1
|
Gao M, Dong Q, Zou D, Yang Z, Guo L, Xu R. Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury. Neural Regen Res 2025; 20:1416-1430. [PMID: 38934402 PMCID: PMC11624864 DOI: 10.4103/nrr.nrr-d-23-01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 01/27/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00025/figure1/v/2024-07-28T173839Z/r/image-tiff Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair. We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling, influencing their activation such that they can promote neurological recovery. However, the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear. In this study, we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-α expression but suppressed insulin-like growth factor-1 expression. However, recombinant complement receptor 2-conjugated Crry (CR2-Crry) reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia, CXCL12, and tumor necrosis factor-α. Additionally, we observed that, in response to stimulation (including stimulation by CXCL12 secreted by activated microglia), CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4, Crry, and Akt signaling to modulate microglial activation. In agreement with these in vitro experimental results, we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation, leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice. Notably, these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury, cerebral edema, and neurological disorders post-closed head injury. In conclusion, our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry, thereby promoting induced neural stem cell-mediated improvement of neuronal injury, cerebral edema, and neurological disorders following closed head injury.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Dan Zou
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhijun Yang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lili Guo
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Dalle Carbonare L, Cominacini M, Trabetti E, Bombieri C, Pessoa J, Romanelli MG, Valenti MT. The bone microenvironment: new insights into the role of stem cells and cell communication in bone regeneration. Stem Cell Res Ther 2025; 16:169. [PMID: 40221779 PMCID: PMC11993959 DOI: 10.1186/s13287-025-04288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in bone formation and remodeling. Intrinsic genetic factors and extrinsic environmental cues regulate their differentiation into osteoblasts. Within the bone microenvironment, a complex network of biochemical and biomechanical signals orchestrates bone homeostasis and regeneration. In addition, the crosstalk among MSCs, immune cells, and neighboring cells-mediated by extracellular vesicles and non-coding RNAs (such as circular RNAs and micro RNAs) -profoundly influences osteogenic differentiation and bone remodeling. Recent studies have explored specific signaling pathways that contribute to effective bone regeneration, highlighting the potential of manipulating the bone microenvironment to enhance MSC functionality. The integration of advanced biomaterials, gene editing techniques, and controlled delivery systems is paving the way for more targeted and efficient regenerative therapies. Furthermore, artificial intelligence could improve bone tissue engineering, optimize biomaterial design, and enable personalized treatment strategies. This review explores the latest advancements in bone regeneration, emphasizing the intricate interplay among stem cells, immune cells, and signaling molecules. By providing a comprehensive overview of these mechanisms and their clinical implications, we aim to shed light on future research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- L Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - M Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - E Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - C Bombieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - J Pessoa
- Department of Medical Sciences and Institute of Biomedicine-Ibimed, University of Aveiro, 3810 - 193, Aveiro, Portugal
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - M T Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy.
| |
Collapse
|
3
|
Liu W, Liu D, Cui T, Wang Y, Zhou S, Tian F, Yang K, Wang W, Bi L, Fan K, Li L, Wang H, Zhang XD. Atomic Artificial Enzyme for Acute and Chronic Pneumonia. Adv Healthc Mater 2025; 14:e2402364. [PMID: 39248150 DOI: 10.1002/adhm.202402364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Pneumonia involves complex immunological and pathological processes leading to pulmonary dysfunction, which can be life-threatening yet lacks effective specialized medications. Natural enzymes can be used as biological agents for the treatment of oxidative stress-related diseases, but limiting to catalytic and environmental stability as well as high cost. Herein, an artificial enzyme, gold nanoclusters (Au NCs) with excellent stability, bioactivity, and renal clearance can be used as the next-generation biological agents for acute lung injury (ALI) and allergic lung disease (ALD). The Au25 clusters can mimic catalase (CAT) and glutathione peroxidase (GPx), and the Km of Au24Er1 with H2O2 reaches 1.28 mM, about 22 times higher than natural CAT (≈28.8 mM). The clusters inhibit the oxidative stress in the mitochondria and promote the synthesis of adenosine triphosphate (ATP). The molecular mechanism shows that the TLR4/MyD88/NF-κB pathway and M1 macrophage-mediated inflammatory response are suppressed in ALI and the Th1/Th2 imbalance in ovalbumin (OVA)-induced ALD is rescued. Further, the clusters can notably improve lung function in both ALI and ALD models which paves the way for immunomodulation and intervention for lung injury and can be used as a substitute for natural enzymes and potential biopharmaceuticals in the treatment of various types of pneumonia.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Tianyi Cui
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301616, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ke Yang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301616, China
| | - Wei Wang
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Lewei Bi
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301616, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Schaid TR, Mitra S, Stafford P, DeBot M, Thielen O, Hallas W, Cralley A, Gallagher L, Jeffrey D, Hansen KC, D'Alessandro A, Silliman CC, Dabertrand F, Cohen MJ. Endothelial Cell Calcium Influx Mediates Trauma-induced Endothelial Permeability. Ann Surg 2025; 281:671-681. [PMID: 38073572 PMCID: PMC11164825 DOI: 10.1097/sla.0000000000006164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2024]
Abstract
OBJECTIVE To investigate whether ex vivo plasma from injured patients causes endothelial calcium (Ca 2+ ) influx as a mechanism of trauma-induced endothelial permeability. BACKGROUND Endothelial permeability after trauma contributes to postinjury organ dysfunction. While the mechanisms remain unclear, emerging evidence suggests intracellular Ca 2+ signaling may play a role. METHODS Ex vivo plasma from injured patients with "low injury/low shock" (injury severity score <15, base excess ≥-6 mEq/L) and "high injury/high shock" (injury severity score ≥15, base excess <-6 mEq/L) were used to treat endothelial cells. Experimental conditions included Ca 2+ removal from the extracellular buffer, cyclopiazonic acid pretreatment to deplete intracellular Ca 2+ stores, and GSK2193874 pretreatment to block the transient receptor potential vanilloid 4 (TRPV4) Ca 2+ channel. Live cell fluorescence microscopy and electrical cell-substrate impedance sensing were used to assess cytosolic Ca 2+ increases and permeability, respectively. Western blot and live cell actin staining were used to assess myosin light chain phosphorylation and actomyosin contraction. RESULTS Compared with low injury/low shock plasma, high injury/high shock induced greater cytosolic Ca 2+ increase. Cytosolic Ca 2+ increase, myosin light chain phosphorylation, and actin cytoskeletal contraction were lower without extracellular Ca 2+ present. High injury/high shock plasma did not induce endothelial permeability without extracellular Ca 2+ present. TRPV4 inhibition lowered trauma plasma-induced endothelial Ca 2+ influx and permeability. CONCLUSIONS This study illuminates a novel mechanism of postinjury endotheliopathy involving Ca 2+ influx through the TRPV4 channel. TRPV4 inhibition mitigates trauma-induced endothelial permeability. Moreover, widespread endothelial Ca 2+ influx may contribute to trauma-induced hypocalcemia. This study provides the mechanistic basis for the development of Ca 2+ -targeted therapies and interventions in the care of severely injured patients.
Collapse
Affiliation(s)
- Terry R Schaid
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Sanchayita Mitra
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Preston Stafford
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Margot DeBot
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Otto Thielen
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - William Hallas
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Alexis Cralley
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Lauren Gallagher
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Danielle Jeffrey
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Christopher C Silliman
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO
- Vitalant Research Institute, Vitalant Mountain Division, Denver, CO, CO
| | - Fabrice Dabertrand
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Mitchell J Cohen
- Department of Surgery, Trauma Research Center, School of Medicine, University of Colorado Denver, Aurora, CO
| |
Collapse
|
5
|
Moheimani H, Sun X, Ozel M, Darby JL, Ong EP, Oyebamiji T, Kar UK, Yazer MH, Neal MD, Guyette FX, Wisniewski SR, Cotton BA, Cannon JW, Schreiber MA, Moore EE, Namias N, Minei JP, Barrett CD, Das J, Sperry JL, Billiar TR. High-dimensional analysis of injured patients reveals distinct circulating proteomic profiles in plasma vs. whole blood resuscitation. Cell Rep Med 2025; 6:102022. [PMID: 40107243 PMCID: PMC11970397 DOI: 10.1016/j.xcrm.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/30/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Early blood product resuscitation is often essential for optimal trauma care. However, the effects of different products on the underlying trauma-induced coagulopathy and immune dysfunction are not well described. Here, we use high-dimensional analysis and causal modeling in a longitudinal study to explore the circulating proteomic response to plasma as a distinct component versus low-titer O whole blood (LTOWB), which contains plasma. We highlight the differential impacts of plasma and LTOWB on immune mediator levels and the distinct capacity of plasma to modulate coagulation by elevating fibrinogen and factor XIII and reducing platelet factor 4. A higher proportion of plasma in prehospital resuscitation is associated with improved admission time coagulation parameters in patients with severe shock and elevated brain injury markers and reduced post-admission transfusion volumes in those suffering from traumatic brain injury (TBI) and blunt injury. While LTOWB offers broad hemostatic benefits, our findings demonstrate specific advantages of plasma and support individualized transfusion strategies.
Collapse
Affiliation(s)
- Hamed Moheimani
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xuejing Sun
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mehves Ozel
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Darby
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erika P Ong
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tunde Oyebamiji
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Upendra K Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark H Yazer
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francis X Guyette
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Bryan A Cotton
- Department of Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Jeremy W Cannon
- Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Martin A Schreiber
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MA, USA
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado Health Sciences Center, Denver, CO, USA
| | - Nicholas Namias
- Department of Surgery, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Joseph P Minei
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher D Barrett
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jishnu Das
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason L Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Jovanovski D, Wohlgemuth L, Lessing PML, Hüsken D, Koller AS, Thomaß BD, Müller P, Mannes M, Nungeß S, Jovanovska M, Mühling B, Liebold A, Huber-Lang M, Messerer DAC. Multimodal monitoring of neutrophil activity during cardiac surgery. Front Immunol 2025; 16:1504944. [PMID: 40151619 PMCID: PMC11947689 DOI: 10.3389/fimmu.2025.1504944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiac surgery and the associated ischemia-reperfusion injury trigger an inflammatory response, which, in turn, can contribute to organ damage, prolonged hospitalization, and mortality. Therefore, the present study performed comprehensive monitoring of neutrophil-related inflammation in patients who underwent aortic valve surgery, including extracorporeal circulation. Neutrophil-related inflammation, as well as alterations in cellular physiology, phenotype, and function, were analyzed by flow cytometry, ELISA, and microscopy. Neutrophil activation occurred intraoperatively and preceded the upregulation of conventional inflammatory markers such as C-reactive protein and interleukin-6. Perioperatively, neutrophils maintained a stable response to platelet-activating factor (PAF) with regard to CD11b and CD66b expression but showed a decreased response in CD10. Postoperatively, neutrophils exhibited marked alterations in PAF-induced depolarization, while reactive oxygen species generation and phagocytic activity remained largely stable. Surprisingly, platelet-neutrophil complex formation was severely impaired intraoperatively but returned to normal levels postoperatively. Further studies are needed to elucidate the implications of these intraoperative and postoperative changes in neutrophil and platelet activity with respect to a potential immune dysfunction that temporarily increases susceptibility to infectious or hemostatic complications.
Collapse
Affiliation(s)
- Darko Jovanovski
- Department of Cardiothoracic and Vascular Surgery, University Hospital Ulm, Ulm, Germany
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | - Dominik Hüsken
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | - Bertram Dietrich Thomaß
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Paul Müller
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Sandra Nungeß
- Institute of Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Marta Jovanovska
- Department of Cardiothoracic and Vascular Surgery, University Hospital Ulm, Ulm, Germany
| | - Bernd Mühling
- Department of Cardiothoracic and Vascular Surgery, University Hospital Ulm, Ulm, Germany
| | - Andreas Liebold
- Department of Cardiothoracic and Vascular Surgery, University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
7
|
Liu Y, Li F, Tang L, Pang K, Zhang Y, Zhang C, Guo H, Ma T, Zhang X, Yang G, Li Y, Zhou Z, Zhang H, Li Y, Fu Y, Zhang J, Dong J, Zhao Z. Extracellular mitochondria contribute to acute lung injury via disrupting macrophages after traumatic brain injury. J Neuroinflammation 2025; 22:63. [PMID: 40038717 DOI: 10.1186/s12974-025-03390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Acute lung injury (ALI) is the most frequently developed complication in patients with severe traumatic brain injury (TBI), but its underlying mechanism remains poorly understood. Here, we report results from a study designed to investigate the mechanistic link between TBI and ALI in mouse models, in vitro experiments, and a patient study, specifically focusing on the role of extracellular mitochondria (exMt). We detected high levels of exMt in the alveolar lavage fluid of patients with TBI. The bronchoalveolar lavage fluid (BALF) of mice subjected to controlled cerebral cortical impact contained 4.2 ± 1.4 × 104/µl of exMt. We further showed that non-injured mice infused with exMt intravenously developed pulmonary edema, perivascular accumulation of macrophages, inflammation, and dysfunction. Results from complementary in vitro experiments showed that exMt bound to and were phagocytosed by interstitial macrophages, resulting in autophagic flux reduction and activation of macrophages. The phagocytosis of exMt depended on the CD36 and dynamin mediated pathway, and activation of macrophages depended on exMt-derived reactive oxygen species. This study discovered a novel mechanism by which exMt contribute to the pathogenesis of TBI-induced ALI through macrophages, which are activated, develop dysfunctional autophagy, and become inflammatory after phagocytosis of exMt.
Collapse
Affiliation(s)
- Yafan Liu
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanjian Li
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lujia Tang
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaifeng Pang
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yichi Zhang
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaonan Zhang
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hui Guo
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Respiratory and Critical Care Medicine Department, Chest Hospital, Tianjin University, Tianjin, China
| | - Tianrui Ma
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyang Zhang
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guili Yang
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Li
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zijian Zhou
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hejun Zhang
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yang Li
- Center of Precision Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Fu
- Department of Neurology, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jianning Zhang
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jingfei Dong
- BloodWorks Research Institute, 1551 Eastlake Avenue East, Seattle, WA, USA.
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA.
| | - Zilong Zhao
- Department of Neurosurgery and Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
- BloodWorks Research Institute, 1551 Eastlake Avenue East, Seattle, WA, USA.
- National Key Laboratory of Experimental Hematology, Tianjin, China.
| |
Collapse
|
8
|
Ren B, Lin CY, Li R, Park C, Li Z, Wang S, Suen AO, Kessler J, Yang S, Kozar R, Zou L, Williams B, Hu P, Chao W. Plasma microRNA biomarkers for multi-organ injury prediction in trauma patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.02.25323184. [PMID: 40093224 PMCID: PMC11908285 DOI: 10.1101/2025.03.02.25323184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Trauma remains a leading cause of morbidity and mortality in part due to secondary multi-organ injury. However, our ability to predict the downstream pathophysiology and adverse outcomes of trauma is limited. Here, we select a panel of microRNAs (miRNAs) biomarker candidates based on plasma RNA-Seq analysis of trauma patients and the unique pro-inflammatory nucleotide motif structures identified via a machine learning-guided computer exhaustive search algorithm. We test the panel of plasma miRNAs for their association with various trauma pathophysiological markers and their ability to predict organ injury and immune responses to trauma. We find a marked elevation of these plasma miRNAs as well as multiple inflammatory and organ injury factors at time of admission in a cohort of 48 blunt trauma patients. The plasma levels of these miRNA biomarkers are highly associated with multiple pathophysiological markers known for organ injury, coagulopathy, endothelial activation, and innate inflammation. AUROC analyses indicate that these miRNA biomarkers possess strong abilities to distinguish trauma severity, brain and liver injuries, metabolic acidosis, coagulopathy, and innate inflammation. These observations offer insights into potential values of the selected plasma miRNAs in prediction of trauma pathophysiological risk and clinical outcomes.
Collapse
Affiliation(s)
- Boyang Ren
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Chien-Yu Lin
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Ruoxing Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Chanhee Park
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Andrew O Suen
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine; Baltimore, MD, USA
| | - John Kessler
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Shiming Yang
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Rosemary Kozar
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Brittney Williams
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Peter Hu
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology, University of Maryland School of Medicine; Baltimore, MD, USA
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine; Baltimore, MD, USA
- Lead contact
| |
Collapse
|
9
|
Gurbanov E, Coneys U, Andereggen E, Ansorge A, Morello V, Gamulin A. Operatively treated high-energy blunt pelvic ring injuries and surgical site infections - A retrospective assessment based on a prospective registry. Injury 2025; 56:112209. [PMID: 39951962 DOI: 10.1016/j.injury.2025.112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION High-energy pelvic ring injuries (PRI) are severe, life-threatening trauma conditions which might require complex surgical management. One of the major complications associated with these injuries is the development of surgical site infections (SSI) which significantly impact patient outcomes. This study aimed to evaluate the rate of SSI in patients undergoing surgical fixation of high-energy blunt PRI and identify the key predisposing factors. METHODS A retrospective review of patients treated for high-energy blunt PRI was conducted using the prospectively filled institutional Severely Injured Patients' Registry, focusing on the rate of SSI following surgical fixation. The multifactorial nature of infection risk was analyzed, with particular attention to the type of injury, surgical technique, external fixation devices' usage and the germs encountered. RESULTS A SSI rate of 10,5 % (12 out of 114 patients) was encountered among the study population. The primary SSI risk factor was PRI complexity; 83.3 % of patients with SSI had an AO/OTA type C fracture and 16.7 % a type B fracture, while 43.1 % of patients without SSI had a type C fracture and 56.9 % a type B fracture (p = 0.008). Additionally, SSI patients had a trend to have higher extremities/pelvis AIS and higher ISS, and to have been more often treated with a transient pelvic fixation device including supra-acetabular external fixator. CONCLUSION These findings emphasize the need for a comprehensive infection prevention strategy in high-energy PRI patients, especially in complex cases. A multidisciplinary approach is of outmost importance and should include surgical techniques with meticulous soft tissue handling, proper implant selection and aggressive post-operative wound care. Despite external fixation devices being related to certain cases of SSI, their life-saving potential during the initial management phase should be carefully weighed against this risk.
Collapse
Affiliation(s)
- Elvin Gurbanov
- Division of Orthopaedic and Trauma Surgery, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, CH-1205 Geneva, Switzerland.
| | - Ulysse Coneys
- Division of Orthopaedic and Trauma Surgery, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, CH-1205 Geneva, Switzerland
| | - Elisabeth Andereggen
- Division of Emergency Medicine, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, CH-1205 Geneva, Switzerland
| | - Alexandre Ansorge
- Division of Orthopaedic and Trauma Surgery, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, CH-1205 Geneva, Switzerland
| | - Vanessa Morello
- Division of Orthopaedic and Trauma Surgery, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, CH-1205 Geneva, Switzerland
| | - Axel Gamulin
- Division of Orthopaedic and Trauma Surgery, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, CH-1205 Geneva, Switzerland
| |
Collapse
|
10
|
Potempa M, Hart PC, Rajab IM, Potempa LA. Redefining CRP in tissue injury and repair: more than an acute pro-inflammatory mediator. Front Immunol 2025; 16:1564607. [PMID: 40093010 PMCID: PMC11906453 DOI: 10.3389/fimmu.2025.1564607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Most early studies investigating the role of C-reactive protein (CRP) in tissue damage determined it supported pro-hemostatic and pro-inflammatory activities. However, these findings were not universal, as other data suggested CRP inhibited these same processes. A potential explanation for these disparate observations finally emerged with the recognition that CRP undergoes context-dependent conformational changes in vivo, and each of its three isoforms - pentameric CRP (pCRP), modified pentameric CRP (pCRP*), and monomeric CRP (mCRP) - have different effects. In this review, we consider this new paradigm and re-evaluate the role of CRP and its isoforms in the tissue repair process. Indeed, a growing body of evidence points toward the involvement of CRP not just in hemostasis and inflammation, but also in the resolution of inflammation and in tissue regeneration. Additionally, we briefly discuss the shortcomings of the currently available diagnostic tests for CRP and highlight the need for change in how CRP is currently utilized in clinical practice.
Collapse
Affiliation(s)
| | - Peter C. Hart
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Lawrence A. Potempa
- Acphazin Inc., Deerfield, IL, United States
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| |
Collapse
|
11
|
Gonzales G, Malka R, Bizios R, Dion GR, Guda T. Burn inhalation injury and intubation with dexamethasone-eluting endotracheal tubes modulate local microbiome and alter airway inflammation. Front Bioeng Biotechnol 2025; 13:1524013. [PMID: 40078791 PMCID: PMC11897493 DOI: 10.3389/fbioe.2025.1524013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Background Inhalation injuries, caused by exposure to extreme heat and chemical irritants, lead to complications with speaking, swallowing, and breathing. This study investigates the effects of thermal injury and endotracheal tube (ETT) placement on the airway microbiome and inflammatory response. A secondary aim is to assess the impact of localized dexamethasone delivery via a drug-eluting ETT to reduce laryngeal scarring. Methods Inhalation injury was developed in swine by administering heated air (150°C-160°C) under endoscopic visualization. Following injury, segments of regular or dexamethasone-loaded endotracheal tubes (ETTs) were placed in the injured airways for 3 or 7 days. Computed tomography (CT) scans were used to assess airway narrowing post-injury. Biofilm formation on the ETTs was investigated using micro-CT and microscopy. The airway microbiome was analyzed via 16S rRNA sequencing. Inflammatory markers were quantified using an immunoassay and macrophage populations in laryngeal tissue were assessed with CD86 and CD206 staining. Tracheal tissues were also histologically examined for epithelial thickness, collagen area, and mucin production. Results CT scans confirmed airway narrowing post-injury, particularly around ETT sites. Biofilm formation was more extensive on dexamethasone-coated ETTs at later timepoints. Beta diversity analysis revealed significant shifts in microbial composition related to ETT type (R2 = 0.04, p < 0.05) and duration of placement (R2 = 0.22, p < 0.05). Differential abundance analysis demonstrated significant positive log fold changes in genera such as Bergeriella, Peptostreptococcus, and Bacteriodes with thermal injury over time. Inflammatory markers IFN-γ, IL-4, and IL-1β were elevated in dexamethasone-ETT groups at 3 days, then decreased by 7 days. Macrophage markers CD86 and CD206 were significantly greater in dexamethasone groups compared to regular ETT groups at 7 days (p = 0.002 and p = 0.0213, respectively). Epithelial thickness was significantly greater with regular ETT placement compared to dexamethasone ETT placement in the burn-injured airway at 3 days (p = 0.027). Conclusion Thermal inhalation injury and ETT placement significantly impact airway inflammation, structural integrity, and microbiome composition. Dexamethasone-eluting ETTs, intended to reduce inflammation, increased biofilm formation and elevated cytokine levels, suggesting complex interactions between the drug coating and the host immune response. The airway microbiome shifted significantly with specific taxa thriving in the inflamed environment.
Collapse
Affiliation(s)
- Gabriela Gonzales
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Ronit Malka
- Department of Otolaryngology – Head and Neck Surgery, Brooke Army Medical Center JBSA Fort Sam Houston, San Antonio, TX, United States
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Gregory R. Dion
- Department of Otolaryngology – Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Sawadogo KCC, Bague B, Galboni A, Abdou MMS, Cisse Z, Karfo K. General practitioners' knowledge of psychotraumatism in Burkina Faso in a context of security challenges. BMC Psychiatry 2025; 25:171. [PMID: 40001019 PMCID: PMC11863406 DOI: 10.1186/s12888-025-06618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Post-traumatic stress disorders are psychiatric disorders that arise after a traumatic event. They result in moral suffering and physical complications that profoundly alter personal, social and professional life. Our main objective was to study general practitioners (GP)' knowledge of psychotraumatism. This was a descriptive, cross-sectional study whose data collection took place from January 15 to September 15, 2023 in Burkina Faso. GP practicing in Burkina Faso were included. The minimum number of subjects to be included was 422. A Google Form ® questionnaire was administered to participants. Our study sample comprised 427 GP, 67% of whom were men (284/427). The mean age of the doctors was 32.4 ± 3.5 years. Doctors were married in 49% of cases (208/427) and single in 41% (174/427). Average professional experience was 3.8 ± 2.6 years. The largest number of GP (120) came from the Centre region. A minority of GP practiced in rural areas (7%). The majority of GP (63%) thought they had already dealt with a case of psychotraumatism. Our sample had received training in psychotraumatism during their medical studies in 26.9% of cases, and 17.8% had received continuing education. Considering the grading of GP' knowledge of psychotraumatism, 182 had an average score of 10 or above, i.e. 43% of our sample. Our study did not reveal any factors associated with better knowledge of psychotraumatism. A study on a larger population including nurses could enable us to better assess the level of knowledge in psychotraumatism.
Collapse
Affiliation(s)
| | - Boubacar Bague
- Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Ouagadougou, Burkina Faso
| | - Adama Galboni
- Centre hospitalier universitaire Sourô SANOU, 01 BP 676 Bobo-Dioulasso 01, Bobo- Dioulasso, Burkina Faso
| | | | - Zeinabou Cisse
- Société d'études et de recherche en santé publique, 06 BP 9150 Ouagadougou 01, Ouagadougou, Burkina Faso
| | - Kapouné Karfo
- Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Ouagadougou, Burkina Faso
| |
Collapse
|
13
|
Zhou K, Wu F, Deng L, Xiao Y, Yang W, Zhao J, Wang Q, Chang Z, Zhai H, Sun C, Han H, Du M, Chen Q, Yan J, Xin P, Chu J, Han Z, Chai J, Howe GA, Li CB, Li C. Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato. Dev Cell 2025; 60:535-550.e8. [PMID: 39631391 DOI: 10.1016/j.devcel.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense. Here, we report that two antagonistic systemin receptors, SYR1 and SYR2, of the wound peptide hormone systemin in tomato act in a ligand-concentration-dependent manner to regulate immune homeostasis. Whereas SYR1 acts as a high-affinity receptor to initiate systemin signaling, SYR2 functions as a low-affinity receptor to attenuate systemin signaling. The expression of systemin and SYR2, but not SYR1, is upregulated upon SYR1 activation. Our findings provide a mechanistic explanation for how plants appropriately respond to tissue damage based on PRR-mediated perception of DAMP concentrations and have implications for uncoupling defense-growth trade-offs.
Collapse
Affiliation(s)
- Ke Zhou
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fangming Wu
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yu Xiao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wentao Yang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhai Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qinyang Wang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeqian Chang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hongyu Han
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Minmin Du
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifu Han
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jijie Chai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Chang-Bao Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chuanyou Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
14
|
Turgunov Y, Ogizbayeva A, Assamidanova S, Matyushko D, Mugazov M, Amanova D, Nuraly S, Sharapatov Y. The Role of I-FABP, REG3α, sCD14-ST, and LBP as Indicators of GI Tract Injury in MODS Patients. Diagnostics (Basel) 2025; 15:515. [PMID: 40075763 PMCID: PMC11898716 DOI: 10.3390/diagnostics15050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: The aim of this study was to evaluate potential biomarkers of bacterial translocation (lipopolysaccharide-binding protein (LBP) and soluble CD14 subtype (sCD14-ST)) and intestinal wall damage (intestinal fatty acid binding protein (I-FABP), Zonulin, and regenerating islet-derived protein-3α (REG3α)) in patients with multiple organ dysfunction syndrome (MODS). Methods: The study involved 327 patients divided into two groups: Group 1 comprised 227 patients with MODS (main group), while Group 2 comprised 100 patients with identical pathologies but without MODS (control group). To examine these biomarkers in the blood, venous blood was taken in the control group on the day of admission to the hospital, in patients with MODS on the first day of MODS staging, and later on Days 3 and 7 of its development. Levels of these markers in blood serum were determined by enzyme-linked immunosorbent assays according to the manufacturers' instructions. Results: In the control group, values of all the investigated markers were lower than in the group of MODS patients (p < 0.0001). In the main group, the mortality rate was 44.9% (n = 102). The values of sCD14-ST on Day 1 and of I-FABP and REG3α on Days 1 and 3 were higher in deceased MODS patients (p < 0.05), while LBP levels on Day 7 were conversely lower in the deceased patients (p = 0.006). SOFA and APACHE II scores were higher in the deceased patients (p < 0.0001). Conclusions: In MODS patients, the increased I-FABP, REG3α, and sCD14-ST but decreased LBP levels may indicate increased intestinal wall permeability and bacterial translocation, which may exacerbate the course of multiple organ dysfunction and increase the risk of mortality. Despite the limitations of this study, the studied potential biomarkers can be considered noteworthy candidates for identifying MODS patients at high risk of mortality.
Collapse
Affiliation(s)
- Yermek Turgunov
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Alina Ogizbayeva
- Department of Emergency Medical Care, Anaesthesiology and Resuscitation, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan;
| | - Sofiko Assamidanova
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Dmitriy Matyushko
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Miras Mugazov
- Department of Emergency Medical Care, Anaesthesiology and Resuscitation, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan;
| | - Dana Amanova
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Shynggys Nuraly
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Yerzhan Sharapatov
- Department of Urology and Andrology, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| |
Collapse
|
15
|
Groven RVM, Mert Ü, Greven J, Horst K, Joris V, Bini L, Poeze M, Blokhuis TJ, Huber-Lang M, Hildebrand F, van Griensven M. Early total care and damage control orthopaedics result in partially contrasting patterns of microRNA expression at the fracture site and in the systemic circulation : an animal study. Bone Joint J 2025; 107-B:193-203. [PMID: 39889739 DOI: 10.1302/0301-620x.107b2.bjj-2024-0160.r3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Aims The aims of this study, using a porcine model of multiple trauma, were to investigate the expression of microRNAs at the fracture site, in the fracture haematoma (fxH) and in the fractured bone, compared with a remote unfractured long bone, to characterize the patterns of expression of circulating microRNAs in plasma, and identify and validate messenger RNA (mRNA) targets of the microRNAs. Methods Two multiple trauma treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). For this study, fxH, fractured bone, unfractured control bone, plasma, lung, and liver samples were harvested. MicroRNAs were analyzed using quantitative real-time polymerase chain reaction arrays, and the identified mRNA targets were validated in vivo in the bone, fxH, lung, and liver tissue. Results MicroRNA expression was associated with the trauma treatment strategy and differed depending on the type of sample. In the ETC group, a more advanced fracture healing response, as reflected by the expression of osteogenic microRNAs, was seen compared with the DCO group. DCO treatment resulted in a more balanced immune response in the systemic circulation as represented by significant upregulations of several anti-inflammatory microRNAs. The in vivo validation of the abundance of putative mRNA targets reflected the levels of microRNAs which were identified. Conclusion Local and systemic microRNA patterns of expression were identified, specific for the treatment strategy in multiple trauma, which corresponded with the expression of mRNA at the fracture site and in target organs. These findings match clinical observations and offer insights into the cellular communication which may underlie the effects of using different surgical strategies in patients with multiple trauma, both locally and systemically. We also identified a systemic involvement of microRNAs in multiple trauma which may include distant cellular communication between injured tissues. Further research may further describe the temporospatial role of circulating microRNAs after multiple trauma, their potential role in communication between organs, and prospective therapeutic applications.
Collapse
Affiliation(s)
- Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ümit Mert
- Department of Orthopaedic, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Johannes Greven
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Klemens Horst
- Department of Orthopaedic, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Virginie Joris
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Lara Bini
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Taco J Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
16
|
Karasu E, Halbgebauer R, Schütte L, Greven J, Bläsius FM, Zeller J, Winninger O, Braig D, Messerer DAC, Berger B, Feuerstein H, Schultze A, Peter K, Knippschild U, Horst K, Hildebrand F, Eisenhardt SU, Huber-Lang M. A conformational change of C-reactive protein drives neutrophil extracellular trap formation in inflammation. BMC Biol 2025; 23:4. [PMID: 39773175 PMCID: PMC11708171 DOI: 10.1186/s12915-024-02093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND C-reactive protein (CRP) represents a routine diagnostic marker of inflammation. Dissociation of native pentameric CRP (pCRP) into the monomeric structure (mCRP) liberates proinflammatory features, presumably contributing to excessive immune cell activation via unknown molecular mechanisms. RESULTS In a multi-translational study of systemic inflammation, we found a time- and inflammation-dependent pCRP dissociation into mCRP. We were able to confirm that mCRP co-localizes with leukocytes at the site of injury after polytrauma and therefore assessed whether the CRP conformation potentiates neutrophil activation. We found mCRP-induced neutrophil-extracellular trap formation in vitro and ex vivo involving nicotinamide adenine dinucleotide phosphate oxidase activation, p38/mitogen-activated protein kinase signaling, and histone H3 citrullination. Mimicking the trauma milieu in a human ex vivo whole blood model, we found significant mCRP generation as well as NET formation, prevented by blocking pCRP conformational changes. CONCLUSIONS Our data provide novel molecular insights how CRP dissociation contributes to neutrophil activation as driver of various inflammatory disorders.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Lena Schütte
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Johannes Greven
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Felix M Bläsius
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | - Oscar Winninger
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | - David Braig
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | | | - Bettina Berger
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Hendrik Feuerstein
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Karlheinz Peter
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Medical Center, 89081, Ulm, Germany
| | - Klemens Horst
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany.
| |
Collapse
|
17
|
Morrey JD, Siddharthan V. Adjusting susceptibilities of C57BL/6 mice to orthoflaviviruses for evaluation of antiviral drugs by altering the levels of interferon alpha/beta receptor function. J Virol Methods 2025; 331:115053. [PMID: 39426414 DOI: 10.1016/j.jviromet.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
The purpose of this study was to optimize the infectivity of four different orthoflaviviruses in mice for evaluating antiviral drugs by using wild-type mice with intact interferon responses, type 1 interferon alpha/beta receptor knockout mice, or by injecting wild type C57BL/6 mice with varying doses of anti-type 1 interferon receptor antibody (MAR1-5A3) to optimize the infectivity and lethality. West Nile virus productively infected wild-type C57BL/6 mice to cause lethality, whereas Usutu virus required a complete absence of type 1 interferon receptor function. Deer tick virus (lineage 2 Powassan virus) and Japanese encephalitis viruses required a dampening of type 1 interferon responses by adjusting the doses of MAR1-5A3 antibody injections. Challenge dose-responsive mortality, weight loss, and viral titers of these two viruses were observed if the type 1 interferon responses were dampened with MAR1-5A3. Conversely, without MAR1-5A3 injections, these disease phenotypes were not viral challenge dose-responsive. From these different interferon-responsive models, the appropriate lethality was identified to determine that 7-deaza-2'-C-methyladenosine has high efficacy for West Nile and Usutu viruses, and low efficacy for deer tick and Japanese encephalitis viruses.
Collapse
Affiliation(s)
- John D Morrey
- Institute for Antiviral Research, Utah State University, 5600 Old Main Hill, Logan, UT 84321-5600, USA.
| | - Venkatraman Siddharthan
- Institute for Antiviral Research, Utah State University, 5600 Old Main Hill, Logan, UT 84321-5600, USA
| |
Collapse
|
18
|
Băetu AE, Mirea LE, Cobilinschi C, Grințescu IC, Grințescu IM. Hemogram-Based Phenotypes of the Immune Response and Coagulopathy in Blunt Thoracic Trauma. J Pers Med 2024; 14:1168. [PMID: 39728080 DOI: 10.3390/jpm14121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Blunt thoracic trauma possesses unique physiopathological traits due to the complex interaction of immune and coagulation systems in the lung tissue. Hemogram-based ratios such as neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), neutrophil-to-lymphocyte × platelet (NLPR) ratios have been studied as proxies for immune dysregulation and survival in trauma. We hypothesized that blunt thoracic trauma patients exhibit distinct patterns of coagulation and inflammation abnormalities identifiable by the use of readily available hemogram-derived markers. Methods: The present study represents a retrospective observational analysis that included 86 patients with blunt thoracic trauma from a single high-volume level one trauma center. The primary outcome was mortality prediction in blunt thoracic trauma patients using these derived biomarkers. Secondary outcomes included phenotypes of the immune response and coagulopathy and the prediction of non-fatal adverse events. Results: A U-shaped distribution of mortality was found, with high rates of early deaths in patients with an NLPR value of <3.1 and high rates of late deaths in patients with NLPR > 9.5. A subgroup of blunt thoracic trauma patients expressing moderate inflammation and inflammation-induced hypercoagulation objectified as NLPR between 3.1 and 9.5 may have a survival benefit (p < 0.0001). The NLPR cut-off for predicting early deaths and the need for massive transfusion was 3.1 (sensitivity = 80.00% and specificity = 71.05%). Conclusions: These findings suggest that blunt thoracic trauma patients exhibit distinct phenotypes of the immune response and coagulopathy from the early stages. A controlled, balanced interaction of immune, coagulation, and fibrinolytic systems might effectively achieve tissue repair and increase survival in thoracic trauma patients and should be subject to further research.
Collapse
Affiliation(s)
- Alexandru Emil Băetu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Grigore Alexandrescu Clinical Emergency Hospital for Children, 011743 Bucharest, Romania
| | - Liliana Elena Mirea
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Cristian Cobilinschi
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | | | - Ioana Marina Grințescu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
19
|
Lin Y, Hou C, Wang C, Chen R, Zhu Y, Zhou Q, Shao B, Huang Y, Li S. Research progress on digestive disorders following traumatic brain injury. Front Immunol 2024; 15:1524495. [PMID: 39759513 PMCID: PMC11695231 DOI: 10.3389/fimmu.2024.1524495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Traumatic brain injury (TBI) is a prevalent disease that poses a significant threat to global public health. Digestive dysfunction, as a common complication, is of particular importance to understand its pathogenesis, diagnostic criteria, and relevant treatment strategies. TBI can affect digestive function through inflammatory immune responses, the enteric nervous system, and hormonal levels. Furthermore, TBI can also impact neurologic recovery through bidirectional communication along the brain-gut axis. Therefore, this article aims to summarize the underlying mechanisms and further explore individualized feeding strategies, therapeutic approaches, long-term prognosis for TBI patients, as well as recent advancements in related technologies. Further understanding of the pathogenesis of digestive system dysfunction after TBI on the basis of the interaction of gut-brain axis is conducive to more future therapies to treat TBI and improve the long-term prognosis of patients through improving digestive function, and achieve good clinical efficacy.
Collapse
Affiliation(s)
- Yongshuang Lin
- The First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Chengshan Hou
- Trauma Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Neurosurgery, Jiangsu Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, China
| | - Rui Chen
- The First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Yunzhong Zhu
- The First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Qing Zhou
- The First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Binbin Shao
- Graduate school, Youjiang Medical College for Nationalities, Baise, China
| | - Yi Huang
- The First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Shun Li
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Salvo N, Charles AM, Mohr AM. The Intersection of Trauma and Immunity: Immune Dysfunction Following Hemorrhage. Biomedicines 2024; 12:2889. [PMID: 39767795 PMCID: PMC11673815 DOI: 10.3390/biomedicines12122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Hemorrhagic shock is caused by rapid loss of a significant blood volume, which leads to insufficient blood flow and oxygen delivery to organs and tissues, resulting in severe physiological derangements, organ failure, and death. Physiologic derangements after hemorrhage are due in a large part to the body's strong inflammatory response, which leads to severe immune dysfunction, and secondary complications such as chronic immunosuppression, increased susceptibility to infection, coagulopathy, multiple organ failure, and unregulated inflammation. Immediate management of hemorrhagic shock includes timely control of the source of bleeding, restoring intravascular volume, preferably with whole blood, and prevention of ischemia and organ failure by optimizing tissue oxygenation. However, currently, there are no clinically effective treatments available that can stabilize the immune response to hemorrhage and reinstate homeostatic conditions. In this review, we will discuss what is known about immunologic dysfunction following hemorrhage and potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Alicia M. Mohr
- Department of Surgery, Sepsis and Critical Illness Research Center, College of Medicine, University of Florida, 1600 SW Archer Road Box 100108, Gainesville, FL 32610, USA; (N.S.); (A.M.C.)
| |
Collapse
|
21
|
Meza Monge K, Rosa C, Sublette C, Pratap A, Kovacs EJ, Idrovo JP. Navigating Hemorrhagic Shock: Biomarkers, Therapies, and Challenges in Clinical Care. Biomedicines 2024; 12:2864. [PMID: 39767770 PMCID: PMC11673713 DOI: 10.3390/biomedicines12122864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
Hemorrhagic shock remains a leading cause of preventable death worldwide, with mortality patterns varying significantly based on injury mechanisms and severity. This comprehensive review examines the complex pathophysiology of hemorrhagic shock, focusing on the temporal evolution of inflammatory responses, biomarker utility, and evidence-based therapeutic interventions. The inflammatory cascade progresses through distinct phases, beginning with tissue injury and endothelial activation, followed by a systemic inflammatory response that can transition to devastating immunosuppression. Recent advances have revealed pattern-specific responses between penetrating and blunt trauma, necessitating tailored therapeutic approaches. While damage control resuscitation principles and balanced blood product administration have improved outcomes, many molecular targeted therapies remain investigational. Current evidence supports early hemorrhage control, appropriate blood product ratios, and time-sensitive interventions like tranexamic acid administration. However, challenges persist in biomarker validation, therapeutic timing, and implementation of personalized treatment strategies. Future directions include developing precision medicine approaches, real-time monitoring systems, and novel therapeutic modalities while addressing practical implementation barriers across different healthcare settings. Success in hemorrhagic shock management increasingly depends on integrating multiple interventions across different time points while maintaining focus on patient-centered outcomes.
Collapse
Affiliation(s)
- Kenneth Meza Monge
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| | - Caleb Rosa
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| | - Christopher Sublette
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| | - Akshay Pratap
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| |
Collapse
|
22
|
Reinicke M, Zheng L, Rang M, Fuchs C, Weikert J, Keß A, Kleber C, Ceglarek U, Osterhoff G, Aust G. Severity-Dependent Long-Term Post-Traumatic Changes in the Circulating Oxylipin Profile. Int J Mol Sci 2024; 25:13530. [PMID: 39769293 PMCID: PMC11680030 DOI: 10.3390/ijms252413530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Trauma causes the breakdown of membrane phospholipids and the subsequent degradation of the released polyunsaturated fatty acids (PUFAs) to partially bioactive oxylipins. Here, we screened for circulating PUFAs and oxylipins in patients (n = 34) differing from those of uninjured controls (n = 25) and analyzed their diagnostic potential. Patients were followed up for 1 to 240 h after minor/moderate, severe, and very severe injuries. Of the targeted oxylipins, 13 out of 80 (13/80) were detected in almost all patients and controls. Injury caused a long-term decrease in 9- and 13-hydroxyoctadecadienoic acids and in several dihydroxyeicosatetraenoic acids, the stable derivatives of bioactive anti-inflammatory epoxyeicosatrienoic acids, compared to controls. Frequently, these oxylipins correlated inversely to injury severity, days in the intensive care unit and hospital, and/or procalcitonin and pro-inflammatory cytokine levels 48 up to 240 h after trauma. Notably, 20/80 oxylipins were detected in some patients but not or less often in controls. Many of these oxylipins increased transiently immediately after injury. Their level is partly correlated with adverse clinical parameters at this early time point. The circulating oxylipidome was markedly affected by trauma. Several oxylipins showed injury-dependent alterations at different time points in the post-traumatic course.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; (M.R.); (J.W.); (U.C.)
| | - Leyu Zheng
- Research Laboratories and Clinic of Orthopedics, Trauma and Plastic Surgery, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (C.K.); (G.O.)
| | - Moujie Rang
- Research Laboratories and Clinic of Orthopedics, Trauma and Plastic Surgery, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (C.K.); (G.O.)
| | - Carolin Fuchs
- Research Laboratories and Clinic of Orthopedics, Trauma and Plastic Surgery, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (C.K.); (G.O.)
| | - Juliane Weikert
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; (M.R.); (J.W.); (U.C.)
- Leipzig Medical Biobank, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Annette Keß
- Research Laboratories and Clinic of Orthopedics, Trauma and Plastic Surgery, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (C.K.); (G.O.)
| | - Christian Kleber
- Research Laboratories and Clinic of Orthopedics, Trauma and Plastic Surgery, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (C.K.); (G.O.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; (M.R.); (J.W.); (U.C.)
- Leipzig Medical Biobank, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Georg Osterhoff
- Research Laboratories and Clinic of Orthopedics, Trauma and Plastic Surgery, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (C.K.); (G.O.)
| | - Gabriela Aust
- Research Laboratories and Clinic of Orthopedics, Trauma and Plastic Surgery, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (C.K.); (G.O.)
- Research Laboratories and Clinic of Visceral, Transplantation, Vascular and Thoracic Surgery, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
23
|
He X, Liu H. Persistent and severe hypotension during radical transabdominal ovarian cancer surgery: A case report. Medicine (Baltimore) 2024; 103:e40751. [PMID: 39654230 PMCID: PMC11630978 DOI: 10.1097/md.0000000000040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
RATIONALE In radical surgery for ovarian cancer (OC), hypotension that is difficult to correct is usually rare unless there is significant blood loss. We recently encountered a patient who developed persistent and severe hypotension during radical transabdominal OC surgery. PATIENT CONCERNS A patient was 52 years old with a history of hypertension and well-controlled preoperative blood pressure (BP). A total of 2000 mL of ascites was drained and blood loss was 300 mL when the operation proceeded to 5.5 hours. The patient's cardiopulmonary function and blood gas analysis showed no significant abnormalities. DIAGNOSES persistent and uncorrectable hypotension. INTERVENTIONS There was no significant edema in the patient's head or face, nor did the surgeon observe noticeable edema in her intestinal walls or other organs. No oozing was seen at the surgical site. Fluid resuscitation and vasopressor administration were continued. As BP control further deteriorated, blood counts, coagulation, and biochemical electrolyte analyses revealed severe hypoalbuminemia (13.5 g/L) and coagulation dysfunction. OUTCOMES After intravenous human serum albumin (HSA) and fresh frozen plasma therapy, her hypoalbuminemia and coagulation were gradually corrected. LESSONS Based on this case, we suggest that in OC patients experiencing mild intraoperative bleeding and minimal heart rate variation but persistent refractory hypotension, hypoalbuminemia should be considered even if preoperative biochemical tests (including serum albumin levels) are normal. Confirming hypoalbuminemia warrants HSA administration to alleviate hypovolemic shock symptoms. Additionally, it is important to be cautious of potential coagulation issues with albumin use, possibly requiring plasma infusion to address coagulopathy.
Collapse
Affiliation(s)
- Xinyan He
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Hui Liu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Xi F, Zheng N, Xiong B, Wang D, Teng R, Zhang X, Zhang T, Wei C, Wang X, Tan S. Skeletal muscle density as a new predictor of abdominal infection in abdominal trauma patients. Clin Nutr 2024; 43:209-217. [PMID: 39489020 DOI: 10.1016/j.clnu.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND AIMS Skeletal muscle density (SMD) is a valuable prognostic indicator in various conditions such as cancer, liver cirrhosis. Yet, the connection between SMD and intra-abdominal infection in individuals who have suffered abdominal injuries is still unclear. The purpose of this research is to examine how well SMD can predict intra-abdominal infection in patients who have suffered abdominal trauma. METHODS Participants with abdominal injuries were included in this research from January 2015 to April 2023. Based on the sex-specific cut off values of SMD, the entire population was split into two categories. Prognostic factors were identified through logistic regression analysis. ROC was used to assess the predictive accuracy of SMD and its combinations with other biomarkers for clinical outcomes. RESULTS A total of 220 patients were ultimately included in the study. Patients in the group with low SMD exhibited a higher incidence of intra-abdominal infection, longer hospital stays, and increased hospital costs. In patients with abdominal trauma, low SMD was identified as a significant independent predictor of intra-abdominal infection (OR 2.397; 95 % CI 1.117-5.141, p = 0.025). Low SMD had a higher area under the curve (AUC) in ROC analysis compared to TRF, NRS2002 score, and APACHEII score for predicting intra-abdominal infection (AUC 0.70, 95 % CI 0.61-0.78, p = 0.002). Moreover, low SMD showed associations with clinical outcomes such as hospital stay length and costs (p < 0.01). CONCLUSIONS Low SMD is recognized as an independent risk factor for predicting intra-abdominal infections in this patient population. Notably, SMD is emerging as a novel predictor of abdominal infections in patients with abdominal trauma.
Collapse
Affiliation(s)
- Fengchan Xi
- Department of Intensive Care Unit, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China; Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Nan Zheng
- Department of Intensive Care Unit, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Bing Xiong
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Di Wang
- Department of Intensive Care Unit, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Ran Teng
- Department of Intensive Care Unit, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Xinxing Zhang
- Department of Intensive Care Unit, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Tongtong Zhang
- Department of Intensive Care Unit, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Caiyun Wei
- Department of Intensive Care Unit, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Xiling Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Fan C, Li P, Yan N, Huang G. Risk Factors for Tissue Expander-Related Infections in Pediatric Scar Reconstruction: A 10-Year Retrospective Study. Plast Reconstr Surg 2024; 154:1200e-1208e. [PMID: 38439148 PMCID: PMC11584183 DOI: 10.1097/prs.0000000000011390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Tissue expansion addresses limited soft-tissue availability and provides natural-looking skin for scar reconstruction. However, infection is a common complication in expander surgery. This 10-year retrospective cohort study was performed to investigate the infection risk factors in pediatric scar reconstruction. METHODS This single-center observational cohort study was conducted at the Central Hospital Affiliated with Shandong First Medical University, China, and analyzed data from pediatric patients undergoing tissue expander surgery for scar reconstruction from January of 2012 to June of 2022. Patients were selected, were divided into groups with or without infection, and their demographic and clinical data were analyzed. Propensity score matching ensured balanced comparisons, and logistic regression identified infection risk factors. RESULTS Among the 4539 patient records, 1756 eligible pediatric patients were included (142 with infections; 1614 without infections). Multivariate analysis revealed that factors increasing infection risk included having 3 or more expanders (OR, 2.39, P < 0.05), a total expander volume of 300 cc or more (OR, 2.33, P < 0.05), back or gluteal implants (OR, 1.33, P < 0.05), lack of antibiotic prophylaxis (OR, 0.65, P < 0.05), and absence of hematoma evacuation (OR, 3.29, P < 0.05). Microbiological analysis found no significant bacterial differences among antibiotic prophylaxis groups, with Staphylococcus aureus being the predominant bacterium in infections. CONCLUSIONS Patients with multiple expanders, larger expander volumes, back or gluteal implants, lack of antibiotic prophylaxis, and hematoma evacuation absence have higher infection risks. Short-term (<24 hours) use of S. aureus -sensitive antibiotics after surgery may benefit pediatric infection risk reduction. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, III.
Collapse
Affiliation(s)
- Chunjie Fan
- From the Department of Burns and Reconstructive Surgery, Central Hospital Affiliated to Shandong First Medical University
| | - Peilong Li
- From the Department of Burns and Reconstructive Surgery, Central Hospital Affiliated to Shandong First Medical University
| | - Ning Yan
- From the Department of Burns and Reconstructive Surgery, Central Hospital Affiliated to Shandong First Medical University
| | - Guobao Huang
- From the Department of Burns and Reconstructive Surgery, Central Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
26
|
Khabyeh-Hasbani N, Yan Y, Cohen JM, Abuqubo RZ, Koehler SM. Effects of Postoperative Oral Corticosteroids on Infection Rates in Upper Extremity Surgery. Hand (N Y) 2024:15589447241300713. [PMID: 39614609 DOI: 10.1177/15589447241300713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
BACKGROUND The recent trend in administering postoperative oral corticosteroids has proven effective in alleviating pain and improving surgical outcomes for hand and upper extremity procedures. However, concerns persist regarding potential infection risks despite a lack of supporting evidence in the current literature. We propose that a 6-day regimen of low-dose postoperative oral corticosteroids is safe and does not increase the likelihood of surgical site infections (SSIs) in adult upper extremity surgeries. METHODS A retrospective study of all adult patients who underwent clean, upper extremity surgery, including both soft tissue and hardware implantation cases, between November 2021 and November 2023, performed at a single institution were included in the study. Primary outcome measures were diagnosis of SSI by 14 days and 30 days. Categorical variables were compared using χ2 tests, and continuous variables were compared using Wilcoxon rank-sum tests. A P value less than .05 was considered statistically significant. RESULTS A total of 813 cases were included for analysis-196 received a 6-day course of postoperative oral steroids (methylprednisolone) and 617 did not. Both groups had similar SSI rates of 4.1% and 3.1%, respectively, with no statistical differences between the groups at any postoperative time. Subgroup analysis of patients diagnosed with an SSI identified no statistically different demographic factors or medical comorbidities when comparing patients who received postoperative oral corticosteroids versus those who did not. CONCLUSIONS Low-dose, postoperative oral steroid use following adult upper extremity surgery is safe and does not increase the risk of SSI. Further investigations with prospective studies on postoperative oral corticosteroids would prove advantageous.
Collapse
|
27
|
Penatzer J, Steele L, Breuer J, Fabia R, Hall M, Thakkar RK. FAS(APO), DAMP, and AKT Phosphoproteins Expression Predict the Development of Nosocomial Infection After Pediatric Burn Injury. J Burn Care Res 2024; 45:1607-1616. [PMID: 38863248 PMCID: PMC11565198 DOI: 10.1093/jbcr/irae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 06/13/2024]
Abstract
Pediatric burn injuries are a leading cause of morbidity with infections being the most common acute complication. Thermal injuries elicit a heightened cytokine response while suppressing immune function; however, the mechanisms leading to this dysfunction are still unknown. Our aim was to identify extracellular proteins and circulating phosphoprotein expression in the plasma after burn injury to predict the development of nosocomial infection (NI). Plasma was collected within 72 hours after injury from 64 pediatric burn subjects; of these, 18 went on to develop an NI. Extracellular damage-associated molecular proteins, FAS(APO), and protein kinase b (AKT) signaling phosphoproteins were analyzed. Subjects who went on to develop an NI had elevated high-mobility group box 1, heat shock protein 90 (HSP90), and FAS expression than those who did not develop an NI after injury (NoNI). Concurrently, phosphorylated (p-)AKT and mammalian target of rapamycin (p-mTOR) were elevated in those subjects who went on to develop an NI. Quadratic discriminant analysis revealed distinct differential profiles between NI and NoNI burn subjects using HSP90, FAS, and p-mTOR. The area under the receiver-operator characteristic curves displayed significant ability to distinguish between these 2 burn subject cohorts. These findings provide insight into predicting the signaling proteins involved in the development of NI in pediatric burn patients. Further, these proteins show promise as a diagnostic tool for pediatric burn patients at risk of developing infection while additional investigation may lead to potential therapeutics to prevent NI.
Collapse
Affiliation(s)
- Julia Penatzer
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lisa Steele
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Julie Breuer
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Renata Fabia
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mark Hall
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Rajan K Thakkar
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
28
|
Braunstein M, Annecke T, Frey K, Kusmenkov T, Wörnle M, Ney L, Böcker W, Bogner-Flatz V. Effect on Syndecan-1 and Hyaluronan Levels Depending on Multiple Organ Failure, Coagulopathy and Survival: An Observational Study in Major Trauma Patients. J Clin Med 2024; 13:6768. [PMID: 39597912 PMCID: PMC11595190 DOI: 10.3390/jcm13226768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Major trauma, as well as traumatic hemorrhagic shock go along with early damage to the endothelial glycocalyx (EG). Shed glycocalyx constituents can activate the innate immune system and aggravate secondary injury. Subsequently, we investigated the relationship between glycocalyx shedding and the occurrence of coagulopathy, multiple organ failure (MOF) and outcome in our cohort after severe trauma. Methods: We included multiple trauma patients, as defined by Injury Severity Score (ISS). Polytraumatized patients must have arrived in our level 1 trauma center within 60 min after trauma. Retrospectively, patients were assigned to predefined clinical conditions, based on injury severity (ISS ≥ 16 points), multiple organ failure (MOF score ≥ 6 points), need for massive transfusion (≥10 RBC units/first 24 h), coagulopathy (prothrombin time < 70% at 0 h) and survival (90-day survival). Syndecan-1 (Sdc-1) and hyaluronan (HA) plasma concentrations were evaluated immediately (0 h), 6 h and 12 h after trauma. Results: 49 patients (mean ISS 35.7 ± 12.1 SD, mean age 45.78 ± 15.6 SD) were included in this study. A total of 37 patients (75.5%) survived, while 12 patients died within the observation period of 90 days after trauma (24.5%). A total of 77% of all patients suffered multiple organ failure (MOF score ≥ 6, n = 30). Initial prothrombin time at 0 h was <70% in 31 patients. Plasma concentrations of circulating both glycocalyx constituents showed a significant increase over the first 12 h after trauma (p = 0.001; p = 0.008). Patients with multiple organ failure showed significantly increased hyaluronan concentrations at all three time points (p = 0.007/0.006/<0.001), and the syndecan-1 levels were significantly elevated 12 h after trauma in the MOF group (p = 0.01). Patients with coagulopathy on admission exhibited significantly higher hyaluronan levels at 12 h (p = 0.042). Non-survivors showed significantly increased syndecan-1 levels at 12 h after trauma (p = 0.024). Conclusions: Glycocalyx shedding occurs immediately after major trauma. Coagulopathy is associated with significantly increased plasma hyaluronan. Further, significant changes in plasma concentrations within the first 12 h help to identify subgroups at risk for developing MOF and death.
Collapse
Affiliation(s)
- Mareen Braunstein
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Centre Munich (MUM), University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany; (K.F.); (W.B.); (V.B.-F.)
| | - Thorsten Annecke
- Department of Anaesthesiology and Critical Care Medicine, Merheim Medical Centre, University of Witten/Herdecke, 51109 Cologne, Germany;
| | - Kathrin Frey
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Centre Munich (MUM), University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany; (K.F.); (W.B.); (V.B.-F.)
| | - Thomas Kusmenkov
- Niels-Stensen-Klinken, Marienhospital Osnabrück, Bischofsstr. 1, 49072 Osnabrück, Germany;
| | - Markus Wörnle
- Emergency Department, University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany;
| | - Ludwig Ney
- Department of Anesthesiology, University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany;
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Centre Munich (MUM), University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany; (K.F.); (W.B.); (V.B.-F.)
| | - Viktoria Bogner-Flatz
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Centre Munich (MUM), University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany; (K.F.); (W.B.); (V.B.-F.)
| |
Collapse
|
29
|
Xia M, Han Y, Sun L, Li D, Zhu C, Li D. The role of neutrophils in osteosarcoma: insights from laboratory to clinic. Front Immunol 2024; 15:1490712. [PMID: 39582869 PMCID: PMC11582048 DOI: 10.3389/fimmu.2024.1490712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly influenced by the intricate interactions within its tumor microenvironment (TME), particularly involving neutrophils. This review delineates the multifaceted roles of neutrophils, including tumor-associated neutrophils (TANs) and neutrophil extracellular traps (NETs), in osteosarcoma's pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating tumor growth and immune evasion, while NETs facilitate tumor cell adhesion, migration, and immunosuppression. Clinically, neutrophil-related markers such as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes, highlighting the potential for neutrophil-targeted therapies. Unraveling these complex interactions is crucial for developing novel treatment strategies that harness the TME to improve osteosarcoma management.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongsong Li
- Department of Orthopedics, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
30
|
El-Dehaibi F, Zamora R, Yin J, Namas RA, Billiar TR, Vodovotz Y. NETWORK ANALYSIS OF SINGLE-NUCLEOTIDE POLYMORPHISMS ASSOCIATED WITH ABERRANT INFLAMMATION IN TRAUMA PATIENTS SUGGESTS A ROLE FOR VESICLE-ASSOCIATED INFLAMMATORY PROGRAMS INVOLVING CD55. Shock 2024; 62:663-672. [PMID: 39178207 DOI: 10.1097/shk.0000000000002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Background: Critical illness stemming from severe traumatic injury is a leading cause of morbidity and mortality worldwide and involves the dysfunction of multiple organ systems, driven, at least in part, by dysregulated inflammation. We and others have shown a key role for genetic predisposition to dysregulated inflammation and downstream adverse critical illness outcomes. Recently, we demonstrated an association among genotypes at the single-nucleotide polymorphism (SNP) rs10404939 in LYPD4 , dysregulated systemic inflammation, and adverse clinical outcomes in a broad sample of ~1,000 critically ill patients. Methods: We sought to gain mechanistic insights into the role of LYPD4 in critical illness by bioinformatically analyzing potential interactions among rs10404939 and other SNPs. We analyzed a dataset of common (i.e., not rare) SNPs previously defined to be associated with genotype-specific, significantly dysregulated systemic inflammation trajectories in trauma patients, in comparison to a control dataset of common SNPs determined to exhibit an absence of genotype-specific inflammatory responses. Results: In the control dataset, this analysis implicated SNPs associated with phosphatidylinositol and various membrane transport proteins, but not LYPD4. In the patient subset with genotypically dysregulated inflammation, our analysis suggested the co-localization to lipid rafts of LYPD4 and the complement receptor CD55, as well as the neurally related CNTNAP2 and RIMS4. Segregation of trauma patients based on genotype of the CD55 SNP rs11117564 showed distinct trajectories of organ dysfunction and systemic inflammation despite similar demographics and injury characteristics. Conclusion: These analyses define novel interactions among SNPs that could enhance our understanding of the response to traumatic injury and critical illness.
Collapse
Affiliation(s)
- Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
31
|
Lu J, Zhang Y, Hao Q, Zhou H, Zong Y. IDO-Kynurenine pathway mediates NLRP3 inflammasome activation-induced postoperative cognitive impairment in aged mice. Int J Neurosci 2024; 134:1309-1319. [PMID: 37746906 DOI: 10.1080/00207454.2023.2262741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
AIM Postoperative cognitive dysfunction (POCD) is a common postoperative complication, especially in elderly patients. It extends hospital stay, increases the mortality rate and are heavy burdens to the family and society. Accumulating research has indicated that overactivation of pyrin domain-containing protein 3 (NLRP3) inflammasomes is related to POCD andplays a critical role in activating pro-inflammatory cytokines. According to existing studies, indoleamine 2,3-dioxygenase (IDO) is potently up-regulated by inflammatory factors, tryptophan in brain is mainly catalyzed by IDO to kynurenine (KYN), KYN metabolism may contribute to the development of depressive disorder and memory deficits. Hence, this study elucidated whether IDO-Kynurenine pathway mediates NLRP3 inflammasome activation-induced postoperative cognitive impairment in aged mice. MATERIAL AND METHODS POCD model was established in aged C57BL/6J mice by exploratory laparotomy under isoflurane anesthesia. Learning and memory were determined using Morris water maze. RESULTS The data showed that IDO and kynurenine aminotransferase-II (KAT-II) mRNA in hippocampus was up-regulated, and NLRP3, caspase recruitment domain (ASC), interleukin-1b (IL-1b) and IDO overexpressed, KYN levels increased after anesthesia and surgery. NLRP3 inflammasome inhibitor (MCC950) reversed NLRP3, ASC, IL-1b and IDO overexpression, and the elevation of KYN levels. To clarify the role of IDO-Kynurenine pathway in postoperative cognitive impairment, IDO inhibitor (1-methyl-Ltryptophan 1-MT) reduced the elevation of KYN and kynurenic acid (KYNA) levels, reduction of tryptophan (TRP), as well as improved learning and memory abilities. Finally, KAT-II inhibitor (PF-04859989) reduced brain KYNA levels and restored the cognitive impairment. CONCLUSION These results reveal that IDO-Kynurenine pathway mediates NLRP3 inflammasome activation-induced postoperative cognitive impairment.
Collapse
Affiliation(s)
- Jian Lu
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Ye Zhang
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Qian Hao
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Hongmei Zhou
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Youming Zong
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| |
Collapse
|
32
|
Eskesen TO, Almstrup K, Elgaard L, Arleth T, Lassen ML, Creutzburg A, Jensen AH, Breindahl N, Dinesen F, Vang M, Sørensen E, Paulsen AW, Nielsen T, Rasmussen LS, Sillesen M, Steinmetz J. Severe traumatic injury is associated with profound changes in DNA methylation. NPJ Genom Med 2024; 9:53. [PMID: 39487175 PMCID: PMC11530621 DOI: 10.1038/s41525-024-00438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/25/2024] [Indexed: 11/04/2024] Open
Abstract
Whether DNA methylation changes follow human physical trauma is uncertain. We aimed to investigate if severe trauma was associated with DNA methylation changes. In a prospective, observational, clinical study, we included severely injured adults and adults undergoing elective surgery (controls). Blood was obtained from trauma patients (n = 60) immediately- and 30-45 days post-trauma, and from surgical patients (n = 57) pre-, post-, and 30-45 days post-surgery. Epigenome-wide DNA methylation profiling was performed and analyzed for significant differentially methylated CpGs and -regions (DMRs) within and between groups. Within the trauma group we identified 10,126 significant differentially methylated CpGs and 1169 DMRs. No significant differential methylation was found in the surgical group. In the trauma group, differentially methylated sites were enriched in genes and pathways involved in blood coagulation and inflammatory response. Severe trauma was associated with profound alterations in the DNA methylome of circulating leucocytes, and differential methylation was located in trauma-relevant genes.
Collapse
Affiliation(s)
- Trine O Eskesen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark.
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laurits Elgaard
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Tobias Arleth
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Mathilde L Lassen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Creutzburg
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Alice Herrlin Jensen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Niklas Breindahl
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Felicia Dinesen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Malene Vang
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Section 2034, Rigshospitalet, Copenhagen, Denmark
| | | | - Tatiana Nielsen
- Department of Anesthesia, Pain, and Respiratory Support, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Lars S Rasmussen
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin Sillesen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Organ Surgery and Transplantation, Rigshospitalet, Copenhagen, Denmark
- Center for Surgical Translational and Artificial Intelligence Research, 2100 Rigshospitalet, Copenhagen, Denmark
| | - Jacob Steinmetz
- Department of Anesthesia, Section 6011, Center of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Air Ambulance, Aarhus, Denmark
| |
Collapse
|
33
|
Zhang W, Xia L, Yuan Z, Jiao Y, Wang Z. Analysis of Nirmatrelvir Entry into Pulmonary Lining Fluid in Patients with COVID-19: A Unique Perspective to Explore and Understand the Target Plasma Concentration of 292 ng/mL in Antiviral Activity. Immun Inflamm Dis 2024; 12:e70075. [PMID: 39545673 PMCID: PMC11565441 DOI: 10.1002/iid3.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Currently, the applicant has chosen a target plasma trough concentration for nirmatrelvir, which is adjusted to 292 ng/mL based on the drug's molecular weight (499.54 Daltons), its binding to human plasma proteins (69%), and the in vitro antiviral EC90 value (181 nM). However, the current exposure-effect relationships (ER) analysis of viral load in patients enrolled in the EPIC-HR study has not revealed clinically significant trends in the ER. Given that the lungs are the primary site of COVID-19 infection, we aim to further understand this exposure relationship by exploring and analyzing the penetration characteristics of nirmatrelvir in the lungs. OBJECTIVES To explore and understand the target plasma concentration of 292 ng/mL in antiviral activity. METHODS We identified all critically ill patients with coronavirus disease 2019 who received nirmatrelvir/ritonavir treatment in the respiratory intensive care unit of Changhai hospital between January 2023 and October 2023. Samples of plasma and bronchoalveolar lavage fluid were obtained at pre-dose trough concentrations after administration of nirmatrelvir (NMV). The relationship between NMV levels in plasma and the epithelial lining fluid (ELF) was assessed by determining concentrations of NMV. RESULTS There was a significant relationship between NMV levels in plasma and ELF (ELF = 0.4976*PLASMA- 204; R = 0.96), with a correlation whose slope (0.4976) suggested that the blood-to-ELF ratio of drug penetration was 2:1. A negative value from the equation indicates that NMV requires to reach baseline concentration to penetrate the ELF. CONCLUSIONS The relationship between NMV levels in plasma and ELF with low permeability and a negative baseline value suggests that the target plasma concentration of 292 ng/mL is insufficient for antiviral activity. This study provides a unique perspective to explore and understand no clinically meaningful trend of exposure-response relationships in patients enrolled in EPIC-HR.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Pharmacy, Shanghai Changhai HospitalThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Lin Xia
- Department of Pharmacy, Shanghai Changhai HospitalThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Zhilong Yuan
- Department of Pharmacy, Shanghai Changhai HospitalThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
- School of PharmacyBengbu Medical UniversityBengbuChina
| | - Yang Jiao
- Department of Respiratory and Critical Care MedicineShanghai Changhai Hospital, The First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Zhuo Wang
- Department of Pharmacy, Shanghai Changhai HospitalThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
34
|
Liu L, Ma L, Liu H, Zhao F, Li P, Zhang J, Lü X, Zhao X, Yi Y. Targeted discovery of gut microbiome-remodeling compounds for the treatment of systemic inflammatory response syndrome. mSystems 2024; 9:e0078824. [PMID: 39235366 PMCID: PMC11494991 DOI: 10.1128/msystems.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 09/06/2024] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a severe inflammatory response that can lead to organ dysfunction and death. Modulating the gut microbiome is a promising therapeutic approach for managing SIRS. This study assesses the therapeutic potential of the Xuanfei Baidu (XFBD) formula in treating SIRS. The results showed that XFBD administration effectively reduced mortality rates and inflammation in SIRS mice. Using 16S rRNA sequencing and fecal microbiota transplantation (FMT), we substantiated that the therapeutic effects of XFBD are partly attributed to gut microbiota modulation. We conducted in vitro experiments to accurately assess the gut microbiome remodeling effects of 51 compounds isolated from XFBD. These compounds exhibited varying abilities to induce a microbial structure that closely resembles that of the healthy control group. By quantifying their impact on microbial structure and clustering their regulatory patterns, we devised multiple gut microbiome remodeling compound (GMRC) cocktails. GMRC cocktail C, comprising aucubin, gentiopicroside, syringic acid, gallic acid, p-hydroxybenzaldehyde, para-hydroxybenzoic acid, and isoimperatorin, demonstrated superior efficacy in treating SIRS compared to a single compound or to other cocktails. Finally, in vitro experiments showcased that GMRC cocktail C effectively rebalanced bacteria composition in SIRS patients. This study underscores XFBD's therapeutic potential in SIRS and highlights the importance of innovative treatment approaches for this disease by targeting the gut microbiota.IMPORTANCEDeveloping effective treatment strategies for systemic inflammatory response syndrome (SIRS) is crucial due to its severe and often life-threatening nature. While traditional treatments like dexamethasone have shown efficacy, they also come with significant side effects and limitations. This study makes significant strides by demonstrating that the Xuanfei Baidu (XFBD) formula can substantially reduce mortality rates and inflammation in SIRS mice through effective modulation of the gut microbiota. By quantitatively assessing the impact of 51 compounds derived from XFBD on the gut microbiome, we developed a potent gut microbiome remodeling compound cocktail. This cocktail outperformed individual compounds and other mixtures in efficacy against SIRS. These findings highlight the potential of XFBD as a therapeutic solution for SIRS and underscore the critical role of innovative strategies targeting the gut microbiota in addressing this severe inflammatory condition.
Collapse
Affiliation(s)
- Luyao Liu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Lin Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huan Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Pu Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, China, Shaanxi
| | - Junhua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| |
Collapse
|
35
|
Bouras M, Tessier P, Poulain C, Schirr-Bonnans S, Roquilly A. Three-month outcomes and cost-effectiveness of interferon gamma-1b in critically ill patients: a secondary analysis of the PREV-HAP trial. J Intensive Care 2024; 12:40. [PMID: 39394183 PMCID: PMC11468134 DOI: 10.1186/s40560-024-00753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Interferon gamma‑1b has been proposed to treat critical illness-induced immunosuppression. We aimed to determine the effects on 90-day outcomes and the cost-effectiveness of interferon gamma‑1b compared to placebo in mechanically ventilated critically ill patients. METHODS A cost-effectiveness analysis (CEA) was embedded in the "PREV-HAP trial", a multicenter, placebo‑controlled, randomized trial, which randomly assigned critically ill adults under mechanical ventilation to receive interferon gamma or placebo. The CEA compared interferon-gamma with placebo using a collective perspective at a 90-day time horizon. The primary outcome was the incremental cost-effectiveness ratio (ICER) expressed in terms of adjusted cost per adjusted Quality-Adjusted Life-Years (QALYs) gained. QALYs were estimated from the responses of patients and proxy respondents to the health-related quality of life questionnaire EQ-5D-3L. RESULTS The 109 patients in the PREV-HAP trial were included in the CEA. At day 90, all-cause mortality rates were 23.6% in the interferon group and 25% in the placebo group (Odds Ratio (OR) = 0.88 (0.40 -1.93) p = 0.67). The difference in the mean adjusted costs per patient at 90 days was €-1.638 (95%CI €-17.534 to €11.968) in favor of interferon gamma-1b. The mean difference in adjusted QALYs between interferon gamma-1b and the placebo group was + 0.019 (95%CI -0.005 to 0.043). The probability that interferon gamma-1b was cost-effective ranged from 0.60 to 0.71 for a willingness to pay a QALY between €20k and €150k for the base case analysis. CONCLUSION Early administration of interferon gamma might be cost-effective in critically ill patients supporting the realization of other studies on this treatment. However, the generalization of the findings should be considered cautiously, given the small sample size due to the premature end of PREV-HAP. Trial registration ClinicalTrials.gov Identifier: NCT04793568, Registration date: 2021-02-24.
Collapse
Affiliation(s)
- Marwan Bouras
- Nantes Université, CHU Nantes, Service d'Anesthésie Réanimation, 44000, Nantes, France.
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, 44000, Nantes, France.
- Department of Anaesthesia, Intensive Care Medicine and Peri-Operative Medicine, Hôpital de La Cavale Blanche, Bd Tanguy Prigent, CHRU de Brest, 29200, Brest, France.
| | - Philippe Tessier
- SPHERE, Service Evaluation Economique Et Développement Des Produits de Santé, Direction de La Recherche Et de LInnovation, Nantes Université, INSERM, MethodS in Patients-Centered Outcomes and HEalth Research, Université́, CHU Nantes, 44000, Nantes, Nantes, France
| | - Cécile Poulain
- Nantes Université, CHU Nantes, Service d'Anesthésie Réanimation, 44000, Nantes, France
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, 44000, Nantes, France
| | - Solène Schirr-Bonnans
- SPHERE, Service Evaluation Economique Et Développement Des Produits de Santé, Direction de La Recherche Et de LInnovation, Nantes Université, INSERM, MethodS in Patients-Centered Outcomes and HEalth Research, Université́, CHU Nantes, 44000, Nantes, Nantes, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, Service d'Anesthésie Réanimation, 44000, Nantes, France
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, 44000, Nantes, France
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Yan W, Mengke W, Zhiqiang S, Jiaao G, Fulin G. Clinical features, cerebrospinal fluid changes, and prognosis in Chinese patients with autoimmune encephalitis. Acta Neurol Belg 2024; 124:1569-1580. [PMID: 38635129 DOI: 10.1007/s13760-024-02537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Autoimmune encephalitis (AE) is a rare, treatable disease of the central nervous system (CNS) caused by an antibody-related immune response. This study is to investigate the correlation of clinical features, cerebrospinal fluid (CSF) characteristics, and prognosis in patients with AE. METHODS A total of 71 patients diagnosed with antibody-positive AE were retrospectively analyzed. The patients were divided into three groups: anti-NMDAR group, anti-LGI1 group, and other types. Clinical data were collected to analyze clinical features and CSF results, and prognosis was determined by modified Rankin Scale (mRS). RESULTS There was statistical difference in the incidences of decreased consciousness level (P < 0.001), memory loss (P = 0.017), speech disorders (P = 0.035), and dyskinesia (P = 0.001) in different antibodies groups. Younger age (P = 0.018), elevated CSF chloride content (P = 0.006), and white blood cells > 50/mm3 (P = 0.026) were highly correlated with ICU admission. Anti-LGI1 encephalitis had a relatively small risk for ICU admission (P = 0.034), and a lower risk of poor functional recovery (P = 0.048) and recurrence (P = 0.041). Patients with first-line treatment failure (P = 0.021) had an increased risk of poor functional recovery. Delayed treatment (P = 0.011) would increase the risk of recurrence. CONCLUSION There are differences in age, gender, clinical characteristics, and CSF results in different subtypes of AE. First-line therapy failure would have poor functional recovery, and delayed therapy would increase the risk of relapse. Chloride ion content and white blood cell count in cerebrospinal fluid are positively correlated with the patient's exacerbation and admission to ICU. These indicators have certain clinical value for the prognosis of AE patients.
Collapse
Affiliation(s)
- Wu Yan
- First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Xinqiao Hospital and Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wang Mengke
- First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Su Zhiqiang
- First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gu Jiaao
- First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Guan Fulin
- First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Dushu Lake Hospital Affiliated to Soochow University, Soochow, Jiangsu, China.
| |
Collapse
|
37
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Jiang W, Xiao D, Wu C, Yang J, Peng X, Chen L, Zhang J, Zha G, Li W, Ju R, Xiang M, Xie Z. Circular RNA-based therapy provides sustained and robust neuroprotection for retinal ganglion cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102258. [PMID: 39045516 PMCID: PMC11264179 DOI: 10.1016/j.omtn.2024.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024]
Abstract
Ocular neurodegenerative diseases like glaucoma lead to progressive retinal ganglion cell (RGC) loss, causing irreversible vision impairment. Neuroprotection is needed to preserve RGCs across debilitating conditions. Nerve growth factor (NGF) protein therapy shows efficacy, but struggles with limited bioavailability and a short half-life. Here we explore a novel approach to address this deficiency by utilizing circular RNA (circRNA)-based therapy. We show that circRNAs exhibit an exceptional capacity for prolonged protein expression and circRNA-expressed NGF protects cells from glucose deprivation. In a mouse optic nerve crush model, lipid nanoparticle (LNP)-formulated circNGF administered intravitreally protects RGCs and axons from injury-induced degeneration. It also significantly outperforms NGF protein therapy without detectable retinal toxicity. Furthermore, single-cell transcriptomics revealed LNP-circNGF's multifaceted therapeutic effects, enhancing genes related to visual perception while reducing trauma-associated changes. This study signifies the promise of circRNA-based therapies for treating ocular neurodegenerative diseases and provides an innovative intervention platform for other ocular diseases.
Collapse
Affiliation(s)
- Wenbing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xinghua Peng
- Research and Development Center, Shenzhen MagicRNA Biotech, Shenzhen 518107, China
| | - Linfeng Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiamin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Gaofeng Zha
- Scientific Research Center, The Seventh Affiliated Hospital. Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
39
|
Seadler MS, Ferraresso F, Bansal M, Haugen A, Hayssen WG, Flick MJ, de Moya M, Dyer MR, Kastrup CJ. Suppressing upregulation of fibrinogen after polytrauma mitigates thrombosis in mice. J Trauma Acute Care Surg 2024; 97:01586154-990000000-00798. [PMID: 39238094 PMCID: PMC11882931 DOI: 10.1097/ta.0000000000004442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Polytrauma results in systemic inflammation and increased circulating fibrinogen, which increases the risk of microvascular and macrovascular thrombosis that contributes to secondary organ damage and venous thromboembolism (VTE). There are no clinically approved agents to prevent hyperfibrinogenemia after polytrauma. We hypothesized that preventing the increase in fibrinogen levels after polytrauma would suppress thrombosis. METHODS Small-interfering ribonucleic acid (siRNA) against fibrinogen was encapsulated in lipid nanoparticles (siFibrinogen). Mice underwent a model of polytrauma and were then given varying doses of siFibrinogen, control siRNA, or no treatment. Fibrinogen was measured for 1 week via enxyme-linked immunosorbent assay (ELISA). To model postinjury VTE, the inferior vena cava was ligated 2 days after polytrauma in a portion of the mice. Thrombus weight was measured 48 hours after the inferior vena cava was ligated. RESULTS Treatment with siFibrinogen prevented hyperfibrinogenemia after trauma without exacerbating the hypofibrinogenemic state that occurs in the acute injury period (1 hour). In treated groups, fibrinogen was significantly lower from 6 hours postinjury through the 7-day monitoring period. Maximal fibrinogen reduction was observed at 72 hours. Here, mice that received 2.0 mg/kg of siFibrinogen had 1% of normal values relative to untreated mice, and mice that received 1.0 or 0.5 mg/kg had 4%. Mice treated with siFibrinogen that underwent the postinjury VTE model had significantly reduced thrombus weight compared with control siRNA-treated animals. More notably, among all siFibrinogen treated mice, 12 of 18 were completely protected from thrombosis, compared with 0 of 9 displaying protection in the control group. CONCLUSION The rise of fibrinogen and the size of thrombi after polytrauma can be mitigated via the administration of siRNA against fibrinogen. siFibrinogen represents a promising novel target for VTE prophylaxis posttrauma.
Collapse
Affiliation(s)
- Monica S. Seadler
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Francesca Ferraresso
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Muskan Bansal
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Amber Haugen
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - William G. Hayssen
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marc de Moya
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Mitchell R. Dyer
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Department of Surgery, Division of Vascular Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christian J. Kastrup
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Departments of Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
40
|
van Zyl M, Cramer E, Sanders JSF, Leuvenink HGD, Lisman T, van Rooy MJ, Hillebrands JL. The role of neutrophil extracellular trap formation in kidney transplantation: Implications from donors to the recipient. Am J Transplant 2024; 24:1547-1557. [PMID: 38719094 DOI: 10.1016/j.ajt.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Kidney transplantation remains the gold standard for patients with end-stage renal disease, but severe donor organ shortage has led to long waiting lists. The utilization of expanded criteria donor kidneys within the category of deceased donors has enlarged the pool of available kidneys for transplantation; however, these grafts often have an increased risk for delayed graft function or reduced graft survival following transplantation. During brain or circulatory death, neutrophils are recruited to the vascular beds of kidneys where a proinflammatory microenvironment might prime the formation of neutrophil extracellular traps (NETs), web-like structures, containing proteolytic enzymes, DNA, and histones. NETs are known to cause tissue damage and specifically endothelial damage while activating other systems such as coagulation and complement, contributing to tissue injury and an unfavorable prognosis in various diseases. In lung transplantation and kidney transplantation studies, NETs have also been associated with primary graft dysfunction or rejection. In this review, the role that NETs might play across the different phases of transplantation, already initiated in the donor, during preservation, and in the recipient, will be discussed. Based on current knowledge, NETs might be a promising therapeutic target to improve graft outcomes.
Collapse
Affiliation(s)
- Maryna van Zyl
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Elodie Cramer
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan-Stephan F Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Mia-Jeanne van Rooy
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
41
|
Galli F, Bartolini D, Ronco C. Oxidative stress, defective proteostasis and immunometabolic complications in critically ill patients. Eur J Clin Invest 2024; 54:e14229. [PMID: 38676423 DOI: 10.1111/eci.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Oxidative stress (OS) develops in critically ill patients as a metabolic consequence of the immunoinflammatory and degenerative processes of the tissues. These induce increased and/or dysregulated fluxes of reactive species enhancing their pro-oxidant activity and toxicity. At the same time, OS sustains its own inflammatory and immunometabolic pathogenesis, leading to a pervasive and vitious cycle of events that contribute to defective immunity, organ dysfunction and poor prognosis. Protein damage is a key player of these OS effects; it generates increased levels of protein oxidation products and misfolded proteins in both the cellular and extracellular environment, and contributes to forms DAMPs and other proteinaceous material to be removed by endocytosis and proteostasis processes of different cell types, as endothelial cells, tissue resident monocytes-macrophages and peripheral immune cells. An excess of OS and protein damage in critical illness can overwhelm such cellular processes ultimately interfering with systemic proteostasis, and consequently with innate immunity and cell death pathways of the tissues thus sustaining organ dysfunction mechanisms. Extracorporeal therapies based on biocompatible/bioactive membranes and new adsorption techniques may hold some potential in reducing the impact of OS on the defective proteostasis of patients with critical illness. These can help neutralizing reactive and toxic species, also removing solutes in a wide spectrum of molecular weights thus improving proteostasis and its immunometabolic corelates. Pharmacological therapy is also moving steps forward which could help to enhance the efficacy of extracorporeal treatments. This narrative review article explores the aspects behind the origin and pathogenic role of OS in intensive care and critically ill patients, with a focus on protein damage as a cause of impaired systemic proteostasis and immune dysfunction in critical illness.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- Department of Medicine, International Renal Research Institute of Vicenza, University of Padova, San Bortolo Hospital Vicenza, Vicenza, Italy
| |
Collapse
|
42
|
Mannes M, Savukoski S, Ignatius A, Halbgebauer R, Huber-Lang M. Crepuscular rays - The bright side of complement after tissue injury. Eur J Immunol 2024; 54:e2350848. [PMID: 38794857 DOI: 10.1002/eji.202350848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Susa Savukoski
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
43
|
Duran I, Banerjee A, Flaherty PJ, Que YA, Ryan CM, Rahme LG, Tsurumi A. Development of a biomarker prediction model for post-trauma multiple organ failure/dysfunction syndrome based on the blood transcriptome. Ann Intensive Care 2024; 14:134. [PMID: 39198331 PMCID: PMC11358370 DOI: 10.1186/s13613-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Multiple organ failure/dysfunction syndrome (MOF/MODS) is a major cause of mortality and morbidity among severe trauma patients. Current clinical practices entail monitoring physiological measurements and applying clinical score systems to diagnose its onset. Instead, we aimed to develop an early prediction model for MOF outcome evaluated soon after traumatic injury by performing machine learning analysis of genome-wide transcriptome data from blood samples drawn within 24 h of traumatic injury. We then compared its performance to baseline injury severity scores and detection of infections. METHODS Buffy coat transcriptome and linked clinical datasets from blunt trauma patients from the Inflammation and the Host Response to Injury Study ("Glue Grant") multi-center cohort were used. According to the inclusion/exclusion criteria, 141 adult (age ≥ 16 years old) blunt trauma patients (excluding penetrating) with early buffy coat (≤ 24 h since trauma injury) samples were analyzed, with 58 MOF-cases and 83 non-cases. We applied the Least Absolute Shrinkage and Selection Operator (LASSO) and eXtreme Gradient Boosting (XGBoost) algorithms to select features and develop models for MOF early outcome prediction. RESULTS The LASSO model included 18 transcripts (AUROC [95% CI]: 0.938 [0.890-0.987] (training) and 0.833 [0.699-0.967] (test)), and the XGBoost model included 41 transcripts (0.999 [0.997-1.000] (training) and 0.907 [0.816-0.998] (test)). There were 16 overlapping transcripts comparing the two panels (0.935 [0.884-0.985] (training) and 0.836 [0.703-0.968] (test)). The biomarker models notably outperformed models based on injury severity scores and sex, which we found to be significantly associated with MOF (APACHEII + sex-0.649 [0.537-0.762] (training) and 0.493 [0.301-0.685] (test); ISS + sex-0.630 [0.516-0.744] (training) and 0.482 [0.293-0.670] (test); NISS + sex-0.651 [0.540-0.763] (training) and 0.525 [0.335-0.714] (test)). CONCLUSIONS The accurate assessment of MOF from blood samples immediately after trauma is expected to aid in improving clinical decision-making and may contribute to reduced morbidity, mortality and healthcare costs. Moreover, understanding the molecular mechanisms involving the transcripts identified as important for MOF prediction may eventually aid in developing novel interventions.
Collapse
Affiliation(s)
- Ivan Duran
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA
| | - Ankita Banerjee
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA
| | - Patrick J Flaherty
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA, 01003, USA
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Colleen M Ryan
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA
- Department of Microbiology and Immunology, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115, USA
| | - Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA.
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA.
| |
Collapse
|
44
|
Rowe CJ, Nwaolu U, Martin L, Huang BJ, Mang J, Salinas D, Schlaff CD, Ghenbot S, Lansford JL, Potter BK, Schobel SA, Gann ER, Davis TA. Systemic inflammation following traumatic injury and its impact on neuroinflammatory gene expression in the rodent brain. J Neuroinflammation 2024; 21:211. [PMID: 39198925 PMCID: PMC11360339 DOI: 10.1186/s12974-024-03205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Trauma can result in systemic inflammation that leads to organ dysfunction, but the impact on the brain, particularly following extracranial insults, has been largely overlooked. METHODS Building upon our prior findings, we aimed to understand the impact of systemic inflammation on neuroinflammatory gene transcripts in eight brain regions in rats exposed to (1) blast overpressure exposure [BOP], (2) cutaneous thermal injury [BU], (3) complex extremity injury, 3 hours (h) of tourniquet-induced ischemia, and hind limb amputation [CEI+tI+HLA], (4) BOP+BU or (5) BOP+CEI and delayed HLA [BOP+CEI+dHLA] at 6, 24, and 168 h post-injury (hpi). RESULTS Globally, the number and magnitude of differentially expressed genes (DEGs) correlated with injury severity, systemic inflammation markers, and end-organ damage, driven by several chemokines/cytokines (Csf3, Cxcr2, Il16, and Tgfb2), neurosteroids/prostaglandins (Cyp19a1, Ptger2, and Ptger3), and markers of neurodegeneration (Gfap, Grin2b, and Homer1). Regional neuroinflammatory activity was least impacted following BOP. Non-blast trauma (in the BU and CEI+tI+HLA groups) contributed to an earlier, robust and diverse neuroinflammatory response across brain regions (up to 2-50-fold greater than that in the BOP group), while combined trauma (in the BOP+CEI+dHLA group) significantly advanced neuroinflammation in all regions except for the cerebellum. In contrast, BOP+BU resulted in differential activity of several critical neuroinflammatory-neurodegenerative markers compared to BU. t-SNE plots of DEGs demonstrated that the onset, extent, and duration of the inflammatory response are brain region dependent. Regardless of injury type, the thalamus and hypothalamus, which are critical for maintaining homeostasis, had the most DEGs. Our results indicate that neuroinflammation in all groups progressively increased or remained at peak levels over the study duration, while markers of end-organ dysfunction decreased or otherwise resolved. CONCLUSIONS Collectively, these findings emphasize the brain's sensitivity to mediators of systemic inflammation and provide an example of immune-brain crosstalk. Follow-on molecular and behavioral investigations are warranted to understand the short- to long-term pathophysiological consequences on the brain, particularly the mechanism of blood-brain barrier breakdown, immune cell penetration-activation, and microglial activation.
Collapse
Affiliation(s)
- Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA.
| | - Uloma Nwaolu
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Laura Martin
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| | - Benjamin J Huang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| | - Josef Mang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| | - Daniela Salinas
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Cody D Schlaff
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
| | - Sennay Ghenbot
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
| | - Jefferson L Lansford
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
| | - Benjamin K Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University, Bethesda, MD, USA
| | - Seth A Schobel
- Surgical Critical Care Initiative (SC2i), Uniformed Services University, Bethesda, MD, USA
| | - Eric R Gann
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University, Bethesda, MD, USA
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| |
Collapse
|
45
|
Loaiza R, Fattahi F, Kalbitz M, Grailer JJ, Russell MW, Jalife J, Valdivia HH, Zetoune FS, Ward PA. The Impact of Extracellular Histones and Absence of Toll-like Receptors on Cardiac Functional and Electrical Disturbances in Mouse Hearts. Int J Mol Sci 2024; 25:8653. [PMID: 39201339 PMCID: PMC11354419 DOI: 10.3390/ijms25168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
In polymicrobial sepsis, the extracellular histones, mainly released from activated neutrophils, significantly contribute to cardiac dysfunction (septic cardiomyopathy), as demonstrated in our previous studies using Echo-Doppler measurements. This study aims to elucidate the roles of extracellular histones and their interactions with Toll-like receptors (TLRs) in cardiac dysfunction. Through ex vivo assessments of ECG, left ventricle (LV) function parameters, and in vivo Echo-Doppler studies in mice perfused with extracellular histones, we aim to provide comprehensive insights into the mechanisms underlying sepsis-induced cardiac dysfunction. Langendorff-perfused hearts from both wild-type and TLR2, TLR3, or TLR4 knockout (KO) mice were examined. Paced mouse hearts were perfused with histones to assess contractility and relaxation. Echo-Doppler studies evaluated cardiac dysfunction after intravenous histone injection. Histone perfusion caused defects in contractility and relaxation, with TLR2 and TLR3 KO mice being partially protected. Specifically, TLR2 KO mice exhibited the greatest reduction in Echo-Doppler abnormalities, while TLR4 KO exacerbated cardiac dysfunction. Among individual histones, H1 induced the most pronounced abnormalities in cardiac function, apoptosis of cardiomyocytes, and LDH release. Our data highlight significant interactions between histones and TLRs, providing insights into histones especially H1 as potential therapeutic targets for septic cardiomyopathy. Further studies are needed to explore specific histone-TLR interactions and their mechanisms.
Collapse
Affiliation(s)
- Randall Loaiza
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA; (R.L.); (J.J.); (H.H.V.)
- CENIBiot Laboratory, The National Center of High Technology (CeNAT-CONARE), San José 10109, Costa Rica
| | - Fatemeh Fattahi
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
| | - Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
- Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
- Military Medical City Hospital, Doha 486441, Qatar
| | - Jamison J. Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
- Integrated Biology R&D, Bioassay Development, Promega Corporation, Madison, WI 53711, USA
| | - Mark W. Russell
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Jose Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA; (R.L.); (J.J.); (H.H.V.)
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Hector H. Valdivia
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA; (R.L.); (J.J.); (H.H.V.)
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Firas S. Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
| | - Peter A. Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
| |
Collapse
|
46
|
Tate AR, Rao GHR. Inflammation: Is It a Healer, Confounder, or a Promoter of Cardiometabolic Risks? Biomolecules 2024; 14:948. [PMID: 39199336 PMCID: PMC11352362 DOI: 10.3390/biom14080948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Inflammation is the body's non-specific response to injury or infection. It is a natural defense mechanism that helps to maintain homeostasis and promotes tissue repair. However, excessive inflammation can lead to cellular, tissue, or organ dysfunction, as well as contribute to the development of acute vascular events and diseases like Crohn's disease, psoriasis, obesity, diabetes, and cancer. The initial response to injury involves the activation of platelets and coagulation mechanisms to stop bleeding. This is followed by the recruitment of immune cells and the release of cytokines to promote tissue repair. Over time, the injured tissue undergoes remodeling and returns to its pre-injury state. Inflammation is characterized by the activation of inflammatory signaling pathways involving cytokines, chemokines, and growth factors. Mast cells play a role in initiating inflammatory responses. Pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and nucleotide-binding domain (NOD)-like receptors (NLRs) are involved in the activation of these inflammatory pathways. Inflammasomes, which are cytoplasmic complexes, also contribute to inflammation by activating cytokines. Inflammation can also be triggered by factors like dietary components and the composition of the gut microbiota. Dysregulation of the gut microbiome can lead to excessive inflammation and contribute to diseases like atherosclerosis and irritable bowel syndrome (IBS). The immune system and gut-associated lymphoid tissue (GALT) play crucial roles in the inflammatory response and the development of conditions like colorectal cancer. Anti-inflammatory therapy can play a significant role in reducing or inducing the remission of inflammatory diseases such as Crohn's disease and ulcerative colitis. The fetal origin of adult diseases theory suggests that conditions during fetal development, such as low birth weight and maternal obesity, can influence the risk of cardiometabolic diseases later in life. All of the known risk factors associated with cardiometabolic diseases such as hypertension, excess weight, obesity, type-2 diabetes, and vascular diseases are accompanied by chronic low-grade inflammation. Inflammation seems to have a role in precipitating even acute vascular events such as heart attacks and stroke. Common markers of inflammation associated with cardiometabolic disease include interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF-α), C-reactive protein (CRP), and soluble TNF receptors such as sTNFR1 and sTNFR2. These markers serve as indicators of systemic inflammation. However, these markers are not disease-specific but provide an insight into the overall chronic inflammatory status. In fact, inflammation has been identified as a potential target for future treatments to reduce or reverse the risk of atherosclerosis-related complications. The regulation of inflammation is complex, and further research is needed to better understand its mechanisms and develop strategies for managing inflammatory disorders. In summary, inflammation is a natural response to injury or infection, but excessive or prolonged inflammation can lead to the progression of various diseases. Understanding the underlying mechanisms of inflammation is important for developing treatments and preventive measures for inflammatory disorders.
Collapse
Affiliation(s)
- Amit R. Tate
- South Asian Society on Atherosclerosis and Thrombosis (SASAT), Minneapolis, MN 55455, USA;
| | - Gundu H. R. Rao
- Laboratory Medicine, and Pathology, Thrombosis Research, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Silva GN, Brandão VGA, Perez MV, Blum K, Lewandrowski KU, Fiorelli RKA. Neuroinflammatory Approach to Surgical Trauma: Biomarkers and Mechanisms of Immune and Neuroendocrine Responses. J Pers Med 2024; 14:829. [PMID: 39202020 PMCID: PMC11355628 DOI: 10.3390/jpm14080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
The severity and invasiveness of clinical outcomes from organic responses to trauma are influenced by individual, surgical, and anesthetic factors. A stress response elicits neuroendocrine and immune reactions that may lead to multi-organ dysfunction. The degree of neuroinflammatory reflex activation from trauma can increase pro-inflammatory cytokine production, leading to endothelial dysfunction, glycocalyx damage, neutrophil activation, and multisystem tissue destruction. A shift in patient treatment towards a neuroinflammatory perspective has prompted a new evaluation protocol for surgical patients, required to understand surgical pathogenesis and its link to chosen anesthetic-surgical methods. The goal of this study is to summarize and disseminate the present knowledge about the mechanisms involved in immune and neuroendocrine responses, focusing on video laparoscopic surgeries. This article outlines various measures cited in the literature aimed at reducing the burden of surgical trauma. It reviews anesthetic drugs, anesthetic techniques, and intensive care procedures that are known to have immunomodulatory effects. The results show a preference for more sensitive inflammatory mediators to tissue trauma serving as care tools, indicators for prognosis, and therapeutic outcomes.
Collapse
Affiliation(s)
- Gustavo N. Silva
- Department of Anesthesiology, Gaffrée e Guinle Universitary Hospital (EBSERH), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, RJ, Brazil;
| | - Virna G. A. Brandão
- Department of Anesthesiology, Gaffrée e Guinle Universitary Hospital (EBSERH), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, RJ, Brazil;
| | - Marcelo V. Perez
- Department of Surgery and Anesthesia, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, SP, Brazil;
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona and Surgical Institute of Tucson, Tucson, AZ 85712, USA;
| | - Rossano K. A. Fiorelli
- Department of General and Specialized Surgery, Gaffrée e Guinle Universitary Hospital (EBSERH), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, RJ, Brazil;
| |
Collapse
|
48
|
Stancill JS, Kasmani MY, Cui W, Corbett JA. Single Cell RNAseq Analysis of Cytokine-Treated Human Islets: Association of Cellular Stress with Impaired Cytokine Responsiveness. FUNCTION 2024; 5:zqae015. [PMID: 38985000 PMCID: PMC11237896 DOI: 10.1093/function/zqae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/11/2024] Open
Abstract
Pancreatic β-cells are essential for survival, being the only cell type capable of insulin secretion. While they are believed to be vulnerable to damage by inflammatory cytokines such as interleukin-1 beta (IL-1β) and interferon-gamma, we have recently identified physiological roles for cytokine signaling in rodent β-cells that include the stimulation of antiviral and antimicrobial gene expression and the inhibition of viral replication. In this study, we examine cytokine-stimulated changes in gene expression in human islets using single-cell RNA sequencing. Surprisingly, the global responses of human islets to cytokine exposure were remarkably blunted compared to our previous observations in the mouse. The small population of human islet cells that were cytokine responsive exhibited increased expression of IL-1β-stimulated antiviral guanylate-binding proteins, just like in the mouse. Most human islet cells were not responsive to cytokines, and this lack of responsiveness was associated with high expression of genes encoding ribosomal proteins. We further correlated the expression levels of RPL5 with stress response genes, and when expressed at high levels, RPL5 is predictive of failure to respond to cytokines in all endocrine cells. We postulate that donor causes of death and isolation methodologies may contribute to stress of the islet preparation. Our findings indicate that activation of stress responses in human islets limits cytokine-stimulated gene expression, and we urge caution in the evaluation of studies that have examined cytokine-stimulated gene expression in human islets without evaluation of stress-related gene expression.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Blood Research Institute, Versiti, Wisconsin, Milwaukee, WI 53226, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Blood Research Institute, Versiti, Wisconsin, Milwaukee, WI 53226, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
49
|
Li Z, Xing J, Ma X, Zhang W, Wang C, Wang Y, Qi X, Liu Y, Jian D, Cheng X, Zhu Y, Shi C, Guo Y, Zhao H, Jiang W, Tang H. An orally administered bacterial membrane protein nanodrug ameliorates doxorubicin cardiotoxicity through alleviating impaired intestinal barrier. Bioact Mater 2024; 37:517-532. [PMID: 38698916 PMCID: PMC11063951 DOI: 10.1016/j.bioactmat.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
The cardiotoxicity caused by Dox chemotherapy represents a significant limitation to its clinical application and is a major cause of late death in patients undergoing chemotherapy. Currently, there are no effective treatments available. Our analysis of 295 clinical samples from 132 chemotherapy patients and 163 individuals undergoing physical examination revealed a strong positive correlation between intestinal barrier injury and the development of cardiotoxicity in chemotherapy patients. We developed a novel orally available and intestinal targeting protein nanodrug by assembling membrane protein Amuc_1100 (obtained from intestinal bacteria Akkermansia muciniphila), fluorinated polyetherimide, and hyaluronic acid. The protein nanodrug demonstrated favorable stability against hydrolysis compared with free Amuc_1100. The in vivo results demonstrated that the protein nanodrug can alleviate Dox-induced cardiac toxicity by improving gut microbiota, increasing the proportion of short-chain fatty acid-producing bacteria from the Lachnospiraceae family, and further enhancing the levels of butyrate and pentanoic acids, ultimately regulating the homeostasis repair of lymphocytes in the spleen and heart. Therefore, we believe that the integrity of the intestinal barrier plays an important role in the development of chemotherapy-induced cardiotoxicity. Protective interventions targeting the intestinal barrier may hold promise as a general clinical treatment regimen for reducing Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Xiaohan Ma
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Wanjun Zhang
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Chuan Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Xinkun Qi
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Yanhui Liu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Dongdong Jian
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Xiaolei Cheng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yanjie Zhu
- Department of Pathology, Central Hospital of Kaifeng City, Kaifeng, Henan, 475000, China
| | - Chao Shi
- Henan Key Laboratory of Molecular Pathology, Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Yongjun Guo
- Henan Key Laboratory of Molecular Pathology, Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| |
Collapse
|
50
|
Park TY, Jeon J, Cha Y, Kim KS. Past, present, and future of cell replacement therapy for parkinson's disease: a novel emphasis on host immune responses. Cell Res 2024; 34:479-492. [PMID: 38777859 PMCID: PMC11217403 DOI: 10.1038/s41422-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence continues to rise with the aging global population. Central to the pathophysiology of PD is the specific degeneration of midbrain dopamine neurons (mDANs) in the substantia nigra. Consequently, cell replacement therapy (CRT) has emerged as a promising treatment approach, initially supported by various open-label clinical studies employing fetal ventral mesencephalic (fVM) cells. Despite the initial favorable results, fVM cell therapy has intrinsic and logistical limitations that hinder its transition to a standard treatment for PD. Recent efforts in the field of cell therapy have shifted its focus towards the utilization of human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, to surmount existing challenges. However, regardless of the transplantable cell sources (e.g., xenogeneic, allogeneic, or autologous), the poor and variable survival of implanted dopamine cells remains a major obstacle. Emerging evidence highlights the pivotal role of host immune responses following transplantation in influencing the survival of implanted mDANs, underscoring an important area for further research. In this comprehensive review, building upon insights derived from previous fVM transplantation studies, we delve into the functional ramifications of host immune responses on the survival and efficacy of grafted dopamine cells. Furthermore, we explore potential strategic approaches to modulate the host immune response, ultimately aiming for optimal outcomes in future clinical applications of CRT for PD.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|