1
|
Burke RM, Ramani S, Lynch J, Cooper LV, Cho H, Bandyopadhyay AS, Kirkwood CD, Steele AD, Kang G. Geographic disparities impacting oral vaccine performance: Observations and future directions. Clin Exp Immunol 2025; 219:uxae124. [PMID: 39774633 PMCID: PMC11773816 DOI: 10.1093/cei/uxae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Oral vaccines have several advantages compared with parenteral administration: they can be relatively cheap to produce in high quantities, easier to administer, and induce intestinal mucosal immunity that can protect against infection. These characteristics have led to successful use of oral vaccines against rotavirus, polio, and cholera. Unfortunately, oral vaccines for all three diseases have demonstrated lower performance in the highest-burden settings where they are most needed. Rotavirus vaccines are estimated to have >85% effectiveness against hospitalization in children <12 months in countries with low child mortality, but only ~65% effectiveness in countries with high child mortality. Similarly, oral polio vaccines have lower immunogenicity in developing country settings compared with high-resource settings. Data are more limited for oral cholera vaccines, but suggest lower titers among children compared with adults, and, for some vaccines, lower efficacy in endemic settings compared with non-endemic settings. These disparities are likely multifactorial, and available evidence suggests a role for maternal factors (e.g. transplacental antibodies, breastmilk), host factors (e.g. genetic polymorphisms-with the best evidence for rotavirus-or previous infection), and environmental factors (e.g. gut microbiome, co-infections). Overall, these data highlight the rather ambiguous and often contradictory nature of evidence on factors affecting oral vaccine response, cautioning against broad extrapolation of outcomes based on one population or one vaccine type. Meaningful impact on performance of oral vaccines will likely only be possible with a suite of interventions, given the complex and multifactorial nature of the problem, and the degree to which contributing factors are intertwined.
Collapse
Affiliation(s)
- Rachel M Burke
- Global Development Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Julia Lynch
- Office of the Director General, International Vaccine Institute, Seoul, Republic of Korea
| | - Laura V Cooper
- School of Public Health, Imperial College London, London, UK
| | - Haeun Cho
- Department of Data Science and Innovation, International Vaccine Institute, Seoul, Republic of Korea
| | | | - Carl D Kirkwood
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - A Duncan Steele
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Gagandeep Kang
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
2
|
Burke RM, Payne DC, McNeal M, Conrey SC, Burrell AR, Mattison CP, Casey-Moore MC, Mijatovic-Rustempasic S, Gautam R, Esona MD, Thorman AW, Bowen MD, Parashar UD, Tate JE, Morrow AL, Staat MA. Correlates of Rotavirus Vaccine Shedding and Seroconversion in a US Cohort of Healthy Infants. J Infect Dis 2024; 230:754-762. [PMID: 38330312 DOI: 10.1093/infdis/jiae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Rotavirus is a leading cause of severe pediatric gastroenteritis; 2 highly effective vaccines are used in the United States (US). We aimed to identify correlates of immune response to rotavirus vaccination in a US cohort. METHODS Pediatric Respiratory and Enteric Virus Acquisition and Immunogenesis Longitudinal (PREVAIL) is a birth cohort of 245 mother-child pairs enrolled in 2017-2018 and followed for 2 years. Infant stool samples and symptom information were collected weekly. Shedding was defined as reverse-transcription polymerase chain reaction detection of rotavirus vaccine virus in stools collected 4-28 days after dose 1. Seroconversion was defined as a 3-fold rise in immunoglobulin A between the 6-week and 6-month blood draws. Correlates were analyzed using generalized estimating equations and logistic regression. RESULTS Prevaccination immunoglobulin G (IgG) (odds ratio [OR], 0.84 [95% confidence interval {CI}, .75-.94] per 100-unit increase) was negatively associated with shedding. Shedding was also less likely among infants with a single-nucleotide polymorphism inactivating FUT2 antigen secretion ("nonsecretors") with nonsecretor mothers, versus all other combinations (OR, 0.37 [95% CI, .16-.83]). Of 141 infants with data, 105 (74%) seroconverted; 78 (77%) had shed vaccine virus following dose 1. Prevaccination IgG and secretor status were significantly associated with seroconversion. Neither shedding nor seroconversion significantly differed by vaccine product. CONCLUSIONS In this US cohort, prevaccination IgG and maternal and infant secretor status were associated with rotavirus vaccine response.
Collapse
Affiliation(s)
- Rachel M Burke
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Daniel C Payne
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
| | - Shannon C Conrey
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Allison R Burrell
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Claire P Mattison
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
- Cherokee Nation Assurance, Arlington, Virginia
| | - Mary C Casey-Moore
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Rashi Gautam
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mathew D Esona
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alexander W Thorman
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael D Bowen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline E Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ardythe L Morrow
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mary A Staat
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
| |
Collapse
|
3
|
Mohideen FI, Mahal LK. Infection and the Glycome─New Insights into Host Response. ACS Infect Dis 2024; 10:2540-2550. [PMID: 38990078 PMCID: PMC11320568 DOI: 10.1021/acsinfecdis.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Glycans play critical roles in the host-pathogen interactions leading to infection. However, we still understand very little about the dynamic nature of glycosylation in response to infection and its function in modulating host immunity. Many of the host proteins involved in immune defense are glycoproteins. Furthermore, the innate immune system recognizes glycans. The glycoform of a protein can impact proteolytic stability, receptor interactions, serum half-life, and other aspects. New, cutting-edge chemical biology tools are shedding light on the interplay between infection and the host glycome. In this review, we highlight new work on the importance of dynamic glycosylation of host proteins in the innate and adaptive immune pathways in response to infection. These include recent findings on altered glycoprofiles of mucins, complement components, and antibodies.
Collapse
Affiliation(s)
- F. Ifthiha Mohideen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
4
|
Cárcamo-Calvo R, Boscá-Sánchez I, López-Navarro S, Navarro-Lleó N, Peña-Gil N, Santiso-Bellón C, Buesa J, Gozalbo-Rovira R, Rodríguez-Díaz J. Immunogenicity of a Rotavirus VP8* Multivalent Subunit Vaccine in Mice. Viruses 2024; 16:1135. [PMID: 39066297 PMCID: PMC11281511 DOI: 10.3390/v16071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Rotavirus remains a significant public health threat, especially in low-income countries, where it is the leading cause of severe acute childhood gastroenteritis, contributing to over 128,500 deaths annually. Although the introduction of the Rotarix and RotaTeq vaccines in 2006 marked a milestone in reducing mortality rates, approximately 83,158 preventable deaths persisted, showing ongoing challenges in vaccine accessibility and effectiveness. To address these issues, a novel subcutaneous vaccine formulation targeting multiple rotavirus genotypes has been developed. This vaccine consists of nine VP8* proteins from nine distinct rotavirus genotypes and sub-genotypes (P[4], P[6], P[8]LI, P[8]LIII, P[8]LIV, P[9], P[11], P[14], and P[25]) expressed in E. coli. Two groups of mice were immunized either with a single immunogen, the VP8* from the rotavirus Wa strain (P[8]LI), or with the nonavalent formulation. Preliminary results from mouse immunization studies showed promising outcomes, eliciting antibody responses against six of the nine immunogens. Notably, significantly higher antibody titers against VP8* P[8]LI were observed in the group immunized with the nonavalent vaccine compared to mice specifically immunized against this genotype alone. Overall, the development of parenteral vaccines targeting multiple rotavirus genotypes represents a promising strategy in mitigating the global burden of rotavirus-related morbidity and mortality, offering new avenues for disease prevention and control.
Collapse
Affiliation(s)
- Roberto Cárcamo-Calvo
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Irene Boscá-Sánchez
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
| | - Sergi López-Navarro
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Noemi Navarro-Lleó
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
| | - Nazaret Peña-Gil
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (R.C.-C.); (I.B.-S.); (S.L.-N.); (N.N.-L.); (N.P.-G.); (C.S.-B.); (J.B.); (R.G.-R.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| |
Collapse
|
5
|
Donato CM, Handley A, Byars SG, Bogdanovic-Sakran N, Lyons EA, Watts E, Ong DS, Pavlic D, At Thobari J, Satria CD, Nirwati H, Soenarto Y, Bines JE. Vaccine Take of RV3-BB Rotavirus Vaccine Observed in Indonesian Infants Regardless of HBGA Status. J Infect Dis 2024; 229:1010-1018. [PMID: 37592804 PMCID: PMC11011179 DOI: 10.1093/infdis/jiad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Histo-blood group antigen (HBGA) status may affect vaccine efficacy due to rotavirus strains binding to HBGAs in a P genotype-dependent manner. This study aimed to determine if HBGA status affected vaccine take of the G3P[6] neonatal vaccine RV3-BB. METHODS DNA was extracted from stool samples collected in a subset (n = 164) of the RV3-BB phase IIb trial in Indonesian infants. FUT2 and FUT3 genes were amplified and sequenced, with any single-nucleotide polymorphisms analyzed to infer Lewis and secretor status. Measures of positive cumulative vaccine take were defined as serum immune response (immunoglobulin A or serum-neutralizing antibody) and/or stool excretion of RV3-BB virus. Participants were stratified by HBGA status and measures of vaccine take. RESULTS In 147 of 164 participants, Lewis and secretor phenotype were determined. Positive vaccine take was recorded for 144 (97.9%) of 147 participants with the combined phenotype determined. Cumulative vaccine take was not significantly associated with secretor status (relative risk, 1.00 [95% CI, .94-1.06]; P = .97) or Lewis phenotype (relative risk, 1.03 [95% CI, .94-1.14]; P = .33), nor was a difference observed when analyzed by each component of vaccine take. CONCLUSIONS The RV3-BB vaccine produced positive cumulative vaccine take, irrespective of HBGA status in Indonesian infants.
Collapse
Affiliation(s)
- Celeste M Donato
- Enteric Diseases Group, Murdoch Children's Research Institute
- Department of Paediatrics, The University of Melbourne, Parkville
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne
| | - Amanda Handley
- Enteric Diseases Group, Murdoch Children's Research Institute
- Medicines Development for Global Health, Southbank
| | - Sean G Byars
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | | | - Eleanor A Lyons
- Enteric Diseases Group, Murdoch Children's Research Institute
| | - Emma Watts
- Enteric Diseases Group, Murdoch Children's Research Institute
| | - Darren S Ong
- Enteric Diseases Group, Murdoch Children's Research Institute
| | - Daniel Pavlic
- Enteric Diseases Group, Murdoch Children's Research Institute
| | | | | | - Hera Nirwati
- Center for Child Health
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | - Yati Soenarto
- Center for Child Health
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr Sardjito Hospital, Yogyakarta, Indonesia
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children's Research Institute
- Department of Paediatrics, The University of Melbourne, Parkville
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
6
|
Reyes Y, St Jean DT, Bowman NM, González F, Mijatovic-Rustempasic S, Becker-Dreps S, Svensson L, Nordgren J, Bucardo F, Vielot NA. Nonsecretor Phenotype Is Associated With Less Risk of Rotavirus-Associated Acute Gastroenteritis in a Vaccinated Nicaraguan Birth Cohort. J Infect Dis 2023; 228:1739-1747. [PMID: 37279878 PMCID: PMC10733742 DOI: 10.1093/infdis/jiad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Histo-blood group antigens (HBGAs) have been associated with rotavirus vaccine take; but the effect of these HBGAs on rotavirus incidence and risk remains poorly explored in vaccinated populations. METHODS Rotavirus-associated acute gastroenteritis (AGE) was assessed in 444 Nicaraguan children followed from birth until 3 years of age. AGE episodes were tested for rotavirus by reverse-transcription quantitative polymerase chain reaction, and saliva or blood was used to determine HBGA phenotypes. Cox proportional hazards models were used to estimate the relative hazard of rotavirus AGE by HBGA phenotypes. RESULTS Rotavirus was detected in 109 (7%) stool samples from 1689 AGE episodes over 36 months of observation between June 2017 and July 2021. Forty-six samples were successfully genotyped. Of these, 15 (35%) were rotavirus vaccine strain G1P[8], followed by G8P[8] or G8P[nt] (11 [24%]) and equine-like G3P[8] (11 [24%]). The overall incidence of rotavirus-associated AGE was 9.2 per 100 child-years, and was significantly higher in secretor than nonsecretor children (9.8 vs 3.5/100 child-years, P = .002). CONCLUSIONS The nonsecretor phenotype was associated with decreased risk of clinical rotavirus vaccine failure in a vaccinated Nicaraguan birth cohort. These results show the importance of secretor status on rotavirus risk, even in vaccinated children.
Collapse
Affiliation(s)
- Yaoska Reyes
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, Nicaragua
- Division of Molecular Medicine and Virology, Linköping University, Sweden
| | | | - Natalie M Bowman
- Division of Infectious Diseases, University of North Carolina at Chapel Hill
| | - Fredman González
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, Nicaragua
| | | | - Sylvia Becker-Dreps
- Department of Epidemiology
- Department of Family Medicine, University of North Carolina at Chapel Hill
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Linköping University, Sweden
- Division of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Linköping University, Sweden
| | - Filemón Bucardo
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, Nicaragua
| | - Nadja A Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
7
|
Peña-Gil N, Randazzo W, Carmona-Vicente N, Santiso-Bellón C, Cárcamo-Cálvo R, Navarro-Lleó N, Monedero V, Yebra MJ, Buesa J, Gozalbo-Rovira R, Rodríguez-Díaz J. Culture of Human Rotaviruses in Relevant Models Shows Differences in Culture-Adapted and Nonculture-Adapted Strains. Int J Mol Sci 2023; 24:17362. [PMID: 38139191 PMCID: PMC10743750 DOI: 10.3390/ijms242417362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Rotavirus (RV) is the leading cause of acute gastroenteritis (AGE) in children under 5 years old worldwide, and several studies have demonstrated that histo-blood group antigens (HBGAs) play a role in its infection process. In the present study, human stool filtrates from patients diagnosed with RV diarrhea (genotyped as P[8]) were used to infect differentiated Caco-2 cells (dCaco-2) to determine whether such viral strains of clinical origin had the ability to replicate in cell cultures displaying HBGAs. The cell culture-adapted human RV Wa model strain (P[8] genotype) was used as a control. A time-course analysis of infection was conducted in dCaco-2 at 1, 24, 48, 72, and 96 h. The replication of two selected clinical isolates and Wa was further assayed in MA104, undifferentiated Caco-2 (uCaco-2), HT29, and HT29-M6 cells, as well as in monolayers of differentiated human intestinal enteroids (HIEs). The results showed that the culture-adapted Wa strain replicated more efficiently in MA104 cells than other utilized cell types. In contrast, clinical virus isolates replicated more efficiently in dCaco-2 cells and HIEs. Furthermore, through surface plasmon resonance analysis of the interaction between the RV spike protein (VP8*) and its glycan receptor (the H antigen), the V7 RV clinical isolate showed 45 times better affinity compared to VP8* from the Wa strain. These findings support the hypothesis that the differences in virus tropism between clinical virus isolates and RV Wa could be a consequence of the different HBGA contents on the surface of the cell lines employed. dCaco-2, HT29, and HT29M6 cells and HIEs display HBGAs on their surfaces, whereas MA104 and uCaco-2 cells do not. These results indicate the relevance of using non-cell culture-adapted human RV to investigate the replication of rotavirus in relevant infection models.
Collapse
Affiliation(s)
- Nazaret Peña-Gil
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain;
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Cárcamo-Cálvo
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Noemi Navarro-Lleó
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
| | - Vicente Monedero
- Department of Biotechnology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain; (V.M.); (M.J.Y.)
| | - María J. Yebra
- Department of Biotechnology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain; (V.M.); (M.J.Y.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| |
Collapse
|
8
|
Chauwa A, Bosomprah S, Laban NM, Phiri B, Chibuye M, Chilyabanyama ON, Munsaka S, Simuyandi M, Mwape I, Mubanga C, Chobe MC, Chisenga C, Chilengi R. Maternal and Infant Histo-Blood Group Antigen (HBGA) Profiles and Their Influence on Oral Rotavirus Vaccine (Rotarix TM) Immunogenicity among Infants in Zambia. Vaccines (Basel) 2023; 11:1303. [PMID: 37631871 PMCID: PMC10458424 DOI: 10.3390/vaccines11081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Live-attenuated, oral rotavirus vaccines have significantly reduced rotavirus-associated diarrhoea morbidity and infant mortality. However, vaccine immunogenicity is diminished in low-income countries. We investigated whether maternal and infant intrinsic susceptibility to rotavirus infection via histo-blood group antigen (HBGA) profiles influenced rotavirus (ROTARIX®) vaccine-induced responses in Zambia. We studied 135 mother-infant pairs under a rotavirus vaccine clinical trial, with infants aged 6 to 12 weeks at pre-vaccination up to 12 months old. We determined maternal and infant ABO/H, Lewis, and secretor HBGA phenotypes, and infant FUT2 HBGA genotypes. Vaccine immunogenicity was measured as anti-rotavirus IgA antibody titres. Overall, 34 (31.3%) children were seroconverted at 14 weeks, and no statistically significant difference in seroconversion was observed across the various HBGA profiles in early infant life. We also observed a statistically significant difference in rotavirus-IgA titres across infant HBGA profiles at 12 months, though no statistically significant difference was observed between the study arms. There was no association between maternal HBGA profiles and infant vaccine immunogenicity. Overall, infant HBGAs were associated with RV vaccine immunogenicity at 12 months as opposed to in early infant life. Further investigation into the low efficacy of ROTARIX® and appropriate intervention is key to unlocking the full vaccine benefits for U5 children.
Collapse
Affiliation(s)
- Adriace Chauwa
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia;
| | - Samuel Bosomprah
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Biostatistics, School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana
| | - Natasha Makabilo Laban
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Bernard Phiri
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Mwelwa Chibuye
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Obvious Nchimunya Chilyabanyama
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia;
| | - Michelo Simuyandi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Innocent Mwape
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Cynthia Mubanga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Masuzyo Chirwa Chobe
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Caroline Chisenga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| |
Collapse
|
9
|
Berry A, Kapelus D, Singh P, Groome M, de Assis Rosa D. ABO blood types, but not Secretor or Lewis blood types, influence strength of antibody response to Hepatitis B vaccine in Black South African children. Vaccine 2023:S0264-410X(23)00465-6. [PMID: 37169653 DOI: 10.1016/j.vaccine.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/24/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Subunit vaccines for the Hepatitis B virus (HBV) have greatly reduced the prevalence of infection and morbidity through HBV-related liver cirrhosis and cancer. However, strength of immune response to vaccination varies considerably. While it is known that ABO blood types may influence HBV infection risk, the role of ABO and related blood types in strength of immune response to HBV vaccine has not been investigated. We examined 16 polymorphisms in the ABO, FUT2, and FUT3 genes and their related phenotypes for associations with strength of antibody response to HBV vaccine in Black South African infants. Anti-HBc and anti-HBs antibody levels were measured by CMIA assay 1-3 months after the last dose of HBV vaccine. Prior infection occurred in 8/207 individuals (3.86%) who were removed from further study. Of the remaining 199 individuals, 83.4% individuals were strong responders (anti-HBs ≥ 100 mIU/ml, median 973 mIU/ml), another 15.6% were weak responders (anti-HBs < 100 mIU/ml, median 50 mIU/ml) and 1% were non-responders (anti-HBs < 10 mIU/ml). The frequency of weak responders to HBV vaccine was not significantly affected by sex, birthweight, use of an additional booster dose of vaccine or cohort of origin. We characterised patterns of genetic variation present at the ABO, FUT2 and FUT3 loci by use of MassArray genotyping and used these data to predict ABO, Secretor and Lewis phenotypes. We observed significant association of ABO blood type with strength of antibody response to HBV vaccine in a Black South African cohort (p = 0.002). In particular, presence of rs8176747G and expression of B antigen (whether in B blood type or AB blood type) was associated with decreased antibody response to HBV vaccine. Secretor and Lewis blood types were not associated with antibody response to HBV vaccine. This work increases our understanding of the impact that host genetic variation may have on vaccine immunogenicity.
Collapse
Affiliation(s)
- Adam Berry
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Jhb, South Africa
| | - Daniel Kapelus
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Jhb, South Africa
| | - Payal Singh
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Jhb, South Africa
| | - Michelle Groome
- Vaccines and Infectious Diseases Analytics (VIDA) Research Unit, SA Medical Research Council and University of the Witwatersrand, Jhb, South Africa; National Institute for Communicable Diseases, Jhb, South Africa
| | - Debra de Assis Rosa
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Jhb, South Africa.
| |
Collapse
|
10
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
11
|
Masson L, Barbé L, Henaff F, Ahmed T, Le Moullac-Vaidye B, Peltier C, Marchand SS, Scherdel P, Vibet MA, Ruvoën-Clouet N, Elenga N, Imbert-Marcille BM, Gras-Le Guen C, Le Pendu J. Extent of the protection afforded by histo-blood group polymorphism against rotavirus gastroenteritis in metropolitan France and French Guiana. Front Microbiol 2023; 14:1141652. [PMID: 36970669 PMCID: PMC10036354 DOI: 10.3389/fmicb.2023.1141652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Human rotaviruses attach to histo-blood group antigens glycans and null alleles of the ABO, FUT2 and FUT3 genes seem to confer diminished risk of gastroenteritis. Yet, the true extent of this protection remains poorly quantified. Here, we conducted a prospective study to evaluate the risk of consulting at the hospital in non-vaccinated pediatric patients according to the ABO, FUT2 (secretor) and FUT3 (Lewis) polymorphisms, in Metropolitan France and French Guiana. At both locations, P genotypes were largely dominated by P [8]-3, with P [6] cases exclusively found in French Guiana. The FUT2 null (nonsecretor) and FUT3 null (Lewis negative) phenotypes conferred near full protection against severe gastroenteritis due to P [8]-3 strains (OR 0.03, 95% CI [0.00–0.21] and 0.1, 95% CI [0.01–0.43], respectively in Metropolitan France; OR 0.08, 95% CI [0.01–0.52] and 0.14, 95%CI [0.01–0.99], respectively in French Guiana). Blood group O also appeared protective in Metropolitan France (OR 0.38, 95% CI [0.23–0.62]), but not in French Guiana. The discrepancy between the two locations was explained by a recruitment at the hospital of less severe cases in French Guiana than in Metropolitan France. Considering the frequencies of the null ABO, Secretor and Lewis phenotypes, the data indicate that in a Western European population, 34% (95% CI [29%; 39%]) of infants are genetically protected against rotavirus gastroenteritis of sufficient severity to lead to hospital visit.
Collapse
Affiliation(s)
- Lydie Masson
- Department of Pediatrics, University Hospital of Nantes, Nantes, France
| | - Laure Barbé
- Nantes Université, Inserm, CNRS, Immunology and New Concepts in Immunotherapy, INCIT, Nantes, France
| | - Fanny Henaff
- Department of Pediatrics, Centre Hospitalier Andrée Rosemon, Cayenne, France
| | - Tasnuva Ahmed
- Nantes Université, Inserm, CNRS, Immunology and New Concepts in Immunotherapy, INCIT, Nantes, France
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | | | - Cécile Peltier
- Center for Research in Transplantation and Translational Immunology, Inserm, Nantes Université, Nantes, France
| | - Sarah S Marchand
- Virology Department, University Hospital of Nantes, Nantes, France
| | - Pauline Scherdel
- Clinical Investigation Center (CIC004), Inserm, University Hospital of Nantes, Nantes, France
| | - Marie-Anne Vibet
- Clinical Research Department, University Hospital of Nantes, Nantes, France
| | - Nathalie Ruvoën-Clouet
- Nantes Université, Inserm, CNRS, Immunology and New Concepts in Immunotherapy, INCIT, Nantes, France
- Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Oniris, Nantes, France
| | - Narcisse Elenga
- Department of Pediatrics, Centre Hospitalier Andrée Rosemon, Cayenne, France
| | - Berthe-Marie Imbert-Marcille
- Center for Research in Transplantation and Translational Immunology, Inserm, Nantes Université, Nantes, France
- Virology Department, University Hospital of Nantes, Nantes, France
| | | | - Jacques Le Pendu
- Nantes Université, Inserm, CNRS, Immunology and New Concepts in Immunotherapy, INCIT, Nantes, France
- *Correspondence: Jacques Le Pendu,
| |
Collapse
|
12
|
Godefroy E, Barbé L, Le Moullac-Vaidye B, Rocher J, Breiman A, Leuillet S, Mariat D, Chatel JM, Ruvoën-Clouet N, Carton T, Jotereau F, Le Pendu J. Microbiota-induced regulatory T cells associate with FUT2-dependent susceptibility to rotavirus gastroenteritis. Front Microbiol 2023; 14:1123803. [PMID: 36922975 PMCID: PMC10008897 DOI: 10.3389/fmicb.2023.1123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
The FUT2 α1,2fucosyltransferase contributes to the synthesis of fucosylated glycans used as attachment factors by several pathogens, including noroviruses and rotaviruses, that can induce life-threatening gastroenteritis in young children. FUT2 genetic polymorphisms impairing fucosylation are strongly associated with resistance to dominant strains of both noroviruses and rotaviruses. Interestingly, the wild-type allele associated with viral gastroenteritis susceptibility inversely appears to be protective against several inflammatory or autoimmune diseases for yet unclear reasons, although a FUT2 influence on microbiota composition has been observed. Here, we studied a cohort of young healthy adults and showed that the wild-type FUT2 allele was associated with the presence of anti-RVA antibodies, either neutralizing antibodies or serum IgA, confirming its association with the risk of RVA gastroenteritis. Strikingly, it was also associated with the frequency of gut microbiota-induced regulatory T cells (Tregs), so-called DP8α Tregs, albeit only in individuals who had anti-RVA neutralizing antibodies or high titers of anti-RVA IgAs. DP8α Tregs specifically recognize the human symbiont Faecalibacterium prausnitzii, which strongly supports their induction by this anti-inflammatory bacterium. The proportion of F. prausnitzii in feces was also associated with the FUT2 wild-type allele. These observations link the FUT2 genotype with the risk of RVA gastroenteritis, the microbiota and microbiota-induced DP8α Treg cells, suggesting that the anti-RVA immune response might involve an induction/expansion of these T lymphocytes later providing a balanced immunological state that confers protection against inflammatory diseases.
Collapse
Affiliation(s)
- Emmanuelle Godefroy
- Inserm, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1303/EMR6001, Nantes Université, Nantes, France
| | - Laure Barbé
- Inserm, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1303/EMR6001, Nantes Université, Nantes, France
| | - Béatrice Le Moullac-Vaidye
- Inserm, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1303/EMR6001, Nantes Université, Nantes, France
| | - Jézabel Rocher
- Inserm, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1303/EMR6001, Nantes Université, Nantes, France
| | - Adrien Breiman
- Inserm, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1303/EMR6001, Nantes Université, Nantes, France.,CHU de Nantes, Nantes, France
| | | | - Denis Mariat
- INRAE, AgroParisTech, UMR1319, MICALIS, Université Paris Saclay, Jouy en Josas, France
| | - Jean-Marc Chatel
- INRAE, AgroParisTech, UMR1319, MICALIS, Université Paris Saclay, Jouy en Josas, France
| | - Nathalie Ruvoën-Clouet
- Inserm, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1303/EMR6001, Nantes Université, Nantes, France.,ONIRIS, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Nantes, France
| | | | - Francine Jotereau
- Inserm, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1303/EMR6001, Nantes Université, Nantes, France
| | - Jacques Le Pendu
- Inserm, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1303/EMR6001, Nantes Université, Nantes, France
| |
Collapse
|
13
|
The Association between Symptomatic Rotavirus Infection and Histo-Blood Group Antigens in Young Children with Diarrhea in Pretoria, South Africa. Viruses 2022; 14:v14122735. [PMID: 36560739 PMCID: PMC9782691 DOI: 10.3390/v14122735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Recently, histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors of several viral pathogens. Among rotaviruses, HBGAs interact with the outer viral protein, VP4, which has been identified as a potential susceptibility factor, although the findings are inconsistent throughout populations due to HBGA polymorphisms. We investigated the association between HBGA phenotypes and rotavirus infection in children with acute gastroenteritis in northern Pretoria, South Africa. METHODS Paired diarrheal stool and saliva samples were collected from children aged ≤ 59 months (n = 342) with acute moderate to severe diarrhea, attending two health care facilities. Rotaviruses in the stool samples were detected by commercial EIA and the rotavirus strains were characterized by RT-PCR targeting the outer capsid VP7 (G-type) and VP4 (P-type) antigens for genotyping. Saliva-based ELISAs were performed to determine A, B, H, and Lewis antigens for blood group typing. RESULTS Blood type O was the most common blood group (62.5%) in this population, followed by groups A (26.0%), B (9.3%), and AB (2.2%). The H1-based secretors were common (82.7%) compared to the non-secretors (17.3%), and the Lewis antigen positive phenotypes (Le(a+b+)) were predominant (54.5%). Blood type A children were more likely to be infected by rotavirus (38.8%) than any other blood types. P[4] rotaviruses (21/49; 42.9%) infected only secretor individuals, whereas P[6] rotaviruses (3/49; 6.1%) only infected Le(a-b-), although the numbers were very low. On the contrary, P[8] rotaviruses infected children with a wide range of blood group phenotypes, including Le(a-b-) and non-secretors. CONCLUSIONS Our findings demonstrated that Lewis antigens, or the lack thereof, may serve as susceptibility factors to rotaviral infection by specific VP4 genotypes as observed elsewhere. Potentially, the P[8] strains remain the predominant human VP4 genotype due to their ability to bind to a variety of HBGA phenotypes.
Collapse
|
14
|
Saikia K, Saharia N, Singh CS, Borah PP, Namsa ND. Association of histo-blood group antigens and predisposition to gastrointestinal diseases. J Med Virol 2022; 94:5149-5162. [PMID: 35882942 DOI: 10.1002/jmv.28028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/26/2022] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
Infectious gastroenteritis is a common illness afflicting people worldwide. The two most common etiological agents of viral gastroenteritis, rotavirus and norovirus are known to recognize histo-blood group antigens (HBGAs) as attachment receptors. ABO, Lewis, and secretor HBGAs are distributed abundantly on mucosal epithelia, red blood cell membranes, and also secreted in biological fluids, such as saliva, intestinal content, milk, and blood. HBGAs are fucosylated glycans that have been implicated in the attachment of some enteric pathogens such as bacteria, parasites, and viruses. Single nucleotide polymorphisms in the genes encoding ABO (H), fucosyltransferase gene FUT2 (Secretor/Se), FUT3 (Lewis/Le) have been associated with changes in enzyme expression and HBGAs production. The highly polymorphic HBGAs among different populations and races influence genotype-specific susceptibility or resistance to enteric pathogens and its epidemiology, and vaccination seroconversion. Therefore, there is an urgent need to conduct population-based investigations to understand predisposition to enteric infections and gastrointestinal diseases. This review focuses on the relationship between HBGAs and predisposition to common human gastrointestinal illnesses caused by viral, bacterial, and parasitic agents.
Collapse
Affiliation(s)
- Kasturi Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Niruprabha Saharia
- Department of Paediatrics, Tezpur Medical College and Hospital, Bihaguri, Tezpur, Assam, India
| | - Chongtham S Singh
- Department of Paediatrics, Regional Institute of Medical Sciences, Imphal, India
| | - Partha P Borah
- Department of Paediatrics and Neonatology, Pratiksha Hospital, Guwahati, Assam, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India.,Centre for Multi-disciplinary Research, Tezpur University, Napaam, Assam, India
| |
Collapse
|
15
|
Velasquez-Portocarrero DE, Wang X, Cortese MM, Snider CJ, Anand A, Costantini VP, Yunus M, Aziz AB, Haque W, Parashar U, Sisay Z, Soeters HM, Hyde TB, Jiang B, Zaman K. Head-to-head comparison of the immunogenicity of RotaTeq and Rotarix rotavirus vaccines and factors associated with seroresponse in infants in Bangladesh: a randomised, controlled, open-label, parallel, phase 4 trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:1606-1616. [PMID: 35961362 PMCID: PMC11542682 DOI: 10.1016/s1473-3099(22)00368-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A head-to-head comparison of the most widely used oral rotavirus vaccines has not previously been done, particularly in a high child mortality setting. We therefore aimed to compare the immunogenicity of RotaTeq (Merck, Kenilworth, NJ, USA) and Rotarix (GlaxoSmithKline, Rixensart, Belgium) rotavirus vaccines in the same population and examined risk factors for low seroresponse. METHODS We did a randomised, controlled, open-label, parallel, phase 4 trial in urban slums within Mirpur and Mohakahli (Dhaka, Bangladesh). We enrolled eligible participants who were healthy infants aged 6 weeks and full-term (ie, >37 weeks' gestation). We randomly assigned participants (1:1), using block randomisation via a computer-generated electronic allocation with block sizes of 8, 16, 24, and 32, to receive either three RotaTeq vaccine doses at ages 6, 10, and 14 weeks or two Rotarix doses at ages 6 and 10 weeks without oral poliovirus vaccine. Coprimary outcomes were the rotavirus-specific IgA seroconversion in both vaccines, and the comparison of the rotavirus IgA seroconversion by salivary secretor phenotype in each vaccine arm. Seroconversion at age 18 weeks in the RotaTeq arm and age of 14 weeks in the Rotarix arm was used to compare the complete series of each vaccine. Seroconversion at age 14 weeks was used to compare two RotaTeq doses versus two Rotarix doses. Seroconversion at age 22 weeks was used to compare the immunogenicity at the same age after receiving the full vaccine series. Safety was assessed for the duration of study participation. This study is registered with ClinicalTrials.gov, NCT02847026. FINDINGS Between Sept 1 and Dec 8, 2016, a total of 1144 infants were randomly assigned to either the RotaTeq arm (n=571) or Rotarix arm (n=573); 1080 infants (531 in the RotaTeq arm and 549 in the Rotarix arm) completed the study. Rotavirus IgA seroconversion 4 weeks after the full series occurred in 390 (73%) of 531 infants age 18 weeks in the RotaTeq arm and 354 (64%) of 549 infants age 14 weeks in the Rotarix arm (p=0·01). At age 14 weeks, 4 weeks after two doses, RotaTeq recipients had lower seroconversion than Rotarix recipients (268 [50%] of 531 vs 354 [64%] of 549; p<0·0001). However, at age 22 weeks, RotaTeq recipients had higher seroconversion than Rotarix recipients (394 [74%] of 531 vs 278 [51%] of 549; p<0·0001). Among RotaTeq recipients, seroconversion 4 weeks after the third dose was higher than after the second dose (390 [73%] of 531 vs 268 [50%] of 531; p<0·0001]. In the RotaTeq arm, rotavirus IgA seroconversion was lower in non-secretors than in secretors at ages 14 weeks (p=0·08), 18 weeks (p=0·01), and 22 weeks (p=0·02). Similarly, in the Rotarix arm, rotavirus IgA seroconversion was lower in non-secretors than in secretors at ages 14 weeks (p=0·02) and 22 weeks (p=0·01). 65 (11%) of 571 infants had adverse events in the RotaTeq arm compared with 63 (11%) of 573 infants in the Rotarix arm; no adverse events were attributed to the use of either vaccine. One death due to aspiration occurred in the RotaTeq arm, which was not related to the vaccine. INTERPRETATION RotaTeq induced a higher magnitude and longer duration of rotavirus IgA response than Rotarix in this high child mortality setting. Additional vaccination strategies should be evaluated to overcome the suboptimal performance of current oral rotavirus vaccines in these settings. FUNDING US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
| | - Xiaoqian Wang
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Abhijeet Anand
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Md Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Asma B Aziz
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Warda Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Umesh Parashar
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Zufan Sisay
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Heidi M Soeters
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terri B Hyde
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Baoming Jiang
- US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Khalequ Zaman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
16
|
Vielot NA, François R, Huseynova E, González F, Reyes Y, Gutierrez L, Nordgren J, Toval-Ruiz C, Vilchez S, Vinjé J, Becker-Dreps S, Bucardo F. Association between breastfeeding, host genetic factors, and calicivirus gastroenteritis in a Nicaraguan birth cohort. PLoS One 2022; 17:e0267689. [PMID: 36240197 PMCID: PMC9565698 DOI: 10.1371/journal.pone.0267689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Norovirus and sapovirus are important causes of childhood acute gastroenteritis (AGE). Breastfeeding prevents AGE generally; however, it is unknown if breastfeeding prevents AGE caused specifically by norovirus and sapovirus. METHODS We investigated the association between breastfeeding and norovirus or sapovirus AGE episodes in a birth cohort. Weekly data on breastfeeding and AGE episodes were captured during the first year of life. Stools were collected from children with AGE and tested by RT-qPCR for norovirus and sapovirus. Time-dependent Cox models estimated associations between weekly breastfeeding and time to first norovirus or sapovirus AGE. FINDINGS From June 2017 to July 2018, 444 newborns were enrolled in the study. In the first year of life, 69 and 34 children experienced a norovirus and a sapovirus episode, respectively. Exclusive breastfeeding lasted a median of 2 weeks, and any breastfeeding lasted a median of 43 weeks. Breastfeeding in the last week did not prevent norovirus (HR: 1.09, 95% CI: 0.62, 1.92) or sapovirus (HR: 1.00, 95% CI: 0.82, 1.21) AGE in a given week, adjusting for household sanitation, consumption of high-risk foods, and mother's and child's histo-blood group phenotypes. Maternal secretor-positive phenotype was protective against norovirus AGE, whereas child's secretor-positive phenotype was a risk factor for norovirus AGE. INTERPRETATION Exclusive breastfeeding in this population was short-lived, and no conclusions could be drawn about its potential to prevent norovirus or sapovirus AGE. Non-exclusive breastfeeding did not prevent norovirus or sapovirus AGE in the first year of life. However, maternal secretor-positive phenotype was associated with a reduced hazard of norovirus AGE.
Collapse
Affiliation(s)
- Nadja Alexandra Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ruthly François
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Emilya Huseynova
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Fredman González
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Yaoska Reyes
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Lester Gutierrez
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Johan Nordgren
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christian Toval-Ruiz
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Samuel Vilchez
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Filemon Bucardo
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| |
Collapse
|
17
|
Vielot NA, Reyes Y, Blette B, González F, Toval-Ruiz C, Gutiérrez L, Vílchez S, Diez-Valcarce M, Vinjé J, Becker-Dreps S, Bucardo F. First Episodes of Norovirus and Sapovirus Gastroenteritis Protect Against Subsequent Episodes in a Nicaraguan Birth Cohort. Epidemiology 2022; 33:650-653. [PMID: 35700200 PMCID: PMC9378628 DOI: 10.1097/ede.0000000000001500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Norovirus and sapovirus cause a large burden of acute gastroenteritis (AGE) in young children. We assessed protection conferred by norovirus and sapovirus AGE episodes against future episodes. METHODS Between June 2017 and July 2018, we recruited 444 newborns in León, Nicaragua. Weekly household surveys identified AGE episodes over 36 months, and AGE stools were tested by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) for norovirus genogroup (G)I/GII and sapovirus. We used recurrent-event Cox models and negative control methods to estimate protection conferred by first episodes, controlling for observed and unobserved risk factors, respectively. RESULTS Sapovirus episodes conferred a 69% reduced hazard of subsequent episodes using the negative control method. Norovirus GI (hazard ratio [HR] = 0.67; 95% confidence interval [CI] = 0.31, 1.3) and GII (HR = 0.20; 95% CI = 0.04, 0.44) episodes also appeared highly protective. Protection against norovirus GII was enhanced following two episodes. CONCLUSIONS Evidence of natural immunity in early childhood provides optimism for the future success of pediatric norovirus and sapovirus vaccines.
Collapse
Affiliation(s)
- Nadja A. Vielot
- Department of Family Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yaoska Reyes
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua – León. León, Nicaragua
| | - Bryan Blette
- Department of Biostatistics, University of North Carolina. Chapel Hill, North Carolina, USA
| | - Fredman González
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua – León. León, Nicaragua
| | - Christian Toval-Ruiz
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua – León. León, Nicaragua
| | - Lester Gutiérrez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua – León. León, Nicaragua
| | - Samuel Vílchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua – León. León, Nicaragua
| | - Marta Diez-Valcarce
- Division of Viral Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
- Emory University, Rollins School of Public Health, Atlanta, GA, USA
| | - Jan Vinjé
- Division of Viral Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Filemón Bucardo
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua – León. León, Nicaragua
| |
Collapse
|
18
|
Qin R, Meng G, Pushalkar S, Carlock MA, Ross TM, Vogel C, Mahal LK. Prevaccination Glycan Markers of Response to an Influenza Vaccine Implicate the Complement Pathway. J Proteome Res 2022; 21:1974-1985. [PMID: 35757850 PMCID: PMC9361353 DOI: 10.1021/acs.jproteome.2c00251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A key to improving vaccine design and vaccination strategy is to understand the mechanism behind the variation of vaccine response with host factors. Glycosylation, a critical modulator of immunity, has no clear role in determining vaccine responses. To gain insight into the association between glycosylation and vaccine-induced antibody levels, we profiled the pre- and postvaccination serum protein glycomes of 160 Caucasian adults receiving the FLUZONE influenza vaccine during the 2019-2020 influenza season using lectin microarray technology. We found that prevaccination levels of Lewis A antigen (Lea) are significantly higher in nonresponders than responders. Glycoproteomic analysis showed that Lea-bearing proteins are enriched in complement activation pathways, suggesting a potential role of glycosylation in tuning the activities of complement proteins, which may be implicated in mounting vaccine responses. In addition, we observed a postvaccination increase in sialyl Lewis X antigen (sLex) and a decrease in high mannose glycans among high responders, which were not observed in nonresponders. These data suggest that the immune system may actively modulate glycosylation as part of its effort to establish effective protection postvaccination.
Collapse
Affiliation(s)
- Rui Qin
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Guanmin Meng
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Smruti Pushalkar
- Center
for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, United States
| | - Michael A. Carlock
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30602, United States
| | - Ted M. Ross
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30602, United States
| | - Christine Vogel
- Center
for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, United States
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
19
|
El-Heneidy A, Cheung C, Lambert SB, Wang CYT, Whiley DM, Sly PD, Ware RS, Grimwood K. Histo-blood group antigens and rotavirus vaccine virus shedding in Australian infants. Pathology 2022; 54:928-934. [PMID: 35817636 DOI: 10.1016/j.pathol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022]
Abstract
Rotavirus vaccine performance varies between high and low income countries. One possible explanation is inherited histo-blood group antigens (HBGAs) the expression of which differs between populations. HBGAs are polymorphic glycans on mucosal surfaces. Their presence indicates the secretor phenotype, while their absence identifies a non-secretor status. HBGAs can act as rotavirus receptors and might influence live-attenuated rotavirus vaccine virus replication and shedding. Studies in low and middle income countries of the human rotavirus vaccine Rotarix (RV1), suggest HBGA secretor phenotype is important for vaccine immunogenicity. We investigated in a high income country the association between HBGA phenotype (secretor and Lewis) and the bovine-human reassortment vaccine RotaTeq (RV5) vaccine shedding in the stools of infants following each vaccine dose. Eighty-two infants from an Australian birth cohort provided saliva and weekly stool samples after RV5 vaccination doses. Lewis and secretor HBGA phenotyping was identified from saliva samples and confirmed by genotyping. Vaccine virus strains were detected by real-time polymerase chain reaction assays. No significant association between secretor status and vaccine virus shedding was identified. The proportion of infants who shed rotavirus following the first RV5 dose for secretor and non-secretor infants was 57/64 (89%) and 17/18 (94%), respectively, decreasing to 24/64 (33%) and 9/18 (50%) after the second dose and 26/64 (42%) and 8/18 (44%) following the third vaccine dose, respectively. Similarly, no significant differences were observed in vaccine virus shedding by Lewis, or combined Lewis and secretor status, after each vaccine dose. We found HBGAs were not associated with RV5 vaccine virus shedding in Australian infants.
Collapse
Affiliation(s)
- Asmaa El-Heneidy
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Qld, Australia.
| | - Catherine Cheung
- Children's Health Queensland Hospital and Health Service, South Brisbane, Qld, Australia; Child Heath Research Centre, The University of Queensland, South Brisbane, Qld, Australia
| | - Stephen B Lambert
- Child Heath Research Centre, The University of Queensland, South Brisbane, Qld, Australia
| | - Claire Y T Wang
- Children's Health Queensland Hospital and Health Service, South Brisbane, Qld, Australia; Child Heath Research Centre, The University of Queensland, South Brisbane, Qld, Australia
| | - David M Whiley
- The University of Queensland Centre for Clinical Research, and Pathology Queensland Central Laboratory, Herston, Qld, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld, Australia
| | - Robert S Ware
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Qld, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Qld, Australia; Departments of Paediatrics and Infectious Diseases, Gold Coast Health, Southport, Qld, Australia
| |
Collapse
|
20
|
The Importance of Secretor-Status in Norovirus Infection Following Allogeneic Hematopoietic Stem Cell Transplantation. Viruses 2022; 14:v14071350. [PMID: 35891335 PMCID: PMC9318794 DOI: 10.3390/v14071350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Background. Human secretor-status is a strong susceptibility factor for norovirus infection in immunocompetent people. The predominant norovirus genotype GII.4 almost exclusively infects secretors and is also associated with more severe symptoms. However, it is not known to what extent this also applies to immunocompromised individuals. Our objective was to determine the importance of secretor-status and norovirus genotype for the susceptibility and/or the clinical course of norovirus infection in allogeneic hematopoietic stem cell transplant (HCT) patients. Methods: This was a retrospective study of 89 HCT patients diagnosed with norovirus infection. Secretor-status and norovirus genotype were determined using stored extracted DNA or blood (n = 89) and fecal samples (n = 22), respectively. Results: Seven of eighty-nine (8%) of the patients were secretor-negative, a small proportion compared to the expected rate of at least 20% non-secretors in the general Swedish population. Among the genotyped samples, norovirus genotype GII.4 was predominant (n = 12) and only detected in secretor-positive individuals. Patients with norovirus GII.4 had a median symptom duration of 36 (3–681) days compared to 15 (1–94) days in patients infected with other norovirus genotypes (n = 10, p = 0.1). Conclusions: The results suggest that secretor-status affects the susceptibility to norovirus infection even when the immune system is severely compromised. The norovirus genotype may also be a risk factor for chronic norovirus symptoms in immunocompromised patients.
Collapse
|
21
|
Ahmed S, Iqbal J, Sadiq K, Umrani F, Rizvi A, Kabir F, Jamil Z, Syed S, Ehsan L, Zulqarnain F, Sajid M, Hotwani A, Rahman N, Ma JZ, McNeal M, Ann Costa Clemens S, Talat Iqbal N, Moore SR, Ali A. Association of Anti-Rotavirus IgA Seroconversion with Growth, Environmental Enteric Dysfunction and Enteropathogens in Rural Pakistani Infants. Vaccine 2022; 40:3444-3451. [PMID: 35534310 PMCID: PMC9168439 DOI: 10.1016/j.vaccine.2022.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The underperformance of oral vaccines in children of low- and middle-income countries is partly attributable to underlying environmental enteric dysfunction (EED). METHODOLOGY We conducted a longitudinal, community-based study to evaluate the association of oral rotavirus vaccine (Rotarix®) seroconversion with growth anthropometrics, EED biomarkers and intestinal enteropathogens in Pakistani infants. Children were enrolled between three to six months of their age based on their nutritional status. We measured serum anti-rotavirus immunoglobulin A (IgA) at enrollment and nine months of age with EED biomarkers and intestinal enteropathogens. RESULTS A total of 391 infants received two doses of rotavirus (RV) vaccine. 331/391 provided paired blood samples. Of these 331 children, 45% seroconverted at 9 months of age, 35% did not seroconvert and 20% were seropositive at baseline. Non-seroconverted children were more likely to be stunted, wasted and underweight at enrollment. In univariate analysis, insulin-like growth factor (IGF) concentration at 6 months were higher in seroconverters, median (25th, 75th percentile): 26.3 (16.5, 43.5) ng/ml vs. 22.5 (13.6, 36.3) ng/ml for non-seroconverters, p-value = 0.024. At nine months, fecal myeloperoxidase (MPO) concentrations were significantly lower in seroconverters, 3050(1250, 7587) ng/ml vs. 4623.3 (2189, 11650) ng/ml in non-seroconverted children, p-value = 0.017. In multivariable logistic regression analysis, alpha-1 acid glycoprotein (AGP) and IGF-1 concentrations were positively associated with seroconversion at six months. The presence of sapovirus and rotavirus in fecal samples at the time of rotavirus administration, was associated with non-seroconversion and seroconversion, respectively. CONCLUSION We detected high baseline RV seropositivity and impaired RV vaccine immunogenicity in this high-risk group of children. Healthy growth, serum IGF-1 and AGP, and fecal shedding of rotavirus were positively associated with RV IgA seroconversion following immunization, whereas the presence of sapovirus was more common in non-seroconverters. TRIAL REGISTRATION Clinical Trials ID: NCT03588013.
Collapse
Affiliation(s)
- Sheraz Ahmed
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan; Institute for Global Health, University of Siena, Italy.
| | - Junaid Iqbal
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan; Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Kamran Sadiq
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Fayaz Umrani
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Arjumand Rizvi
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Furqan Kabir
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Zehra Jamil
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Sana Syed
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Lubaina Ehsan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Fatima Zulqarnain
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Muhammed Sajid
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Najeeb Rahman
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, USA.
| | - Monica McNeal
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA.
| | | | - Najeeha Talat Iqbal
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Sean R Moore
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Asad Ali
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
22
|
Sadiq A, Bostan N, Aziz A. Effect of rotavirus genetic diversity on vaccine impact. Rev Med Virol 2022; 32:e2259. [PMID: 34997676 DOI: 10.1002/rmv.2259] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/05/2021] [Indexed: 11/07/2022]
Abstract
Group A rotaviruses (RVAs) are the leading cause of gastroenteritis, causing 0.2 million deaths and several million hospitalisations globally each year. Four rotavirus vaccines (RotarixTM , RotaTeqTM , Rotavac® and ROTASIIL® ) have been pre-qualified by the World Health Organization (WHO), but the two newly pre-qualified vaccines (Rotavac® and ROTASIIL® ) are currently only in use in Palestine and India, respectively. In 2009, WHO strongly proposed that rotavirus vaccines be included in the routine vaccination schedule of all countries around the world. By the end of 2019, a total of 108 countries had administered rotavirus vaccines, and 10 countries have currently been approved by Gavi for the introduction of rotavirus vaccine in the near future. With 39% of global coverage, rotavirus vaccines have had a substantial effect on diarrhoeal morbidity and mortality in different geographical areas, although efficacy appears to be higher in high income settings. Due to the segmented RNA genome, the pattern of RVA genotypes in the human population is evolving through interspecies transmission and/or reassortment events for which the vaccine might be less effective in the future. However, despite the relative increase in some particular genotypes after rotavirus vaccine use, the overall efficacy of rotavirus mass vaccination worldwide has not been affected. Some of the challenges to improve the effect of current rotavirus vaccines can be solved in the future by new rotavirus vaccines and by vaccines currently in progress.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, Molecular Virology Laboratory, COMSATS University, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, Molecular Virology Laboratory, COMSATS University, Islamabad, Pakistan
| | - Aamir Aziz
- Sarhad University of Science and Information Technology, Institute of Biological Sciences, Sarhad University, Peshawar, Pakistan
| |
Collapse
|
23
|
Peña-Gil N, Santiso-Bellón C, Gozalbo-Rovira R, Buesa J, Monedero V, Rodríguez-Díaz J. The Role of Host Glycobiology and Gut Microbiota in Rotavirus and Norovirus Infection, an Update. Int J Mol Sci 2021; 22:13473. [PMID: 34948268 PMCID: PMC8704558 DOI: 10.3390/ijms222413473] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rotavirus (RV) and norovirus (NoV) are the leading causes of acute gastroenteritis (AGE) worldwide. Several studies have demonstrated that histo-blood group antigens (HBGAs) have a role in NoV and RV infections since their presence on the gut epithelial surfaces is essential for the susceptibility to many NoV and RV genotypes. Polymorphisms in genes that code for enzymes required for HBGAs synthesis lead to secretor or non-secretor and Lewis positive or Lewis negative individuals. While secretor individuals appear to be more susceptible to RV infections, regarding NoVs infections, there are too many discrepancies that prevent the ability to draw conclusions. A second factor that influences enteric viral infections is the gut microbiota of the host. In vitro and animal studies have determined that the gut microbiota limits, but in some cases enhances enteric viral infection. The ways that microbiota can enhance NoV or RV infection include virion stabilization and promotion of virus attachment to host cells, whereas experiments with microbiota-depleted and germ-free animals point to immunoregulation as the mechanism by which the microbiota restrict infection. Human trials with live, attenuated RV vaccines and analysis of the microbiota in responder and non-responder individuals also allowed the identification of bacterial taxa linked to vaccine efficacy. As more information is gained on the complex relationships that are established between the host (glycobiology and immune system), the gut microbiota and intestinal viruses, new avenues will open for the development of novel anti-NoV and anti-RV therapies.
Collapse
Affiliation(s)
- Nazaret Peña-Gil
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Vicente Monedero
- Department of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain;
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| |
Collapse
|
24
|
Parker EPK, Bronowski C, Sindhu KNC, Babji S, Benny B, Carmona-Vicente N, Chasweka N, Chinyama E, Cunliffe NA, Dube Q, Giri S, Grassly NC, Gunasekaran A, Howarth D, Immanuel S, Jere KC, Kampmann B, Lowe J, Mandolo J, Praharaj I, Rani BS, Silas S, Srinivasan VK, Turner M, Venugopal S, Verghese VP, Darby AC, Kang G, Iturriza-Gómara M. Impact of maternal antibodies and microbiota development on the immunogenicity of oral rotavirus vaccine in African, Indian, and European infants. Nat Commun 2021; 12:7288. [PMID: 34911947 PMCID: PMC8674366 DOI: 10.1038/s41467-021-27074-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Identifying risk factors for impaired oral rotavirus vaccine (ORV) efficacy in low-income countries may lead to improvements in vaccine design and delivery. In this prospective cohort study, we measure maternal rotavirus antibodies, environmental enteric dysfunction (EED), and bacterial gut microbiota development among infants receiving two doses of Rotarix in India (n = 307), Malawi (n = 119), and the UK (n = 60), using standardised methods across cohorts. We observe ORV shedding and seroconversion rates to be significantly lower in Malawi and India than the UK. Maternal rotavirus-specific antibodies in serum and breastmilk are negatively correlated with ORV response in India and Malawi, mediated partly by a reduction in ORV shedding. In the UK, ORV shedding is not inhibited despite comparable maternal antibody levels to the other cohorts. In both India and Malawi, increased microbiota diversity is negatively correlated with ORV immunogenicity, suggesting that high early-life microbial exposure may contribute to impaired vaccine efficacy.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Female
- Gastrointestinal Microbiome
- Humans
- Immunity, Maternally-Acquired
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- India
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/blood
- Infant, Newborn, Diseases/microbiology
- Infant, Newborn, Diseases/prevention & control
- Infant, Newborn, Diseases/virology
- Malawi
- Male
- Milk, Human/chemistry
- Milk, Human/immunology
- Pregnancy
- Prospective Studies
- Rotavirus/genetics
- Rotavirus/immunology
- Rotavirus/physiology
- Rotavirus Infections/blood
- Rotavirus Infections/microbiology
- Rotavirus Infections/prevention & control
- Rotavirus Infections/virology
- Rotavirus Vaccines/administration & dosage
- Rotavirus Vaccines/immunology
- United Kingdom
- Vaccine Efficacy
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Virus Shedding
Collapse
Affiliation(s)
- Edward P K Parker
- The Vaccine Centre, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Christina Bronowski
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | | | - Sudhir Babji
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Blossom Benny
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Noelia Carmona-Vicente
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Nedson Chasweka
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - End Chinyama
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Queen Dube
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - Sidhartha Giri
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Annai Gunasekaran
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Deborah Howarth
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sushil Immanuel
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Khuzwayo C Jere
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
- Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre, 3, Malawi
| | - Beate Kampmann
- The Vaccine Centre, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jenna Lowe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jonathan Mandolo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - Ira Praharaj
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - Sophia Silas
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Vivek Kumar Srinivasan
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Mark Turner
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L8 7SS, UK
| | - Srinivasan Venugopal
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Valsan Philip Verghese
- Department of Child Health, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Miren Iturriza-Gómara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK.
- Centre for Vaccine Innovation and Access, PATH, Geneva, Switzerland.
| |
Collapse
|
25
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
26
|
Hofstetter RK, Schulig L, Bethmann J, Grimm M, Sager M, Aude P, Keßler R, Kim S, Weitschies W, Link A. Supercritical fluid extraction-supercritical fluid chromatography of saliva: Single-quadrupole mass spectrometry monitoring of caffeine for gastric emptying studies †. J Sep Sci 2021; 44:3700-3716. [PMID: 34355502 DOI: 10.1002/jssc.202100443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13 C- and 32 S-labeled internal standards with external standard calibration confirmed the superiority of stable isotope-labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2 = 0.945). In contrast to off-line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2 -based extraction and separation techniques for potentially infective biomatrices.
Collapse
Affiliation(s)
- Robert K Hofstetter
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Jonas Bethmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Maximilian Sager
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Philipp Aude
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rebecca Keßler
- Department of Diagnostic Radiology and Neuroradiology, University Hospital Greifswald, Greifswald, Germany
| | - Simon Kim
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Sharma S, Nordgren J. Effect of Infant and Maternal Secretor Status on Rotavirus Vaccine Take-An Overview. Viruses 2021; 13:1144. [PMID: 34198720 PMCID: PMC8232156 DOI: 10.3390/v13061144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Histo-blood group antigens, which are present on gut epithelial surfaces, function as receptors or attachment factors and mediate susceptibility to rotavirus infection. The major determinant for susceptibility is a functional FUT2 enzyme which mediates the presence of α-1,2 fucosylated blood group antigens in mucosa and secretions, yielding the secretor-positive phenotype. Secretors are more susceptible to infection with predominant rotavirus genotypes, as well as to the commonly used live rotavirus vaccines. Difference in susceptibility to the vaccines is one proposed factor for the varying degree of efficacy observed between countries. Besides infection susceptibility, secretor status has been found to modulate rotavirus specific antibody levels in adults, as well as composition of breastmilk in mothers and microbiota of the infant, which are other proposed factors affecting rotavirus vaccine take. Here, the known and possible effects of secretor status in both infant and mother on rotavirus vaccine take are reviewed and discussed.
Collapse
Affiliation(s)
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Clinical and Biomedical Sciences, Linköping University, 58183 Linköping, Sweden;
| |
Collapse
|
28
|
Tokuhara D, Hikita N. Cord Blood-Based Approach to Assess Candidate Vaccine Adjuvants Designed for Neonates and Infants. Vaccines (Basel) 2021; 9:vaccines9020095. [PMID: 33514054 PMCID: PMC7911524 DOI: 10.3390/vaccines9020095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Neonates and infants are particularly susceptible to infections, for which outcomes tend to be severe. Vaccination is a key strategy for preventing infectious diseases, but the protective immunity achieved through vaccination typically is weaker in infants than in healthy adults. One possible explanation for the poor acquisition of vaccine-induced immunity in infants is that their innate immune response, represented by toll-like receptors, is immature. The current system for developing pediatric vaccines relies on the confirmation of their safety and effectiveness in studies involving the use of mature animals or adult humans. However, creating vaccines for neonates and infants requires an understanding of their uniquely immature innate immunity. Here we review current knowledge regarding the innate immune system of neonates and infants and challenges in developing vaccine adjuvants for those children through analyses of cord blood.
Collapse
|
29
|
Wang JX, Chen LN, Zhang CJ, Zhou HL, Zhang YH, Zhang XJ, Hao ZY, Qiu C, Ma JC, Zhao YL, Zhong W, Tan M, Jiang X, Wang SM, Wang XY. Genetic susceptibility to rotavirus infection in Chinese children: a population-based case-control study. Hum Vaccin Immunother 2020; 17:1803-1810. [PMID: 33295824 DOI: 10.1080/21645515.2020.1835121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses (RVs) are the leading cause of acute gastroenteritis in children, while histo-blood group antigens (HBGAs) are believed to be host attachment and susceptibility factors of RVs. A large case-control study nested in a population-based diarrhea surveillance targeting children <5 y of age was performed in rural Hebei province, north China. Saliva and serum samples were collected from all participants to determine HBGA phenotyping, FUT2 mutations, and RV IgG antibody titers. A logistic model was employed to assess the association between host HBGA secretor status and risk of RV infection. Among 235 RV cases and 680 non-diarrhea controls studied, 82.4% of participants were IgG positive by an average age of 77 months. Out of the 235 RV cases, 216 (91.9%) were secretors, whereas the secretor rate was 76.3% in the non-diarrhea controls, resulted in an adjusted OR of 3.0 (95%CI: 1.9-4.7, P < .0001) between the two groups. Our population-based case-control study indicated a strong association between host HBGA secretor status and risk of RV infection in Chinese children. The high prevalence of Lewis-positive secretor status strongly suggests that Chinese children may be genetically susceptible to current co-circulating RV strains, and thus, a universal childhood immunization program against RV disease should be successful in China.
Collapse
Affiliation(s)
- Jin-Xia Wang
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Li-Na Chen
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Can-Jing Zhang
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hong-Lu Zhou
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yan-Hong Zhang
- Department of Hepatitis, Zhengding County Center for Disease Control and Prevention, Zhengding, People's Republic of China
| | - Xin-Jiang Zhang
- Department of Hepatitis, Zhengding County Center for Disease Control and Prevention, Zhengding, People's Republic of China
| | - Zhi-Yong Hao
- Department of Hepatitis, Zhengding County Center for Disease Control and Prevention, Zhengding, People's Republic of China
| | - Chao Qiu
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jing-Chen Ma
- Vaccine Clinical Research Institute,Hebei Province Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Yu-Liang Zhao
- Vaccine Clinical Research Institute,Hebei Province Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Weiming Zhong
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati, College of Medicine, Cincinnati, OH, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati, College of Medicine, Cincinnati, OH, OH, USA
| | - Song-Mei Wang
- Laboratory of Molecular Biology, Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xuan-Yi Wang
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Children's Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
30
|
FUT2 Secretor Status Influences Susceptibility to VP4 Strain-Specific Rotavirus Infections in South African Children. Pathogens 2020; 9:pathogens9100795. [PMID: 32992488 PMCID: PMC7601103 DOI: 10.3390/pathogens9100795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
Gastroenteritis is a preventable cause of morbidity and mortality worldwide. Rotavirus vaccination has significantly reduced the disease burden, but the sub-optimal vaccine efficacy observed in low-income regions needs improvement. Rotavirus VP4 'spike' proteins interact with FUT2-defined, human histo-blood group antigens on mucosal surfaces, potentially influencing strain circulation and the efficacy of P[8]-based rotavirus vaccines. Secretor status was investigated in 500 children <5 years-old hospitalised with diarrhoea, including 250 previously genotyped rotavirus-positive cases (P[8] = 124, P[4] = 86, and P[6] = 40), and 250 rotavirus-negative controls. Secretor status genotyping detected the globally prevalent G428A single nucleotide polymorphism (SNP) and was confirmed by Sanger sequencing in 10% of participants. The proportions of secretors in rotavirus-positive cases (74%) were significantly higher than in the rotavirus-negative controls (58%; p < 0.001). The rotavirus genotypes P[8] and P[4] were observed at significantly higher proportions in secretors (78%) than in non-secretors (22%), contrasting with P[6] genotypes with similar proportions amongst secretors (53%) and non-secretors (47%; p = 0.001). This suggests that rotavirus interacts with secretors and non-secretors in a VP4 strain-specific manner; thus, secretor status may partially influence rotavirus VP4 wild-type circulation and P[8] rotavirus vaccine efficacy. The study detected a mutation (rs1800025) ~50 bp downstream of the G428A SNP that would overestimate non-secretors in African populations when using the TaqMan® SNP Genotyping Assay.
Collapse
|
31
|
Loureiro Tonini MA, Pires Gonçalves Barreira DM, Bueno de Freitas Santolin L, Bondi Volpini LP, Gagliardi Leite JP, Le Moullac-Vaidye B, Le Pendu J, Cruz Spano L. FUT2, Secretor Status and FUT3 Polymorphisms of Children with Acute Diarrhea Infected with Rotavirus and Norovirus in Brazil. Viruses 2020; 12:E1084. [PMID: 32992989 PMCID: PMC7600990 DOI: 10.3390/v12101084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 01/22/2023] Open
Abstract
Host susceptibility according to human histo-blood group antigens (HBGAs) is widely known for norovirus infection, but is less described for rotavirus. Due to the variable HBGA polymorphism among populations, we aimed to evaluate the association between HBGA phenotypes (ABH, Lewis and secretor status) and susceptibility to rotavirus and norovirus symptomatic infection, and the polymorphisms of FUT2 and FUT3, of children from southeastern Brazil. Paired fecal-buccal specimens from 272 children with acute diarrhea were used to determine rotavirus/norovirus genotypes and HBGAs phenotypes/genotypes, respectively. Altogether, 100 (36.8%) children were infected with rotavirus and norovirus. The rotavirus P[8] genotype predominates (85.7%). Most of the noroviruses (93.8%) belonged to genogroup II (GII). GII.4 Sydney represented 76% (35/46) amongst five other genotypes. Rotavirus and noroviruses infected predominantly children with secretor status (97% and 98.5%, respectively). However, fewer rotavirus-infected children were Lewis-negative (8.6%) than the norovirus-infected ones (18.5%). FUT3 single nucleotide polymorphisms (SNP) occurred mostly at the T59G > G508A > T202C > C314T positions. Our results reinforce the current knowledge that secretors are more susceptible to infection by both rotavirus and norovirus than non-secretors. The high rate for Lewis negative (17.1%) and the combination of SNPs, beyond the secretor status, may reflect the highly mixed population in Brazil.
Collapse
Affiliation(s)
- Marco André Loureiro Tonini
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - Débora Maria Pires Gonçalves Barreira
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - Luciana Bueno de Freitas Santolin
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - Lays Paula Bondi Volpini
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro 4365, RJ, Brazil;
| | | | - Jacques Le Pendu
- CRCINA, Inserm, Université de Nantes, F-44000 Nantes, France; (B.L.M.-V.); (J.L.P.)
| | - Liliana Cruz Spano
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| |
Collapse
|
32
|
Cantelli CP, Fumian TM, Malta FC, da Cunha DC, Brasil P, Nordgren J, Svensson L, Miagostovich MP, de Moraes MTB, Leite JPG. Norovirus infection and HBGA host genetic susceptibility in a birth community-cohort, Rio de Janeiro, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 82:104280. [PMID: 32165242 DOI: 10.1016/j.meegid.2020.104280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/29/2022]
Abstract
Norovirus has emerged as an important viral agent of acute pediatric gastroenteritis, with a growing genetic diversity reported in the last decades. Histo-blood group antigens (HBGAs) present on the surface of enterocytes are susceptibility factors for norovirus infection and differ between populations which could affects the epidemiology and evolution of these viruses. This study investigated the frequency, incidence and genetic diversity of noroviruses in a cohort of rotavirus A vaccinated children in association to the host HBGA (Secretor/Lewis) genetic susceptibility profile. Norovirus genogroups I and II (GI/GII) were screened by RT-qPCR in 569 stool samples from 132 children followed-up from birth to 11 months of age during 2014--2018. Noroviruses were identified in 21.2% of children enrolled in this study, with a norovirus detection rate of 5.6% (32/569), in 17.1% and 4.7% of acute diarrheic episodes (ADE) and non-ADE, respectively. The norovirus incidence was 5.8 infections per 100 child-months. Partial nucleotide sequencing characterized six different norovirus genotypes, with GII.4 Sydney 2012 being detected in 50% associated with three different polymerase genotypes (GII·P31, GII·P16 and GII·P4 New Orleans 2009). FUT3 genotyping was yielded seven new mutations in this population. A significant association between symptomatic norovirus infection and secretor profile could be inferred.
Collapse
Affiliation(s)
- Carina Pacheco Cantelli
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil; Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Fábio Correia Malta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Denise Cotrim da Cunha
- Sérgio Arouca Public Health National School, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Patricia Brasil
- Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Cantelli CP, Velloso AJ, Assis RMSD, Barros JJ, Mello FCDA, Cunha DCD, Brasil P, Nordgren J, Svensson L, Miagostovich MP, Leite JPG, Moraes MTBD. Rotavirus A shedding and HBGA host genetic susceptibility in a birth community-cohort, Rio de Janeiro, Brazil, 2014-2018. Sci Rep 2020; 10:6965. [PMID: 32332841 PMCID: PMC7181595 DOI: 10.1038/s41598-020-64025-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/19/2020] [Indexed: 11/18/2022] Open
Abstract
Recent studies have investigated whether the human histo-blood group antigen (HBGAs) could affect the effectiveness of the oral rotavirus vaccines, suggesting secretor positive individuals develop a more robust response. We investigated the Rotavirus A (RVA) shedding in association with the host susceptibility profile in children from a birth community-cohort in Rio de Janeiro, Brazil, from 2014 to 2018. A total of 132 children were followed-up between 0 to 11-month-old, stool samples were collected before/after the 1st/2nd RV1 vaccination doses and saliva samples were collected during the study. RVA shedding was screened by RT-qPCR and G/P genotypes determined by multiplex RT-PCR and/or Sanger nucleotide sequencing. The sequencing indicated an F167L amino acid change in the RV1 VP8* P[8] in 20.5% of shedding follow-ups and these mutant subpopulations were quantified by pyrosequencing. The HBGA/secretor status was determined and 80.3% of the children were secretors. Twenty-one FUT2 gene SNPs were identified and two new mutations were observed. The mutant F167L RV1 VP8* P[8] was detected significantly more in Le (a+b+) secretors (90.5%) compared to non-secretors and even to secretors Le (a-b+) (9.5%). The study highlights the probable association between RV1 shedding and HBGAs as a marker for evaluating vaccine strain host susceptibility.
Collapse
Affiliation(s)
- Carina Pacheco Cantelli
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Alvaro Jorge Velloso
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - José Júnior Barros
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | | | - Denise Cotrim da Cunha
- Sérgio Arouca National School of Public Health, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Patricia Brasil
- Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Epidemiology and HBGA-susceptibility investigation of a G9P[8] rotavirus outbreak in a school in Lechang, China. Arch Virol 2020; 165:1311-1320. [PMID: 32253617 DOI: 10.1007/s00705-020-04608-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
Rotaviruses cause severe gastroenteritis in infants, in which the viruses interact with human histo-blood group antigens (HBGAs) as attachment and host susceptibility factors. While gastroenteritis outbreaks caused by rotaviruses are uncommon in adolescents, we reported here one that occurred in a middle school in China. Rectal swabs and saliva samples were collected from symptomatic and asymptomatic students, and samples were also collected from the environment. Using PCR, followed by DNA sequencing, a single G9P[8] rotavirus strain was identified as the causative agent. The attack rate of the outbreak was 13.5% for boarders, which was significantly higher than that of day students (1.8%). Person-to-person transmission was the most plausible transmission mode. The HBGA phenotypes of the individuals in the study were determined by enzyme immunoassay, using saliva samples, while recombinant VP8* protein of the causative rotavirus strain was produced for HBGA binding assays to evaluate the host susceptibility. Our data showed that secretor individuals had a significantly higher risk of infection than nonsecretors. Accordingly, the VP8* protein bound nearly all secretor saliva samples, but not those of nonsecretors, explaining the observed infection of secretor individuals only. This is the first single-outbreak-based investigation showing that P[8] rotavirus infected only secretors. Our investigation also suggests that health education of school students is an important countermeasure against an outbreak of communicable disease.
Collapse
|
35
|
The Impact of Human Genetic Polymorphisms on Rotavirus Susceptibility, Epidemiology, and Vaccine Take. Viruses 2020; 12:v12030324. [PMID: 32192193 PMCID: PMC7150750 DOI: 10.3390/v12030324] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022] Open
Abstract
Innate resistance to viral infections can be attributed to mutations in genes involved in the immune response, or to the receptor/ligand. A remarkable example of the latter is the recently described Mendelian trait resistance to clinically important and globally predominating genotypes of rotavirus, the most common agent of severe dehydrating gastroenteritis in children worldwide. This resistance appears to be rotavirus genotype-dependent and is mainly mediated by histo-blood group antigens (HBGAs), which function as a receptor or attachment factors on gut epithelial surfaces. HBGA synthesis is mediated by fucosyltransferases and glycosyltransferases under the genetic control of the FUT2 (secretor), FUT3 (Lewis), and ABO (H) genes on chromosome 19. Significant genotypic and phenotypic diversity of HBGA expression exists between different human populations. This genetic diversity has an effect on genotype-specific susceptibility, molecular epidemiology, and vaccine take. Here, we will discuss studies on genetic susceptibility to rotavirus infection and place them in the context of population susceptibility, rotavirus epidemiology, vaccine take, and public health impact.
Collapse
|
36
|
Boniface K, Byars SG, Cowley D, Kirkwood CD, Bines JE. Human Neonatal Rotavirus Vaccine (RV3-BB) Produces Vaccine Take Irrespective of Histo-Blood Group Antigen Status. J Infect Dis 2020; 221:1070-1078. [PMID: 31763671 PMCID: PMC7075413 DOI: 10.1093/infdis/jiz333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND VP4 [P] genotype binding specificities of rotaviruses and differential expression of histo-blood group antigens (HBGAs) between populations may contribute to reduced efficacy against severe rotavirus disease. P[6]-based rotavirus vaccines could broaden protection in such settings, particularly in Africa, where the Lewis-negative phenotype and P[6] rotavirus strains are common. METHODS The association between HBGA status and G3P[6] rotavirus vaccine (RV3-BB) take was investigated in a phase 2A study of RV3-BB vaccine involving 46 individuals in Dunedin, New Zealand, during 2012-2014. FUT2 and FUT3 genotypes were determined from DNA extracted from stool specimens, and frequencies of positive cumulative vaccine take, defined as an RV3-BB serum immune response (either immunoglobulin A or serum neutralizing antibody) and/or stool excretion of the vaccine strain, stratified by HBGA status were determined. RESULTS RV3-BB produced positive cumulative vaccine take in 29 of 32 individuals (91%) who expressed a functional FUT2 enzyme (the secretor group), 13 of 13 (100%) who were FUT2 null (the nonsecretor group), and 1 of 1 with reduced FUT2 activity (i.e., a weak secretor); in 37 of 40 individuals (93%) who expressed a functional FUT3 enzyme (the Lewis-positive group) and 3 of 3 who were FUT3 null (the Lewis-negative group); and in 25 of 28 Lewis-positive secretors (89%), 12 of 12 Lewis-positive nonsecretors (100%), 2 of 2 Lewis-negative secretors, and 1 of 1 Lewis-negative weak secretor. CONCLUSIONS RV3-BB produced positive cumulative vaccine take irrespective of HBGA status. RV3-BB has the potential to provide an improved level of protection in settings where P[6] rotavirus disease is endemic, irrespective of the HBGA profile of the population.
Collapse
Affiliation(s)
- Karen Boniface
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
| | - Sean G Byars
- Melbourne School of Population and Global Health, Seattle, Washington
| | - Daniel Cowley
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Melbourne, Seattle, Washington
| | - Carl D Kirkwood
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Melbourne, Seattle, Washington
- Bill and Melinda Gates Foundation, Seattle, Washington
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Melbourne, Seattle, Washington
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital, Parkville, Australia
| |
Collapse
|
37
|
Sharma S, Hagbom M, Carlsson B, Nederby Öhd J, Insulander M, Eriksson R, Simonsson M, Widerström M, Nordgren J. Secretor Status is Associated with Susceptibility to Disease in a Large GII.6 Norovirus Foodborne Outbreak. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:28-34. [PMID: 31664650 PMCID: PMC7052033 DOI: 10.1007/s12560-019-09410-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/10/2019] [Indexed: 05/15/2023]
Abstract
Norovirus is commonly associated with food and waterborne outbreaks. Genetic susceptibility to norovirus is largely dependent on presence of histo-blood group antigens (HBGA), specifically ABO, secretor, and Lewis phenotypes. The aim of the study was to determine the association between HBGAs to norovirus susceptibility during a large norovirus foodborne outbreak linked to genotype GII.6 in an office-based company in Stockholm, Sweden, 2015. A two-episode outbreak with symptoms of diarrhea and vomiting occurred in 2015. An online questionnaire was sent to all 1109 employees that had worked during the first outbreak episode. Food and water samples were collected from in-house restaurant and tested for bacterial and viral pathogens. In addition, fecal samples were collected from 8 employees that had diarrhea. To investigate genetic susceptibility during the outbreak, 98 saliva samples were analyzed for ABO, secretor, and Lewis phenotypes using ELISA. A total of 542 of 1109 (49%) employees reported gastrointestinal symptoms. All 8 fecal samples tested positive for GII norovirus, which was also detected in coleslaw collected from the in-house restaurant. Eating at the in-house restaurant was significantly associated with risk of symptom development. Nucleotide sequencing was successful for 5/8 fecal samples and all belonged to the GII.6 genotype. HBGA characterization showed a strong secretor association to norovirus-related symptoms (P = 0.014). No association between norovirus disease and ABO phenotypes was observed. The result of this study shows that non-secretors were significantly less likely to report symptoms in a large foodborne outbreak linked to the emerging GII.6 norovirus strain.
Collapse
Affiliation(s)
- Sumit Sharma
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marie Hagbom
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Beatrice Carlsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joanna Nederby Öhd
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Stockholm, Sweden
- Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Mona Insulander
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Stockholm, Sweden
| | - Ronnie Eriksson
- European Union Reference Laboratory (EURL) for Foodborne Viruses, National Food Agency, Uppsala, Sweden
| | - Magnus Simonsson
- European Union Reference Laboratory (EURL) for Foodborne Viruses, National Food Agency, Uppsala, Sweden
| | - Micael Widerström
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Stockholm, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
38
|
Le Pendu J, Ruvoën-Clouet N. Fondness for sugars of enteric viruses confronts them with human glycans genetic diversity. Hum Genet 2019; 139:903-910. [PMID: 31760489 DOI: 10.1007/s00439-019-02090-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
|
39
|
Armah GE, Cortese MM, Dennis FE, Yu Y, Morrow AL, McNeal MM, Lewis KDC, Awuni DA, Armachie J, Parashar UD. Rotavirus Vaccine Take in Infants Is Associated With Secretor Status. J Infect Dis 2019; 219:746-749. [PMID: 30357332 DOI: 10.1093/infdis/jiy573] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023] Open
Abstract
Rotaviruses bind to enterocytes in a genotype-specific manner via histo-blood group antigens (HBGAs), which are also detectable in saliva. We evaluated antirotavirus immunoglobulin A seroconversion ('vaccine take") among 166 Ghanaian infants after 2-3 doses of G1P[8] rotavirus vaccine during a vaccine trial, by HBGA status from saliva collected at age 4.1 years. Only secretor status was associated with seroconversion: 41% seroconversion for secretors vs 13% for nonsecretors; relative risk, 3.2 (95% confidence interval, 1.2-8.1; P = .016). Neither Lewis antigen nor salivary antigen blood type was associated with seroconversion. Likelihood of "take" for any particular rotavirus vaccine may differ across populations based on HBGAs.
Collapse
Affiliation(s)
- George E Armah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Margaret M Cortese
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Francis E Dennis
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Ying Yu
- Department of Pediatrics, Perinatal Institute, Ohio
| | | | - Monica M McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Ohio
| | | | - Denis A Awuni
- Navrongo Health Research Centre, Ministry of Health, Ghana
| | - Joseph Armachie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
40
|
Soares‐Weiser K, Bergman H, Henschke N, Pitan F, Cunliffe N. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2019; 2019:CD008521. [PMID: 31684685 PMCID: PMC6816010 DOI: 10.1002/14651858.cd008521.pub5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac. RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence). RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence). Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up. Children vaccinated and followed up for two years Rotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence). There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events. 21 October 2019 Up to date All studies incorporated from most recent search All published trials found in the last search (4 Apr, 2018) were included and 15 ongoing studies are currently awaiting completion (see 'Characteristics of ongoing studies').
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| | | |
Collapse
|
41
|
Influence of histo blood group antigen expression on susceptibility to enteric viruses and vaccines. Curr Opin Infect Dis 2019; 32:445-452. [DOI: 10.1097/qco.0000000000000571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Pollock L, Bennett A, Jere KC, Dube Q, Mandolo J, Bar-Zeev N, Heyderman RS, Cunliffe NA, Iturriza-Gomara M. Nonsecretor Histo-blood Group Antigen Phenotype Is Associated With Reduced Risk of Clinical Rotavirus Vaccine Failure in Malawian Infants. Clin Infect Dis 2019; 69:1313-1319. [PMID: 30561537 PMCID: PMC6763638 DOI: 10.1093/cid/ciy1067] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Histo-blood group antigen (HBGA) Lewis/secretor phenotypes predict genotype-specific susceptibility to rotavirus gastroenteritis (RVGE). We tested the hypothesis that nonsecretor/Lewis-negative phenotype leads to reduced vaccine take and lower clinical protection following vaccination with G1P[8] rotavirus vaccine (RV1) in Malawian infants. METHODS A cohort study recruited infants receiving RV1 at age 6 and 10 weeks. HBGA phenotype was determined by salivary enzyme-linked immunosorbent assay (ELISA). RV1 vaccine virus shedding was detected by quantitative real-time polymerase chain reaction (qRT-PCR) in stool collected on alternate days for 10 days post-immunization. Plasma rotavirus-specific immunoglobulin A was determined by ELISA pre- and post-immunization. In a case-control study, HBGA phenotype distribution was compared between RV1-vaccinated infants with RVGE and 1:1 age-matched community controls. Rotavirus genotype was determined by RT-PCR. RESULTS In 202 cohort participants, neither overall vaccine virus fecal shedding nor seroconversion differed by HBGA phenotype. In 238 case-control infants, nonsecretor phenotype was less common in infants with clinical vaccine failure (odds ratio [OR], 0.39; 95% confidence interval [CI], 0.20-0.75). Nonsecretor phenotype was less common in infants with P[8] RVGE (OR, 0.12; 95% CI, 0.03-0.50) and P[4] RVGE (OR, 0.17; 95% CI, 0.04-0.75). Lewis-negative phenotype was more common in infants with P[6] RVGE (OR, 3.2; 95% CI, 1.4-7.2). CONCLUSIONS Nonsecretor phenotype was associated with reduced risk of rotavirus vaccine failure. There was no significant association between HBGA phenotype and vaccine take. These data refute the hypothesis that high prevalence of nonsecretor/Lewis-negative phenotypes contributes to lower rotavirus vaccine effectiveness in Malawi.
Collapse
Affiliation(s)
- Louisa Pollock
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
| | - Aisleen Bennett
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
| | - Khuzwayo C Jere
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
- Medical Laboratory Sciences Department, University of Malawi, Blantyre
| | - Queen Dube
- Department of Paediatrics, College of Medicine, University of Malawi, Blantyre
| | - Jonathan Mandolo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
| | - Naor Bar-Zeev
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
- International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Robert S Heyderman
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
- Division of Infection and Immunity, University College London, United Kingdom
| | - Nigel A Cunliffe
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, United Kingdom
| |
Collapse
|
43
|
Dual Recognition of Sialic Acid and αGal Epitopes by the VP8* Domains of the Bovine Rotavirus G6P[5] WC3 and of Its Mono-reassortant G4P[5] RotaTeq Vaccine Strains. J Virol 2019; 93:JVI.00941-19. [PMID: 31243129 PMCID: PMC6714814 DOI: 10.1128/jvi.00941-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023] Open
Abstract
Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human. Group A rotaviruses, an important cause of severe diarrhea in children and young animals, initiate infection via interactions of the VP8* domain of the VP4 spike protein with cell surface sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is also used in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for the VP8* domain of WC3 and its reassortant strains have not yet been identified. In the present study, HBGA- and saliva-binding assays showed that both G6P[5] WC3 and mono-reassortant G4P[5] strains recognized the αGal HBGA. The infectivity of both P[5]-bearing strains was significantly reduced in αGal-free MA-104 cells by pretreatment with a broadly specific neuraminidase or by coincubation with the α2,6-linked SA-specific Sambucus nigra lectin, but not by the α2,3-linked specific sialidase or by Maackia amurensis lectin. Free NeuAc and the αGal trisaccharide also prevented the infectivity of both strains. This indicated that both P[5]-bearing strains utilize α2,6-linked SA as a ligand on MA104 cells. However, the two strains replicated in differentiated bovine small intestinal enteroids and in their human counterparts that lack α2,6-linked SA or αGal HBGA, suggesting that additional or alternative receptors such as integrins, hsp70, and tight-junction proteins bound directly to the VP5* domain can be used by the P[5]-bearing strains to initiate the infection of human cells. In addition, these data also suggested that P[5]-bearing strains have potential for cross-species transmission. IMPORTANCE Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human.
Collapse
|
44
|
Mottram L, Chakraborty S, Cox E, Fleckenstein J. How genomics can be used to understand host susceptibility to enteric infection, aiding in the development of vaccines and immunotherapeutic interventions. Vaccine 2019; 37:4805-4810. [PMID: 30709726 PMCID: PMC6663652 DOI: 10.1016/j.vaccine.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Thanks to the modern sequencing era, the extent to which infectious disease imposes selective pressures on the worldwide human population is being revealed. This is aiding our understanding of the underlying immunological and host mechanistic defenses against these pathogens, as well as potentially assisting in the development of vaccines and therapeutics to control them. As a consequence, the workshop "How genomics can be used to understand host susceptibility to enteric infection, aiding in the development of vaccines and immunotherapeutic interventions" at the VASE 2018 meeting, aimed to discuss how genomics and related tools could be used to assist Shigella and ETEC vaccine development. The workshop featured four short presentations which highlighted how genomic applications can be used to assist in the identification of genetic patterns related to the virulence of disease, or host genetic factors that could contribute to immunity or successful vaccine responses. Following the presentations, there was an open debate with workshop attendees to discuss the best ways to utilise such genomic studies, to improve or accelerate the process of both Shigella and ETEC vaccine development. The workshop concluded by making specific recommendations on how genomic research methods could be strengthened and harmonised within the ETEC and Shigella research communities.
Collapse
Affiliation(s)
- Lynda Mottram
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - James Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States; Medicine Service, Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
45
|
Vlasova AN, Takanashi S, Miyazaki A, Rajashekara G, Saif LJ. How the gut microbiome regulates host immune responses to viral vaccines. Curr Opin Virol 2019; 37:16-25. [PMID: 31163292 PMCID: PMC6863389 DOI: 10.1016/j.coviro.2019.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
The co-evolution of the microbiota and immune system has forged a mutually beneficial relationship. This relationship allows the host to maintain the balance between active immunity to pathogens and vaccines and tolerance to self-antigens and food antigens. In children living in low-income and middle-income countries, undernourishment and repetitive gastrointestinal infections are associated with the failure of oral vaccines. Intestinal dysbiosis associated with these environmental influences, as well as some host-related factors, compromises immune responses and negatively impacts vaccine efficacy. To understand how immune responses to viral vaccines can be optimally modulated, mechanistic studies of the relationship between the microbiome, host genetics, viral infections and the development and function of the immune system are needed. We discuss the potential role of the microbiome in modulating vaccine responses in the context of a growing understanding of the relationship between the gastrointestinal microbiota, host related factors (including histo-blood group antigens) and resident immune cell populations.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Sayaka Takanashi
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA; Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Miyazaki
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Gireesh Rajashekara
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
46
|
Bucardo F, Reyes Y, Rönnelid Y, González F, Sharma S, Svensson L, Nordgren J. Histo-blood group antigens and rotavirus vaccine shedding in Nicaraguan infants. Sci Rep 2019; 9:10764. [PMID: 31341254 PMCID: PMC6656718 DOI: 10.1038/s41598-019-47166-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
ABO, Lewis and secretor histo-blood group antigens (HBGA) are susceptibility factors for rotavirus in a P-genotype dependent manner and can influence IgA seroconversion rates following rotavirus vaccination. To investigate the association between HBGA phenotypes and rotavirus vaccine shedding fecal samples (n = 304) from a total of 141 infants vaccinated with Rotarix (n = 71) and RotaTeq (n = 70) were prospectively sampled in three time frames (≤3, 4–7 and ≥8 days) after first vaccination dose. Rotavirus was detected with qPCR and genotypes determined by G/P multiplex PCR and/or sequencing. HBGAs were determined by hemagglutination and saliva based ELISA. Low shedding rates were observed, with slightly more children vaccinated with RotaTeq (19%) than Rotarix (11%) shedding rotavirus at ≥4 days post vaccination (DPV). At ≥4 DPV no infant of Lewis A (n = 6) or nonsecretor (n = 9) phenotype in the Rotarix cohort shed rotavirus; the same observation was made for Lewis A infants (n = 7) in the RotaTeq cohort. Putative in-vivo gene reassortment among RotaTeq strains occurred, yielding mainly G1P[8] strains. The bovine derived P[5] genotype included in RotaTeq was able to replicate and be shed at long time frames (>13 DPV). The results of this study are consistent with that HBGA phenotype influences vaccine strain shedding as similarly observed for natural infections. Due to the low overall shedding rates observed, additional studies are however warranted.
Collapse
Affiliation(s)
- Filemón Bucardo
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua.
| | - Yaoska Reyes
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Ylva Rönnelid
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Fredman González
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Sumit Sharma
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
47
|
Mwenda JM, Mandomando I, Jere KC, Cunliffe NA, Duncan Steele A. Evidence of reduction of rotavirus diarrheal disease after rotavirus vaccine introduction in national immunization programs in the African countries: Report of the 11 th African rotavirus symposium held in Lilongwe, Malawi. Vaccine 2019; 37:2975-2981. [PMID: 31029514 DOI: 10.1016/j.vaccine.2019.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022]
Abstract
The 11th African Rotavirus Symposium was held in Lilongwe, Malawi from May 28th to 30th 2017. Over 270 delegates (73% from Africa) from 40 countries of which 30 (75%) were from African countries attended the symposium. Participants in this symposium included research scientists, clinicians, immunization managers, public health officials, policymakers and vaccine manufacturers. At the time of the symposium, 38 of the 54 (70%) countries in Africa had introduced rotavirus vaccines into their national immunization schedules. Delegates shared progress from rotavirus surveillance and vaccine impact monitoring, demonstrating the impact of the vaccine against rotavirus diarrheal hospitalizations. Data supported the beneficial effect and safety of WHO pre-qualified available vaccines up to 2017 (RotaTeq, Rotarix). This symposium highlighted the dramatic impact of the rotavirus vaccination, called for urgent adoption of these vaccines in remaining countries, particularly those with high disease burden and large birth cohorts (e.g. Nigeria, Democratic Republic of Congo) to attain the full public health benefits of rotavirus vaccination in Africa.
Collapse
Affiliation(s)
- Jason M Mwenda
- World Health Organization (WHO), Regional Office for Africa, Brazzaville, Congo.
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Khuzwayo C Jere
- Malawi-Liverpool-Wellcome Clinical Research Programme/Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi; Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Nigel A Cunliffe
- Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
48
|
Pérez-Ortín R, Vila-Vicent S, Carmona-Vicente N, Santiso-Bellón C, Rodríguez-Díaz J, Buesa J. Histo-Blood Group Antigens in Children with Symptomatic Rotavirus Infection. Viruses 2019; 11:E339. [PMID: 30974776 PMCID: PMC6520971 DOI: 10.3390/v11040339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Group A rotaviruses are a major cause of acute gastroenteritis in children. The diversity and unequal geographical prevalence of rotavirus genotypes have been linked to histo-blood group antigens (HBGAs) in different human populations. In order to evaluate the role of HBGAs in rotavirus infections in our population, secretor status (FUT2+), ABO blood group, and Lewis antigens were determined in children attended for rotavirus gastroenteritis in Valencia, Spain. During three consecutive years (2013-2015), stool and saliva samples were collected from 133 children with rotavirus infection. Infecting viral genotypes and HBGAs were determined in patients and compared to a control group and data from blood donors. Rotavirus G9P[8] was the most prevalent strain (49.6%), followed by G1P[8] (20.3%) and G12P[8] (14.3%). Rotavirus infected predominantly secretor (99%) and Lewis b positive (91.7%) children. Children with blood group A and AB were significantly more prone to rotavirus gastroenteritis than those with blood group O. Our results confirm that a HBGA genetic background is linked to rotavirus P[8] susceptibility. Rotavirus P[8] symptomatic infection is manifestly more frequent in secretor-positive (FUT2+) than in non-secretor individuals, although no differences between rotavirus G genotypes were found.
Collapse
Affiliation(s)
- Raúl Pérez-Ortín
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Susana Vila-Vicent
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
49
|
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac.RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence).RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence).Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up.Children vaccinated and followed up for two yearsRotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence).There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events.
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| |
Collapse
|
50
|
Nordgren J, Svensson L. Genetic Susceptibility to Human Norovirus Infection: An Update. Viruses 2019; 11:E226. [PMID: 30845670 PMCID: PMC6466115 DOI: 10.3390/v11030226] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022] Open
Abstract
Noroviruses are the most common etiological agent of acute gastroenteritis worldwide. Despite their high infectivity, a subpopulation of individuals is resistant to infection and disease. This susceptibility is norovirus genotype-dependent and is largely mediated by the presence or absence of human histo-blood group antigens (HBGAs) on gut epithelial surfaces. The synthesis of these HBGAs is mediated by fucosyl- and glycosyltransferases under the genetic control of the FUT2 (secretor), FUT3 (Lewis) and ABO(H) genes. The so-called non-secretors, having an inactivated FUT2 enzyme, do not express blood group antigens and are resistant to several norovirus genotypes, including the predominant GII.4. Significant genotypic and phenotypic diversity of HBGA expression exists between different human populations. Here, we review previous in vivo studies on genetic susceptibility to norovirus infection. These are discussed in relation to population susceptibility, vaccines, norovirus epidemiology and the impact on public health.
Collapse
Affiliation(s)
- Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden.
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden.
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|