1
|
Qian X, Coleman K, Jiang S, Kriz AJ, Marciano JH, Luo C, Cai C, Manam MD, Caglayan E, Lai A, Exposito-Alonso D, Otani A, Ghosh U, Shao DD, Andersen RE, Neil JE, Johnson R, LeFevre A, Hecht JL, Micali N, Sestan N, Rakic P, Miller MB, Sun L, Stringer C, Li M, Walsh CA. Spatial transcriptomics reveals human cortical layer and area specification. Nature 2025:10.1038/s41586-025-09010-1. [PMID: 40369074 DOI: 10.1038/s41586-025-09010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct1-4. Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of spatial context during cell dissociation5-8. Here we used multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based nucleus segmentation, to examine the molecular, cellular and cytoarchitectural development of the human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing more than 18 million single cells, spans eight cortical areas across seven developmental time points. We uncovered the early establishment of the six-layer structure, identifiable by the laminar distribution of excitatory neuron subtypes, 3 months before the emergence of cytoarchitectural layers. Notably, we discovered two distinct modes of cortical areal specification during mid-gestation: (1) a continuous, gradual transition observed across most cortical areas along the anterior-posterior axis and (2) a discrete, abrupt boundary specifically identified between the primary (V1) and secondary (V2) visual cortices as early as gestational week 20. This sharp binary transition in V1-V2 neuronal subtypes challenges the notion that mid-gestation cortical arealization involves only gradient-like transitions6,10. Furthermore, integrating single-nucleus RNA sequencing with MERFISH revealed an early upregulation of synaptogenesis in V1-specific layer 4 neurons. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This study establishes a spatially resolved single-cell analysis paradigm and paves the way for the construction of a comprehensive developmental atlas of the human brain.
Collapse
Affiliation(s)
- Xuyu Qian
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kyle Coleman
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shunzhou Jiang
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea J Kriz
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jack H Marciano
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chunyu Luo
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chunhui Cai
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Monica Devi Manam
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Caglayan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abbe Lai
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aoi Otani
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Urmi Ghosh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Diane D Shao
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca E Andersen
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer E Neil
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Johnson
- University of Maryland Brain and Tissue Bank, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexandra LeFevre
- University of Maryland Brain and Tissue Bank, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicola Micali
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Michael B Miller
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Carsen Stringer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mingyao Li
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Gao Y, Dong Q, Arachchilage KH, Risgaard RD, Syed M, Sheng J, Schmidt DK, Jin T, Liu S, Sandoval SO, Knaack S, Eckholm MT, Chen RJ, Guo Y, Doherty D, Glass I, Levine JE, Wang D, Chang Q, Zhao X, Sousa AMM. Multimodal analyses reveal genes driving electrophysiological maturation of neurons in the primate prefrontal cortex. Neuron 2025:S0896-6273(25)00308-3. [PMID: 40398411 DOI: 10.1016/j.neuron.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 04/25/2025] [Indexed: 05/23/2025]
Abstract
The prefrontal cortex (PFC) is critical for myriad high-cognitive functions and is associated with several neuropsychiatric disorders. Here, using Patch-seq and single-nucleus multiomic analyses, we identified genes and regulatory networks governing the maturation of distinct neuronal populations in the PFC of rhesus macaque. We discovered that specific electrophysiological properties exhibited distinct maturational kinetics and identified key genes underlying these properties. We unveiled that RAPGEF4 is important for the maturation of resting membrane potential and inward sodium current in both macaque and human. We demonstrated that knockdown of CHD8, a high-confidence autism risk gene, in human and macaque organotypic slices led to impaired maturation, via downregulation of key genes, including RAPGEF4. Restoring the expression of RAPGEF4 rescued the proper electrophysiological maturation of CHD8-deficient neurons. Our study revealed regulators of neuronal maturation during a critical period of PFC development in primates and implicated such regulators in molecular processes underlying autism.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Ryan D Risgaard
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Moosa Syed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jie Sheng
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Danielle K Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ting Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sara Knaack
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Magnus T Eckholm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rachel J Chen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ian Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Andre M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
3
|
Liu Y, Li M, Segal A, Zhang M, Sestan N. Decoding human brain evolution: Insights from genomics. Curr Opin Neurobiol 2025; 92:103033. [PMID: 40334295 DOI: 10.1016/j.conb.2025.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/13/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025]
Abstract
The human brain has undergone remarkable structural and functional specializations compared to that of nonhuman primates (NHPs), underlying the advanced cognitive abilities unique to humans. However, the cellular and genetic basis driving these specializations remains largely unknown. Comparing humans to our closest living relatives, chimpanzee and other great apes, is essential for identifying truly human-specific features. Recent comparative studies with closely related NHPs at the single-cell resolution using multimodal genomic profiling, assisted with high-throughput functional screening have provided unprecedented insights into human-specific brain features and their genetic underpinnings. In this review, we synthesize the current knowledge of human brain evolution at cellular and molecular levels, emphasizing how genetic changes have shaped these adaptations. We also discuss the emerging opportunities presented by new technologies and comprehensive atlases for advancing our understanding of human brain evolution.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mingli Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ashlea Segal
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Wu-Tsai Institute, Yale University, New Haven, CT, 06520, USA
| | - Menglei Zhang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Wu-Tsai Institute, Yale University, New Haven, CT, 06520, USA; Departments of Comparative Medicine, Genetics, and Psychiatry, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Chen X, Kim Y, Kawaguchi D. Development of the rodent prefrontal cortex: circuit formation, plasticity, and impacts of early life stress. Front Neural Circuits 2025; 19:1568610. [PMID: 40206866 PMCID: PMC11979153 DOI: 10.3389/fncir.2025.1568610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
The prefrontal cortex (PFC), located at the anterior region of the cerebral cortex, is a multimodal association cortex essential for higher-order brain functions, including decision-making, attentional control, memory processing, and regulation of social behavior. Structural, circuit-level, and functional abnormalities in the PFC are often associated with neurodevelopmental disorders. Here, we review recent findings on the postnatal development of the PFC, with a particular emphasis on rodent studies, to elucidate how its structural and circuit properties are established during critical developmental windows and how these processes influence adult behaviors. Recent evidence also highlights the lasting effects of early life stress on the PFC structure, connectivity, and function. We explore potential mechanisms underlying these stress-induced alterations, with a focus on epigenetic regulation and its implications for PFC maturation and neurodevelopmental disorders. By integrating these insights, this review provides an overview of the developmental processes shaping the PFC and their implications for brain health and disease.
Collapse
Affiliation(s)
| | | | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Zhang L, Dong W, Li J, Gao S, Sheng H, Kong Q, Guan F, Zhang L. C1ql3 knockout affects microglia activation, neuronal integrity, and spontaneous behavior in Wistar rats. Animal Model Exp Med 2025; 8:332-343. [PMID: 38379452 PMCID: PMC11871103 DOI: 10.1002/ame2.12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND C1QL3 is widely expressed in the brain and is specifically produced by a subset of excitatory neurons. However, its function is still not clear. We established C1ql3-deficient rats to investigate the role of C1QL3 in the brain. METHODS C1ql3 knockout (KO) rats were generated using CRISPR/Cas9. C1ql3 KO was determined by polymerase chain reaction (PCR), DNA sequencing, and western blotting. Microglia morphology and cytokine expression with or without lipopolysaccharide (LPS) stimulus were analyzed using immunohistochemistry and real-time PCR. The brain structure changes in KO rats were examined using magnetic resonance imaging. Neuronal architecture alteration was analyzed by performing Golgi staining. Behavior was evaluated using the open field test, Morris water maze test, and Y maze test. RESULTS C1ql3 KO significantly increased the number of ramified microglia and decreased the number of hypertrophic microglia, whereas C1ql3 KO did not influence the expression of pro-inflammatory factors and anti-inflammatory factors except IL-10. C1ql3 KO brains had more amoeboid microglia types and higher Arg-1 expression compared with the WT rats after LPS stimulation. The brain weights and HPC sizes of C1ql3 KO rats did not differ from WT rats. C1ql3 KO damaged neuronal integrity including neuron dendritic arbors and spine density. C1ql3 KO rats demonstrated an increase in spontaneous activity and an impairment in short working memory. CONCLUSIONS C1ql3 KO not only interrupts the neuronal integrity but also affects the microglial activation, resulting in hyperactive behavior and impaired short memory in rats, which highlights the role of C1QL3 in the regulation of structure and function of both neuronal and microglial cells.
Collapse
Affiliation(s)
- Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal SciencePeking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Jingwen Li
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Hanxuan Sheng
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Qi Kong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal SciencePeking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC)Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical SciencesBeijingChina
- Neuroscience Center, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
6
|
Kaur N, Kovner R, Gulden FO, Pletikos M, Andrijevic D, Zhu T, Silbereis J, Shibata M, Shibata A, Liu Y, Ma S, Salla N, de Martin X, Klarić TS, Burke M, Franjic D, Cho H, Yuen M, Chatterjee I, Soric P, Esakkimuthu D, Moser M, Santpere G, Mineur YS, Pattabiraman K, Picciotto MR, Huang H, Sestan N. Specification of claustro-amygdalar and palaeocortical neurons and circuits. Nature 2025; 638:469-478. [PMID: 39814878 PMCID: PMC11821539 DOI: 10.1038/s41586-024-08361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/06/2024] [Indexed: 01/18/2025]
Abstract
The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours1-5. Early-life disruptions in these circuits are linked to neuropsychiatric disorders4-8, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons. The absence of SOX4 and SOX11 in post-mitotic excitatory neurons results in a marked reduction in the size of the basolateral amygdala complex (BLC), claustrum (CLA) and PIR. These transcription factors control BLC formation through direct regulation of Tfap2d expression. Cross-species analyses, including in humans, identified conserved Tfap2d expression in developing excitatory neurons of BLC, CLA, PIR and the associated transitional areas of the frontal, insular and temporal cortex. Although the loss and haploinsufficiency of Tfap2d yield similar alterations in learned threat-response behaviours, differences emerge in the phenotypes at different Tfap2d dosages, particularly in terms of changes observed in BLC size and BLC-PFC connectivity. This underscores the importance of Tfap2d dosage in orchestrating developmental shifts in BLC-PFC connectivity and behavioural modifications that resemble symptoms of neuropsychiatric disorders. Together, these findings reveal key elements of a conserved gene regulatory network that shapes the development and function of crucial VLp excitatory neurons and their PFC connectivity and offer insights into their evolution and alterations in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Rothem Kovner
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mihovil Pletikos
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - David Andrijevic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Tianjia Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - John Silbereis
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mikihito Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Akemi Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Yuting Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Shaojie Ma
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nikkita Salla
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
| | - Xabier de Martin
- Neurogenomics Group, Hospital del Mar Research Institute, PRBB, Barcelona, Spain
| | - Thomas S Klarić
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Megan Burke
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Franjic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Hyesun Cho
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Matthew Yuen
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
| | - Ipsita Chatterjee
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Paula Soric
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Devippriya Esakkimuthu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Techical University of Munich, Munich, Germany
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Neurogenomics Group, Hospital del Mar Research Institute, PRBB, Barcelona, Spain
| | | | - Kartik Pattabiraman
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Marina R Picciotto
- Yale Child Study Center, New Haven, CT, USA
- Department of Psychiatry, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Yale Child Study Center, New Haven, CT, USA.
- Department of Psychiatry, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale University, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Liu Y, McDaniel JA, Chen C, Yang L, Kipcak A, Savier EL, Erisir A, Cang J, Campbell JN. Co-Conservation of Synaptic Gene Expression and Circuitry in Collicular Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634521. [PMID: 39896595 PMCID: PMC11785205 DOI: 10.1101/2025.01.23.634521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The superior colliculus (SC), a midbrain sensorimotor hub, is anatomically and functionally similar across vertebrates, but how its cell types have evolved is unclear. Using single-nucleus transcriptomics, we compared the SC's molecular and cellular organization in mice, tree shrews, and humans. Despite over 96 million years of evolutionary divergence, we identified ~30 consensus neuronal subtypes, including Cbln2+ neurons that form the SC-pulvinar circuit in mice and tree shrews. Synapse-related genes were among the most conserved, unlike neocortex, suggesting co-conservation of synaptic genes and circuitry. In contrast, cilia-related genes diverged significantly across species, highlighting the potential importance of the neuronal primary cilium in SC evolution. Additionally, we identified a novel inhibitory SC neuron in tree shrews and humans but not mice. Our findings reveal that the SC has evolved by conserving neuron subtypes, synaptic genes, and circuitry, while diversifying ciliary gene expression and an inhibitory neuron subtype.
Collapse
Affiliation(s)
- Yuanming Liu
- Department of Biology, Charlottesville, VA 22904, USA
| | - John A McDaniel
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - Chen Chen
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - Lu Yang
- Department of Biology, Charlottesville, VA 22904, USA
| | - Arda Kipcak
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | | | - Alev Erisir
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - Jianhua Cang
- Department of Biology, Charlottesville, VA 22904, USA
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - John N Campbell
- Department of Biology, Charlottesville, VA 22904, USA
- Lead Contact
| |
Collapse
|
8
|
Gene drives development of brain's emotional centre and its connections. Nature 2025:10.1038/d41586-024-04143-1. [PMID: 39814922 DOI: 10.1038/d41586-024-04143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
9
|
Kopić J, Haldipur P, Millen KJ, Kostović I, Krasić J, Krsnik Ž. Initial regional cytoarchitectonic differences in dorsal and orbitobasal human developing frontal cortex revealed by spatial transcriptomics. Brain Struct Funct 2024; 230:13. [PMID: 39692769 DOI: 10.1007/s00429-024-02865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Early development of the human fetal cerebral cortex involves a set of precisely coordinated molecular processes that remains rather underexplored. Previous studies indicate that the laminar identity and the molecular specification of cortical neurons driven by genetic programming, as well as associated histogenetic events begin during early fetal development. Our recent study discovered unique regional cytoarchitectonic features in the developing human frontal lobe, including migratory waves of postmitotic neurons in the dorsal frontal cortex and the "double plate" feature in orbitobasal cortex (Kopić et al. in Cells 12:231, 2023). Notably, neurons of these two cytoarchitectonic features typically express deep projection neuron (DPN) markers (TBR1, TLE4, SOX5). This paper aims to conduct an in-depth investigation of these cytoarchitectonic features at the transcriptomic level, whilst preserving spatial information. Here, we employed NanoString GeoMx™ Digital Spatial Profiler (DSP) technology to examine gene expression differences in the transient cortical compartments of the dorsal and ventral regions of the developing frontal lobe, focusing specifically on 15 post-conceptional weeks (PCW), that is a critical period for subplate formation. We identified multiple differentially expressed genes between the transient cellular compartments of the dorsal and orbitobasal regions of the developing human frontal cortex. These new findings additionally confirm that regional patterning and specification of the prospective higher-order association prefrontal cortex emerges early in fetal development, contributing to the highly organized cortical architecture of the human brain.
Collapse
Affiliation(s)
- Janja Kopić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Ivica Kostović
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Jure Krasić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| | - Željka Krsnik
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
10
|
Christopoulou E, Charrier C. Molecular mechanisms of the specialization of human synapses in the neocortex. Curr Opin Genet Dev 2024; 89:102258. [PMID: 39255688 DOI: 10.1016/j.gde.2024.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024]
Abstract
Synapses of the neocortex specialized during human evolution to develop over extended timescales, process vast amounts of information and increase connectivity, which is thought to underlie our advanced social and cognitive abilities. These features reflect species-specific regulations of neuron and synapse cell biology. However, despite growing understanding of the human genome and the brain transcriptome at the single-cell level, linking human-specific genetic changes to the specialization of human synapses has remained experimentally challenging. In this review, we describe recent progress in characterizing divergent morphofunctional and developmental properties of human synapses, and we discuss new insights into the underlying molecular mechanisms. We also highlight intersections between evolutionary innovations and disorder-related dysfunctions at the synapse.
Collapse
Affiliation(s)
- Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
11
|
Zhao HT, Schmidt ER. Human-specific genetic modifiers of cortical architecture and function. Curr Opin Genet Dev 2024; 88:102241. [PMID: 39111228 PMCID: PMC11547859 DOI: 10.1016/j.gde.2024.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Evolution of the cerebral cortex is thought to have been critical for the emergence of our cognitive abilities. Major features of cortical evolution include increased neuron number and connectivity and altered morpho-electric properties of cortical neurons. Significant progress has been made in identifying human-specific genetic modifiers (HSGMs), some of which are involved in shaping these features of cortical architecture. But how did these evolutionary changes support the emergence of our cognitive abilities? Here, we highlight recent studies aimed at examining the impact of HSGMs on cortical circuit function and behavior. We also discuss the need for greater insight into the link between evolution of cortical architecture and the functional and computational properties of neuronal circuits, as we seek to provide a neurobiological foundation for human cognition.
Collapse
Affiliation(s)
- Hanzhi T Zhao
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA
| | - Ewoud Re Schmidt
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA.
| |
Collapse
|
12
|
Kumar A, Schrader AW, Aggarwal B, Boroojeny AE, Asadian M, Lee J, Song YJ, Zhao SD, Han HS, Sinha S. Intracellular spatial transcriptomic analysis toolkit (InSTAnT). Nat Commun 2024; 15:7794. [PMID: 39242579 PMCID: PMC11379969 DOI: 10.1038/s41467-024-49457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/04/2024] [Indexed: 09/09/2024] Open
Abstract
Imaging-based spatial transcriptomics technologies such as Multiplexed error-robust fluorescence in situ hybridization (MERFISH) can capture cellular processes in unparalleled detail. However, rigorous and robust analytical tools are needed to unlock their full potential for discovering subcellular biological patterns. We present Intracellular Spatial Transcriptomic Analysis Toolkit (InSTAnT), a computational toolkit for extracting molecular relationships from spatial transcriptomics data at single molecule resolution. InSTAnT employs specialized statistical tests and algorithms to detect gene pairs and modules exhibiting intriguing patterns of co-localization, both within individual cells and across the cellular landscape. We showcase the toolkit on five different datasets representing two different cell lines, two brain structures, two species, and three different technologies. We perform rigorous statistical assessment of discovered co-localization patterns, find supporting evidence from databases and RNA interactions, and identify associated subcellular domains. We uncover several cell type and region-specific gene co-localizations within the brain. Intra-cellular spatial patterns discovered by InSTAnT mirror diverse molecular relationships, including RNA interactions and shared sub-cellular localization or function, providing a rich compendium of testable hypotheses regarding molecular functions.
Collapse
Affiliation(s)
- Anurendra Kumar
- College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alex W Schrader
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bhavay Aggarwal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Marisa Asadian
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - JuYeon Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois Urbana-Champaign, Urbana, IL, 61820, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Saurabh Sinha
- H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA.
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
13
|
Dong J, Zhu XN, Zeng PM, Cao DD, Yang Y, Hu J, Luo ZG. A hominoid-specific signaling axis regulating the tempo of synaptic maturation. Cell Rep 2024; 43:114548. [PMID: 39052482 DOI: 10.1016/j.celrep.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Human cortical neurons (hCNs) exhibit high dendritic complexity and synaptic density, and the maturation process is greatly protracted. However, the molecular mechanism governing these specific features remains unclear. Here, we report that the hominoid-specific gene TBC1D3 promotes dendritic arborization and protracts the pace of synaptogenesis. Ablation of TBC1D3 in induced hCNs causes reduction of dendritic growth and precocious synaptic maturation. Forced expression of TBC1D3 in the mouse cortex protracts synaptic maturation while increasing dendritic growth. Mechanistically, TBC1D3 functions via interaction with MICAL1, a monooxygenase that mediates oxidation of actin filament. At the early stage of differentiation, the TBC1D3/MICAL1 interaction in the cytosol promotes dendritic growth via F-actin oxidation and enhanced actin dynamics. At late stages, TBC1D3 escorts MICAL1 into the nucleus and downregulates the expression of genes related with synaptic maturation through interaction with the chromatin remodeling factor ATRX. Thus, this study delineates the molecular mechanisms underlying human neuron development.
Collapse
Affiliation(s)
- Jian Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Dong-Dong Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
14
|
Morozov YM, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cereb Cortex 2024; 34:bhae293. [PMID: 39024157 PMCID: PMC11485267 DOI: 10.1093/cercor/bhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
The centrosome is the main microtubule organizing center in stem cells, and its mother centriole, anchored to the cell membrane, serves as the basal body of the primary cilium. Prolonged anchorage of centrosomes and primary cilia to the apical segment of the membrane of apical neural progenitor cells is considered vital for interkinetic nuclear translocation and repetitive cycling in the ventricular zone. In contrast, the basolateral anchorage of primary cilia has been regarded as the first step in delamination and conversion of apical to basal neural progenitor cells or neurons. Using electron microscopy analysis of serial sections, we show that centrosomes, in a fraction of cells, anchor to the basolateral cell membrane immediately after cell division and before development of cilia. In other cells, centrosomes situate freely in the cytoplasm, increasing their probability of subsequent apical anchorage. In mice, anchored centrosomes in the cells shortly after mitosis predominate during the entire cerebral neurogenesis, whereas in macaque monkeys, cytoplasmic centrosomes are more numerous. Species-specific differences in the ratio of anchored and free cytoplasmic centrosomes appear to be related to prolonged neurogenesis in the ventricular zone that is essential for lateral expansion of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| |
Collapse
|
15
|
Guan F, Gao S, Sheng H, Ma Y, Chen W, Qi X, Zhang X, Gao X, Pang S, Zhang L, Zhang L. Trim46 knockout impaired neuronal architecture and caused hypoactive behavior in rats. Dev Dyn 2024; 253:659-676. [PMID: 38193537 DOI: 10.1002/dvdy.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Tripartite motif (TRIM46) is a relatively novel protein that belongs to tripartite motif family. TRIM46 organizes parallel microtubule arrays on the axons, which are important for neuronal polarity and axonal function. TRIM46 is highly expressed in the brain, but its biological function in adults has not yet been determined. RESULTS Trim46 knockout (KO) rat line was established using CRISPR/cas9. Trim46 KO rats had smaller hippocampus sizes, fewer neuronal dendritic arbors and dendritic spines, and shorter and more distant axon initial segment. Furthermore, the protein interaction between endogenous TRIM46 and FK506 binding protein 5 (FKBP5) in brain tissues was determined; Trim46 KO increased hippocampal FKBP5 protein levels and decreased hippocampal protein kinase B (Akt) phosphorylation, gamma-aminobutyric acid type A receptor subunit alpha1 (GABRA1) and glutamate ionotropic receptor NMDA type subunit 1 (NMDAR1) protein levels. Trim46 KO rats exhibited hypoactive behavioral changes such as reduced spontaneous activity, social interaction, sucrose preference, impaired prepulse inhibition (PPI), and short-term reference memory. CONCLUSIONS These results demonstrate the significant impact of Trim46 KO on brain structure and behavioral function. This study revealed a novel potential association of TRIM46 with dendritic development and neuropsychiatric behavior, providing new insights into the role of TRIM46 in the brain.
Collapse
Affiliation(s)
- Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanxuan Sheng
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanwu Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Xu S, Li X, Fan P, Li X, Hong Y, Han X, Wu S, Chu C, Chen Y, Xu M, Lin M, Guo X, Liu Y. Single-Cell Transcriptome Landscape and Cell Fate Decoding in Human Brain Organoids after Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402287. [PMID: 38711218 PMCID: PMC11267311 DOI: 10.1002/advs.202402287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Human stem cells and derivatives transplantation are widely used to treat nervous system diseases, while the fate determination of transplanted cells is not well elucidated. To explore cell fate changes of human brain organoids before and after transplantation, human brain organoids are transplanted into prefrontal cortex (PFC) and hippocampus (HIP), respectively. Single-cell sequencing is then performed. According to time-series sample comparison, transplanted cells mainly undergo neural development at 2 months post-transplantation (MPT) and then glial development at 4MPT, respectively. A different brain region sample comparison shows that organoids grafted to PFC have obtained cell fate close to those of host cells in PFC, other than HIP, which may be regulated by the abundant expression of dopamine (DA) and acetylcholine (Ach) in PFC. Meanwhile, morphological complexity of human astrocyte grafts is greater in PFC than in HIP. DA and Ach both activate the calcium activity and increase morphological complexity of astrocytes in vitro. This study demonstrates that human brain organoids receive host niche factor regulation after transplantation, resulting in the alignment of grafted cell fate with implanted brain regions, which may contribute to a better understanding of cell transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Shi‐Bo Xu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
| | - Xin‐Rui Li
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Pan Fan
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
| | - Xiyang Li
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
| | - Yuan Hong
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Xiao Han
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Shanshan Wu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Chu Chu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Yuejun Chen
- Institute of NeuroscienceKey Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Min Xu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Mingyan Lin
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
| | - Xing Guo
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
- Co‐innovation Center of NeuroregenerationNantong UniversityJiangsu226019China
| | - Yan Liu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| |
Collapse
|
17
|
Qian X, Coleman K, Jiang S, Kriz AJ, Marciano JH, Luo C, Cai C, Manam MD, Caglayan E, Otani A, Ghosh U, Shao DD, Andersen RE, Neil JE, Johnson R, LeFevre A, Hecht JL, Miller MB, Sun L, Stringer C, Li M, Walsh CA. Spatial Single-cell Analysis Decodes Cortical Layer and Area Specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597673. [PMID: 38915567 PMCID: PMC11195106 DOI: 10.1101/2024.06.05.597673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The human cerebral cortex, pivotal for advanced cognitive functions, is composed of six distinct layers and dozens of functionally specialized areas1,2. The layers and areas are distinguished both molecularly, by diverse neuronal and glial cell subtypes, and structurally, through intricate spatial organization3,4. While single-cell transcriptomics studies have advanced molecular characterization of human cortical development, a critical gap exists due to the loss of spatial context during cell dissociation5,6,7,8. Here, we utilized multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based cell segmentation, to examine the molecular, cellular, and cytoarchitectural development of human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing 16 million single cells, spans eight cortical areas across four time points in the second and third trimesters. We uncovered an early establishment of the six-layer structure, identifiable in the laminar distribution of excitatory neuronal subtypes by mid-gestation, long before the emergence of cytoarchitectural layers. Notably, while anterior-posterior gradients of neuronal subtypes were generally observed in most cortical areas, a striking exception was the sharp molecular border between primary (V1) and secondary visual cortices (V2) at gestational week 20. Here we discovered an abrupt binary shift in neuronal subtype specification at the earliest stages, challenging the notion that continuous morphogen gradients dictate mid-gestation cortical arealization6,10. Moreover, integrating single-nuclei RNA-sequencing and in situ whole transcriptomics revealed an early upregulation of synaptogenesis in V1-specific Layer 4 neurons, suggesting a role of synaptogenesis in this discrete border formation. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This work not only provides a valuable resource for the field, but also establishes a spatially resolved single-cell analysis paradigm that paves the way for a comprehensive developmental atlas of the human brain.
Collapse
Affiliation(s)
- Xuyu Qian
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- These authors contributed equally: Xuyu Qian, Kyle Coleman, Shunzhou Jiang
| | - Kyle Coleman
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- These authors contributed equally: Xuyu Qian, Kyle Coleman, Shunzhou Jiang
| | - Shunzhou Jiang
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- These authors contributed equally: Xuyu Qian, Kyle Coleman, Shunzhou Jiang
| | - Andrea J. Kriz
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jack H. Marciano
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chunyu Luo
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chunhui Cai
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Monica Devi Manam
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Caglayan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aoi Otani
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Urmi Ghosh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane D. Shao
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rebecca E. Andersen
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Johnson
- University of Maryland Brain and Tissue Bank, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alexandra LeFevre
- University of Maryland Brain and Tissue Bank, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Carsen Stringer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Mingyao Li
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
19
|
Kaizuka T, Takumi T. Alteration of synaptic protein composition during developmental synapse maturation. Eur J Neurosci 2024; 59:2894-2914. [PMID: 38571321 DOI: 10.1111/ejn.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024]
Abstract
The postsynaptic density (PSD) is a collection of specialized proteins assembled beneath the postsynaptic membrane of dendritic spines. The PSD proteome comprises ~1000 proteins, including neurotransmitter receptors, scaffolding proteins and signalling enzymes. Many of these proteins have essential roles in synaptic function and plasticity. During brain development, changes are observed in synapse density and in the stability and shape of spines, reflecting the underlying molecular maturation of synapses. Synaptic protein composition changes in terms of protein abundance and the assembly of protein complexes, supercomplexes and the physical organization of the PSD. Here, we summarize the developmental alterations of postsynaptic protein composition during synapse maturation. We describe major PSD proteins involved in postsynaptic signalling that regulates synaptic plasticity and discuss the effect of altered expression of these proteins during development. We consider the abnormality of synaptic profiles and synaptic protein composition in the brain in neurodevelopmental disorders such as autism spectrum disorders. We also explain differences in synapse development between rodents and primates in terms of synaptic profiles and protein composition. Finally, we introduce recent findings related to synaptic diversity and nanoarchitecture and discuss their impact on future research. Synaptic protein composition can be considered a major determinant and marker of synapse maturation in normality and disease.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
20
|
Sabnis SS, Narasimhan KKS, Chettiar PB, Gakare SG, Shelkar GP, Asati DG, Thakur SS, Dravid SM. Intravenous recombinant cerebellin 1 treatment restores signalling by spinal glutamate delta 1 receptors and mitigates chronic pain. Br J Pharmacol 2024; 181:1421-1437. [PMID: 38044332 PMCID: PMC11288346 DOI: 10.1111/bph.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic pain remains a major clinical problem that needs effective therapeutic agents. Glutamate delta 1 (GluD1) receptors and the protein cerebellin 1 (Cbln1) are down-regulated in the central amygdala (CeA) in models of inflammatory and neuropathic pain. One treatment with Cbln1, intracerebroventricularly (ICV) or in CeA, normalized GluD1 and reduced AMPA receptor expression, resulting in lasting (7-10 days) pain relief. Unlike many CNS-targeting biological agents, the structure of Cbln1 suggests potential blood-brain barrier penetration. Here, we have tested whether systemic administration of Cbln1 provides analgesic effects via action in the CNS. EXPERIMENTAL APPROACH Analgesic effects of intravenous recombinant Cbln1 was assessed in complete Freund's adjuvant inflammatory pain model in mice. GluD1 knockout and a mutant form of Cbln1 were used. KEY RESULTS A single intravenous injection of Cbln1 mitigated nocifensive and averse behaviour in both inflammatory and neuropathic pain models. This effect of Cbln1 was dependent on GluD1 receptors and required binding to the amino terminal domain of GluD1. Time course of analgesic effect was similar to previously reported ICV and intra-CeA injection. GluD1 in both spinal cord and CeA was down -regulated in the inflammatory pain model, whereas GluD1 expression in spinal cord but not in CeA, was partly normalized by intravenous Cbln1. Importantly, recombinant Cbln1 was detected in the synaptoneurosomes in spinal cord but not in the CeA. CONCLUSIONS AND IMPLICATIONS Our results describe a novel mechanism by which systemic Cbln1 induces analgesia potentially by central actions involving normalization of signalling by spinal cord GluD1 receptors.
Collapse
Affiliation(s)
- Siddhesh S. Sabnis
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Kishore Kumar S. Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Poojashree B. Chettiar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Sukanya G. Gakare
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Gajanan P. Shelkar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Devansh G. Asati
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Shriti S. Thakur
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| |
Collapse
|
21
|
Liao K, Xiang Y, Huang F, Huang M, Xu W, Lin Y, Liao P, Wang Z, Yang L, Tian X, Chen D, Wang Z, Liu S, Zhuang Z. Spatial and single-nucleus transcriptomics decoding the molecular landscape and cellular organization of avian optic tectum. iScience 2024; 27:109009. [PMID: 38333704 PMCID: PMC10850779 DOI: 10.1016/j.isci.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The avian optic tectum (OT) has been studied for its diverse functions, yet a comprehensive molecular landscape at the cellular level has been lacking. In this study, we applied spatial transcriptome sequencing and single-nucleus RNA sequencing (snRNA-seq) to explore the cellular organization and molecular characteristics of the avian OT from two species: Columba livia and Taeniopygia guttata. We identified precise layer structures and provided comprehensive layer-specific signatures of avian OT. Furthermore, we elucidated diverse functions in different layers, with the stratum griseum periventriculare (SGP) potentially playing a key role in advanced functions of OT, like fear response and associative learning. We characterized detailed neuronal subtypes and identified a population of FOXG1+ excitatory neurons, resembling those found in the mouse neocortex, potentially involved in neocortex-related functions and expansion of avian OT. These findings could contribute to our understanding of the architecture of OT, shedding light on visual perception and multifunctional association.
Collapse
Affiliation(s)
- Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI Research, Hangzhou 310030, China
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fubaoqian Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI Research, Hangzhou 310030, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Pingfang Liao
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zishi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinmao Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Duoyuan Chen
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
22
|
Dehay C, Huttner WB. Development and evolution of the primate neocortex from a progenitor cell perspective. Development 2024; 151:dev199797. [PMID: 38369736 DOI: 10.1242/dev.199797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The generation of neurons in the developing neocortex is a major determinant of neocortex size. Crucially, the increase in cortical neuron numbers in the primate lineage, notably in the upper-layer neurons, contributes to increased cognitive abilities. Here, we review major evolutionary changes affecting the apical progenitors in the ventricular zone and focus on the key germinal zone constituting the foundation of neocortical neurogenesis in primates, the outer subventricular zone (OSVZ). We summarize characteristic features of the OSVZ and its key stem cell type, the basal (or outer) radial glia. Next, we concentrate on primate-specific and human-specific genes, expressed in OSVZ-progenitors, the ability of which to amplify these progenitors by targeting the regulation of the cell cycle ultimately underlies the evolutionary increase in upper-layer neurons. Finally, we address likely differences in neocortical development between present-day humans and Neanderthals that are based on human-specific amino acid substitutions in proteins operating in cortical progenitors.
Collapse
Affiliation(s)
- Colette Dehay
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
23
|
Allen JP, Garber KB, Perszyk R, Khayat CT, Kell SA, Kaneko M, Quindipan C, Saitta S, Ladda RL, Hewson S, Inbar-Feigenberg M, Prasad C, Prasad AN, Olewiler L, Mu W, Rosenthal LS, Scala M, Striano P, Zara F, McCullock TW, Jauss RT, Lemke JR, MacLean DM, Zhu C, Yuan H, Myers SJ, Traynelis SF. Clinical features, functional consequences, and rescue pharmacology of missense GRID1 and GRID2 human variants. Hum Mol Genet 2024; 33:355-373. [PMID: 37944084 PMCID: PMC10840383 DOI: 10.1093/hmg/ddad188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
GRID1 and GRID2 encode the enigmatic GluD1 and GluD2 proteins, which form tetrameric receptors that play important roles in synapse organization and development of the central nervous system. Variation in these genes has been implicated in neurodevelopmental phenotypes. We evaluated GRID1 and GRID2 human variants from the literature, ClinVar, and clinical laboratories and found that many of these variants reside in intolerant domains, including the amino terminal domain of both GRID1 and GRID2. Other conserved regions, such as the M3 transmembrane domain, show different intolerance between GRID1 and GRID2. We introduced these variants into GluD1 and GluD2 cDNA and performed electrophysiological and biochemical assays to investigate the mechanisms of dysfunction of GRID1/2 variants. One variant in the GRID1 distal amino terminal domain resides at a position predicted to interact with Cbln2/Cbln4, and the variant disrupts complex formation between GluD1 and Cbln2, which could perturb its role in synapse organization. We also discovered that, like the lurcher mutation (GluD2-A654T), other rare variants in the GRID2 M3 domain create constitutively active receptors that share similar pathogenic phenotypes. We also found that the SCHEMA schizophrenia M3 variant GluD1-A650T produced constitutively active receptors. We tested a variety of compounds for their ability to inhibit constitutive currents of GluD receptor variants and found that pentamidine potently inhibited GluD2-T649A constitutive channels (IC50 50 nM). These results identify regions of intolerance to variation in the GRID genes, illustrate the functional consequences of GRID1 and GRID2 variants, and suggest how these receptors function normally and in disease.
Collapse
Affiliation(s)
- James P Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Kathryn B Garber
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta GA 30322, United States
- EGL Genetics, 2460 Mountain Industrial Blvd., Tucker, GA 30084, United States
| | - Riley Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Cara T Khayat
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332, United States
| | - Steven A Kell
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
- Department of Chemistry, Emory University School of Medicine, 1515 Dickey Dr, Atlanta, GA 30322, United States
| | - Maki Kaneko
- Division of Genomic Medicine, Department of Pathology, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, United States
- Center for Personalized Medicine, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, United States
| | - Catherine Quindipan
- Center for Personalized Medicine, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, United States
| | - Sulagna Saitta
- Division of Clinical Genetics, Departments of Human Genetics, OBGYN and Pediatrics, David Geffen School of Medicine at UCLA, 200 Medical Plaza, Los Angeles, CA 90095, United States
| | - Roger L Ladda
- Division of Human Genetics, Department of Pediatrics, Penn State College of Medicine, 600 University Dr, Hershey, PA 17033, United States
| | - Stacy Hewson
- Department of Genetic Counselling, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5G 1X8, Canada
| | - Michal Inbar-Feigenberg
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children and Pediatrics, University of Toronto, 555 University Avenue, Toronto ON M5G 1X8, Canada
| | - Chitra Prasad
- Department of Pediatrics (Section of Genetics and Metabolism), Western University and Schulich School of Medicine and Dentistry, Children’s Hospital LHSC, 800 Commissioners Road East, London, ON N6A5W9, Canada
| | - Asuri N Prasad
- Division of Pediatric Neurology, Department of Pediatrics and Clinical Neurological Sciences, Western University and Schulich School of Medicine and Dentistry, Children’s Hospital LHSC, 800 Commissioners Road East, London, ON N6A5W9, Canada
| | - Leah Olewiler
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, United States
| | - Weiyi Mu
- Department of Genetic Medicine, Johns Hopkins University, 600 N. Wolfe St., Baltimore MD 21287, United States
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University, 601 N. Caroline St., Baltimore MD 21287, United States
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Largo Paolo Daneo, 3, 16132 Genova GE, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Pavilion 16, Via Gerolamo Gaslini, 516147 Genoa GE, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Largo Paolo Daneo, 3, 16132 Genova GE, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Pavilion 16, Via Gerolamo Gaslini, 516147 Genoa GE, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Pavilion 20, Via Gerolamo Gaslini, 516147 Genoa GE, Italy
| | - Tyler W McCullock
- Department Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester NY, 14642, United States
| | - Robin-Tobias Jauss
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Str. 55, Haus W, Leipzig 04103, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Str. 55, Haus W, Leipzig 04103, Germany
| | - David M MacLean
- Department Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester NY, 14642, United States
| | - Cheng Zhu
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332, United States
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
- Emory Neurodegenerative Disease Center, 615 Michael St., Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
24
|
Biosca-Brull J, Ona G, Alarcón-Franco L, Colomina MT. A transcriptomic analysis in mice following a single dose of ibogaine identifies new potential therapeutic targets. Transl Psychiatry 2024; 14:41. [PMID: 38242896 PMCID: PMC10798990 DOI: 10.1038/s41398-024-02773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Ibogaine (IBO) is an atypical psychedelic with a complex mechanism of action. To date, the mechanisms that may underlie its anti-addictive effects are still not defined. This study aims to identify changes in gene expression induced by a single oral dose of IBO in the cortex of mice by means of a transcriptomic analysis for the first time. Our results showed significant alterations in gene expression in mouse frontal cortex samples 4 h after a single oral dose of IBO. Specifically, genes involved in hormonal pathways and synaptogenesis exhibited upregulation, while genes associated with apoptotic processes and endosomal transports showed downregulation. The findings were further corroborated through quantitative polymerase chain reaction (qPCR) analysis. However, the validation of gene expression related to hormonal pathways did not entirely align with the transcriptomic analysis results, possibly due to the brain region from which tissue was collected. Sex differences were observed, with female mice displaying more pronounced alterations in gene expression after IBO treatment. High variability was observed across individual animals. However, this study represents a significant advancement in comprehending IBO's molecular actions. The findings highlight the influence of IBO on gene expression, particularly on hormonal pathways, synaptogenesis, apoptotic processes, and endosomal transports. The identification of sex differences underscores the importance of considering sex as a potential factor influencing IBO's effects. Further research to assess different time points after IBO exposure is warranted.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
- Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
- Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Genis Ona
- ICEERS-International Center for Ethnobotanical Education, Research, and Services, Barcelona, Spain
- Universitat Rovira i Virgili, Department of Anthropology, Philosophy and Social Work, Tarragona, Spain
| | - Lineth Alarcón-Franco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
- Grupo de Investigación Infetarre, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain.
- Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain.
- Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| |
Collapse
|
25
|
Abstract
Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Usui N. Possible roles of deep cortical neurons and oligodendrocytes in the neural basis of human sociality. Anat Sci Int 2024; 99:34-47. [PMID: 38010534 PMCID: PMC10771383 DOI: 10.1007/s12565-023-00747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Sociality is an instinctive property of organisms that live in relation to others and is a complex characteristic of higher order brain functions. However, the evolution of the human brain to acquire higher order brain functions, such as sociality, and the neural basis for executing these functions and their control mechanisms are largely unknown. Several studies have attempted to evaluate how human sociality was acquired during the course of evolution and the mechanisms controlling sociality from a neurodevelopment viewpoint. This review discusses these findings in the context of human brain evolution and the pathophysiology of autism spectrum disorder (ASD). Comparative genomic studies of postmortem primate brains have demonstrated human-specific regulatory mechanisms underlying higher order brain functions, providing evidence for the contribution of oligodendrocytes to human brain function. Functional analyses of the causative genes of ASD in animal models have demonstrated that the neural basis of social behavior is associated with layer 6 (L6) of the neocortex and oligodendrocytes. These findings demonstrate that both neurons and oligodendrocytes contribute to the neural basis and molecular mechanisms underlying human brain evolution and social functioning. This review provides novel insights into sociability and the corresponding neural bases of brain disorders and evolution.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| |
Collapse
|
27
|
Wang L, Pang K, Zhou L, Cebrián-Silla A, González-Granero S, Wang S, Bi Q, White ML, Ho B, Li J, Li T, Perez Y, Huang EJ, Winkler EA, Paredes MF, Kovner R, Sestan N, Pollen AA, Liu P, Li J, Piao X, García-Verdugo JM, Alvarez-Buylla A, Liu Z, Kriegstein AR. A cross-species proteomic map reveals neoteny of human synapse development. Nature 2023; 622:112-119. [PMID: 37704727 PMCID: PMC10576238 DOI: 10.1038/s41586-023-06542-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.
Collapse
Affiliation(s)
- Li Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | - Kaifang Pang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Li Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Arantxa Cebrián-Silla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED, Valencia, Spain
| | - Shaohui Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Qiuli Bi
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew L White
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Brandon Ho
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jiani Li
- Gilead Sciences, Foster City, CA, USA
| | - Tao Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Yonatan Perez
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mercedes F Paredes
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Rothem Kovner
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Pengyuan Liu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Xianhua Piao
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED, Valencia, Spain
| | - Arturo Alvarez-Buylla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet 2023; 24:687-711. [PMID: 36737647 PMCID: PMC9897628 DOI: 10.1038/s41576-022-00568-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Our ancestors acquired morphological, cognitive and metabolic modifications that enabled humans to colonize diverse habitats, develop extraordinary technologies and reshape the biosphere. Understanding the genetic, developmental and molecular bases for these changes will provide insights into how we became human. Connecting human-specific genetic changes to species differences has been challenging owing to an abundance of low-effect size genetic changes, limited descriptions of phenotypic differences across development at the level of cell types and lack of experimental models. Emerging approaches for single-cell sequencing, genetic manipulation and stem cell culture now support descriptive and functional studies in defined cell types with a human or ape genetic background. In this Review, we describe how the sequencing of genomes from modern and archaic hominins, great apes and other primates is revealing human-specific genetic changes and how new molecular and cellular approaches - including cell atlases and organoids - are enabling exploration of the candidate causal factors that underlie human-specific traits.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Caglayan E, Konopka G. Decoding DNA sequence-driven evolution of the human brain epigenome at cellular resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557820. [PMID: 37745404 PMCID: PMC10515917 DOI: 10.1101/2023.09.14.557820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DNA-based evolutionary comparisons of regulatory genomic elements enable insight into functional changes, overcoming tissue inaccessibility. Here, we harnessed adult and fetal cortex single-cell ATAC-seq datasets to uncover DNA substitutions specific to the human and human-ancestral lineages within apes. We found that fetal microglia identity is evolutionarily divergent in all lineages, whereas other cell types are conserved. Using multiomic datasets, we further identified genes linked to multiple lineage-divergent gene regulatory elements and implicated biological pathways associated with these divergent features. We also uncovered patterns of transcription factor binding site evolution across lineages and identified expansion of bHLH-PAS factor targets in human-hominin lineages, and MEF2 factor targets in the ape lineage. Finally, conserved features were more enriched in brain disease variants, whereas there was no distinct enrichment on the human lineage compared to its ancestral lineages. Our study identifies major evolutionary patterns in the human brain epigenome at cellular resolution.
Collapse
Affiliation(s)
- Emre Caglayan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
30
|
Ugarte G, Piña R, Contreras D, Godoy F, Rubio D, Rozas C, Zeise M, Vidal R, Escobar J, Morales B. Attention Deficit-Hyperactivity Disorder (ADHD): From Abnormal Behavior to Impairment in Synaptic Plasticity. BIOLOGY 2023; 12:1241. [PMID: 37759640 PMCID: PMC10525904 DOI: 10.3390/biology12091241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Attention deficit-hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high incidence in children and adolescents characterized by motor hyperactivity, impulsivity, and inattention. Magnetic resonance imaging (MRI) has revealed that neuroanatomical abnormalities such as the volume reduction in the neocortex and hippocampus are shared by several neuropsychiatric diseases such as schizophrenia, autism spectrum disorder and ADHD. Furthermore, the abnormal development and postnatal pruning of dendritic spines of neocortical neurons in schizophrenia, autism spectrum disorder and intellectual disability are well documented. Dendritic spines are dynamic structures exhibiting Hebbian and homeostatic plasticity that triggers intracellular cascades involving glutamate receptors, calcium influx and remodeling of the F-actin network. The long-term potentiation (LTP)-induced insertion of postsynaptic glutamate receptors is associated with the enlargement of spine heads and long-term depression (LTD) with spine shrinkage. Using a murine model of ADHD, a delay in dendritic spines' maturation in CA1 hippocampal neurons correlated with impaired working memory and hippocampal LTP has recently reported. The aim of this review is to summarize recent evidence that has emerged from studies focused on the neuroanatomical and genetic features found in ADHD patients as well as reports from animal models describing the molecular structure and remodeling of dendritic spines.
Collapse
Affiliation(s)
- Gonzalo Ugarte
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Ricardo Piña
- Department of Biology, Faculty of Sciences, Metropolitan University of Education Sciences, Santiago 7760197, Chile;
- Department of Human Sciences, Faculty of Human Science, Bernardo O’Higgins University, Santiago 8370854, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Felipe Godoy
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - David Rubio
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Marc Zeise
- School of Psychology, Faculty of Humanities, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Jorge Escobar
- Institute of Chemistry, Pontifical Catholic University of Valparaíso, Valparaíso 2340000, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| |
Collapse
|
31
|
Wang EL, Zhang JJ, Luo FM, Fu MY, Li D, Peng J, Liu B. Cerebellin-2 promotes endothelial-mesenchymal transition in hypoxic pulmonary hypertension rats by activating NF-κB/HIF-1α/Twist1 pathway. Life Sci 2023; 328:121879. [PMID: 37355224 DOI: 10.1016/j.lfs.2023.121879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
AIMS Endothelial-mesenchymal transition (EndMT) is one of the critical factors leading to vascular remodeling in pulmonary hypertension (PH). Recent studies found that the expression of Cerebellin-2 (CBLN2) is significantly increased in the lung tissue of patients with PH, suggesting that CBLN2 may be closely related to the development of PH. This study aims to investigate the role and potential mechanism of CBLN2 in the hypoxia-induced EndMT of PH rats. MATERIAL AND METHODS Hypoxia-induced PH rat model or EndMT cell model was constructed to investigate the role of CBLN2 in the process of endothelial mesenchymal transition during PH. The effects of CBLN2 siRNA, KC7F2 (HIF-1α inhibitor), and PDTC (NF-κB inhibitor) on hypoxia-induced EndMT were observed to evaluate the potential mechanism of CBLN2 in promoting EndMT. KEY FINDINGS The right ventricular systolic pressure and pulmonary vascular remodeling index in hypoxia-treated rats were significantly increased. The transformation of endothelial cells (marked by CD31) to mesenchymal cells (marked by α-SMA) can be observed in the pulmonary vessels of PH rats, and the expression of CBLN2 in the intima was also significantly up-regulated. In the hypoxia-induced HPAECs, endothelial cell markers such as VE-cadherin and CD31 expression were significantly down-regulated, while mesenchymal-like cell markers such as α-SMA and vimentin were increased considerably, along with the increased expressions of CBLN2, p-p65, HIF-1α, and Twist1; CBLN2 siRNA, PDTC, and KC7F2 could inhibit those phenomena. SIGNIFICANCE CBLN2 can promote EndMT by activating NF-κB/HIF-1α/Twist1 pathway. Therefore, CBLN2 may be a new therapeutic target for PH.
Collapse
Affiliation(s)
- E-Li Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jie-Jie Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fang-Mei Luo
- Department of Pharmacy, Hunan Children's Hospital, Changsha 410007, China
| | - Min-Yi Fu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dai Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
32
|
Xu D, Zhi Y, Liu X, Guan L, Yu J, Zhang D, Zhang W, Wang Y, Tao W, Xu Z. WDR62-deficiency Causes Autism-like Behaviors Independent of Microcephaly in Mice. Neurosci Bull 2023; 39:1333-1347. [PMID: 36571716 PMCID: PMC10465473 DOI: 10.1007/s12264-022-00997-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022] Open
Abstract
Brain size abnormality is correlated with an increased frequency of autism spectrum disorder (ASD) in offspring. Genetic analysis indicates that heterozygous mutations of the WD repeat domain 62 (WDR62) are associated with ASD. However, biological evidence is still lacking. Our study showed that Wdr62 knockout (KO) led to reduced brain size with impaired learning and memory, as well as ASD-like behaviors in mice. Interestingly, Wdr62 Nex-cKO mice (depletion of WDR62 in differentiated neurons) had a largely normal brain size but with aberrant social interactions and repetitive behaviors. WDR62 regulated dendritic spinogenesis and excitatory synaptic transmission in cortical pyramidal neurons. Finally, we revealed that retinoic acid gavages significantly alleviated ASD-like behaviors in mice with WDR62 haploinsufficiency, probably by complementing the expression of ASD and synapse-related genes. Our findings provide a new perspective on the relationship between the microcephaly gene WDR62 and ASD etiology that will benefit clinical diagnosis and intervention of ASD.
Collapse
Affiliation(s)
- Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Xinyi Liu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Guan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Dan Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiya Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wucheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
33
|
Südhof TC. Cerebellin-neurexin complexes instructing synapse properties. Curr Opin Neurobiol 2023; 81:102727. [PMID: 37209532 DOI: 10.1016/j.conb.2023.102727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/22/2023]
Abstract
Cerebellins (Cbln1-4) are secreted adaptor proteins that connect presynaptic neurexins (Nrxn1-3) to postsynaptic ligands (GluD1/2 for Cbln1-3 vs. DCC and Neogenin-1 for Cbln4). Classical studies demonstrated that neurexin-Cbln1-GluD2 complexes organize cerebellar parallel-fiber synapses, but the role of cerebellins outside of the cerebellum has only recently been clarified. In synapses of the hippocampal subiculum and prefrontal cortex, Nrxn1-Cbln2-GluD1 complexes strikingly upregulate postsynaptic NMDA-receptors, whereas Nrxn3-Cbln2-GluD1 complexes conversely downregulate postsynaptic AMPA-receptors. At perforant-path synapses in the dentate gyrus, in contrast, neurexin/Cbln4/Neogenin-1 complexes are essential for LTP without affecting basal synaptic transmission or NMDA- or AMPA-receptors. None of these signaling pathways are required for synapse formation. Thus, outside of the cerebellum neurexin/cerebellin complexes regulate synapse properties by activating specific downstream receptors.
Collapse
Affiliation(s)
- Thomas C Südhof
- Dept. of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford CA 94305, USA.
| |
Collapse
|
34
|
Yuan B, Luo L, Hu C, Lin F, Yang T, Chen J, Li T. Retinoic acid supplementation ameliorates motor incoordination via RARα-CBLN2 in the cerebellum of a prenatal valproic acid-exposed rat autism model. Neurosci Lett 2023; 809:137316. [PMID: 37247722 DOI: 10.1016/j.neulet.2023.137316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
In addition to their core symptoms, most individuals with autism spectrum disorder (ASD) also experience motor impairments. These impairments are often linked to the cerebellum, which is the focus of the current study. Herein, we utilized a prenatal valproic acid (VPA)-induced rat model of autism and performed RNA sequencing in the cerebellum. Relative to control animals, the VPA-treated offspring demonstrated both abnormal motor coordination and impaired dendritic arborization of Purkinje cells (PCs). Concurrently, we observed a decrease in the cerebellar expression of retinoic acid (RA) synthesis enzymes (RDH10, ALDH1A1), metabolic enzyme (CYP26A2), and lower levels of RA, retinoic acid receptor α (RARα), and Cerebellin2 (CBLN2) in the VPA-treated offspring. However, RA supplementation ameliorated these deficits, restoring motor coordination, normalizing PCs dendritic arborization, and increasing the expression of RA, RARα, and CBLN2. Further, ChIP assays confirmed that RA supplementation enhanced RARα's binding capacity to CBLN2 promoters. Collectively, these findings highlight the therapeutic potential of RA for treating motor incoordination in VPA-induced autism, acting through the RARα-CBLN2 pathway.
Collapse
Affiliation(s)
- Binlin Yuan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Lijuan Luo
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chaoqun Hu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Fang Lin
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| |
Collapse
|
35
|
Zhang XH, Anderson KM, Dong HM, Chopra S, Dhamala E, Emani PS, Margulies D, Holmes AJ. The Cellular Underpinnings of the Human Cortical Connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547828. [PMID: 37461642 PMCID: PMC10349999 DOI: 10.1101/2023.07.05.547828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI. Cortical cellular profiles follow the macro-scale organization of the functional gradients as well as the associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on post-mortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.
Collapse
Affiliation(s)
- Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Hao-Ming Dong
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, CT, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Prashant S. Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Daniel Margulies
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris, Paris, France
| | - Avram J. Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
36
|
Liang JS, Hung KL, Lin LJ, Ong WP, Keng WT, Lu JF. Novel PEX1 mutations in fibroblasts from children with Zellweger spectrum disorders exhibit temperature sensitive characteristics. Epilepsy Behav 2023; 145:109266. [PMID: 37385119 DOI: 10.1016/j.yebeh.2023.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 07/01/2023]
Abstract
Zellweger spectrum disorders (ZSD) are rare autosomal recessive disorders caused by defects in peroxisome biogenesis factor (PEX; peroxin) genes leading to impaired transport of peroxisomal proteins with peroxisomal targeting signals (PTS). Four patients, including a pair of homozygotic twins, diagnosed as ZSD by genetic study with different clinical presentations and outcomes as well as various novel mutations are described here. A total of 3 novel mutations, including a nonsense, a frameshift, and a splicing mutation, in PEX1 from ZSD patients were identified and unequivocally confirmed that the p.Ile989Thr mutant PEX1 exhibited temperature-sensitive characteristics and is associated with milder ZSD. The nature of the p.Ile989Thr mutant exhibited different characteristics from that of the other previously identified temperature-sensitive p.Gly843Asp PEX1 mutant. Transcriptome profiles under nonpermissive vs. permissive conditions were explored to facilitate the understanding of p.Ile989Thr mutant PEX1. Further investigation of molecular mechanisms may help to clarify potential genetic causes that could modify the clinical presentation of ZSD.
Collapse
Affiliation(s)
- Jao-Shwann Liang
- Departments of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Nursing, Asia Eastern University of Science and Technology, New Taipei City, Taiwan
| | - Kun-Long Hung
- Departments of Pediatrics, Fu Jen Catholic University Hospital, New Taipei City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Lin
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Winnie Peitee Ong
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Wee Teik Keng
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Jyh-Feng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
37
|
Fair T, Pollen AA. Genetic architecture of human brain evolution. Curr Opin Neurobiol 2023; 80:102710. [PMID: 37003107 DOI: 10.1016/j.conb.2023.102710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 04/03/2023]
Abstract
Comparative studies of hominids have long sought to identify mutational events that shaped the evolution of the human nervous system. However, functional genetic differences are outnumbered by millions of nearly neutral mutations, and the developmental mechanisms underlying human nervous system specializations are difficult to model and incompletely understood. Candidate-gene studies have attempted to map select human-specific genetic differences to neurodevelopmental functions, but it remains unclear how to contextualize the relative effects of genes that are investigated independently. Considering these limitations, we discuss scalable approaches for probing the functional contributions of human-specific genetic differences. We propose that a systems-level view will enable a more quantitative and integrative understanding of the genetic, molecular and cellular underpinnings of human nervous system evolution.
Collapse
Affiliation(s)
- Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA. https://twitter.com/@TylerFair_
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Luria V, Ma S, Shibata M, Pattabiraman K, Sestan N. Molecular and cellular mechanisms of human cortical connectivity. Curr Opin Neurobiol 2023; 80:102699. [PMID: 36921362 DOI: 10.1016/j.conb.2023.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/05/2023] [Indexed: 03/18/2023]
Abstract
Comparative studies of the cerebral cortex have identified various human and primate-specific changes in both local and long-range connectivity, which are thought to underlie our advanced cognitive capabilities. These changes are likely mediated by the divergence of spatiotemporal regulation of gene expression, which is particularly prominent in the prenatal and early postnatal human and non-human primate cerebral cortex. In this review, we describe recent advances in characterizing human and primate genetic and cellular innovations including identification of novel species-specific, especially human-specific, genes, gene expression patterns, and cell types. Finally, we highlight three recent studies linking these molecular changes to reorganization of cortical connectivity.
Collapse
Affiliation(s)
- Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Mikihito Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Kartik Pattabiraman
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA.
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA; Departments of Psychiatry, Genetics and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
39
|
Pang S, Luo Z, Dong W, Gao S, Chen W, Liu N, Zhang X, Gao X, Li J, Gao K, Shi X, Guan F, Zhang L, Zhang L. Integrin β1/FAK/SRC signal pathway is involved in autism spectrum disorder in Tspan7 knockout rats. Life Sci Alliance 2023; 6:e202201616. [PMID: 36625203 PMCID: PMC9768919 DOI: 10.26508/lsa.202201616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
TSPAN7 is related to various neurological disorders including autism spectrum disorder (ASD). However, the underlying synaptic mechanism of TSPAN7 in ASD is still unclear. Here, we showed that Tspan7 knockout rats exhibited ASD-like and ID-like behavioral phenotypes, brain structure alterations including decreased hippocampal and cortical volume, and related pathological changes including reduced hippocampal neurons number, neuronal complexity, dendritic spines, and synapse-associated proteins. Then, we found that TSPAN7 deletion interrupted the integrin β1/FAK/SRC signal pathway that was followed by the down-regulation of PSD95, SYN, and GluR1/2, which are key synaptic integrity-related proteins. Furthermore, reactivation of SRC restored the expression of synaptic integrity-related proteins in primary neurons of TSPAN7 knockout brains. Taken together, our results suggested that TSPAN7 knockout caused ASD-like and ID-like behaviors in rats and impaired neuronal synapses possibly through the down-regulation of the integrin β1/FAK/SRC signal pathway, which might be a new mechanism on regulation of synaptic proteins expression and on ASD pathogenesis by mutated TSPAN7. These findings provide novel insights into the role of TSPAN7 in psychiatric diseases and highlight integrin β1/FAK/SRC as a potential target for ASD therapy.
Collapse
Affiliation(s)
- Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuohui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Li
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xudong Shi
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
41
|
Reece AS, Hulse GK. European Epidemiological Patterns of Cannabis- and Substance-Related Congenital Neurological Anomalies: Geospatiotemporal and Causal Inferential Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010441. [PMID: 36612763 PMCID: PMC9819725 DOI: 10.3390/ijerph20010441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/16/2023]
Abstract
Introduction. Of the many congenital anomalies (CAs) recently linked with community cannabis exposure, arguably the most concerning are neurological CAs (NCAs). We therefore conducted a detailed study of this in fourteen European nations. Methods. Congenital anomaly data were from Eurocat. Drug exposure data were from European Monitoring Centre for Drugs and Drug Addiction. Income from World bank. Results. The Netherlands, Spain, France and Bulgaria reported increasing rates of many NCAs. The NCA rate (NCAR) was higher in nations with increasing daily cannabis use when compared to those without (p = 0.0204, minimum E-value (mEV) = 1.35). At bivariate analysis, the mEVs of the following NCAs were significantly cannabis related: severe microcephaly 2.14 × 1013, craniosynostosis 5.27 × 1011, nervous system 4.87 × 1011, eye 2.73 × 107, microphthalmos 4.07 × 106, anencephalus 710.37, hydrocephalus 245.64, spina bifida 14.86 and neural tube defects 13.15. At inverse probability, weighted panel regression terms including cannabis were significantly related to the following series of anomalies: nervous system, anencephalus, severe microcephalus, microphthalmos, neural tube defect and spina bifida from p = 5.09 × 10−8, <2.2 × 10−16, <2.2 × 10−16, 4.84 × 10−11, <2.2 × 10−16 and 9.69 × 10−7. At geospatial regression, this same series of anomalies had terms including cannabis significant from p = 0.0027, 1.53 × 10−7, 3.65 × 10−6, 2.13 × 10−8, 0.0002 and 9.76 × 10−12. 88.0% of 50 E-value estimates and 72.0% of mEVs > 9. This analysis therefore demonstrates both close association of cannabis exposure with multiple NCAs across space-time and also fulfills the quantitative criteria of causal inferential analysis. Conclusions. Nine NCARs on bivariate and six NCARs on multivariable regression were cannabis related and fulfilled quantitative epidemiological criteria for causality and are consistent with other series. Particular concerns relate to exponential dose−response effects demonstrated in the laboratory and epidemiological studies. Great caution with community cannabinoid penetration is warranted. Data indicate that cannabis is a significant environmental teratogen and thus imply that cannabinoids should be regulated similarly to the manner in which all other important genotoxins are carefully controlled by communities for their self-sustaining longevity and the protection of generations yet to come.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Correspondence: ; Tel.: +61-7-3844-4000; Fax: +61-7-3844-4015
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
42
|
Dai J, Liakath-Ali K, Golf SR, Südhof TC. Distinct neurexin-cerebellin complexes control AMPA- and NMDA-receptor responses in a circuit-dependent manner. eLife 2022; 11:e78649. [PMID: 36205393 PMCID: PMC9586558 DOI: 10.7554/elife.78649] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023] Open
Abstract
At CA1→subiculum synapses, alternatively spliced neurexin-1 (Nrxn1SS4+) and neurexin-3 (Nrxn3SS4+) enhance NMDA-receptors and suppress AMPA-receptors, respectively, without affecting synapse formation. Nrxn1SS4+ and Nrxn3SS4+ act by binding to secreted cerebellin-2 (Cbln2) that in turn activates postsynaptic GluD1 receptors. Whether neurexin-Cbln2-GluD1 signaling has additional functions besides regulating NMDA- and AMPA-receptors, and whether such signaling performs similar roles at other synapses, however, remains unknown. Here, we demonstrate using constitutive Cbln2 deletions in mice that at CA1→subiculum synapses, Cbln2 performs no additional developmental roles besides regulating AMPA- and NMDA-receptors. Moreover, low-level expression of functionally redundant Cbln1 did not compensate for a possible synapse-formation function of Cbln2 at CA1→subiculum synapses. In exploring the generality of these findings, we examined the prefrontal cortex where Cbln2 was recently implicated in spinogenesis, and the cerebellum where Cbln1 is known to regulate parallel-fiber synapses. In the prefrontal cortex, Nrxn1SS4+-Cbln2 signaling selectively controlled NMDA-receptors without affecting spine or synapse numbers, whereas Nrxn3SS4+-Cbln2 signaling had no apparent role. In the cerebellum, conversely, Nrxn3SS4+-Cbln1 signaling regulated AMPA-receptors, whereas now Nrxn1SS4+-Cbln1 signaling had no manifest effect. Thus, Nrxn1SS4+- and Nrxn3SS4+-Cbln1/2 signaling complexes differentially control NMDA- and AMPA-receptors in different synapses in diverse neural circuits without regulating synapse or spine formation.
Collapse
Affiliation(s)
- Jinye Dai
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Samantha Rose Golf
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Thomas C Südhof
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| |
Collapse
|
43
|
Ma S, Skarica M, Li Q, Xu C, Risgaard RD, Tebbenkamp AT, Mato-Blanco X, Kovner R, Krsnik Ž, de Martin X, Luria V, Martí-Pérez X, Liang D, Karger A, Schmidt DK, Gomez-Sanchez Z, Qi C, Gobeske KT, Pochareddy S, Debnath A, Hottman CJ, Spurrier J, Teo L, Boghdadi AG, Homman-Ludiye J, Ely JJ, Daadi EW, Mi D, Daadi M, Marín O, Hof PR, Rasin MR, Bourne J, Sherwood CC, Santpere G, Girgenti MJ, Strittmatter SM, Sousa AM, Sestan N. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 2022; 377:eabo7257. [PMID: 36007006 PMCID: PMC9614553 DOI: 10.1126/science.abo7257] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes. The latter are exemplified by human-specific switching between expression of the neuropeptide somatostatin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine production in certain interneurons. The above molecular differences are also illustrated by expression of the neuropsychiatric risk gene FOXP2, which is human-specific in microglia and primate-specific in layer 4 granular neurons. We generated a comprehensive survey of the dlPFC cellular repertoire and its shared and divergent features in anthropoid primates.
Collapse
Affiliation(s)
- Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Skarica
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Qian Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Chuan Xu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ryan D. Risgaard
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Xoel Mato-Blanco
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Rothem Kovner
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Željka Krsnik
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Xabier de Martin
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xavier Martí-Pérez
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Dan Liang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, USA
| | - Danielle K. Schmidt
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary Gomez-Sanchez
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kevin T. Gobeske
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ashwin Debnath
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cade J. Hottman
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joshua Spurrier
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale School of Medicine, New Haven, CT 06536, USA
| | - Leon Teo
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Anthony G. Boghdadi
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - John J. Ely
- MAEBIOS, Alamogordo, NM 88310, USA
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Da Mi
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Marcel Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Cell Systems & Anatomy, Radiology, Long School of Medicine, UT Health San Antonio
- NeoNeuron LLC, Palo Alto, CA 94306, USA
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - James Bourne
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Matthew J. Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
- National Center for PTSD, US Department of Veterans Affairs, White River Junction, VT, USA
| | - Stephen M. Strittmatter
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale School of Medicine, New Haven, CT 06536, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - André M.M. Sousa
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Departments of Genetics and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
44
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
45
|
Abstract
The neuropeptide system encompasses the most diverse family of neurotransmitters, but their expression, cellular localization, and functional role in the human brain have received limited attention. Here, we study human postmortem samples from prefrontal cortex (PFC), a key brain region, and employ RNA sequencing and RNAscope methods integrated with published single-cell data. Our aim is to characterize the distribution of peptides and their receptors in 17 PFC subregions and to explore their role in chemical signaling. The results suggest that the well-established anatomical and functional heterogeneity of human PFC is also reflected in the expression pattern of the neuropeptides. Our findings support ongoing efforts from academia and pharmaceutical companies to explore the potential of neuropeptide receptors as targets for drug development. Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter–related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine–regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.
Collapse
|
46
|
李 莉, 张 倩, 刘 欢, 吴 琼, 杨 亭, 陈 洁, 李 廷. Involvement of retinoic acid receptor α in the autistic-like behavior of rats with vitamin A deficiency by regulating neurexin 1 in the visual cortex: a mechanism study. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:928-935. [PMID: 36036133 PMCID: PMC9425865 DOI: 10.7499/j.issn.1008-8830.2204016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To study the mechanism of retinoic acid receptor α (RARα) signal change to regulate neurexin 1 (NRXN1) in the visual cortex and participate in the autistic-like behavior in rats with vitamin A deficiency (VAD). METHODS The models of vitamin A normal (VAN) and VAD pregnant rats were established, and some VAD maternal and offspring rats were given vitamin A supplement (VAS) in the early postnatal period. Behavioral tests were performed on 20 offspring rats in each group at the age of 6 weeks. The three-chamber test and the open-field test were used to observe social behavior and repetitive stereotyped behavior. High-performance liquid chromatography was used to measure the serum level of retinol in the offspring rats in each group. Electrophysiological experiments were used to measure the long-term potentiation (LTP) level of the visual cortex in the offspring rats. Quantitative real-time PCR and Western blot were used to measure the expression levels of RARα, NRXN1, and N-methyl-D-aspartate receptor 1 (NMDAR1). Chromatin co-immunoprecipitation was used to measure the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene. RESULTS The offspring rats in the VAD group had autistic-like behaviors such as impaired social interactions and repetitive stereotypical behaviors, and VAS started immediately after birth improved most of the behavioral deficits in offspring rats. The offspring rats in the VAD group had a significantly lower serum level of retinol than those in the VAN and VAS groups (P<0.05). Compared with the offspring rats in the VAN and VAS groups, the offspring rats in the VAD group had significant reductions in the mRNA and protein expression levels of NMDAR1, RARα, and NRXN1 and the LTP level of the visual cortex (P<0.05). The offspring rats in the VAD group had a significant reduction in the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene in the visual cortex compared with those in the VAN and VAS groups (P<0.05). CONCLUSIONS RARα affects the synaptic plasticity of the visual cortex in VAD rats by regulating NRXN1, thereby participating in the formation of autistic-like behaviors in VAD rats.
Collapse
|
47
|
Dyakonova VE. Origin and Evolution of the Nervous System: New Data from Comparative Whole Genome Studies of Multicellular Animals. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Schmidt ERE, Polleux F. Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex. Front Neural Circuits 2022; 15:787164. [PMID: 35069126 PMCID: PMC8777274 DOI: 10.3389/fncir.2021.787164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
One of the most salient features defining modern humans is our remarkable cognitive capacity, which is unrivaled by any other species. Although we still lack a complete understanding of how the human brain gives rise to these unique abilities, the past several decades have witnessed significant progress in uncovering some of the genetic, cellular, and molecular mechanisms shaping the development and function of the human brain. These features include an expansion of brain size and in particular cortical expansion, distinct physiological properties of human neurons, and modified synaptic development. Together they specify the human brain as a large primate brain with a unique underlying neuronal circuit architecture. Here, we review some of the known human-specific features of neuronal connectivity, and we outline how novel insights into the human genome led to the identification of human-specific genetic modifiers that played a role in the evolution of human brain development and function. Novel experimental paradigms are starting to provide a framework for understanding how the emergence of these human-specific genomic innovations shaped the structure and function of neuronal circuits in the human brain.
Collapse
Affiliation(s)
- Ewoud R. E. Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Ewoud R. E. Schmidt
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
- Franck Polleux
| |
Collapse
|
49
|
Shibata M, Pattabiraman K, Lorente-Galdos B, Andrijevic D, Kim SK, Kaur N, Muchnik SK, Xing X, Santpere G, Sousa AMM, Sestan N. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature 2021; 598:483-488. [PMID: 34599305 PMCID: PMC9018119 DOI: 10.1038/s41586-021-03953-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The prefrontal cortex (PFC) and its connections with the mediodorsal thalamus are crucial for cognitive flexibility and working memory1 and are thought to be altered in disorders such as autism2,3 and schizophrenia4,5. Although developmental mechanisms that govern the regional patterning of the cerebral cortex have been characterized in rodents6-9, the mechanisms that underlie the development of PFC-mediodorsal thalamus connectivity and the lateral expansion of the PFC with a distinct granular layer 4 in primates10,11 remain unknown. Here we report an anterior (frontal) to posterior (temporal), PFC-enriched gradient of retinoic acid, a signalling molecule that regulates neural development and function12-15, and we identify genes that are regulated by retinoic acid in the neocortex of humans and macaques at the early and middle stages of fetal development. We observed several potential sources of retinoic acid, including the expression and cortical expansion of retinoic-acid-synthesizing enzymes specifically in primates as compared to mice. Furthermore, retinoic acid signalling is largely confined to the prospective PFC by CYP26B1, a retinoic-acid-catabolizing enzyme, which is upregulated in the prospective motor cortex. Genetic deletions in mice revealed that retinoic acid signalling through the retinoic acid receptors RXRG and RARB, as well as CYP26B1-dependent catabolism, are involved in proper molecular patterning of prefrontal and motor areas, development of PFC-mediodorsal thalamus connectivity, intra-PFC dendritic spinogenesis and expression of the layer 4 marker RORB. Together, these findings show that retinoic acid signalling has a critical role in the development of the PFC and, potentially, in its evolutionary expansion.
Collapse
Affiliation(s)
- Mikihito Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Kartik Pattabiraman
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - David Andrijevic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Navjot Kaur
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sydney K Muchnik
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Xiaojun Xing
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andre M M Sousa
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
50
|
The genetic symphony underlying evolution of the brain's prefrontal cortex. Nature 2021; 598:417-418. [PMID: 34588642 DOI: 10.1038/d41586-021-02460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|