1
|
Luo P, Tong K, Gan Y, Tang M, Niu Y, Liu K, Ni S, Wu S, Jiang X, Jiang H, Xiao F, Chen S, Lv W, Li X, Yuan F, Guo F. Amino Acid-Sensing Neurons in the Anterior Piriform Cortex Control Brown Adipose Tissue Thermogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502421. [PMID: 40305738 DOI: 10.1002/advs.202502421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Amino acid sensing in the central nervous system plays a key role in regulating energy homeostasis. The anterior piriform cortex (APC) has been implicated in sensing amino acid deficiency and rapidly inducing an aversive response. However, the precise types of neurons involved and whether they possess additional metabolic regulatory functions remain to be elucidated. The study reveals that corticotropin-releasing hormone (CRH) neurons in the APC (APCCRH neurons) are activated by a leucine-deficient diet to modulate brown adipose tissue thermogenesis and that they regulate body temperature in response to leucine deprivation. The findings reveal that APCCRH neurons are sensitive to leucine-deprivation signaling, with general control nonderepressive-2 playing an essential role in enhancing their intrinsic excitability. Furthermore, APCCRH neurons project into the known hypothalamic thermoregulatory region of the lateral hypothalamus, and APCCRH-lateral hypothalamus circuits mediate leucine deprivation-induced thermogenesis. Additionally, it is observed that thermogenic regulation by APCCRH neurons contributes to the maintenance of body temperature under cold exposure. Collectively, the findings identify a population of leucine-sensing APCCRH neurons, and reveal the signals and circuits involved in their regulation of brown adipose tissue thermogenesis and their subsequent contribution to body temperature regulation and energy homeostasis.
Collapse
Affiliation(s)
- Peixiang Luo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Tong
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yeting Gan
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Min Tang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuguo Niu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Kan Liu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shihong Ni
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shangming Wu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Jiang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Haizhou Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Fei Xiao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shanghai Chen
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Lv
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feixiang Yuan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Feifan Guo
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wang Y, Yang Z, Shi X, Han H, Li AN, Zhang B, Yuan W, Sun YH, Li XM, Lian H, Li MD. Investigating the effect of Arvcf reveals an essential role on regulating the mesolimbic dopamine signaling-mediated nicotine reward. Commun Biol 2025; 8:429. [PMID: 40082601 PMCID: PMC11906728 DOI: 10.1038/s42003-025-07837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
The mesolimbic dopamine system is crucial for drug reinforcement and reward learning, leading to addiction. We previously demonstrated that Arvcf was associated significantly with nicotine and alcohol addiction through genome-wide association studies. However, the role and mechanisms of Arvcf in dopamine-mediated drug reward processes were largely unknown. In this study, we first showed that Arvcf mediates nicotine-induced reward behavior by using conditioned place preference (CPP) model on Arvcf-knockout (Arvcf-KO) animal model. Then, we revealed that Arvcf was mainly expressed in VTA dopaminergic neurons whose expression could be upregulated by nicotine treatment. Subsequently, our SnRNA-seq analysis revealed that Arvcf was directly involved in dopamine biosynthesis in VTA dopaminergic neurons. Furthermore, we found that Arvcf-KO led to a significant reduction in both the dopamine synthesis and release in the nucleus accumbens (NAc) on nicotine stimulation. Specifically, we demonstrated that inhibition of Arvcf in VTA dopaminergic neurons decreased dopamine release within VTA-NAc circuit and suppressed nicotine reward-related behavior, while overexpression of Arvcf led to the opposite results. Taken together, these findings highlight the role of Arvcf in regulating dopamine signaling and reward learning, and its enhancement of dopamine release in the VTA-NAc circuit as a novel mechanism for nicotine reward.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Andria N Li
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hui Sun
- Department of Neurology and Department of Psychiatry of the Second Afiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Li
- Department of Neurology and Department of Psychiatry of the Second Afiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Lian
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- Department of Neurology and Department of Psychiatry of the Second Afiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Jiang S, Ge D, Song B, Deng X, Liu Z, He J, Sun J, Zhu Z, Meng Z, Zhu Y. Subanesthetic propofol alleviates chronic stress-induced anxiety by enhancing VTADA neurons' activity. Neuropharmacology 2025; 265:110264. [PMID: 39675464 DOI: 10.1016/j.neuropharm.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Anxiety, a common mental disorder, imposes significant clinical and economic burdens. Previous studies indicate that propofol has anxiolytic effects at anesthetic doses. However, the risks associated with general anesthesia limit its application in anxiety treatment. The feasibility of using subanesthetic doses of propofol to alleviate chronic stress-induced anxiety and the underlying neural mechanisms remain unknown. Here, we found that subanesthetic dose (20 mg/kg and 40 mg/kg) of propofol alleviated anxiety-like behaviors induced by chronic unpredictable mild stress (CUMS) in mice, and the anxiolytic effects were maintained for at least 6 h. In vivo calcium imaging study showed that propofol significantly enhanced Ca2+ signals in ventral tegmental area dopaminergic (VTADA) neurons. Whole-cell patch-clamp recordings confirmed that subanesthetic propofol increased the excitability of VTADA neurons while inhibiting VTA GABAergic (VTAGABA) neurons. Propofol suppressed spontaneous inhibitory postsynaptic currents (sIPSCs) in VTADA neurons, accompanied by a decline in the ability of GABAergic neurons to transmit inhibitory signals. These findings suggests that a subanesthetic dose of propofol enhances the excitability of VTADA neurons through disinhibition, demonstrating its potential for the treatment of CUMS-associated anxiety-like behaviors.
Collapse
Affiliation(s)
- Shaolei Jiang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Dengyun Ge
- Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Bo Song
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaofei Deng
- Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Zhongdong Liu
- Grain College, Henan University of Technology, Zhengzhou, 450001, China
| | - Jian He
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan City, 528000, China
| | - Jing Sun
- Department of Anesthesiology, Shenzhen Futian District Maternity & Child Healthcare Hospital, No. 2002 Jintian Road, Futian District, Shenzhen, 518000, China
| | - Zhi Zhu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhiqiang Meng
- Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Yingjie Zhu
- Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Kovarova V, Bordes J, Mitra S, Narayan S, Springer M, Brix LM, Deussing JM, Schmidt MV. Deep phenotyping reveals CRH and FKBP51-dependent behavioral profiles following chronic social stress exposure in male mice. Neuropsychopharmacology 2025; 50:556-567. [PMID: 39438757 PMCID: PMC11736030 DOI: 10.1038/s41386-024-02008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The co-chaperone FKBP51, encoded by FKBP5 gene, is recognized as a psychiatric risk factor for anxiety and depressive disorders due to its crucial role in the stress response. Another key modulator in stress response regulation is the corticotropin releasing hormone (CRH), which is co-expressed with FKBP51 in many stress-relevant brain-regions and cell-types. Together, they intricately influence the balance of the hypothalamic-pituitary-adrenal (HPA) axis, one of the primary stress response systems. Previous research underscores the potential moderating effects these genes have on the regulation of the stressful life events towards the vulnerability of major depressive disorder (MDD). However, the specific function of FKBP51 in CRH-expressing neurons remains largely unexplored. Here, through deep behavioral phenotyping, we reveal heightened stress effects in mice lacking FKBP51 in CRH co-expressing neurons (CRHFKBP5-/-), particularly evident in social contexts. Our findings highlight the importance of considering cell-type specificity and context in comprehending stress responses and advocate for the utilization of machine-learning-driven phenotyping of mouse models. By elucidating these intricacies, we lay down the groundwork for personalized interventions aimed at enhancing stress resilience and individual well-being.
Collapse
Affiliation(s)
- Veronika Kovarova
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Margherita Springer
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lea Maria Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
5
|
Hardy M, Chen Y, Baram TZ, Justice NJ. Targeting corticotropin-releasing hormone receptor type 1 (Crhr1) neurons: validating the specificity of a novel transgenic Crhr1-FlpO mouse. Brain Struct Funct 2024; 230:12. [PMID: 39692887 PMCID: PMC11655595 DOI: 10.1007/s00429-024-02879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 12/19/2024]
Abstract
Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory. However, it is unknown whether alterations in CRHR1 signaling contribute to aberrant motivated behaviors observed, for example, in stressful contexts. These questions require tools to manipulate CRHR1 selectively. Here we describe and validate a novel Crhr1-FlpO mouse. Using bacterial artificial chromosome (BAC) transgenesis, we engineered a transgenic mouse that expresses FlpO recombinase in CRHR1-expressing cells. We used two independent methods to assess the specificity of FlpO to CRHR1-expressing cells. First, we injected Crhr1-FlpO mice with Flp-dependent viruses expressing fluorescent reporter molecules. Additionally, we crossed the Crhr1-FlpO mouse with a transgenic Flp-dependent reporter mouse. CRHR1 and reporter molecules were identified using immunocytochemistry and visualized via confocal microscopy in several brain regions in which CRHR1 expression and function is established. Expression of Flp-dependent viral constructs was highly specific to CRHR1-expressing cells in all regions examined (over 90% co-localization). In accord, robust and specific expression of the Flp-dependent transgenic reporter was observed in a reporter mouse, recapitulating endogenous CRHR1 expression. The Crhr1-FlpO mouse enables selective genetic access to CRHR1-expressing cells within the mouse brain. When combined with Cre-lox or site-specific recombinases, the mouse facilitates intersectional manipulations of CRHR1-expressing neurons.
Collapse
Affiliation(s)
- Mason Hardy
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Yuncai Chen
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, USA.
| | - Nicholas J Justice
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, USA
| |
Collapse
|
6
|
Li M, Yang XK, Yang J, Li TX, Cui C, Peng X, Lei J, Ren K, Ming J, Zhang P, Tian B. Ketamine ameliorates post-traumatic social avoidance by erasing the traumatic memory encoded in VTA-innervated BLA engram cells. Neuron 2024; 112:3192-3210.e6. [PMID: 39032491 DOI: 10.1016/j.neuron.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/21/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Erasing traumatic memory during memory reconsolidation is a promising retrieval-extinction strategy for post-traumatic stress disorder (PTSD). Here, we developed an acute social defeat stress (SDS) mouse model with short-term and re-exposure-evoked long-term social avoidance. SDS-associated traumatic memories were identified to be stored in basolateral amygdala (BLA) engram cells. A single intraperitoneal administration of subanesthetic-dose ketamine within, but not beyond, the re-exposure time window significantly alleviates SDS-induced social avoidance, which reduces the activity and quantity of reactivated BLA engram cells. Furthermore, activation or inhibition of dopaminergic projections from the ventral tegmental area to the BLA effectively mimics or blocks the therapeutic effect of re-exposure with ketamine and is dopamine D2 receptor dependent. Single-cell RNA sequencing reveals that re-exposure with ketamine triggered significant changes in memory-related pathways in the BLA. Together, our research advances the understanding of how ketamine mitigates PTSD symptoms and offers promising avenues for developing more effective treatments for trauma-related disorders.
Collapse
Affiliation(s)
- Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xue-Ke Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tong-Xia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiang Peng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| |
Collapse
|
7
|
Gu SM, Hong E, Seo S, Kim S, Yoon SS, Cha HJ, Yun J. Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice. J Vet Sci 2024; 25:e63. [PMID: 39231788 PMCID: PMC11450393 DOI: 10.4142/jvs.23325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
IMPORTANCE Glutamic acid decarboxylase 67 (GAD67) is a gamma-aminobutyric acid (GABA) synthesis enzyme associated with the function of other neurotransmitter receptors, such as the N-methyl-D-aspartate (NMDA) receptor and cannabinoid receptor 1. However, the role of GAD67 in the development of different abused drug-induced reward behaviors remains unknown. In order to elucidate the mechanisms of substance use disorder, it is crucial to study changes in biomarkers within the brain's reward circuit induced by drug use. OBJECTIVE The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development. METHODS We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP). RESULTS Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group. CONCLUSIONS AND RELEVANCE These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Eunchong Hong
- Non-Clinical Center, Osong Medical Innovation Foundation, Cheongju 28160, Korea
| | - Sowoon Seo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Sanghyeon Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD 20850, USA
| | - Seong Shoon Yoon
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Hye Jin Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea.
| |
Collapse
|
8
|
Zhao W, Yu YM, Wang XY, Xia SH, Ma Y, Tang H, Tao M, Li H, Xu Z, Yang JX, Wu P, Zhang H, Ding HL, Cao JL. CRF regulates pain sensation by enhancement of corticoaccumbal excitatory synaptic transmission. Mol Psychiatry 2024; 29:2170-2184. [PMID: 38454083 DOI: 10.1038/s41380-024-02488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Weinan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Mei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiao-Yi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huimei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mingshu Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - He Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
9
|
Rezaei S, Prévot TD, Vieira E, Sibille E. LPS-induced inflammation reduces GABAergic interneuron markers and brain-derived neurotrophic factor in mouse prefrontal cortex and hippocampus. Brain Behav Immun Health 2024; 38:100761. [PMID: 38586282 PMCID: PMC10992730 DOI: 10.1016/j.bbih.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/20/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Inflammation, reduced gamma-aminobutyric acidergic (GABAergic) function and altered neuroplasticity are co-occurring pathophysiologies in major depressive disorder (MDD). However, the link between these biological changes remains unclear. We hypothesized that inflammation induces deficits in GABAergic interneuron markers and that this effect is mediated by brain-derived neurotrophic factor (BDNF). We report here that systemic inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) (0.125, 0.25, 0.5, 1, 2 mg/kg) in the first cohort of C57BL/6 mice (n = 72; 10-11 weeks; 50% female) resulted in increased interleukin 1-beta and interleukin-6 in prefrontal cortex (PFC) and hippocampus (HPC), as measured using enzyme-linked immunosorbent assay (ELISA). Quantitative real-time polymerase reaction (qPCR) was used to explore the effect of LPS on the expression of GABAergic interneuron markers. In the PFC of the second cohort (n = 39; 10-11 weeks; 50% female), 2 mg/kg of LPS decreased the expression of somatostatin (Sst) (p = 0.0014), parvalbumin (Pv) (p = 0.0257), cortistatin (Cort) (p = 0.0003), neuropeptide Y (Npy) (p = 0.0033) and cholecystokinin (Cck) (p = 0.0041), and did not affect corticotropin-releasing hormone (Crh) and vasoactive intestinal peptide (Vip) expression. In the HPC, 2 mg/kg of LPS decreased the expression of Sst (p = 0.0543), Cort (p = 0.0011), Npy (p = 0.0001), and Cck (p < 0.0001), and did not affect Crh, Pv, and Vip expression. LPS decreased the expression of Bdnf in the PFC (p < 0.0001) and HPC (p = 0.0003), which significantly correlated with affected markers (Sst, Pv, Cort, Cck, and Npy). Collectively, these results suggest that inflammation may causally contribute to cortical cell microcircuit GABAergic deficits observed in MDD.
Collapse
Affiliation(s)
- Sara Rezaei
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute at CAMH, Toronto, M5T 1R8, Canada
| | - Thomas D. Prévot
- Campbell Family Mental Health Research Institute at CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute at CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Etienne Sibille
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute at CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| |
Collapse
|
10
|
Lu M, Shi J, Li X, Liu Y, Liu Y. Long-term intake of thermo-induced oxidized oil results in anxiety-like and depression-like behaviors: involvement of microglia and astrocytes. Food Funct 2024; 15:4037-4050. [PMID: 38533894 DOI: 10.1039/d3fo05302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Frequent consumption of fried foods has been strongly associated with a higher risk of anxiety and depression, particularly among young individuals. The existing evidence has indicated that acrylamide produced from starchy foods at high temperatures can induce anxious behavior. However, there is limited research on the nerve damage caused by thermo-induced oxidized oil (TIOO). In this study, we conducted behavioral tests on mice and found that prolonged consumption of TIOO led to significant anxiety behavior and a tendency toward depression. TIOO primarily induced these two emotional disorders by affecting the differentiation of microglia, the level of inflammatory factors, the activation of astrocytes, and glutamate circulation in brain tissue. By promoting the over-differentiation of microglia into M1 microglia, TIOO disrupted their differentiation balance, resulting in an up-regulation of inflammatory factors (IL-1β, IL-6, TNF-α, NOS2) in M1 microglia and a down-regulation of neuroprotective factors IL-4/IL-10 in M2 microglia, leading to nerve damage. Moreover, TIOO activated astrocytes, accelerating their proliferation and causing GFAP precipitation, which damaged astrocytes. Meanwhile, TIOO stimulates the secretion of the BDNF and reduces the level of the glutamate receptor GLT-1 in astrocytes, leading to a disorder in the glutamate-glutamine cycle, further exacerbating nerve damage. In conclusion, this study suggests that long-term intake of thermo-induced oxidized oil can trigger symptoms of anxiety and depression.
Collapse
Affiliation(s)
- Meishan Lu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Jiachen Shi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Xue Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanjun Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
- Future Food (Bai Ma) Research Institute, 111 Baima Road, Lishui District, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Jain R, McIntyre RS, Cutler AJ, Earley WR, Nguyen HB, Adams JL, Yatham LN. Efficacy of cariprazine in patients with bipolar depression and higher or lower levels of baseline anxiety: a pooled post hoc analysis. Int Clin Psychopharmacol 2024; 39:82-92. [PMID: 37551609 PMCID: PMC10833186 DOI: 10.1097/yic.0000000000000500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/09/2023] [Indexed: 08/09/2023]
Abstract
Post hoc analyses evaluated cariprazine, a dopamine D 3 -preferring D 3 /D 2 receptor partial agonist, in patients with bipolar I depression and high baseline anxiety. Data were pooled from two phase 3, randomized, double-blind, placebo-controlled studies in adults with bipolar I disorder and a major depressive episode (NCT02670538, NCT02670551). Cariprazine 1.5 and 3 mg/d were evaluated in patient subgroups with higher and lower baseline anxiety. In patients with higher baseline anxiety, significant differences for cariprazine 1.5 mg/d versus placebo were observed on change in Montgomery-Åsberg Rating Scale (MADRS) total score, Hamilton Anxiety Rating Scale (HAM-A) total score and subscale scores, and rates of MADRS remission ( P < 0.05 all); nonsignificant numerical improvements were observed for cariprazine 3 mg/d versus placebo. In patients with lower anxiety, differences versus placebo were significant for HAM-A (cariprazine 3 mg/d) and MADRS (cariprazine 1.5 and 3 mg/d) total score changes ( P < 0.05 all). Rates of treatment-emergent mania were low and similar for cariprazine and placebo. Cariprazine 1.5 mg/d had consistent effects on anxiety and depression symptoms in patients with bipolar I depression and higher baseline anxiety; tolerability was favorable. Given few proven treatments for this common comorbidity, these preliminary results are promising.
Collapse
Affiliation(s)
- Rakesh Jain
- Department of Psychiatry, Texas Tech University School of Medicine – Permian Basin, Midland, Texas, USA
| | - Roger S. McIntyre
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Andrew J. Cutler
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York
| | | | | | | | - Lakshmi N. Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Yu J, Li XF, Tsaneva-Atanasova K, Zavala E, O’Byrne KT. Chemogenetic activation of PVN CRH neurons disrupts the estrous cycle and LH dynamics in female mice. Front Endocrinol (Lausanne) 2024; 14:1322662. [PMID: 38264285 PMCID: PMC10803550 DOI: 10.3389/fendo.2023.1322662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction The impact of stress on reproductive function is significant. Hypothalamic paraventricular nucleus (PVN) corticotrophin-releasing hormone (CRH) plays a major role in regulating the stress response. Understanding how the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis interact is crucial for comprehending how stress can lead to reproductive dysfunction. However, whether stress influences reproductive function via modulating PVN CRH or HPA sequelae is not fully elucidated. Methods In this study, we investigated the impact of chemogenetic activation of PVN CRH neurons on reproductive function. We chronically and selectively stimulated PVN CRH neurons in female CRH-Cre mice using excitatory designer receptor exclusively activated by designer drugs (DREADDs) viral constructs, which were bilaterally injected into the PVN. The agonist compound-21 (C21) was delivered through the drinking water. We determined the effects of DREADDs activation of PVN CRH neurons on the estrous cycles, LH pulse frequency in diestrus and metestrus and LH surge in proestrus mice. The effect of long-term C21 administration on basal corticosterone secretion and the response to acute restraint stress during metestrus was also examined. Additionally, computer simulations of a mathematical model were used to determine the effects of DREADDs activation of PVN CRH neurons, simulating chronic stress, on the physiological parameters examined experimentally. Results As a result, and consistent with our mathematical model predictions, the length of the estrous cycle was extended, with an increase in the time spent in estrus and metestrus, and a decrease in proestrus and diestrus. Additionally, the frequency of LH pulses during metestrus was decreased, but unaffected during diestrus. The occurrence of the preovulatory LH surge during proestrus was disrupted. The basal level of corticosterone during metestrus was not affected, but the response to acute restraint stress was diminished after long-term C21 application. Discussion These data suggest that PVN CRH neurons play a functional role in disrupting ovarian cyclicity and the preovulatory LH surge, and that the activity of the GnRH pulse generator remains relatively robust during diestrus but not during metestrus under chronic stress exposure in accordance with our mathematical model predictions.
Collapse
Affiliation(s)
- Junru Yu
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Xiao-Feng Li
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Eder Zavala
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Edgbaston, United Kingdom
| | - Kevin T. O’Byrne
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Xiong SY, Wen HZ, Dai LM, Lou YX, Wang ZQ, Yi YL, Yan XJ, Wu YR, Sun W, Chen PH, Yang SZ, Qi XW, Zhang Y, Wu GY. A brain-tumor neural circuit controls breast cancer progression in mice. J Clin Invest 2023; 133:e167725. [PMID: 37847562 PMCID: PMC10721160 DOI: 10.1172/jci167725] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Tumor burden, considered a common chronic stressor, can cause widespread anxiety. Evidence suggests that cancer-induced anxiety can promote tumor progression, but the underlying neural mechanism remains unclear. Here, we used neuroscience and cancer tools to investigate how the brain contributes to tumor progression via nerve-tumor crosstalk in a mouse model of breast cancer. We show that tumor-bearing mice exhibited significant anxiety-like behaviors and that corticotropin-releasing hormone (CRH) neurons in the central medial amygdala (CeM) were activated. Moreover, we detected newly formed sympathetic nerves in tumors, which established a polysynaptic connection to the brain. Pharmacogenetic or optogenetic inhibition of CeMCRH neurons and the CeMCRH→lateral paragigantocellular nucleus (LPGi) circuit significantly alleviated anxiety-like behaviors and slowed tumor growth. Conversely, artificial activation of CeMCRH neurons and the CeMCRH→LPGi circuit increased anxiety and tumor growth. Importantly, we found alprazolam, an antianxiety drug, to be a promising agent for slowing tumor progression. Furthermore, we show that manipulation of the CeMCRH→LPGi circuit directly regulated the activity of the intratumoral sympathetic nerves and peripheral nerve-derived norepinephrine, which affected tumor progression by modulating antitumor immunity. Together, these findings reveal a brain-tumor neural circuit that contributes to breast cancer progression and provide therapeutic insights for breast cancer.
Collapse
Affiliation(s)
- Si-Yi Xiong
- Breast and Thyroid Surgery, Southwest Hospital
| | - Hui-Zhong Wen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Li-Meng Dai
- Department of Medical Genetics, College of Basic Medical Sciences
| | - Yun-Xiao Lou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Zhao-Qun Wang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Yi-Lun Yi
- Experimental Center of Basic Medicine, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Xiao-Jing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences
| | - Ya-Ran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, and
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Peng-Hui Chen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Si-Zhe Yang
- Breast and Thyroid Surgery, Southwest Hospital
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital
| | - Guang-Yan Wu
- Experimental Center of Basic Medicine, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| |
Collapse
|
14
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
15
|
Li X, Zhu Y, Sun H, Shen Z, Sun J, Xiao S, He X, Liu B, Wang Y, Hu Y, Liu B, Liang Y, Jiang Y, Du J, Xu C, Fang J, Shao X. Electroacupuncture Inhibits Pain Memory and Related Anxiety-Like Behaviors by Blockading the GABA B Receptor Function in the Midcingulate Cortex. Mol Neurobiol 2023; 60:6613-6626. [PMID: 37468738 PMCID: PMC10533721 DOI: 10.1007/s12035-023-03467-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/24/2023] [Indexed: 07/21/2023]
Abstract
Pain memory is commonly considered an underlying cause of chronic pain and is also responsible for a range of anxiety. Electroacupuncture (EA) has been shown to ameliorate pain memories and exert anti-anxiety effects. Previous research has indicated that GABAergic neurons and/or GABA receptors (GABARs) in the midcingulate cortex (MCC) have potential associations with chronic pain and anxiety. However, there is no known empirical research that has specifically studied the effects of EA on the GABAergic system in the MCC. Here, we used cross-injection of carrageenan to establish the pain memory rats model. Immunofluorescence were used to detect the excitability of GABAergic neurons within MCC. Von Frey filament, elevated zero maze, and open field tests were used to measure mechanical allodynia and anxiety-like behaviors, combined with chemogenetic and pharmacologic technologies. Finally, this study provides evidence that pain memories contribute to generalized negative emotions and that downregulating the activity of GABAergic neurons within MCC could block pain memories and reverse anxiety emotion. Specifically, GABABR is involved in pain memory and related anxiety-like behaviors. Activation of GABAergic neurons in the MCC did not reverse the effects of EA on pain memories and related anxiety-like behaviors, whereas these effects could be reversed by a GABABR agonist. These findings highlight the functional significance of GABABR in the EA-mediated attenuation of pain memories and related anxiety-like behaviors in rats.
Collapse
Affiliation(s)
- Xiaoyu Li
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yichen Zhu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Haiju Sun
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Zui Shen
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Jing Sun
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Siqi Xiao
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Xiaofen He
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Boyu Liu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yifang Wang
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yuxin Hu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Boyi Liu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yi Liang
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yongliang Jiang
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Junying Du
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Chi Xu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Jianqiao Fang
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Xiaomei Shao
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
16
|
Ma M, Quan H, Chen S, Fu X, Zang L, Dong L. The Anxiolytic Effect of Polysaccharides from Stellariae Radix through Monoamine Neurotransmitters, HPA Axis, and ECS/ERK/CREB/BDNF Signaling Pathway in Stress-induced Male Rats. Brain Res Bull 2023; 203:110768. [PMID: 37739234 DOI: 10.1016/j.brainresbull.2023.110768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Stellaria dichotoma L. var. lanceolata Bge. is renowned for its efficacy in "clearing deficiency heat" and represents a significant traditional Chinese medicine (TCM) resource. Modern pharmacology has demonstrated the anti-anxiety effects of Stellaria dichotoma L. var. lanceolata Bge. polysaccharides (SDPs). SDPs are one of the active constituents of Stellaria dichotoma L. var. lanceolata Bge. This study presents the first extraction of SDPs and investigates their potential molecular mechanisms and anxiolytic effects that are not previously reported. METHODS First, SDPs were obtained by water extraction and alcohol precipitation and analyzed for their monosaccharide composition by high performance liquid chromatography (HPLC). Male SD rats were subjected to a two-week indeterminate empty bottle stress procedure and a three-day acute restraint stress procedure, during which diazepam (DZP) (1 mg/kg) and SDPs (50, 100 and 200 mg/kg, intragastrically) were administered. A number of behavioral tests, including the elevated plus maze test (EPM), the open field test (OFT) and the light/dark box test (LDB), were used to assess the anti-anxiety potential of SDPs. Serum levels of Corticosterone (CORT) and Adrenocorticotropic hormone (ACTH), as well as the levels of Dopamine (DA) and serotonin (5-HT) found in the hippocampus and frontal cortex, were quantified using commercially available enzyme-linked immunosorbent assay (ELISA) kits. In addition, protein levels of key proteins cAMP-response element binding protein (CREB), phospho-CREB (p-CREB), brain-derived neurotrophic factor (BDNF), ERK½, p-ERK½, and GAPDH expression in rat hippocampus were measured by Western blot analysis, and modulation of the endocannabinoid system was assessed by immunohistochemistry. RESULTS Following administration of SDPs (50, 100, 200 mg/kg) and diazepam 1 mg/kg, anxiolytic activity was exhibited through an increase in the percentage of arm opening times and arm opening time of rats in the elevated plus maze. Additionally, there was an increase in the number of times and time spent in the open field center, percentage of time spent in the open box, and shuttle times in the LDB. Furthermore, tissue levels of DA and 5-HT were increased in the hippocampus and frontal cortex of rats after treatment with SDPs. In addition, SDPs significantly decreased serum levels of CORT and ACTH in rats. SDPs also effectively regulated the phosphorylation of the extracellular regulated protein kinases (ERK) and CREB-BDNF pathway in the hippocampus. Moreover, the expression levels of CB1 and CB2 proteins were heightened due to SDPs treatment in rats. CONCLUSIONS The study verified that SDPs alleviate anxiety in the EBS and ARS. The neuroregulatory behavior is accomplished by regulating the Monoamine neurotransmitter, HPA axis, and ECB-ERK-CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Miao Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongfeng Quan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Shujuan Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China
| | - Lingling Zang
- Hainan Health Vocational College, Haikou 813099, China
| | - Lin Dong
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China.
| |
Collapse
|
17
|
de León Reyes NS, Sierra Díaz P, Nogueira R, Ruiz-Pino A, Nomura Y, de Solis CA, Schulkin J, Asok A, Leroy F. Corticotropin-releasing hormone signaling from prefrontal cortex to lateral septum suppresses interaction with familiar mice. Cell 2023; 186:4152-4171.e31. [PMID: 37669667 PMCID: PMC7615103 DOI: 10.1016/j.cell.2023.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/13/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023]
Abstract
Social preference, the decision to interact with one member of the same species over another, is critical to optimize social interactions. Thus, adult rodents favor interacting with novel conspecifics over familiar ones, but whether this social preference stems from neural circuits facilitating interactions with novel individuals or suppressing interactions with familiar ones remains unknown. Here, we identify neurons in the infra-limbic area (ILA) of the mouse prefrontal cortex that express the neuropeptide corticotropin-releasing hormone (CRH) and project to the dorsal region of the rostral lateral septum (rLS). We show how release of CRH during familiar encounters disinhibits rLS neurons, thereby suppressing social interactions with familiar mice and contributing to social novelty preference. We further demonstrate how the maturation of CRH expression in ILA during the first 2 post-natal weeks enables the developmental shift from a preference for littermates in juveniles to a preference for novel mice in adults.
Collapse
Affiliation(s)
- Noelia Sofia de León Reyes
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández de Elche), San Juan de Alicante, Alicante, Spain
| | - Paula Sierra Díaz
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández de Elche), San Juan de Alicante, Alicante, Spain
| | - Ramon Nogueira
- Center for Theoretical Neuroscience, Columbia University, New York, USA; Department of Neuroscience, Columbia University, New York, USA; Zuckerman Mind Brain & Behavior Institute, New York, USA
| | - Antonia Ruiz-Pino
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández de Elche), San Juan de Alicante, Alicante, Spain
| | - Yuki Nomura
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández de Elche), San Juan de Alicante, Alicante, Spain
| | - Christopher A de Solis
- Department of Neuroscience, Columbia University, New York, USA; Zuckerman Mind Brain & Behavior Institute, New York, USA
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, USA
| | - Arun Asok
- Department of Neuroscience, Columbia University, New York, USA; Zuckerman Mind Brain & Behavior Institute, New York, USA
| | - Felix Leroy
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández de Elche), San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
18
|
Csabafi K, Ibos KE, Bodnár É, Filkor K, Szakács J, Bagosi Z. A Brain Region-Dependent Alteration in the Expression of Vasopressin, Corticotropin-Releasing Factor, and Their Receptors Might Be in the Background of Kisspeptin-13-Induced Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Rats. Biomedicines 2023; 11:2446. [PMID: 37760887 PMCID: PMC10525110 DOI: 10.3390/biomedicines11092446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Previously, we reported that intracerebroventricularly administered kisspeptin-13 (KP-13) induces anxiety-like behavior and activates the hypothalamic-pituitary-adrenal (HPA) axis in rats. In the present study, we aimed to shed light on the mediation of KP-13's stress-evoking actions. The relative gene expressions of the corticotropin-releasing factor (Crf, Crfr1, and Crfr2) and arginine vasopressin (Avp, Avpr1a, and Avpr1b) systems were measured in the amygdala and hippocampus of male Wistar rats after icv KP-13 treatment. CRF and AVP protein content were also determined. A different set of animals received CRF or V1 receptor antagonist pretreatment before the KP-13 challenge, after which either an open-field test or plasma corticosterone levels measurement was performed. In the amygdala, KP-13 induced an upregulation of Avp and Avpr1b expression, and a downregulation of Crf. In the hippocampus, the mRNA level of Crf increased and the level of Avpr1a decreased. A significant rise in AVP protein content was also detected in the amygdala. KP-13 also evoked anxiety-like behavior in the open field test, which the V1 receptor blocker antagonized. Both CRF and V1 receptor blockers reduced the KP-13-evoked rise in the plasma corticosterone level. This suggests that KP-13 alters the AVP and CRF signaling and that might be responsible for its effect on the HPA axis and anxiety-like behavior.
Collapse
Affiliation(s)
- Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary (K.F.)
| | | | | | | | | | | |
Collapse
|
19
|
Zhao C, Ries C, Du Y, Zhang J, Sakimura K, Itoi K, Deussing JM. Differential CRH expression level determines efficiency of Cre- and Flp-dependent recombination. Front Neurosci 2023; 17:1163462. [PMID: 37599997 PMCID: PMC10434532 DOI: 10.3389/fnins.2023.1163462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Corticotropin-releasing hormone expressing (CRH+) neurons are distributed throughout the brain and play a crucial role in shaping the stress responses. Mouse models expressing site-specific recombinases (SSRs) or reporter genes are important tools providing genetic access to defined cell types and have been widely used to address CRH+ neurons and connected brain circuits. Here, we investigated a recently generated CRH-FlpO driver line expanding the CRH system-related tool box. We directly compared it to a previously established and widely used CRH-Cre line with respect to the FlpO expression pattern and recombination efficiency. In the brain, FlpO mRNA distribution fully recapitulates the expression pattern of endogenous Crh. Combining both Crh locus driven SSRs driver lines with appropriate reporters revealed an overall coherence of respective spatial patterns of reporter gene activation validating CRH-FlpO mice as a valuable tool complementing existing CRH-Cre and reporter lines. However, a substantially lower number of reporter-expressing neurons was discerned in CRH-FlpO mice. Using an additional CRH reporter mouse line (CRH-Venus) and a mouse line allowing for conversion of Cre into FlpO activity (CAG-LSL-FlpO) in combination with intersectional and subtractive mouse genetic approaches, we were able to demonstrate that the reduced number of tdTomato reporter expressing CRH+ neurons can be ascribed to the lower recombination efficiency of FlpO compared to Cre recombinase. This discrepancy particularly manifests under conditions of low CRH expression and can be overcome by utilizing homozygous CRH-FlpO mice. These findings have direct experimental implications which have to be carefully considered when targeting CRH+ neurons using CRH-FlpO mice. However, the lower FlpO-dependent recombination efficiency also entails advantages as it provides a broader dynamic range of expression allowing for the visualization of cells showing stress-induced CRH expression which is not detectable in highly sensitive CRH-Cre mice as Cre-mediated recombination has largely been completed in all cells generally possessing the capacity to express CRH. These findings underscore the importance of a comprehensive evaluation of novel SSR driver lines prior to their application.
Collapse
Affiliation(s)
- Chen Zhao
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jingwei Zhang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Keiichi Itoi
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
20
|
Xie J, Li Y, Liang Y, Kui H, Wang C, Huang J. Integration of non-targeted metabolomics with network pharmacology deciphers the anxiolytic mechanisms of Platycladi Semen extracts in CUMS mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116571. [PMID: 37201666 DOI: 10.1016/j.jep.2023.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycladi Semen was recorded in Shen Nong's Herbal Classic and was considered a herbal medicine with low toxicity after long-term medication. Multiple traditional Chinese medicine prescriptions containing Platycladi Semen have been used to treat insomnia. Modern clinical practitioners commonly use Platycladi Semen to treat anxiety disorders, but there are few studies on its composition and anxiolytic mechanisms. AIM OF THE STUDY To describe the main components of Platycladi Semen and investigate its anxiolytic effects and mechanisms. MATERIALS AND METHODS The main components of Platycladi Semen were characterized by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). The anxiolytic effects of oral Platycladi Semen were evaluated in chronic unpredictable mild stress (CUMS) induced mice. To explore the anxiolytic mechanisms of Platycladi Semen, serum non-targeted metabolomics combined with network pharmacology and molecular docking was performed. RESULTS Fourteen compounds were identified in the 50% methanol extract and 11 fatty acid derivatives were identified in the methyl-esterified fatty oil of Platycladi Semen. In CUMS mice, both the aqueous extract and fatty oil of Platycladi Semen had anxiolytic effects, which were shown by the increase in the time and frequency of mice entering the open arm in the elevated plus maze (EPM) experiment. Through serum non-targeted metabolomics, 34 differential metabolites were identified, and lipid metabolic pathways such as sphingolipid metabolism, steroidogenesis, alpha-linoleic acid, and linoleic acid metabolism were enriched. Through network pharmacology, 109 targets of the main components in Platycladi Semen were identified, and the 'neuroactive ligand-receptor interaction' and 'lipid metabolism' were enriched. The molecular docking results showed that the main components in Platycladi Semen could bind to the key targets such as peroxisome proliferator-activated receptor delta (PPARD), peroxisome proliferator-activated receptor alpha (PPARA), fatty acid binding protein 5 (FABP5), fatty acid binding protein 3 (FABP3), peroxisome proliferator-activated receptor gamma (PPARG), arachidonate 5-lipoxygenase (ALOX5) and fatty acid amide hydrolase (FAAH). CONCLUSION This study indicated that Platycladi Semen has anxiolytic effects, and the anxiolytic mechanisms may be the regulation of lipid metabolism and the neuroactive ligand-receptor interaction.
Collapse
Affiliation(s)
- Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yihong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yulu Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Can Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
21
|
C.A. G, G.B. G, H.L. H, D. P, T. S, S.L. D, K. B, W.P. K, C.W. H, T.L. K. Disentangling the effects of Corticotrophin Releasing Factor and GABA release from the ventral bed nucleus of the stria terminalis on ethanol self-administration in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530838. [PMID: 37205547 PMCID: PMC10187230 DOI: 10.1101/2023.03.02.530838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excessive alcohol use causes a great deal of harm and negative health outcomes. Corticotrophin releasing factor (CRF), a stress-related neuropeptide, has been implicated in binge ethanol intake and ethanol dependence. CRF containing neurons in the bed nucleus of the stria terminalis (BNSTCRF) can control ethanol consumption. These BNSTCRF neurons also release GABA, raising the question, is it CRF or GABA release or both that is controlling alcohol consumption. Here, we used viral vectors to separate the effects of CRF and GABA release from BNSTCRF neurons on the escalation of ethanol intake in an operant self-administration paradigm in male and female mice. We found that CRF deletion in BNST neurons reduces ethanol intake in both sexes, with a stronger effect in males. For sucrose self-administration there was no effect of CRF deletion. Suppression of GABA release, via knockdown of vGAT, from BNSTCRF produced a transient increase in ethanol operant self-administration following in male mice, and reduced in motivation to work for sucrose on a progressive ratio schedule of reinforcement in a sex-dependent manner. Together, these results highlight how different signaling molecules from the same populations of neurons can bidirectionally control behavior. Moreover, they suggest that BNST CRF release is important for high intensity ethanol drinking that precedes dependence, whereas GABA release from these neurons may play a role in regulating motivation.
Collapse
|
22
|
Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRH PVN neurons. Physiol Rev 2023; 103:1667-1691. [PMID: 36395349 DOI: 10.1152/physrev.00056.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone cells in the paraventricular nucleus of the hypothalamus (CRHPVN) control the slow endocrine response to stress. The synapses on these cells are exquisitely sensitive to acute stress, leveraging local signals to leave a lasting imprint on this system. Additionally, recent work indicates that these cells also play key roles in the control of distinct stress and survival behaviors. Here we review these observations and provide a perspective on the role of CRHPVN neurons as integrative and malleable hubs for behavioral, physiological, and endocrine responses to stress.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Wang X, Ge S, Zhang C. Bed nuclei of the stria terminalis: A key hub in the modulation of anxiety. Eur J Neurosci 2023; 57:900-917. [PMID: 36725691 DOI: 10.1111/ejn.15926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
The bed nuclei of the stria terminalis (BST) is recognised as a pivotal integrative centre for monitoring emotional valence. It is implicated in the regulation of diverse affective states and motivated behaviours, and decades of research have firmly established its critical role in anxiety-related behavioural processes. Researchers have recently intricately dissected the BST's dynamic activities, its connection patterns and its functions with respect to specific cell types using multiple techniques such as optogenetics, in vivo calcium imaging and transgenic tools to unmask the complex circuitry mechanisms that underlie anxiety. In this review, we principally focus on studies of anxiety-involved neuromodulators within the BST and provide a comprehensive architecture of the anxiety network-highlighting the BST as a key hub in orchestrating anxiety-like behaviour. We posit that these promising efforts will contribute to the identification of an accurate roadmap for future treatment of anxiety disorders.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Li YC, Wang Q, Li MG, Hu SF, Xu GY. A paraventricular hypothalamic nucleus input to ventral of lateral septal nucleus controls chronic visceral pain. Pain 2023; 164:625-637. [PMID: 35994589 PMCID: PMC9916060 DOI: 10.1097/j.pain.0000000000002750] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Irritable bowel syndrome is a functional gastrointestinal disorder characterized by chronic visceral pain with complex etiology and difficult treatment. Accumulated evidence has confirmed that the sensitization of the central nervous system plays an important role in the development of visceral pain, whereas the exact mechanisms of action of the neural pathways remain largely unknown. In this study, a distinct neural circuit was identified from the paraventricular hypothalamic (PVH) to the ventral of lateral septal (LSV) region. This circuit was responsible for regulating visceral pain. In particular, the data indicated that the PVH CaMKIIα-positive neurons inputs to the LSV CaMKIIα-positive neurons were only activated by colorectal distention rather than somatic stimulations. The PVH-LSV CaMKIIα + projection pathway was further confirmed by experiments containing a viral tracer. Optogenetic inhibition of PVH CaMKIIα + inputs to LSV CaMKIIα-positive neurons suppressed visceral pain, whereas selective activation of the PVH-LSV CaMKIIα + projection evoked visceral pain. These findings suggest the critical role of the PVH-LSV CaMKIIα + circuit in regulating visceral pain.
Collapse
Affiliation(s)
- Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, China
| | - Meng-Ge Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Shu-Fen Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
25
|
Birnie MT, Short AK, de Carvalho GB, Taniguchi L, Gunn BG, Pham AL, Itoga CA, Xu X, Chen LY, Mahler SV, Chen Y, Baram TZ. Stress-induced plasticity of a CRH/GABA projection disrupts reward behaviors in mice. Nat Commun 2023; 14:1088. [PMID: 36841826 PMCID: PMC9968307 DOI: 10.1038/s41467-023-36780-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
Disrupted operations of the reward circuit underlie major emotional disorders, including depression, which commonly arise following early life stress / adversity (ELA). However, how ELA enduringly impacts reward circuit functions remains unclear. We characterize a stress-sensitive projection connecting basolateral amygdala (BLA) and nucleus accumbens (NAc) that co-expresses GABA and the stress-reactive neuropeptide corticotropin-releasing hormone (CRH). We identify a crucial role for this projection in executing disrupted reward behaviors provoked by ELA: chemogenetic and optogenetic stimulation of the projection in control male mice suppresses several reward behaviors, recapitulating deficits resulting from ELA and demonstrating the pathway's contributions to normal reward behaviors. In adult ELA mice, inhibiting-but not stimulating-the projection, restores typical reward behaviors yet has little effect in controls, indicating ELA-induced maladaptive plasticity of this reward-circuit component. Thus, we discover a stress-sensitive, reward inhibiting BLA → NAc projection with unique molecular features, which may provide intervention targets for disabling mental illnesses.
Collapse
Affiliation(s)
- Matthew T Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Annabel K Short
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Gregory B de Carvalho
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Lara Taniguchi
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Benjamin G Gunn
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Aidan L Pham
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Christy A Itoga
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Xiangmin Xu
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Lulu Y Chen
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California-Irvine, Irvine, CA, USA
| | - Yuncai Chen
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA.
| | - Tallie Z Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA.
- Department of Neurology, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Zimmer C, Taff CC, Ardia DR, Rosvall KA, Kallenberg C, Bentz AB, Taylor AR, Johnson LS, Vitousek MN. Gene expression in the female tree swallow brain is associated with inter- and intra-population variation in glucocorticoid levels. Horm Behav 2023; 147:105280. [PMID: 36403365 DOI: 10.1016/j.yhbeh.2022.105280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Studies of the evolutionary causes and consequences of variation in circulating glucocorticoids (GCs) have begun to reveal how they are shaped by selection. Yet the extent to which variation in circulating hormones reflects variation in other important regulators of the hypothalamic-pituitary-adrenal (HPA) axis, and whether these relationships vary among populations inhabiting different environments, remain poorly studied. Here, we compare gene expression in the brain of female tree swallows (Tachycineta bicolor) from populations that breed in environments that differ in their unpredictability. We find evidence of inter-population variation in the expression of glucocorticoid and mineralocorticoid receptors in the hypothalamus, with the highest gene expression in a population from an extreme environment, and lower expression in a population from a more consistent environment as well as in birds breeding at an environmentally variable high-altitude site that are part of a population that inhabits a mixture of high and low altitude habitats. Within some populations, variation in circulating GCs predicted differences in gene expression, particularly in the hypothalamus. However, some patterns were present in all populations, whereas others were not. These results are consistent with the idea that some combination of local adaptation and phenotypic plasticity may modify components of the HPA axis affecting stress resilience. Our results also underscore that a comprehensive understanding of the function and evolution of the stress response cannot be gained from measuring circulating hormones alone, and that future studies that apply a more explicitly evolutionary approach to important regulatory traits are likely to provide significant insights.
Collapse
Affiliation(s)
- Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France.
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Daniel R Ardia
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Christine Kallenberg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alexandra B Bentz
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA; Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Audrey R Taylor
- Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - L Scott Johnson
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| |
Collapse
|
27
|
Newman AH, Xi ZX, Heidbreder C. Current Perspectives on Selective Dopamine D 3 Receptor Antagonists/Partial Agonists as Pharmacotherapeutics for Opioid and Psychostimulant Use Disorders. Curr Top Behav Neurosci 2023; 60:157-201. [PMID: 35543868 PMCID: PMC9652482 DOI: 10.1007/7854_2022_347] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over three decades of evidence indicate that dopamine (DA) D3 receptors (D3R) are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders (SUD). The expectation that a selective D3R antagonist/partial agonist would be efficacious for the treatment of SUD is based on the following key observations. First, D3R are distributed in strategic areas belonging to the mesolimbic DA system such as the ventral striatum, midbrain, and ventral pallidum, which have been associated with behaviors controlled by the presentation of drug-associated cues. Second, repeated exposure to drugs of abuse produces neuroadaptations in the D3R system. Third, the synthesis and characterization of highly potent and selective D3R antagonists/partial agonists have further strengthened the role of the D3R in SUD. Based on extensive preclinical and preliminary clinical evidence, the D3R shows promise as a target for the development of pharmacotherapies for SUD as reflected by their potential to (1) regulate the motivation to self-administer drugs and (2) disrupt the responsiveness to drug-associated stimuli that play a key role in reinstatement of drug-seeking behavior triggered by re-exposure to the drug itself, drug-associated environmental cues, or stress. The availability of PET ligands to assess clinically relevant receptor occupancy by selective D3R antagonists/partial agonists, the definition of reliable dosing, and the prospect of using human laboratory models may further guide the design of clinical proof of concept studies. Pivotal clinical trials for more rapid progression of this target toward regulatory approval are urgently required. Finally, the discovery that highly selective D3R antagonists, such as R-VK4-116 and R-VK4-40, do not adversely affect peripheral biometrics or cardiovascular effects alone or in the presence of oxycodone or cocaine suggests that this class of drugs has great potential in safely treating psychostimulant and/or opioid use disorders.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD, USA.
| | - Zheng-Xiong Xi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
28
|
Local production of corticotropin-releasing hormone in prefrontal cortex modulates male-specific novelty exploration. Proc Natl Acad Sci U S A 2022; 119:e2211454119. [PMID: 36442105 PMCID: PMC9894189 DOI: 10.1073/pnas.2211454119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neuromodulatory substances can be released from distal afferents for communication between brain structures or produced locally to modulate neighboring circuit elements. Corticotropin-releasing hormone (CRH) from long-range neurons in the hypothalamus projecting to the medial prefrontal cortex (mPFC) has been shown to induce anxiety-like behaviors. However, the role of CRH produced in the mPFC has not been investigated. Here we demonstrate that a specific class of mPFC interneurons that express CRH (CrhINs) releases CRH upon high-frequency stimulation to enhance excitability of layer 2/3 pyramidal cells (L2/3 PCs) expressing the CRH receptors. When stimulated at low frequency, CrhINs release GABA resulting in the inhibition of oxytocin receptor-expressing interneurons (OxtrINs) and L2/3 PCs. Conditional deletion of CRH in mPFC CrhINs and chemogenetic activation of CrhINs have opposite effects on novelty exploration in male but not in female mice, and do not affect anxiety-related behaviors in either males or females. Our data reveal that CRH produced by local interneurons in the mPFC is required for sex-specific novelty exploration and suggest that our understanding of complex behaviors may require knowledge of local and remote neuromodulatory action.
Collapse
|
29
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
30
|
Chang S, Fermani F, Lao CL, Huang L, Jakovcevski M, Di Giaimo R, Gagliardi M, Menegaz D, Hennrich AA, Ziller M, Eder M, Klein R, Cai N, Deussing JM. Tripartite extended amygdala-basal ganglia CRH circuit drives locomotor activation and avoidance behavior. SCIENCE ADVANCES 2022; 8:eabo1023. [PMID: 36383658 PMCID: PMC9668302 DOI: 10.1126/sciadv.abo1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
An adaptive stress response involves various mediators and circuits orchestrating a complex interplay of physiological, emotional, and behavioral adjustments. We identified a population of corticotropin-releasing hormone (CRH) neurons in the lateral part of the interstitial nucleus of the anterior commissure (IPACL), a subdivision of the extended amygdala, which exclusively innervate the substantia nigra (SN). Specific stimulation of this circuit elicits hyperactivation of the hypothalamic-pituitary-adrenal axis, locomotor activation, and avoidance behavior contingent on CRH receptor type 1 (CRHR1) located at axon terminals in the SN, which originate from external globus pallidus (GPe) neurons. The neuronal activity prompting the observed behavior is shaped by IPACLCRH and GPeCRHR1 neurons coalescing in the SN. These results delineate a previously unidentified tripartite CRH circuit functionally connecting extended amygdala and basal ganglia nuclei to drive locomotor activation and avoidance behavior.
Collapse
Affiliation(s)
- Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Federica Fermani
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Chu-Lan Lao
- Collaborative Research Centre/Sonderforschungsbereich (SFB) 870, Viral Vector Facility, Munich, Germany
| | - Lianyun Huang
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Mira Jakovcevski
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rossella Di Giaimo
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Naples Federico II, Naples Italy
| | - Miriam Gagliardi
- Genomics of Complex Diseases, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexandru Adrian Hennrich
- Max von Pettenkofer-Institute Virology, Medical Faculty, and Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Michael Ziller
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rüdiger Klein
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Na Cai
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
31
|
Jia X, Chen S, Li X, Tao S, Lai J, Liu H, Huang K, Tian Y, Wei P, Yang F, Lu Z, Chen Z, Liu XA, Xu F, Wang L. Divergent neurocircuitry dissociates two components of the stress response: glucose mobilization and anxiety-like behavior. Cell Rep 2022; 41:111586. [DOI: 10.1016/j.celrep.2022.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
|
32
|
Jaffe AE, Tao R, Page SC, Maynard KR, Pattie EA, Nguyen CV, Deep-Soboslay A, Bharadwaj R, Young KA, Friedman MJ, Williamson DE, Shin JH, Hyde TM, Martinowich K, Kleinman JE. Decoding Shared Versus Divergent Transcriptomic Signatures Across Cortico-Amygdala Circuitry in PTSD and Depressive Disorders. Am J Psychiatry 2022; 179:673-686. [PMID: 35791611 PMCID: PMC10697016 DOI: 10.1176/appi.ajp.21020162] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Posttraumatic stress disorder (PTSD) is a debilitating neuropsychiatric disease that is highly comorbid with major depressive disorder (MDD) and bipolar disorder. The overlap in symptoms is hypothesized to stem from partially shared genetics and underlying neurobiological mechanisms. To delineate conservation between transcriptional patterns across PTSD and MDD, the authors examined gene expression in the human cortex and amygdala in these disorders. METHODS RNA sequencing was performed in the postmortem brain of two prefrontal cortex regions and two amygdala regions from donors diagnosed with PTSD (N=107) or MDD (N=109) as well as from neurotypical donors (N=109). RESULTS The authors identified a limited number of differentially expressed genes (DEGs) specific to PTSD, with nearly all mapping to cortical versus amygdala regions. PTSD-specific DEGs were enriched in gene sets associated with downregulated immune-related pathways and microglia as well as with subpopulations of GABAergic inhibitory neurons. While a greater number of DEGs associated with MDD were identified, most overlapped with PTSD, and only a few were MDD specific. The authors used weighted gene coexpression network analysis as an orthogonal approach to confirm the observed cellular and molecular associations. CONCLUSIONS These findings provide supporting evidence for involvement of decreased immune signaling and neuroinflammation in MDD and PTSD pathophysiology, and extend evidence that GABAergic neurons have functional significance in PTSD.
Collapse
Affiliation(s)
- Andrew E. Jaffe
- Lieber Institute for Brain Development, Baltimore, MD
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Ran Tao
- Lieber Institute for Brain Development, Baltimore, MD
| | | | | | | | | | | | | | - Keith A. Young
- Department of Psychiatry and Behavioral Sciences, Texas A&M College of Medicine, Bryan TX
- Department of Veterans Affairs, VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX
- Central Texas Veterans Health Care System, Temple, TX, 76504, USA
- Baylor Scott & White Psychiatry, Temple, TX
| | - Matthew J. Friedman
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Dartmouth Hanover, NH
- National Center for PTSD, U.S. Department of Veterans Affairs
| | - Douglas E. Williamson
- Duke Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 300 North Duke St, Durham, North Carolina
- Durham VA Healthcare System, 508 Fulton St, Durham, North Carolina
| | | | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Keri Martinowich
- Lieber Institute for Brain Development, Baltimore, MD
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
33
|
Maita I, Roepke TA, Samuels BA. Chronic stress-induced synaptic changes to corticotropin-releasing factor-signaling in the bed nucleus of the stria terminalis. Front Behav Neurosci 2022; 16:903782. [PMID: 35983475 PMCID: PMC9378865 DOI: 10.3389/fnbeh.2022.903782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
The sexually dimorphic bed nucleus of the stria terminalis (BNST) is comprised of several distinct regions, some of which act as a hub for stress-induced changes in neural circuitry and behavior. In rodents, the anterodorsal BNST is especially affected by chronic exposure to stress, which results in alterations to the corticotropin-releasing factor (CRF)-signaling pathway, including CRF receptors and upstream regulators. Stress increases cellular excitability in BNST CRF+ neurons by potentiating miniature excitatory postsynaptic current (mEPSC) amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential). Rodent anterodorsal and anterolateral BNST neurons are also critical regulators of behavior, including avoidance of aversive contexts and fear learning (especially that of sustained threats). These rodent behaviors are historically associated with anxiety. Furthermore, BNST is implicated in stress-related mood disorders, including anxiety and Post-Traumatic Stress Disorders in humans, and may be linked to sex differences found in mood disorders.
Collapse
Affiliation(s)
- Isabella Maita
- Samuels Laboratory, Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Troy A. Roepke
- Roepke Laboratory, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Benjamin A. Samuels
- Samuels Laboratory, Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
34
|
Reis AL, Hammond JH, Stevanovski I, Arnold JC, McGregor IS, Deveson IW, Gururajan A. Sex-specific transcriptomic and epitranscriptomic signatures of PTSD-like fear acquisition. iScience 2022; 25:104861. [PMID: 36039298 PMCID: PMC9418440 DOI: 10.1016/j.isci.2022.104861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Our understanding of the molecular pathology of posttraumatic stress disorder (PTSD) is evolving due to advances in sequencing technologies. With the recent emergence of Oxford Nanopore direct RNA-seq (dRNA-seq), it is now also possible to interrogate diverse RNA modifications, collectively known as the “epitranscriptome.”. Here, we present our analyses of the male and female mouse amygdala transcriptome and epitranscriptome, obtained using parallel Illumina RNA-seq and Oxford Nanopore dRNA-seq, associated with the acquisition of PTSD-like fear induced by Pavlovian cued-fear conditioning. We report significant sex-specific differences in the amygdala transcriptional response during fear acquisition and a range of shared and dimorphic epitranscriptomic signatures. Differential RNA modifications are enriched among mRNA transcripts associated with neurotransmitter regulation and mitochondrial function, many of which have been previously implicated in PTSD. Very few differentially modified transcripts are also differentially expressed, suggesting an influential, expression-independent role for epitranscriptional regulation in PTSD-like fear acquisition. PTSD-like trauma has sexually dimorphic effects on the amygdala transcriptome Most RNA modifications identified adhere to the known patterns associated with m6A There was enrichment of RNA modifications in neurological/PTSD-related genes There was little overlap between transcriptomic and epitranscriptomic signatures
Collapse
|
35
|
Sun C, Zhang S, Ba S, Dang J, Ren Q, Zhu Y, Liu K, Jin M. Eucommia ulmoides Olive Male Flower Extracts Ameliorate Alzheimer's Disease-Like Pathology in Zebrafish via Regulating Autophagy, Acetylcholinesterase, and the Dopamine Transporter. Front Mol Neurosci 2022; 15:901953. [PMID: 35754707 PMCID: PMC9222337 DOI: 10.3389/fnmol.2022.901953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neural disorder. However, the therapeutic agents for AD are limited. Eucommia ulmoides Olive (EUO) is widely used as a traditional Chinese herb to treat various neurodegenerative disorders. Therefore, we investigated whether the extracts of EUO male flower (EUMF) have therapeutic effects against AD. We focused on the flavonoids of EUMF and identified the composition using a targeted HPLC-MS analysis. As a result, 125 flavonoids and flavanols, 32 flavanones, 22 isoflavonoids, 11 chalcones and dihydrochalcones, and 17 anthocyanins were identified. Then, the anti-AD effects of the EUMF were tested by using zebrafish AD model. The behavioral changes were detected by automated video-tracking system. Aβ deposition was assayed by thioflavin S staining. Ache activity and cell apoptosis in zebrafish were tested by, Acetylcholine Assay Kit and TUNEL assay, respectively. The results showed that EUMF significantly rescued the dyskinesia of zebrafish and inhibited Aβ deposition, Ache activity, and occurrence of cell apoptosis in the head of zebrafish induced by AlCl3. We also investigated the mechanism underlying anti-AD effects of EUMF by RT-qPCR and found that EUMF ameliorated AD-like symptoms possibly through inhibiting excessive autophagy and the abnormal expressions of ache and slc6a3 genes. In summary, our findings suggested EUMF can be a therapeutic candidate for AD treatment.
Collapse
Affiliation(s)
- Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Shuaikang Ba
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Yongqiang Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
36
|
Presto P, Neugebauer V. Sex Differences in CGRP Regulation and Function in the Amygdala in a Rat Model of Neuropathic Pain. Front Mol Neurosci 2022; 15:928587. [PMID: 35726298 PMCID: PMC9206543 DOI: 10.3389/fnmol.2022.928587] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The amygdala has emerged as a key player in the emotional response to pain and pain modulation. The lateral and capsular regions of the central nucleus of the amygdala (CeA) represent the “nociceptive amygdala” due to their high content of neurons that process pain-related information. These CeA divisions are the targets of the spino-parabrachio-amygdaloid pain pathway, which is the predominant source of calcitonin gene-related peptide (CGRP) within the amygdala. Changes in lateral and capsular CeA neurons have previously been observed in pain models, and synaptic plasticity in these areas has been linked to pain-related behavior. CGRP has been demonstrated to play an important role in peripheral and spinal mechanisms, and in pain-related amygdala plasticity in male rats in an acute arthritis pain model. However, the role of CGRP in chronic neuropathic pain-related amygdala function and behaviors remains to be determined for both male and female rats. Here we tested the hypothesis that the CGRP1 receptor is involved in neuropathic pain-related amygdala activity, and that blockade of this receptor can inhibit neuropathic pain behaviors in both sexes. CGRP mRNA expression levels in the CeA of male rats were upregulated at the acute stage of the spinal nerve ligation (SNL) model of neuropathic pain, whereas female rats had significantly higher CGRP and CGRP receptor component expression at the chronic stage. A CGRP1 receptor antagonist (CGRP 8-37) administered into the CeA in chronic neuropathic rats reduced mechanical hypersensitivity (von Frey and paw compression tests) in both sexes but showed female-predominant effects on emotional-affective responses (ultrasonic vocalizations) and anxiety-like behaviors (open field test). CGRP 8-37 inhibited the activity of CeA output neurons assessed with calcium imaging in brain slices from chronic neuropathic pain rats. Together, these findings may suggest that CGRP1 receptors in the CeA are involved in neuropathic pain-related amygdala activity and contribute to sensory aspects in both sexes but to emotional-affective pain responses predominantly in females. The sexually dimorphic function of CGRP in the amygdala would make CGRP1 receptors a potential therapeutic target for neuropathic pain relief, particularly in females in chronic pain conditions.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- *Correspondence: Volker Neugebauer
| |
Collapse
|
37
|
Li JN, Chen K, Sheets PL. Topographic organization underlies intrinsic and morphological heterogeneity of central amygdala neurons expressing corticotropin-releasing hormone. J Comp Neurol 2022; 530:2286-2303. [PMID: 35579999 PMCID: PMC9283236 DOI: 10.1002/cne.25332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
The central nucleus of the amygdala (CeA) network consists of a heterogeneous population of inhibitory GABAergic neurons distributed across distinct subregions. While the specific roles for molecularly defined CeA neurons have been extensively studied, our understanding of functional heterogeneity within classes of molecularly distinct CeA neurons remains incomplete. In addition, manipulation of genetically defined CeA neurons has produced inconsistent behavioral results potentially due to broad targeting across CeA subregions. Therefore, elucidating heterogeneity within molecularly defined neurons in subdivisions of the CeA is pivotal for gaining a complete understanding of how CeA circuits function. Here, we used a multifaceted approach involving transgenic reporter mice, brain slice electrophysiology, and neuronal morphology to dissect the heterogeneity of corticotropin‐releasing hormone (CRH) neurons in topographically distinct subregions of the CeA. Our results revealed that intrinsic and morphological properties of CRH‐expressing (CRH+) neurons in the lateral (CeL) and medial (CeM) subdivisions of the CeA were significantly different. We found that CeL‐CRH+ neurons are relatively homogeneous in morphology and firing profile. Conversely, CeM‐CRH+ neurons displayed heterogeneous electrophysiological and morphological phenotypes. Overall, these results show phenotypic differences between CRH+ neurons in CeL and CeM.
Collapse
Affiliation(s)
- Jun-Nan Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kevin Chen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Zionsville Community High School, Zionsville, Indiana, USA
| | - Patrick L Sheets
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
38
|
Díaz-Hung ML, Hetz C. Proteostasis and resilience: on the interphase between individual's and intracellular stress. Trends Endocrinol Metab 2022; 33:305-317. [PMID: 35337729 DOI: 10.1016/j.tem.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
A long proportion of the population is resilient to the negative consequences of stress. Glucocorticoids resulting from endocrine responses to stress are essential adaptive mediators, but also drive alterations to brain function, negatively impacting neuronal connectivity, synaptic plasticity, and memory-related processes. Recent evidence has indicated that organelle function and cellular stress responses are relevant determinant of vulnerability and resistance to environmental stress. At the molecular level, a fundamental mechanism of cellular stress adaptation is the maintenance of proteostasis, which also have key roles in sustaining basal neuronal function. Here, we discuss recent evidence suggesting that proteostasis unbalance at the level of the endoplasmic reticulum, the main site for protein folding in the cell, represents a possible mechanistic link between individuals and cellular stress.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
39
|
Gao L, Xue Q, Gong S, Li G, Tong W, Fan M, Chen X, Yin J, Song Y, Chen S, Huang J, Wang C, Dong Y. Structural and Functional Alterations of Substantia Nigra and Associations With Anxiety and Depressive Symptoms Following Traumatic Brain Injury. Front Neurol 2022; 13:719778. [PMID: 35449518 PMCID: PMC9017679 DOI: 10.3389/fneur.2022.719778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Although there are a certain number of studies dedicated to the disturbances of the dopaminergic system induced by traumatic brain injury (TBI), the associations of abnormal dopaminergic systems with post-traumatic anxiety and depressive disorders and their underlying mechanisms have not been clarified yet. In the midbrain, dopaminergic neurons are mainly situated in the substantia nigra (SN) and the ventral tegmental area (VTA). Thus, we selected SN and VTA as regions of interest and performed a seed-based global correlation to evaluate the altered functional connectivity throughout the dopaminergic system post-TBI. Methods Thirty-three individuals with TBI and 21 healthy controls were recruited in the study. Anxiety and depressive symptoms were examined by the Hospital Anxiety and Depression Scale. All MRI data were collected using a Siemens Prisma 3.0 Tesla MRI system. The volume of SN and the global functional connectivity of the SN and VTA were analyzed. Results In the present study, patients with TBI reported more anxiety and depressive symptoms. More importantly, some structural and functional alterations, such as smaller SN and reduced functional connectivity in the left SN, were seen in individuals with TBI. Patients with TBI had smaller substantia nigra on both right and left sides, and the left substantia nigra was relatively small in contrast with the right one. Among these findings, functional connectivity between left SN and left angular gyrus was positively associated with post-traumatic anxiety symptoms and negatively associated with depressive symptoms. Conclusions The TBI causes leftward lateralization of structural and functional alterations in the substantia nigra. An impaired mesocortical functional connectivity might be implicated in post-traumatic anxiety and depression.
Collapse
Affiliation(s)
- Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Xue
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shun Gong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Gaoyi Li
- Department of Neurosurgery, People's Hospital of Putuo District, Tongji University School of Medicine, Shanghai, China
| | - Wusong Tong
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Xianzhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Yin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Song
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Songyu Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingrong Huang
- Psychology Honors Program, University of California, San Diego, San Diego, CA, United States
| | - Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth People's Hospital Clinical Medicine Scientific and Technical Innovation Park, Shanghai, China
| |
Collapse
|
40
|
Bang JY, Sunstrum JK, Garand D, Parfitt GM, Woodin M, Inoue W, Kim J. Hippocampal-hypothalamic circuit controls context-dependent innate defensive responses. eLife 2022; 11:74736. [PMID: 35420543 PMCID: PMC9042231 DOI: 10.7554/elife.74736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behaviour is implemented at the circuit level. Here, using adult male mice, we show that the anterior hypothalamic nucleus (AHN) is best positioned to control this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system. Selective optogenetic stimulation and inhibition of hippocampal inputs to the AHN revealed that the HPC→AHN pathway not only mediates the contextual memory of predator threats but also controls the goal-directed escape by transmitting information about the surrounding environment. These results reveal a new mechanism for experience-dependent, top-down control of innate defensive behaviours.
Collapse
Affiliation(s)
- Jee Yoon Bang
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Danielle Garand
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Gustavo Morrone Parfitt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Melanie Woodin
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Wataru Inoue
- Robarts Research Institute, Western University, London, Canada
| | - Junchul Kim
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
41
|
Huang C, Wang Y, Chen P, Shan QH, Wang H, Ding LF, Bi GQ, Zhou JN. Single-cell reconstruction reveals input patterns and pathways into corticotropin-releasing factor neurons in the central amygdala in mice. Commun Biol 2022; 5:322. [PMID: 35388122 PMCID: PMC8986827 DOI: 10.1038/s42003-022-03260-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) neurons are one of the most densely distributed cell types in the central amygdala (CeA), and are involved in a wide range of behaviors including anxiety and learning. However, the fundamental input circuits and patterns of CeA-CRF neurons are still unclear. Here, we generate a monosynaptic-input map onto CeA-CRF neurons at single-cell resolution via a retrograde rabies-virus system. We find all inputs are located in 44 nested subregions that directly innervate CeA-CRF neurons; most of them are top-down convergent inputs expressing Ca2+/calmodulin-dependent protein kinase II, and are centralized in cortex, especially in the layer 4 of the somatosensory cortex, which may directly relay information from the thalamus. While the bottom-up divergent inputs have the highest proportion of glutamate decarboxylase expression. Finally, en passant structures of single input neuron are revealed by in-situ reconstruction in a modified 3D-reference atlas, represented by a Periaqueductal gray-Subparafascicular nucleus-Subthalamic nucleus-Globus pallidus-Caudoputamen-CeA pathway. Taken together, our findings provide morphological and connectivity properties of inputs onto CeA-CRF neurons, which may provide insights for future studies interrogating circuit mechanisms of CeA-CRF neurons in mediating various functions. Viral retrograde tracing identifies input regions and patterns into the corticotropin releasing factor-expressing neurons in central amygdala, providing an important resource to disentangle the role of these cells in fear and anxiety.
Collapse
Affiliation(s)
- Chuan Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Hong Shan
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hao Wang
- National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, University of Science and Technology of China, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Lu-Feng Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiang-Ning Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
42
|
Kimmey BA, McCall NM, Wooldridge LM, Satterthwaite T, Corder G. Engaging endogenous opioid circuits in pain affective processes. J Neurosci Res 2022; 100:66-98. [PMID: 33314372 PMCID: PMC8197770 DOI: 10.1002/jnr.24762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
The pervasive use of opioid compounds for pain relief is rooted in their utility as one of the most effective therapeutic strategies for providing analgesia. While the detrimental side effects of these compounds have significantly contributed to the current opioid epidemic, opioids still provide millions of patients with reprieve from the relentless and agonizing experience of pain. The human experience of pain has long recognized the perceived unpleasantness entangled with a unique sensation that is immediate and identifiable from the first-person subjective vantage point as "painful." From this phenomenological perspective, how is it that opioids interfere with pain perception? Evidence from human lesion, neuroimaging, and preclinical functional neuroanatomy approaches is sculpting the view that opioids predominately alleviate the affective or inferential appraisal of nociceptive neural information. Thus, opioids weaken pain-associated unpleasantness rather than modulate perceived sensory qualities. Here, we discuss the historical theories of pain to demonstrate how modern neuroscience is revisiting these ideas to deconstruct the brain mechanisms driving the emergence of aversive pain perceptions. We further detail how targeting opioidergic signaling within affective or emotional brain circuits remains a strong avenue for developing targeted pharmacological and gene-therapy analgesic treatments that might reduce the dependence on current clinical opioid options.
Collapse
Affiliation(s)
- Blake A. Kimmey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Nora M. McCall
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Lisa M. Wooldridge
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Oh H, Newton D, Lewis D, Sibille E. Lower Levels of GABAergic Function Markers in Corticotropin-Releasing Hormone-Expressing Neurons in the sgACC of Human Subjects With Depression. Front Psychiatry 2022; 13:827972. [PMID: 35280164 PMCID: PMC8913899 DOI: 10.3389/fpsyt.2022.827972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
RATIONALE A previous transcriptome meta-analysis revealed significantly lower levels of corticotropin-releasing hormone (CRH) mRNA in corticolimbic brain regions in major depressive disorder (MDD) subjects, suggesting that cortical CRH-expressing (CRH+) cells are affected in MDD. Rodent studies show that cortical CRH is mostly expressed in GABAergic interneurons; however, the characteristic features of CRH+ cells in human brain cortex and their association with MDD are largely unknown. METHODS Subgenual anterior cingulate cortex (sgACC) of human subjects without brain disorders were labeled using fluorescent in situ hybridization (FISH) for CRH and markers of excitatory (SLC17A7), inhibitory (GAD1) neurons, as well as markers of other interneuron subpopulations (PVALB, SST, VIP). MDD-associated changes in CRH+ cell density and cellular CRH expression (n = 6/group) were analyzed. RNA-sequencing was performed on sgACC CRH+ interneurons from comparison and MDD subjects (n = 6/group), and analyzed for group differences. The effect of reduced BDNF on CRH expression was tested in mice with blocked TrkB function. RESULTS About 80% of CRH+ cells were GABAergic and 17.5% were glutamatergic. CRH+ GABAergic interneurons co-expressed VIP (52%), SST (7%), or PVALB (7%). MDD subjects displayed lower CRH mRNA levels in GABAergic interneurons relative to comparison subjects without changes in cell density. CRH+ interneurons show transcriptomic profile suggesting lower excitability and less GABA release and reuptake. Further analyses suggested that these molecular changes are not mediated by altered glucocorticoid feedback and potentially occur downstream for a common modulator of neurotrophic function. SUMMARY CRH+ cells in human sgACC are a heterogeneous population of GABAergic interneurons, although largely co-expressing VIP. Our data suggest that MDD is associated with reduced markers of inhibitory function in sgACC CRH+ interneurons, and provide further evidence for impaired GABAergic function in the cortex in MDD.
Collapse
Affiliation(s)
- Hyunjung Oh
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
| | - Dwight Newton
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada.,Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - David Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada.,Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
AlSubaie R, Wee RWS, Ritoux A, Mishchanchuk K, Passlack J, Regester D, MacAskill AF. Control of parallel hippocampal output pathways by amygdalar long-range inhibition. eLife 2021; 10:e74758. [PMID: 34845987 PMCID: PMC8654375 DOI: 10.7554/elife.74758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons and avoids prefrontal cortex-projecting vH neurons, while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.
Collapse
Affiliation(s)
- Rawan AlSubaie
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Ryan WS Wee
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Anne Ritoux
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Karyna Mishchanchuk
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Jessica Passlack
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Daniel Regester
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
45
|
Grinevich V, Ludwig M. The multiple faces of the oxytocin and vasopressin systems in the brain. J Neuroendocrinol 2021; 33:e13004. [PMID: 34218479 DOI: 10.1111/jne.13004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
Classically, hypothalamic neuroendocrine cells that synthesise oxytocin and vasopressin were categorised in two major cell types: the magnocellular and parvocellular neurones. It was assumed that magnocellular neurones project exclusively to the pituitary gland where they release oxytocin and vasopressin into the systemic circulation. The parvocellular neurones, on the other hand, project within the brain to regulate discrete brain circuitries and behaviours. Within the last few years, it has become evident that the classical view of these projections is outdated. It is now clear that oxytocin and vasopressin in the brain are released extrasynaptically from dendrites and from varicosities in distant axons. The peptides act principally to modulate information transfer through conventional synapses (such as glutamate synapses) by actions at respective receptors that may be preferentially localised to synaptic regions (on either side of the synapse) to alter the 'gain' of conventional synapses.
Collapse
Affiliation(s)
- Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Centre for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Neuroendocrinology, Department of Immunology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
46
|
Ruat J, Hartmann A, Heinz DE, Nemcova P, Stoffel R, Deussing JM, Chen A, Wotjak CT. CB1 receptors in corticotropin-releasing factor neurons selectively control the acoustic startle response in male mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12775. [PMID: 34672092 DOI: 10.1111/gbb.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.
Collapse
Affiliation(s)
- Julia Ruat
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany.,Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alice Hartmann
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel E Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paulina Nemcova
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Stoffel
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Scientific Core Unit Genetically Engineered Mouse Models, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| |
Collapse
|
47
|
Jones JR, Chaturvedi S, Granados-Fuentes D, Herzog ED. Circadian neurons in the paraventricular nucleus entrain and sustain daily rhythms in glucocorticoids. Nat Commun 2021; 12:5763. [PMID: 34599158 PMCID: PMC8486846 DOI: 10.1038/s41467-021-25959-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Signals from the central circadian pacemaker, the suprachiasmatic nucleus (SCN), must be decoded to generate daily rhythms in hormone release. Here, we hypothesized that the SCN entrains rhythms in the paraventricular nucleus (PVN) to time the daily release of corticosterone. In vivo recording revealed a critical circuit from SCN vasoactive intestinal peptide (SCNVIP)-producing neurons to PVN corticotropin-releasing hormone (PVNCRH)-producing neurons. PVNCRH neurons peak in clock gene expression around midday and in calcium activity about three hours later. Loss of the clock gene Bmal1 in CRH neurons results in arrhythmic PVNCRH calcium activity and dramatically reduces the amplitude and precision of daily corticosterone release. SCNVIP activation reduces (and inactivation increases) corticosterone release and PVNCRH calcium activity, and daily SCNVIP activation entrains PVN clock gene rhythms by inhibiting PVNCRH neurons. We conclude that daily corticosterone release depends on coordinated clock gene and neuronal activity rhythms in both SCNVIP and PVNCRH neurons.
Collapse
Affiliation(s)
- Jeff R Jones
- Department of Biology, Washington University, St. Louis, St. Louis, MO, USA
- Department of Biology, Texas A&M University, College Station, College Station, TX, USA
| | - Sneha Chaturvedi
- Department of Biology, Washington University, St. Louis, St. Louis, MO, USA
| | | | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, St. Louis, MO, USA.
| |
Collapse
|
48
|
Chaves T, Fazekas CL, Horváth K, Correia P, Szabó A, Török B, Bánrévi K, Zelena D. Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone. Int J Mol Sci 2021; 22:ijms22169090. [PMID: 34445795 PMCID: PMC8396605 DOI: 10.3390/ijms22169090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic–pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, we aimed to summarize the present knowledge on the role of classical neurotransmitters of the brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH neurons scattered along the brain may also complement the function of the PVN. Although CRH-positive cells are present on some parts of the brainstem, sometimes even in comparable amounts as in the PVN, not much is known about their contribution to stress adaptation. Based on the role of the Barrington’s nucleus in micturition and the inferior olivary complex in the regulation of fine motoric—as the main CRH-containing brainstem areas—we might assume that these areas regulate stress-induced urination and locomotion, respectively. Further studies are necessary for the field.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Adrienn Szabó
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
| | - Dóra Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
49
|
Al Abed AS, Reynolds NJ, Dehorter N. A Second Wave for the Neurokinin Tac2 Pathway in Brain Research. Biol Psychiatry 2021; 90:156-164. [PMID: 33867115 DOI: 10.1016/j.biopsych.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Despite promising advances in basic research of the neurokinin B/Tac2 pathway in both animals and humans, clinical applications are yet to be implemented. This is likely because of our limited understanding of the action of the pathway in the brain. While this system controls neuronal activity in multiple regions, the precise impact of Tac2-induced cellular responses on behavior remains unclear. Recently, elegant studies revealed a key contribution to stress-related behaviors and memory. Here, we discuss the crucial importance of bridging the gap between the Tac2 pathway's involvement in cell physiology and cognition to comprehend its role in health and disease. We propose that a better understanding of the Tac2 pathway in the brain could provide an essential perspective for basic investigations, which in turn will feed clinical research.
Collapse
Affiliation(s)
- A Shaam Al Abed
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathan J Reynolds
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
50
|
Häusl AS, Brix LM, Hartmann J, Pöhlmann ML, Lopez JP, Menegaz D, Brivio E, Engelhardt C, Roeh S, Bajaj T, Rudolph L, Stoffel R, Hafner K, Goss HM, Reul JMHM, Deussing JM, Eder M, Ressler KJ, Gassen NC, Chen A, Schmidt MV. The co-chaperone Fkbp5 shapes the acute stress response in the paraventricular nucleus of the hypothalamus of male mice. Mol Psychiatry 2021; 26:3060-3076. [PMID: 33649453 PMCID: PMC8505251 DOI: 10.1038/s41380-021-01044-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Disturbed activation or regulation of the stress response through the hypothalamic-pituitary-adrenal (HPA) axis is a fundamental component of multiple stress-related diseases, including psychiatric, metabolic, and immune disorders. The FK506 binding protein 51 (FKBP5) is a negative regulator of the glucocorticoid receptor (GR), the main driver of HPA axis regulation, and FKBP5 polymorphisms have been repeatedly linked to stress-related disorders in humans. However, the specific role of Fkbp5 in the paraventricular nucleus of the hypothalamus (PVN) in shaping HPA axis (re)activity remains to be elucidated. We here demonstrate that the deletion of Fkbp5 in Sim1+ neurons dampens the acute stress response and increases GR sensitivity. In contrast, Fkbp5 overexpression in the PVN results in a chronic HPA axis over-activation, and a PVN-specific rescue of Fkbp5 expression in full Fkbp5 KO mice normalizes the HPA axis phenotype. Single-cell RNA sequencing revealed the cell-type-specific expression pattern of Fkbp5 in the PVN and showed that Fkbp5 expression is specifically upregulated in Crh+ neurons after stress. Finally, Crh-specific Fkbp5 overexpression alters Crh neuron activity, but only partially recapitulates the PVN-specific Fkbp5 overexpression phenotype. Together, the data establish the central and cell-type-specific importance of Fkbp5 in the PVN in shaping HPA axis regulation and the acute stress response.
Collapse
Affiliation(s)
- Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lea M Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Max L Pöhlmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan-Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Electrophysiology Core Unit, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elena Brivio
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clara Engelhardt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simone Roeh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, Bonn, Germany
| | - Lisa Rudolph
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Hannah M Goss
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Electrophysiology Core Unit, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, Bonn, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|