abnormal red cell morphology had a 50% cumulative incidence of blood count abnormalities over 2 years. Leveraging inherited variation, we causally established aut-mCAs as premalignant lesions for chronic lymphocytic leukemia. Together, our findings provide a framework integrating somatic mosaicism, germline genetics, and clinical phenotypes to identify individuals who could benefit from preventative interventions.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Yash Pershad
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Hannah M Poisner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Xiaolong Ma
- Division of Biostatistics, Data Science Institute and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kali Quade
- Division of Biostatistics, Data Science Institute and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Taralynn Mack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Nikhil K Khankari
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Kelly von Beck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - James Brogan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashwin Kishtagari
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert W Corty
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yajing Li
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center. Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul Scheet
- Department of Epidemiology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Paul L Auer
- Division of Biostatistics, Data Science Institute and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander G Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Otsuka I, Uchiyama S, Shirai T, Liu X, Takahashi M, Kamatani Y, Terao C, Hishimoto A. Increased somatic mosaicism in autosomal and X chromosomes for suicide death. Mol Psychiatry 2025; 30:881-888. [PMID: 39215187 PMCID: PMC11835753 DOI: 10.1038/s41380-024-02718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Mosaic chromosomal alterations (mCAs) are classified as mosaic deletions (loss), copy-neutral loss of heterozygosity (CN-LOH), and duplications (gain), attracting special attention as biological aging-related acquired genetic alterations. While these mCAs have been linked with aging and various diseases, no study has investigated their association with suicide risk which is associated with abnormal biological aging. Here, we examined the association between suicide deaths and mCAs, including mosaic loss of the X (mLOX) and Y chromosomes, by leveraging blood-derived single nucleotide polymorphism-array data. The first (410 suicide decedents and 88,870 controls) and the second (363 suicide decedents and 88,870 controls) cohorts were analyzed and integrated using meta-analyses (773 suicide decedents and 177,740 controls). Total mCAs in autosomal chromosomes were significantly increased in suicide (p = 1.28 × 10-6, odds ratio [OR] = 1.78), mostly driven by loss (p = 4.05 × 10-9, OR = 2.70) and gain (p = 1.08 × 10-3, OR = 2.23). mLOX were significantly increased in female suicide (p = 2.66 × 10-21, OR = 4.00). The directions of effects of all mCAs in autosomal and sex chromosomes on suicide were the same in the first and second sets. Subgroup analyses suggest that our findings were mostly driven by suicide itself, and not confounded by comorbid psychiatric disorders or physical diseases, smoking status, sample location, or postmortem sample status. In conclusion, we provide the first evidence for aberrant mCAs in somatic autosomal and X chromosomes in suicide, which may contribute to an improved understanding of the genomic pathophysiology underlying suicide.
Collapse
Affiliation(s)
- Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shunsuke Uchiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Shirai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Motonori Takahashi
- Division of Legal Medicine, Department of Community Medicine and Social Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
11
|
Uchiyama S, Ishikawa Y, Ikari K, Honda S, Hikino K, Tanaka E, Kamatani Y, Gono T, Genovese G, Kuwana M, Terao C. Mosaic loss of chromosome Y characterises late-onset rheumatoid arthritis and contrasting associations of polygenic risk score based on age at onset. Ann Rheum Dis 2025:S0003-4967(25)00184-0. [PMID: 39986957 DOI: 10.1016/j.ard.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVES Mosaic chromosomal alterations (mCAs) increase with age and are associated with age-related diseases. The association between mCAs and rheumatoid arthritis (RA), particularly late-onset RA (LORA), has not been explored. METHODS mCAs were detected in peripheral blood samples from 2 independent Japanese datasets (Set 1: 2107 RA cases and 86,998 controls; Set 2: 2359 RA cases and 86,998 controls). The associations between mCAs and RA were evaluated in each dataset using logistic regression models and meta-analysis. In each dataset, the effect sizes of mosaic loss of Y (mLOY) and polygenic risk score (PRS) of RA in males was evaluated, and a meta-analysis was subsequently performed. The interaction between mLOY and PRS was assessed. These models were applied separately to RA, LORA, and young-onset RA (YORA). RESULTS mLOY increased significantly in LORA (odds ratio [OR] = 1.43, P = .0070). We observed a negative association between mLOY and YORA (OR = 0.66, P = .0034). On the other hand, we found consistently negative associations of autosomal mCAs or mosaic loss of X with RA, LORA, and YORA. The PRS effect sizes were lower for LORA than for YORA. mLOY with a high cell fraction strengthened the association between PRS and LORA (P = .0036), whereas the association with YORA was independent of mLOY. CONCLUSIONS LORA was characterised by the presence of a high burden of mLOY. The observed interaction between mLOY and PRS in LORA, but not in YORA, supports different gene-environment interactions between the subsets. These data suggest that distinct pathophysiological mechanisms underlie the development of LORA and YORA.
Collapse
Affiliation(s)
- Shunsuke Uchiyama
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan; Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsunori Ikari
- Department of Orthopedic Surgery, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Suguru Honda
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eiichi Tanaka
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yoichiro Kamatani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Takahisa Gono
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.
| |
Collapse
|
12
|
Poon G, Vedi A, Sanders M, Laurenti E, Valk P, Blundell JR. Single-cell DNA sequencing reveals pervasive positive selection throughout preleukemic evolution. CELL GENOMICS 2025; 5:100744. [PMID: 39842433 PMCID: PMC11872528 DOI: 10.1016/j.xgen.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/03/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
The representation of driver mutations in preleukemic hematopoietic stem cells (pHSCs) provides a window into the somatic evolution that precedes acute myeloid leukemia (AML). Here, we isolate pHSCs from the bone marrow of 16 patients diagnosed with AML and perform single-cell DNA sequencing on thousands of cells to reconstruct phylogenetic trees of the major driver clones in each patient. We develop a computational framework that can infer levels of positive selection operating during preleukemic evolution from the statistical properties of these phylogenetic trees. Combining these data with 67 previously published phylogenetic trees, we find that the highly variable structures of preleukemic trees emerge naturally from a simple model of somatic evolution with pervasive positive selection typically in the range of 9%-24% per year. At these levels of positive selection, we show that the identification of early multiple-mutant clones could be used to identify individuals at risk of future AML.
Collapse
Affiliation(s)
- Gladys Poon
- Early Cancer Institute, University of Cambridge, Cambridge, UK.
| | - Aditi Vedi
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Mathijs Sanders
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Elisa Laurenti
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Peter Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | |
Collapse
|
13
|
Jakubek YA, Ma X, Stilp AM, Yu F, Bacon J, Wong JW, Aguet F, Ardlie K, Arnett DK, Barnes K, Bis JC, Blackwell T, Becker LC, Boerwinkle E, Bowler RP, Budoff MJ, Carson AP, Chen J, Cho MH, Coresh J, Cox NJ, de Vries PS, DeMeo DL, Fardo DW, Fornage M, Guo X, Hall ME, Heard-Costa N, Hidalgo B, Irvin MR, Johnson AD, Jorgenson E, Kenny EE, Kessler MD, Levy D, Li Y, Lima JAC, Liu Y, Locke AE, Loos RJF, Machiela MJ, Mathias RA, Mitchell BD, Murabito JM, Mychaleckyj JC, North KE, Orchard P, Parker SCJ, Pershad Y, Peyser PA, Pratte KA, Psaty BM, Raffield LM, Redline S, Rich SS, Rotter JI, Shah SJ, Smith JA, Smith AP, Smith A, Taub MA, Tiwari HK, Tracy R, Tuftin B, Bick AG, Sankaran VG, Reiner AP, Scheet P, Auer PL. Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood. Am J Hum Genet 2025; 112:276-290. [PMID: 39809269 PMCID: PMC11866972 DOI: 10.1016/j.ajhg.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. We show that haplotype-based calling methods can be used with WGS data to successfully identify mLOY events. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European (EUR) ancestry group compared to other ancestries. We identify multiple loci associated with mLOY susceptibility and show that subsets of human hematopoietic stem cells are enriched for the activity of mLOY susceptibility variants. Finally, we found that certain alleles on chromosome Y are more likely to be lost than others in detectable mLOY clones.
Collapse
Affiliation(s)
- Yasminka A Jakubek
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Xiaolong Ma
- Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jason Bacon
- Department of Computer Science, Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Justin W Wong
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Kathleen Barnes
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, School of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tom Blackwell
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Lewis C Becker
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Matthew J Budoff
- Department of Medicine, Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Josef Coresh
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nancy Heard-Costa
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marguerite Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew D Johnson
- Framingham Heart Study, Framingham, MA, USA; Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA; Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yun Li
- Department of Biostatistics, Department of Genetics, Department of Computer Science, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Joao A C Lima
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Yongmei Liu
- Duke University School of Medicine, Durham, NC, USA
| | | | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Joanne M Murabito
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C J Parker
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yash Pershad
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Department of Epidemiology, Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sanjiv J Shah
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Aaron P Smith
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Albert Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Russell Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT, USA
| | - Bjoernar Tuftin
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Paul Scheet
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul L Auer
- Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
14
|
Raddatz MA, Pershad Y, Parker AC, Bick AG. Clonal Hematopoiesis of Indeterminate Potential and Cardiovascular Health. Cardiol Clin 2025; 43:13-23. [PMID: 39551555 DOI: 10.1016/j.ccl.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related phenomenon in which somatic mutations lead to clonal expansion of hematopoietic stem cells without the development of hematologic abnormalities. A growing body of literature demonstrates an association between CHIP and cardiovascular disease. This pathophysiology demonstrates a novel connection between global inflammation and cardiovascular morbidity. While there is limited consensus addressing the cardiovascular care of these patients, risk factor optimization and disease surveillance are advisable. Investigation into possible therapies is ongoing and provides promise for the treatment of inflammation contributing to cardiovascular disease in patients with and without CHIP.
Collapse
Affiliation(s)
- Michael A Raddatz
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Dr. South, A2-237 CHS, Los Angeles, CA 90095, USA
| | - Yash Pershad
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 550 Robinson Research Building, Nashville, TN 37232, USA
| | - Alyssa C Parker
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 550 Robinson Research Building, Nashville, TN 37232, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 550 Robinson Research Building, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Li D. Mosaic Chromosomal Alterations/Somatic Copy Number Variations: A New Frontier in Genetic Association Studies of Complex Diseases. Biol Psychiatry 2025; 97:104-106. [PMID: 39663014 PMCID: PMC11795703 DOI: 10.1016/j.biopsych.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Dawei Li
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|
16
|
Chang K, Jian X, Wu C, Gao C, Li Y, Chen J, Xue B, Ding Y, Peng L, Wang B, He L, Xu Y, Li C, Li X, Wang Z, Zhao X, Pan D, Yang Q, Zhou J, Zhu Z, Liu Z, Xia D, Feng G, Zhang Q, Wen Y, Shi Y, Li Z. The Contribution of Mosaic Chromosomal Alterations to Schizophrenia. Biol Psychiatry 2025; 97:198-207. [PMID: 38942348 DOI: 10.1016/j.biopsych.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Mosaic chromosomal alterations are implicated in neuropsychiatric disorders, but the contribution to schizophrenia (SCZ) risk for somatic copy number variations (sCNVs) emerging in early developmental stages has not been fully established. METHODS We analyzed blood-derived genotype arrays from 9715 patients with SCZ and 28,822 control participants of Chinese descent using a computational tool (MoChA) based on long-range chromosomal information to detect mosaic chromosomal alterations. We focused on probable early developmental sCNVs through stringent filtering. We assessed the burden of sCNVs across varying cell fraction cutoffs, as well as the frequency with which genes were involved in sCNVs. We integrated this data with the PGC (Psychiatric Genomics Consortium) dataset, which comprises 12,834 SCZ cases and 11,648 controls of European descent, and complemented it with genotyping data from postmortem brain tissue of 936 participants (449 cases and 487 controls). RESULTS Patients with SCZ had a significantly higher somatic losses detection rate than control participants (1.00% vs. 0.52%; odds ratio = 1.91; 95% CI, 1.47-2.49; two-sided Fisher's exact test, p = 1.49 × 10-6). Further analysis indicated that the odds ratios escalated proportionately (from 1.91 to 2.78) with the increment in cell fraction cutoffs. Recurrent sCNVs associated with SCZ (odds ratio > 8; Fisher's exact test, p < .05) were identified, including notable regions at 10q21.1 (ZWINT), 3q26.1 (SLITRK3), 1q31.1 (BRINP3) and 12q21.31-21.32 (MGAT4C and NTS) in the Chinese cohort, and some regions were validated with PGC data. Cross-tissue validation pinpointed somatic losses at loci like 1p35.3-35.2 and 19p13.3-13.2. CONCLUSIONS The study highlights the significant impact of mosaic chromosomal alterations on SCZ, suggesting their pivotal role in the disorder's genetic etiology.
Collapse
Affiliation(s)
- Kaihui Chang
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China; National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanhong Wu
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yafang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiqiang Xue
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yonghe Ding
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Lixia Peng
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Pharmacy, Qingdao University, Qingdao, China
| | - Baokun Wang
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Pharmacy, Qingdao University, Qingdao, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Xu
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangzhong Zhao
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zijia Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Disong Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China; Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China; Changning Mental Health Center, Shanghai, China.
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; School of Public Health, Qingdao University, Qingdao, China; School of Pharmacy, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
17
|
Yao Q, Chen X, Zhang Y, Chen H, Dou Y, He W, Sheng W, Ma X, Liu F, Yan W, Huang G. Genome-Wide Association Study Identifies Genetic Polymorphisms for Folate-Related Biomarkers in Chinese Preconception Women. J Nutr 2024; 154:3592-3602. [PMID: 39374789 DOI: 10.1016/j.tjnut.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Single-nucleotide polymorphism (SNP) allele frequencies, dietary habits, and folate status and their associations vary across ethnic populations. Little is known about the SNPs accounting for variations of folate-related biomarkers for Chinese preparing-for-pregnant females. OBJECTIVES We aimed to identify SNPs contributing to RBC and serum folate, vitamin B-12, and homocysteine concentrations in Chinese female preconception population. METHODS A genome-wide association study was conducted on 1000 randomly selected preconception Chinese women from the Shanghai Preconception Cohort. SNPs were genotyped using Illumina chips, and associations with biomarkers were assessed using simple linear regression models under the assumption of an additive genetic model. Genome-wide significance was considered at P < 10-7. RESULTS The MTHFR rs1801133 was the major genetic coding variant contributing to RBC folate, serum folate, and homocysteine concentrations (P = 2.28 × 10-16; P = 8.85 × 10-8, and P = 2.46 × 10-13, repsectively). It is associated with increased RBC folate (β: 0.154 per additional risk allele after log transform), decreased serum folate (β: -0.951 per additional risk allele), and increased serum homocysteine concentrations (β: 1.153 per additional risk allele). The predominant SNP associated with serum folate was rs147162222 in NTRK2 (P = 2.55 × 10-8), although that associated with homocysteine was rs77025184 located between PDE7B and LINC00271 (P = 4.91 × 10-17). For vitamin B-12, FUT2 rs1047781 was the dominant genetic variant (P = 1.59 × 10-10). The numbers of signals with a P value of <10-7 for RBC folate, serum folate, vitamin B-12, and homocysteine were 12, 18, 8, and 614, respectively. CONCLUSIONS This study represents the first genome-wide association study focusing on folate-related biomarkers in a Chinese preparing-for-pregnant female population. The contributions of dominent SNPs to each biomarker are partly different from other populations. The rs1801133 (C677T) in MTHFR is the predominant genetic variant contributing to RBC folate and rs1047781 (A385T) in FUT2 as the primary one explaining vitamin B-12. Notably, the intronic rs147162222 and noncoding rs77025184 are the predominant SNPs for serum folate and homocysteine, respectively.
Collapse
Affiliation(s)
- Qinyu Yao
- Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Beijing, China; Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaotian Chen
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Beijing, China; Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yi Zhang
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Beijing, China; Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hongyan Chen
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Beijing, China; Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yalan Dou
- Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wennan He
- Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wei Sheng
- Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Beijing, China; Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaojing Ma
- Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Beijing, China; Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Fang Liu
- Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Beijing, China; Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Weili Yan
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Beijing, China; Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Guoying Huang
- Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Beijing, China; Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
18
|
Weng C, Zhao Y, Song M, Shao Z, Pang Y, Yu C, Pei P, Yang L, Millwood IY, Walters RG, Chen Y, Du H, Chen J, Chen Z, Genovese G, Terao C, Lv J, Li L, Sun D. Mosaic loss of chromosome Y, tobacco smoking and risk of age-related lung diseases: insights from two prospective cohorts. Eur Respir J 2024; 64:2400968. [PMID: 39401857 DOI: 10.1183/13993003.00968-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/11/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Little is known about the underlying relationship between mosaic loss of chromosome Y (mLOY), the most common chromosomal alterations in older men, and the risk of age-related lung diseases. METHODS We included 217 780 participants from the UK Biobank (UKB) and 42 859 participants from the China Kadoorie Biobank. The mLOY events were detected using the Mosaic Chromosomal Alterations (MoChA) pipeline. Outcomes included all lung diseases, COPD, lung cancer and idiopathic pulmonary fibrosis (IPF). Cox proportional hazard models were fitted to estimate the hazard ratios and 95% confidence intervals of mLOY with lung diseases in both cohorts. The combined hazard ratios were derived from meta-analysis. RESULTS Results from the two cohorts showed that expanded mLOY was associated with increased risks of all lung diseases (HR 1.19 (95% CI 1.04-1.36)), COPD (HR 1.20 (95% CI 1.13-1.28)), lung cancer (HR 1.34 (95% CI 1.21-1.48)) and IPF (HR 1.34 (95% CI 1.16-1.56) in the UKB). There was evidence of positive interactions between mLOY and smoking behaviour (relative excess risk due to interaction (97.5% CI) >0). Additionally, we observed that current smokers with expanded mLOY had the highest risk of incident lung diseases in both cohorts. CONCLUSIONS mLOY may be a novel predictor for age-related lung diseases. For current smokers carrying mLOY, adopting quitting smoking behaviour may contribute to substantially reducing their risk of incident lung diseases.
Collapse
Affiliation(s)
- Chenghao Weng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- These authors contributed equally to this work
| | - Yuxuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- These authors contributed equally to this work
| | - Mingyu Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zilun Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Ling Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Huaidong Du
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
19
|
Hubmann R, Hilgarth M, Löwenstern T, Lienhard A, Sima F, Reisinger M, Hobel-Kleisch C, Porpaczy E, Haferlach T, Hoermann G, Laccone F, Jungbauer C, Valent P, Staber PB, Shehata M, Jäger U. Somatic Recombination Between an Ancient and a Recent NOTCH2 Gene Variant Is Associated with the NOTCH2 Gain-of-Function Phenotype in Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:12581. [PMID: 39684291 DOI: 10.3390/ijms252312581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Constitutively active NOTCH2 signaling is a hallmark in chronic lymphocytic leukemia (CLL). The precise underlying defect remains obscure. Here we show that the mRNA sequence coding for the NOTCH2 negative regulatory region (NRR) is consistently deleted in CLL cells. The most common NOTCH2ΔNRR-DEL2 deletion is associated with two intronic single nucleotide variations (SNVs) which either create (CTTAT, G>A for rs2453058) or destroy (CTCGT, A>G for rs5025718) a putative splicing branch point sequence (BPS). Phylogenetic analysis demonstrates that rs2453058 is part of an ancient NOTCH2 gene variant (*1A01) which is associated with type 2 diabetes mellitus (T2DM) and is two times more frequent in Europeans than in East Asians, resembling the differences in CLL incidence. In contrast, rs5025718 belongs to a recent NOTCH2 variant (*1a4) that dominates the world outside Africa. Nanopore sequencing indicates that somatic reciprocal crossing over between rs2453058 (*1A01) and rs5025718 (*1a4) leads to recombined NOTCH2 alleles with altered BPS patterns in NOTCH2*1A01/*1a4 CLL cases. This would explain the loss of the NRR domain by aberrant pre-mRNA splicing and consequently the NOTCH2 gain-of-function phenotype. Together, our findings suggest that somatic recombination of inherited NOTCH2 variants might be relevant to CLL etiology and may at least partly explain its geographical clustering.
Collapse
Affiliation(s)
- Rainer Hubmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Martin Hilgarth
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tamara Löwenstern
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Lienhard
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Filip Sima
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Manuel Reisinger
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Claudia Hobel-Kleisch
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Edit Porpaczy
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Medhat Shehata
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Lim J, Hubbard AK, Blechter B, Shi J, Zhou W, Loftfield E, Machiela MJ, Wong JYY. Associations Between Mosaic Loss of Sex Chromosomes and Incident Hospitalization for Atrial Fibrillation in the United Kingdom. J Am Heart Assoc 2024; 13:e036984. [PMID: 39508149 DOI: 10.1161/jaha.124.036984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Mosaic loss of chromosome Y (mLOY) in leukocytes of men reflects genomic instability from aging, smoking, and environmental exposures. A similar mosaic loss of chromosome X (mLOX) occurs among women. However, the associations between mLOY, mLOX, and risk of incident heart diseases are unclear. METHODS AND RESULTS We estimated associations between mLOY, mLOX, and risk of incident heart diseases requiring hospitalization, including atrial fibrillation, myocardial infarction, ischemic heart disease, cardiomyopathy, and heart failure. We analyzed 190 613 men and 224 853 women with genotyping data from the UK Biobank. Among these participants, there were 37 037 men with mLOY and 13 978 women with mLOX detected using the Mosaic Chromosomal Alterations caller. Multivariable Cox regression was used to estimate hazard ratios (HRs) and 95% CIs of each incident heart disease in relation to mLOY in men and mLOX in women. Additionally, Mendelian randomization was conducted to estimate causal associations. Among men, detectable mLOY was associated with elevated risk of atrial fibrillation (HR, 1.06 [95% CI, 1.03-1.11]). The associations were apparent in both never smokers (HR, 1.07 [95% CI, 1.01-1.14]) and ever smokers (HR, 1.05 [95% CI, 1.01-1.11]) as well as men aged >60 and ≤60 years. Mendelian randomization analyses supported causal associations between mLOY and atrial fibrillation (HRMR-PRESSO, 1.15 [95% CI, 1.13-1.18]). Among postmenopausal women, we found a suggestive inverse association between detectable mLOX and atrial fibrillation risk (HR, 0.90 [95% CI, 0.83-0.98]). However, associations with mLOY and mLOX were not found for other heart diseases. CONCLUSIONS Our findings suggest that mLOY and mLOX reflect sex-specific biological processes or exposure profiles related to incident atrial fibrillation requiring hospitalization.
Collapse
Affiliation(s)
- Jungeun Lim
- Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute Bethesda MD
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research Leidos Biomedical Research, Inc Frederick MD
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Jason Y Y Wong
- Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute Bethesda MD
| |
Collapse
|
21
|
Young CD, Hubbard AK, Saint-Maurice PF, Chan ICC, Cao Y, Tran D, Bolton KL, Chanock SJ, Matthews CE, Moore SC, Loftfield E, Machiela MJ. Social, Behavioral, and Clinical Risk Factors Are Associated with Clonal Hematopoiesis. Cancer Epidemiol Biomarkers Prev 2024; 33:1423-1432. [PMID: 39208031 PMCID: PMC11530318 DOI: 10.1158/1055-9965.epi-24-0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Risk factors including smoking, alcohol intake, physical activity (PA), and sleep patterns have been associated with cancer risk. Clonal hematopoiesis (CH), including mosaic chromosomal alterations and clonal hematopoiesis of indeterminate potential, is linked to increased hematopoietic cancer risk and could be used as common preclinical intermediates for the better understanding of associations of risk factors with rare hematologic malignancies. METHODS We analyzed cross-sectional data from 478,513 UK Biobank participants without hematologic malignancies using multivariable-adjusted analyses to assess the associations between lifestyle factors and CH types. RESULTS Smoking was reinforced as a potent modifiable risk factor for multiple CH types, with dose-dependent relationships persisting after cessation. Males in socially deprived areas of England had a lower risk of mosaic loss of chromosome Y (mLOY), females with moderate/high alcohol consumption (2-3 drinks/day) had increased mosaic loss of the X chromosome risk [OR = 1.17; 95% confidence interval (CI), 1.09-1.25; P = 8.31 × 10-6] compared with light drinkers, active males (moderate-high PA) had elevated risks of mLOY (PA category 3: OR = 1.06; 95% CI, 1.03-1.08; P = 7.57 × 10-6), and men with high body mass index (≥40) had reduced risk of mLOY (OR = 0.57; 95% CI, 0.51-0.65; P = 3.30 × 10-20). Sensitivity analyses with body mass index adjustment attenuated the effect in the mLOY-PA associations (IPAQ2: OR = 1.03; 95% CI, 1.00-1.06; P = 2.13 × 10-2 and IPAQ3: OR = 1.03; 95% CI, 1.01-1.06; P = 7.77 × 10-3). CONCLUSIONS Our study reveals associations between social deprivation, smoking, and alcohol consumption and CH risk, suggesting that these exposures could contribute to common types of CH and potentially rare hematologic cancers. IMPACT This study underscores the impact of lifestyle factors on CH frequency, emphasizing social, behavioral, and clinical influences and the importance of sociobehavioral contexts when investigating CH risk factors.
Collapse
Affiliation(s)
- Corey D Young
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Pedro F Saint-Maurice
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
- Champalimaud Foundation, Lisbon, Portugal
| | - Irenaeus C C Chan
- Divisions of Hematology and Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yin Cao
- Divisions of Hematology and Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Duc Tran
- Divisions of Hematology and Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kelly L Bolton
- Divisions of Hematology and Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
22
|
Husby S, Tulstrup M, Harsløf M, Nielsen C, Haastrup E, Ebbesen LH, Klarskov Andersen M, Pertesi M, Brieghel C, Niemann CU, Nilsson B, Szabo AG, Andersen NF, Abildgaard N, Vangsted A, Grønbæk K. Mosaic chromosomal alterations in hematopoietic cells and clinical outcomes in patients with multiple myeloma. Leukemia 2024; 38:2456-2465. [PMID: 39223296 PMCID: PMC11518982 DOI: 10.1038/s41375-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Mosaic chromosomal alterations (mCAs) in hematopoietic cells increase mortality and risk of hematological cancers and infections. We investigated the landscape of mCAs and their clinical consequences in 976 patients with multiple myeloma undergoing high-dose chemotherapy and autologous stem cell support (ASCT) with median 6.4 years of follow-up. mCAs were detected in the stem cell harvest product of 158 patients (16.2%). Autosomal aberrations were found in 60 patients (6.1%) and affected all chromosomes. Loss of chromosome X was found in 51 females (12.7%) and loss of chromosome Y in 55 males (9.6%). Overall survival and progression were similar between carriers of autosomal mCAs and non-carriers. In contrast, female patients with loss of the X chromosome had longer overall survival (age-adjusted[a.a.] HR 0.54, 95% CI 0.32-0.93, p = 0.02), lower risk of progression (a.a. HR 0.55, 95% CI 0.35-0.87; p = 0.01), and better post-transplant response (higher degree of complete response (CR) or very good partial response (VGPR)). The reason for this substantial effect is unknown. Additionally, myeloma clones in the stem cell product was confirmed by mCA analysis in the few patients with multiple mCAs (n = 12 patients). Multiple mCAs conferred inferior overall survival (a.a. HR 2.0, 95% CI 1.02-3.84; p = 0.04) and higher risk of myeloma progression (a.a. HR 3.36, 95% CI 1.67-6.81; p < 0.001), which is presumed to be driven by suspected myeloma contaminants.
Collapse
Affiliation(s)
- Simon Husby
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark.
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark.
| | - Morten Tulstrup
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Mads Harsløf
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer, Odense, Denmark
| | - Eva Haastrup
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Maroulio Pertesi
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Christian Brieghel
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | | | | | - Niels Abildgaard
- Hematology Research Unit, Department of Hematology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Annette Vangsted
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
DeBose-Scarlett E, Ressler AK, Gallione CJ, Sapisochin Cantis G, Friday C, Weinsheimer S, Schimmel K, Spiekerkoetter E, Kim H, Gossage JR, Faughnan ME, Marchuk DA. Somatic mutations in arteriovenous malformations in hereditary hemorrhagic telangiectasia support a bi-allelic two-hit mutation mechanism of pathogenesis. Am J Hum Genet 2024; 111:2283-2298. [PMID: 39299239 PMCID: PMC11480799 DOI: 10.1016/j.ajhg.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an inherited disorder of vascular malformations characterized by mucocutaneous telangiectases and arteriovenous malformations (AVMs) in internal organs. HHT is caused by inheritance of a loss of function mutation in one of three genes. Although individuals with HHT are haploinsufficient for one of these genes throughout their entire body, rather than exhibiting a systemic vascular phenotype, vascular malformations occur as focal lesions in discrete anatomic locations. The inconsistency between genotype and phenotype has provoked debate over whether haploinsufficiency or a different mechanism gives rise to the vascular malformations. We previously showed that HHT-associated skin telangiectases develop by a two-hit mutation mechanism in an HHT gene. However, somatic mutations were identified in only half of the telangiectases, raising the question whether a second-hit somatic mutation is a necessary (required) event in HHT pathogenesis. Here, we show that another mechanism for the second hit is loss of heterozygosity across the chromosome bearing the germline mutation. Secondly, we investigate the two-hit mutation mechanism for internal organ AVMs, the source of much of the morbidity of HHT. Here, we identified somatic molecular genetic events in eight liver telangiectases, including point mutations and a loss of heterozygosity event. We also identified somatic mutations in one pulmonary AVM and two brain AVMs, confirming that mucocutaneous and internal organ vascular malformations undergo the same molecular mechanisms. Together, these data argue that bi-allelic loss of function in an HHT gene is a required event in the pathogenesis of HHT-associated vascular malformations.
Collapse
Affiliation(s)
- Evon DeBose-Scarlett
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew K Ressler
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carol J Gallione
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gonzalo Sapisochin Cantis
- Abdominal Transplant and HPB Surgical Oncology, Toronto General Hospital and Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON PMB-11-175, Canada
| | | | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Katharina Schimmel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University, Stanford, CA 94305, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University, Stanford, CA 94305, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - James R Gossage
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Marie E Faughnan
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada; Toronto HHT Centre, St. Michael's Hospital and Li Ka Shing Knowledge Institute, Toronto, ON M5B 1W8, Canada
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
25
|
Song M, Han Y, Zhao Y, Lv J, Yu C, Pei P, Yang L, Millwood IY, Walters RG, Chen Y, Du H, Yang X, Yao W, Chen J, Chen Z, Genovese G, Terao C, Li L, Sun D. Association of autosomal mosaic chromosomal alterations with risk of bladder cancer in Chinese adults: a prospective cohort study. Cell Death Dis 2024; 15:706. [PMID: 39349436 PMCID: PMC11443067 DOI: 10.1038/s41419-024-07087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
Little is known about the prospective association between autosomal mosaic chromosomal alterations (mCAs), a group of large-scale somatic mutations on autosomes, and bladder cancer. Here we utilized data from 99,877 participants who were free of physician-diagnosed cancer at baseline (2004-2008) of the China Kadoorie Biobank to estimate the associations between autosomal mCAs and bladder cancer (ICD-10: C67). A total of 2874 autosomal mCAs events among 2612 carriers (2.6%) were detected. After a median follow-up of 12.4 years, we discovered that participants with all autosomal mCAs exhibited higher risks of bladder cancer, with a multivariable-adjusted hazard ratio (HR) (95% confidence interval [CI]) of 2.60 (1.44, 4.70). The estimate of such association was even stronger for mosaic loss events (HR [95% CI]: 6.68 [2.92, 15.30]), while it was not significant for CN-LOH events. Both expanded (cell fraction ≥10%) and non-expanded autosomal mCAs, as well as mosaic loss, were associated with increased risks of bladder cancer. Of interest, physical activity (PA) significantly modified the associations of autosomal mCAs and mosaic loss (Pinteraction = 0.038 and 0.012, respectively) with bladder cancer. The increased risks of bladder cancer were only observed with mCAs and mosaic loss among participants with a lower level of PA (HR [95% CI]: 5.11 [2.36, 11.09] and 16.30 [6.06, 43.81]), but not among participants with a higher level of PA. Our findings suggest that peripheral leukocyte autosomal mCAs may represent a novel risk factor for bladder cancer, and PA may serve as a potential intervention target for mCAs carriers.
Collapse
Affiliation(s)
- Mingyu Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yuting Han
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yuxuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Huaidong Du
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Xiaoming Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Wei Yao
- NCDs Prevention and Control Department, Tongxiang CDC, Tongxiang, Zhejiang, China
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
26
|
Strauss JD, Brown DW, Zhou W, Dagnall C, Yuan JM, Im A, Savage SA, Wang Y, Rafati M, Spellman SR, Gadalla SM. Telomere length and clonal chromosomal alterations in peripheral blood of patients with severe aplastic anaemia. Br J Haematol 2024; 205:1180-1187. [PMID: 39103182 PMCID: PMC11499016 DOI: 10.1111/bjh.19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Severe aplastic anaemia (SAA) is a rare and life-threatening bone marrow failure disorder. We used data from the transplant outcomes in aplastic anaemia study to characterize mosaic chromosomal alterations (mCAs) in the peripheral blood of 738 patients with acquired SAA and evaluate their associations with telomere length (TL) and survival post-haematopoietic cell transplant (HCT). The median age at HCT was 20.4 years (range = 0.2-77.4). Patients with SAA had shorter TL than expected for their age (median TL percentile for age: 35.7th; range <1-99.99). mCAs were detected in 211 patients (28.6%), with chr6p copy-neutral loss of heterozygosity (6p-CNLOH) in 15.9% and chr7 loss in 3.0% of the patients; chrX loss was detected in 4.1% of female patients. Negative correlations between mCA cell fraction and measured TL (r = -0.14, p = 0.0002), and possibly genetically predicted TL (r = -0.07, p = 0.06) were noted. The post-HCT 3-year survival probability was low in patients with chr7 loss (39% vs. 72% in patients with chr6-CNLOH, 60% in patients with other mCAs and 70% in patients with no mCAs; p-log rank = 0.001). In multivariable analysis, short TL (p = 0.01), but not chr7 loss (p = 0.29), was associated with worse post-HCT survival. TL may guide clinical decisions in patients with SAA.
Collapse
Affiliation(s)
- Joshua D Strauss
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Casey Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jian-Min Yuan
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Annie Im
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Youjin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Maryam Rafati
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, Minnesota, USA
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Weinstock JS, Chaudhry SA, Ioannou M, Viskadourou M, Reventun P, Jakubek YA, Liggett LA, Laurie C, Broome JG, Khan A, Taylor KD, Guo X, Peyser PA, Boerwinkle E, Chami N, Kenny EE, Loos RJ, Psaty BM, Russell TP, Brody JA, Yun JH, Cho MH, Vasan RS, Kardia SL, Smith JA, Raffield LM, Bidulescu A, O’Brien E, de Andrade M, Rotter JI, Rich SS, Tracy RP, Chen YDI, Gu CC, Hsiung CA, Kooperberg C, Haring B, Nassir R, Mathias R, Reiner A, Sankaran V, Lowenstein CJ, Blackwell TW, Abecasis GR, Smith AV, Kang HM, Natarajan P, Jaiswal S, Bick A, Post WS, Scheet P, Auer P, Karantanos T, Battle A, Arvanitis M. The Genetic Determinants and Genomic Consequences of Non-Leukemogenic Somatic Point Mutations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.22.24312319. [PMID: 39228737 PMCID: PMC11370504 DOI: 10.1101/2024.08.22.24312319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Clonal hematopoiesis (CH) is defined by the expansion of a lineage of genetically identical cells in blood. Genetic lesions that confer a fitness advantage, such as point mutations or mosaic chromosomal alterations (mCAs) in genes associated with hematologic malignancy, are frequent mediators of CH. However, recent analyses of both single cell-derived colonies of hematopoietic cells and population sequencing cohorts have revealed CH frequently occurs in the absence of known driver genetic lesions. To characterize CH without known driver genetic lesions, we used 51,399 deeply sequenced whole genomes from the NHLBI TOPMed sequencing initiative to perform simultaneous germline and somatic mutation analyses among individuals without leukemogenic point mutations (LPM), which we term CH-LPMneg. We quantified CH by estimating the total mutation burden. Because estimating somatic mutation burden without a paired-tissue sample is challenging, we developed a novel statistical method, the Genomic and Epigenomic informed Mutation (GEM) rate, that uses external genomic and epigenomic data sources to distinguish artifactual signals from true somatic mutations. We performed a genome-wide association study of GEM to discover the germline determinants of CH-LPMneg. After fine-mapping and variant-to-gene analyses, we identified seven genes associated with CH-LPMneg (TCL1A, TERT, SMC4, NRIP1, PRDM16, MSRA, SCARB1), and one locus associated with a sex-associated mutation pathway (SRGAP2C). We performed a secondary analysis excluding individuals with mCAs, finding that the genetic architecture was largely unaffected by their inclusion. Functional analyses of SMC4 and NRIP1 implicated altered HSC self-renewal and proliferation as the primary mediator of mutation burden in blood. We then performed comprehensive multi-tissue transcriptomic analyses, finding that the expression levels of 404 genes are associated with GEM. Finally, we performed phenotypic association meta-analyses across four cohorts, finding that GEM is associated with increased white blood cell count and increased risk for incident peripheral artery disease, but is not significantly associated with incident stroke or coronary disease events. Overall, we develop GEM for quantifying mutation burden from WGS without a paired-tissue sample and use GEM to discover the genetic, genomic, and phenotypic correlates of CH-LPMneg.
Collapse
Affiliation(s)
- Joshua S. Weinstock
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sharjeel A. Chaudhry
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Ioannou
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Maria Viskadourou
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Paula Reventun
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - L. Alexander Liggett
- Division of Hematology/Oncology, Boston Childrens Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Cecelia Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jai G. Broome
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alyna Khan
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, Boston University, Boxton, MA USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Nathalie Chami
- The Charles Bronfman Institute of Personalized Medicine
- The Mindich Child Health and Developlement Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ruth J. Loos
- The Charles Bronfman Institute of Personalized Medicine
- The Mindich Child Health and Developlement Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Tracy P. Russell
- Department of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jeong H. Yun
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Ramachandran S. Vasan
- National Heart Lung and Blood Institute’s, Boston University’s Framingham Heart Study, Framingham, MA, USA
| | - Sharon L. Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Jennifer A. Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
- Survey Research Center, Institute for Social Research, University of Michgian, Ann Arbor, MI
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27514
| | - Aurelian Bidulescu
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health Bloomington, Bloomington, IN, USA
| | | | - Mariza de Andrade
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Stephen S. Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA
| | - Russell P. Tracy
- Department of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT, USA
| | - Yii Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - C. Charles. Gu
- Center for Biostatistics and Data Sciences, Washington University, St. Louis, MO USA
| | - Chao A. Hsiung
- Department of Medicine, Taipei Veterans General Hospital, Taipei Taiwan - 201 Shi-Pai Rd. Sec. 2, Taipei Taiwan
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bernhard Haring
- Department of Medicine III, Saarland University Hospital, Homburg, Saarland, Germany - Department of Medicine I, University of Wrzburg, Wrzburg, Bavaria, Germany
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA. Electronic address
| | - Rami Nassir
- University of California Davis, Davis, CA, USA
| | - Rasika Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Vijay Sankaran
- Division of Hematology/Oncology, Boston Childrens Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Thomas W. Blackwell
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Goncalo R. Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Albert V. Smith
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Hyun M. Kang
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard & MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | | | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Wendy S. Post
- Department of Medicine, Cardiology Division, Johns Hopkins University
| | - Paul Scheet
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Paul Auer
- Department of Biostatistics, Medical College of WisconsinDivision of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Theodoros Karantanos
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD
- Department of Computer Science, Johns Hopkins University, Baltimore, MD
| | - Marios Arvanitis
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
28
|
Piehler AP, Truger M, Kozik JH, Weissmann S, Schwonzen M, Meggendorfer M, Kern W, Haferlach T, Hoermann G, Haferlach C. Classical meets malignant hematology: a case of acquired εγδβ-thalassemia in clonal hematopoiesis. Haematologica 2024; 109:2745-2748. [PMID: 38497167 PMCID: PMC11290575 DOI: 10.3324/haematol.2024.285083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
|
29
|
Vincelette ND, Yu X, Kuykendall AT, Moon J, Su S, Cheng CH, Sammut R, Razabdouski TN, Nguyen HV, Eksioglu EA, Chan O, Al Ali N, Patel PC, Lee DH, Nakanishi S, Ferreira RB, Hyjek E, Mo Q, Cory S, Lawrence HR, Zhang L, Murphy DJ, Komrokji RS, Lee D, Kaufmann SH, Cleveland JL, Yun S. Trisomy 8 Defines a Distinct Subtype of Myeloproliferative Neoplasms Driven by the MYC-Alarmin Axis. Blood Cancer Discov 2024; 5:276-297. [PMID: 38713018 PMCID: PMC11215389 DOI: 10.1158/2643-3230.bcd-23-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/16/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024] Open
Abstract
Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPN) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for patients with triple-negative (TN) myelofibrosis (MF) who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in TN-MF and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs. Significance: This study establishes that MYC expression is increased in TN-MPNs via trisomy 8, that a MYC-S100A9 circuit manifest in these cases is sufficient to provoke myelofibrosis and inflammation in diverse hematopoietic cell types in the BM niche, and that the MYC-S100A9 circuit is targetable in TN-MPNs.
Collapse
Affiliation(s)
- Nicole D. Vincelette
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Andrew T. Kuykendall
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Jungwon Moon
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Siyuan Su
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois.
| | - Chia-Ho Cheng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Rinzine Sammut
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
- Département d’Hématologie Clinique, Centre Hospitalier Universitaire de Nice, Nice, France.
| | - Tiffany N. Razabdouski
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Hai V. Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
| | - Erika A. Eksioglu
- Department of Immunology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Najla Al Ali
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Parth C. Patel
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
- Department of Internal Medicine, University of South Florida, Tampa, Florida.
| | - Dae H. Lee
- Division of Cardiovascular Science, Department of Internal Medicine, University of South Florida, Tampa, Florida
| | - Shima Nakanishi
- Department of Tumor Microenvironment & Metastasis, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Renan B. Ferreira
- Department of Drug Discovery, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Elizabeth Hyjek
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
| | - Harshani R. Lawrence
- Department of Drug Discovery, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Ling Zhang
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom.
| | - Rami S. Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois.
| | - Scott H. Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - John L. Cleveland
- Department of Tumor Microenvironment & Metastasis, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Seongseok Yun
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| |
Collapse
|
30
|
Mack T, Vlasschaert C, von Beck K, Silver AJ, Heimlich JB, Poisner H, Condon HR, Ulloa J, Sochacki AL, Spaulding TP, Kishtagari A, Bejan CA, Xu Y, Savona MR, Jones A, Bick AG. Cost-Effective and Scalable Clonal Hematopoiesis Assay Provides Insight into Clonal Dynamics. J Mol Diagn 2024; 26:563-573. [PMID: 38588769 PMCID: PMC11536471 DOI: 10.1016/j.jmoldx.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon in which hematopoietic stem cells acquire mutations in a select set of genes commonly mutated in myeloid neoplasia which then expand clonally. Current sequencing assays to detect CHIP mutations are not optimized for the detection of these variants and can be cost-prohibitive when applied to large cohorts or to serial sequencing. In this study, an affordable (approximately US $8 per sample), accurate, and scalable sequencing assay for CHIP is introduced and validated. The efficacy of the assay was demonstrated by identifying CHIP mutations in a cohort of 456 individuals with DNA collected at multiple time points in Vanderbilt University's biobank and quantifying clonal expansion rates over time. A total of 101 individuals with CHIP/clonal cytopenia of undetermined significance were identified, and individual-level clonal expansion rate was calculated using the variant allele fraction at both time points. Differences in clonal expansion rate by driver gene were observed, but there was also significant individual-level heterogeneity, emphasizing the multifactorial nature of clonal expansion. Additionally, mutation co-occurrence and clonal competition between multiple driver mutations were explored.
Collapse
Affiliation(s)
- Taralynn Mack
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Kelly von Beck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander J Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - J Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hannah Poisner
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Henry R Condon
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jessica Ulloa
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Andrew L Sochacki
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Travis P Spaulding
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ashwin Kishtagari
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cosmin A Bejan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angela Jones
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander G Bick
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee; Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
31
|
Liu A, Genovese G, Zhao Y, Pirinen M, Zekavat SM, Kentistou KA, Yang Z, Yu K, Vlasschaert C, Liu X, Brown DW, Hudjashov G, Gorman BR, Dennis J, Zhou W, Momozawa Y, Pyarajan S, Tuzov V, Pajuste FD, Aavikko M, Sipilä TP, Ghazal A, Huang WY, Freedman ND, Song L, Gardner EJ, Sankaran VG, Palotie A, Ollila HM, Tukiainen T, Chanock SJ, Mägi R, Natarajan P, Daly MJ, Bick A, McCarroll SA, Terao C, Loh PR, Ganna A, Perry JRB, Machiela MJ. Genetic drivers and cellular selection of female mosaic X chromosome loss. Nature 2024; 631:134-141. [PMID: 38867047 DOI: 10.1038/s41586-024-07533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.
Collapse
Affiliation(s)
- Aoxing Liu
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Yajie Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Seyedeh M Zekavat
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Zhiyu Yang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Georgi Hudjashov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valdislav Tuzov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Timo P Sipilä
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Awaisa Ghazal
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vijay G Sankaran
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
32
|
Ge X, Zhang L, Liu M, Wang X, Xu X, Yan Y, Tian C, Yang J, Ding Y, Yu C, Lu J, Jiang L, Wang Q, Zhang Q, Song C. Association of Mosaic Chromosomal Alterations and Genetic Factors with the Risk of Cirrhosis. J Clin Transl Hepatol 2024; 12:562-570. [PMID: 38974956 PMCID: PMC11224905 DOI: 10.14218/jcth.2023.00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 07/09/2024] Open
Abstract
Background and Aims Age-related mosaic chromosomal alterations (mCAs) detected from genotyping of blood-derived DNA are structural somatic variants that indicate clonal hematopoiesis. This study aimed to investigate whether mCAs contribute to the risk of cirrhosis and modify the effect of a polygenic risk score (PRS) on cirrhosis risk prediction. Methods mCA call sets of individuals with European ancestry were obtained from the UK Biobank. The PRS was constructed based on 12 susceptible single-nucleotide polymorphisms for cirrhosis. Cox proportional hazard models were applied to evaluate the associations between mCAs and cirrhosis risk. Results Among 448,645 individuals with a median follow-up of 12.5 years, we identified 2,681 cases of cirrhosis, 1,775 cases of compensated cirrhosis, and 1,706 cases of decompensated cirrhosis. Compared to non-carriers, individuals with copy-neutral loss of heterozygosity mCAs had a significantly increased risk of cirrhosis (hazard ratio (HR) 1.42, 95% confidence interval (CI) 1.12-1.81). This risk was higher in patients with expanded cell fractions of mCAs (cell fractions ≥10% vs. cell fractions <10%), especially for the risk of decompensated cirrhosis (HR 2.03 [95% CI 1.09-3.78] vs. 1.14 [0.80-1.64]). In comparison to non-carriers of mCAs with low genetic risk, individuals with expanded copy-neutral loss of heterozygosity and high genetic risk showed the highest cirrhosis risk (HR 5.39 [95% CI 2.41-12.07]). Conclusions The presence of mCAs is associated with increased susceptibility to cirrhosis risk and could be combined with PRS for personalized cirrhosis risk stratification.
Collapse
Affiliation(s)
- Xinyuan Ge
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Zhang
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Maojie Liu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Wang
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xin Xu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqian Yan
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chan Tian
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Yang
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Ding
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengxiao Yu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Health Promotion Center, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Jing Lu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Health Promotion Center, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Longfeng Jiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Wang
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Qun Zhang
- Department of Health Promotion Center, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Ci Song
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Health Promotion Center, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, Jiangsu, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
侯 伟, 付 晓, 谢 潇, 张 春, 边 佳, 毛 翛, 文 娟, 罗 春, 金 华, 祝 茜, 戚 庆, 钱 叶, 袁 静, 赵 彦, 尹 爱, 李 树, 蒋 宇, 张 蔓, 肖 锐, 卢 彦. [Carrier screening for 223 monogenic diseases in Chinese population: a multi-center study in 33 104 individuals]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1015-1023. [PMID: 38977330 PMCID: PMC11237288 DOI: 10.12122/j.issn.1673-4254.2024.06.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale, multicenter carrier screening. METHODS This study was conducted among a total of 33 104 participants (16 610 females) from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods. RESULTS The overall combined carrier frequency was 55.58% for 197 autosomal genes and 1.84% for 26 X-linked genes in these participants.Among the 16 669 families, 874 at-risk couples (5.24%) were identified.Specifically, 584 couples (3.50%) were at risk for autosomal genes, 306(1.84%) for X-linked genes, and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A, 393 couples), HBA1/HBA2(α-thalassemia, 36 couples), PAH (phenylketonuria, 14 couples), and SMN1(spinal muscular atrophy, 14 couples).The most frequently detected X-linked at-risk genes were G6PD (G6PD deficiency, 236 couples), DMD (Duchenne muscular dystrophy, 23 couples), and FMR1(fragile X syndrome, 17 couples).After excluding GJB2 c.109G>A, the detection rate of at-risk couples was 3.91%(651/16 669), which was lowered to 1.72%(287/16 669) after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95% of at-risk couples, while screening for the top 54 genes further increased the detection rate to over 99%. CONCLUSION This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing, genetic counseling for specific genes or gene variants can be challenging, and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.
Collapse
|
34
|
Guan X, Meng X, Zhong G, Zhang Z, Wang C, Xiao Y, Fu M, Zhao H, Zhou Y, Hong S, Xu X, Bai Y, Kan H, Chen R, Wu T, Guo H. Particulate matter pollution, polygenic risk score and mosaic loss of chromosome Y in middle-aged and older men from the Dongfeng-Tongji cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134315. [PMID: 38678703 DOI: 10.1016/j.jhazmat.2024.134315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Mosaic loss of chromosome Y (mLOY) is the most common somatic alteration as men aging and may reflect genome instability. PM exposure is a major health concern worldwide, but its effects with genetic factors on mLOY has never been investigated. Here we explored the associations of PM2.5 and PM10 exposure with mLOY of 10,158 males measured via signal intensity of 2186 probes in male-specific chromosome-Y region from Illumina array data. The interactive and joint effects of PM2.5 and PM10 with genetic factors and smoking on mLOY were further evaluated. Compared with the lowest tertiles of PM2.5 levels in each exposure window, the highest tertiles in the same day, 7-, 14-, 21-, and 28-day showed a 0.005, 0.006, 0.007, 0.007, and 0.006 decrease in mLRR-Y, respectively (all P < 0.05), with adjustment for age, BMI, smoking pack-years, alcohol drinking status, physical activity, education levels, season of blood draw, and experimental batch. Such adverse effects were also observed in PM10-mLOY associations. Moreover, the unweighted and weighted PRS presented significant negative associations with mLRR-Y (both P < 0.001). Participants with high PRS and high PM2.5 or PM10 exposure in the 28-day separately showed a 0.018 or 0.019 lower mLRR-Y level [β (95 %CI) = -0.018 (-0.023, -0.012) and - 0.019 (-0.025, -0.014), respectively, both P < 0.001], when compared to those with low PRS and low PM2.5 or PM10 exposure. We also observed joint effects of PM with smoking on exacerbated mLOY. This large study is the first to elucidate the impacts of PM2.5 exposure on mLOY, and provides key evidence regarding the interactive and joint effects of PM with genetic factors on mLOY, which may promote understanding of mLOY development, further modifying and increasing healthy aging in males.
Collapse
Affiliation(s)
- Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xia Meng
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Zirui Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yansen Bai
- Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Haidong Kan
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China.
| |
Collapse
|
35
|
Graham JH, Schlachetzki JCM, Yang X, Breuss MW. Genomic Mosaicism of the Brain: Origin, Impact, and Utility. Neurosci Bull 2024; 40:759-776. [PMID: 37898991 PMCID: PMC11178748 DOI: 10.1007/s12264-023-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 10/31/2023] Open
Abstract
Genomic mosaicism describes the phenomenon where some but not all cells within a tissue harbor unique genetic mutations. Traditionally, research focused on the impact of genomic mosaicism on clinical phenotype-motivated by its involvement in cancers and overgrowth syndromes. More recently, we increasingly shifted towards the plethora of neutral mosaic variants that can act as recorders of cellular lineage and environmental exposures. Here, we summarize the current state of the field of genomic mosaicism research with a special emphasis on our current understanding of this phenomenon in brain development and homeostasis. Although the field of genomic mosaicism has a rich history, technological advances in the last decade have changed our approaches and greatly improved our knowledge. We will provide current definitions and an overview of contemporary detection approaches for genomic mosaicism. Finally, we will discuss the impact and utility of genomic mosaicism.
Collapse
Affiliation(s)
- Jared H Graham
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, 92123, CA, USA
| | - Martin W Breuss
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA.
| |
Collapse
|
36
|
Lim J, Hubbard AK, Blechter B, Shi J, Zhou W, Loftfield E, Machiela MJ, Wong JYY. Associations between mosaic loss of sex chromosomes and incident hospitalization for atrial fibrillation in the United Kingdom. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308171. [PMID: 38903105 PMCID: PMC11188119 DOI: 10.1101/2024.05.29.24308171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Mosaic loss of chromosome Y (mLOY) in leukocytes of men reflects genomic instability from aging, smoking, and environmental exposures. A similar mosaic loss of chromosome X (mLOX) occurs among women. However, the associations between mLOY, mLOX, and risk of incident heart diseases are unclear. Methods We estimated associations between mLOY, mLOX, and risk of incident heart diseases requiring hospitalization, including atrial fibrillation, myocardial infarction, ischemic heart disease, cardiomyopathy, and heart failure. We analyzed 190,613 men and 224,853 women with genotyping data from the UK Biobank. Among these participants, we analyzed 37,037 men with mLOY and 13,978 women with mLOX detected using Mosaic Chromosomal Alterations caller. Multivariable Cox regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of each incident heart disease in relation to mLOY in men and mLOX in women. Additionally, Mendelian randomization (MR) was conducted to estimate causal associations. Results Among men, detectable mLOY was associated with elevated risk of atrial fibrillation (HR=1.06, 95%CI:1.03-1.11). The associations were apparent in both never-smokers (HR=1.07, 95%:1.01-1.14) and ever-smokers (HR=1.05, 95%CI:1.01-1.11) as well as men > and ≤60 years of age. MR analyses supported causal associations between mLOY and atrial fibrillation (HRMR-PRESSO=1.15, 95%CI:1.13-1.18). Among post-menopausal women, we found a suggestive inverse association between detectable mLOX and atrial fibrillation risk (HR=0.90, 95%CI:0.83-0.98). However, associations with mLOY and mLOX were not found for other heart diseases. Conclusions Our findings suggest that mLOY and mLOX reflect sex-specific biological processes or exposure profiles related to incident atrial fibrillation requiring hospitalization.
Collapse
Affiliation(s)
- Jungeun Lim
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jason Y Y Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
37
|
Pershad Y, Mack T, Poisner H, Jakubek YA, Stilp AM, Mitchell BD, Lewis JP, Boerwinkle E, Loos RJF, Chami N, Wang Z, Barnes K, Pankratz N, Fornage M, Redline S, Psaty BM, Bis JC, Shojaie A, Silverman EK, Cho MH, Yun JH, DeMeo D, Levy D, Johnson AD, Mathias RA, Taub MA, Arnett D, North KE, Raffield LM, Carson AP, Doyle MF, Rich SS, Rotter JI, Guo X, Cox NJ, Roden DM, Franceschini N, Desai P, Reiner AP, Auer PL, Scheet PA, Jaiswal S, Weinstock JS, Bick AG. Determinants of mosaic chromosomal alteration fitness. Nat Commun 2024; 15:3800. [PMID: 38714703 PMCID: PMC11076528 DOI: 10.1038/s41467-024-48190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/23/2024] [Indexed: 05/10/2024] Open
Abstract
Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.
Collapse
Affiliation(s)
- Yash Pershad
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Taralynn Mack
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Hannah Poisner
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Yasminka A Jakubek
- Internal Medicine, Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Adrienne M Stilp
- Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Braxton D Mitchell
- Dept of Medicine, Endocrinology, Diabetes, and Nutrition, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Joshua P Lewis
- Dept of Medicine, Endocrinology, Diabetes, and Nutrition, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen Barnes
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz, Aurora, CO, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ali Shojaie
- Biostatistics, University of Washington, Seattle, WA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeong H Yun
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Levy
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Andrew D Johnson
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Margaret A Taub
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA, USA
| | - Donna Arnett
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina Chapel-Hill, Chapel Hill, NC, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Margaret F Doyle
- Department of Pathology & Laboratory Medicine, The University of Vermont Larner College of Medicine, Colchester, VT, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina Chapel-Hill, Chapel Hill, NC, USA
| | - Pinkal Desai
- Weill Cornell Medical College, New York, NY, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Paul L Auer
- Division of Biostatistics, Insitute for Health & Equity and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul A Scheet
- Dept of Epidemiology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
38
|
Hujoel MLA, Handsaker RE, Sherman MA, Kamitaki N, Barton AR, Mukamel RE, Terao C, McCarroll SA, Loh PR. Protein-altering variants at copy number-variable regions influence diverse human phenotypes. Nat Genet 2024; 56:569-578. [PMID: 38548989 PMCID: PMC11018521 DOI: 10.1038/s41588-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/08/2024] [Indexed: 04/09/2024]
Abstract
Copy number variants (CNVs) are among the largest genetic variants, yet CNVs have not been effectively ascertained in most genetic association studies. Here we ascertained protein-altering CNVs from UK Biobank whole-exome sequencing data (n = 468,570) using haplotype-informed methods capable of detecting subexonic CNVs and variation within segmental duplications. Incorporating CNVs into analyses of rare variants predicted to cause gene loss of function (LOF) identified 100 associations of predicted LOF variants with 41 quantitative traits. A low-frequency partial deletion of RGL3 exon 6 conferred one of the strongest protective effects of gene LOF on hypertension risk (odds ratio = 0.86 (0.82-0.90)). Protein-coding variation in rapidly evolving gene families within segmental duplications-previously invisible to most analysis methods-generated some of the human genome's largest contributions to variation in type 2 diabetes risk, chronotype and blood cell traits. These results illustrate the potential for new genetic insights from genomic variation that has escaped large-scale analysis to date.
Collapse
Affiliation(s)
- Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Serinus Biosciences Inc., New York, NY, USA
| | - Nolan Kamitaki
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
39
|
Brandt VP, Holland H, Blüher M, Klöting N. High-resolution genomic profiling and locus-specific FISH in subcutaneous and visceral adipose tissue of obese patients. Front Genet 2024; 14:1323052. [PMID: 38516060 PMCID: PMC10955090 DOI: 10.3389/fgene.2023.1323052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 03/23/2024] Open
Abstract
Obesity is known as a heterogeneous and multifactorial disease. The distribution of body fat is crucial for the development of metabolic complications. Comprehensive genetic analyses on different fat tissues are rare but necessary to provide more detailed information. Therefore, we performed genetic analyses of three patients with obesity using high resolution genome wide SNP array (blood, visceral fat tissue) and fluorescence in situ hybridization (FISH) analyses (visceral and subcutaneous fat tissue). Altogether, we identified 31 small Copy Number Variations (losses: 1p31.1, 1p22.2, 1q21.3, 2q34, 2q37.1, 3q28, 6p25.3, 7q31.33, 7q33, 8p23.3, 10q22.3, 11p15.4, 11p15.1, 11p14.2, 11p12, 13q12.3, 15q11.2-q13.1, 15q13.3, 20q13.2, 22q11.21; gains: 2q22.1-q22.2, 3p14.3, 4p16.3, 4q32.2, 6q27, 7p14.3, 7q34, 11p12, 12p11.21, 16p11.2-p11.1, 17q21.31) and 289 small copy-neutral Loss of Heterozygosity (cn-LOH). For the chromosomal region 15q11.2-q13.1, we detected a microdeletion (Prader-Willi-Syndrome) in one patient. Interestingly, we identified chromosomal SNP differences between EDTA-blood and visceral fat tissue (deletion and gain). Small losses of 7q31.33, 7q33, 11p14.2, 11p12, 13q12.3 as well as small gain of 7q34 were detected only in fat tissue and not in blood. Furthermore, FISH analyses on 7q31.33, 7q33 and 11p12 revealed differences between subcutaneous and visceral fat tissue. Generally, the deletions were detected more frequent in visceral fat tissue. Predominantly detected cn-LOH vs. CNV suggests a meaning of these cn-LOH for the pathogenesis of obesity. We conclude that the SNP array and FISH analyses used is applicable to generate more information for basic research on difficult cell subpopulations (e.g., visceral adipose tissue) and could opens up new diagnostic aspects in the field of obesity. Altogether, the significance of these mostly not yet described genetic aberrations in different fat tissues needs to confirmed in a larger series.
Collapse
Affiliation(s)
- Vivian-Pascal Brandt
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III–Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III–Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
40
|
Ling E, Nemesh J, Goldman M, Kamitaki N, Reed N, Handsaker RE, Genovese G, Vogelgsang JS, Gerges S, Kashin S, Ghosh S, Esposito JM, Morris K, Meyer D, Lutservitz A, Mullally CD, Wysoker A, Spina L, Neumann A, Hogan M, Ichihara K, Berretta S, McCarroll SA. A concerted neuron-astrocyte program declines in ageing and schizophrenia. Nature 2024; 627:604-611. [PMID: 38448582 PMCID: PMC10954558 DOI: 10.1038/s41586-024-07109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.
Collapse
Affiliation(s)
- Emi Ling
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Melissa Goldman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nolan Kamitaki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Nora Reed
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Vogelgsang
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sherif Gerges
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alyssa Lutservitz
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christopher D Mullally
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Liv Spina
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Marina Hogan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kiku Ichihara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sabina Berretta
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Stańkowska W, Sarkisyan D, Bruhn-Olszewska B, Duzowska K, Bieńkowski M, Jąkalski M, Wójcik-Zalewska M, Davies H, Drężek-Chyła K, Pęksa R, Harazin-Lechowska A, Ambicka A, Przewoźnik M, Adamczyk A, Sasim K, Makarewicz W, Matuszewski M, Biernat W, Järhult JD, Lipcsey M, Hultström M, Frithiof R, Jaszczyński J, Ryś J, Genovese G, Piotrowski A, Filipowicz N, Dumanski JP. Tumor Predisposing Post-Zygotic Chromosomal Alterations in Bladder Cancer-Insights from Histologically Normal Urothelium. Cancers (Basel) 2024; 16:961. [PMID: 38473323 PMCID: PMC10930680 DOI: 10.3390/cancers16050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Bladder urothelial carcinoma (BLCA) is the 10th most common cancer with a low survival rate and strong male bias. We studied the field cancerization in BLCA using multi-sample- and multi-tissue-per-patient protocol for sensitive detection of autosomal post-zygotic chromosomal alterations and loss of chromosome Y (LOY). We analysed 277 samples of histologically normal urothelium, 145 tumors and 63 blood samples from 52 males and 15 females, using the in-house adapted Mosaic Chromosomal Alterations (MoChA) pipeline. This approach allows identification of the early aberrations in urothelium from BLCA patients. Overall, 45% of patients exhibited at least one alteration in at least one normal urothelium sample. Recurrence analysis resulted in 16 hotspots composed of either gains and copy number neutral loss of heterozygosity (CN-LOH) or deletions and CN-LOH, encompassing well-known and new BLCA cancer driver genes. Conservative assessment of LOY showed 29%, 27% and 18% of LOY-cells in tumors, blood and normal urothelium, respectively. We provide a proof of principle that our approach can characterize the earliest alterations preconditioning normal urothelium to BLCA development. Frequent LOY in blood and urothelium-derived tissues suggest its involvement in BLCA.
Collapse
Affiliation(s)
- Wiktoria Stańkowska
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Daniil Sarkisyan
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden; (D.S.); (B.B.-O.); (H.D.)
| | - Bożena Bruhn-Olszewska
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden; (D.S.); (B.B.-O.); (H.D.)
| | - Katarzyna Duzowska
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (M.B.); (R.P.); (W.B.)
| | - Marcin Jąkalski
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Magdalena Wójcik-Zalewska
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden; (D.S.); (B.B.-O.); (H.D.)
| | - Kinga Drężek-Chyła
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (M.B.); (R.P.); (W.B.)
| | - Agnieszka Harazin-Lechowska
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Karol Sasim
- Clinic of Urology and Oncological Urology, Specialist Hospital of Kościerzyna, Piechowskiego 36, 83-400 Kościerzyna, Poland;
| | - Wojciech Makarewicz
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Piechowskiego 36, 83-400 Kościerzyna, Poland;
| | - Marcin Matuszewski
- Department and Clinic of Urology, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland;
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (M.B.); (R.P.); (W.B.)
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden;
| | - Miklós Lipcsey
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.)
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | - Michael Hultström
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.)
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.)
| | - Janusz Jaszczyński
- Department of Urology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland;
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Giulio Genovese
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| | - Arkadiusz Piotrowski
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Natalia Filipowicz
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Jan P. Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden; (D.S.); (B.B.-O.); (H.D.)
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
42
|
Guo J, Walter K, Quiros PM, Gu M, Baxter EJ, Danesh J, Di Angelantonio E, Roberts D, Guglielmelli P, Harrison CN, Godfrey AL, Green AR, Vassiliou GS, Vuckovic D, Nangalia J, Soranzo N. Inherited polygenic effects on common hematological traits influence clonal selection on JAK2 V617F and the development of myeloproliferative neoplasms. Nat Genet 2024; 56:273-280. [PMID: 38233595 PMCID: PMC10864174 DOI: 10.1038/s41588-023-01638-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
Myeloproliferative neoplasms (MPNs) are chronic cancers characterized by overproduction of mature blood cells. Their causative somatic mutations, for example, JAK2V617F, are common in the population, yet only a minority of carriers develop MPN. Here we show that the inherited polygenic loci that underlie common hematological traits influence JAK2V617F clonal expansion. We identify polygenic risk scores (PGSs) for monocyte count and plateletcrit as new risk factors for JAK2V617F positivity. PGSs for several hematological traits influenced the risk of different MPN subtypes, with low PGSs for two platelet traits also showing protective effects in JAK2V617F carriers, making them two to three times less likely to have essential thrombocythemia than carriers with high PGSs. We observed that extreme hematological PGSs may contribute to an MPN diagnosis in the absence of somatic driver mutations. Our study showcases how polygenic backgrounds underlying common hematological traits influence both clonal selection on somatic mutations and the subsequent phenotype of cancer.
Collapse
Affiliation(s)
- Jing Guo
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | | | - Pedro M Quiros
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Muxin Gu
- Wellcome Sanger Institute, Hinxton, UK
| | - E Joanna Baxter
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - John Danesh
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Fondazione Human Technopole, Milan, Italy
| | - David Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant-Oxford Centre, John Radcliffe Hospital and Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center for Research and Innovation of Myeloproliferative Neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Dragana Vuckovic
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Trust, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Nicole Soranzo
- Wellcome Sanger Institute, Hinxton, UK.
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- Fondazione Human Technopole, Milan, Italy.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Kishtagari A, Khan MAW, Li Y, Vlasschaert C, Marneni N, Silver AJ, von Beck K, Spaulding T, Stockton S, Snider C, Sochacki A, Dorand D, Mack TM, Ferrell PB, Xu Y, Bejan CA, Savona MR, Bick AG. Driver mutation zygosity is a critical factor in predicting clonal hematopoiesis transformation risk. Blood Cancer J 2024; 14:6. [PMID: 38225345 PMCID: PMC10789770 DOI: 10.1038/s41408-023-00974-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Clonal hematopoiesis (CH) can be caused by either single gene mutations (eg point mutations in JAK2 causing CHIP) or mosaic chromosomal alterations (e.g., loss of heterozygosity at chromosome 9p). CH is associated with a significantly increased risk of hematologic malignancies. However, the absolute rate of transformation on an annualized basis is low. Improved prognostication of transformation risk is urgently needed for routine clinical practice. We hypothesized that the co-occurrence of CHIP and mCAs at the same locus (e.g., transforming a heterozygous JAK2 CHIP mutation into a homozygous mutation through concomitant loss of heterozygosity at chromosome 9) might have important prognostic implications for malignancy transformation risk. We tested this hypothesis using our discovery cohort, the UK Biobank (n = 451,180), and subsequently validated it in the BioVU cohort (n = 91,335). We find that individuals with a concurrent somatic mutation and mCA were at significantly increased risk of hematologic malignancy (for example, In BioVU cohort incidence of hematologic malignancies is higher in individuals with co-occurring JAK2 V617F and 9p CN-LOH; HR = 54.76, 95% CI = 33.92-88.41, P < 0.001 vs. JAK2 V617F alone; HR = 44.05, 95% CI = 35.06-55.35, P < 0.001). Currently, the 'zygosity' of the CHIP mutation is not routinely reported in clinical assays or considered in prognosticating CHIP transformation risk. Based on these observations, we propose that clinical reports should include 'zygosity' status of CHIP mutations and that future prognostication systems should take mutation 'zygosity' into account.
Collapse
Affiliation(s)
- Ashwin Kishtagari
- Division of Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M A Wasay Khan
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yajing Li
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Naimisha Marneni
- Division of Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander J Silver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelly von Beck
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Travis Spaulding
- Division of Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shannon Stockton
- Division of Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christina Snider
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Sochacki
- Division of Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dixon Dorand
- Division of Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Taralynn M Mack
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Brent Ferrell
- Division of Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cosmin A Bejan
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Division of Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Alexander G Bick
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
44
|
Ling E, Nemesh J, Goldman M, Kamitaki N, Reed N, Handsaker RE, Genovese G, Vogelgsang JS, Gerges S, Kashin S, Ghosh S, Esposito JM, French K, Meyer D, Lutservitz A, Mullally CD, Wysoker A, Spina L, Neumann A, Hogan M, Ichihara K, Berretta S, McCarroll SA. Concerted neuron-astrocyte gene expression declines in aging and schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574148. [PMID: 38260461 PMCID: PMC10802483 DOI: 10.1101/2024.01.07.574148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a striking relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA-seq to analyze the prefrontal cortex of 191 human donors ages 22-97 years, including healthy individuals and persons with schizophrenia. Latent-factor analysis of these data revealed that in persons whose cortical neurons more strongly expressed genes for synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the Synaptic Neuron-and-Astrocyte Program (SNAP). In schizophrenia and aging - two conditions that involve declines in cognitive flexibility and plasticity 1,2 - cells had divested from SNAP: astrocytes, glutamatergic (excitatory) neurons, and GABAergic (inhibitory) neurons all reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy persons of similar age, may underlie many aspects of normal human interindividual differences and be an important point of convergence for multiple kinds of pathophysiology.
Collapse
Affiliation(s)
- Emi Ling
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Goldman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nolan Kamitaki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Nora Reed
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert E. Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan S. Vogelgsang
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Sherif Gerges
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Lutservitz
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher D. Mullally
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Liv Spina
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Hogan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiku Ichihara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Berretta
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA
| | - Steven A. McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Huang AY, Zhou Z, Talukdar M, Miller MB, Chhouk B, Enyenihi L, Rosen I, Stronge E, Zhao B, Kim D, Choi J, Khoshkhoo S, Kim J, Ganz J, Travaglini K, Gabitto M, Hodge R, Kaplan E, Lein E, De Jager PL, Bennett DA, Lee EA, Walsh CA. Somatic cancer driver mutations are enriched and associated with inflammatory states in Alzheimer's disease microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574078. [PMID: 38260600 PMCID: PMC10802273 DOI: 10.1101/2024.01.03.574078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-β and tau1,2. Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis1-5, though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases6,7. Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples from different brain regions revealed significantly higher (~two-fold) overall burdens of somatic single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD brain compared to control, with recurrent, and often multiple, mutations in genes implicated in clonal hematopoiesis (CH)8,9. Pathogenic sSNVs were enriched in CSF1R+ microglia of AD brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH10,11. Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that somatic driver mutations in microglia are common with normal aging but further enriched in AD brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first insights into microglial clonal dynamics in AD and identify potential new approaches to AD diagnosis and therapy.
Collapse
Affiliation(s)
- August Yue Huang
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zinan Zhou
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maya Talukdar
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Brian Chhouk
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Liz Enyenihi
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Ila Rosen
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Edward Stronge
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Boxun Zhao
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dachan Kim
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaejoon Choi
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sattar Khoshkhoo
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Junho Kim
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Javier Ganz
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Eitan Kaplan
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical College, Chicago, IL, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA USA
- Departments of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Loganathan L, Jeyaraman J, Muthusamy K. HTNpedia: A Knowledge Base for Hypertension Research. Comb Chem High Throughput Screen 2024; 27:745-753. [PMID: 37202885 DOI: 10.2174/1386207326666230518162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Hypertension is notably a serious public health concern due to its high prevalence and strong association with cardiovascular disease and renal failure. It is reported to be the fourth leading disease that leads to death worldwide. OBJECTIVES Currently, there is no active operational knowledge base or database for hypertension or cardiovascular illness. METHODS The primary data source was retrieved from the research outputs obtained from our laboratory team working on hypertension research. We have presented a preliminary dataset and external links to the public repository for detailed analysis to readers. RESULTS As a result, HTNpedia was created to provide information regarding hypertension-related proteins and genes. CONCLUSION The complete webpage is accessible via www.mkarthikeyan.bioinfoau.org/HTNpedia.
Collapse
Affiliation(s)
- Lakshmanan Loganathan
- Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Karthikeyan Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| |
Collapse
|
47
|
Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. Blood 2023; 142:2235-2246. [PMID: 37931207 PMCID: PMC10862247 DOI: 10.1182/blood.2023022222] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is described as the outsized contribution of expanded clones of hematopoietic stem and progenitor cells (HSPCs) to blood cell production. The prevalence of CH increases dramatically with age. CH can be caused by somatic mutations in individual genes or by gains and/or losses of larger chromosomal segments. CH is a premalignant state; the somatic mutations detected in CH are the initiating mutations for hematologic malignancies, and CH is a strong predictor of the development of blood cancers. Moreover, CH is associated with nonmalignant disorders and increased overall mortality. The somatic mutations that drive clonal expansion of HSPCs can alter the function of terminally differentiated blood cells, including the release of elevated levels of inflammatory cytokines. These cytokines may then contribute to a broad range of inflammatory disorders that increase in prevalence with age. Specific somatic mutations in the peripheral blood in coordination with blood count parameters can powerfully predict the development of hematologic malignancies and overall mortality in CH. In this review, we summarize the current understanding of CH nosology and origins. We provide an overview of available tools for risk stratification and discuss management strategies for patients with CH presenting to hematology clinics.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
48
|
Pandey M, Shah SK, Gromiha MM. Computational approaches for identifying disease-causing mutations in proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 139:141-171. [PMID: 38448134 DOI: 10.1016/bs.apcsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Advancements in genome sequencing have expanded the scope of investigating mutations in proteins across different diseases. Amino acid mutations in a protein alter its structure, stability and function and some of them lead to diseases. Identification of disease-causing mutations is a challenging task and it will be helpful for designing therapeutic strategies. Hence, mutation data available in the literature have been curated and stored in several databases, which have been effectively utilized for developing computational methods to identify deleterious mutations (drivers), using sequence and structure-based properties of proteins. In this chapter, we describe the contents of specific databases that have information on disease-causing and neutral mutations followed by sequence and structure-based properties. Further, characteristic features of disease-causing mutations will be discussed along with computational methods for identifying cancer hotspot residues and disease-causing mutations in proteins.
Collapse
Affiliation(s)
- Medha Pandey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Suraj Kumar Shah
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India; International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
49
|
Cacic AM, Schulz FI, Germing U, Dietrich S, Gattermann N. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023; 13:1303785. [PMID: 38162500 PMCID: PMC10754976 DOI: 10.3389/fonc.2023.1303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has fascinated the medical community for some time. Discovered about a decade ago, this phenomenon links age-related alterations in hematopoiesis not only to the later development of hematological malignancies but also to an increased risk of early-onset cardiovascular disease and some other disorders. CHIP is detected in the blood and is characterized by clonally expanded somatic mutations in cancer-associated genes, predisposing to the development of hematologic neoplasms such as MDS and AML. CHIP-associated mutations often involve DNA damage repair genes and are frequently observed following prior cytotoxic cancer therapy. Genetic predisposition seems to be a contributing factor. It came as a surprise that CHIP significantly elevates the risk of myocardial infarction and stroke, and also contributes to heart failure and pulmonary hypertension. Meanwhile, evidence of mutant clonal macrophages in vessel walls and organ parenchyma helps to explain the pathophysiology. Besides aging, there are some risk factors promoting the appearance of CHIP, such as smoking, chronic inflammation, chronic sleep deprivation, and high birth weight. This article describes fundamental aspects of CHIP and explains its association with hematologic malignancies, cardiovascular disorders, and other medical conditions, while also exploring potential progress in the clinical management of affected individuals. While it is important to diagnose conditions that can lead to adverse, but potentially preventable, effects, it is equally important not to stress patients by confronting them with disconcerting findings that cannot be remedied. Individuals with diagnosed or suspected CHIP should receive counseling in a specialized outpatient clinic, where professionals from relevant medical specialties may help them to avoid the development of CHIP-related health problems. Unfortunately, useful treatments and clinical guidelines for managing CHIP are still largely lacking. However, there are some promising approaches regarding the management of cardiovascular disease risk. In the future, strategies aimed at restoration of gene function or inhibition of inflammatory mediators may become an option.
Collapse
Affiliation(s)
- Anna Maria Cacic
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|
50
|
Brierley CK, Yip BH, Orlando G, Goyal H, Wen S, Wen J, Levine MF, Jakobsdottir GM, Rodriguez-Meira A, Adamo A, Bashton M, Hamblin A, Clark SA, O'Sullivan J, Murphy L, Olijnik AA, Cotton A, Narina S, Pruett-Miller SM, Enshaei A, Harrison C, Drummond M, Knapper S, Tefferi A, Antony-Debré I, Thongjuea S, Wedge DC, Constantinescu S, Papaemmanuil E, Psaila B, Crispino JD, Mead AJ. Chromothripsis orchestrates leukemic transformation in blast phase MPN through targetable amplification of DYRK1A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570880. [PMID: 38106192 PMCID: PMC10723394 DOI: 10.1101/2023.12.08.570880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Chromothripsis, the process of catastrophic shattering and haphazard repair of chromosomes, is a common event in cancer. Whether chromothripsis might constitute an actionable molecular event amenable to therapeutic targeting remains an open question. We describe recurrent chromothripsis of chromosome 21 in a subset of patients in blast phase of a myeloproliferative neoplasm (BP-MPN), which alongside other structural variants leads to amplification of a region of chromosome 21 in ∼25% of patients ('chr21amp'). We report that chr21amp BP-MPN has a particularly aggressive and treatment-resistant phenotype. The chr21amp event is highly clonal and present throughout the hematopoietic hierarchy. DYRK1A , a serine threonine kinase and transcription factor, is the only gene in the 2.7Mb minimally amplified region which showed both increased expression and chromatin accessibility compared to non-chr21amp BP-MPN controls. We demonstrate that DYRK1A is a central node at the nexus of multiple cellular functions critical for BP-MPN development, including DNA repair, STAT signalling and BCL2 overexpression. DYRK1A is essential for BP-MPN cell proliferation in vitro and in vivo , and DYRK1A inhibition synergises with BCL2 targeting to induce BP-MPN cell apoptosis. Collectively, these findings define the chr21amp event as a prognostic biomarker in BP-MPN and link chromothripsis to a druggable target.
Collapse
|