1
|
Qian H, Xu JY, Fan R, Shi J, Lu HW, Ye L, Yang JW, Jiang R, Zhang LS, Wu YF, Jin ML, Xu JF. High level of initial Aspergillus fumigatus-specific IgE links increased risk of exacerbation in allergic bronchopulmonary aspergillosis patients. Respir Res 2025; 26:95. [PMID: 40065361 PMCID: PMC11895152 DOI: 10.1186/s12931-025-03171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Elevated Aspergillus fumigatus (A. fumigatus)-specific Immunoglobulin E (IgE) is recognized as an essential diagnostic criterion for allergic bronchopulmonary aspergillosis (ABPA). However, it remains unknown whether initial A. fumigatus-specific IgE at acute stage has a role beyond diagnostic purposes. METHOD This two-center retrospective study enrolled 149 acute ABPA patients. Risk factors for one-year exacerbation were analyzed using univariate and multivariate logistic regression. Participants were then divided into a discovery cohort (n = 93) to determine the optimal initial A. fumigatus-specific IgE cut-off value via receiver operating characteristic (ROC) curve, and a validation cohort (n = 56) to confirm exacerbation differences based on this cut-off value. RESULT Multivariate logistic regression analysis revealed that female sex (odds ratio (OR) 2.44, 95% confidence interval (CI) 1.15-5.16, P = 0.020), A. fumigatus-specific IgE (OR 1.05, 95% CI 1.02-1.08, P = 0.002), and bronchiectasis (OR 3.61, 95% CI 1.07-12.21, P = 0.039) were independent risk factors for ABPA exacerbation. In the discovery cohort, the optimal initial cut-off value for A. fumigatus-specific IgE was calculated to be 9.88 kUA/L. And, the validation cohort confirmed that patients with A. fumigatus-specific IgE > 9.88 kUA/L were at higher risk of exacerbation (P = 0.005). CONCLUSION This study highlighted the prognostic utility of initial A. fumigatus-specific IgE at acute stage and found that elevated levels, especially those exceeding 9.88 kUA/L, were associated with increased risks of exacerbation in ABPA patients.
Collapse
Affiliation(s)
- Hao Qian
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Yan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Rui Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Jing Shi
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China
- Research Center of Allergy and Diseases, Fudan University, Shanghai, China
| | - Hai-Wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Ling Ye
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China
- Research Center of Allergy and Diseases, Fudan University, Shanghai, China
| | - Jia-Wei Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Rui Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Li-Sha Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yi-Fan Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Mei-Ling Jin
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China.
- Research Center of Allergy and Diseases, Fudan University, Shanghai, China.
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China.
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Xu J, Jiang F, Sun Y, Xu JF. Revised clinical practice guidelines for allergic bronchopulmonary aspergillosis/mycosis: A detailed and comprehensive update. Chin Med J (Engl) 2025; 138:253-255. [PMID: 39497361 PMCID: PMC11771646 DOI: 10.1097/cm9.0000000000003344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 01/29/2025] Open
Affiliation(s)
- Jiayan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
- Huadong Hospital, Fudan University, Shanghai 200032, China
| | - Fang Jiang
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
- Huadong Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Zhou XJ, Zhang H. The Genetics of IgA Nephropathy: Implications for Future Therapies. Semin Nephrol 2024; 44:151567. [PMID: 40087125 DOI: 10.1016/j.semnephrol.2025.151567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
IgA nephropathy (IgAN), the most prevalent primary glomerulonephritis worldwide, carries a considerable lifetime risk of kidney failure. The etiology of IgAN, however, remains incompletely understood, and effective treatment is lacking. Although the multihit model effectively identifies key steps in IgAN development and, to date, provides the best description of IgAN pathogenesis, it remains under development to fully capture the complexity of immune system dysregulation. Large-scale genome-wide association studies have revealed clues regarding the association between IgAN and genes in both innate and adaptive immune pathways. Hence, genetic investigations may shed light on the aberrant molecular mechanisms, thereby presenting new opportunities for therapeutic advancements. This review discusses the genetic associations that have been robustly connected with IgAN, placing them within the framework of disease mechanism. Altogether, these findings highlight numerous new possibilities for the development of treatments and the road to personalized medicine.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Kidney Genetics Center, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Kidney Genetics Center, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Shen C, Wu N, Chen X, Peng J, Feng M, Wang J, Yu Y. Interleukin-5 alleviates cardiac remodelling via the STAT3 pathway in angiotensin II-infused mice. J Cell Mol Med 2024; 28:e18493. [PMID: 38963241 PMCID: PMC11223166 DOI: 10.1111/jcmm.18493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Interleukin-5 (IL-5) has been reported to be involved in cardiovascular diseases, such as atherosclerosis and cardiac injury. This study aimed to investigate the effects of IL-5 on cardiac remodelling. Mice were infused with angiotensin II (Ang II), and the expression and source of cardiac IL-5 were analysed. The results showed that cardiac IL-5 expression was time- and dose-dependently decreased after Ang II infusion, and was mainly derived from cardiac macrophages. Additionally, IL-5-knockout (IL-5-/-) mice were used to observe the effects of IL-5 knockout on Ang II-induced cardiac remodelling. We found knockout of IL-5 significantly increased the expression of cardiac hypertrophy markers, elevated myocardial cell cross-sectional areas and worsened cardiac dysfunction in Ang II-infused mice. IL-5 deletion also promoted M2 macrophage differentiation and exacerbated cardiac fibrosis. Furthermore, the effects of IL-5 deletion on cardiac remodelling was detected after the STAT3 pathway was inhibited by S31-201. The effects of IL-5 on cardiac remodelling and M2 macrophage differentiation were reversed by S31-201. Finally, the effects of IL-5 on macrophage differentiation and macrophage-related cardiac hypertrophy and fibrosis were analysed in vitro. IL-5 knockout significantly increased the Ang II-induced mRNA expression of cardiac hypertrophy markers in myocardial cells that were co-cultured with macrophages, and this effect was reversed by S31-201. Similar trends in the mRNA levels of fibrosis markers were observed when cardiac fibroblasts and macrophages were co-cultured. In conclusions, IL-5 deficiency promote the differentiation of M2 macrophages by activating the STAT3 pathway, thereby exacerbating cardiac remodelling in Ang II-infused mice. IL-5 may be a potential target for the clinical prevention of cardiac remodelling.
Collapse
Affiliation(s)
- Caijie Shen
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Nan Wu
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Xiaomin Chen
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Jianye Peng
- Cardiovascular MedicineThe Second Affiliated Hospital of University of South ChinaHengyangChina
| | - Mingjun Feng
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Jian Wang
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yibo Yu
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Ningbo UniversityNingboChina
| |
Collapse
|
5
|
Chen T, Gao C. Innate immune signal transduction pathways to fungal infection: Components and regulation. CELL INSIGHT 2024; 3:100154. [PMID: 38464417 PMCID: PMC10924179 DOI: 10.1016/j.cellin.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Candida species are significant causes of mucosal and systemic infections in immune compromised populations, including HIV-infected individuals and cancer patients. Drug resistance and toxicity have limited the use of anti-fungal drugs. A good comprehension of the nature of the immune responses to the pathogenic fungi will aid in the developing of new approaches to the treatment of fungal diseases. In recent years, extensive research has been done to understand the host defending systems to fungal infections. In this review, we described how pattern recognition receptors senses the cognate fungal ligands and the cellular and molecular mechanisms of anti-fungal innate immune responses. Furthermore, particular focus is placed on how anti-fungal signal transduction cascades are being activated for host defense and being modulated to better treat the infections in terms of immunotherapy. Understanding the role that these pathways have in mediating host anti-fungal immunity will be crucial for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
6
|
Seufert AL, Struthers H, Caplan L, Napier RJ. CARD9 in the pathogenesis of axial spondyloarthritis. Best Pract Res Clin Rheumatol 2024; 38:101964. [PMID: 38897880 PMCID: PMC11534080 DOI: 10.1016/j.berh.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Axial spondyloarthritis (axSpA) has been long classified as an autoimmune disease caused by a breakdown in the ability of the immune system to delineate self from foreign, resulting in self-reactive T cells. The strong genetic association of HLA-B27 supports this role for T cells. More recently, genetic and clinical studies indicate a prominent role of the environment in triggering axSpA, including an important role for microbes and the innate immune response. As an example, mutations in genes associated with innate immunity, including the anti-fungal signaling molecule Caspase recruitment domain-containing protein 9 (CARD9), have been linked to axSpA susceptibility. Thus, current thought classifies axSpA as a "mixed pattern condition" caused by both autoimmune and autoinflammatory mechanisms. The goal of this review is to convey.
Collapse
Affiliation(s)
- A L Seufert
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
| | - H Struthers
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
| | - L Caplan
- Rocky Mountain Regional VA Medical Center, Aurora, CO, 80045, USA.
| | - R J Napier
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA; Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, USA; VA Portland Health Care System, Portland, OR, 97239, USA.
| |
Collapse
|
7
|
Luo RG, Wu YF, Lu HW, Weng D, Xu JY, Wang LL, Zhang LS, Zhao CQ, Li JX, Yu Y, Jia XM, Xu JF. Th2-skewed peripheral T-helper cells drive B-cells in allergic bronchopulmonary aspergillosis. Eur Respir J 2024; 63:2400386. [PMID: 38514095 PMCID: PMC11096668 DOI: 10.1183/13993003.00386-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Patients with allergic bronchopulmonary aspergillosis (ABPA) suffer from repeated exacerbations. The involvement of T-cell subsets remains unclear. METHODS We enrolled ABPA patients, asthma patients and healthy controls. T-helper type 1 (Th1), 2 (Th2) and 17 (Th17) cells, regulatory T-cells (Treg) and interleukin (IL)-21+CD4+T-cells in total or sorted subsets of peripheral blood mononuclear cells and ABPA bronchoalveolar lavage fluid (BALF) were analysed using flow cytometry. RNA sequencing of subsets of CD4+T-cells was done in exacerbated ABPA patients and healthy controls. Antibodies of T-/B-cell co-cultures in vitro were measured. RESULTS ABPA patients had increased Th2 cells, similar numbers of Treg cells and decreased circulating Th1 and Th17 cells. IL-5+IL-13+IL-21+CD4+T-cells were rarely detected in healthy controls, but significantly elevated in the blood of ABPA patients, especially the exacerbated ones. We found that IL-5+IL-13+IL-21+CD4+T-cells were mainly peripheral T-helper (Tph) cells (PD-1+CXCR5-), which also presented in the BALF of ABPA patients. The proportions of circulating Tph cells were similar among ABPA patients, asthma patients and healthy controls, while IL-5+IL-13+IL-21+ Tph cells significantly increased in ABPA patients. Transcriptome data showed that Tph cells of ABPA patients were Th2-skewed and exhibited signatures of follicular T-helper cells. When co-cultured in vitro, Tph cells of ABPA patients induced the differentiation of autologous B-cells into plasmablasts and significantly enhanced the production of IgE. CONCLUSION We identified a distinctly elevated population of circulating Th2-skewed Tph cells that induced the production of IgE in ABPA patients. It may be a biomarker and therapeutic target for ABPA.
Collapse
Affiliation(s)
- Rong-Guang Luo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Yi-Fan Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Hai-Wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Dong Weng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Jia-Yan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Le-Le Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Li-Sha Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Cai-Qi Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Jian-Xiong Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yong Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Brandt M, Cao Z, Krishna C, Reedy JL, Gu X, Dutko RA, Oliver BA, Tusi BK, Park J, Richey L, Segerstolpe Å, Litwiler S, Creasey EA, Carey KL, Vyas JM, Graham DB, Xavier RJ. Translational genetics identifies a phosphorylation switch in CARD9 required for innate inflammatory responses. Cell Rep 2024; 43:113944. [PMID: 38489265 PMCID: PMC11008285 DOI: 10.1016/j.celrep.2024.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
Population genetics continues to identify genetic variants associated with diseases of the immune system and offers a unique opportunity to discover mechanisms of immune regulation. Multiple genetic variants linked to severe fungal infections and autoimmunity are associated with caspase recruitment domain-containing protein 9 (CARD9). We leverage the CARD9 R101C missense variant to uncover a biochemical mechanism of CARD9 activation essential for antifungal responses. We demonstrate that R101C disrupts a critical signaling switch whereby phosphorylation of S104 releases CARD9 from an autoinhibited state to promote inflammatory responses in myeloid cells. Furthermore, we show that CARD9 R101C exerts dynamic effects on the skin cellular contexture during fungal infection, corrupting inflammatory signaling and cell-cell communication circuits. Card9 R101C mice fail to control dermatophyte infection in the skin, resulting in high fungal burden, yet show minimal signs of inflammation. Together, we demonstrate how translational genetics reveals molecular and cellular mechanisms of innate immune regulation.
Collapse
Affiliation(s)
- Marta Brandt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhifang Cao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chirag Krishna
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jennifer L Reedy
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiebin Gu
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Richard A Dutko
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Blayne A Oliver
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Betsabeh Khoramian Tusi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jihye Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lauren Richey
- Tufts Comparative Medicine Services, Tufts University, Boston, MA 02111, USA
| | - Åsa Segerstolpe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Scott Litwiler
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth A Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Jatin M Vyas
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Wu C, Hu X, Jiang Y, Tang J, Ge H, Deng S, Li X, Feng J. Involvement of ERK and Oxidative Stress in Airway Exposure to Cadmium Chloride Aggravates Airway Inflammation in Ovalbumin-Induced Asthmatic Mice. TOXICS 2024; 12:235. [PMID: 38668459 PMCID: PMC11054730 DOI: 10.3390/toxics12040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Inhalation represents a significant route of cadmium (Cd) exposure, which is associated with an elevated risk of lung diseases. This research study aims to evaluate the impact of repeated low-dose cadmium inhalation on exacerbating airway inflammation induced by ovalbumin (OVA) in asthma-afflicted mice. Mice were grouped into four categories: control (Ctrl), OVA, cadmium chloride (CdCl2), and OVA + cadmium chloride (OVA + CdCl2). Mice in the OVA group displayed increased airway mucus secretion and peribronchial and airway inflammation characterized by eosinophil cell infiltration, along with elevated levels of Th2 cytokines (IL-4, IL-5, IL-13) in bronchoalveolar lavage fluids (BALFs). These parameters were further exacerbated in the OVA + CdCl2 group. Additionally, the OVA + CdCl2 group exhibited higher levels of the oxidative stress marker malondialdehyde (MDA), greater activity of glutathione peroxidase (GSH-Px), and higher phosphorylation of extracellular regulated kinase (ERK) in lung tissue. Treatment with U0126 (an ERK inhibitor) and α-tocopherol (an antioxidant) in the OVA + CdCl2 group resulted in reduced peribronchial and airway inflammation as well as decreased airway mucus secretion. These findings indicate that CdCl2 exacerbates airway inflammation in OVA-induced allergic asthma mice following airway exposure. ERK and oxidative stress are integral to this process, and the inhibition of these pathways significantly alleviates the adverse effects of CdCl2 on asthma exacerbation.
Collapse
Affiliation(s)
- Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xiaozhao Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|
10
|
Staal J, Driege Y, Van Gaever F, Steels J, Beyaert R. Chimeric and mutant CARD9 constructs enable analyses of conserved and diverged autoinhibition mechanisms in the CARD-CC protein family. FEBS J 2024; 291:1220-1245. [PMID: 38098267 DOI: 10.1111/febs.17035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Caspase recruitment domain-containing protein (CARD)9, CARD10, CARD11, and CARD14 all belong to the CARD-coiled coil (CC) protein family and originated from a single common ancestral protein early in vertebrate evolution. All four proteins form CARD-CC/BCL10/MALT1 (CBM) complexes leading to nuclear factor-kappa-B (NF-κB) activation after upstream phosphorylation by various protein kinase C (PKC) isoforms. CBM complex signaling is critical for innate and adaptive immunity, but aberrant activation can cause autoimmune or autoinflammatory diseases, or be oncogenic. CARD9 shows a superior auto-inhibition compared with other CARD-CC family proteins, with very low spontaneous activity when overexpressed in HEK293T cells. In contrast, the poor auto-inhibition of other CARD-CC family proteins, especially CARD10 (CARMA3) and CARD14 (CARMA2), is hampering characterization of upstream activators or activating mutations in overexpression studies. We grafted different domains from CARD10, 11, and 14 on CARD9 to generate chimeric CARD9 backbones for functional characterization of activating mutants using NF-κB reporter gene activation in HEK293T cells as readout. CARD11 (CARMA1) activity was not further reduced by grafting on CARD9 backbones. The chimeric CARD9 approach was subsequently validated by using several known disease-associated mutations in CARD10 and CARD14, and additional screening allowed us to identify several previously unknown activating natural variants in human CARD9 and CARD10. Using Genebass as a resource of exome-based disease association statistics, we found that activated alleles of CARD9 correlate with irritable bowel syndrome (IBS), constipation, osteoarthritis, fibromyalgia, insomnia, anxiety, and depression, which can occur as comorbidities.
Collapse
Affiliation(s)
- Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Femke Van Gaever
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jill Steels
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
11
|
Ou Y, Yang Z, Zhou Y, Yue H, Hua L, Liu Z, Lin G, Cai H, Chen Y, Hu W, Sun P. Antagonizing interleukin-5 receptor ameliorates dextran sulfate sodium-induced experimental colitis in mice through reducing NLRP3 inflammasome activation. Eur J Pharmacol 2024; 965:176331. [PMID: 38220140 DOI: 10.1016/j.ejphar.2024.176331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a condition characterized by inflammation in the gastrointestinal tract. Reducing intestinal inflammation is a promising approach for treating IBD. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, a critical component of the innate immune system, is implicated in the pathogenesis of IBD. Therefore, inhibiting NLRP3 inflammasome activation is a potential therapeutic strategy for IBD. In this study, we investigated the effects of the interleukin-5 (IL-5) receptor antagonist YM-90709 on dextran sulfate sodium-induced experimental colitis in mice. We found that YM-90709 reduced the expressions of IL-1β and caspase-1 p20 in the colon and ameliorated colitis. Furthermore, we identified YM-90709 as an effective agent for inhibiting NLRP3 inflammasome activation. Knockdown of IL-5 receptor or using an inhibitor of STAT5, a key transcription factor downstream of the IL-5/IL-5 receptor signal pathway, also reduced NLRP3 inflammasome-dependent IL-1β release and ASC speck formation. Our study is the first to demonstrate that the NLRP3 inflammasome may be a downstream signal of IL-5/IL-5 receptor and that YM-90709 protects against IBD by inhibiting IL-5 receptor. These findings suggest a new strategy for regulating intestinal inflammation and managing IBD.
Collapse
Affiliation(s)
- Yitao Ou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhongjin Yang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yinghua Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hu Yue
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lei Hua
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhuorong Liu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Geng Lin
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haowei Cai
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yanhong Chen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenhui Hu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ping Sun
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
12
|
Rosenzweig HL, Vance EE, Asare-Konadu K, Koney KV, Lee EJ, Deodhar AA, Sen R, Caplan L, Napier RJ. Card9/neutrophil signalling axis promotes IL-17A-mediated ankylosing spondylitis. Ann Rheum Dis 2024; 83:214-222. [PMID: 37813481 PMCID: PMC10850635 DOI: 10.1136/ard-2022-223146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/05/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE Polymorphisms in the antifungal signalling molecule CARD9 are associated with ankylosing spondylitis (AS). Here, we investigated the cellular mechanism by which CARD9 controls pathogenic Th17 responses and the onset of disease in both experimental murine AS and patients. METHODS Experiments in SKG, Card9-/-SKG, neutrophil-deplete SKG mice along with in vitro murine, neutrophil and CD4+ T cell cocultures examined Card9 function in neutrophil activation, Th17 induction and arthritis in experimental AS. In AS patients the neutrophil: Bath Ankylosing Spondylitis Functional Index relationship was analysed. In vitro studies with autologous neutrophil: T cell cocultures examined endogenous CARD9 versus the AS-associated variant (rs4075515) of CARD9 in T cellular production of IL-17A. RESULTS Card9 functioned downstream of Dectin-1 and was essential for induction of Th17 cells, arthritis and spondylitis in SKG mice. Card9 expression within T cells was dispensable for arthritis onset in SKG mice. Rather, Card9 expression controlled neutrophil function; and neutrophils in turn, were responsible for triggering Th17 expansion and disease in SKG mice. Mechanistically, cocultures of zymosan prestimulated neutrophils and SKG T cells revealed a direct cellular function for Card9 within neutrophils in the potentiation of IL-17 production by CD4+ T cells on TCR-ligation. The clinical relevance of the neutrophil-Card9-coupled mechanism in Th17-mediated disease is supported by a similar observation in AS patients. Neutrophils from HLA-B27+ AS patients expanded autologous Th17 cells in vitro, and the AS-associated CARD9S12N variant increased IL-17A. CONCLUSIONS These data reveal a novel neutrophil-intrinsic role for Card9 in arthritogenic Th17 responses and AS pathogenesis. These data provide valuable utility in our future understanding of CARD9-specific mechanisms in spondyloarthritis .
Collapse
Affiliation(s)
- Holly L Rosenzweig
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Emily E Vance
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Kofi Asare-Konadu
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Ellen J Lee
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Atul A Deodhar
- Div Arthritis/Rheumatic Diseases, Oregon Health & Science University, Portland, Oregon, USA
| | - Rouhin Sen
- University of Colorado, Denver, Colorado, USA
- VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| | - Liron Caplan
- VA Eastern Colorado Health Care System, Aurora, Colorado, USA
- Rheumatology Division, University of Colorado, Denver, Colorado, USA
| | - Ruth J Napier
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
- Div Arthritis/Rheumatic Diseases, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
13
|
Liu T, Guo Y, Liao Y, Liu J. Mechanism-guided fine-tuned microbiome potentiates anti-tumor immunity in HCC. Front Immunol 2023; 14:1333864. [PMID: 38169837 PMCID: PMC10758498 DOI: 10.3389/fimmu.2023.1333864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Microbiome, including bacteria, fungi, and viruses, plays a crucial role in shaping distal and proximal anti-tumor immunity. Mounting evidence showed that commensal microbiome critically modulates immunophenotyping of hepatocellular carcinoma (HCC), a leading cause of cancer-related death. However, their role in anti-tumor surveillance of HCC is still poorly understood. Herein, we spotlighted growing interests in how the microbiome influences the progression and immunotherapeutic responses of HCC via changing local tumor microenvironment (TME) upon translocating to the sites of HCC through different "cell-type niches". Moreover, we summarized not only the associations but also the deep insight into the mechanisms of how the extrinsic microbiomes interplay with hosts to shape immune surveillance and regulate TME and immunotherapeutic responses. Collectively, we provided a rationale for a mechanism-guided fine-tuned microbiome to be neoadjuvant immunotherapy in the near future.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
14
|
Glatthardt T, van Tilburg Bernardes E, Arrieta MC. The mycobiome in atopic diseases: Inducers and triggers. J Allergy Clin Immunol 2023; 152:1368-1375. [PMID: 37865199 DOI: 10.1016/j.jaci.2023.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Atopic diseases are characterized by type 2 inflammation, with high levels of allergen-specific TH2 cell immune responses and elevated production of IgE. These common disorders have increased in incidence around the world, which is partly explained by detrimental disturbances to the early-life intestinal microbiome. Although most studies have focused exclusively on bacterial members of the microbiome, intestinal fungi have started to be recognized for their impact on host immune development and atopy pathogenesis. From this perspective, we review recent findings demonstrating the strong interactions between members of the mycobiome and the host immune system early in life, leading to immune tolerance during eubiosis or inducing sensitization and overt TH2 cell responses during dysbiosis. Current evidence places intestinal fungi as central players in the development of allergic diseases and potential targets for atopy prevention and treatments.
Collapse
Affiliation(s)
- Thais Glatthardt
- the Department of Physiology and Pharmacology, University of Calgary, Calgary; the International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary; the Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary
| | - Erik van Tilburg Bernardes
- the Department of Physiology and Pharmacology, University of Calgary, Calgary; the International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary; the Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary
| | - Marie-Claire Arrieta
- the Department of Physiology and Pharmacology, University of Calgary, Calgary; the International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary; the Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary.
| |
Collapse
|
15
|
Xu X, Yu T, Dong L, Glauben R, Wu S, Huang R, Qumu S, Chang C, Guo J, Pan L, Yang T, Lin X, Huang K, Chen Z, Wang C. Eosinophils promote pulmonary matrix destruction and emphysema via Cathepsin L. Signal Transduct Target Ther 2023; 8:390. [PMID: 37816708 PMCID: PMC10564720 DOI: 10.1038/s41392-023-01634-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/23/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) who exhibit elevated blood eosinophil levels often experience worsened lung function and more severe emphysema. This implies the potential involvement of eosinophils in the development of emphysema. However, the precise mechanisms underlying the development of eosinophil-mediated emphysema remain unclear. In this study, we employed single-cell RNA sequencing to identify eosinophil subgroups in mouse models of asthma and emphysema, followed by functional analyses of these subgroups. Assessment of accumulated eosinophils unveiled distinct transcriptomes in the lungs of mice with elastase-induced emphysema and ovalbumin-induced asthma. Depletion of eosinophils through the use of anti-interleukin-5 antibodies ameliorated elastase-induced emphysema. A particularly noteworthy discovery is that eosinophil-derived cathepsin L contributed to the degradation of the extracellular matrix, thereby leading to emphysema in pulmonary tissue. Inhibition of cathepsin L resulted in a reduction of elastase-induced emphysema in a mouse model. Importantly, eosinophil levels correlated positively with serum cathepsin L levels, which were higher in emphysema patients than those without emphysema. Expression of cathepsin L in eosinophils demonstrated a direct association with lung emphysema in COPD patients. Collectively, these findings underscore the significant role of eosinophil-derived cathepsin L in extracellular matrix degradation and remodeling, and its relevance to emphysema in COPD patients. Consequently, targeting eosinophil-derived cathepsin L could potentially offer a therapeutic avenue for emphysema patients. Further investigations are warranted to explore therapeutic strategies targeting cathepsin L in emphysema patients.
Collapse
Affiliation(s)
- Xia Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tao Yu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lingling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rainer Glauben
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | - Siyuan Wu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ronghua Huang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shiwei Qumu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Chenli Chang
- Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Lin Pan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Beijing, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China.
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Chen Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
16
|
Xu X, Lu H, Li J, Duan J, Wang Z, Yang J, Gu S, Luo R, Liang S, Tang W, Zhang F, Hang J, Ge J, Lin X, Qu J, Jia X, Xu J. Heterozygous CARD9 mutation favors the development of allergic bronchopulmonary aspergillosis. Chin Med J (Engl) 2023; 136:1949-1958. [PMID: 37461235 PMCID: PMC10431571 DOI: 10.1097/cm9.0000000000002786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Previous research demonstrated that a homozygous mutation of g.136372044G>A (S12N) in caspase recruitment domain family member 9 ( CARD9 ) is critical for producing Aspergillus fumigatus -induced ( Af -induced) T helper 2 (T H 2)-mediated responses in allergic bronchopulmonary aspergillosis (ABPA). However, it remains unclear whether the CARD9S12N mutation, especially the heterozygous occurrence, predisposes the host to ABPA. METHODS A total of 61 ABPA patients and 264 controls (including 156 healthy controls and 108 asthma patients) were recruited for sequencing the CARD9 locus to clarify whether patients with this heterozygous single-nucleotide polymorphisms are predisposed to the development of ABPA. A series of in vivo and in vitro experiments, such as quantitative real-time polymerase chain reaction, flow cytometry, and RNA isolation and quantification, were used to illuminate the involved mechanism of the disease. RESULTS The presence of the p.S12N mutation was associated with a significant risk of ABPA in ABPA patients when compared with healthy controls and asthma patients, regardless of Aspergillus sensitivity. Relative to healthy controls without relevant allergies, the mutation of p.S12N was associated with a significant risk of ABPA (OR: 2.69 and 4.17 for GA and AA genotypes, P = 0.003 and 0.029, respectively). Compared with patients with asthma, ABPA patients had a significantly higher heterozygous mutation (GA genotype), indicating that p.S12N might be a significant ABPA-susceptibility locus ( aspergillus sensitized asthma: OR: 3.02, P = 0.009; aspergillus unsensitized asthma: OR: 2.94, P = 0.005). The mutant allele was preferentially expressed in ABPA patients with heterozygous CARD9S12N , which contributes to its functional alterations to facilitate Af -induced T H 2-mediated ABPA development. In terms of mechanism, Card9 wild-type ( Card9WT ) expression levels decreased significantly due to Af -induced decay of its messenger RNA compared to the heterozygous Card9S12N . In addition, ABPA patients with heterozygous CARD9S12N had increased Af -induced interleukin-5 production. CONCLUSION Our study provides the genetic evidence showing that the heterozygous mutation of CARD9S12N , followed by allele expression imbalance of CARD9S12N , facilitates the development of ABPA.
Collapse
Affiliation(s)
- Xia Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Haiwen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jianxiong Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jielin Duan
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhongwei Wang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiawei Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
| | - Shuyi Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
| | - Rongguang Luo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wei Tang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Fengying Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Putuo District People's Hospital, Shanghai 200060, China
| | - Jingqing Hang
- Department of Respiratory and Critical Care Medicine, Shanghai Putuo District People's Hospital, Shanghai 200060, China
| | - Juan Ge
- Department of Respiratory and Critical Care Medicine, Nantong Hospital, Shanghai University, Nantong, Jiangsu 226007, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua-Peking Center for Life Sciences, Beijing 100083, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xinming Jia
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
17
|
Sun M, Ju J, Xu H, Wang Y. Intestinal fungi and antifungal secretory immunoglobulin A in Crohn's disease. Front Immunol 2023; 14:1177504. [PMID: 37359518 PMCID: PMC10285161 DOI: 10.3389/fimmu.2023.1177504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The human gastrointestinal tract harbors trillions of commensal microorganisms. Emerging evidence points to a possible link between intestinal fungal dysbiosis and antifungal mucosal immunity in inflammatory bowel disease, especially in Crohn's disease (CD). As a protective factor for the gut mucosa, secretory immunoglobulin A (SIgA) prevents bacteria from invading the intestinal epithelium and maintains a healthy microbiota community. In recent years, the roles of antifungal SIgA antibodies in mucosal immunity, including the regulation of intestinal immunity binding to hyphae-associated virulence factors, are becoming increasingly recognized. Here we review the current knowledge on intestinal fungal dysbiosis and antifungal mucosal immunity in healthy individuals and in patients with CD, discuss the factors governing antifungal SIgA responses in the intestinal mucosa in the latter group, and highlight potential antifungal vaccines targeting SIgA to prevent CD.
Collapse
|
18
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Combined Toxicity of the Most Common Indoor Aspergilli. Pathogens 2023; 12:pathogens12030459. [PMID: 36986381 PMCID: PMC10058518 DOI: 10.3390/pathogens12030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The most common Aspergilli isolated from indoor air samples from occupied buildings and a grain mill were extracted and analyzed for their combined (Flavi + Nigri, Versicolores + Nigri) cytotoxic, genotoxic and pro-inflammatory properties on human adenocarcinoma cells (A549) and monocytic leukemia cells induced in macrophages (THP-1 macrophages). Metabolite mixtures from the Aspergilli series Nigri increase the cytotoxic and genotoxic potency of Flavi extracts in A549 cells suggesting additive and/or synergistic effects, while antagonizing the cytotoxic potency of Versicolores extracts in THP-1 macrophages and genotoxicity in A549 cells. All tested combinations significantly decreased IL-5 and IL-17, while IL-1β, TNF-α and IL-6 relative concentrations were increased. Exploring the toxicity of extracted Aspergilli deepens the understanding of intersections and interspecies differences in events of chronic exposure to their inhalable mycoparticles.
Collapse
|
20
|
Hatinguais R, Willment JA, Brown GD. C-type lectin receptors in antifungal immunity: Current knowledge and future developments. Parasite Immunol 2023; 45:e12951. [PMID: 36114607 PMCID: PMC10078331 DOI: 10.1111/pim.12951] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
C-type lectin receptors (CLRs) constitute a category of innate immune receptors that play an essential role in the antifungal immune response. For over two decades, scientists have uncovered what are the fungal ligands recognized by CLRs and how these receptors initiate the immune response. Such studies have allowed the identification of genetic polymorphisms in genes encoding for CLRs or for proteins involved in the signalisation cascade they trigger. Nevertheless, our understanding of how these receptors functions and the full extent of their function during the antifungal immune response is still at its infancy. In this review, we summarize some of the main findings about CLRs in antifungal immunity and discuss what the future might hold for the field.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
21
|
Duan J, Li F, Huang R, Wu S, Huang Z, Xu X. CARD9 balances Aspergillus fumigatus-induced anti-fungal immunity and allergic inflammation. Clin Exp Allergy 2023. [PMID: 36718629 DOI: 10.1111/cea.14290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Affiliation(s)
- Jielin Duan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ronghua Huang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Siyuan Wu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiwen Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xia Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
23
|
Marika M, Marketa D, Lada S, Marian R, Filip K, Adam V, Věra V, Kristina K, Dagmar J, Tuula H. New approach methods for assessing indoor air toxicity. Curr Res Toxicol 2022; 3:100090. [PMID: 36281315 PMCID: PMC9587284 DOI: 10.1016/j.crtox.2022.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Indoor air is typically a mixture of many chemicals at low concentrations without any adverse health effects alone, but in mixtures they may cause toxicity and risks to human health. The aim of this study was by using new approach methods to assess the potential toxicity of indoor air condensates. In specific, different in vitro test methods including cyto-and immunotoxicity, skin sensitization and endocrine disruption were applied. In addition to biological effects, the indoor air samples were subjected to targeted analysis of 25 volatile organic compounds (VOCs) and Genapol X-80 (a nonionic emulsifier) suspected to be present in the samples, and to a non-targeted "total chemical scan" to find out whether the chemical composition of the samples is associated with the biological effects. The results confirm that assessing health risks of indoor air by analysing individual chemicals is not an adequate approach: We were not able to detect the VOCs and Genapol X-80 in the indoor air samples, yet, several types of toxicity, namely, cytotoxicity, immunotoxicity, skin sensitization and endocrine disruption were detected. In the non-targeted total chemical scan of the indoor air samples, a larger number of compounds were found in the cytotoxic samples than in the non-cytotoxic samples supporting the biological findings. If only one biological method would be selected for the screening of indoor air quality, THP-1 macrophage/WST-1 assay would best fit for the purpose as it is sensitive and serves as a good representative for different sub-toxic end points, including immunotoxicity, (skin) sensitization and endocrine disruption.
Collapse
Affiliation(s)
- Mannerström Marika
- The Faculty of Medicine and Health Technology, Arvo Ylpön katu 1, 33014 Tampere University, Finland,Corresponding author at: Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, 33014 Tampere University, Finland.
| | - Dvorakova Marketa
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Svobodova Lada
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic,Medical Faculty of Palacky University, Hnevotinska 976/3, 775 15 Olomouc, Czech Republic
| | - Rucki Marian
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Kotal Filip
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Vavrouš Adam
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Vrbíková Věra
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Kejlova Kristina
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Jirova Dagmar
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Heinonen Tuula
- The Faculty of Medicine and Health Technology, Arvo Ylpön katu 1, 33014 Tampere University, Finland
| |
Collapse
|
24
|
Meng Y, Xu X, Xie G, Zhang Y, Chen S, Qiu Y, Zhu Z, Zhang H, Yin D. Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-кB signaling pathway. ENVIRONMENT INTERNATIONAL 2022; 163:107209. [PMID: 35358787 DOI: 10.1016/j.envint.2022.107209] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Alkyl organophosphate flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(2-butoxyethyl) phosphate (TBOEP), are ubiquitously detected in indoor and outdoor environments and their inhalation may result in lung damage. This study examined pulmonary toxicity after exposure to TnBP or TBOEP and investigated aggravation of inflammation and immunoreaction by TnBP in an ovalbumin (OVA)-induced mice model. Transcriptomics were used to further reveal the underlying mechanism. Exposure to TnBP or TBOEP resulted in pathological damage, including edema and thickened alveolar septum. In comparison with the control, enhanced levels of superoxide dismutase (SOD) (p < 0.01 in TnBP (High) group and p < 0.05 in TBOEP (High) group), glutathione peroxidase (GSH-px) (p < 0.05), malondialdehyde (MDA) (p < 0.01), and cytokines under a dose-dependent relationship were noted, and the expression of the Fkbp5/Nos3/MAPK/NF-кB signaling pathway (p < 0.01) was upregulated in the TnBP and TBOEP groups. Moreover, the combined exposure of TnBP and OVA exacerbated the allergic inflammatory response, including airway hyperresponsiveness, leukocytosis, cellular exudation and infiltration, secretion of inflammatory mediators, and higher expression of IgE (p < 0.01). Transcriptomics results demonstrated that the PI3K/Akt/NF-кB signal pathway was involved in TnBP-aggravated asthmatic mice. Exposure to TnBP or TBOEP resulted in oxidative damage and leukocyte-induced lung injury. TnBP can further facilitate OVA-induced asthma through an inflammatory response. This study is the first to reveal the pulmonary toxicity and potential mechanism induced by OPFRs through an in-vivo model.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Guangming Xie
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yunwei Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shiyan Chen
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
25
|
Gonçalves SM, Cunha C, Carvalho A. Understanding the genetic basis of immune responses to fungal infection. Expert Rev Anti Infect Ther 2022; 20:987-996. [PMID: 35385368 DOI: 10.1080/14787210.2022.2063839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fungal infections represent a global public health problem that affect millions of people. Despite remarkable advances achieved over the last decades, available diagnostic and therapeutic tools remain insufficient for the optimal management of these diseases. The clinical course of fungal infection is highly variable, and evidence accumulated from patients with rare mutations and cohort-based studies suggests that the trajectory of disease is largely defined by patient genetics and its impact on immune responses. Therefore, there is an urgent need to elucidate the precise mechanisms by which which genetic variants influence the risk, progression, and outcome of fungal infection. AREAS COVERED In this review, we highlight recent advances in our understanding of the genetic factors that influence antifungal immune responses based on candidate gene studies and genome-wide approaches performed in different experimental and clinical models. EXPERT OPINION Research on genetics of susceptibility to infection is expected to lead to a detailed knowledge framework for the pathogenesis of human fungal infections and unveil novel targets and pathways amenable to clinical intervention.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
26
|
Borriello F, Poli V, Shrock E, Spreafico R, Liu X, Pishesha N, Carpenet C, Chou J, Di Gioia M, McGrath ME, Dillen CA, Barrett NA, Lacanfora L, Franco ME, Marongiu L, Iwakura Y, Pucci F, Kruppa MD, Ma Z, Lowman DW, Ensley HE, Nanishi E, Saito Y, O'Meara TR, Seo HS, Dhe-Paganon S, Dowling DJ, Frieman M, Elledge SJ, Levy O, Irvine DJ, Ploegh HL, Williams DL, Zanoni I. An adjuvant strategy enabled by modulation of the physical properties of microbial ligands expands antigen immunogenicity. Cell 2022; 185:614-629.e21. [PMID: 35148840 PMCID: PMC8857056 DOI: 10.1016/j.cell.2022.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/19/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.
Collapse
Affiliation(s)
- Francesco Borriello
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Division of Immunology, Boston, MA, USA; Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Poli
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Division of Immunology, Boston, MA, USA
| | - Ellen Shrock
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Program in Virology, Boston, MA, USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Liu
- Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Novalia Pishesha
- Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Claire Carpenet
- Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Janet Chou
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Division of Immunology, Boston, MA, USA
| | - Marco Di Gioia
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Division of Immunology, Boston, MA, USA
| | - Marisa E McGrath
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD, USA
| | - Carly A Dillen
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD, USA
| | - Nora A Barrett
- Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital, Division of Allergy and Clinical Immunology, Boston, MA, USA
| | - Lucrezia Lacanfora
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Division of Immunology, Boston, MA, USA; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marcella E Franco
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Division of Immunology, Boston, MA, USA; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Ferdinando Pucci
- Department of Otolaryngology-Head and Neck Surgery, Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael D Kruppa
- Department of Biomedical Sciences, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Zuchao Ma
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Douglas W Lowman
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Harry E Ensley
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Etsuro Nanishi
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Precision Vaccines Program, Boston, MA, USA
| | - Yoshine Saito
- Boston Children's Hospital, Precision Vaccines Program, Boston, MA, USA
| | - Timothy R O'Meara
- Boston Children's Hospital, Precision Vaccines Program, Boston, MA, USA
| | - Hyuk-Soo Seo
- Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Department of Cancer Biology, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Department of Cancer Biology, Boston, MA, USA
| | - David J Dowling
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Precision Vaccines Program, Boston, MA, USA
| | - Matthew Frieman
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD, USA
| | - Stephen J Elledge
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Program in Virology, Boston, MA, USA
| | - Ofer Levy
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Precision Vaccines Program, Boston, MA, USA; Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Darrell J Irvine
- Massachusetts Institute of Technology, Department of Biological Engineering and Department of Materials Science and Engineering, Koch Institute for Integrative Cancer Research, Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Hidde L Ploegh
- Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - David L Williams
- Department of Biomedical Sciences, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Division of Immunology, Boston, MA, USA; Boston Children's Hospital, Division of Gastroenterology, Boston, MA, USA.
| |
Collapse
|
27
|
Xu X, Huang K, Dong F, Qumu S, Zhao Q, Niu H, Ren X, Gu X, Yu T, Pan L, Yang T, Wang C. The Heterogeneity of Inflammatory Response and Emphysema in Chronic Obstructive Pulmonary Disease. Front Physiol 2021; 12:783396. [PMID: 34950055 PMCID: PMC8689000 DOI: 10.3389/fphys.2021.783396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by chronic inflammation, emphysema, airway remodeling, and altered lung function. Despite the canonical classification of COPD as a neutrophilic disease, blood and airway eosinophilia are found in COPD patients. Identifying the tools to assess eosinophilic airway inflammation in COPD models during stable disease and exacerbations will enable the development of novel anti-eosinophilic treatments. We developed different animal models to mimic the pathological features of COPD. Our results show that eosinophils accumulated in the lungs of pancreatic porcine elastase-treated mice, with emphysema arising from the alveolar septa. A lipopolysaccharide challenge significantly increased IL-17 levels and induced a swift change from a type-2 response to an IL-17-driven inflammatory response. However, lipopolysaccharides can exacerbate cigarette smoking-induced airway inflammation dominated by neutrophil infiltration and airway remodeling in COPD models. Our results suggest that eosinophils may be associated with emphysema arising from the alveolar septa, which may be different from the small airway disease-associated emphysema that is dominated by neutrophilic inflammation in cigarette smoke-induced models. The characterization of heterogeneity seen in the COPD-associated inflammatory signature could pave the way for personalized medicine to identify new and effective therapeutic approaches for COPD.
Collapse
Affiliation(s)
- Xia Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fen Dong
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Shiwei Qumu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qichao Zhao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxia Ren
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoying Gu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tao Yu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lin Pan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ting Yang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
28
|
Xu JY, Xiong YY, Tang RJ, Jiang WY, Ning Y, Gong ZT, Huang PS, Chen GH, Xu J, Wu CX, Hu MJ, Xu J, Xu Y, Huang CR, Jin C, Lu XT, Qian HY, Li XD, Yang YJ. Interleukin-5-induced eosinophil population improves cardiac function after myocardial infarction. Cardiovasc Res 2021; 118:2165-2178. [PMID: 34259869 DOI: 10.1093/cvr/cvab237] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Interleukin (IL)-5 mediates the development of eosinophils (EOS) that are essential for tissue post-injury repair. It remains unknown whether IL-5 plays a role in heart repair after myocardial infarction (MI). This study aims to test whether IL-5-induced EOS population promotes the healing and repair process post-MI and to reveal the underlying mechanisms. METHOD AND RESULTS MI was induced by permanent ligation of the left anterior descending coronary artery in wild-type C57BL/6 mice. Western blot and real-time polymerase chain reaction revealed elevated expression of IL-5 in the heart at 5 days post-MI. Immunohistostaining indicated that IL-5 was secreted mainly from macrophages and type 2 innate lymphoid cells in the setting of experimental MI. External supply of recombinant mouse IL-5 (20 min, 1 day, and 2 days after MI surgery) reduced the infarct size and increased ejection fraction and angiogenesis in the border zone. A significant expansion of EOS was detected in both the peripheral blood and infarcted myocardium after IL-5 administration. Pharmacological depletion of EOS by TRFK5 pretreatment muted the beneficial effects of IL-5 in MI mice. Mechanistic studies demonstrated that IL-5 increased the accumulation of CD206+ macrophages in infarcted myocardium at 7 days post-MI. In vitro co-culture experiments showed that EOS shifted bone marrow-derived macrophage polarization towards the CD206+ phenotypes. This activity of EOS was abolished by IL-4 neutralizing antibody, but not IL-10 or IL-13 neutralization. Western blot analyses demonstrated that EOS promoted the macrophage downstream signal transducer and activator of transcription 6 (STAT6) phosphorylation. CONCLUSION IL-5 facilitates the recovery of cardiac dysfunction post-MI by promoting EOS accumulation and subsequent CD206+ macrophage polarization via the IL-4/STAT6 axis. TRANSLATIONAL PERSPECTIVE Accumulating evidence suggests that modulation of innate and adaptive immune responses is a promising therapeutic strategy for myocardial infarction. In this study, we demonstrate that IL-5 exerts cardioprotective effects on infarcted myocardium by promoting eosinophil accumulation and subsequent CD206+ macrophage polarization via the IL-4/STAT6 axis. Hence, regulation of cardiac IL-5 level or eosinophil count may become a therapeutic approach for post-myocardial infarction cardiac repair in humans.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Rui-Jie Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Wen-Yang Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Pei-Sen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Chun-Xiao Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Meng-Jin Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yi Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Cun-Rong Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xiao-Tong Lu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Hai-Yan Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xiang-Dong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| |
Collapse
|
29
|
Duan JL, He HQ, Yu Y, Liu T, Ma SJ, Li F, Jiang YS, Lin X, Li DD, Lv QZ, Ma HH, Jia XM. E3 ligase c-Cbl regulates intestinal inflammation through suppressing fungi-induced noncanonical NF-κB activation. SCIENCE ADVANCES 2021; 7:7/19/eabe5171. [PMID: 33962939 PMCID: PMC8104877 DOI: 10.1126/sciadv.abe5171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Intestinal fungi are critical for modulating host immune homeostasis and underlying mechanisms remain unclear. We show that dendritic cell (DC)-specific deficiency of casitas B-lineage lymphoma (c-Cbl) renders mice susceptible to dextran sodium sulfate (DSS)-induced colitis. Mechanistically, we identify that c-Cbl functions downstream of Dectin-2 and Dectin-3 to mediate the ubiquitination and degradation of noncanonical nuclear factor κB subunit RelB. Thus, c-Cbl deficiency in DCs promotes α-mannan-induced activation of RelB, which suppresses p65-mediated transcription of an anti-inflammatory cytokine gene, il10, thereby aggravating DSS-induced colitis. Moreover, suppressing fungal growth with fluconazole or inhibition of RelB activation in vivo attenuates colitis in mice with DC-specific deletion of c-Cbl. We also demonstrate an interaction between c-Cbl and c-Abl tyrosine kinase and find that treatment with DPH, a c-Abl agonist, synergistically increases fungi-induced c-Cbl activation to restrict colitis. Together, these findings unravel a previously unidentified fungi-induced c-Cbl/RelB axis that sustains intestinal homeostasis and protects against intestinal inflammation.
Collapse
Affiliation(s)
- Jie-Lin Duan
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Hui-Qian He
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yao Yu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Tao Liu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Shu-Jun Ma
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Fan Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yan-Shan Jiang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua University-Peking University Jointed Center for Life Sciences, Beijing 100084, China
| | - De-Dong Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Quan-Zhen Lv
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Hui-Hui Ma
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
30
|
Wang Q, Chen S, Li T, Yang Q, Liu J, Tao Y, Meng Y, Chen J, Feng X, Han Z, Shi M, Huang H, Han M, Jiang E. Critical Role of Lkb1 in the Maintenance of Alveolar Macrophage Self-Renewal and Immune Homeostasis. Front Immunol 2021; 12:629281. [PMID: 33968022 PMCID: PMC8100336 DOI: 10.3389/fimmu.2021.629281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/01/2021] [Indexed: 01/27/2023] Open
Abstract
Alveolar macrophages (AMs) are pivotal for maintaining lung immune homeostasis. We demonstrated that deletion of liver kinase b1 (Lkb1) in CD11c+ cells led to greatly reduced AM abundance in the lung due to the impaired self-renewal of AMs but not the impeded pre-AM differentiation. Mice with Lkb1-deficient AMs exhibited deteriorated diseases during airway Staphylococcus aureus (S. aureus) infection and allergic inflammation, with excessive accumulation of neutrophils and more severe lung pathology. Drug-mediated AM depletion experiments in wild type mice indicated a cause for AM reduction in aggravated diseases in Lkb1 conditional knockout mice. Transcriptomic sequencing also revealed that Lkb1 inhibited proinflammatory pathways, including IL-17 signaling and neutrophil migration, which might also contribute to the protective function of Lkb1 in AMs. We thus identified Lkb1 as a pivotal regulator that maintains the self-renewal and immune function of AMs.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Animals
- Asthma/enzymology
- Asthma/genetics
- Asthma/immunology
- CD11 Antigens/genetics
- CD11 Antigens/metabolism
- Cell Self Renewal
- Disease Models, Animal
- Homeostasis
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Lung/enzymology
- Lung/immunology
- Lung/microbiology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration
- Pneumonia, Bacterial/enzymology
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Staphylococcal Infections/enzymology
- Staphylococcal Infections/genetics
- Staphylococcal Infections/immunology
- Staphylococcal Infections/microbiology
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Song Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiongmei Yang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuan Tao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiadi Chen
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingxia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
31
|
Agarwal R, Sehgal IS, Dhooria S, Muthu V, Prasad KT, Bal A, Aggarwal AN, Chakrabarti A. Allergic bronchopulmonary aspergillosis. Indian J Med Res 2021; 151:529-549. [PMID: 32719226 PMCID: PMC7602921 DOI: 10.4103/ijmr.ijmr_1187_19] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is an inflammatory disease caused by immunologic reactions initiated against Aspergillus fumigatus colonizing the airways of patients with asthma and cystic fibrosis. The common manifestations include treatment-resistant asthma, transient and fleeting pulmonary opacities and bronchiectasis. It is believed that globally there are about five million cases of ABPA, with India alone accounting for about 1.4 million cases. The occurrence of ABPA among asthmatic patients in special clinics may be as high as 13 per cent. Thus, a high degree of suspicion for ABPA should be entertained while treating a patient with bronchial asthma, particularly in specialized clinics. Early diagnosis and appropriate treatment can delay (or even prevent) the onset of bronchiectasis, which suggests that all patients of bronchial asthma should be screened for ABPA, especially in chest clinics. The current review summarizes the recent advances in the pathogenesis, diagnosis and management of ABPA.
Collapse
Affiliation(s)
- Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Inderpaul S Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Kuruswamy T Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
32
|
Lu HY, Turvey SE. Human MALT1 deficiency and predisposition to infections. Curr Opin Immunol 2021; 72:1-12. [PMID: 33714841 DOI: 10.1016/j.coi.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Human germline MALT1 deficiency is an inborn error of immunity characterized by recurrent bacterial, viral, and fungal infections, periodontal disease, enteropathy, dermatitis, and failure to thrive. The number of identified MALT1-deficient patients have greatly increased in the past two years, which has significantly improved our understanding of the clinical features of this disorder. Patients frequently experience infections affecting the respiratory, skin, gastrointestinal, and blood systems. The most frequently detected pathogens are Staphylococcus aureus, Candida albicans, and cytomegalovirus. Enhanced susceptibility to S. aureus and C. albicans is likely due to impaired Th17 immunity, similar to STAT3 and IL-17 pathway deficiencies.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
33
|
TRIM41 is required to innate antiviral response by polyubiquitinating BCL10 and recruiting NEMO. Signal Transduct Target Ther 2021; 6:90. [PMID: 33640899 PMCID: PMC7914255 DOI: 10.1038/s41392-021-00477-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sensing of pathogenic nucleic acids by pattern recognition receptors (PRR) not only initiates anti-microbe defense but causes inflammatory and autoimmune diseases. E3 ubiquitin ligase(s) critical in innate response need to be further identified. Here we report that the tripartite motif-containing E3 ubiquitin ligase TRIM41 is required to innate antiviral response through facilitating pathogenic nucleic acids-triggered signaling pathway. TRIM41 deficiency impairs the production of inflammatory cytokines and type I interferons in macrophages after transfection with nucleic acid-mimics and infection with both DNA and RNA viruses. In vivo, TRIM41 deficiency leads to impaired innate response against viruses. Mechanistically, TRIM41 directly interacts with BCL10 (B cell lymphoma 10), a core component of CARD proteins−BCL10 − MALT1 (CBM) complex, and modifies the Lys63-linked polyubiquitylation of BCL10, which, in turn, hubs NEMO for activation of NF-κB and TANK-binding kinase 1 (TBK1) − interferon regulatory factor 3 (IRF3) pathways. Our study suggests that TRIM41 is the potential universal E3 ubiquitin ligase responsible for Lys63 linkage of BCL10 during innate antiviral response, adding new insight into the molecular mechanism for the control of innate antiviral response.
Collapse
|
34
|
Renert-Yuval Y, Del Duca E, Pavel AB, Fang M, Lefferdink R, Wu J, Diaz A, Estrada YD, Canter T, Zhang N, Wagner A, Chamlin S, Krueger JG, Guttman-Yassky E, Paller AS. The molecular features of normal and atopic dermatitis skin in infants, children, adolescents, and adults. J Allergy Clin Immunol 2021; 148:148-163. [PMID: 33453290 DOI: 10.1016/j.jaci.2021.01.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although atopic dermatitis (AD) often presents in infancy and persists into adulthood, comparative characterization of AD skin among different pediatric age groups is lacking. OBJECTIVE We sought to define skin biopsy profiles of lesional and nonlesional AD across different age groups (0-5-year-old infants with disease duration <6 months, 6-11-year-old children, 12-17-year-old adolescents, ≥18-year-old adults) versus age-appropriate controls. METHODS We performed gene expression analyses by RNA-sequencing and real-time PCR (RT-PCR) and protein expression analysis using immunohistochemistry. RESULTS TH2/TH22 skewing, including IL-13, CCL17/thymus and activation-regulated chemokine, IL-22, and S100As, characterized the common AD signature, with a global pathway-level enrichment across all ages. Nevertheless, specific cytokines varied widely. For example, IL-33, IL-1RL1/IL-33R, and IL-9, often associated with early atopic sensitization, showed greatest upregulations in infants. TH17 inflammation presented a 2-peak curve, with highest increases in infants (including IL-17A and IL-17F), followed by adults. TH1 polarization was uniquely detected in adults, even when compared with adolescents, with significant upregulation in adults of IFN-γ and CXCL9/CXCL10/CXCL11. Although all AD age groups had barrier abnormalities, only adults had significant decreases in filaggrin expression. Despite the short duration of the disease, infant AD presented robust downregulations of multiple barrier-related genes in both lesional and nonlesional skin. Clinical severity scores significantly correlated with TH2/TH22-related markers in all pediatric age groups. CONCLUSIONS The shared signature of AD across ages is TH2/TH22-skewed, yet differential expression of specific TH2/TH22-related genes, other TH pathways, and barrier-related genes portray heterogenetic, age-specific molecular fingerprints.
Collapse
Affiliation(s)
- Yael Renert-Yuval
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY; Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Dermatology, University Magna Graecia, Catanzaro, Italy
| | - Ana B Pavel
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Biomedical Engineering, University of Mississippi, Oxford, Miss
| | - Milie Fang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Rachel Lefferdink
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Jianni Wu
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aisleen Diaz
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yeriel D Estrada
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Talia Canter
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ning Zhang
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Annette Wagner
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Sarah Chamlin
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY; Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
35
|
The Role of CARD9 Deficiency in Neutrophils. Mediators Inflamm 2021; 2021:6643603. [PMID: 33488294 PMCID: PMC7803395 DOI: 10.1155/2021/6643603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Neutrophils play a critical role in innate immune defense and directly contribute to infectious and autoimmune ailments. Great efforts are underway to better understand the nature of neutrophilic inflammation. Of note, CARD9, a myeloid cell-specific signaling protein that mainly expresses in macrophages and dendritic cells, is also present in neutrophils, emerging as a critical mediator for intercellular communication. CARD9-deficiency neutrophils display an increased susceptibility to fungal infection that primarily localize to the central nervous system, subcutaneous, and skin tissue. Additionally, CARD9-deficiency neutrophils are associated with some autoimmune diseases and even provide protection against a few bacteria. Here, the review summarizes recent preclinical and clinical advances that have provided a novel insight into the pathogenesis of CARD9 deficiency in neutrophils.
Collapse
|
36
|
Ji C, Yang Z, Zhong X, Xia J. The role and mechanism of CARD9 gene polymorphism in diseases. Biomed J 2020; 44:560-566. [PMID: 34690098 PMCID: PMC8640546 DOI: 10.1016/j.bj.2020.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/03/2023] Open
Abstract
CARD9 is a cytosolic adaptor in myeloid cells, has a critical role in inflammatory disorders, and provides a protective function against microbial pathogen, especially fungal infection. Recently, CARD9 polymorphisms are of interest, showing a positive correlation with the elevated risk of fungal infection, inflammatory bowel disease, and other autoimmune diseases. Mechanistically, CARD9 polymorphisms impair the activation of RelB, a subunit of non-canonical NF-κB, which lead to the reduced cytokine and chemokine production by innate immune cells. In addition, CARD9 polymorphisms show a defective neutrophil accumulation in infectious sites. Furthermore, CARD9 polymorphisms could alter the composition of the gut microbiome. In this review, we summarize the latest findings of CARD9 polymorphisms with respect to inflammatory diseases.
Collapse
Affiliation(s)
- Changxue Ji
- Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China
| | - Zhiwen Yang
- Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China
| | | | - Jindong Xia
- Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China.
| |
Collapse
|
37
|
Xu W, Rush JS, Graham DB, Cao Z, Xavier RJ. USP15 Deubiquitinates CARD9 to Downregulate C-Type Lectin Receptor-Mediated Signaling. Immunohorizons 2020; 4:670-678. [PMID: 33093067 PMCID: PMC7758836 DOI: 10.4049/immunohorizons.2000036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Posttranslational modifications are efficient means to rapidly regulate protein function in response to a stimulus. Although ubiquitination events and the E3 ubiquitin ligases involved are increasingly characterized in many signaling pathways, their regulation by deubiquitinating enzymes remains less understood. The C-type lectin receptor (CLR) signaling adaptor CARD9 was previously reported to be activated via TRIM62-mediated ubiquitination. In this study, we identify the deubiquitinase USP15 as a novel regulator of CARD9, demonstrating that USP15 constitutively associates with CARD9 and removes TRIM62-deposited ubiquitin marks. Furthermore, USP15 knockdown and knockout specifically enhance CARD9-dependent CLR signaling in both mouse and human immune cells. Altogether, our study identifies a novel regulator of innate immune signaling and provides a blueprint for the identification of additional deubiquitinases that are likely to control these processes.
Collapse
Affiliation(s)
- Wenting Xu
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; and
| | - Jason S Rush
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Daniel B Graham
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Zhifang Cao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
38
|
Shen H, Yu Y, Chen SM, Sun JJ, Fang W, Guo SY, Hou WT, Qiu XR, Zhang Y, Chen YL, Wang YD, Hu XY, Lu L, Jiang YY, Zou Z, An MM. Dectin-1 Facilitates IL-18 Production for the Generation of Protective Antibodies Against Candida albicans. Front Microbiol 2020; 11:1648. [PMID: 32765468 PMCID: PMC7378971 DOI: 10.3389/fmicb.2020.01648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
Invasive candidiasis (IC) is one of the leading causes of death among immunocompromised patients. Because of limited effective therapy treatment options, prevention of IC through vaccine is an appealing strategy. However, how to induce the generation of direct candidacidal antibodies in host remains unclear. Gpi7 mutant C. albicans is an avirulent strain that exposes cell wall β-(1,3)-glucans. Here, we found that vaccination with the gpi7 mutant strain could protect mice against invasive candidiasis caused by C. albicans and non-albicans Candida spp. The protective effects induced by gpi7 mutant relied on long-lived plasma cells (LLPCs) secreting protective antibodies against C. albicans. Clinically, we verified a similar profile of IgG antibodies in the serum samples from patients recovering from IC to those from gpi7 mutant-vaccinated mice. Mechanistically, we found cell wall β-(1,3)-glucan of gpi7 mutant facilitated Dectin-1 receptor dependent nuclear translocation of non-canonical NF-κB subunit RelB in macrophages and subsequent IL-18 secretion, which primed protective antibodies generation in vivo. Together, our study demonstrate that Dectin-1 engagement could trigger RelB activation to prime IL-18 expression and established a new paradigm for consideration of the link between Dectin-1 mediated innate immune response and adaptive humoral immunity, suggesting a previously unknown active vaccination strategy against Candida spp. infection.
Collapse
Affiliation(s)
- Hui Shen
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Laboratory Diagnosis, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuetian Yu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Si-Min Chen
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan-Juan Sun
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Fang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shi-Yu Guo
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Tong Hou
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi-Ran Qiu
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-Li Chen
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Da Wang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin-Yu Hu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Ying Jiang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zui Zou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mao-Mao An
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Zhang D, Wang Y, Shen S, Hou Y, Chen Y, Wang T. The mycobiota of the human body: a spark can start a prairie fire. Gut Microbes 2020; 11:655-679. [PMID: 32150513 PMCID: PMC7524315 DOI: 10.1080/19490976.2020.1731287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mycobiota are inseparable from human health, shaking up the unique position held by bacteria among microorganisms. What is surprising is that this seemingly small species can trigger huge changes in the human body. Dysbiosis and invasion of mycobiota are confirmed to cause disease in different parts of the body. Meanwhile, our body also produces corresponding immune changes upon mycobiota infection. Several recent studies have made a connection between intestinal mycobiota and the human immune system. In this review, we focus on questions related to mycobiota, starting with an introduction of select species, then we summarize the typical diseases caused by mycobiota in different parts of the human body. Moreover, we constructed a framework for the human anti-fungal immune system based on genetics and immunology. Finally, the progression of fungal detection methods is also reviewed.
Collapse
Affiliation(s)
- Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China,CONTACT Tingting Wang The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing210093, China
| |
Collapse
|
40
|
Li S, Jiang L, Yang Y, Cao J, Zhang Q, Zhang J, Wang R, Deng X, Li Y. MiR-195-5p inhibits the development of chronic obstructive pulmonary disease via targeting siglec1. Hum Exp Toxicol 2020; 39:1333-1344. [PMID: 32351126 DOI: 10.1177/0960327120920923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), characterized by chronic inflammation, is a recognized global health crisis. Sialic acid-binding immunoglobulin-like lectin 1 (siglec1 or CD169), mainly expressed in macrophages and dendritic cells, is markedly upregulated after encountering pathogens or under acute/chronic inflammation conditions. However, it is rarely reported that whether siglec1 plays a role in the development of COPD. In this study, we found that siglec1 had higher expression in the lungs from COPD rats and in peripheral blood mononuclear cells (PBMCs) from COPD patients. Knockdown of siglec1 in vivo and in vitro dramatically decreased pro-inflammatory cytokines production in pulmonary macrophages and alleviated pulmonary inflammatory responses in COPD rats as well as inactivated nuclear factor kappa B (NF-κB) signaling. In addition, we identified a new microRNA, miR-195-5p, which has never explored in COPD, was lower expressed in COPD rats and PBMC of COPD patients, and could negatively modulate siglec1 expression in macrophages. Moreover, overexpression of miR-195-5p via miR-195-5p mimics in vitro and in vivo could significantly alleviate pro-inflammatory cytokines production in pulmonary macrophages and pulmonary inflammatory responses in COPD rats. Together, our findings suggested that miR-195-5p inhibited the development of COPD via targeting siglec1, which might become a therapeutic target to improve COPD.
Collapse
Affiliation(s)
- S Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Pharmacy, Luohe Central Hospital, Luohe, Henan, China
| | - L Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Yang
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe, Henan, China
| | - J Cao
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe, Henan, China
| | - Q Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - J Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - R Wang
- Department of Pharmacy, Luohe Central Hospital, Luohe, Henan, China
| | - X Deng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.,Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - Y Li
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe, Henan, China
| |
Collapse
|
41
|
Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020; 578:527-539. [PMID: 32103191 PMCID: PMC7871366 DOI: 10.1038/s41586-020-2025-2] [Citation(s) in RCA: 441] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex genetic disease that is instigated and amplified by the confluence of multiple genetic and environmental variables that perturb the immune-microbiome axis. The challenge of dissecting pathological mechanisms underlying IBD has led to the development of transformative approaches in human genetics and functional genomics. Here we describe IBD as a model disease in the context of leveraging human genetics to dissect interactions in cellular and molecular pathways that regulate homeostasis of the mucosal immune system. Finally, we synthesize emerging insights from multiple experimental approaches into pathway paradigms and discuss future prospects for disease-subtype classification and therapeutic intervention.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
42
|
Physiological and Pathological Functions of CARD9 Signaling in the Innate Immune System. Curr Top Microbiol Immunol 2020; 429:177-203. [PMID: 32415389 DOI: 10.1007/82_2020_211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caspase recruitment domain protein 9 (CARD9) forms essential signaling complexes in the innate immune system that integrate cues from C-type lectin receptors and specific intracellular pattern recognition receptors. These CARD9-mediated signals are pivotal for host defense against fungi, and they mediate immunity against certain bacteria, viruses and parasites. Furthermore, CARD9-regulated pathways are involved in sterile inflammatory responses critical for immune homeostasis and can control pro- and antitumor immunity in cancer microenvironments. Consequently, multiple genetic alterations of human CARD9 are connected to primary immunodeficiencies or prevalent inflammatory disorders in patients. This review will summarize our current understanding of CARD9 signaling in the innate immune system, its physiological and pathological functions and their implications for human immune-mediated diseases.
Collapse
|
43
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
44
|
Lu HW, Mao B, Wei P, Jiang S, Wang H, Li CW, Ji XB, Gu SY, Yang JW, Liang S, Cheng KB, Bai JW, Cao WJ, Jia XM, Xu JF. The clinical characteristics and prognosis of ABPA are closely related to the mucus plugs in central bronchiectasis. CLINICAL RESPIRATORY JOURNAL 2019; 14:140-147. [PMID: 31758867 PMCID: PMC7028037 DOI: 10.1111/crj.13111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/08/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The characteristics of Allergic Bronchopulmonary Aspergillosis (ABPA) based on its radiological classification is still unclear. OBJECTIVES To investigate the clinical significances of ABPA patients with central bronchiectasis (ABPA-CB) by different radiological classifications of mucus plugs. METHODS ABPA-CB patients from a pulmonary hospital between 2008 and 2015 were retrospectively included and analysed. According to the chest imaging in their first visit to physician, the ABPA-CB patients were divided into two groups based on the presence of high-attenuation mucus (HAM) or low-attenuation mucus (LAM). The primary endpoint was ABPA relapse within 1 year since the glucocorticoid withdrawal. The relationship between the imaging findings and the clinical prognosis was illuminated. RESULTS A total of 125 ABPA patients were analysed in this study. Compared to the LAM group, the HAM group presented higher blood eosinophil cells counts, higher rates of Aspergillus detection isolated in sputum and expectoration of brownish-black mucus plugs, more affected lobes and segments, poorer pulmonary function and higher rate of relapse. CONCLUSIONS The clinical characteristics and prognosis of ABPA-CB patients are closely related to its radiological phenotype of mucus plugs in the central bronchiectasis. Clinicians should promote a diversity of personalized treatments for different patients with different radiological characteristics.
Collapse
Affiliation(s)
- Hai-Wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bei Mao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Wei
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sen Jiang
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng-Wei Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Bing Ji
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shu-Yi Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Wei Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke-Bin Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiu-Wu Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Jun Cao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin-Ming Jia
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Lam S, Zuo T, Ho M, Chan FKL, Chan PKS, Ng SC. Review article: fungal alterations in inflammatory bowel diseases. Aliment Pharmacol Ther 2019; 50:1159-1171. [PMID: 31648369 DOI: 10.1111/apt.15523] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Emerging data suggest that alterations in gut fungi may be associated with the pathogenesis of inflammatory bowel disease (IBD). In healthy individuals, gut commensal fungi act synergistically with other members of the microbiota to maintain homeostasis but their role in IBD is less clear. AIM To review the role of gut fungi and their trans-kingdom interactions with bacteria in IBD METHODS: A literature search was conducted on Ovid and Pubmed to select relevant animal and human studies that have reported fungi and IBD. RESULTS There is an increased total fungal load particularly of Candida and Malassezia species in the faeces and mucosa of Crohn's disease patients, and a lower fungal diversity in the faeces of ulcerative colitis patients. Caspase recruitment domain-containing protein (CARD)-9 polymorphism in Crohn's disease patients favours Malassezia colonisation that worsens gut inflammation. Diet high in carbohydrates increased the total abundance of Candida species, whereas protein-rich diet had the opposite effect. Anti-fungal therapies are mostly used to treat Candida albicans or Histoplasma capsulatum infections in IBD, whereas pilot studies of supplementing fungal probiotics Saccharomycopsis fibuligera, Saccharomyces boulardii and Saccharomyces cerevisiae CNCM I-3856 strain showed therapeutic effects in IBD. CONCLUSIONS Gut fungi are altered in patients with Crohn's disease and ulcerative colitis. Modulation of the fungal microbiota can be considered as a therapeutic approach for IBD. Future research should focus on understanding how the fungal microbiota interacts with other components of the gut microbiota in association with the pathogenesis and development of IBD.
Collapse
Affiliation(s)
- Siu Lam
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zuo
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Martin Ho
- Department of Life Sciences, Imperial College London, London, UK
| | - Francis K L Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Zheng G, Zhu Q, Dong J, Lin X, Zhu C. Rapid generation and selection of Cas9-engineering TRP53 R172P mice that do not have off-target effects. BMC Biotechnol 2019; 19:74. [PMID: 31703569 PMCID: PMC6839086 DOI: 10.1186/s12896-019-0573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic mutations cause severe human diseases, and suitable animal models to study the regulatory mechanisms involved are required. The CRISPR/Cas9 system is a powerful, highly efficient and easily manipulated tool for genetic modifications. However, utilization of CRISPR/Cas9 to introduce point mutations and the exclusion of off-target effects in mice remain challenging. TP53-R175 is one of the most frequently mutated sites in human cancers, and it plays crucial roles in human diseases, including cancers and diabetes. RESULTS Here, we generated TRP53-R172P mutant mice (C57BL/6 J, corresponding to TP53-R175P in humans) using a single microinjection of the CRISPR/Cas9 system. The optimal parameters comprised gRNA selection, donor designation (silent mutations within gRNA region), the concentration of CRISPR components and the cellular sites of injection. TRP53-R172P conversion was genetically and functionally confirmed. Combination of TA cloning and Sanger sequencing helped identify the correctly targeted mice as well as the off-target effects in the engineered mice, which provide us a strategy to select the on-target mice without off-target effects quickly and efficiently. CONCLUSIONS A single injection of the this optimized CRISPR/Cas9 system can be applied to introduce particular mutations in the genome of mice without off-target effects to model various human diseases.
Collapse
Affiliation(s)
- Guoxing Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, Guangdong, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Qingqing Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, Guangdong, China
| | - Junchao Dong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, Guangdong, China
| | - Xin Lin
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.,Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chengming Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, Guangdong, China.
| |
Collapse
|
47
|
Li F, Shi L, Du L, Li N, Cao Q, Ma X, Pang T, Liu Y, Kijlstra A, Wan G, Yang P. Association of a CARD9 Gene Haplotype with Behcet's Disease in a Chinese Han Population. Ocul Immunol Inflamm 2019; 29:219-227. [PMID: 31671006 DOI: 10.1080/09273948.2019.1677915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purpose: To investigate the association of CARD9 gene polymorphisms with Behcet's disease (BD) and acute anterior uveitis (AAU) in a Chinese Han population.Methods: We performed a case-control association study in 480 patients with BD, 1151 patients with AAU and 1440 healthy controls. Six single nucleotide polymorphisms (SNPs) of CARD9 were genotyped, including rs4077515, rs11145769, rs59902911, rs9411205, rs4073153 and rs1135314.Results: None of the individual SNPs in the CARD9 gene showed an association with either BD or AAU. Haplotype analysis revealed a significant decrease of the frequency of a CARD9 gene haplotype CGCCA (rs4077515, rs11145769, rs59902911, rs9411205, rs4073153) in BD when compared to healthy controls (Pc = 0.012, OR = 0.585, 95%CI = 0.409 ~ 0.837). Haplotype analysis did not show an association between CARD9 and AAU.Conclusions: This study shows that a five-SNP haplotype of the CARD9 gene (CGCCA) may be a protective factor for BD with ocular involvement, but not for AAU.
Collapse
Affiliation(s)
- Fuzhen Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, P.R. China
| | - Liying Shi
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, P.R. China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, P.R. China
| | - Liping Du
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, P.R. China
| | - Na Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, P.R. China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P.R. China
| | - Xin Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, P.R. China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, P.R. China
| | - Tingting Pang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, P.R. China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, P.R. China
| | - Yizong Liu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, P.R. China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, P.R. China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | - Guangming Wan
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, P.R. China
| | - Peizeng Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, P.R. China.,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P.R. China
| |
Collapse
|
48
|
Sheng Z, Li J, Wang Y, Li S, Hou M, Peng J, Feng Q. A CARD9 single-nucleotide polymorphism rs4077515 is associated with reduced susceptibility to and severity of primary immune thrombocytopenia. Ann Hematol 2019; 98:2497-2506. [PMID: 31595308 DOI: 10.1007/s00277-019-03796-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/08/2019] [Indexed: 12/29/2022]
Abstract
Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease characterized by a low platelet count and consequent increased risk of bleeding. The etiology underlying this condition remains poorly understood. The aim of this study is to evaluate the association of a single nucleotide polymorphism (SNP) rs4077515 in the caspase recruitment domain-containing protein 9 (CARD9) gene with the pathogenesis and therapy of ITP. Two hundred ninety-four patients with ITP and 324 age-matched healthy participants were recruited in this case-control study. Genotyping of CARD9 rs4077515 polymorphism was performed by Sanger sequencing. Our results revealed that a polymorphism rs4077515 in CARD9 gene is associated with decreased risk of susceptibility to and severity of ITP (susceptibility: codominant, AA vs. GG, OR = 0.175, 95% CI = 0.054-0.776, p = 0.001; recessive, GG + AG vs. AA, OR = 6.183, 95% CI = 2.287-16.715, p < 0.001; severity: allele, A vs. G, OR = 0.685, 95% CI = 0.476-0.985, p = 0.041; codominant, AG vs. GG, OR = 0.571, 95% CI = 0.350-0.931, p = 0.025; dominant, AA + AG vs. GG, OR = 0.558, 95% CI = 0.343-0.907, p = 0.019). The existence of the allele A, the mutant AA genotype and the heterozygous AG genotype of CARD9 rs4077515, plays a protective role in ITP. However, CARD9 rs4077515 polymorphism had no effect on corticosteroid sensitivity or refractoriness of ITP.
Collapse
Affiliation(s)
- Zi Sheng
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ju Li
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yuanjian Wang
- Department of Clinical Medicine, West China School of Medicine, Sichuan University, Chengdu, China
| | - Song Li
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Ming Hou
- Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jun Peng
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Qi Feng
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
49
|
Ma J, Abram CL, Hu Y, Lowell CA. CARD9 mediates dendritic cell-induced development of Lyn deficiency-associated autoimmune and inflammatory diseases. Sci Signal 2019; 12:12/602/eaao3829. [PMID: 31594855 DOI: 10.1126/scisignal.aao3829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CARD9 is an immune adaptor protein in myeloid cells that is involved in C-type lectin signaling and antifungal immunity. CARD9 is implicated in autoimmune and inflammatory-related diseases, such as rheumatoid arthritis, IgA nephropathy, ankylosing spondylitis, and inflammatory bowel disease (IBD). Given that Lyn-deficient (Lyn-/-) mice are susceptible to both autoimmunity and IBD, we investigated the immunological role of CARD9 in the development of these diseases using the Lyn-/- mouse model. We found that genetic deletion of CARD9 was sufficient to reduce the development of both spontaneous autoimmune disease as well as DSS- or IL-10 deficiency-associated colitis in Lyn-/- mice. Mechanistically, CARD9 was a vital component of the Lyn-mediated regulation of Toll-like receptor (TLR2 and TLR4) signaling in dendritic cells, but not in macrophages. In the absence of Lyn, signaling through a CD11b-Syk-PKCδ-CARD9 pathway was amplified, leading to increased TLR-induced production of inflammatory cytokines. Dendritic cell-specific deletion of CARD9 reversed the development of autoimmune and experimental colitis observed in dendritic cell-specific, Lyn-deficient mice. These findings suggest that targeting CARD9 may suppress the development of colitis and autoimmunity by reducing dendritic cell-driven inflammation.
Collapse
Affiliation(s)
- Jun Ma
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
50
|
Guo Y, Zhu Z, Gao J, Zhang C, Zhang X, Dang E, Li W, Qiao H, Liao W, Wang G, Ma C, Fu M. The Phytopathogenic Fungus Pallidocercospora crystallina-Caused Localized Subcutaneous Phaeohyphomycosis in a Patient with a Homozygous Missense CARD9 Mutation. J Clin Immunol 2019; 39:713-725. [PMID: 31414217 DOI: 10.1007/s10875-019-00679-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE In the past decade, an increasing number of otherwise healthy individuals suffered from invasive fungal infections due to inherited CARD9 mutations. Herein, we present a patient with a homozygous CARD9 mutation who was suffering from localized subcutaneous phaeohyphomycosis caused by the phytopathogenic fungus Pallidocercospora crystallina which has not been reported to cause infections in humans. METHODS The medical history of our patient was collected. P. crystallina was isolated from the biopsied tissue. To characterize this novel pathogen, the morphology was analyzed, whole-genome sequencing was performed, and the in vivo immune response was explored in mice. Whole-exome sequencing was carried out with samples from the patient's family. Finally, the expression and function of mutated CARD9 were investigated. RESULTS A dark red plaque was on the patient's left cheek for 16 years and was diagnosed as phaeohyphomycosis due to a P. crystallina infection. Whole-genome sequencing suggested that that this strain had a lower pathogenicity. The in vivo immune response in immunocompetent or immunocompromised mice indicated that P. crystallina could be eradicated within a few weeks. Whole-exome sequencing revealed ahomozygous missense mutation in CARD9 (c.1118G>C p.R373P). The mRNA and protein expression levels were similar among cells carrying homozygous (C/C), heterozygous (G/C), and wild-type (G/G) CARD9 alleles. Compared to PBMCs or neutrophils with heterozygous or wild-type CARD9 alleles, however, PBMCs or neutrophils with homozygous CARD9 alleles showed impaired anti-P. crystallina effects. CONCLUSION Localized subcutaneous phaeohyphomycosis caused by P. crystallina was reported in a patient with a homozygous CARD9 mutation. Physicians should be aware of the possibility of a CARD9 mutation in seemingly healthy patients with unexplainable phaeohyphomycosis.
Collapse
Affiliation(s)
- Yanyang Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiujun Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Wenjun Liao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Cuiling Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|