1
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025; 25:274-292. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Martindale RG, Mundi MS, Hurt RT, McClave SA. Short-chain fatty acids in clinical practice: where are we? Curr Opin Clin Nutr Metab Care 2025; 28:54-60. [PMID: 39912389 DOI: 10.1097/mco.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
PURPOSE OF REVIEW Once considered to have only local influences on the gut mucosa, short-chain fatty acids (SCFAs) now appear to have a much wider anti-inflammatory, immune-modulating, systemic effect. This article reviews recent evidence to suggest a much wider clinical application of this valued dietary substrate. RECENT FINDINGS SCFAs act systemically through stimulation of G protein receptors (GPRs) and inhibition of histone deacetylases (HDACs). SCFAs cause appetite suppression, reduce systemic inflammation, improve insulin sensitivity, increase energy expenditure, promote mitochondrial function, stimulate satiety, reduce blood pressure, and improve cognitive function from various neurologic maladies. SUMMARY Dietary strategies should be implemented to provide this beneficial substrate across a wide spectrum of disease conditions. Use of prebiotic fiber or liquid supplements containing high SCFA-producing organisms should be considered as therapeutic targets for multiple metabolic, immunologic, and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Ryan T Hurt
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Stephen A McClave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Green C, Zaman V, Blumenstock K, Banik NL, Haque A. Dysregulation of Metabolic Peptides in the Gut-Brain Axis Promotes Hyperinsulinemia, Obesity, and Neurodegeneration. Biomedicines 2025; 13:132. [PMID: 39857716 PMCID: PMC11763097 DOI: 10.3390/biomedicines13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic peptides can influence metabolic processes and contribute to both inflammatory and/or anti-inflammatory responses. Studies have shown that there are thousands of metabolic peptides, made up of short chains of amino acids, that the human body produces. These peptides are crucial for regulating many different processes like metabolism and cell signaling, as they bind to receptors on various cells. This review will cover the role of three specific metabolic peptides and their roles in hyperinsulinemia, diabetes, inflammation, and neurodegeneration, as well as their roles in type 3 diabetes and dementia. The metabolic peptides glucagon-like peptide 1 (GLP-1), gastric inhibitor polypeptide (GIP), and pancreatic peptide (PP) will be discussed, as dysregulation within their processes can lead to the development of various inflammatory and neurodegenerative diseases. Research has been able to closely investigate the connections between these metabolic peptides and their links to the gut-brain axis, highlighting changes made in the gut that can lead to dysfunction in processes in the brain, as well as changes made in the brain that can lead to dysregulation in the gut. The role of metabolic peptides in the development and potentially reversal of diseases such as obesity, hyperinsulinemia, and type 2 diabetes will also be discussed. Furthermore, we review the potential links between these conditions and neuroinflammation and the development of neurodegenerative diseases like dementia, specifically Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Camille Green
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
| | - Kayce Blumenstock
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Narendra L. Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Azizul Haque
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Kleibert M, Tkacz K, Winiarska K, Małyszko J, Cudnoch-Jędrzejewska A. The role of hypoxia-inducible factors 1 and 2 in the pathogenesis of diabetic kidney disease. J Nephrol 2025; 38:37-47. [PMID: 39648258 PMCID: PMC11903585 DOI: 10.1007/s40620-024-02152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
According to the 10th edition of the IDF Diabetes Atlas, 537 million people suffered from diabetes in 2021, and this number will increase by 47% by 2045. It is estimated that even 30-40% of these individuals may develop diabetic kidney disease (DKD) in the course of diabetes. DKD is one of the most important complications of diabetes, both in terms of impact and magnitude. It leads to high morbidity and mortality, which subsequently impacts on quality of life, and it carries a high financial burden. Diabetic kidney disease is considered a complex and heterogeneous entity involving disturbances in vascular, glomerular, podocyte, and tubular function. It would appear that hypoxia-inducible factors (HIF)-1 and HIF-2 may be important players in the pathogenesis of this disease. However, their exact role is still not fully investigated. In this article, we summarize the current knowledge about HIF signaling and its role in DKD. In addition, we focus on the possible effects of nephroprotective drugs on HIF expression and activity in various tissues.
Collapse
Affiliation(s)
- Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Kamil Tkacz
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland
| |
Collapse
|
5
|
Ruiz-Pozo VA, Guevara-Ramírez P, Paz-Cruz E, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Simancas-Racines D, Altuna-Roshkova Y, Reytor-González C, Zambrano AK. The role of the Mediterranean diet in prediabetes management and prevention: a review of molecular mechanisms and clinical outcomes. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2398042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Yekaterina Altuna-Roshkova
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Claudia Reytor-González
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
6
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
7
|
Zaidalkilani AT, Al‐kuraishy HM, Fahad EH, Al‐Gareeb AI, Elewa YHA, Zahran MH, Alexiou A, Papadakis M, AL‐Farga A, Batiha GE. Autophagy modulators in type 2 diabetes: A new perspective. J Diabetes 2024; 16:e70010. [PMID: 39676616 PMCID: PMC11647182 DOI: 10.1111/1753-0407.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/31/2024] [Accepted: 08/27/2024] [Indexed: 12/17/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder caused by defective insulin signaling, insulin resistance, and impairment of insulin secretion. Autophagy is a conserved lysosomal-dependent catabolic cellular pathway involved in the pathogenesis of T2D and its complications. Basal autophagy regulates pancreatic β-cell function by enhancing insulin release and peripheral insulin sensitivity. Therefore, defective autophagy is associated with impairment of pancreatic β-cell function and the development of insulin rersistance (IR). However, over-activated autophagy increases apoptosis of pancreatic β-cells leading to pancreatic β-cell dysfunction. Hence, autophagy plays a double-edged sword role in T2D. Therefore, the use of autophagy modulators including inhibitors and activators may affect the pathogenesis of T2D. Hence, this review aims to clarify the potential role of autophagy inhibitors and activators in T2D.
Collapse
Affiliation(s)
- Ayah Talal Zaidalkilani
- Department of Nutrition, Faculty of Pharmacy and Medical SciencesUniversity of PetraAmmanJordan
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Al‐Mustansiriyah UniversityBaghdadIraq
| | - Esraa H. Fahad
- Department of Pharmacology and ToxicologyCollege of Pharmacy, Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Al‐Mustansiriyah UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | | | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Ammar AL‐Farga
- Department of BiochemistryCollege of Science University of JeddahJeddahSaudi Arabia
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurAlBeheiraEgypt
| |
Collapse
|
8
|
Ibrahim SS, Ibrahim RS, Arabi B, Brockmueller A, Shakibaei M, Büsselberg D. The effect of GLP-1R agonists on the medical triad of obesity, diabetes, and cancer. Cancer Metastasis Rev 2024; 43:1297-1314. [PMID: 38801466 PMCID: PMC11554930 DOI: 10.1007/s10555-024-10192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists have garnered significant attention for their therapeutic potential in addressing the interconnected health challenges of diabetes, obesity, and cancer. The role of GLP-1R in type 2 diabetes mellitus (T2DM) is highlighted, emphasizing its pivotal contribution to glucose homeostasis, promoting β-cell proliferation, and facilitating insulin release. GLP-1R agonists have effectively managed obesity by reducing hunger, moderating food intake, and regulating body weight. Beyond diabetes and obesity, GLP-1R agonists exhibit a multifaceted impact on cancer progression across various malignancies. The mechanisms underlying these effects involve the modulation of signaling pathways associated with cell growth, survival, and metabolism. However, the current literature reveals a lack of in vivo studies on specific GLP-1R agonists such as semaglutide, necessitating further research to elucidate its precise mechanisms and effects, particularly in cancer. While other GLP-1R agonists have shown promising outcomes in mitigating cancer progression, the association between some GLP-1R agonists and an increased risk of cancer remains a topic requiring more profound investigation. This calls for more extensive research to unravel the intricate relationships between the GLP-1R agonist and different cancers, providing valuable insights for clinicians and researchers alike.
Collapse
Affiliation(s)
| | | | - Batoul Arabi
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, 24144, Qatar
| | - Aranka Brockmueller
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Mehdi Shakibaei
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, 24144, Qatar.
| |
Collapse
|
9
|
Choi RH, Karasawa T, Meza CA, Maschek JA, Manuel A, Nikolova LS, Fisher-Wellmen KH, Cox JE, Chaix A, Funai K. Semaglutide-induced weight loss improves mitochondrial energy efficiency in skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623431. [PMID: 39605484 PMCID: PMC11601453 DOI: 10.1101/2024.11.13.623431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Objective Glucagon-like peptide 1 receptor agonists (e.g. semaglutide) potently induce weight loss and thereby reducing obesity-related complications. However, weight regain occurs when treatment is discontinued. An increase in skeletal muscle oxidative phosphorylation (OXPHOS) efficiency upon diet-mediated weight loss has been described, which may contribute to reduced systemic energy expenditure and weight regain. We set out to determine the unknown effect of semaglutide on muscle OXPHOS efficiency. Methods C57BL/6J mice were fed a high-fat diet for 12 weeks before receiving semaglutide or vehicle for 1 or 3 weeks. The rate of ATP production and O2 consumption were measured by a high-resolution respirometry and fluorometry to determine OXPHOS efficiency in skeletal muscle at these 2 timepoints. Results Semaglutide treatment led to significant reductions in fat and lean mass. Semaglutide improved skeletal muscle OXPHOS efficiency, measured as ATP produced per O2 consumed (P/O) in permeabilized muscle fibers. Mitochondrial proteomic analysis revealed changes restricted to two proteins linked to complex III assembly (Lyrm7 and Ttc1, p <0.05 without multiple corrections) without substantial changes in the abundance of OXPHOS subunits. Conclusions These data indicate that weight loss with semaglutide treatment increases skeletal muscle mitochondrial efficiency. Future studies could test whether it contributes to weight regain.
Collapse
Affiliation(s)
- Ran Hee Choi
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Takuya Karasawa
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Research Institute of Sport Science, Nippon Sport Science University, Setagaya, Tokyo, Japan
| | - Cesar A. Meza
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - J. Alan Maschek
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Mass Spectrometry and Proteomics Core, University of Utah, Salt Lake City, UT, USA
| | - Allison Manuel
- Mass Spectrometry and Proteomics Core, University of Utah, Salt Lake City, UT, USA
| | - Linda S. Nikolova
- Electron Microscopy Core Facility, University of Utah, Salt Lake City, UT, USA
| | - Kelsey H. Fisher-Wellmen
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - James E. Cox
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Mass Spectrometry and Proteomics Core, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Amandine Chaix
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Rabbani N, Thornalley PJ. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract 2024; 217:111905. [PMID: 39447679 DOI: 10.1016/j.diabres.2024.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells. It is linked to hyperglycemia. We present evidence that subversion of the gating of glucose entry into glycolysis, mainly by glucokinase (hexokinase-4), during persistent hyperglycemia in enteroendocrine cells, pancreatic β- and α-cells and appetite-regulating neurons contributes to the biochemical mechanism of the impaired incretin effect. Unscheduled glycolysis and glycolytic overload thereby produced decreases cell signalling of incretin secretion to glucose and other secretion stimuli and incretin receptor responses. This mechanism provides a guide for development of alternative therapies targeting recovery of the impaired incretin effect.
Collapse
Affiliation(s)
- Naila Rabbani
- QU Health, Qatar University, University Street, PO Box 2713, Doha, Qatar
| | - Paul J Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
11
|
Krishnan G, Bagath M, Devaraj C, Soren NM. The signalling association of glucagon-like peptide-1 and its receptors in the gastrointestinal tract and GPR40 and insulin receptor in the pancreas of sheep. Gen Comp Endocrinol 2024; 358:114602. [PMID: 39226991 DOI: 10.1016/j.ygcen.2024.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
The present study was aimed at gaining insight into the signalling relationship between glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) in the regulation of glucose metabolism. Further, to assess the role of G-protein-coupled receptor 40 (GPR40) and insulin receptor (INSR) in the pancreas of sheep that were supplemented with calcium salts of long-chain fatty acids (CSFAs). An experiment was carried out over a period of 60 days with eighteen sheep, and they were fed with a standard basal diet. The sheep were divided into three groups: CSFA0 (without CSFAs), while CSFA3 and CSFA5 were supplemented with 3 % and 5 % of CSFAs, respectively. Plasma concentrations of GLP-1, insulin, glucagon, and glucose were assessed every two weeks. At the end of the experiment, sheep were slaughtered, and samples of gastrointestinal tract (GIT) epithelial tissues and pancreas were collected to assess the relative expression of mRNA of GPR40, GLP-1R, and INSR. Postprandial GLP-1 and insulin were increased by 3.7-4.1 and 1.45-1.5 times, respectively, in the CSFAs-supplemented groups compared to CSFA0. Post-feeding, glucagon and glucose levels decreased in CSFA3 and CSFA5 compared to CSFA0. The results indicated that the supplementation of LCFAs increased the expression of GLP-1R in the GIT and pancreas, as well as the mRNA of GPR40 and INSR in the pancreas. Chemosensing of LCFAs by GPR40 in the pancreas triggers signalling transduction, and enhanced GLP-1 and GLP-1R resulted in moderately increased insulin secretion and reduced glucagon levels. These combined effects, along with the glucose-lowering effect of GLP-1, effectively lowered glucose levels in normoglycemic sheep.
Collapse
Affiliation(s)
- G Krishnan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India.
| | - M Bagath
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - C Devaraj
- Bioenergetics and Environmental Sciences Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - N M Soren
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| |
Collapse
|
12
|
Kupnicka P, Król M, Żychowska J, Łagowski R, Prajwos E, Surówka A, Chlubek D. GLP-1 Receptor Agonists: A Promising Therapy for Modern Lifestyle Diseases with Unforeseen Challenges. Pharmaceuticals (Basel) 2024; 17:1470. [PMID: 39598383 PMCID: PMC11597758 DOI: 10.3390/ph17111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Modern lifestyle diseases remain a persistent challenge in healthcare. Currently, about 422 million people worldwide are affected by diabetes, while 1 in 8 people are living with obesity. The development of glucagon-like peptide 1 receptor agonists (GLP-1RAs) has marked a significant milestone in treating these conditions. Interest in GLP-1RAs has grown due to evidence that, beyond their established role in diabetes management, these drugs influence other metabolic disorders. This is attributed to the fact that GLP-1 receptors are found in various healthy human tissues. However, a potential cause for concern is the expression of GLP-1 receptors in certain cancers. This review focuses on the most recent findings concerning the actions of GLP-1RAs, detailing their documented impact on the thyroid gland and pancreas. It addresses concerns about the long-term use of GLP-1RAs in relation to the development of pancreatitis, pancreatic cancer, and thyroid neoplasms by exploring the mechanisms and long-term effects in different patient subgroups and including data not discussed previously. This review was conducted through an examination of the literature available in the MedLine (PubMed) database, covering publications from 1978 to 10 May 2024. The collected articles were selected based on their relevance to studies of GLP-1 agonists and their effects on the pancreas and thyroid and assessed to meet the established inclusion criteria. The revised papers suggest that prolonged use of GLP-1RA could contribute to the formation of thyroid tumors and may increase the risk of acute inflammatory conditions such as pancreatitis, particularly in high-risk patients. Therefore, physicians should advise patients on the need for more frequent and detailed follow-ups.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryszard Łagowski
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Eryk Prajwos
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Surówka
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
13
|
Liu C, Zhang Q, Zhou H, Jin L, Liu C, Yang M, Zhao X, Ding W, Xie W, Kong H. GLP-1R activation attenuates the progression of pulmonary fibrosis via disrupting NLRP3 inflammasome/PFKFB3-driven glycolysis interaction and histone lactylation. J Transl Med 2024; 22:954. [PMID: 39434134 PMCID: PMC11492558 DOI: 10.1186/s12967-024-05753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a serious interstitial lung disease with no viable treatment except for lung transplantation. Glucagon-like peptide-1 receptor (GLP-1R), commonly regarded as an antidiabetic target, exerts antifibrotic effects on various types of organ fibrosis. However, whether GLP-1R modulates the development and progression of pulmonary fibrosis remains unclear. In this study, we investigated the antifibrotic effect of GLP-1R using in vitro and in vivo models of pulmonary fibrosis. METHODS A silica-induced pulmonary fibrosis mouse model was established to evaluate the protective effects of activating GLP-1R with liraglutide in vivo. Primary cultured lung fibroblasts treated with TGF-β1 combined with IL-1β (TGF-β1 + IL-1β) were used to explore the specific effects of liraglutide, MCC950, and 3PO on fibroblast activation in vitro. Cell metabolism assay was performed to determine the glycolytic rate and mitochondrial respiration. RNA sequencing was utilized to analyse the underlying molecular mechanisms by which liraglutide affects fibroblast activation. ChIP‒qPCR was used to evaluate histone lactylation at the promoters of profibrotic genes in TGF-β1 + IL-1β- or exogenous lactate-stimulated lung fibroblasts. RESULTS Activating GLP-1R with liraglutide attenuated pulmonary inflammation and fibrosis in mice exposed to silica. Pharmacological inhibition of the NLRP3 inflammasome suppressed PFKFB3-driven glycolysis and vice versa, resulting in decreased lactate production in TGF-β1 + IL-1β-stimulated lung fibroblasts. Activating GLP-1R inhibited TGF-β1 + IL-1β-induced fibroblast activation by disrupting the interaction between the NLRP3 inflammasome and PFKFB3-driven glycolysis and subsequently prevented lactate-mediated histone lactylation to reduce pro-fibrotic gene expression. In addition, activating GLP-1R protected mitochondria against the TGF-β1 + IL-1β-induced increase in oxidative phosphorylation in fibroblasts. In exogenous lactate-treated lung fibroblasts, activating GLP-1R not only repressed NLRP3 inflammasome activation but also alleviated p300-mediated histone lactylation. Finally, GLP-1R activation blocked silica-treated macrophage-conditioned media-induced lung fibroblast activation. CONCLUSIONS The antifibrotic effects of GLP-1R activation on pulmonary fibrosis could be attributed to the inhibition of the interaction between NLRP3 inflammasome and PFKFB3-driven glycolysis, and histone lactylation in lung fibroblasts. Thus, GLP-1R is a specific therapeutic target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Qun Zhang
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Hong Zhou
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Linling Jin
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Chang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Mingxia Yang
- Department of Pulmonary & Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213003, P. R. China
| | - Xinyun Zhao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Wenqiu Ding
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| |
Collapse
|
14
|
Maruszczak K, Koren P, Radzikowski K, Pixner T, Suppli MP, Wewer Albrechtsen NJ, Weghuber D, Torbahn G. Glucagon, Metabolic Dysfunction-Associated Steatotic Liver Disease and Amino Acids in Humans and Animals without Diabetes Mellitus-An Evidence Map. Life (Basel) 2024; 14:1292. [PMID: 39459592 PMCID: PMC11509797 DOI: 10.3390/life14101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Health systems are confronted with not only the growing worldwide childhood obesity epidemic but also associated comorbidities. These subsequently cause variations in distinct metabolic pathways, leading to metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this evidence map is to systematically evaluate the evidence and to identify research gaps on glucagon-induced amino acid (AA) turnover and its metabolic interaction with MASLD. METHODOLOGY A systematic literature search was conducted up to April 2023 in three electronic databases. Studies were required to include at least two of the main research areas, glucagon, AA metabolism and MASLD. Two independent reviewers screened titles and abstracts according to prespecified eligibility criteria, as well as full-text articles. Results are summarized in tables stratified by human and animal studies and study population age. RESULTS Thirty-four references were ultimately included. The publication years dated back to 1965 showed a great increase from 2012 to 2023. In total, there were 19 animal studies and 15 human studies. Among the human studies, except for two studies in adolescents, all the studies were conducted in adults. In human studies, the methods used to evaluate metabolic changes differed among hyperinsulinemic-euglycemic clamp and oral glucose tolerance tests. Thirteen studies focused on the metabolic effects of MASLD, while only two studies explored the interaction between MASLD, glucagon and AA metabolism in humans. The other 19 studies focused on metabolomics, beta cell function or just one topic of a research area and not on interactions between one another. CONCLUSION Research on the interaction between MASLD, glucagon and AA metabolism in humans is sparse and complete lacking in pediatrics. Furthermore, longitudinal studies with a focus on hyperglucagonemia independent of diabetes but related to MASLD present an unambiguous research gap.
Collapse
Affiliation(s)
- Katharina Maruszczak
- Department of Pediatrics, University Hospital Salzburg, Division of Gastroenterology, Hepatology and Nutrition, Paracelsus Medical University, 5020 Salzburg, Austria; (K.M.); (P.K.); (K.R.); (G.T.)
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Pia Koren
- Department of Pediatrics, University Hospital Salzburg, Division of Gastroenterology, Hepatology and Nutrition, Paracelsus Medical University, 5020 Salzburg, Austria; (K.M.); (P.K.); (K.R.); (G.T.)
| | - Konrad Radzikowski
- Department of Pediatrics, University Hospital Salzburg, Division of Gastroenterology, Hepatology and Nutrition, Paracelsus Medical University, 5020 Salzburg, Austria; (K.M.); (P.K.); (K.R.); (G.T.)
| | - Thomas Pixner
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria;
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, 4864 Voecklabruck, Austria
| | - Malte Palm Suppli
- Department of Clinical Biochemistry, Copenhagen University Hospital—Bispebjerg, 2400 Copenhagen, Denmark;
| | | | - Daniel Weghuber
- Department of Pediatrics, University Hospital Salzburg, Division of Gastroenterology, Hepatology and Nutrition, Paracelsus Medical University, 5020 Salzburg, Austria; (K.M.); (P.K.); (K.R.); (G.T.)
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Gabriel Torbahn
- Department of Pediatrics, University Hospital Salzburg, Division of Gastroenterology, Hepatology and Nutrition, Paracelsus Medical University, 5020 Salzburg, Austria; (K.M.); (P.K.); (K.R.); (G.T.)
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria;
- Department of Pediatrics, Paracelsus Medical University, Klinikum Nürnberg, Universitätsklinik der Paracelsus Medizinischen Privatuniversität Nürnberg, 90471 Nuremberg, Germany
| |
Collapse
|
15
|
Ostrowska-Czyżewska A, Zgliczyński W, Bednarek-Papierska L, Mrozikiewicz-Rakowska B. Is It Time for a New Algorithm for the Pharmacotherapy of Steroid-Induced Diabetes? J Clin Med 2024; 13:5801. [PMID: 39407860 PMCID: PMC11605232 DOI: 10.3390/jcm13195801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024] Open
Abstract
Glucocorticoids (GS) are widely used in multiple medical indications due to their anti-inflammatory, immunosuppressive, and antiproliferative effects. Despite their effectiveness in treating respiratory, skin, joint, renal, and neoplastic diseases, they dysregulate glucose metabolism, leading to steroid-induced diabetes (SID) or a significant increase of glycemia in people with previously diagnosed diabetes. The risk of adverse event development depends on the prior therapy, the duration of the treatment, the form of the drug, and individual factors, i.e., BMI, genetics, and age. Unfortunately, SID and steroid-induced hyperglycemia (SIH) are often overlooked, because the fasting blood glucose level, which is the most commonly used diagnostic test, is insufficient for excluding both conditions. The appropriate control of post-steroid hyperglycemia remains a major challenge in everyday clinical practice. Recently, the most frequently used antidiabetic strategies have been insulin therapy with isophane insulin or multiple injections in the basal-bolus regimen. Alternatively, in patients with lower glycemia, sulphonylureas or glinides were used. Taking into account the pathogenesis of post-steroid-induced hyperglycemia, the initiation of therapy with glucagon-like peptide 1 (GLP-1) analogs and dipeptidyl peptidase 4 (DPP-4) inhibitors should be considered. In this article, we present a universal practical diagnostic algorithm of SID/SIH in patients requiring steroids, in both acute and chronic conditions, and we present a new pharmacotherapy algorithm taking into account the use of all currently available antidiabetic drugs.
Collapse
Affiliation(s)
| | | | | | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
16
|
Bao W, Lyu J, Feng G, Guo L, Zhao D, You K, Liu Y, Li H, Du P, Chen D, Shen X. Aloe emodin promotes mucosal healing by modifying the differentiation fate of enteroendocrine cells via regulating cellular free fatty acid sensitivity. Acta Pharm Sin B 2024; 14:3964-3982. [PMID: 39309505 PMCID: PMC11413701 DOI: 10.1016/j.apsb.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury. Label retaining cells (LRCs) expressing SRY-box transcription factor 9 (SOX9) promote epithelial repair by replenishing LGR5+ intestinal stem cells (ISCs). While, LRCs are also considered precursor cells for enteroendocrine cells (EECs) which exacerbate mucosal damage in inflammatory bowel disease (IBD). The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear. In this study, we investigated the effects of a natural anthraquinone called aloe emodin (derived from the Chinese herb rhubarb) on mucosal healing in IBD models. Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9+ LRCs, thereby promoting mucosal healing. Furthermore, we discovered that aloe emodin acted as an antagonist of free fatty acid receptors (FFAR1), suppressing the FFAR1-mediated Gβγ/serine/threonine-protein kinase (AKT) pathway and promoting the translocation of forkhead box protein O1 (FOXO1) into the nucleus, ultimately resulting in the intervention of differentiation fate. These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Dian Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| |
Collapse
|
17
|
Le R, Nguyen MT, Allahwala MA, Psaltis JP, Marathe CS, Marathe JA, Psaltis PJ. Cardiovascular Protective Properties of GLP-1 Receptor Agonists: More than Just Diabetic and Weight Loss Drugs. J Clin Med 2024; 13:4674. [PMID: 39200816 PMCID: PMC11355214 DOI: 10.3390/jcm13164674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Owing to their potent glucose-lowering efficacy and substantial weight loss effects, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are now considered part of the frontline therapeutic options to treat both type 2 diabetes mellitus and nondiabetic overweight/obesity. Stemming from successful demonstration of their cardiometabolic modulation and reduction of major adverse cardiovascular events in clinical outcome trials, GLP-1 RAs have since been validated as agents with compelling cardiovascular protective properties. Studies spanning from the bench to preclinical and large-scale randomised controlled trials have consistently corroborated the cardiovascular benefits of this pharmacological class. Most notably, there is converging evidence that they exert favourable effects on atherosclerotic ischaemic endpoints, with preclinical data indicating that they may do so by directly modifying the burden and composition of atherosclerotic plaques. This narrative review examines the underlying pharmacology and clinical evidence behind the cardiovascular benefits of GLP-1 RAs, with particular focus on atherosclerotic cardiovascular disease. It also delves into the mechanisms that underpin their putative plaque-modifying actions, addresses existing knowledge gaps and therapeutic challenges and looks to future developments in the field, including the use of combination incretin agents for diabetes and weight loss management.
Collapse
Affiliation(s)
- Richard Le
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia;
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
| | - Mau T. Nguyen
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - Momina A. Allahwala
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - James P. Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - Chinmay S. Marathe
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
- Department of Endocrinology, Central Adelaide Local Health Network, Adelaide 5000, Australia
| | - Jessica A. Marathe
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - Peter J. Psaltis
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| |
Collapse
|
18
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
19
|
Keivanlou MH, Amini-Salehi E, Sattari N, Hashemi M, Saberian P, Prabhu SV, Javid M, Mirdamadi A, Heidarzad F, Bakhshi A, Letafatkar N, Zare R, Hassanipour S, Nayak SS. Gut microbiota interventions in type 2 diabetes mellitus: An umbrella review of glycemic indices. Diabetes Metab Syndr 2024; 18:103110. [PMID: 39213690 DOI: 10.1016/j.dsx.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND We aimed to explore how probiotics, prebiotics, or synbiotics impact glycemic indices in patients with diabetes mellitus. METHOD A comprehensive search was conducted on PubMed, Scopus, and Web of Science from inception up to April 2023. The random-effects model was employed for the study analysis. Furthermore, sensitivity and subgroup analyses were conducted to investigate potential sources of heterogeneity. AMSTAR2 checklist was used to determine the quality of studies. Comprehensive meta-analysis version 3 was used for the study analysis. RESULT A total of 31 studies were included in the final analysis. Based on the results of the meta-analysis, gut microbial therapy could significantly decrease serum fasting blood glucose levels in patients with type 2 diabetes mellitus (effect size: -0.211; 95 % CI: -0.257, -0.164; P < 0.001). Additionally, significant associations were also found between gut microbial therapy and improved serum levels of fasting insulin, glycated hemoglobin, and homeostatic model assessment for insulin resistance (effect size: -0.087; 95 % confidence interval: -0.120, -0.053; P < 0.001; effect size: -0.166; 95 % confidence interval: -0.200, -0.132; P < 0.001; effect size: -0.230; 95 % confidence interval: -0.288, -0.172; P < 0.001, respectively). CONCLUSION Our results revealed promising effects of gut microbiota modulation on glycemic profile of patients with type 2 diabetes mellitus. The use of these agents as additional treatments can be considered.
Collapse
Affiliation(s)
- Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sandeep Samethadka Nayak
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital , Bridgeport, CT, USA
| |
Collapse
|
20
|
Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, Franczyk B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management-A Narrative Review. Nutrients 2024; 16:1938. [PMID: 38931292 PMCID: PMC11206785 DOI: 10.3390/nu16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes is a disease with significant health consequences for the individual. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. One of them is the association of type 2 diabetes with microbiota. Through the enteric nervous system and the gut-microbiota axis, the microbiota affects the functioning of the body. It has been proven to have a real impact on influencing glucose and lipid metabolism and insulin sensitivity. With dysbiosis, there is increased bacterial translocation through the disrupted intestinal barrier and increased inflammation in the body. In diabetes, the microbiota's composition is altered with, for example, a more abundant class of Betaproteobacteria. The consequences of these disorders are linked to mechanisms involving short-chain fatty acids, branched-chain amino acids, and bacterial lipopolysaccharide, among others. Interventions focusing on the gut microbiota are gaining traction as a promising approach to diabetes management. Studies are currently being conducted on the effects of the supply of probiotics and prebiotics, as well as fecal microbiota transplantation, on the course of diabetes. Further research will allow us to fully develop our knowledge on the subject and possibly best treat and prevent type 2 diabetes.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Greta Steć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Jasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
21
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
22
|
Fenske RJ, Wienkes HN, Peter DC, Schaid MD, Hurley LD, Pennati A, Galipeau J, Kimple ME. Gα z-independent and -dependent Improvements With EPA Supplementation on the Early Type 1 Diabetes Phenotype of NOD Mice. J Endocr Soc 2024; 8:bvae100. [PMID: 38831864 PMCID: PMC11146416 DOI: 10.1210/jendso/bvae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 06/05/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a key mediator of inflammation and is derived from the omega-6 polyunsaturated fatty acid, arachidonic acid (AA). In the β-cell, the PGE2 receptor, Prostaglandin EP3 receptor (EP3), is coupled to the unique heterotrimeric G protein alpha subunit, Gɑz to reduce the production of cyclic adenosine monophosphate (cAMP), a key signaling molecule that activates β-cell function, proliferation, and survival pathways. Nonobese diabetic (NOD) mice are a strong model of type 1 diabetes (T1D), and NOD mice lacking Gɑz are protected from hyperglycemia. Therefore, limiting systemic PGE2 production could potentially improve both the inflammatory and β-cell dysfunction phenotype of T1D. Here, we sought to evaluate the effect of eicosapentaenoic acid (EPA) feeding, which limits PGE2 production, on the early T1D phenotype of NOD mice in the presence and absence of Gαz. Wild-type and Gαz knockout NOD mice were fed a control or EPA-enriched diet for 12 weeks, beginning at age 4 to 5 weeks. Oral glucose tolerance, splenic T-cell populations, islet cytokine/chemokine gene expression, islet insulitis, measurements of β-cell mass, and measurements of β-cell function were quantified. EPA diet feeding and Gɑz loss independently improved different aspects of the early NOD T1D phenotype and coordinated to alter the expression of certain cytokine/chemokine genes and enhance incretin-potentiated insulin secretion. Our results shed critical light on the Gαz-dependent and -independent effects of dietary EPA enrichment and provide a rationale for future research into novel pharmacological and dietary adjuvant therapies for T1D.
Collapse
Affiliation(s)
- Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Clinical Research Unit, University of Wisconsin Hospitals and Clinics, Madison, WI 53792, USA
| | - Haley N Wienkes
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Liam D Hurley
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
23
|
Shilleh AH, Viloria K, Broichhagen J, Campbell JE, Hodson DJ. GLP1R and GIPR expression and signaling in pancreatic alpha cells, beta cells and delta cells. Peptides 2024; 175:171179. [PMID: 38360354 DOI: 10.1016/j.peptides.2024.171179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are transmembrane receptors involved in insulin, glucagon and somatostatin secretion from the pancreatic islet. Therapeutic targeting of GLP1R and GIPR restores blood glucose levels in part by influencing beta cell, alpha cell and delta cell function. Despite the importance of the incretin-mimetics for diabetes therapy, our understanding of GLP1R and GIPR expression patterns and signaling within the islet remain incomplete. Here, we present the evidence for GLP1R and GIPR expression in the major islet cell types, before addressing signaling pathway(s) engaged, as well as their influence on cell survival and function. While GLP1R is largely a beta cell-specific marker within the islet, GIPR is expressed in alpha cells, beta cells, and (possibly) delta cells. GLP1R and GIPR engage Gs-coupled pathways in most settings, although the exact outcome on hormone release depends on paracrine communication and promiscuous signaling. Biased agonism away from beta-arrestin is an emerging concept for improving therapeutic efficacy, and is also relevant for GLP1R/GIPR dual agonism. Lastly, dual agonists exert multiple effects on islet function through GIPR > GLP1R imbalance, increased GLP1R surface expression and cAMP signaling, as well as beneficial alpha cell-beta cell-delta cell crosstalk.
Collapse
Affiliation(s)
- Ali H Shilleh
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Katrina Viloria
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Jonathan E Campbell
- Duke Molecular Physiology Institute, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - David J Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Tamayo-Trujillo R, Ruiz-Pozo VA, Cadena-Ullauri S, Guevara-Ramírez P, Paz-Cruz E, Zambrano-Villacres R, Simancas-Racines D, Zambrano AK. Molecular mechanisms of semaglutide and liraglutide as a therapeutic option for obesity. Front Nutr 2024; 11:1398059. [PMID: 38742021 PMCID: PMC11090168 DOI: 10.3389/fnut.2024.1398059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Obesity, a chronic global health problem, is associated with an increase in various comorbidities, such as cardiovascular disease, type 2 diabetes mellitus, hypertension, and certain types of cancer. The increasing global prevalence of obesity requires research into new therapeutic strategies. Glucagon-like peptide-1 receptor agonists, specifically semaglutide and liraglutide, designed for type 2 diabetes mellitus treatment, have been explored as drugs for the treatment of obesity. This minireview describes the molecular mechanisms of semaglutide and liraglutide in different metabolic pathways, and its mechanism of action in processes such as appetite regulation, insulin secretion, glucose homeostasis, energy expenditure, and lipid metabolism. Finally, several clinical trial outcomes are described to show the safety and efficacy of these drugs in obesity management.
Collapse
Affiliation(s)
- Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
25
|
Wang V, Tseng KY, Kuo TT, Huang EYK, Lan KL, Chen ZR, Ma KH, Greig NH, Jung J, Choi HI, Olson L, Hoffer BJ, Chen YH. Attenuating mitochondrial dysfunction and morphological disruption with PT320 delays dopamine degeneration in MitoPark mice. J Biomed Sci 2024; 31:38. [PMID: 38627765 PMCID: PMC11022395 DOI: 10.1186/s12929-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.
Collapse
Affiliation(s)
- Vicki Wang
- Doctoral Degree Program in Translational Medicine, National Defense Medical Center and Academia Sinica, Taipei, 11490, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, 11490, Taiwan
- National Defense Medical Center, Taipei, 11490, Taiwan
| | - Tung-Tai Kuo
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, 11490, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Kuo-Lun Lan
- Department of Pathology, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Zi-Rong Chen
- Department of Pathology, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Kuo-Hsing Ma
- Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Jin Jung
- Peptron, Inc., Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Ho-Ii Choi
- Peptron, Inc., Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, 11490, Taiwan.
- National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
26
|
Bonnet JB, Durieux AT, Tournayre S, Marty L, Sultan A, Avignon A. Semaglutide as a potential treatment for obesity in Smith-Kingsmore syndrome (SKS) patients: A mosaic mutation case report. Obes Res Clin Pract 2024; 18:159-162. [PMID: 38582735 DOI: 10.1016/j.orcp.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
We present for the first-time efficacy and tolerability of GLP-1-RA (Semaglutide) in Smith-Kingsmore syndrome (SKS). SKS is a rare genetic disorder characterized by intellectual disability, macrocephaly, seizures and distinctive facial features due to MTOR gene mutation. We present a 22-year-old woman with mosaic SKS and severe obesity (Body Mass Index ≥40 kg/m²), treated with semaglutide. She achieved a 9 kg (7.44%) weight loss over 12 months without adverse effects.This case highlights semaglutide's potential in managing obesity in SKS patients, emphasizing the need for further research in this rare genetic disorder.
Collapse
Affiliation(s)
- Jean-Baptiste Bonnet
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France; UMR 1302, Institute Desbrest of Epidemiology and Public Health, Univ Montpellier, INSERM, University Hospital of Montpellier, Montpellier, France.
| | | | - Sarah Tournayre
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France
| | - Lucile Marty
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France
| | - Ariane Sultan
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France; PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Antoine Avignon
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France; UMR 1302, Institute Desbrest of Epidemiology and Public Health, Univ Montpellier, INSERM, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
27
|
Soares GM, Balbo SL, Bronczek GA, Vettorazzi JF, Marmentini C, Zangerolamo L, Velloso LA, Carneiro EM. Vertical sleeve gastrectomy improves glucose-insulin homeostasis by enhancing β-cell function and survival via FGF15/19. Am J Physiol Endocrinol Metab 2024; 326:E134-E147. [PMID: 38117265 DOI: 10.1152/ajpendo.00218.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Vertical sleeve gastrectomy (VSG) restores glucose homeostasis in obese mice and humans. In addition, the increased fibroblast growth factor (FGF)15/19 circulating level postsurgery has been implicated in this effect. However, the impact of FGF15/19 on pancreatic islets remains unclear. Using a diet-induced obese mice model, we demonstrate that VSG attenuates insulin hypersecretion in isolated pancreatic islets, likely due to morphological alterations in the endocrine pancreas such as reduction in islet, β-cell, and α-cell mass. In addition, VSG relieves gene expression of endoplasmic reticulum (ER) stress and inflammation markers in islets from obese mice. Incubation of INS-1E β-cells with serum from obese mice induced dysfunction and cell death, whereas these conditions were not induced with serum from obese mice submitted to VSG, implicating the involvement of a humoral factor. Indeed, VSG increased FGF15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E cells treated with the serum from these mice. Moreover, exposing INS-1E cells to an FGFR inhibitor abolished the effects of VSG serum on insulin secretion and cell death. Also, recombinant FGF19 prevents INS-1E cells from dysfunction and death induced by serum from obese mice. These findings indicate that the amelioration of glucose-insulin homeostasis promoted by VSG is mediated, at least in part, by FGF15/19. Therefore, approaches promoting FGF15/19 release or action may restore pancreatic islet function in obesity.NEW & NOTEWORTHY Vertical sleeve gastrectomy (VSG) decreases insulin secretion, endoplasmic reticulum (ER) stress, and inflammation in pancreatic islets from obese mice. In addition, VSG increased fibroblast growth factor (FGF)15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E β-cells treated with the serum from these mice. Serum from operated mice protects INS-1E cells from dysfunction and apoptosis, which was mediated by FGF15/19.
Collapse
Affiliation(s)
- Gabriela M Soares
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Sandra L Balbo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| | - Gabriela A Bronczek
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jean F Vettorazzi
- Latin-American Institute of Life and Nature Sciences, Federal University of Latin-American Integration (UNILA), Foz do Iguacu, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas Zangerolamo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lício A Velloso
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
28
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
29
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
30
|
Hong KF, Liu PY, Zhang W, Gui DK, Xu YH. The Efficacy and Safety of Astragalus as an Adjuvant Treatment for Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:11-24. [PMID: 37433206 DOI: 10.1089/jicm.2022.0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Objective: This meta-analysis evaluated the beneficial and potential adverse effects of Astragalus in the treatment of patients with type 2 diabetes mellitus (T2DM). Methods: The authors searched for randomized controlled trials of Astragalus treatment for patients with T2DM in the following databases: PubMed, Embase, Cochrane Library, China Knowledge Resource Integrated Database (CNKI), Wanfang Data, China Science and Technology Journal Database (CQVIP), and SinoMed. Two reviewers conducted independent selection of studies, data extraction, and coding, as well as the assessment of risk of bias in the studies included. Standard meta-analysis and, if appropriate, meta-regression were performed using the STATA, v.15.1, software. Results: This meta-analysis encompasses 20 studies and a total of 953 participants. Compared to the control group (CG), the observation group (OG) decreased fasting plasma glucose (FPG) (WMD = -0.67, 95% CI: -1.13∼-0.20, P = 0.005), 2 hours postprandial plasma glucose (2hPG) (WMD = -0.67 (95% CI: -1.13∼-0.20, P=0.005), glycated hemoglobin A1C (HbA1c) (WMD = -0.93, 95% CI: -1.22∼-0.64, P = 0.000), homeostatic model assessment for insulin resistance (HOMA-IR) (WMD = -0.45, 95% CI: -0.99∼0.99, P = 0.104), insulin sensitive index (WMD = 0.42, 95% CI: 0.13-0.72, P = 0.004). The total effective ratio of the OG is more effective than CG (RR = 1.33, 95% CI: 1.26-1.40, P = 0.000), the significant effective ratio (RR = 1.69, 95% CI: 1.48-1.93, P = 0.000). Conclusions: Astragalus may provide specific benefits for T2DM patients as an adjuvant treatment. Nonetheless, the certainty of the evidence and risk of bias fell short of optimal performance, indicating the need for additional clinical research to ascertain potential effects. PROSPERO REGISTRATION NUMBER CRD42022338491.
Collapse
Affiliation(s)
- Kin-Fong Hong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Pei-Yu Liu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Wei Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ding-Kun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - You-Hua Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
31
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Kloock S, Ziegler CG, Dischinger U. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? Pharmacol Ther 2023; 251:108549. [PMID: 37879540 DOI: 10.1016/j.pharmthera.2023.108549] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Obesity and its comorbidities, including type 2 diabetes mellitus, cardiovascular disease, heart failure and non-alcoholic liver disease are a major health and economic burden with steadily increasing numbers worldwide. The need for effective pharmacological treatment options is strong, but, until recently, only few drugs have proven sufficient efficacy and safety. This article provides a comprehensive overview of obesity and its comorbidities, with a special focus on organ-specific pathomechanisms. Bariatric surgery as the so far most-effective therapeutic strategy, current pharmacological treatment options and future treatment strategies will be discussed. An increasing knowledge about the gut-brain axis and especially the identification and physiology of incretins unfolds a high number of potential drug candidates with impressive weight-reducing potential. Future multi-modal therapeutic concepts in obesity treatment may surpass the effectivity of bariatric surgery not only with regard to weight loss, but also to associated comorbidities.
Collapse
Affiliation(s)
- Simon Kloock
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christian G Ziegler
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany; Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Ulrich Dischinger
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, Würzburg, Germany.
| |
Collapse
|
33
|
Sharma P, Sri Swetha Victoria V, Praneeth Kumar P, Karmakar S, Swetha M, Reddy A. Cross-talk between insulin resistance and nitrogen species in hypoxia leads to deterioration of tissue and homeostasis. Int Immunopharmacol 2023; 122:110472. [PMID: 37392570 DOI: 10.1016/j.intimp.2023.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Hypoxia has been linked with insulin resistance as it produces changes in the metabolism of the cell; in which the adipocytes impede the insulin receptor tyrosine, phosphorylation, directing at decreased levels of transport of glucose. At this juncture, we are focusing on cross-talk between insulin resistance and nitrogen species in hypoxia, leading to the deterioration of tissue and homeostasis. Physiological levels of nitric oxide play a very crucial role in acting as a priority effector and signaling molecule, arbitrating the body's responses to hypoxia. Both ROS and RNS are associated with a reduction in IRS1 phosphorylation in tyrosine, which leads to reduced levels of IRS1 content and insulin response, which further leads to insulin resistance. Cellular hypoxia is a trigger to inflammatory mediators which signal tissue impairment and initiate survival requirements. But, hypoxia-mediated inflammation act as a protective role by an immune response and promotes wound healing during infection. In this review, we abridge the crosstalk between the inflammation and highlight the dysregulation in physiological consequences due to diabetes mellitus. Finally, we review various treatments available for its related physiological complications.
Collapse
Affiliation(s)
- Priyanshy Sharma
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - V Sri Swetha Victoria
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - P Praneeth Kumar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Sarbani Karmakar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Mudduluru Swetha
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Amala Reddy
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India.
| |
Collapse
|
34
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
35
|
Kim ER, Yun JH, Kim HJ, Park HY, Heo Y, Park YS, Park DJ, Koo SK. Evaluation of hormonal and circulating inflammatory biomarker profiles in the year following bariatric surgery. Front Endocrinol (Lausanne) 2023; 14:1171675. [PMID: 37564975 PMCID: PMC10411526 DOI: 10.3389/fendo.2023.1171675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Background Bariatric surgery (BS) has a superior effect on reducing body weight and fat in patients with morbid obesity. As a result, BS mitigates obesity-related complications such as type 2 diabetes (T2D). However, few studies have shown the mechanism underlying diabetes remission after surgery. This study aimed to investigate the differences in serum hormone and inflammatory cytokine levels related to diabetes before surgery and during 12 months of follow-up in Korean patients with obesity. Methods The study participants were patients with morbid obesity (n=63) who underwent sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB) between 2016 - 2017 at seven tertiary hospitals in Korea. The patients were followed for 1 year after surgery. Results Sixty-three patients had significant weight loss after surgery and showed improvements in clinical parameters and hormonal and inflammatory profiles. Among them, 23 patients who were diabetic preoperatively showed different remission after surgery. The levels of inflammation-related clinical parameters changed significantly in the remission group, and serum inflammatory cytokine and hormones significantly decreased at certain points and showed an overall decreasing trend. Conclusions Our study found postoperative changes of factors in blood samples, and the changes in hormones secreted from the three major metabolic tissue (pancreas, adipose, and gut) along with the differences in multi-origin inflammatory cytokines between remission and non-remission groups provide a path for understanding how the effect of BS in improving glucose metabolism is mediated.
Collapse
Affiliation(s)
- Eun Ran Kim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Ji Ho Yun
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Hyo-Jin Kim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Hyeon Young Park
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Yoonseok Heo
- Department of Surgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Kyung Koo
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| |
Collapse
|
36
|
Panfili E, Frontino G, Pallotta MT. GLP-1 receptor agonists as promising disease-modifying agents in WFS1 spectrum disorder. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1171091. [PMID: 37333802 PMCID: PMC10275359 DOI: 10.3389/fcdhc.2023.1171091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
WFS1 spectrum disorder (WFS1-SD) is a rare monogenic neurodegenerative disorder whose cardinal symptoms are childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological signs ranging from mild to severe. The prognosis is poor as most patients die prematurely with severe neurological disabilities such as bulbar dysfunction and organic brain syndrome. Mutation of the WFS1 gene is recognized as the prime mover of the disease and responsible for a dysregulated ER stress signaling, which leads to neuron and pancreatic β-cell death. There is no currently cure and no treatment that definitively arrests the progression of the disease. GLP-1 receptor agonists appear to be an efficient way to reduce elevated ER stress in vitro and in vivo, and increasing findings suggest they could be effective in delaying the progression of WFS1-SD. Here, we summarize the characteristics of GLP-1 receptor agonists and preclinical and clinical data obtained by testing them in WFS1-SD as a feasible strategy for managing this disease.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giulio Frontino
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milano, Italy
| | | |
Collapse
|
37
|
Liu T, Zou X, Ruze R, Xu Q. Bariatric Surgery: Targeting pancreatic β cells to treat type II diabetes. Front Endocrinol (Lausanne) 2023; 14:1031610. [PMID: 36875493 PMCID: PMC9975540 DOI: 10.3389/fendo.2023.1031610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic β-cell function impairment and insulin resistance are central to the development of obesity-related type 2 diabetes mellitus (T2DM). Bariatric surgery (BS) is a practical treatment approach to treat morbid obesity and achieve lasting T2DM remission. Traditionally, sustained postoperative glycemic control was considered a direct result of decreased nutrient intake and weight loss. However, mounting evidence in recent years implicated a weight-independent mechanism that involves pancreatic islet reconstruction and improved β-cell function. In this article, we summarize the role of β-cell in the pathogenesis of T2DM, review recent research progress focusing on the impact of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on pancreatic β-cell pathophysiology, and finally discuss therapeutics that have the potential to assist in the treatment effect of surgery and prevent T2D relapse.
Collapse
Affiliation(s)
- Tiantong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xi Zou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
38
|
Matloob SA, Paraskevopoulos D, O'Toole SM, Drake W, Plowman N, Foroglou N. VHL: Trends and Insight into a Multi-Modality, Interdisciplinary Approach for Management of Central Nervous System Hemangioblastoma. ACTA NEUROCHIRURGICA. SUPPLEMENT 2023; 135:81-88. [PMID: 38153453 DOI: 10.1007/978-3-031-36084-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Von Hippel-Lindau (VHL) is a multi-system disease which results in significant morbidity from central nervous system (CNS) involvement as well as ocular, renal and neuro-endocrine effects. Haemangioblastomas of the CNS present a number of challenges. The natural history of these lesions is varied, as is the size and location within the CNS. Whilst surgery is considered the mainstay of treatment and best chance at curing these lesions, this is also often associated with significant risks due to the anatomical location of these lesions, most commonly the posterior fossa and spinal cord.We review the literature and describe our experience across two separate European VHL referral centres. Alternative treatment options and combined modalities are increasingly being used in the context of managing CNS haemangioblastomas. We analyse the increasing use of stereotactic radiosurgery and the evolution of medical treatments as potential future adjuncts to surgery. The availability of multiple modalities in our armamentarium is essential in tailoring a personalised treatment approach to these patients. Owing to the multi-systemic nature of the disease, in our experience, managing the care of patients with VHL is best delivered using an interdisciplinary approach utilising multiple specialties and adopting an individually tailored holistic approach.
Collapse
Affiliation(s)
- S A Matloob
- Department of Neurosurgery, Barts Health NHS Trust, London, UK.
- Department of Neurosurgery, Royal London Hospital, London, UK.
| | | | - S M O'Toole
- Department of Endocrinology, The Royal Hallamshire Hospital, Sheffield, UK
| | - W Drake
- Department of Endocrinology, Barts Health NHS Trust, London, UK
| | - N Plowman
- Department of Oncology, Barts Health NHS Trust, London, UK
| | - N Foroglou
- Department of Neurosurgery, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
39
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
40
|
Woodfield A, Gonzales T, Helmerhorst E, Laws S, Newsholme P, Porter T, Verdile G. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease. Int J Mol Sci 2022; 23:15811. [PMID: 36555450 PMCID: PMC9779379 DOI: 10.3390/ijms232415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.
Collapse
Affiliation(s)
- Amy Woodfield
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tatiana Gonzales
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Erik Helmerhorst
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Simon Laws
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Philip Newsholme
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
41
|
Heaton ES, Jin S. Importance of multiple endocrine cell types in islet organoids for type 1 diabetes treatment. Transl Res 2022; 250:68-83. [PMID: 35772687 PMCID: PMC11554285 DOI: 10.1016/j.trsl.2022.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
Abstract
Almost 50 years ago, scientists developed the bi-hormonal abnormality hypothesis, stating that diabetes is not caused merely by the impaired insulin signaling. Instead, the presence of inappropriate level of glucagon is a prerequisite for the development of type 1 diabetes (T1D). It is widely understood that the hormones insulin and glucagon, secreted by healthy β and α cells respectively, operate in a negative feedback loop to maintain the body's blood sugar levels. Despite this fact, traditional T1D treatments rely solely on exogenous insulin injections. Furthermore, research on cell-based therapies and stem-cell derived tissues tends to focus on the replacement of β cells alone. In vivo, the pancreas is made up of 4 major endocrine cell types, that is, insulin-producing β cells, glucagon-producing α cells, somatostatin-producing δ cells, and pancreatic polypeptide-producing γ cells. These distinct cell types are involved synergistically in regulating islet functions. Therefore, it is necessary to produce a pancreatic islet organoid in vitro consisting of all these cell types that adequately replaces the function of the native islets. In this review, we describe the unique function of each pancreatic endocrine cell type and their interactions contributing to the maintenance of normoglycemia. Furthermore, we detail current sources of whole islets and techniques for their long-term expansion and culture. In addition, we highlight a vast potential of the pancreatic islet organoids for transplantation and diabetes research along with updated new approaches for successful transplantation using stem cell-derived islet organoids.
Collapse
Affiliation(s)
- Emma S Heaton
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York; Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, New York.
| |
Collapse
|
42
|
Is bariatric surgery improving mitochondrial function in the renal cells of patients with obesity-induced kidney disease? Pharmacol Res 2022; 185:106488. [DOI: 10.1016/j.phrs.2022.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
43
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
44
|
Wang P, Hill TA, Mitchell J, Fitzsimmons RL, Xu W, Loh Z, Suen JY, Lim J, Iyer A, Fairlie DP. Modifying a Hydroxyl Patch in Glucagon-like Peptide 1 Produces Biased Agonists with Unique Signaling Profiles. J Med Chem 2022; 65:11759-11775. [PMID: 35984914 DOI: 10.1021/acs.jmedchem.2c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) lowers blood glucose by inducing insulin but also has other poorly understood properties. Here, we show that hydroxy amino acids (Thr11, Ser14, Ser17, Ser18) in GLP-1(7-36) act in concert to direct cell signaling. Mutating any single residue to alanine removes one hydroxyl group, thereby reducing receptor affinity and cAMP 10-fold, with Ala11 or Ala14 also reducing β-arrestin-2 10-fold, while Ala17 or Ala18 also increases ERK1/2 phosphorylation 5-fold. Multiple alanine mutations more profoundly bias signaling, differentially silencing or restoring one or more signaling properties. Mutating three serines silences only ERK1/2, the first example of such bias. Mutating all four residues silences β-arrestin-2, ERK1/2, and Ca2+ maintains the ligand and receptor at the membrane but still potently stimulates cAMP and insulin secretion in cells and mice. These novel findings indicate that hydrogen bonding cooperatively controls cell signaling and highlight an important regulatory hydroxyl patch in hormones that activate class B G protein-coupled receptors.
Collapse
Affiliation(s)
- Peiqi Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Timothy A Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Justin Mitchell
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Rebecca L Fitzsimmons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Weijun Xu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Zhixuan Loh
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Jacky Y Suen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| |
Collapse
|
45
|
Sun H, Qi X. The role of insulin and incretin-based drugs in biliary tract cancer: epidemiological and experimental evidence. Discov Oncol 2022; 13:70. [PMID: 35933633 PMCID: PMC9357599 DOI: 10.1007/s12672-022-00536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Insulin and incretin-based drugs are important antidiabetic agents with complex effects on cell growth and metabolism. Emerging evidence shows that insulin and incretin-based drugs are associated with altered risk of biliary tract cancer (BTC). Observational study reveals that insulin is associated with an increased risk of extrahepatic cholangiocarcinoma (ECC), but not intrahepatic cholangiocarcinoma (ICC) or gallbladder cancer (GBC). This type-specific effect can be partly explained by the cell of origin and heterogeneous genome landscape of the three subtypes of BTC. Similar to insulin, incretin-based drugs also exhibit very interesting contradictions and inconsistencies in response to different cancer phenotypes, including BTC. Both epidemiological and experimental evidence suggests that incretin-based drugs can be a promoter of some cancers and an inhibitor of others. It is now more apparent that this type of drugs has a broader range of physiological effects on the body, including regulation of endoplasmic reticulum stress, autophagy, metabolic reprogramming, and gene expression. In particular, dipeptidyl peptidase-4 inhibitors (DPP-4i) have a more complex effect on cancer due to the multi-functional nature of DPP-4. DPP-4 exerts both catalytic and non-enzymatic functions to regulate metabolic homeostasis, immune reaction, cell migration, and proliferation. In this review, we collate the epidemiological and experimental evidence regarding the effect of these two classes of drugs on BTC to provide valuable information.
Collapse
Affiliation(s)
- Hua Sun
- Department of Geriatrics, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, No.208 East Huancheng Road, Hangzhou, Zhejiang, China
| | - Xiaohui Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.573 Xujiahui Road, Shanghai, China.
| |
Collapse
|
46
|
GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022; 11:cells11132023. [PMID: 35805109 PMCID: PMC9265397 DOI: 10.3390/cells11132023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Defects in brain energy metabolism and proteopathic stress are implicated in age-related degenerative neuronopathies, exemplified by Alzheimer’s disease (AD) and Parkinson’s disease (PD). As the currently available drug regimens largely aim to mitigate cognitive decline and/or motor symptoms, there is a dire need for mechanism-based therapies that can be used to improve neuronal function and potentially slow down the underlying disease processes. In this context, a new class of pharmacological agents that achieve improved glycaemic control via the glucagon-like peptide 1 (GLP-1) receptor has attracted significant attention as putative neuroprotective agents. The experimental evidence supporting their potential therapeutic value, mainly derived from cellular and animal models of AD and PD, has been discussed in several research reports and review opinions recently. In this review article, we discuss the pathological relevance of derangements in the neurovascular unit and the significance of neuron–glia metabolic coupling in AD and PD. With this context, we also discuss some unresolved questions with regard to the potential benefits of GLP-1 agonists on the neurovascular unit (NVU), and provide examples of novel experimental paradigms that could be useful in improving our understanding regarding the neuroprotective mode of action associated with these agents.
Collapse
|
47
|
Melick CH, Lama-Sherpa TD, Curukovic A, Jewell JL. G-Protein Coupled Receptor Signaling and Mammalian Target of Rapamycin Complex 1 Regulation. Mol Pharmacol 2022; 101:181-190. [PMID: 34965982 PMCID: PMC9092479 DOI: 10.1124/molpharm.121.000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) senses upstream stimuli to regulate numerous cellular functions such as metabolism, growth, and autophagy. Increased activation of mTOR complex 1 (mTORC1) is typically observed in human disease and continues to be an important therapeutic target. Understanding the upstream regulators of mTORC1 will provide a crucial link in targeting hyperactivated mTORC1 in human disease. In this mini-review, we will discuss the regulation of mTORC1 by upstream stimuli, with a specific focus on G-protein coupled receptor signaling to mTORC1. SIGNIFICANCE STATEMENT: mTORC1 is a master regulator of many cellular processes and is often hyperactivated in human disease. Therefore, understanding the molecular underpinnings of G-protein coupled receptor signaling to mTORC1 will undoubtedly be beneficial for human disease.
Collapse
Affiliation(s)
- Chase H Melick
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tshering D Lama-Sherpa
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adna Curukovic
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenna L Jewell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
48
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
49
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
50
|
Wassmer CH, Lebreton F, Bellofatto K, Perez L, Cottet-Dumoulin D, Andres A, Bosco D, Berney T, Othenin-Girard V, Martinez De Tejada B, Cohen M, Olgasi C, Follenzi A, Berishvili E. Bio-Engineering of Pre-Vascularized Islet Organoids for the Treatment of Type 1 Diabetes. Transpl Int 2022; 35:10214. [PMID: 35185372 PMCID: PMC8842259 DOI: 10.3389/ti.2021.10214] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Lack of rapid revascularization and inflammatory attacks at the site of transplantation contribute to impaired islet engraftment and suboptimal metabolic control after clinical islet transplantation. In order to overcome these limitations and enhance engraftment and revascularization, we have generated and transplanted pre-vascularized insulin-secreting organoids composed of rat islet cells, human amniotic epithelial cells (hAECs), and human umbilical vein endothelial cells (HUVECs). Our study demonstrates that pre-vascularized islet organoids exhibit enhanced in vitro function compared to native islets, and, most importantly, better engraftment and improved vascularization in vivo in a murine model. This is mainly due to cross-talk between hAECs, HUVECs and islet cells, mediated by the upregulation of genes promoting angiogenesis (vegf-a) and β cell function (glp-1r, pdx1). The possibility of adding a selected source of endothelial cells for the neo-vascularization of insulin-scereting grafts may also allow implementation of β cell replacement therapies in more favourable transplantation sites than the liver.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Fanny Lebreton
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Kevin Bellofatto
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Lisa Perez
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Axel Andres
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Véronique Othenin-Girard
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Begoña Martinez De Tejada
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Christina Olgasi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ekaterine Berishvili
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
- *Correspondence: Ekaterine Berishvili,
| | | |
Collapse
|