1
|
Thomas M, Brabenec R, Gregor L, Andreu-Sanz D, Carlini E, Müller PJ, Gottschlich A, Simnica D, Kobold S, Marr C. The role of single cell transcriptomics for efficacy and toxicity profiling of chimeric antigen receptor (CAR) T cell therapies. Comput Biol Med 2025; 192:110332. [PMID: 40375426 DOI: 10.1016/j.compbiomed.2025.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
CAR T cells are genetically modified T cells that target specific epitopes. CAR T cell therapy has proven effective in difficult-to-treat B cell cancers and is now expanding into hematology and solid tumors. To date, approved CAR therapies target only two specific epitopes on cancer cells. Identifying more suitable targets is challenged by the lack of truly cancer-specific structures and the potential for on-target off-tumor toxicity. We analyzed gene expression of potential targets in single-cell data from cancer and healthy tissues. Because safety and efficacy can ultimately only be defined clinically, we selected approved and investigational targets for which clinical trail data are available. We generated atlases using >300,000 cells from 48 patients with follicular lymphoma, multiple myeloma, and B-cell acute lymphoblastic leukemia, and integrated over 3 million cells from 35 healthy tissues, harmonizing datasets from over 300 donors. To contextualize findings, we compared target expression patterns with outcome data from clinical trials, linking target profiles to efficacy and toxicity, and ranked 15 investigational targets based on their similarity to approved ones. Target expression did not significantly correlate with reported clinical toxicities in patients undergoing therapy. This may be attributed to the intricate interplay of patient-specific variables, the limited amount of metadata, and the complexity underlying toxicity. Nevertheless, our study serves as a resource for retrospective and prospective target evaluation to improve the safety and efficacy of CAR therapies.
Collapse
Affiliation(s)
- Moritz Thomas
- Institute of AI for Health, Computational Health Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ruben Brabenec
- Institute of AI for Health, Computational Health Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Gregor
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Emanuele Carlini
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Jie Müller
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Donjete Simnica
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten Marr
- Institute of AI for Health, Computational Health Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
2
|
Liu F, Ding Y, Xu Z, Hao X, Pan T, Miles G, Wang S, Wu YH, Liu J, Bado IL, Zhang W, Wu L, Gao Y, Yu L, Edwards DG, Chan HL, Aguirre S, Dieffenbach MW, Chen E, Shen Y, Hoffman D, Becerra Dominguez L, Rivas CH, Chen X, Wang H, Gugala Z, Satcher RL, Zhang XHF. Single-cell profiling of bone metastasis ecosystems from multiple cancer types reveals convergent and divergent mechanisms of bone colonization. CELL GENOMICS 2025:100888. [PMID: 40412393 DOI: 10.1016/j.xgen.2025.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 02/26/2025] [Accepted: 04/29/2025] [Indexed: 05/27/2025]
Abstract
Bone is a common site for metastasis of solid cancers. The diversity of histological and molecular characteristics of bone metastases (BMs) remains poorly studied. Here, we performed single-cell RNA sequencing on 42 BMs from eight cancer types, identifying three distinct ecosystem archetypes, each characterized by an enrichment of specific immune cells: macrophages/osteoclasts, regulatory/exhausted T cells, or monocytes. We validated these archetypes by immunostaining on tissue sections and bioinformatic analysis of bulk RNA sequencing/microarray data from 158 BMs across more than 10 cancer types. Interestingly, we found only a modest correlation between the BM archetypes and the tissues of origin; BMs from the same cancer type often fell into different archetypes, while BMs from different cancer types sometimes converged on the same archetype. Additional analyses revealed parallel immunosuppression and bone remodeling mechanisms, some of which were experimentally validated. Overall, we discovered unappreciated heterogeneity of BMs across different cancers.
Collapse
Affiliation(s)
- Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - George Miles
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Siyue Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor L Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Liqun Yu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David G Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hilda L Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael Warren Dieffenbach
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Elina Chen
- College of Natural Sciences, University of Texas at Austin, 110 Inner Campus Drive, Austin, TX 78706, USA
| | - Yichao Shen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dane Hoffman
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Luis Becerra Dominguez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Charlotte Helena Rivas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Weinhaus B, Homan S, Kincaid M, Tadwalkar A, Gu X, Kumar S, Slaughter A, Zhang J, Wu Q, Kofron JM, Troutman TD, DeFalco T, Lucas D. Differential regulation of fetal bone marrow and liver hematopoiesis by yolk-sac-derived myeloid cells. Nat Commun 2025; 16:4427. [PMID: 40368906 PMCID: PMC12078524 DOI: 10.1038/s41467-025-59058-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Fetal hematopoiesis takes place in the liver before colonizing the bone marrow where it will persist for life. This colonization is thought to be mediated by specification of a microenvironment that selectively recruits hematopoietic cells to the nascent bone marrow. The identity and mechanisms regulating the specification of this colonization niche are unclear. Here we identify a VCAM1+ sinusoidal colonization niche in the diaphysis that regulates neutrophil and hematopoietic stem cell colonization of the bone marrow. Using confocal microscopy, we find that colonizing hematopoietic stem and progenitor cells (HSPC) and myeloid cells selectively localize to a subset of VCAM1+ sinusoids in the center of the diaphysis. Vcam1 deletion in endothelial cells impairs hematopoietic colonization while depletion of yolk-sac-derived osteoclasts disrupts VCAM1+ expression, and impairs neutrophil and HSPC colonization to the bone marrow. Depletion of yolk-sac-derived myeloid cells increases fetal liver hematopoietic stem cell numbers, function and erythropoiesis independent of osteoclast activity. Thus, the yolk sac produces myeloid cells that have opposite roles in fetal hematopoiesis: while yolk-sac derived myeloid cells in the bone marrow promote hematopoietic colonization by specifying a VCAM1+ colonization niche, a different subset of yolk-sac-derived myeloid cells inhibits HSC in the fetal liver.
Collapse
Affiliation(s)
- Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Shelli Homan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, 45229, USA
| | - Morgan Kincaid
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, 45229, USA
| | - Aryan Tadwalkar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Sumit Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, 45229, USA
| | - Anastasiya Slaughter
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, 45229, USA
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qingqing Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, 45229, USA
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ty D Troutman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
4
|
Stoltze U, Junk SV, Byrjalsen A, Cavé H, Cazzaniga G, Elitzur S, Fronkova E, Hjalgrim LL, Kuiper RP, Lundgren L, Mescher M, Mikkelsen T, Pastorczak A, Strullu M, Trka J, Wadt K, Izraeli S, Borkhardt A, Schmiegelow K. Overt and covert genetic causes of pediatric acute lymphoblastic leukemia. Leukemia 2025; 39:1031-1045. [PMID: 40128563 DOI: 10.1038/s41375-025-02535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 03/26/2025]
Abstract
Pediatric acute lymphoblastic leukemia (pALL) is the most common childhood malignancy, yet its etiology remains incompletely understood. However, over the course of three waves of germline genetic research, several non-environmental causes have been identified. Beginning with trisomy 21, seven overt cancer predisposition syndromes (CPSs)-characterized by broad clinical phenotypes that include an elevated risk of pALL-were first described. More recently, newly described CPSs conferring high risk of pALL are increasingly covert, with six exhibiting only minimal or no non-cancer features. These 13 CPSs now represent the principal known hereditary causes of pALL, and human pangenomic data indicates a strong negative selection against mutations in the genes associated with these conditions. Collectively they affect approximately 1 in 450 newborns, of which just a minority will develop the disease. As evidenced by tailored leukemia care protocols for children with trisomy 21, there is growing recognition that CPSs warrant specialized diagnostic, therapeutic, and long-term management strategies. In this review, we investigate the evidence that the 12 other CPSs associated with high risk of pALL may also see benefits from specialized care - even if these needs are often incompletely mapped or addressed in the clinic. Given the rarity of each syndrome, collaborative international research and shared data initiatives will be crucial for advancing knowledge and improving outcomes for these patients.
Collapse
Affiliation(s)
- Ulrik Stoltze
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark.
| | - Stefanie V Junk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Byrjalsen
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Hélène Cavé
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France
- University Paris Cité, Paris, France
- INSERM UMR_S1131 - Institut de Recherche Saint-Louis, Paris France, Paris, France
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eva Fronkova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Lisa Lyngsie Hjalgrim
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Louise Lundgren
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Melina Mescher
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Theis Mikkelsen
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Agata Pastorczak
- Department of Pediatrics, Oncology, and Hematology, Medical University of Lodz, Lodz, Poland
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Marion Strullu
- University Paris Cité, Paris, France
- INSERM UMR_S1131 - Institut de Recherche Saint-Louis, Paris France, Paris, France
- Pediatric Hematology and Immunology Department, Robert Debré Academic Hospital, GHU AP-HP Nord Paris, Paris, France
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Shai Izraeli
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kjeld Schmiegelow
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
5
|
Kalmer M, Grasshoff M, Maié T, Pannen K, Toledo MA, Vieri M, Olschok K, Lemanzyk R, Lazarevic J, Junge B, Baumeister J, Galauner A, Chapal Ilani N, Bar D, Colin E, Cheng M, Schifflers J, Kricheldorf K, Schemionek M, Brümmendorf TH, Weiskirchen R, Shlush L, Zenke M, Chatain N, Costa IG, Koschmieder S. Deciphering the complex clonal heterogeneity of polycythemia vera and the response to interferon alfa. Blood Adv 2025; 9:1873-1887. [PMID: 39874500 PMCID: PMC12008703 DOI: 10.1182/bloodadvances.2024012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
ABSTRACT Interferon alfa (IFN-α) is approved for the therapy of patients with polycythemia vera (PV), a subtype of myeloproliferative neoplasm (MPN). Some patients achieve molecular responses (MRs), but clonal factors sensitizing for MRs remain elusive. We integrated colony formation assays with single-cell RNA sequencing (scRNA-seq) and genotyping in PV-derived cells and healthy controls (HCs) to dissect how IFN-α targets diseased clones during erythroid differentiation. IFN-α significantly decreased colony growth in MPNs and HCs with variable transcriptional responses observed in individual colonies. scRNA-seq of colonies demonstrated more mature erythroid colonies in PV than HCs. JAK2V617F-mutant cells exhibited upregulated STAT5A, heme, and G2M checkpoint pathways compared with JAK2WT cells from the same patients. Subgroup analysis revealed that IFN-α significantly decreased immature erythrocytic cells in PV (basophilic erythroblasts P < .05; polychromatic erythroblasts P < .05) but not in HCs. CD71-/CD235a+ cells from HCs (P < .05) but not PV were inhibited by IFN-α, and the number of reticulocytes was less affected in PV. Robust IFN-α responses persisted throughout differentiation, leading to significant apoptosis in PV. Apoptotic cells displayed downregulation of ribosomal genes. This link between apoptosis and ribosomal genes was corroborated through the analysis of mitochondrial variants, demonstrating IFN-α-induced eradication of specific clones, characterized by elevated expression of ribosomal genes. Our findings indicate that PV-derived clones either undergo apoptosis or pass through differentiation, overall reducing the cycling mutant cells over long-term treatment. Furthermore, the significance of ribosomal genes and clonal prerequisites in IFN-α's therapeutic mechanism is underscored, shedding light on the intricate dynamics of IFN-α treatment in PV.
Collapse
Affiliation(s)
- Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Martin Grasshoff
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Kristina Pannen
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Marcelo A.S. Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Rebecca Lemanzyk
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Jelena Lazarevic
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Baerbel Junge
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Angela Galauner
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Noa Chapal Ilani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dror Bar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elia Colin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Joelle Schifflers
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Kim Kricheldorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Liran Shlush
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Zenke
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| |
Collapse
|
6
|
Boudia F, Baille M, Babin L, Aid Z, Robert E, Rivière J, Galant K, Alonso-Pérez V, Anselmi L, Arkoun B, Abermil N, Marzac C, Bertuccio SN, de Prémesnil A, Lopez CK, Eeckhoutte A, Naimo A, Leite B, Catelain C, Metereau C, Gonin P, Gaspar N, Schwaller J, Bernard OA, Raslova H, Gaudry M, Marchais A, Lapillonne H, Petit A, Pflumio F, Arcangeli ML, Brunet E, Mercher T. Progressive chromatin rewiring by ETO2::GLIS2 revealed in a genome-edited human iPSC model of pediatric leukemia initiation. Blood 2025; 145:1510-1525. [PMID: 39656971 DOI: 10.1182/blood.2024024505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Pediatric acute myeloid leukemia frequently harbors fusion oncogenes associated with poor prognosis, including KMT2A, NUP98, and GLIS2 rearrangements. Although murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in the ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSCs). iPSC-derived ETO2::GLIS2-expressing hematopoietic cells showed differentiation alterations in vitro and efficiently induced in vivo development of leukemia that closely phenocopied human acute megakaryoblastic leukemia (AMKL), reflected by flow cytometry and single-cell transcriptomes. Comparison of iPS-derived cells with patient-derived cells revealed altered chromatin accessibility at early and later bona fide leukemia stages, with aberrantly higher accessibility and expression of the osteogenic homeobox factor DLX3 that preceded increased accessibility to ETS factors. DLX3 overexpression in normal CD34+ cells increased accessibility to ETS motifs and reduced accessibility to GATA motifs. A DLX3 transcriptional module was globally enriched in both ETO2::GLIS2 AMKL and some aggressive pediatric osteosarcoma. Importantly, DLX3 knockout abrogated leukemia initiation in this ETO2::GLIS2 iPSC model. Collectively, the characterization of a novel human iPSC-derived AMKL model revealed that hijacking of the osteogenic homeobox transcription factor DLX3 is an essential early step in chromatin changes and leukemogenesis driven by the ETO2::GLIS2 fusion oncogene.
Collapse
MESH Headings
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Chromatin/metabolism
- Chromatin/genetics
- Animals
- Mice
- Gene Editing
- Child
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Fabien Boudia
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Marie Baille
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Loélia Babin
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Zakia Aid
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Elie Robert
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Julie Rivière
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Klaudia Galant
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Verónica Alonso-Pérez
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Laura Anselmi
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- University of Bologna, Bologna, Italy
| | - Brahim Arkoun
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Nassera Abermil
- Laboratoire d'Hématologie Biologique, Hôpital Universitaire Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christophe Marzac
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | | | - Alexia de Prémesnil
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Université Paris Cité, Paris, France
| | - Cécile K Lopez
- Department of Haematology, University of Cambridge, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Alexandre Eeckhoutte
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Audrey Naimo
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Betty Leite
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Cyril Catelain
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Christophe Metereau
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Patrick Gonin
- Gustave Roussy Cancer Center, Université Paris-Saclay, UMS AMMICA, Villejuif, France
| | - Nathalie Gaspar
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Jürg Schwaller
- University Children's Hospital Beider Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier A Bernard
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Hana Raslova
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Muriel Gaudry
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Antonin Marchais
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Hélène Lapillonne
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
- OPALE Carnot Institute, Paris, France
| | - Françoise Pflumio
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
- OPALE Carnot Institute, Paris, France
| | - Marie-Laure Arcangeli
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Erika Brunet
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Thomas Mercher
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- OPALE Carnot Institute, Paris, France
| |
Collapse
|
7
|
Haniffa M, Maartens A, Winheim E, Jardine L. Decoding the human prenatal immune system with single-cell multi-omics. Nat Rev Immunol 2025; 25:285-297. [PMID: 39482372 DOI: 10.1038/s41577-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
The human immune system is made up of a huge variety of cell types each with unique functions. Local networks of resident immune cells are poised to sense and protect against pathogen entry, whereas more widespread innate and adaptive immune networks provide first rapid, then long-lasting and targeted responses. However, how we develop such a diverse and complex system remains unknown. Studying human development directly has been challenging in the past, but recent advances in single-cell and spatial genomics, together with the co-ordinated efforts of the Human Cell Atlas and other initiatives, have led to new studies that map the development of the human immune system in unprecedented detail. In this Review, we consider the timings, transitions, cell types and tissue microenvironments that are crucial for building the human immune system. We also compare and contrast the human system with model species and in vitro systems, and discuss how an understanding of prenatal immune system development will improve our knowledge of human disease.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- National Institute for Health Research (NIHR) Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
- Department of Dermatology, Newcastle upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne, UK.
| | - Aidan Maartens
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Jepsen VH, Hanel A, Picard D, Bhave R, Hasselmann R, Mehtonen J, Schliehe‐Diecks J, Kath C, Suppiyar V, Prasad Y, Schaal K, Tu J, Rüchel N, Kameri E, Qin N, Wang H, Zhuang Z, Wagener R, Blümel L, Lautwein T, Hein D, Koppstein D, Kögler G, Remke M, Bhatia S, Heinäniemi M, Borkhardt A, Fischer U. H1-0 is a specific mediator of the repressive ETV6::RUNX1 transcriptional landscape in preleukemia and B cell acute lymphoblastic leukemia. Hemasphere 2025; 9:e70116. [PMID: 40177616 PMCID: PMC11962653 DOI: 10.1002/hem3.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
ETV6::RUNX1, the most common oncogenic fusion in pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL), induces a clinically silent preleukemic state that can persist in carriers for over a decade and may progress to overt leukemia upon acquisition of secondary lesions. The mechanisms contributing to quiescence of ETV6::RUNX1+ preleukemic cells still remain elusive. In this study, we identify linker histone H1-0 as a critical mediator of the ETV6::RUNX1+ preleukemic state by employing human -induced pluripotent stem cell (hiPSC) models engineered by using CRISPR/Cas9 gene editing. Global gene expression analysis revealed upregulation of H1-0 in ETV6::RUNX1+ hiPSCs that was preserved upon hematopoietic differentiation. Moreover, whole transcriptome data of 1,727 leukemia patient samples showed significantly elevated H1-0 levels in ETV6::RUNX1+ BCP-ALL compared to other leukemia entities. Using dual-luciferase promoter assays, we show that ETV6::RUNX1 induces H1-0 promoter activity. We further demonstrate that depletion of H1-0 specifically inhibits ETV6::RUNX1 signature genes, including RAG1 and EPOR. Single-cell sequencing showed that H1-0 is highly expressed in quiescent hematopoietic cells. Importantly, H1-0 protein levels correspond to susceptibility of BCP-ALL cells towards histone deacetylase inhibitors (HDACis) and combinatorial treatment using the H1-0-inducing HDACi Quisinostat showed promising synergism with established chemotherapeutic drugs. Taken together, our data identify H1-0 as a key regulator of the ETV6::RUNX1+ transcriptome and indicate that the addition of Quisinostat may be beneficial to target non-responsive or relapsing ETV6::RUNX1+ BCP-ALL.
Collapse
Affiliation(s)
- Vera H. Jepsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Andrea Hanel
- Institute of Biomedicine, School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute of NeuropathologyHeinrich Heine UniversityDüsseldorfGermany
| | - Rigveda Bhave
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute for Transplantation Diagnostics and Cell TherapeuticsHeinrich Heine UniversityDüsseldorfGermany
| | - Rebecca Hasselmann
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Juha Mehtonen
- Institute of Biomedicine, School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Julian Schliehe‐Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Carla‐Johanna Kath
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute for Transplantation Diagnostics and Cell TherapeuticsHeinrich Heine UniversityDüsseldorfGermany
| | - Vithusan Suppiyar
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Yash Prasad
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Katerina Schaal
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Jia‐Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Nadine Rüchel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Ersen Kameri
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute of NeuropathologyHeinrich Heine UniversityDüsseldorfGermany
- Spatial and Functional Screening Core facility (SFS‐CF), Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Herui Wang
- Neuro‐Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Zhengping Zhuang
- Neuro‐Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Lena Blümel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Tobias Lautwein
- Genomics Transcriptomics Laboratory, Biomedical Research CenterHeinrich Heine UniversityDüsseldorfGermany
| | - Daniel Hein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - David Koppstein
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Gesine Kögler
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute for Transplantation Diagnostics and Cell TherapeuticsHeinrich Heine UniversityDüsseldorfGermany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute of NeuropathologyHeinrich Heine UniversityDüsseldorfGermany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Merja Heinäniemi
- Institute of Biomedicine, School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| |
Collapse
|
9
|
Tang MH, Ligthart I, Varga S, Lebeer S, van Overveld FJ, Rijkers GT. Mutual Interactions Between Microbiota and the Human Immune System During the First 1000 Days of Life. BIOLOGY 2025; 14:299. [PMID: 40136555 PMCID: PMC11940030 DOI: 10.3390/biology14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
The development of the human immune system starts during the fetal period in a largely, but probably not completely, sterile environment. During and after birth, the immune system is exposed to an increasingly complex microbiota. The first microbiota encountered during passage through the birth canal colonize the infant gut and induce the tolerance of the immune system. Transplacentally derived maternal IgG as well as IgA from breast milk protect the infant from infections during the first 100 days, during which the immune system further develops and immunological memory is formed. The Weaning and introduction of solid food expose the immune system to novel (food) antigens and allow for other microbiota to colonize. The cells and molecules involved in the mutual and intricate interactions between microbiota and the developing immune system are now beginning to be recognized. These include bacterial components such as polysaccharide A from Bacteroides fragilis, as well as bacterial metabolites such as the short-chain fatty acid butyrate, indole-3-aldehyde, and indole-3-propionic acid. All these, and probably more, bacterial metabolites have specific immunoregulatory functions which shape the development of the human immune system during the first 1000 days of life.
Collapse
Affiliation(s)
- Muy Heang Tang
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ishbel Ligthart
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Samuel Varga
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Sarah Lebeer
- Lab of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Frans J. van Overveld
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ger T. Rijkers
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| |
Collapse
|
10
|
Liu C, Li X, Hu Q, Jia Z, Ye Q, Wang X, Zhao K, Liu L, Wang M. Decoding the blueprints of embryo development with single-cell and spatial omics. Semin Cell Dev Biol 2025; 167:22-39. [PMID: 39889540 DOI: 10.1016/j.semcdb.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
Embryonic development is a complex and intricately regulated process that encompasses precise control over cell differentiation, morphogenesis, and the underlying gene expression changes. Recent years have witnessed a remarkable acceleration in the development of single-cell and spatial omic technologies, enabling high-throughput profiling of transcriptomic and other multi-omic information at the individual cell level. These innovations offer fresh and multifaceted perspectives for investigating the intricate cellular and molecular mechanisms that govern embryonic development. In this review, we provide an in-depth exploration of the latest technical advancements in single-cell and spatial multi-omic methodologies and compile a systematic catalog of their applications in the field of embryonic development. We deconstruct the research strategies employed by recent studies that leverage single-cell sequencing techniques and underscore the unique advantages of spatial transcriptomics. Furthermore, we delve into both the current applications, data analysis algorithms and the untapped potential of these technologies in advancing our understanding of embryonic development. With the continuous evolution of multi-omic technologies, we anticipate their widespread adoption and profound contributions to unraveling the intricate molecular foundations underpinning embryo development in the foreseeable future.
Collapse
Affiliation(s)
- Chang Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Proof-of-Concept Center of Digital Cytopathology, BGI Research, Shenzhen 518083, China
| | | | - Qinan Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zihan Jia
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Ye
- BGI Research, Hangzhou 310030, China; China Jiliang University, Hangzhou 310018, China
| | | | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Mingyue Wang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China.
| |
Collapse
|
11
|
Li H, Côté P, Kuoch M, Ezike J, Frenis K, Afanassiev A, Greenstreet L, Tanaka-Yano M, Tarantino G, Zhang S, Whangbo J, Butty VL, Moiso E, Falchetti M, Lu K, Connelly GG, Morris V, Wang D, Chen AF, Bianchi G, Daley GQ, Garg S, Liu D, Chou ST, Regev A, Lummertz da Rocha E, Schiebinger G, Rowe RG. The dynamics of hematopoiesis over the human lifespan. Nat Methods 2025; 22:422-434. [PMID: 39639169 PMCID: PMC11908799 DOI: 10.1038/s41592-024-02495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Over a lifetime, hematopoietic stem cells (HSCs) adjust their lineage output to support age-aligned physiology. In model organisms, stereotypic waves of hematopoiesis have been observed corresponding to defined age-biased HSC hallmarks. However, how the properties of hematopoietic stem and progenitor cells change over the human lifespan remains unclear. To address this gap, we profiled individual transcriptome states of human hematopoietic stem and progenitor cells spanning gestation, maturation and aging. Here we define the gene expression networks dictating age-specific differentiation of HSCs and the dynamics of fate decisions and lineage priming throughout life. We additionally identifiy and functionally validate a fetal-specific HSC state with robust engraftment and multilineage capacity. Furthermore, we observe that classification of acute myeloid leukemia against defined transcriptional age states demonstrates that utilization of early life transcriptional programs associates with poor prognosis. Overall, we provide a disease-relevant framework for heterochronic orientation of stem cell ontogeny along the real time axis of the human lifespan.
Collapse
Affiliation(s)
- Hojun Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pediatrics, University of California, San Diego, CA, USA.
- Division of Hematology/Oncology, Rady Children's Hospital, San Diego, CA, USA.
| | - Parker Côté
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Michael Kuoch
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jideofor Ezike
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katie Frenis
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mayuri Tanaka-Yano
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giuseppe Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephen Zhang
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Whangbo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Vor Biopharma, Cambridge, MA, USA
| | - Vincent L Butty
- Barbara K. Ostrom Bioinformatics Facility, Integrated Genomics and Bioinformatics Core of the Koch Institute, Cambridge, MA, USA
| | - Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcelo Falchetti
- Departments of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Kate Lu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guinevere G Connelly
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vivian Morris
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Dahai Wang
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Antonia F Chen
- Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Giada Bianchi
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - George Q Daley
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Salil Garg
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stella T Chou
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Aviv Regev
- Division of Hematology/Oncology, Rady Children's Hospital, San Diego, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Edroaldo Lummertz da Rocha
- Departments of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Grant Rowe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Watt SM, Roubelakis MG. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int J Mol Sci 2025; 26:671. [PMID: 39859383 PMCID: PMC11766050 DOI: 10.3390/ijms26020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011-1012) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.5 million hematopoietic cell transplants (HCTs) globally, making this the most successful regenerative therapy to date. We will commence this review by briefly highlighting selected key achievements (from 1868 to the end of the 20th century) that have contributed to this accomplishment. Much of our knowledge of hematopoiesis is based on small animal models that, despite their enormous importance, do not always recapitulate human hematopoiesis. Given this, we will critically review the progress and challenges faced in identifying adult human HSCs and tracing their lineage differentiation trajectories, referring to murine studies as needed. Moving forward and given that human hematopoiesis is dynamic and can readily adjust to a variety of stressors, we will then discuss recent research advances contributing to understanding (i) which HSPCs maintain daily steady state human hematopoiesis, (ii) where these are located, and (iii) which mechanisms come into play when homeostatic hematopoiesis switches to stress-induced or emergency hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| |
Collapse
|
13
|
Cain TL, Derecka M, McKinney-Freeman S. The role of the haematopoietic stem cell niche in development and ageing. Nat Rev Mol Cell Biol 2025; 26:32-50. [PMID: 39256623 DOI: 10.1038/s41580-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Blood production depends on rare haematopoietic stem cells (HSCs) and haematopoietic stem and progenitor cells (HSPCs) that ultimately take up residence in the bone marrow during development. HSPCs and HSCs are subject to extrinsic regulation by the bone marrow microenvironment, or niche. Studying the interactions between HSCs and their niche is critical for improving ex vivo culturing conditions and genetic manipulation of HSCs, which is pivotal for improving autologous HSC therapies and transplantations. Additionally, understanding how the complex molecular network in the bone marrow is altered during ageing is paramount for developing novel therapeutics for ageing-related haematopoietic disorders. HSCs are unique amongst stem and progenitor cell pools in that they engage with multiple physically distinct niches during their ontogeny. HSCs are specified from haemogenic endothelium in the aorta, migrate to the fetal liver and, ultimately, colonize their final niche in the bone marrow. Recent studies employing single-cell transcriptomics and microscopy have identified novel cellular interactions that govern HSC specification and engagement with their niches throughout ontogeny. New lineage-tracing models and microscopy tools have raised questions about the numbers of HSCs specified, as well as the functional consequences of HSCs interacting with each developmental niche. Advances have also been made in understanding how these niches are modified and perturbed during ageing, and the role of these altered interactions in haematopoietic diseases. In this Review, we discuss these new findings and highlight the questions that remain to be explored.
Collapse
Affiliation(s)
- Terri L Cain
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta Derecka
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
14
|
Katsoula G, Lawrence JEG, Arruda AL, Tutino M, Balogh P, Southam L, Swift D, Behjati S, Teichmann SA, Wilkinson JM, Zeggini E. Primary cartilage transcriptional signatures reflect cell-type-specific molecular pathways underpinning osteoarthritis. Am J Hum Genet 2024; 111:2735-2755. [PMID: 39579762 PMCID: PMC11639091 DOI: 10.1016/j.ajhg.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024] Open
Abstract
Translational efforts in osteoarthritis are hampered by a gap in our understanding of disease processes at the molecular level. Here, we present evidence of pronounced transcriptional changes in high- and low-disease-grade cartilage tissue, pointing to embryonic processes involved in disease progression. We identify shared transcriptional programs between osteoarthritis cartilage and cell populations in the human embryonic and fetal limb, pointing to increases in pre-hypertrophic chondrocytes' transcriptional programs in low-grade cartilage and increases in osteoblastic signatures in high-grade disease tissue. We find that osteoarthritis genetic risk signals are enriched in six gene co-expression modules and show that these transcriptional signatures reflect cell-type-specific expression along the endochondral ossification developmental trajectory. Using this network approach in combination with causal inference analysis, we present evidence of a causal effect on osteoarthritis risk for variants associated with the expression of ten genes that have not been previously reported as effector genes in genome-wide association studies in osteoarthritis. Our findings point to key molecular pathways as drivers of cartilage degeneration and identify high-value drug targets and repurposing opportunities.
Collapse
Affiliation(s)
- Georgia Katsoula
- Technical University of Munich (TUM), School of Medicine and Health, Graduate School of Experimental Medicine, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - John E G Lawrence
- Department of Trauma and Orthopaedics, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Box 37, Hills Road, Cambridge CB2 0QQ, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Ana Luiza Arruda
- Technical University of Munich (TUM), School of Medicine and Health, Graduate School of Experimental Medicine, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Mauro Tutino
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Petra Balogh
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Diane Swift
- School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Physics/Cavendish Laboratory, University of Cambridge, JJ Thomson, Cambridge CB3 0HE, UK
| | - J Mark Wilkinson
- School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany.
| |
Collapse
|
15
|
Feng C, Fan H, Tie R, Xin S, Chen M. Deciphering the evolving niche interactome of human hematopoietic stem cells from ontogeny to aging. Front Mol Biosci 2024; 11:1479605. [PMID: 39698109 PMCID: PMC11652281 DOI: 10.3389/fmolb.2024.1479605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Hematopoietic stem cells (HSC) reside within specialized microenvironments that undergo dynamic changes throughout development and aging to support HSC function. However, the evolving cell-cell communication networks within these niches remain largely unexplored. This study integrates single-cell RNA sequencing datasets to systematically characterize the HSC niche interactome from ontogeny to aging. We reconstructed single-cell atlases of HSC niches at different developmental stages, revealing stage-specific cellular compositions and interactions targeting HSC. During HSC maturation, our analysis identified distinct patterns of ligand-receptor interactions and signaling pathways that govern HSC emergence, expansion, and maintenance. HSC aging was accompanied by a decrease in supportive niche interactions, followed by an adaptive increase in interaction strength in old adult bone marrow. This complex aging process involved the emergence of interactions associated with inflammation, altered stem cell function, and a decline in the efficacy of key signaling pathways. Our findings provide a comprehensive understanding of the dynamic remodeling of the HSC niche interactome throughout life, paving the way for targeted interventions to maintain HSC function and promote healthy aging. This study offers valuable insights into the intricate cell-cell communication networks that govern HSC behavior and fate, with implications for hematological disorders and regenerative medicine.
Collapse
Affiliation(s)
- Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoyan Fan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Patel S, Liu W, K R, McCormick C, Fan Y. Engineering immune organoids to regenerate host immune system. Curr Opin Genet Dev 2024; 89:102276. [PMID: 39509964 PMCID: PMC11588509 DOI: 10.1016/j.gde.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Recent advances in immunotherapy have underscored the potential of harnessing the immune system to treat disorders associated with immune dysregulation, such as primary and secondary immunodeficiencies, cancer, transplantation rejection, and aging. Owing to the cellular and structural complexity and the dynamic nature of immune responses, engineering immune organoids that replicate the function and key features of their corresponding immune organs continues to be a formidable challenge. In this overview, we will discuss the recent progress in bioengineering organoids of key primary and secondary immune organs and tissues, focusing particularly on their contributions to the host's immune system in animal models and highlighting their potential roles in regenerative medicine.
Collapse
Affiliation(s)
- Sefali Patel
- AHN Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Wen Liu
- AHN Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Ravikumar K
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Yong Fan
- AHN Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
17
|
Gopee NH, Winheim E, Olabi B, Admane C, Foster AR, Huang N, Botting RA, Torabi F, Sumanaweera D, Le AP, Kim J, Verger L, Stephenson E, Adão D, Ganier C, Gim KY, Serdy SA, Deakin C, Goh I, Steele L, Annusver K, Miah MU, Tun WM, Moghimi P, Kwakwa KA, Li T, Basurto Lozada D, Rumney B, Tudor CL, Roberts K, Chipampe NJ, Sidhpura K, Englebert J, Jardine L, Reynolds G, Rose A, Rowe V, Pritchard S, Mulas I, Fletcher J, Popescu DM, Poyner E, Dubois A, Guy A, Filby A, Lisgo S, Barker RA, Glass IA, Park JE, Vento-Tormo R, Nikolova MT, He P, Lawrence JEG, Moore J, Ballereau S, Hale CB, Shanmugiah V, Horsfall D, Rajan N, McGrath JA, O'Toole EA, Treutlein B, Bayraktar O, Kasper M, Progatzky F, Mazin P, Lee J, Gambardella L, Koehler KR, Teichmann SA, Haniffa M. A prenatal skin atlas reveals immune regulation of human skin morphogenesis. Nature 2024; 635:679-689. [PMID: 39415002 PMCID: PMC11578897 DOI: 10.1038/s41586-024-08002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Human prenatal skin is populated by innate immune cells, including macrophages, but whether they act solely in immunity or have additional functions in morphogenesis is unclear. Here we assembled a comprehensive multi-omics reference atlas of prenatal human skin (7-17 post-conception weeks), combining single-cell and spatial transcriptomics data, to characterize the microanatomical tissue niches of the skin. This atlas revealed that crosstalk between non-immune and immune cells underpins the formation of hair follicles, is implicated in scarless wound healing and is crucial for skin angiogenesis. We systematically compared a hair-bearing skin organoid (SkO) model derived from human embryonic stem cells and induced pluripotent stem cells to prenatal and adult skin1. The SkO model closely recapitulated in vivo skin epidermal and dermal cell types during hair follicle development and expression of genes implicated in the pathogenesis of genetic hair and skin disorders. However, the SkO model lacked immune cells and had markedly reduced endothelial cell heterogeneity and quantity. Our in vivo prenatal skin cell atlas indicated that macrophages and macrophage-derived growth factors have a role in driving endothelial development. Indeed, vascular network remodelling was enhanced following transfer of autologous macrophages derived from induced pluripotent stem cells into SkO cultures. Innate immune cells are therefore key players in skin morphogenesis beyond their conventional role in immunity, a function they achieve through crosstalk with non-immune cells.
Collapse
Affiliation(s)
- Nusayhah Hudaa Gopee
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chloe Admane
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - April Rose Foster
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fereshteh Torabi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Anh Phuong Le
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Luca Verger
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Diana Adão
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King's College London Guy's Hospital, London, UK
| | - Kelly Y Gim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Sara A Serdy
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - CiCi Deakin
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Issac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lloyd Steele
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mohi-Uddin Miah
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Win Min Tun
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Pejvak Moghimi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Ben Rumney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Catherine L Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Keval Sidhpura
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Justin Englebert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Antony Rose
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Vicky Rowe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sophie Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ilaria Mulas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - James Fletcher
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Elizabeth Poyner
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anna Dubois
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alyson Guy
- Rare Skin Disease Laboratory, Synnovis, Guy's Hospital, London, UK
| | - Andrew Filby
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Roger A Barker
- Department of Clinical Neuroscience and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ian A Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Josh Moore
- German BioImaging, Gesellschaft für Mikroskopie und Bildanalyse, Konstanz, Germany
| | - Stephane Ballereau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Christine B Hale
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Vijaya Shanmugiah
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Neil Rajan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John A McGrath
- St Johns Institute of Dermatology, King's College London Guy's Campus, London, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fränze Progatzky
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Laure Gambardella
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA.
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
18
|
Gu Q, Draheim M, Planchais C, He Z, Mu F, Gong S, Shen C, Zhu H, Zhivaki D, Shahin K, Collard JM, Su M, Zhang X, Mouquet H, Lo-Man R. Intestinal newborn regulatory B cell antibodies modulate microbiota communities. Cell Host Microbe 2024; 32:1787-1804.e9. [PMID: 39243760 DOI: 10.1016/j.chom.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The role of immunoglobulins produced by IL-10-producing regulatory B cells remains unknown. We found that a particular newborn regulatory B cell population (nBreg) negatively regulates the production of immunoglobulin M (IgM) via IL-10 in an autocrine manner, limiting the intensity of the polyreactive antibody response following innate activation. Based on nBreg scRNA-seq signature, we identify these cells and their repertoire in fetal and neonatal intestinal tissues. By characterizing 205 monoclonal antibodies cloned from intestinal nBreg, we show that newborn germline-encoded antibodies display reactivity against bacteria representing six different phyla of the early microbiota. nBreg-derived antibodies can influence the diversity and the cooperation between members of early microbial communities, at least in part by modulating energy metabolism. These results collectively suggest that nBreg populations help facilitate early-life microbiome establishment and shed light on the paradoxical activities of regulatory B cells in early life.
Collapse
Affiliation(s)
- Qisheng Gu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France
| | - Marion Draheim
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France
| | - Zihan He
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Gong
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chun Shen
- Children's Hospital of Fudan University, Shanghai, China
| | - Haitao Zhu
- Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, China
| | - Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Khashayar Shahin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan Microbiome Center, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jean-Marc Collard
- Enteric Bacterial Pathogens Unit & French National Reference Center for Escherichia Coli, Shigella and Salmonella, Institut Pasteur, Paris, France
| | - Min Su
- Obstetrics department, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Innate Defense and Immune Modulation, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France.
| | - Richard Lo-Man
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France.
| |
Collapse
|
19
|
Malinge S. Childhood leukaemia in Down's syndrome primed by blood-cell bias. Nature 2024; 634:40-42. [PMID: 39322696 DOI: 10.1038/d41586-024-02785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
|
20
|
Marderstein AR, De Zuani M, Moeller R, Bezney J, Padhi EM, Wong S, Coorens THH, Xie Y, Xue H, Montgomery SB, Cvejic A. Single-cell multi-omics map of human fetal blood in Down syndrome. Nature 2024; 634:104-112. [PMID: 39322663 PMCID: PMC11446839 DOI: 10.1038/s41586-024-07946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Down syndrome predisposes individuals to haematological abnormalities, such as increased number of erythrocytes and leukaemia in a process that is initiated before birth and is not entirely understood1-3. Here, to understand dysregulated haematopoiesis in Down syndrome, we integrated single-cell transcriptomics of over 1.1 million cells with chromatin accessibility and spatial transcriptomics datasets using human fetal liver and bone marrow samples from 3 fetuses with disomy and 15 fetuses with trisomy. We found that differences in gene expression in Down syndrome were dependent on both cell type and environment. Furthermore, we found multiple lines of evidence that haematopoietic stem cells (HSCs) in Down syndrome are 'primed' to differentiate. We subsequently established a Down syndrome-specific map linking non-coding elements to genes in disomic and trisomic HSCs using 10X multiome data. By integrating this map with genetic variants associated with blood cell counts, we discovered that trisomy restructured regulatory interactions to dysregulate enhancer activity and gene expression critical to erythroid lineage differentiation. Furthermore, as mutations in Down syndrome display a signature of oxidative stress4,5, we validated both increased mitochondrial mass and oxidative stress in Down syndrome, and observed that these mutations preferentially fell into regulatory regions of expressed genes in HSCs. Together, our single-cell, multi-omic resource provides a high-resolution molecular map of fetal haematopoiesis in Down syndrome and indicates significant regulatory restructuring giving rise to co-occurring haematological conditions.
Collapse
Affiliation(s)
| | - Marco De Zuani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rebecca Moeller
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jon Bezney
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Evin M Padhi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shuo Wong
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Yilin Xie
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Haoliang Xue
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Li H, Xiao H, Mai X, Huang S, Chen J, Xiao X. A great diversity of ROBO4 expression and regulations identified by data mining and transgene mice. Gene Expr Patterns 2024; 53:119375. [PMID: 39181524 DOI: 10.1016/j.gep.2024.119375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
ROBO4 involves in the stabilization of blood vessel and mediates the migration of hematopoietic stem cell and newborn neuron. However, the patterns of expression and regulation are not quite clear. To resolve this, we analyzed the single cell sequence data, and confirmed that Robo4 mainly expresses in various endothelial cells, but also in epithelial cells, pericytes, and stem or progenitor cells of bone marrow, fibroblast cells/mesenchymal stem cell of adipose tissues, muscle cells and neuron. Robo4 expressions in endothelial cells derived from capillary vessel, tip/stalk/activated endothelial cells were higher than that in artery and large vein (matured endothelial cells). On the other hand, via mining the gene expression data deposited in the NCBI Gene Expression Omnibus database as well as National Genomics Data Center (NGDC), we uncovered that the expression of Robo4 were regulated by different stimulus and variable in diseases' condition.Moreover, we constructed enhanced GFP (eGFP) transgene mouse controlled by Robo4 promoter using CRISPR/CAS9 system. We found GFP signals in many cell types from the embryonic section, confirming a widely expression of Robo4. Together, Robo4 widely and dynamically express in multiple cell types, and can be regulated by diverse factors.
Collapse
Affiliation(s)
- Huiping Li
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Huiyan Xiao
- Shantou Jinshan Middle School, Shantou, China
| | - Xiaoting Mai
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Shaofeng Huang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Jiongyu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqiang Xiao
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
22
|
Wang J, Liang Y, Xu C, Gao J, Tong J, Shi L. The heterogeneity of erythroid cells: insight at the single-cell transcriptome level. Cell Tissue Res 2024; 397:179-192. [PMID: 38953986 DOI: 10.1007/s00441-024-03903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Erythroid cells, the most prevalent cell type in blood, are one of the earliest products and permeate through the entire process of hematopoietic development in the human body, the oxygen-transporting function of which is crucial for maintaining overall health and life support. Previous investigations into erythrocyte differentiation and development have primarily focused on population-level analyses, lacking the single-cell perspective essential for comprehending the intricate pathways of erythroid maturation, differentiation, and the encompassing cellular heterogeneity. The continuous optimization of single-cell transcriptome sequencing technology, or single-cell RNA sequencing (scRNA-seq), provides a powerful tool for life sciences research, which has a particular superiority in the identification of unprecedented cell subgroups, the analyzing of cellular heterogeneity, and the transcriptomic characteristics of individual cells. Over the past decade, remarkable strides have been taken in the realm of single-cell RNA sequencing technology, profoundly enhancing our understanding of erythroid cells. In this review, we systematically summarize the recent developments in single-cell transcriptome sequencing technology and emphasize their substantial impact on the study of erythroid cells, highlighting their contributions, including the exploration of functional heterogeneity within erythroid populations, the identification of novel erythrocyte subgroups, the tracking of different erythroid lineages, and the unveiling of mechanisms governing erythroid fate decisions. These findings not only invigorate erythroid cell research but also offer new perspectives on the management of diseases related to erythroid cells.
Collapse
Affiliation(s)
- Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China.
| |
Collapse
|
23
|
Niu H, Maruoka M, Noguchi Y, Kosako H, Suzuki J. Phospholipid scrambling induced by an ion channel/metabolite transporter complex. Nat Commun 2024; 15:7566. [PMID: 39217145 PMCID: PMC11366033 DOI: 10.1038/s41467-024-51939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cells establish the asymmetrical distribution of phospholipids and alter their distribution by phospholipid scrambling (PLS) to adapt to environmental changes. Here, we demonstrate that a protein complex, consisting of the ion channel Tmem63b and the thiamine transporter Slc19a2, induces PLS upon calcium (Ca2+) stimulation. Through revival screening using a CRISPR sgRNA library on high PLS cells, we identify Tmem63b as a PLS-inducing factor. Ca2+ stimulation-mediated PLS is suppressed by deletion of Tmem63b, while human disease-related Tmem63b mutants induce constitutive PLS. To search for a molecular link between Ca2+ stimulation and PLS, we perform revival screening on Tmem63b-overexpressing cells, and identify Slc19a2 and the Ca2+-activated K+ channel Kcnn4 as PLS-regulating factors. Deletion of either of these genes decreases PLS activity. Biochemical screening indicates that Tmem63b and Slc19a2 form a heterodimer. These results demonstrate that a Tmem63b/Slc19a2 heterodimer induces PLS upon Ca2+ stimulation, along with Kcnn4 activation.
Collapse
Affiliation(s)
- Han Niu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuki Noguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan.
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan.
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
24
|
Aksöz M, Gafencu GA, Stoilova B, Buono M, Zhang Y, Turkalj S, Meng Y, Jakobsen NA, Metzner M, Clark SA, Beveridge R, Thongjuea S, Vyas P, Nerlov C. Hematopoietic stem cell heterogeneity and age-associated platelet bias are evolutionarily conserved. Sci Immunol 2024; 9:eadk3469. [PMID: 39178276 DOI: 10.1126/sciimmunol.adk3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/22/2024] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
Hematopoietic stem cells (HSCs) reconstitute multilineage human hematopoiesis after clinical bone marrow (BM) transplantation and are the cells of origin of some hematological malignancies. Although HSCs provide multilineage engraftment, individual murine HSCs are lineage biased and contribute unequally to blood cell lineages. Here, we performed high-throughput single-cell RNA sequencing in mice after xenograft with molecularly barcoded adult human BM HSCs. We demonstrated that human individual BM HSCs are also functionally and transcriptionally lineage biased. Specifically, we identified platelet-biased and multilineage human HSCs. Quantitative comparison of transcriptomes from single HSCs from young and aged BM showed that both the proportion of platelet-biased HSCs and their level of transcriptional platelet priming increase with age. Therefore, platelet-biased HSCs and their increased prevalence and transcriptional platelet priming during aging are conserved features of mammalian evolution.
Collapse
Affiliation(s)
- Merve Aksöz
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Grigore-Aristide Gafencu
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bilyana Stoilova
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mario Buono
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ying Zhang
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yiran Meng
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sally-Ann Clark
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ryan Beveridge
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC Haematology Theme, University of Oxford, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Camiolo G, Mullen CG, Ottersbach K. Mechanistic insights into the developmental origin of pediatric hematologic disorders. Exp Hematol 2024; 136:104583. [PMID: 39059457 DOI: 10.1016/j.exphem.2024.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Embryonic and fetal hematopoietic stem and progenitor cells differ in some key properties from cells that are part of the adult hematopoietic system. These include higher proliferation and self-renewal capacity, different globin gene usage, and differing lineage biases. Although these evolved to cover specific requirements of embryonic development, they can have serious consequences for the pathogenesis of hematologic malignancies that initiate prebirth in fetal blood cells and may result in a particularly aggressive disease that does not respond well to treatments that have been designed for adult leukemias. This indicates that these infant/pediatric leukemias should be considered developmental diseases, where a thorough understanding of their unique biology is essential for designing more effective therapies. In this review, we will highlight some of these unique fetal properties and detail the underlying molecular drivers of these phenotypes. We specifically focus on those that are pertinent to disease pathogenesis and that may therefore reveal disease vulnerabilities. We have also included an extensive description of the origins, phenotypes, and key molecular drivers of the main infant and pediatric leukemias that have a known prenatal origin. Importantly, successes in recent years in generating faithful models of these malignancies in which cellular origins, key drivers, and potential vulnerabilities can be investigated have resulted in uncovering potential, new therapeutic avenues.
Collapse
Affiliation(s)
- Giuseppina Camiolo
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher G Mullen
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
26
|
Gu C, Chen P, Tian H, Yang Y, Huang Z, Yan H, Tang C, Xiang J, Shangguan L, Pan K, Chen P, Huang Y, Liu Z, Tang R, Fan S, Lin X. Targeting initial tumour-osteoclast spatiotemporal interaction to prevent bone metastasis. NATURE NANOTECHNOLOGY 2024; 19:1044-1054. [PMID: 38499860 DOI: 10.1038/s41565-024-01613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/16/2024] [Indexed: 03/20/2024]
Abstract
Bone is the most common site of metastasis, and although low proliferation and immunoediting at the early stage make existing treatment modalities less effective, the microenvironment-inducing behaviour could be a target for early intervention. Here we report on a spatiotemporal coupling interaction between tumour cells and osteoclasts, and named the tumour-associated osteoclast 'tumasteoclast'-a subtype of osteoclasts in bone metastases induced by tumour-migrasome-mediated cytoplasmic transfer. We subsequently propose an in situ decoupling-killing strategy in which tetracycline-modified nanoliposomes encapsulating sodium bicarbonate and sodium hydrogen phosphate are designed to specifically release high concentrations of hydrogen phosphate ions triggered by tumasteoclasts, which depletes calcium ions and forms calcium-phosphorus crystals. This can inhibit the formation of migrasomes for decoupling and disrupt cell membrane for killing, thereby achieving early prevention of bone metastasis. This study provides a research model for exploring tumour cell behaviour in detail and a proof-of-concept for behaviour-targeting strategy.
Collapse
Affiliation(s)
- Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Zhenxiang Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajia Xiang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Liqing Shangguan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Yue Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
27
|
Olijnik AA, Rodriguez-Romera A, Wong ZC, Shen Y, Reyat JS, Jooss NJ, Rayes J, Psaila B, Khan AO. Generating human bone marrow organoids for disease modeling and drug discovery. Nat Protoc 2024; 19:2117-2146. [PMID: 38532070 DOI: 10.1038/s41596-024-00971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/22/2023] [Indexed: 03/28/2024]
Abstract
The bone marrow supports and regulates hematopoiesis, responding to physiological requirements for blood cell production over ontogeny and during pathological challenges. Interactions between hematopoietic cells and niche components are challenging to study mechanistically in the human context, but are important to delineate in order to explore the pathobiology of blood and bone marrow disorders. Organoids are proving transformative in many research settings, but an accurate human bone marrow model incorporating multiple hematopoietic and stromal elements has been lacking. This protocol describes a method to generate three-dimensional, multilineage bone marrow organoids from human induced pluripotent stem cells (hiPSCs), detailing the steps for the directed differentiation of hiPSCs using a series of cytokine cocktails and hydrogel embedding. Over 18 days of differentiation, hiPSCs yield the key lineages that are present in central myelopoietic bone marrow, organized in a well-vascularized architecture that resembles native hematopoietic tissues. This presents a robust, in vitro system that can model healthy and perturbed hematopoiesis in a scalable three-dimensional microenvironment. Bone marrow organoids also support the growth of immortalized cell lines and primary cells from healthy donors and patients with myeloid and lymphoid cancers, including cell types that are poorly viable in standard culture systems. Moreover, we discuss assays for the characterization of organoids, including interrogation of pathogenic remodeling using recombinant TGF-ß treatment, and methods for organoid engraftment with exogenous cells. This protocol can be readily adapted to specific experimental requirements, can be easily implemented by users with tissue culture experience and does not require access to specialist equipment.
Collapse
Affiliation(s)
- Aude-Anais Olijnik
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Antonio Rodriguez-Romera
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Zoë C Wong
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Yuqi Shen
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jasmeet S Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Natalie J Jooss
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Abdullah O Khan
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
28
|
Alhaj Hussen K, Louis V, Canque B. A new model of human lymphopoiesis across development and aging. Trends Immunol 2024; 45:495-510. [PMID: 38908962 DOI: 10.1016/j.it.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Paris, France
| | - Valentine Louis
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France
| | - Bruno Canque
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
29
|
Belozerov KE, Isupova EA, Solomatina NM, Gaidar EV, Kaneva MA, Chikova IA, Kalashnikova O, Kuznetsova AA, Ivanov DO, Kostik MM. Initial Respiratory System Involvement in Juvenile Idiopathic Arthritis with Systemic Onset Is a Marker of Interstitial Lung Disease: The Results of Retrospective Cohort Study Analysis. J Clin Med 2024; 13:3843. [PMID: 38999409 PMCID: PMC11242299 DOI: 10.3390/jcm13133843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Pulmonary involvement in systemic juvenile idiopathic arthritis (SJIA) is a rare but dangerous complication. The main risk factors are already known, such as macrophage activation syndrome, a refractory course of systemic juvenile arthritis, infusion reaction to interleukin 1 and/or interleukin 6 blockers, trisomy 21, and eosinophilia. However, information about respiratory system involvement (RSI) at the onset of SJIA is scarce. Our study aimed to evaluate the specific features of children with SJIA with RSI and their outcomes. Methods: In a single-center retrospective cohort study, we compared the information from the medical records of 200 children with SJIA according to ILAR criteria or SJIA-like disease (probable/possible SJIA) with and without signs of RSI (dyspnea, shortness of breath, pleurisy, acute respiratory distress syndrome, and interstitial lung disease (ILD)) at the disease onset and evaluated their outcomes (remission, development of chronic ILD, clubbing, and pulmonary arterial hypertension). Results: A quarter (25%) of the SJIA patients had signs of the RSI at onset and they more often had rash; hepato- and splenomegaly; heart (pericarditis, myocarditis), central nervous system, and kidney involvement; hemorrhagic syndrome; macrophage activation syndrome (MAS, 44.4% vs. 9.0%, p = 0.0000001); and, rarely, arthritis with fewer active joints, compared to patients without RSI. Five patients (10% from the group having RSI at the onset of SJIA and 2.5% from the whole SJIA cohort) developed fibrosing ILD. All of them had a severe relapsed/chronic course of MAS; 80% of them had a tocilizumab infusion reaction and further switched to canakinumab. Unfortunately, one patient with Down's syndrome had gone. Conclusion: Patients with any signs of RSI at the onset of the SJIA are required to be closely monitored due to the high risk of the following fibrosing ILD development. They required prompt control of MAS, monitoring eosinophilia, and routine checks of night oxygen saturation for the prevention/early detection of chronic ILD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mikhail M. Kostik
- Hospital Pediatrics, Saint-Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia; (K.E.B.); (N.M.S.); (O.K.); (A.A.K.); (D.O.I.)
| |
Collapse
|
30
|
Garcia C, Miller-Awe MD, Witkowski MT. Concepts in B cell acute lymphoblastic leukemia pathogenesis. J Leukoc Biol 2024; 116:18-32. [PMID: 38243586 PMCID: PMC11869204 DOI: 10.1093/jleuko/qiae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) arises from genetic alterations impacting B cell progenitors, ultimately leading to clinically overt disease. Extensive collaborative efforts in basic and clinical research have significantly improved patient prognoses. Nevertheless, a subset of patients demonstrate resistance to conventional chemotherapeutic approaches and emerging immunotherapeutic interventions. This review highlights the mechanistic underpinnings governing B-ALL transformation. Beginning with exploring normative B cell lymphopoiesis, we delineate the influence of recurrent germline and somatic genetic aberrations on the perturbation of B cell progenitor differentiation and protumorigenic signaling, thereby facilitating the neoplastic transformation underlying B-ALL progression. Additionally, we highlight recent advances in the multifaceted landscape of B-ALL, encompassing metabolic reprogramming, microbiome influences, inflammation, and the discernible impact of socioeconomic and racial disparities on B-ALL transformation and patient survival.
Collapse
Affiliation(s)
- Clarissa Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Megan D. Miller-Awe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
31
|
Bandyopadhyay S, Duffy MP, Ahn KJ, Sussman JH, Pang M, Smith D, Duncan G, Zhang I, Huang J, Lin Y, Xiong B, Imtiaz T, Chen CH, Thadi A, Chen C, Xu J, Reichart M, Martinez Z, Diorio C, Chen C, Pillai V, Snaith O, Oldridge D, Bhattacharyya S, Maillard I, Carroll M, Nelson C, Qin L, Tan K. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 2024; 187:3120-3140.e29. [PMID: 38714197 PMCID: PMC11162340 DOI: 10.1016/j.cell.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan H Sussman
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minxing Pang
- Applied Mathematics & Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - David Smith
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gwendolyn Duncan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Iris Zhang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yulieh Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Xiong
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamjid Imtiaz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa Reichart
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oraine Snaith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles Nelson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Ye L, Tian C, Li Y, Pan H, Hu J, Shu L, Pan X. Hematopoietic aging: Cellular, molecular, and related mechanisms. Chin Med J (Engl) 2024; 137:1303-1312. [PMID: 37898877 PMCID: PMC11191024 DOI: 10.1097/cm9.0000000000002871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 10/30/2023] Open
Abstract
ABSTRACT Aging is accompanied by significant inhibition of hematopoietic and immune system function and disruption of bone marrow structure. Aging-related alterations in the inflammatory response, immunity, and stem cell niches are at the root of hematopoietic aging. Understanding the molecular mechanisms underlying hematopoietic and bone marrow aging can aid the clinical treatment of aging-related diseases. In particular, it is unknown how the niche reprograms hematopoietic stem cells (HSCs) in an age-dependent manner to maintain normal hematopoiesis in elderly individuals. Recently, specific inhibitors and blood exchange methods have been shown to reshape the hematopoietic niche and reverse hematopoietic aging. Here, we present the latest scientific discoveries related to hematopoietic aging and hematopoietic system rejuvenation, discuss the relationships between hematopoietic niche aging and HSC aging, and describe related studies on stem cell-mediated regulation of hematopoietic aging, aiming to provide new ideas for further study.
Collapse
Affiliation(s)
- Li Ye
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Chuan Tian
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| | - Ye Li
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Hang Pan
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Jinxiu Hu
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| | - Liping Shu
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Xinghua Pan
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| |
Collapse
|
33
|
Frenz-Wiessner S, Fairley SD, Buser M, Goek I, Salewskij K, Jonsson G, Illig D, Zu Putlitz B, Petersheim D, Li Y, Chen PH, Kalauz M, Conca R, Sterr M, Geuder J, Mizoguchi Y, Megens RTA, Linder MI, Kotlarz D, Rudelius M, Penninger JM, Marr C, Klein C. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods 2024; 21:868-881. [PMID: 38374263 PMCID: PMC11093744 DOI: 10.1038/s41592-024-02172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
The human bone marrow (BM) niche sustains hematopoiesis throughout life. We present a method for generating complex BM-like organoids (BMOs) from human induced pluripotent stem cells (iPSCs). BMOs consist of key cell types that self-organize into spatially defined three-dimensional structures mimicking cellular, structural and molecular characteristics of the hematopoietic microenvironment. Functional properties of BMOs include the presence of an in vivo-like vascular network, the presence of multipotent mesenchymal stem/progenitor cells, the support of neutrophil differentiation and responsiveness to inflammatory stimuli. Single-cell RNA sequencing revealed a heterocellular composition including the presence of a hematopoietic stem/progenitor (HSPC) cluster expressing genes of fetal HSCs. BMO-derived HSPCs also exhibited lymphoid potential and a subset demonstrated transient engraftment potential upon xenotransplantation in mice. We show that the BMOs could enable the modeling of hematopoietic developmental aspects and inborn errors of hematopoiesis, as shown for human VPS45 deficiency. Thus, iPSC-derived BMOs serve as a physiologically relevant in vitro model of the human BM microenvironment to study hematopoietic development and BM diseases.
Collapse
Affiliation(s)
- Stephanie Frenz-Wiessner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Savannah D Fairley
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Buser
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Isabel Goek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kirill Salewskij
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - David Illig
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedicta Zu Putlitz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yue Li
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pin-Hsuan Chen
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Kalauz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Raffaele Conca
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technical University of Munich, Munich, Germany
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Remco T A Megens
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biomedical Engineering (BME), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Monika I Linder
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
34
|
Bernt KM. Mapping human hematopoiesis. Nat Immunol 2024; 25:590-591. [PMID: 38514889 DOI: 10.1038/s41590-024-01793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Affiliation(s)
- Kathrin M Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Zhang X, Song B, Carlino MJ, Li G, Ferchen K, Chen M, Thompson EN, Kain BN, Schnell D, Thakkar K, Kouril M, Jin K, Hay SB, Sen S, Bernardicius D, Ma S, Bennett SN, Croteau J, Salvatori O, Lye MH, Gillen AE, Jordan CT, Singh H, Krause DS, Salomonis N, Grimes HL. An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors. Nat Immunol 2024; 25:703-715. [PMID: 38514887 PMCID: PMC11003869 DOI: 10.1038/s41590-024-01782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Analysis of the human hematopoietic progenitor compartment is being transformed by single-cell multimodal approaches. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) enables coupled surface protein and transcriptome profiling, thereby revealing genomic programs underlying progenitor states. To perform CITE-seq systematically on primary human bone marrow cells, we used titrations with 266 CITE-seq antibodies (antibody-derived tags) and machine learning to optimize a panel of 132 antibodies. Multimodal analysis resolved >80 stem, progenitor, immune, stromal and transitional cells defined by distinctive surface markers and transcriptomes. This dataset enables flow cytometry solutions for in silico-predicted cell states and identifies dozens of cell surface markers consistently detected across donors spanning race and sex. Finally, aligning annotations from this atlas, we nominate normal marrow equivalents for acute myeloid leukemia stem cell populations that differ in clinical response. This atlas serves as an advanced digital resource for hematopoietic progenitor analyses in human health and disease.
Collapse
Affiliation(s)
- Xuan Zhang
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Baobao Song
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Maximillian J Carlino
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kyle Ferchen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mi Chen
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Evrett N Thompson
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Bailee N Kain
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dan Schnell
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michal Kouril
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stuart B Hay
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sidharth Sen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David Bernardicius
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Siyuan Ma
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sierra N Bennett
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | - Austin E Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Harinder Singh
- Departments of Immunology and Computational and Systems Biology, Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
36
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
37
|
Liu X, Chen H, Li Z, Yang X, Jin W, Wang Y, Zheng J, Li L, Xuan C, Yuan J, Yang Y. InPACT: a computational method for accurate characterization of intronic polyadenylation from RNA sequencing data. Nat Commun 2024; 15:2583. [PMID: 38519498 PMCID: PMC10960005 DOI: 10.1038/s41467-024-46875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Alternative polyadenylation can occur in introns, termed intronic polyadenylation (IPA), has been implicated in diverse biological processes and diseases, as it can produce noncoding transcripts or transcripts with truncated coding regions. However, a reliable method is required to accurately characterize IPA. Here, we propose a computational method called InPACT, which allows for the precise characterization of IPA from conventional RNA-seq data. InPACT successfully identifies numerous previously unannotated IPA transcripts in human cells, many of which are translated, as evidenced by ribosome profiling data. We have demonstrated that InPACT outperforms other methods in terms of IPA identification and quantification. Moreover, InPACT applied to monocyte activation reveals temporally coordinated IPA events. Further application on single-cell RNA-seq data of human fetal bone marrow reveals the expression of several IPA isoforms in a context-specific manner. Therefore, InPACT represents a powerful tool for the accurate characterization of IPA from RNA-seq data.
Collapse
Affiliation(s)
- Xiaochuan Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zekun Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxiao Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wen Jin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yuting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jian Zheng
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Long Li
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Chenghao Xuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yang Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
38
|
Bandyopadhyay S, Duffy M, Ahn KJ, Pang M, Smith D, Duncan G, Sussman J, Zhang I, Huang J, Lin Y, Xiong B, Imtiaz T, Chen CH, Thadi A, Chen C, Xu J, Reichart M, Pillai V, Snaith O, Oldridge D, Bhattacharyya S, Maillard I, Carroll M, Nelson C, Qin L, Tan K. Mapping the Cellular Biogeography of Human Bone Marrow Niches Using Single-Cell Transcriptomics and Proteomic Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585083. [PMID: 38559168 PMCID: PMC10979999 DOI: 10.1101/2024.03.14.585083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The bone marrow is the organ responsible for blood production. Diverse non-hematopoietic cells contribute essentially to hematopoiesis. However, these cells and their spatial organization remain largely uncharacterized as they have been technically challenging to study in humans. Here, we used fresh femoral head samples and performed single-cell RNA sequencing (scRNA-Seq) to profile 29,325 enriched non-hematopoietic bone marrow cells and discover nine transcriptionally distinct subtypes. We next employed CO-detection by inDEXing (CODEX) multiplexed imaging of 18 individuals, including both healthy and acute myeloid leukemia (AML) samples, to spatially profile over one million single cells with a novel 53-antibody panel. We discovered a relatively hyperoxygenated arterio-endosteal niche for early myelopoiesis, and an adipocytic, but not endosteal or perivascular, niche for early hematopoietic stem and progenitor cells. We used our atlas to predict cell type labels in new bone marrow images and used these predictions to uncover mesenchymal stromal cell (MSC) expansion and leukemic blast/MSC-enriched spatial neighborhoods in AML patient samples. Our work represents the first comprehensive, spatially-resolved multiomic atlas of human bone marrow and will serve as a reference for future investigation of cellular interactions that drive hematopoiesis.
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Minxing Pang
- Applied Mathematics & Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - David Smith
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Gwendolyn Duncan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Sussman
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Iris Zhang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA
| | - Jeffrey Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Yulieh Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Barbara Xiong
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tamjid Imtiaz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Melissa Reichart
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Oraine Snaith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivan Maillard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles Nelson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
39
|
Ye F, Wang J, Li J, Mei Y, Guo G. Mapping Cell Atlases at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305449. [PMID: 38145338 PMCID: PMC10885669 DOI: 10.1002/advs.202305449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Recent advancements in single-cell technologies have led to rapid developments in the construction of cell atlases. These atlases have the potential to provide detailed information about every cell type in different organisms, enabling the characterization of cellular diversity at the single-cell level. Global efforts in developing comprehensive cell atlases have profound implications for both basic research and clinical applications. This review provides a broad overview of the cellular diversity and dynamics across various biological systems. In addition, the incorporation of machine learning techniques into cell atlas analyses opens up exciting prospects for the field of integrative biology.
Collapse
Affiliation(s)
- Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jiaqi Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Yuqing Mei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiang310058China
- Institute of HematologyZhejiang UniversityHangzhouZhejiang310000China
| |
Collapse
|
40
|
Deng Y, Lu Y, Li M, Shen J, Qin S, Zhang W, Zhang Q, Shen Z, Li C, Jia T, Chen P, Peng L, Chen Y, Zhang W, Liu H, Zhang L, Rong L, Wang X, Chen D. SCAN: Spatiotemporal Cloud Atlas for Neural cells. Nucleic Acids Res 2024; 52:D998-D1009. [PMID: 37930842 PMCID: PMC10767991 DOI: 10.1093/nar/gkad895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
The nervous system is one of the most complicated and enigmatic systems within the animal kingdom. Recently, the emergence and development of spatial transcriptomics (ST) and single-cell RNA sequencing (scRNA-seq) technologies have provided an unprecedented ability to systematically decipher the cellular heterogeneity and spatial locations of the nervous system from multiple unbiased aspects. However, efficiently integrating, presenting and analyzing massive multiomic data remains a huge challenge. Here, we manually collected and comprehensively analyzed high-quality scRNA-seq and ST data from the nervous system, covering 10 679 684 cells. In addition, multi-omic datasets from more than 900 species were included for extensive data mining from an evolutionary perspective. Furthermore, over 100 neurological diseases (e.g. Alzheimer's disease, Parkinson's disease, Down syndrome) were systematically analyzed for high-throughput screening of putative biomarkers. Differential expression patterns across developmental time points, cell types and ST spots were discerned and subsequently subjected to extensive interpretation. To provide researchers with efficient data exploration, we created a new database with interactive interfaces and integrated functions called the Spatiotemporal Cloud Atlas for Neural cells (SCAN), freely accessible at http://47.98.139.124:8799 or http://scanatlas.net. SCAN will benefit the neuroscience research community to better exploit the spatiotemporal atlas of the neural system and promote the development of diagnostic strategies for various neurological disorders.
Collapse
Affiliation(s)
- Yushan Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mengrou Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou 215123, China
| | - Jiayi Shen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Siying Qin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Wei Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qiang Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Zhaoyang Shen
- Life Sciences and Technology College, China Pharmaceutical University, Nanjing 211198, China
| | - Changxiao Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Tengfei Jia
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou 215123, China
| | - Peixin Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Lingmin Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yangfeng Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Wensheng Zhang
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou 215123, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiangdong Wang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai 200000, China
| | - Dongsheng Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| |
Collapse
|
41
|
Winestone LE, Bhojwani D, Ghorashian S, Muffly L, Leahy AB, Chao K, Steineck A, Rössig C, Lamble A, Maude SL, Myers R, Rheingold SR. INSPIRED Symposium Part 4A: Access to CAR T Cell Therapy in Unique Populations with B Cell Acute Lymphoblastic Leukemia. Transplant Cell Ther 2024; 30:56-70. [PMID: 37821078 DOI: 10.1016/j.jtct.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The approval of tisagenlecleucel (tisa-cel) for use in children with B cell acute lymphoblastic leukemia (B-ALL) was based on the phase 2 ELIANA trial, a global registration study. However, the ELIANA trial excluded specific subsets of patients facing unique challenges and did not include a sufficient number of patients to adequately evaluate outcomes in rare subpopulations. Since the commercialization of tisa-cel, data have become available that support therapeutic indications beyond the specific cohorts previously eligible for chimeric antigen receptor (CAR) T cells targeted to CD19 (CD19 CAR-T) therapy on the registration clinical trial. Substantial real-world data and aggregate clinical trial data have addressed gaps in our understanding of response rates, longer-term efficacy, and toxicities associated with CD19 CAR-T in special populations and rare clinical scenarios. These include patients with central nervous system relapsed disease, who were excluded from ELIANA and other early CAR-T trials owing to concerns about risk of neurotoxicity that have not been born out. There is also interest in the use of CD19 CAR-T for very-high-risk patients earlier in the course of therapy, such as patients with persistent minimal residual disease after 2 cycles of upfront chemotherapy and patients with first relapse of B-ALL. However, these indications are not specified on the label for tisa-cel and historically were not included in eligibility criteria for most clinical trials; data addressing these populations are needed. Populations at high risk of relapse, including patients with high-risk cytogenetic lesions, infants with B-ALL, patients with trisomy 21, and young adults with B-ALL, also may benefit from earlier treatment with CD19 CAR-T. It is important to prospectively study patient-reported outcomes given the differential toxicity expected between CD19 CAR-T and the historic standard of care, hematopoietic cell transplantation. Now that CD19 CAR-T therapy is commercially available, studies evaluating potential access disparities created by this very expensive novel therapy are increasingly pressing.
Collapse
Affiliation(s)
- Lena E Winestone
- Division of Allergy, Immunology, and BMT, Department of Pediatrics, UCSF Benioff Children's Hospitals, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.
| | - Deepa Bhojwani
- Division of Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sara Ghorashian
- Haematology Department, Great Ormond Street Hospital, London UK, Developmental Biology and Cancer, UCL-Great Ormond Street Institute of Child Health, University College London, London United Kingdom
| | - Lori Muffly
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, California
| | - Allison Barz Leahy
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karen Chao
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Angela Steineck
- MACC Fund Center for Cancer and Blood Disorders, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Claudia Rössig
- University Children's Hospital Muenster, Pediatric Hematology and Oncology, Muenster, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Adam Lamble
- Division of Hematology and Oncology, Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Shannon L Maude
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Regina Myers
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan R Rheingold
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Barnes JL, Yoshida M, He P, Worlock KB, Lindeboom RGH, Suo C, Pett JP, Wilbrey-Clark A, Dann E, Mamanova L, Richardson L, Polanski K, Pennycuick A, Allen-Hyttinen J, Herczeg IT, Arzili R, Hynds RE, Teixeira VH, Haniffa M, Lim K, Sun D, Rawlins EL, Oliver AJ, Lyons PA, Marioni JC, Ruhrberg C, Tuong ZK, Clatworthy MR, Reading JL, Janes SM, Teichmann SA, Meyer KB, Nikolić MZ. Early human lung immune cell development and its role in epithelial cell fate. Sci Immunol 2023; 8:eadf9988. [PMID: 38100545 PMCID: PMC7615868 DOI: 10.1126/sciimmunol.adf9988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/03/2023] [Indexed: 12/17/2023]
Abstract
Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1β drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1β-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.
Collapse
Affiliation(s)
- Josephine L Barnes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Rik G H Lindeboom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Adam Pennycuick
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Iván T Herczeg
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Romina Arzili
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Vitor H Teixeira
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - James L Reading
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- Tumour Immunodynamics and Interception Laboratory, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Physics/Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
43
|
Lambo S, Trinh DL, Ries RE, Jin D, Setiadi A, Ng M, Leblanc VG, Loken MR, Brodersen LE, Dai F, Pardo LM, Ma X, Vercauteren SM, Meshinchi S, Marra MA. A longitudinal single-cell atlas of treatment response in pediatric AML. Cancer Cell 2023; 41:2117-2135.e12. [PMID: 37977148 DOI: 10.1016/j.ccell.2023.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Pediatric acute myeloid leukemia (pAML) is characterized by heterogeneous cellular composition, driver alterations and prognosis. Characterization of this heterogeneity and how it affects treatment response remains understudied in pediatric patients. We used single-cell RNA sequencing and single-cell ATAC sequencing to profile 28 patients representing different pAML subtypes at diagnosis, remission and relapse. At diagnosis, cellular composition differed between genetic subgroups. Upon relapse, cellular hierarchies transitioned toward a more primitive state regardless of subtype. Primitive cells in the relapsed tumor were distinct compared to cells at diagnosis, with under-representation of myeloid transcriptional programs and over-representation of other lineage programs. In some patients, this was accompanied by the appearance of a B-lymphoid-like hierarchy. Our data thus reveal the emergence of apparent subtype-specific plasticity upon treatment and inform on potentially targetable processes.
Collapse
Affiliation(s)
- Sander Lambo
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Diane L Trinh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan Jin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Audi Setiadi
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, Division of Hematopathology, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Ng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Veronique G Leblanc
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | | | - Fangyan Dai
- Hematologics, Incorporated, Seattle, WA, USA
| | | | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne M Vercauteren
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, Division of Hematopathology, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
44
|
Iacobucci I, Zeng AGX, Gao Q, Garcia-Prat L, Baviskar P, Shah S, Murison A, Voisin V, Chan-Seng-Yue M, Cheng C, Qu C, Bailey C, Lear M, Witkowski MT, Zhou X, Peraza AZ, Gangwani K, Advani AS, Luger SM, Litzow MR, Rowe JM, Paietta EM, Stock W, Dick JE, Mullighan CG. SINGLE CELL DISSECTION OF DEVELOPMENTAL ORIGINS AND TRANSCRIPTIONAL HETEROGENEITY IN B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569954. [PMID: 38106088 PMCID: PMC10723356 DOI: 10.1101/2023.12.04.569954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sequencing of bulk tumor populations has improved genetic classification and risk assessment of B-ALL, but does not directly examine intratumor heterogeneity or infer leukemia cellular origins. We profiled 89 B-ALL samples by single-cell RNA-seq (scRNA-seq) and compared them to a reference map of normal human B-cell development established using both functional and molecular assays. Intra-sample heterogeneity was driven by cell cycle, metabolism, differentiation, and inflammation transcriptional programs. By inference of B lineage developmental state composition, nearly all samples possessed a high abundance of pro-B cells, with variation between samples mainly driven by sub-populations. However, ZNF384- r and DUX4- r B-ALL showed composition enrichment of hematopoietic stem cells, BCR::ABL1 and KMT2A -r ALL of Early Lymphoid progenitors, MEF2D -r and TCF3::PBX1 of Pre-B cells. Enrichment of Early Lymphoid progenitors correlated with high-risk clinical features. Understanding variation in transcriptional programs and developmental states of B-ALL by scRNA-seq refines existing clinical and genomic classifications and improves prediction of treatment outcome.
Collapse
|
45
|
Persad S, Choo ZN, Dien C, Sohail N, Masilionis I, Chaligné R, Nawy T, Brown CC, Sharma R, Pe'er I, Setty M, Pe'er D. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nat Biotechnol 2023; 41:1746-1757. [PMID: 36973557 PMCID: PMC10713451 DOI: 10.1038/s41587-023-01716-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023]
Abstract
Metacells are cell groupings derived from single-cell sequencing data that represent highly granular, distinct cell states. Here we present single-cell aggregation of cell states (SEACells), an algorithm for identifying metacells that overcome the sparsity of single-cell data while retaining heterogeneity obscured by traditional cell clustering. SEACells outperforms existing algorithms in identifying comprehensive, compact and well-separated metacells in both RNA and assay for transposase-accessible chromatin (ATAC) modalities across datasets with discrete cell types and continuous trajectories. We demonstrate the use of SEACells to improve gene-peak associations, compute ATAC gene scores and infer the activities of critical regulators during differentiation. Metacell-level analysis scales to large datasets and is particularly well suited for patient cohorts, where per-patient aggregation provides more robust units for data integration. We use our metacells to reveal expression dynamics and gradual reconfiguration of the chromatin landscape during hematopoietic differentiation and to uniquely identify CD4 T cell differentiation and activation states associated with disease onset and severity in a Coronavirus Disease 2019 (COVID-19) patient cohort.
Collapse
Affiliation(s)
- Sitara Persad
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Computer Science, Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY, USA
| | - Zi-Ning Choo
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Dien
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Computational Biology Program, Public Health Sciences Division and Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Noor Sohail
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligné
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tal Nawy
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chrysothemis C Brown
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Itsik Pe'er
- Department of Computer Science, Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Computational Biology Program, Public Health Sciences Division and Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
46
|
Webb S, Haniffa M. Large-scale single-cell RNA sequencing atlases of human immune cells across lifespan: Possibilities and challenges. Eur J Immunol 2023; 53:e2250222. [PMID: 36826421 DOI: 10.1002/eji.202250222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Single-cell RNA sequencing technologies have successfully been leveraged for immunological insights into human prenatal, pediatric, and adult tissues. These single-cell studies have led to breakthroughs in our understanding of stem, myeloid, and lymphoid cell function. Computational analysis of fetal hematopoietic tissues has uncovered trajectories for T- and B-cell differentiation across multiple organ sites, and how these trajectories might be dysregulated in fetal and pediatric health and disease. As we enter the age of large-scale, multiomic, and integrative single-cell meta-analysis, we assess the advances and challenges of large-scale data generation, analysis, and reanalysis, and data dissemination for a broad range of scientific and clinical communities. We discuss Findable, Accessible, Interoperable, and Reusable data sharing and unified cell ontology languages as strategic areas for progress of the field in the near future. We also reflect on the trend toward deployment of multiomic and spatial genomic platforms within single-cell RNA sequencing projects, and the crucial role these data types will assume in the immediate future toward creation of comprehensive and rich single-cell atlases. We demonstrate using our recent studies of human prenatal and adult hematopoietic tissues the importance of interdisciplinary and collaborative working in science to reveal biological insights in parallel with technological and computational innovations.
Collapse
Affiliation(s)
- Simone Webb
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
47
|
Dann E, Cujba AM, Oliver AJ, Meyer KB, Teichmann SA, Marioni JC. Precise identification of cell states altered in disease using healthy single-cell references. Nat Genet 2023; 55:1998-2008. [PMID: 37828140 PMCID: PMC10632138 DOI: 10.1038/s41588-023-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Joint analysis of single-cell genomics data from diseased tissues and a healthy reference can reveal altered cell states. We investigate whether integrated collections of data from healthy individuals (cell atlases) are suitable references for disease-state identification and whether matched control samples are needed to minimize false discoveries. We demonstrate that using a reference atlas for latent space learning followed by differential analysis against matched controls leads to improved identification of disease-associated cells, especially with multiple perturbed cell types. Additionally, when an atlas is available, reducing control sample numbers does not increase false discovery rates. Jointly analyzing data from a COVID-19 cohort and a blood cell atlas, we improve detection of infection-related cell states linked to distinct clinical severities. Similarly, we studied disease states in pulmonary fibrosis using a healthy lung atlas, characterizing two distinct aberrant basal states. Our analysis provides guidelines for designing disease cohort studies and optimizing cell atlas use.
Collapse
Affiliation(s)
- Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter Group, The Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Genentech, San Francisco, CA, USA.
| |
Collapse
|
48
|
Queen R, Crosier M, Eley L, Kerwin J, Turner JE, Yu J, Alqahtani A, Dhanaseelan T, Overman L, Soetjoadi H, Baldock R, Coxhead J, Boczonadi V, Laude A, Cockell SJ, Kane MA, Lisgo S, Henderson DJ. Spatial transcriptomics reveals novel genes during the remodelling of the embryonic human arterial valves. PLoS Genet 2023; 19:e1010777. [PMID: 38011284 PMCID: PMC10703419 DOI: 10.1371/journal.pgen.1010777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/07/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Abnormalities of the arterial valves, including bicuspid aortic valve (BAV) are amongst the most common congenital defects and are a significant cause of morbidity as well as predisposition to disease in later life. Despite this, and compounded by their small size and relative inaccessibility, there is still much to understand about how the arterial valves form and remodel during embryogenesis, both at the morphological and genetic level. Here we set out to address this in human embryos, using Spatial Transcriptomics (ST). We show that ST can be used to investigate the transcriptome of the developing arterial valves, circumventing the problems of accurately dissecting out these tiny structures from the developing embryo. We show that the transcriptome of CS16 and CS19 arterial valves overlap considerably, despite being several days apart in terms of human gestation, and that expression data confirm that the great majority of the most differentially expressed genes are valve-specific. Moreover, we show that the transcriptome of the human arterial valves overlaps with that of mouse atrioventricular valves from a range of gestations, validating our dataset but also highlighting novel genes, including four that are not found in the mouse genome and have not previously been linked to valve development. Importantly, our data suggests that valve transcriptomes are under-represented when using commonly used databases to filter for genes important in cardiac development; this means that causative variants in valve-related genes may be excluded during filtering for genomic data analyses for, for example, BAV. Finally, we highlight "novel" pathways that likely play important roles in arterial valve development, showing that mouse knockouts of RBP1 have arterial valve defects. Thus, this study has confirmed the utility of ST for studies of the developing heart valves and broadens our knowledge of the genes and signalling pathways important in human valve development.
Collapse
Affiliation(s)
- Rachel Queen
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Moira Crosier
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Janet Kerwin
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Jasmin E. Turner
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Ahlam Alqahtani
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Tamilvendhan Dhanaseelan
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Lynne Overman
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Hannah Soetjoadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Richard Baldock
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh University, United Kingdom
| | - Jonathan Coxhead
- Genomics Core Facility, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Veronika Boczonadi
- Bioimaging Unit, Faculty of medical Sciences, Newcastle University, United Kingdom
| | - Alex Laude
- Bioimaging Unit, Faculty of medical Sciences, Newcastle University, United Kingdom
| | - Simon J. Cockell
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Steven Lisgo
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Deborah J. Henderson
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| |
Collapse
|
49
|
Alhaj Hussen K, Chabaane E, Nelson E, Lekiashvili S, Diop S, Keita S, Evrard B, Lardenois A, Delord M, Verhoeyen E, Cornils K, Kasraian Z, Macintyre EA, Cumano A, Garrick D, Goodhardt M, Andrieu GP, Asnafi V, Chalmel F, Canque B. Multimodal cartography of human lymphopoiesis reveals B and T/NK/ILC lineages are subjected to differential regulation. iScience 2023; 26:107890. [PMID: 37766969 PMCID: PMC10520540 DOI: 10.1016/j.isci.2023.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The developmental cartography of human lymphopoiesis remains incompletely understood. Here, we establish a multimodal map demonstrating that lymphoid specification follows independent direct or stepwise hierarchic routes converging toward the emergence of newly characterized CD117lo multi-lymphoid progenitors (MLPs) that undergo a proliferation arrest before entering the CD127- (NK/ILC/T) or CD127+ (B) lymphoid pathways. While the differentiation of CD127- early lymphoid progenitors is mainly driven by Flt3 signaling, emergence of their CD127+ counterparts is regulated cell-intrinsically and depends exclusively on the divisional history of their upstream precursors, including hematopoietic stem cells. Further, transcriptional mapping of differentiation trajectories reveals that whereas myeloid granulomonocytic lineages follow continuous differentiation pathways, lymphoid trajectories are intrinsically discontinuous and characterized by sequential waves of cell proliferation allowing pre-commitment amplification of lymphoid progenitor pools. Besides identifying new lymphoid specification pathways and regulatory checkpoints, our results demonstrate that NK/ILC/T and B lineages are under fundamentally distinct modes of regulation. (149 words).
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Villejuif, Paris, France
| | - Emna Chabaane
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Shalva Lekiashvili
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Samuel Diop
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Bertrand Evrard
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Aurélie Lardenois
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Delord
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Lyon, France
- Centre Mediterranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Kerstin Cornils
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf and Research Institute Children’s Cancer Center, Hamburg, Germany
| | - Zeinab Kasraian
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Elizabeth A. Macintyre
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
| | - David Garrick
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Michele Goodhardt
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Guillaume P. Andrieu
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Vahid Asnafi
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Frederic Chalmel
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| |
Collapse
|
50
|
Peroni E, Gottardi M, D’Antona L, Randi ML, Rosato A, Coltro G. Hematologic Neoplasms Associated with Down Syndrome: Cellular and Molecular Heterogeneity of the Diseases. Int J Mol Sci 2023; 24:15325. [PMID: 37895004 PMCID: PMC10607483 DOI: 10.3390/ijms242015325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The molecular basis of Down syndrome (DS) predisposition to leukemia is not fully understood but involves various factors such as chromosomal abnormalities, oncogenic mutations, epigenetic alterations, and changes in selection dynamics. Myeloid leukemia associated with DS (ML-DS) is preceded by a preleukemic phase called transient abnormal myelopoiesis driven by GATA1 gene mutations and progresses to ML-DS via additional mutations in cohesin genes, CTCF, RAS, or JAK/STAT pathway genes. DS-related ALL (ALL-DS) differs from non-DS ALL in terms of cytogenetic subgroups and genetic driver events, and the aberrant expression of CRLF2, JAK2 mutations, and RAS pathway-activating mutations are frequent in ALL-DS. Recent advancements in single-cell multi-omics technologies have provided unprecedented insights into the cellular and molecular heterogeneity of DS-associated hematologic neoplasms. Single-cell RNA sequencing and digital spatial profiling enable the identification of rare cell subpopulations, characterization of clonal evolution dynamics, and exploration of the tumor microenvironment's role. These approaches may help identify new druggable targets and tailor therapeutic interventions based on distinct molecular profiles, ultimately improving patient outcomes with the potential to guide personalized medicine approaches and the development of targeted therapies.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, 31033 Padua, Italy
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Giacomo Coltro
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Center of Research and Innovation for Myeloproliferative Neoplasms, CRIMM, AOU Careggi, 50134 Florence, Italy
| |
Collapse
|