1
|
Liu X, Huang L, Zhang X, Xu X. Polysaccharides with antioxidant activity: Extraction, beneficial roles, biological mechanisms, structure-function relationships, and future perspectives: A review. Int J Biol Macromol 2025; 300:140221. [PMID: 39855511 DOI: 10.1016/j.ijbiomac.2025.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Polysaccharides are valuable macromolecules due to their multiple bioactivities, safety, and a wide range of sources. Recently, a series of polysaccharides with antioxidant activity have been intensively reported. In this review, the latest advances in polysaccharides with antioxidant activity have been reviewed, primarily based on the investigations of polysaccharides regarding advanced extraction methods, roles in oxidative stress-related diseases, intracellular signaling pathways associated with antioxidant responses, activating pathways in the gut, structure-function relationships, and methods to improve antioxidant activity. The summarized information highlighted that much work needs to be conducted, from laboratory to industry, to understand and fully utilize the antioxidant potential of polysaccharides. Finally, future perspectives, including scaling-up of advanced extraction methods, standardizing the protocols for assessing and screening polysaccharides, bridging gaps on the biological mechanisms underlying antioxidant activity, performing clinical trials, and elucidating structure-antioxidant relationships, have been addressed. The information present in this review will be helpful to the scientific community when studying on polysaccharides with antioxidant potential and provides research directions for a better understanding of the polysaccharides and promotes their successful applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Liufang Huang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Yangjiang Institute of Guangdong Ocean University, Yangjiang 529500, China.
| |
Collapse
|
2
|
Sun Y, Yao J, Gao R, Hao J, Liu Y, Liu S. Interactions of non-starch polysaccharides with the gut microbiota and the effect of non-starch polysaccharides with different structures on the metabolism of the gut microbiota: A review. Int J Biol Macromol 2025; 296:139664. [PMID: 39798752 DOI: 10.1016/j.ijbiomac.2025.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Humans consume large amounts of non-starch polysaccharides(NPs) daily. Some NPs, not absorbed by the body, proceed to the intestines. An increasing number of studies reveal a close relationship between NPs and gut microbiota(GM) that impact the human body. This review not only describes in detail the structures of several common NPs and their effects on GM, but also elucidates the degradation mechanisms of NPs in the intestine. The purpose of this review is to elucidate how NPs interact with GM in the intestine, which can provide valuable information for further studies of NPs.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Jiaxuan Yao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Running Gao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Junyu Hao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China.
| |
Collapse
|
3
|
Zhang J, Yu X, Li W, Jiang Y, Zhang L, Wang S. Bisphenol S impairs oocyte quality by inducing gut microbiota dysbiosis. mSystems 2025; 10:e0091224. [PMID: 39704538 PMCID: PMC11748550 DOI: 10.1128/msystems.00912-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
A good quality egg is essential for a successful pregnancy and early embryo development. Oocyte development is vulnerable to environmental exposures. Bisphenol S (BPS) is widely used as a replacement for its analog bisphenol A, but the reproductive toxicity of BPS has been of great concern. In this study, we showed that BPS exposure induces dysbiosis of the gut microbiota, which further leads to intestinal permeability and inflammation, and ultimately impairs oocyte quality. More importantly, we found that alginate oligosaccharide reshapes the gut microbiota to improve gut homeostasis, thereby preventing the deleterious effects of BPS on the gut and oocytes. Overall, this study not only demonstrates that BPS exposure impairs the intestine and oocytes by inducing dysbiosis of the gut microbiota but also develops a preventive strategy. IMPORTANCE Oocyte development is vulnerable to stimulation by intrinsic and extrinsic factors, particularly many environmental pollutants and chemicals in daily life. The reproductive toxicity of bisphenol S has been of great concern, although it is widely used as a safe substitute for its analog bisphenol A. However, it is not known how bisphenol S impairs oocyte quality. This work presents the exciting finding that bisphenol S induces gut microbiota dysbiosis, which further leads to increased intestinal permeability and inflammation and ultimately damages oocytes. More importantly, we show that alginate oligosaccharide improves gut homeostasis by reshaping the gut microbiota, therefore preventing the bisphenol S-induced gut microbiota dysbiosis and gut and oocyte damage. These findings present a major advance in the understanding of bisphenol S toxicity to oocytes and also provide a preventive strategy.
Collapse
Affiliation(s)
- Jiaming Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children, and Reproductive Health, Shandong University, Jinan, China
| | - Xiaoxia Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children, and Reproductive Health, Shandong University, Jinan, China
| | - Weidong Li
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Yunjing Jiang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Shunxin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children, and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China
| |
Collapse
|
4
|
Xiao Y, Zhao Q, Ni D, Zhang X, Hao W, Yuan Q, Xu W, Mu W, Wu D, Wu X, Wang S. Polymerization of dietary fructans differentially affects interactions among intestinal microbiota of colitis mice. THE ISME JOURNAL 2025; 19:wrae262. [PMID: 39745882 PMCID: PMC11742283 DOI: 10.1093/ismejo/wrae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
The intestinal microbiota plays a critical role in maintaining human health and can be modulated by dietary interventions and lifestyle choices. Fructans, a dietary carbohydrate, are selectively utilized by the intestinal microbiota to confer health benefits. However, the specific effects of different fructan types on microbial changes and functions remain incompletely understood. Here, we investigated how the intestinal microbiota responds to fructans with varying degrees of polymerization in the context of gut dysbiosis. Both low molecular weight fructo-oligosaccharides and high molecular weight levan suppressed intestinal inflammation in a colitis mouse model, mitigating intestinal fibrosis and dysbiosis. Although both the effects of fructo-oligosaccharides and levan are microbiota-dependent, distinct modulation patterns of the intestinal microbiota were observed based on the molecular weight of the fructans. Levan had a more pronounced and persistent impact on gut microbiota compared to fructo-oligosaccharides. Levan particularly promoted the abundance of Dubosiella newyorkensis, which exhibited preventive effects against colitis. Our findings highlight the importance of polymerization levels of dietary fructans in microbiota alterations and identify Dubosiella newyorkensis as a potential probiotic for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yaqin Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Southwest Medical University, Xianglin Road, Longmatan District, Luzhou, Sichuan 646000, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xiaoqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengluo Avenue, Chengdu, Sichuan 616106, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Southwest Medical University, Xianglin Road, Longmatan District, Luzhou, Sichuan 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| |
Collapse
|
5
|
Wang XY, Chen AQ, Huang J, Luo JH, Zou Q. A review on structure, bioactivity, mechanism, structure-activity relationship and application of anti-breast cancer polysaccharides. Int J Biol Macromol 2024; 282:137043. [PMID: 39476909 DOI: 10.1016/j.ijbiomac.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer (BC) is one of the most common female malignant tumors. BC treatment depends on the use of chemotherapeutic drugs, causing various adverse effects. Increasing evidence has shown that natural polysaccharides (NPs) are potential adjuvants or substitutes for anti-BC drugs. However, the information regarding anti-BC NPs remains scattered. Thus, the recent progress in the structure, bioactivity, mechanism and application of anti-BC NPs is comprehensively summarized in this review. Moreover, the structure-activity relationship is discussed. Additionally, the prospects for future work are proposed. Recent studies have shown that anti-BC NPs have diverse structural features, which are affected by the extraction and purification methods. NPs show anti-BC activities in cell and animal experiments as well as in clinical researches, and enhance anti-BC effects of chemotherapeutic drugs in cell and animal experiments. The anti-BC mechanisms of NPs include anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, immunoenhancement, gut microbiota regulation and others. The anti-BC activities of NPs are influenced by molecular weight, monosaccharide composition, functional groups, glycosidic bond types, backbone and side chains. NPs-based nanoparticles, nanocarriers, drug delivery systems, nanocomposites and other materials can also be used in anti-BC. This review provides theoretical bases for future research and functional application of NPs in anti-BC.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jing Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
6
|
Li LF, Shi X, Qi SM, Zhang XT, Fung HY, Li QR, Han QB. Strategies, techniques and applications for food authentication based on carbohydrates: A review. Carbohydr Polym 2024; 344:122533. [PMID: 39218564 DOI: 10.1016/j.carbpol.2024.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
The increasing complexity and ubiquity of food processing and the emergence of fraudulent practices have made effective and reliable methods to authenticate food products of utmost importance. Carbohydrates, with various nutritional functions, are abundant in foods and can serve as potential markers for food authentication. However, the complex and diverse structures and properties of carbohydrates, especially polysaccharides, pose challenges. Nonetheless, significant progress has been made in this area. This paper provides an overview of the utilization of carbohydrates in food authentication since 2000, focusing on strategies involving carbohydrate-based markers, carbohydrate profiles, and carbohydrate-protein interaction-based assays. The analytical techniques, applications, challenges and limitations of these strategies are reviewed and discussed. The findings demonstrate that these strategies offer origin verification, quality assessment, adulteration detection, process control, and food species identification. Notably, oligosaccharide analysis has proven effective in food authentication and remains a promising marker, especially for analyzing intricate matrices. The advances in chromatography separation and mass spectrometry identification of isomers and trace amounts of these compounds have facilitated the discovery of such markers. In conclusion, carbohydrate analysis can play a crucial role in food authentication. Future research and development will make the authentication of carbohydrate-rich foods ever more accurate and efficient.
Collapse
Affiliation(s)
- Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xi Shi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Si-Min Qi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xue-Ting Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hau-Yee Fung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Qian-Ran Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
7
|
Dong H, Zhuang H, Yu C, Zhang X, Feng T. Interactions between soluble dietary fibers from three edible fungi and gut microbiota. Int J Biol Macromol 2024; 278:134685. [PMID: 39168729 DOI: 10.1016/j.ijbiomac.2024.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Edible fungi are emerging as a valuable dietary fiber source with health benefits, where their bioactivity hinges on their structure. This study targets the structure-activity relationship of soluble dietary fibers from Lentinus edodes (LESDF), Agaricus bisporus (ABSDF), and Hericium erinaceus (HESDF), focusing on their impact on gut microbiota and health. We explored the properties and structures of edible fungi, finding their soluble fibers affect metabolites and gut microbiota by increasing gas and lowering pH. Among these, HESDF demonstrated superior effects (pH: △1.4 ± 0.07; Gas production: △24.5 ± 0.4 mL). Furthermore, different types of edible fungi dietary fiber exhibited distinct capabilities in promoting the production of short-chain fatty acids by gut microorganisms. For instance, ABSDF exceled in acetic acid production (26.12 ± 0.35 mM) and propionic acid production (9.50 ± 0.13 mM), while HESDF stood out in butyric acid production (17.86 ± 0.09 mM). LESDF showed higher levels of Phascolarctobacterium, ABSDF had elevated levels of Ruminococcus, and HESDF displayed increased levels of Faecalibacterium. These results contribute to our understanding of how soluble dietary fiber from different edible fungi impacts gut microbiota and offers insights for the development and utilization of these fibers as functional food.
Collapse
Affiliation(s)
- Huayue Dong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaowei Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
8
|
Ibrahim MIA, Ibrahim HAH, Haga T, Ishida A, Nehira T, Matsuo K, Gad AM. Potential Bioactivities, Chemical Composition, and Conformation Studies of Exopolysaccharide-Derived Aspergillus sp. Strain GAD7. J Fungi (Basel) 2024; 10:659. [PMID: 39330418 PMCID: PMC11432975 DOI: 10.3390/jof10090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
This research identified a marine fungal isolate, Aspergillus sp. strain GAD7, which produces an acidic and sulfated extracellular polysaccharide (EPS) with notable anticoagulant and antioxidant properties. Six fungal strains from the Egyptian Mediterranean Sea were screened for EPS production, with Aspergillus sp. strain GAD7 (EPS-AG7) being the most potent, yielding ~5.19 ± 0.017 g/L. EPS-AG7 was characterized using UV-Vis and FTIR analyses, revealing high carbohydrate (87.5%) and sulfate (24%) contents. HPLC and GC-MS analyses determined that EPS-AG7 is a heterogeneous acidic polysaccharide with an average molecular weight (Mw¯) of ~7.34 × 103 Da, composed of mannose, glucose, arabinose, galacturonic acid, galactose, and lyxose in a molar ratio of 6.6:3.9:1.8:1.3:1.1:1.0, linked through α- and β-glycosidic linkages as confirmed by NMR analysis. EPS-AG7 adopted a triple helix-like conformation, as evidenced by UV-Vis (Congo Red experiment) and circular dichroism (CD) studies. This helical arrangement demonstrated stability under various experimental conditions, including concentration, ionic strength, temperature, and lipid interactions. EPS-AG7 exhibited significant anticoagulant activity, doubling blood coagulation time at a concentration of 3.0 mg/mL, and showed significant antioxidant activity, with scavenging activities reaching up to 85.90% and 58.64% in DPPH and ABTS+ assays at 5.0 mg/mL, and EC50 values of 1.40 mg/mL and 3.80 mg/mL, respectively. These findings highlight the potential of EPS-AG7 for therapeutic applications due to its potent biological activities.
Collapse
Affiliation(s)
- Mohamed I A Ibrahim
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Hassan A H Ibrahim
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Tatsuki Haga
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Tatsuo Nehira
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Koichi Matsuo
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima 739-8526, Hiroshima, Japan
- Research Institute for Semiconductor Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Hiroshima, Japan
| | - Ahmed M Gad
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| |
Collapse
|
9
|
He J, Li XJ, Tan WZ, Wu XQ, Wu D, Luo ZL, Zhou QW, Li EX, Li SH. Two new species of Ganoderma (Ganodermataceae, Basidiomycota) from Southwest China. MycoKeys 2024; 106:97-116. [PMID: 38938761 PMCID: PMC11208776 DOI: 10.3897/mycokeys.106.121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Ganoderma is a large and diverse genus containing fungi that cause white rot to infect a number of plant families. This study describes G.phyllanthicola and G.suae as new species from Southwest China, based on morphological and molecular evidence. Ganodermaphyllanthicola is characterized by dark brown to purplish black pileus surface with dense concentric furrows, pale yellow margin, irregular pileipellis cells, small pores (5-7 per mm) and ellipsoid to sub-globose basidiospores (8.5-10.0 × 6.0-7.5 µm). Ganodermasuae is characterized by reddish brown to oxblood red pileus surface and lead gray to greyish-white pore surface, heterogeneous context, wavy margin and almond-shaped to narrow ellipsoid basidiospores (8.0-10.5 × 5.0-7.0 μm). The phylogeny of Ganoderma is reconstructed with multi-gene sequences: the internal transcribed spacer region (ITS), the large subunit (nrLSU), translation elongation factor 1-α gene (TEF-1α) and the second subunit of RNA polymerase II (RPB2). The results show that G.suae and G.phyllanthicola formed two distinct line-ages within Ganoderma. Descriptions, illustrations and phylogenetic analyses results of the two new species are presented.
Collapse
Affiliation(s)
- Jun He
- College of Biotechnology and Engineering, West Yunnan University, Lincang 677000, Yunan, ChinaWest Yunnan UniversityLincangChina
| | - Xiao-Jun Li
- College of Biotechnology and Engineering, West Yunnan University, Lincang 677000, Yunan, ChinaWest Yunnan UniversityLincangChina
| | - Wan-Zhong Tan
- College of Biotechnology and Engineering, West Yunnan University, Lincang 677000, Yunan, ChinaWest Yunnan UniversityLincangChina
| | - Xiao-Qu Wu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, ChinaBiotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural SciencesKunmingChina
- School of Agriculture, Yunan University, Kunming 650504, Yunan, ChinaYunan UniversityKunmingChina
| | - Dan Wu
- College of Biotechnology and Engineering, West Yunnan University, Lincang 677000, Yunan, ChinaWest Yunnan UniversityLincangChina
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, ChinaDali UniversityDaliChina
| | - Qi Wu Zhou
- College of Biotechnology and Engineering, West Yunnan University, Lincang 677000, Yunan, ChinaWest Yunnan UniversityLincangChina
| | - E-Xian Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, ChinaBiotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural SciencesKunmingChina
| | - Shu-Hong Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, ChinaBiotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural SciencesKunmingChina
| |
Collapse
|
10
|
Kulshreshtha S. Mushroom as Prebiotics: a Sustainable Approach for Healthcare. Probiotics Antimicrob Proteins 2024; 16:699-712. [PMID: 37776487 DOI: 10.1007/s12602-023-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
Mushrooms are considered as sustainable foods as they require less effort and can be cultivated on different agro-industrial wastes. Besides, these possess many nutraceuticals for providing health benefits along with supplementing nutrition. The mushrooms are also used as prebiotics for their ability to support beneficial microbes in the gut and inhibit the growth of pathogens. Furthermore, these remain undigested in the upper gut and reach the intestine to replenish the gut microbiota. The mushrooms boost health by inhibiting the binding of pathogenic bacteria, by promoting the growth of specific gut microbiota, producing short chain fatty acids, and regulating lipid metabolism and cancer. Research has been initiated in the commercial formulation of various products such as yogurt and symbiotic capsules. This paper sheds light on health-promoting effect, disease controlling, and regulating effect of mushroom prebiotics. This paper also presented a glimpse of commercialization of mushroom prebiotics. In the future, proper standardization of mushroom-based prebiotic formulations will be available to boost human health.
Collapse
Affiliation(s)
- Shweta Kulshreshtha
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
11
|
Lai CH, Huo CY, Xu J, Han QB, Li LF. Critical review on the research of chemical structure, bioactivities, and mechanism of actions of Dendrobium officinale polysaccharide. Int J Biol Macromol 2024; 263:130315. [PMID: 38382782 DOI: 10.1016/j.ijbiomac.2024.130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Dendrobium officinale (Tie-Pi-Shi-Hu) is a precious traditional Chinese medicine (TCM). The principal active components are polysaccharides (DOP), which have a high potency in therapeutic applications. However, limitations in structure analysis and underlying mechanism investigation impede its further research. This review systemically and critically summarises current understanding in both areas, and points out the influence of starch impurities and the role of gut microbiota in DOP research. As challenges faced in studying natural polysaccharide investigations are common, this review contributes to a broader understanding of polysaccharides beyond DOP.
Collapse
Affiliation(s)
- Cheuk-Hei Lai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chu-Ying Huo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
12
|
Pinar O, Rodríguez-Couto S. Biologically active secondary metabolites from white-rot fungi. Front Chem 2024; 12:1363354. [PMID: 38545465 PMCID: PMC10970999 DOI: 10.3389/fchem.2024.1363354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, there has been a considerable rise in the production of novel metabolites derived from fungi compared to the ones originating from bacteria. These organic substances are utilized in various sectors such as farming, healthcare, and pharmaceutical. Since all dividing living cells contain primary metabolites, secondary metabolites are synthesized by utilizing intermediate compounds or by-products generated from the primary metabolic pathways. Secondary metabolites are not critical for the growth and development of an organism; however, they exhibit a variety of distinct biological characteristics. White-rot fungi are the only microorganisms able to decompose all wood components. Hence, they play an important role in both the carbon and nitrogen cycles by decomposing non-living organic substrates. They are ubiquitous in nature, particularly in hardwood (e.g., birch and aspen) forests. White-rot fungi, besides ligninolytic enzymes, produce different bioactive substances during their secondary metabolism including some compounds with antimicrobial and anticancer properties. Such properties could be of potential interest for the pharmaceutical industries. Considering the importance of the untapped biologically active secondary metabolites from white-rot fungi, the present paper reviews the secondary metabolites produced by white-rot fungi with different interesting bioactivities.
Collapse
Affiliation(s)
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland
| |
Collapse
|
13
|
Bi S, Jing Y, Cui X, Gong Y, Zhang J, Feng X, Shi Z, Zheng Q, Li D. A novel polysaccharide isolated from Coriolus versicolor polarizes M2 macrophages into an M1 phenotype and reversesits immunosuppressive effect on tumor microenvironment. Int J Biol Macromol 2024; 259:129352. [PMID: 38218293 DOI: 10.1016/j.ijbiomac.2024.129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Converting M2 macrophages into an M1 phenotype in the tumor microenvironment, provides a new direction for tumor treatment. Here, we further report CVPW-1, a new polysaccharide of 1.03 × 106 Da that was isolated from Coriolus versicolor. Its monosaccharide was composed of mannose, glucose, and galactose at a ratio of 1.00:8.73:1.68. The backbone of CVPW-1 was composed of (1 → 3)-linked α-D-Glcp residues and (1 → 3,6)-linked α-D-Glcp residues that branched at O-6. The branch consisted of (1 → 6)-linked α-D-Glcp residues and (1 → 4)-linked α-D-Glap, and some branches were terminated with (1→)-linked β-D-Manp residues according to the results of HPLC, FT-IR, GC-MS, 1D and 2D NMR. Meanwhile, CVPW-1 could polarize M2 macrophages to M1 phenotypein vitro by binding to TLR4 and inducing the activation of Akt, JNK and NF-κB. This process involved reversing the functional inhibition of CD8+ T lymphocytes by inhibiting the expression of TREM2 in M2 macrophages. The in vivo experiments showed that oral administration of CVPW-1 could inhibit the growth of tumor in mice and polarize TAMs to M1 phenotype. Thus, the novel polysaccharide CVPW-1 from Coriolus versicolor might activate a variety of immune cells and then play an anti-tumor role. These results demonstrated that CVPW-1 could be developed as a potential immuno-oncology treatment reagent.
Collapse
Affiliation(s)
- Sixue Bi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, PR China
| | - Xuehui Cui
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yitong Gong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Junli Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Xiaofei Feng
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Zhen Shi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China.
| |
Collapse
|
14
|
Yu C, Dong Q, Chen M, Zhao R, Zha L, Zhao Y, Zhang M, Zhang B, Ma A. The Effect of Mushroom Dietary Fiber on the Gut Microbiota and Related Health Benefits: A Review. J Fungi (Basel) 2023; 9:1028. [PMID: 37888284 PMCID: PMC10608147 DOI: 10.3390/jof9101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Mushroom dietary fiber is a type of bioactive macromolecule derived from the mycelia, fruiting bodies, or sclerotia of edible or medicinal fungi. The use of mushroom dietary fiber as a prebiotic has recently gained significant attention for providing health benefits to the host by promoting the growth of beneficial microorganisms; therefore, mushroom dietary fiber has promising prospects for application in the functional food industry and in drug development. This review summarizes methods for the preparation and modification of mushroom dietary fiber, its degradation and metabolism in the intestine, its impact on the gut microbiota community, and the generation of short-chain fatty acids (SCFAs); this review also systematically summarizes the beneficial effects of mushroom dietary fiber on host health. Overall, this review aims to provide theoretical guidance and a fresh perspective for the prebiotic application of mushroom dietary fiber in the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Ruihua Zhao
- School of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mengke Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Zaghloul EH, Ibrahim MIA, Zaghloul HAH. Antibacterial activity of exopolysaccharide produced by bee gut-resident Enterococcus sp. BE11 against marine fish pathogens. BMC Microbiol 2023; 23:231. [PMID: 37612642 PMCID: PMC10463787 DOI: 10.1186/s12866-023-02977-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND In recent years, the demand for innovative antimicrobial agents has grown, considering the growing problem of antibiotic resistance in aquaculture. Adult Apis mellifera honeybees' gut represents an outstanding habitat to isolate novel lactic acid bacteria (LAB) able to produce prominent antimicrobial agents. METHODS In the current study, twelve LAB were isolated and purified from the gut of adult Apis mellifera. The isolates were screened for exopolysaccharide (EPS) production. The most promising isolate BE11 was identified biochemically and molecularly using 16 S rRNA gene sequence analysis as Enterococcus sp. BE11 was used for the mass production of EPS. The partially purified BE11-EPS features were disclosed by its physicochemical characterization. Moreover, the antimicrobial activity of BE11 cell free supernatant (CFS) and its EPS was investigated against some fish pathogens namely, Pseudomonas fluorescens, Streptococcus agalactiae, Aeromonas hydrophila, Vibrio sp. and Staphylococcus epidermidis using well-cut diffusion method. RESULTS The physicochemical characterization of BE11-EPS revealed that the total carbohydrate content was estimated to be ~ 87%. FTIR and NMR analysis ascertained the presence of galactose and glucose residues in the EPS backbone. Moreover, the GC-MS analysis verified the heterogeneous nature of the produced BE11-EPS made up of different monosaccharide moieties: galactose, rhamnose, glucose, arabinose sugar derivatives, and glucuronic acid. BE11 CFS and its EPS showed promising antimicrobial activity against tested pathogens as the inhibition zone diameters (cm) ranged from 1.3 to 1.7 and 1.2-1.8, respectively. CONCLUSION The bee gut-resident Enterococcus sp. BE11, CFS, and EPS were found to be promising antimicrobial agents against fish pathogens and biofilm producers affecting aquaculture. To the best of our knowledge, this is the first study to purify and make a chemical profile of an EPS produced by a member of the bee gut microbiota as a potential inhibitor for fish pathogens.
Collapse
Affiliation(s)
- Eman H Zaghloul
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | | - Heba A H Zaghloul
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek 21511, Alexandria, Egypt.
| |
Collapse
|
16
|
Kou F, Ge Y, Wang W, Mei Y, Cao L, Wei X, Xiao H, Wu X. A review of Ganoderma lucidum polysaccharides: Health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. Int J Biol Macromol 2023:125199. [PMID: 37285888 DOI: 10.1016/j.ijbiomac.2023.125199] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Ganoderma lucidum polysaccharides possess unique functional properties. Various processing technologies have been used to produce and modify G. lucidum polysaccharides to improve their yield and utilization. In this review, the structure and health benefits were summarized, and the factors that may affect the quality of G. lucidum polysaccharides were discussed, including the use of chemical modifications such as sulfation, carboxymethylation, and selenization. Those modifications improve the physicochemical characteristics and utilization of G. lucidum polysaccharides, and make them more stable that could be used as functional biomaterials to encapsulate active substances. Ultimate, G. lucidum polysaccharide-based nanoparticles were designed to deliver various functional ingredients to achieve better health-promoting effects. Overall, this review presents an in-depth summary of current modification strategies and offers new insights into the effective processing techniques to develop G. lucidum polysaccharide-rich functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Fang Kou
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Longkui Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
17
|
Fang Q, Lai Y, Zhang D, Lei H, Wang F, Guo X, Song C. Gut microbiota regulation and prebiotic properties of polysaccharides from Oudemansiella raphanipes mushroom. World J Microbiol Biotechnol 2023; 39:167. [PMID: 37076579 DOI: 10.1007/s11274-023-03616-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Oudemansiella raphanipes is a type of fungus used as both medicine and food. Fungal polysaccharides have demonstrated various bioactivities, involving the adjust and control of gut microbiota, but no such studies on O. raphanipes polysaccharides (OrPs) have been reported. It is by extracting and purifying that OrPs was obtained from O. raphanipes crude polysaccharide and study their effects in mice. The sample contents of total sugar was 97.26%, and the monosaccharide content comprised mannose, rhamnose, glucose, and xylose in a molar ratio of 35.2:2.8:21.2:40.8. The effects of OrPs on body weight (BW), gut microbiota, fecal short-chain fatty acids (SCFAs), and the correlation between fecal SCFAs and gut microbes, in mice were investigated. The results of the experiment found that OrPs significantly (P < 0.01) inhibited the increase in BW, altered the constitution of the gut microbiota, and significantly (P < 0.05) enhanced the content of fecal SCFAs in mice. Moreover, among the top ten bacteria in terms of relative abundance, the Lachnospiraceae and Lachnospiraceae NK4A136 groups were positively associated with the increased production of SCFAs. Other bacteria, such as Atopobiaceae and Bifidobacterium of Actinobacteriota, and Faecalibaculum, Dubosiella, and Clostridium sensu stricto 5 of Firmicutes, were also positively associated with higher content of fecal SCFAs. The results of the experiment suggest that OrPs have a potential prebiotic effect on gut microbiota and may prevent BW gain. Furthermore, the major producers of SCFAs were Firmicutes and Actinobacteriota.
Collapse
Affiliation(s)
- Qi Fang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yong Lai
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
18
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R, Sun P. The Interaction between Mushroom Polysaccharides and Gut Microbiota and Their Effect on Human Health: A Review. BIOLOGY 2023; 12:biology12010122. [PMID: 36671814 PMCID: PMC9856211 DOI: 10.3390/biology12010122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Qian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| |
Collapse
|
19
|
Wang L, Lian J, Zheng Q, Wang L, Wang Y, Yang D. Composition analysis and prebiotics properties of polysaccharides extracted from Lepista sordida submerged cultivation mycelium. Front Microbiol 2023; 13:1077322. [PMID: 36713178 PMCID: PMC9879602 DOI: 10.3389/fmicb.2022.1077322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
In this paper, Lepista sordida polysaccharides (LSP) were separated from Lepista sordida (L. sordida) mainly using the Ultrasonic-Micro Wave Synergy Extraction (UMSE) method and purified by graded alcohol precipitation. Three polysaccharide components: 40%-LSP-UMSE, 60%-LSP-UMSE, and 80%-LSP-UMSE were obtained and further analyzed the physicochemical properties, structural characteristics, and antioxidant activity. And the effects on the proliferation of Lactobacillus casei of three polysaccharide components were studied. The characteristic absorption peaks and the β-glycosidic bond of three polysaccharide components were the direct expression at UV 200 nm using UV and FT-IR spectroscopy. The three polysaccharide components were mainly composed of glucose, mannose, galactose, and ribose using high-performance liquid chromatography (HPLC) analysis. The antioxidant activity study revealed that the polysaccharides obtained by the UMSE method had better antioxidant activity compared to the traditional "Hot Water Extraction (HWE)" method. In addition, the polysaccharide components promoted the proliferation of L. casei to some extent. 40%-LSP-UMSE, 80%-LSP-UMSE as the carbon source had better acid production than the control inulin. Three LSP-UMSE used as a carbon source compared with glucose for culturing L. casei could significantly improve its tolerance to bile salts. Results are helpful to develop the bioactive polysaccharides from Lepista sordida and beneficial to develop a unique health and functional product in the future.
Collapse
|
20
|
Zhen C, Wu X, Zhang J, Liu D, Li G, Yan Y, He X, Miao J, Song H, Yan Y, Zhang Y. Ganoderma lucidum polysaccharides attenuates pressure-overload-induced pathological cardiac hypertrophy. Front Pharmacol 2023; 14:1127123. [PMID: 37033616 PMCID: PMC10076566 DOI: 10.3389/fphar.2023.1127123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Pathological cardiac hypertrophy is an important risk factor for cardiovascular disease. However, drug therapies that can reverse the maladaptive process and restore heart function are limited. Ganoderma lucidum polysaccharides (GLPs) are one of the main active components of G. lucidum (Ganoderma lucidum), and they have various pharmacological effects. GLPs have been used as Chinese medicine prescriptions for clinical treatment. In this study, cardiac hypertrophy was induced by transverse aortic constriction (TAC) in mice. We found that GLPs ameliorate Ang II-induced cardiomyocyte hypertrophy in vitro and attenuate pressure overload-induced cardiac hypertrophy in vivo. Further research indicated that GLPs attenuated the mRNA levels of hypertrophic and fibrotic markers to inhibit cardiac hypertrophy through the PPARγ/PGC-1α pathway. Overall, these results indicate that GLPs inhibit cardiac hypertrophy through downregulating key genes for hypertrophy and fibrosis and attenuate pressure overload-induced pathological cardiac hypertrophy by activating PPARγ. This study provides important theoretical support for the potential of using GLPs to treat pathological myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- Changlin Zhen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Xunxun Wu
- School of Biomedical Science, Huaqiao University, Quanzhou, China
| | - Jing Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Dan Liu
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Guoli Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yongbo Yan
- The People’s Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing, China
| | - Xiuzhen He
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Jiawei Miao
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Hongxia Song
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yifan Yan
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
- *Correspondence: Yifan Yan, ; Yonghui Zhang,
| | - Yonghui Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
- *Correspondence: Yifan Yan, ; Yonghui Zhang,
| |
Collapse
|
21
|
Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai DQ, Suwannarach N, Rapior S, Karunarathna SC. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022; 13:24. [PMID: 36671409 PMCID: PMC9856212 DOI: 10.3390/biom13010024] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
For centuries, Ganoderma has been used as a traditional medicine in Asian countries to prevent and treat various diseases. Numerous publications are stating that Ganoderma species have a variety of beneficial medicinal properties, and investigations on different metabolic regulations of Ganoderma species, extracts or isolated compounds have been performed both in vitro and in vivo. However, it has frequently been questioned whether Ganoderma is simply a dietary supplement for health or just a useful "medication" for restorative purposes. More than 600 chemical compounds including alkaloids, meroterpenoids, nucleobases, nucleosides, polysaccharides, proteins, steroids and triterpenes were extracted and identified from Ganoderma, with triterpenes serving as the primary components. In recent years, Ganoderma triterpenes and other small molecular constituents have aroused the interest of chemists and pharmacologists. Meanwhile, considering the significance of the triterpene constituents in the development of new drugs, this review describes 495 compounds from 25 Ganoderma species published between 1984 and 2022, commenting on their source, biosynthetic pathway, identification, biological activities and biosynthesis, together with applications of advanced analytical techniques to the characterization of Ganoderma triterpenoids.
Collapse
Affiliation(s)
- Mahesh C. A. Galappaththi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Postgraduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | | | - Kalani K. Hapuarachchi
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
22
|
Hattori K, Takagi H, Ogata Y, Yamada T, Horiba H, Fukata K, Sakaida T, Yashiro Y, Hasegawa S, Tanaka H. Immunostimulatory effects of a subcritical water extract of Ganoderma. Biomed Rep 2022; 18:1. [PMID: 36544853 PMCID: PMC9756285 DOI: 10.3892/br.2022.1583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
Ganoderma, a medicinal mushroom with various physiological activities, has been extensively investigated regarding its effectiveness. The aim of the present study was to examine the effects of a subcritical water extract of Ganoderma (SWEG) on the immune system. The use of subcritical water with a higher temperature and pressure than hot water allows efficient elution of components from natural products. As an evaluation of the effectiveness of SWEG, a cell proliferation and a cell differentiation test were carried out using A-6 cells, a model of hematopoietic stem cells. Furthermore, an oral administration test in mice was conducted to examine the effects of SWEG on the number and function of immune cells. As a result, SWEG was revealed to promote both self-renewal and differentiation into immune cells such as T cells and natural killer (NK) cells in experiments with A-6 cells. These results were not obtained in experiments using hot water extract of Ganoderma lucidum and Ganoderma sinense. The oral administration test in mice demonstrated that SWEG increased hematopoietic precursor cells, immature B cells, and NK cells in the bone marrow, and T cells in the thymus. In addition, SWEG enhanced the immune functions in the spleen by promoting granzyme B expression and NK cell activity. SWEG was demonstrated to be a food material that acts on HSCs and regulates immunity in vivo.
Collapse
Affiliation(s)
- Koji Hattori
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Hiroshi Takagi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Yuichiro Ogata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Hiroki Horiba
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Kousuke Fukata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Tsutomu Sakaida
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Youichi Yashiro
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya-shi, Aichi 466-8550, Japan,Correspondence to: Dr Seiji Hasegawa, Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya-shi, Aichi 451-0071, Japan
| | - Hiroyuki Tanaka
- Laboratory of Immunobiology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
23
|
Sharma VK, Liu X, Oyarzún DA, Abdel-Azeem AM, Atanasov AG, Hesham AEL, Barik SK, Gupta VK, Singh BN. Microbial polysaccharides: An emerging family of natural biomaterials for cancer therapy and diagnostics. Semin Cancer Biol 2022; 86:706-731. [PMID: 34062265 DOI: 10.1016/j.semcancer.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Microbial polysaccharides (MPs) offer immense diversity in structural and functional properties. They are extensively used in advance biomedical science owing to their superior biodegradability, hemocompatibility, and capability to imitate the natural extracellular matrix microenvironment. Ease in tailoring, inherent bio-activity, distinct mucoadhesiveness, ability to absorb hydrophobic drugs, and plentiful availability of MPs make them prolific green biomaterials to overcome the significant constraints of cancer chemotherapeutics. Many studies have demonstrated their application to obstruct tumor development and extend survival through immune activation, apoptosis induction, and cell cycle arrest by MPs. Synoptic investigations of MPs are compulsory to decode applied basics in recent inclinations towards cancer regimens. The current review focuses on the anticancer properties of commercially available and newly explored MPs, and outlines their direct and indirect mode of action. The review also highlights cutting-edge MPs-based drug delivery systems to augment the specificity and efficiency of available chemotherapeutics, as well as their emerging role in theranostics.
Collapse
Affiliation(s)
- Vivek K Sharma
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Shanghai 200032, China.
| | - Diego A Oyarzún
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Atanas G Atanasov
- Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Saroj K Barik
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom.
| | - Brahma N Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| |
Collapse
|
24
|
Recent advances in qualitative and quantitative analysis of polysaccharides in natural medicines: A critical review. J Pharm Biomed Anal 2022; 220:115016. [PMID: 36030753 DOI: 10.1016/j.jpba.2022.115016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
Polysaccharides from natural medicines, being safe and effective natural mixtures, show great potential to be developed into botanical drugs. However, there is yet one polysaccharide-based case that has fulfilled the Botanical Guidance definition of a botanical drug product. One of the reasons is the analytical methods commonly used for qualitative and quantitative analysis of polysaccharides fall far behind the quality control criteria of botanical drugs. Here we systemically reviewed the recent advances in analytical methods. A critical evaluation of the strength and weaknesses of these methods was provided, together with possible solutions to the difficulties. Mass spectrometry with or without robust chromatographic separation was increasingly employed. And scientists have made significant progress in simplifying polysaccharide quantification by depolymerizing it into oligosaccharides. This oligosaccharides-based strategy is promising for qualitative and quantitative analysis of polysaccharides. And continuous efforts are still needed to develop a standardized quality control method that is specific, accurate, repeatable, and applicable for analyzing individual components in natural medicine formulas.
Collapse
|
25
|
Zheng M, Pi X, Li H, Cheng S, Su Y, Zhang Y, Man C, Jiang Y. Ganoderma spp. polysaccharides are potential prebiotics: a review. Crit Rev Food Sci Nutr 2022; 64:909-927. [PMID: 35980144 DOI: 10.1080/10408398.2022.2110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbiota (GM) is a complex ecosystem that is closely linked to host health. Ganoderma spp. polysaccharides (GPs), a major bioactive component of the fungal genus Ganoderma, can modulate the GM, exhibiting various health effects and prebiotic potential. This review comprehensively concluded the structural features and extraction method of GPs. The mechanism of GPs for anti-obesity, anti-diabetes, anti-inflammatory, and anti-cancer were further evaluated. The simulated gastrointestinal digestion of GPs and the utilization mechanism of host microorganisms were discussed. It was found that the physicochemical properties and biological activities of GPs depend on their structural characteristics (molecular weight, monosaccharide composition, glycosidic bonds, etc.). Their extraction method also affects the structure and bioactivities of polysaccharides. GPs supplementation could increase the relative abundance of beneficial bacteria (e.g. Bacteroides, Parabacteroides, Akkermansia, and Bifidobacterium), while reducing that of pathogenic bacteria (e.g. Aerococcus, Ruminococcus), thus promoting health. Moreover, GPs are resistant to digestion in the stomach and small intestine but are digested in the large intestine. Therefore, GPs can be considered as potential prebiotics. However, further studies should investigate how GPs as prebiotics regulate GM and improve host health.
Collapse
Affiliation(s)
- Miao Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongxuan Li
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shasha Cheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yue Su
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
26
|
Yang HD, Ding Y, Wen TC, Hapuarachchi KK, Wei DP. Ganodermaovisporum sp. nov. (Polyporales, Polyporaceae) from Southwest China. Biodivers Data J 2022; 10:e80034. [PMID: 36761562 PMCID: PMC9848459 DOI: 10.3897/bdj.10.e80034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/02/2022] [Indexed: 02/06/2023] Open
Abstract
Background Ganoderma is a white-rot fungus with a cosmopolitan distribution and includes several economically important species. This genus has been extensively researched due to its beneficial medicinal properties and chemical constituents with potential nutritional and therapeutic values. Traditionally, species of Ganoderma were identified solely based on morphology; however, recent molecular studies revealed that many morphology-based species are conspecific. Furthermore, some type species are in poor condition, which hinders us from re-examining their taxonomic characteristics and obtaining their molecular data. Therefore, new species and fresh collections with multigene sequences are needed to fill the loopholes and to understand the biological classification system of Ganoderma. New information In a survey of Ganoderma in Guizhou Province, southwest China, we found a new species growing on soil and, herein, it was identified by both morphology and phylogenetic evidence. Hence, we propose a new species, Ganodermaovisporum sp. nov. This species is characterised by an annual, stipitate, laccate basidiome, with a red-brown to brownish-black pileus surface and pale white pores, duplex context, clavate pileipellis terminal cells, trimitic hyphal system, ellipsoid basidiospores with dark brown eusporium bearing coarse echinulae and an obtuse turgid appendix. Phylogenetic analyses confirmed that the novel species sisters to G.sandunense with high bootstrap support. Furthermore, the RPB2 sequence of G.sandunense is supplied for the first time. Notably, we re-examined the type specimen of G.sandunense and provide a more precise description of the duplex context, pileipellis terminal cells and basidia. All species collected are described and illustrated with coloured photographs. Moreover, we present an updated phylogeny for Ganoderma, based on nLSU, ITS, RPB2 and TEF1-α DNA sequence data and species relationships and classification are discussed.
Collapse
Affiliation(s)
- Hong-De Yang
- Key Laboratory of Forest Biotechnology in Yunnan, Southwest Forestry University, Kunming, ChinaKey Laboratory of Forest Biotechnology in Yunnan, Southwest Forestry UniversityKunmingChina,The Engineering Research Center of Southwest Bio–Pharmaceutical Resources Ministry of Education, Guizhou University, Guiyang, ChinaThe Engineering Research Center of Southwest Bio–Pharmaceutical Resources Ministry of Education, Guizhou UniversityGuiyangChina,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang RaiThailand
| | - Yong Ding
- Key Laboratory of Forest Biotechnology in Yunnan, Southwest Forestry University, Kunming, ChinaKey Laboratory of Forest Biotechnology in Yunnan, Southwest Forestry UniversityKunmingChina
| | - Ting-Chi Wen
- The Engineering Research Center of Southwest Bio–Pharmaceutical Resources Ministry of Education, Guizhou University, Guiyang, ChinaThe Engineering Research Center of Southwest Bio–Pharmaceutical Resources Ministry of Education, Guizhou UniversityGuiyangChina,State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guiyang, ChinaState Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringGuiyangChina,The Mushroom Research Centre, Guizhou University, Guiyang, ChinaThe Mushroom Research Centre, Guizhou UniversityGuiyangChina
| | - Kalani Kanchana Hapuarachchi
- The Engineering Research Center of Southwest Bio–Pharmaceutical Resources Ministry of Education, Guizhou University, Guiyang, ChinaThe Engineering Research Center of Southwest Bio–Pharmaceutical Resources Ministry of Education, Guizhou UniversityGuiyangChina,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang RaiThailand,The Mushroom Research Centre, Guizhou University, Guiyang, ChinaThe Mushroom Research Centre, Guizhou UniversityGuiyangChina,State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, ChinaState Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou UniversityGuiyangChina
| | - De-Ping Wei
- The Engineering Research Center of Southwest Bio–Pharmaceutical Resources Ministry of Education, Guizhou University, Guiyang, ChinaThe Engineering Research Center of Southwest Bio–Pharmaceutical Resources Ministry of Education, Guizhou UniversityGuiyangChina,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang RaiThailand,The Mushroom Research Centre, Guizhou University, Guiyang, ChinaThe Mushroom Research Centre, Guizhou UniversityGuiyangChina,State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, ChinaState Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou UniversityGuiyangChina,Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, ThailandDepartment of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai UniversityChiang MaiThailand
| |
Collapse
|
27
|
Wang M, Yu F. Research Progress on the Anticancer Activities and Mechanisms of Polysaccharides From Ganoderma. Front Pharmacol 2022; 13:891171. [PMID: 35865946 PMCID: PMC9294232 DOI: 10.3389/fphar.2022.891171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/17/2022] [Indexed: 01/15/2023] Open
Abstract
Cancer ranks as a primary reason for death worldwide. Conventional anticancer therapies can cause severe side effects, and thus natural products may be promising drug candidates for cancer therapy. Accumulating evidence has verified the prominent anticancer properties of Ganoderma polysaccharides, suggesting that Ganoderma polysaccharides may be effective chemopreventive agents of natural origin. Based on their abilities to prevent cancer development by regulating the DNA damage response, cancer cell proliferation, apoptosis, host immunity, gut microbiota and therapeutic sensitivity, there has been increasing interest in elucidating the clinical implication of Ganoderma polysaccharides in cancer therapy. In this review, we summarize recent findings pertaining to the roles of bioactive polysaccharides from Ganoderma in cancer pathogenesis, discuss the multifarious mechanisms involved and propose future directions for research. A more sophisticated understanding of the anticancer benefits of Ganoderma polysaccharides will be helpful for improving current treatments and developing novel therapeutic interventions for human malignancies.
Collapse
|
28
|
Murtazina A, Ruiz Alcala G, Jimenez-Martinez Y, Marchal JA, Tarabayeva A, Bitanova E, McDougall G, Bishimbayeva N, Boulaiz H. Anti-Cancerous Potential of Polysaccharides Derived from Wheat Cell Culture. Pharmaceutics 2022; 14:pharmaceutics14051100. [PMID: 35631686 PMCID: PMC9147229 DOI: 10.3390/pharmaceutics14051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
There is a global need to discover effective anti-cancerous compounds from natural sources. Cultivated wheat cells can be a valuable source of non-toxic or low toxic plant-derived polysaccharides. In this study, we evaluated the anti-cancer ability of seven fractions of wheat cell culture polysaccharides (WCCPSs) in the HCT-116 colon cancer cell line. Almost all (6/7) fractions had an inhibitory effect on the proliferation of colon cancer cells, and two fractions (A-b and A-f) had considerable therapeutic indexes. The WCCPS fractions induced cell cycle arrest in the G1 phase and induced different rates of apoptosis (≤48%). Transmission and scanning electron microscopy revealed that WCCPS fractions caused apoptotic changes in the nucleus and cytoplasm, including damage to mitochondria and external morphological signs of apoptosis. In addition, the WCCPSs induced an increase in the levels of Bax, cytochrome c, and caspases 8 and 3, indicating that cell death progressed through intrinsic and extrinsic pathways of apoptosis. Furthermore, some fractions caused a significant decrease of c-Myc, b-catenin, NFkB2, and HCAM (CD 44) levels, indicating enhanced cell differentiation. Thus, for the first time, our results provide a proof of concept of the anti-cancer capacity of WCCPS fractions in colorectal cancer.
Collapse
Affiliation(s)
- Alima Murtazina
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty A35B8H9, Kazakhstan; (A.T.); (E.B.)
- Research Center “Bioscience Technologies”, Almaty A15G7B0, Kazakhstan
| | - Gloria Ruiz Alcala
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
| | - Yaiza Jimenez-Martinez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Anel Tarabayeva
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty A35B8H9, Kazakhstan; (A.T.); (E.B.)
| | - Elmira Bitanova
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty A35B8H9, Kazakhstan; (A.T.); (E.B.)
| | - Gordon McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Nazira Bishimbayeva
- Research Center “Bioscience Technologies”, Almaty A15G7B0, Kazakhstan
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty A15E3B4, Kazakhstan
- Correspondence: or (N.B.); (H.B.)
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: or (N.B.); (H.B.)
| |
Collapse
|
29
|
Luo H, Tan D, Peng B, Zhang S, Vong CT, Yang Z, Wang Y, Lin Z. The Pharmacological Rationales and Molecular Mechanisms of Ganoderma lucidum Polysaccharides for the Therapeutic Applications of Multiple Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:53-90. [PMID: 34963429 DOI: 10.1142/s0192415x22500033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a versatile Chinese herb, Ganoderma lucidum (Leyss. ex Fr.) Karst (G. lucidum) has been applied to treat multiple diseases in clinics and improve the quality of life of patients. Among all of its extracts, the main bioactive components are G. lucidum polysaccharides (GLPs), which possess many therapeutic effects, such as antitumor, immunoregulatory, anti-oxidant, antidiabetic, antibacterial, and antifungal effects and neuroprotection activities. This review briefly summarized the recent studies of the pharmacological rationales of GLPs and their underlying molecular signaling transmission mechanisms in treating diseases. Until now, the clear mechanisms of GLPs for treating diseases have not been reported. In this review, we used the keywords of "Ganoderma lucidum polysaccharides" and "tumor" to search in PubMed (years of 1992-2020), then screened and obtained 160 targets of antitumor activities in the literatures. The network pharmacology and mechanism framework were employed in this study as powerful approaches to systematically analyze the complicated potential antitumor mechanisms and targets of GLPs in cancer. We then found that there are 69 targets and 21 network pathways in "Pathways in cancer". Besides, we summarized the effects of GLPs and the models and methods used in the research of GLPs. In conclusion, GLPs have been studied extensively, but more in-depth research is still needed to determine the exact mechanisms and pathways. Therefore, this review might provide new insights into the vital targets and pathways for researchers to study the pharmacological mechanisms of GLPs for the treatment of diseases.
Collapse
Affiliation(s)
- Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Dechao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Siyuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zizhao Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P. R. China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhibin Lin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
30
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
31
|
Chan YS, Chong KP. Bioactive Compounds of Ganoderma boninense Inhibited Methicillin-Resistant Staphylococcus aureus Growth by Affecting Their Cell Membrane Permeability and Integrity. Molecules 2022; 27:838. [PMID: 35164103 PMCID: PMC8840476 DOI: 10.3390/molecules27030838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Some species of Ganoderma, such as G. lucidum, are well-known as traditional Chinese medicine (TCM), and their pharmacological value was scientifically proven in modern days. However, G. boninense is recognized as an oil palm pathogen, and its biological activity is scarcely reported. Hence, this study aimed to investigate the antibacterial properties of G. boninense fruiting bodies, which formed by condensed mycelial, produced numerous and complex profiles of natural compounds. Extract was cleaned up with normal-phase SPE and its metabolites were analyzed using liquid chromatography-mass spectrometry (LCMS). From the disc diffusion and broth microdilution assays, strong susceptibility was observed in methicillin-resistant Staphylococcus aureus (MRSA) in elute fraction with zone inhibition of 41.08 ± 0.04 mm and MIC value of 0.078 mg mL-1. A total of 23 peaks were detected using MS, which were putatively identified based on their mass-to-charge ratio (m/z), and eight compounds, which include aristolochic acid, aminoimidazole ribotide, lysine sulfonamide 11v, carbocyclic puromycin, fenbendazole, acetylcaranine, tigecycline, and tamoxifen, were reported in earlier literature for their antimicrobial activity. Morphological observation via scanning electron microscope (SEM), cell membrane permeability, and integrity assessment suggest G. boninense extract induces irreversible damage to the cell membrane of MRSA, thus causing cellular lysis and death.
Collapse
Affiliation(s)
| | - Khim-Phin Chong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|
32
|
Dong Z, Dong G, Lai F, Wu H, Zhan Q. Purification and comparative study of bioactivities of a natural selenized polysaccharide from Ganoderma Lucidum mycelia. Int J Biol Macromol 2021; 190:101-112. [PMID: 34478790 DOI: 10.1016/j.ijbiomac.2021.08.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
The development of selenized polysaccharides is a promising strategy for the dietary selenium supplementation. The purpose of this research is to determine the influence of selenium on the structure and bioactivity of a polysaccharide fraction (MPN) isolated from Ganoderma lucidum mycelia. After biological selenium enrichment, the selenium content in the selenized polysaccharide (SeMPN) was 18.91 ± 1.8 μg/g. SeMPN had a slightly lower molecular weight than MPN, but the carbohydrate content and monosaccharide composition remained identical. Additionally, the band at 606 cm-1 in MPN changed to 615 cm-1 in SeMPN as revealed by FT-IR spectra. No significant changes were observed in the types and ratios of glycosidic linkages, as determined by NMR spectroscopy. Extracellular and intracellular antioxidant assays demonstrated that SeMPN was more effective than MPN in scavenging free radicals, inhibiting AAPH-induced erythrocyte hemolysis, and protecting catalase (CAT) and glutathione peroxidase (GSH-Px) activity in H2O2-injured PC12 cells. Additionally, SeMPN had a higher increase effect on RAW 264.7 cells's pinocytic and phagocytic capacity, as well as their production of NO, TNF-α, and IL-6. SeMPN could be as potential functional selenium supplementation.
Collapse
Affiliation(s)
- Zhou Dong
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Gang Dong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Furao Lai
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Qiping Zhan
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
33
|
Kuo HC, Liu YW, Lum CC, Hsu KD, Lin SP, Hsieh CW, Lin HW, Lu TY, Cheng KC. Ganoderma formosanum Exopolysaccharides Inhibit Tumor Growth via Immunomodulation. Int J Mol Sci 2021; 22:ijms222011251. [PMID: 34681911 PMCID: PMC8538369 DOI: 10.3390/ijms222011251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ganoderma formosanum (GF) is a medicinal mushroom endemic to Taiwan. Previous research established the optimal culture conditions to produce exopolysaccharide rich in β-glucan (GF-EPS) from submerged fermentation of GF. The present study investigated the antitumor effects of GF-EPS in a Lewis lung carcinoma cell (LLC1) tumor-bearing mice model. In the preventive model, GF-EPS was orally administered to mice before LLC1 injection. In the therapeutic model, GF-EPS oral administration was initiated five days after tumor cell injection. The tumor size and body weight of the mice were recorded. After sacrifice, the lymphocyte subpopulation was analyzed using flow cytometry. Spleen tissues were used to analyze cytokine mRNA expression. The results showed that GF-EPS (80 mg/kg) effectively suppressed LLC1 tumor growth in both the preventive and therapeutic models. GF-EPS administration increased the proportion of natural killer cells in the spleen and activated gene expression of several cytokines. Our results provide evidence that GF-EPS promotes tumor inhibition through immunomodulation in tumor-bearing mice.
Collapse
Affiliation(s)
- Hsing-Chun Kuo
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613, Taiwan;
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| | - Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chi-Chin Lum
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (C.-C.L.); (K.-D.H.)
| | - Kai-Di Hsu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (C.-C.L.); (K.-D.H.)
| | - Shin-Ping Lin
- Department of Food Safety, Taipei Medical University, Taipei 110, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung 413, Taiwan;
| | - Tze-Ying Lu
- Department of Cardiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
- Correspondence: (T.-Y.L.); (K.-C.C.)
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (C.-C.L.); (K.-D.H.)
- Department of Optometry, Asia University, Taichung 413, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406, Taiwan
- Institute of Food Science Technology, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (T.-Y.L.); (K.-C.C.)
| |
Collapse
|
34
|
Liu G, Zhang J, Hou T, An S, Guo B, Liu C, Hu L, Huang Y, Zhang S, Song M, Cao Y. Extraction kinetics, physicochemical properties and immunomodulatory activity of the novel continuous phase transition extraction of polysaccharides from Ganoderma lucidum. Food Funct 2021; 12:9708-9718. [PMID: 34664607 DOI: 10.1039/d1fo02185k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ganoderma lucidum polysaccharides (GLP) possess remarkable bioactivity and have been studied widely. However, the application of new technologies in the polysaccharide extraction has not been investigated. Herein, a novel continuous phase transition extraction (CPTE) technology was applied for the extraction of polysaccharides from Ganoderma lucidum. The extraction kinetics, physicochemical properties and immunomodulatory activity of GLP were evaluated. The kinetics results showed that the extraction process could be fitted to a two-site kinetic model due to the high R2 values in the range of 0.9939-0.9999. Polysaccharides extracted by different technologies showed that GLP yield by CPTE could be significantly improved, which was 3.34 times and 2.68 times that of hot water and ultrasonic-assisted extraction, respectively. Molecular weight distribution analysis indicated that high molecular mass polysaccharide proportion by CPTE was the highest among the three extraction methods, which was 2.03 times and 3.41 times as much as that of the hot water and ultrasonic-assisted extraction. Morphology analysis showed that CPTE treatment caused disruption of most of the cells and effective release of intracellular components, implying that CPTE was beneficial to extract polysaccharides. Furthermore, the immunomodulatory assays demonstrated that GLP significantly enhanced the proliferation and production of NO, TNF-α and IL-6 in macrophages. Therefore, CPTE was more effective for extracting polysaccharides from Ganoderma lucidum than the common extraction.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Siyu An
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Baoyan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Cencen Liu
- Infinitus China Co Ltd, Guangzhou, 510623, China
| | - Liuyun Hu
- Infinitus China Co Ltd, Guangzhou, 510623, China
| | - Yahui Huang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuai Zhang
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
35
|
Liu H, Amakye WK, Ren J. Codonopsis pilosula polysaccharide in synergy with dacarbazine inhibits mouse melanoma by repolarizing M2-like tumor-associated macrophages into M1-like tumor-associated macrophages. Biomed Pharmacother 2021; 142:112016. [PMID: 34385100 DOI: 10.1016/j.biopha.2021.112016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The incidence and associated mortality of melanoma have increased significantly in recent years but treatment options are plagued with many undesirable side effects. Traditional Chinese herbal medicine polysaccharides are gaining increasing attention due to their potential role in the treatment of chronic diseases including tumors and the regulation of the immune system. METHODS In this study, the potential effects of Ganoderma lucidum crude polysaccharides (GLCP) and Codonopsis pilosula crude polysaccharides (CPCP) on melanoma in C57 mice were explored. In addition, the inhibition and repolarization effect of digested Codonopsis pilosula polysaccharide (dCPP) on the proliferation of tumor-associated macrophages (TAMs) with M2-like phenotype induced by IL-4 were investigated. RESULTS The results showed that the various polysaccharides could significantly reduce tumor volume in melanoma mice. GLCP and GLCP + CPCP could further significantly reduce the number of CD68+ macrophages in tumors and also prolong survival in melanoma mice to a certain extent. Significantly, dCPP could inhibit the proliferation of IL-4-induced M2-like TAMs, and significantly increase the mRNA expression levels of IL-1, IL-6, iNOS and TNF-a, thereby promoting the repolarization of M2-like TAMs to M1-like TAMs. CONCLUSION Overall, it could be deduced that GLCP, CPCP and dCPP hold great potential as safe therapeutic options for melanoma and an immune-modulator which may require further exploration.
Collapse
Affiliation(s)
- Hongxu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, PR China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, PR China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, PR China.
| |
Collapse
|
36
|
Xu J, Chen F, Wang G, Liu B, Song H, Ma T. The Versatile Functions of G. Lucidum Polysaccharides and G. Lucidum Triterpenes in Cancer Radiotherapy and Chemotherapy. Cancer Manag Res 2021; 13:6507-6516. [PMID: 34429657 PMCID: PMC8380140 DOI: 10.2147/cmar.s319732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
G. lucidum has a long history of thousands of years in China and is closely related with the lives of the Chinese people. It is reported to cure various diseases due to its high nutritional value and wide range of uses. The fascinating effects of G. lucidum have tethered a multitude of efforts to explore its effective ingredients and supplement functions. At present, many cancer research studies have reported the G. lucidum polysaccharides (GLPs) and G. lucidum triterpenes (GLTs) as the main active ingredients in G. lucidum, which have shown positive effects on radiotherapy and chemotherapy. GLPs or GLTs treatment synergizes with radiotherapy and chemotherapy through multiple pathways, including oxidative stress, apoptosis, immune microenvironment, etc. Therefore, this review aims to analyze and summarize these complex molecules from G. lucidum in order to create more treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Fengyuan Chen
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Guoquan Wang
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| |
Collapse
|
37
|
Li LF, But GWC, Zhang QW, Liu M, Chen MM, Wen X, Wu HY, Cheng HY, Puno PT, Zhang JX, Fung HY, Bai SP, Wong TL, Zhao ZZ, Cao H, Tsim KWK, Shaw PC, Han QB, Sun HD. A specific and bioactive polysaccharide marker for Cordyceps. Carbohydr Polym 2021; 269:118343. [PMID: 34294350 DOI: 10.1016/j.carbpol.2021.118343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Cordyceps is one of the most expensive and widely used functional foods. But the authenticity is still a concern due to the lack of appropriate markers. By targeting polysaccharides, this study aimed to develop a specific, and bioactive marker for Cordyceps. Firstly, the results of screening tests of 250 samples by examining both genetic markers and polysaccharide profile showed that a unique polysaccharide fraction (named CCP) was particular to the caterpillar parts. Its potential as a marker was further demonstrated by its ability to induce NO and cytokine production in RAW 264.7 cells. CCP was characterized to be an α-1,4-glucan with a branch at C-6 by the conventional structure analyzing and de novo oligosaccharides sequencing. The content of CCP was closely correlated to the traditional classification criteria. Generally, CCP was a marker that simultaneously enables qualitative and quantitative analysis of Cordyceps.
Collapse
Affiliation(s)
- Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Authentication Centre of Valuable Chinese Medicines, Hong Kong, China
| | - Grace Wing-Chiu But
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan-Wei Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Man Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Miao-Miao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xin Wen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yuan Cheng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ji-Xia Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hau-Yee Fung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Su-Ping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tin-Long Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhong-Zhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hui Cao
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Karl Wah-Keung Tsim
- Division of Life Sciences, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Authentication Centre of Valuable Chinese Medicines, Hong Kong, China..
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
38
|
Interspecific hybridization between Ganoderma lingzhi and G. applanatum through protoplast fusion. World J Microbiol Biotechnol 2021; 37:114. [PMID: 34115218 DOI: 10.1007/s11274-021-03084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Interspecific hybridization between Ganoderma lingzhi and G. applanatum was attempted through polyethylene glycol (PEG) induced fusion technique. The protoplast isolation procedure was simplified, and we obtained a significant number of protoplasts from both Ganoderma species. The number of protoplasts obtained was 5.27 ± 0.31 × 107/mL in G. lingzhi and 5.57 ± 0.49 × 106/mL in G. applanatum. Osmotic stabilizer NaCl (0.4 M) at pH 5.8 and enzymolysis time 3.5 h have supported high frequency of protoplast regeneration. G. lingzhi and G. applanatum regeneration frequency was 1.73 ± 0.04% and 0.23 ± 0.02%, respectively. 40% of PEG induced high number of protoplast fusion the regeneration frequency was 0.09% on a minimal medium. Two hundred fifty-two fusant colonies were isolated from the following four individual experiments. Among them, ten fusants showed the mycelial morphological difference compared to their parents and other fusant isolates. The fruiting body could be generated on oak sawdust and wheat bran substrate, and a few of them showed recombined morphology of the parental strains. The highest yield and biological efficacy (BE) were recorded in GF248, while least in GF244. The hybridity of the fusant was established based on mycelia, fruiting morphology, and PCR fingerprinting. ISSR and RAPD profile analysis of ten fusants and parents depicted that fusants contained polymorphic bands, which specified the rearrangement and deletion of DNA in the fusants. A Dendrogram was constructed based on the RAPD profile, and the clustering data exhibited two major clusters: cluster I included the G. lingzhi and Cluster II, including the G. applanatum and fusant lines. Total polysaccharide (α, β and total glucan) content was compared with fusants and parental strains. The present study highlighted the efficient methods for protoplast isolation from Ganoderma species. PEG-induced fusants showed high polymorphic frequency index, while the phenotypic characters showed high similarity to G. applanatum. A significant difference was observed in the mushroom yield and its total polysaccharide between the fusants and parental strains.
Collapse
|
39
|
Natural Food Polysaccharides Ameliorate Inflammatory Bowel Disease and Its Mechanisms. Foods 2021; 10:foods10061288. [PMID: 34199820 PMCID: PMC8227517 DOI: 10.3390/foods10061288] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/08/2023] Open
Abstract
Natural polysaccharides and their metabolites’ short chain fatty acids (SCFAs) have attracted much attention. Recently, they have shown great potential in attenuating systemic inflammation activities, especially in inflammatory bowel disease (IBD). IBD is a complex pathological process and is related to epithelial damage and microbiota imbalance in the gut. Recent studies have indicated that natural polysaccharides could improve IBD recovery by different mechanisms. They could not only influence the ratio of intestine microbiota, but also regulate the secretion levels of immunity cytokines through multiple pathways, the latter including modulation of the TLR/MAPK/NF-κB signaling pathways and stimulation of G-protein-coupled receptors. Moreover, they could increase intestinal integrity and modulate oxidative stress. In this review, recent research about how natural polysaccharides impact the pathogenesis of IBD are summarized to prove the association between polysaccharides and disease recovery, which might contribute to the secretion of inflammatory cytokines, improve intestine epithelial damage, reduce oxidative stress, sustain the balanced microenvironment of the intestines, and finally lower the risk of IBD.
Collapse
|
40
|
Luo J, Yu J, Peng X. Could partial nonstarch polysaccharides ameliorate cancer by altering m 6A RNA methylation in hosts through intestinal microbiota? Crit Rev Food Sci Nutr 2021; 62:8319-8334. [PMID: 34036843 DOI: 10.1080/10408398.2021.1927975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is a growing scientific view that the improvement of cancer by nonstarch polysaccharides (NSPs) is mediated by intestinal microbiota. Intestinal bacteria affect the supply of methyl donor substances and influence N6-methyladenosine (m6A) RNA methylation. As one of the epigenetic/epitranscriptomic modifications, m6A RNA methylation is closely related to the initiation and progression of cancers. This review summarizes the cancer-improving effects of NSPs through modulation of intestinal microbiota. It also summarizes the relationship between intestinal bacteria and the supply of methyl donor substances. Moreover, it also provides a summary of the effects of m6A RNA methylation on various types of cancer. The proposed mechanism is that, dietary consumed NSPs are utilized by specific intestinal bacteria and further reshape the microbial structure. Methyl donor substances will be directly or indirectly generated by the reshaped-microbiota, and affect the m6A RNA methylation of cancer-related and pro-carcinogenic inflammatory cytokine genes. Therefore, NSPs may change the m6A RNA methylation by affecting the methyl donor supply produced by intestinal microbiota and ameliorate cancer. This review discussed the possibility of cancer improvement of bioactive NSPs achieved by impacting RNA methylation via the intestinal microbiota, and it will offer new insights for the application of NSPs toward specific cancer prevention.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Juntong Yu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Zhu R, Lang T, Yan W, Zhu X, Huang X, Yin Q, Li Y. Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003542. [PMID: 34026439 PMCID: PMC8132165 DOI: 10.1002/advs.202003542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/05/2021] [Indexed: 05/05/2023]
Abstract
Gut microbiota have close interactions with the host. It can affect cancer progression and the outcomes of cancer therapy, including chemotherapy, immunotherapy, and radiotherapy. Therefore, approaches toward the modulation of gut microbiota will enhance cancer prevention and treatment. Modern drug delivery systems (DDS) are emerging as rational and promising tools for microbiota intervention. These delivery systems have compensated for the obstacles associated with traditional treatments. In this review, the essential roles of gut microbiota in carcinogenesis, cancer progression, and various cancer therapies are first introduced. Next, advances in DDS that are aimed at enhancing the efficacy of cancer therapy by modulating or engineering gut microbiota are highlighted. Finally, the challenges and opportunities associated with the application of DDS targeting gut microbiota for cancer prevention and treatment are briefly discussed.
Collapse
Affiliation(s)
- Runqi Zhu
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianqun Lang
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine and Advanced PreparationsYantai Institute of Materia MedicaYantai264000China
| | - Wenlu Yan
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiao Zhu
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xin Huang
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qi Yin
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine and Advanced PreparationsYantai Institute of Materia MedicaYantai264000China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine and Advanced PreparationsYantai Institute of Materia MedicaYantai264000China
- School of PharmacyYantai UniversityYantai264005China
| |
Collapse
|
42
|
Li Y, Wang X, Ma X, Liu C, Wu J, Sun C. Natural Polysaccharides and Their Derivates: A Promising Natural Adjuvant for Tumor Immunotherapy. Front Pharmacol 2021; 12:621813. [PMID: 33935714 PMCID: PMC8080043 DOI: 10.3389/fphar.2021.621813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
The treatment process of tumor is advanced with the development of immunotherapy. In clinical experience, immunotherapy has achieved very significant results. However, the application of immunotherapy is limited by a variety of immune microenvironment. For a long time in the past, polysaccharides such as lentinan and Ganoderma lucidum glycopeptide have been used in clinic as adjuvant drugs to widely improve the immunity of the body. However, their mechanism in tumor immunotherapy has not been deeply discussed. Studies have shown that natural polysaccharides can stimulate innate immunity by activating upstream immune cells so as to regulate adaptive immune pathways such as T cells and improve the effect of immunotherapy, suggesting that polysaccharides also have a promising future in cancer therapy. This review systematically discusses that polysaccharides can directly or indirectly activate macrophages, dendritic cells, natural killer cells etc., binding to their surface receptors, inducing PI3K/Akt, mitogen-activated protein kinase, Notch and other pathways, promote their proliferation and differentiation, increasing the secretion of cytokines, and improve the state of immune suppression. These results provide relevant basis for guiding polysaccharide to be used as adjuvants of cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.,Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
43
|
Zhang B, Zhang H, Yu Y, Zhang R, Wu Y, Yue M, Yang C. Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult Sci 2021; 100:101168. [PMID: 33975039 PMCID: PMC8131733 DOI: 10.1016/j.psj.2021.101168] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the effects of Bacillus coagulans (B. coagulans) as an alternative to antibiotics on growth performance, antioxidant capacity, immunity function and gut health in broilers. A total of 480 one-day-old broilers were randomly divided into 3 treatments with 8 replicates comprising 20 broilers each. The experiment lasted 42 d. Treatments included: basal diet without antibiotics (NCO); basal diet supplemented with 75 mg/kg chlortetracycline (ANT); basal diet supplemented with 5 × 109 CFU/kg B. coagulans(BC). The B. coagulans enhanced body weight (BW) and average daily gain compared with the NCO group (P < 0.05). However, there were no significant differences in average daily feed intake and feed: gain ratio (F: G) among three groups (P > 0.05). The B. coagulans significantly increased catalase, superoxide dismutase, and glutathione peroxidase levels and reduced malondialdehyde levels (P < 0.05). The serum immunoglobulins (IgA, IgM, and IgY) were significantly higher in the BC group when compared to the NCO and ANT groups (P < 0.05). The B. coagulans also markedly reduced serum levels of proinflammatory factors (IL-1β, IL-6, and TNF-α) and enhanced anti-inflammatory factor (IL-10) concentrations compared with control group (P < 0.05). Moreover, compared with the control group, BC significantly inhibited serum xanthine oxidase activity (P < 0.05). The levels of acetic acid, propionic acid, butyrate, isobutyric acid and valerate in BC group were significantly increased on d 42 compared with the NCO and ANT groups (P < 0.05). Furthermore, BC significantly altered cecal microbiota by reducing Desulfovibrio and Parasutterella, and by increasing Alistipes and Odoribacter (P < 0.05, P < 0.05, P < 0.001, P < 0.01, respectively). In conclusion, dietary B. coagulans, when used as an alternative to antibiotics, improved body weight, average daily gain, antioxidant capacity, immunity function and gut health in broilers.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Min Yue
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China.
| |
Collapse
|
44
|
The Impact of Mushroom Polysaccharides on Gut Microbiota and Its Beneficial Effects to Host: A Review. Carbohydr Polym 2020; 250:116942. [DOI: 10.1016/j.carbpol.2020.116942] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
|
45
|
Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia. Arch Microbiol 2020; 202:2825-2840. [PMID: 32747998 DOI: 10.1007/s00203-020-02005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
M18 strain of Streptococcus salivarius is a bacterial replacement probiotic that has been suggested for use in the oral cavity. Here, we have shown that S. salivarius M18 cell-free supernatant reduced the growth of the two most common human pathogens Pseudomonas aeruginosa and Klebsiella pneumonia and sensitized the pathogenic bacteria to antibiotic. Besides, the supernatant inhibited biofilm formation of P. aeruginosa drastically. For pinpointing the biomolecular changes that occurred in P. aeruginosa incubated with the probiotic supernatant, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used. Unsupervised learning algorithms, principal component analysis (PCA) and hierarchical cluster analysis (HCA), and intensity analyses of individual spectral bands exhibited comprehensive alterations in the polysaccharide and lipid contents and compositions of P. aeruginosa cultivated with S. salivarius M18 cell-free supernatant. These results indicate that S. salivarius M18 has the potential for the prevention or alleviation of different pathogen-induced infections along with the infections of oral pathogens.
Collapse
|
46
|
Ganoderma lucidum Prevents Cisplatin-Induced Nephrotoxicity through Inhibition of Epidermal Growth Factor Receptor Signaling and Autophagy-Mediated Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4932587. [PMID: 32695255 PMCID: PMC7362286 DOI: 10.1155/2020/4932587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 01/07/2023]
Abstract
Background Cisplatin (cis-diaminedichloroplatinum, CDDP) is a broad-spectrum antineoplastic agent. However, CDDP has been blamed for its nephrotoxicity, which is the main dose-limiting adverse effect. Ganoderma lucidum (GL), a medicinal mushroom, has antioxidant and inflammatory activities. Therefore, this study is aimed at finding out the potential nephroprotection of GL against CDDP-induced nephrotoxicity in rats and the possible molecular mechanisms including the EGFR downstream signaling, apoptosis, and autophagy. Methods Rats were given GL (500 mg/kg) for 10 days and a single injection of CDDP (12 mg/kg, i.p). Results Nephrotoxicity was evidenced by a significant increase in renal indices and oxidative stress markers. Additionally, CDDP showed a plethora of inflammatory and apoptotic responses as evidenced by a profound increase of HMGB-1, NF-κB, and caspase-3 expressions, whereas administration of GL significantly improved all these indices as well as the histopathological insults. Renal expression of EGFR showed a similar trend after GL administration. Furthermore, activation of autophagy protein, LC3 II, was found to be involved in GL-mediated nephroprotection correlated with the downregulation of apoptotic signaling, caspase-3 and terminal deoxynucleotidyl transferase (TDT) renal expressions. Conclusion These results suggest that GL might have improved CDDP-induced nephrotoxicity through antioxidant, anti-inflammatory, and autophagy-mediated apoptosis mechanisms and that inhibition of EGFR signaling might be involved in nephroprotection.
Collapse
|
47
|
Lee H, Nam K, Zahra Z, Farooqi MQU. Potentials of truffles in nutritional and medicinal applications: a review. Fungal Biol Biotechnol 2020; 7:9. [PMID: 32566240 PMCID: PMC7301458 DOI: 10.1186/s40694-020-00097-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Truffles, the symbiotic hypogeous edible fungi, have been worldwide regarded as a great delicacy because of their unique flavor and high nutritional value. By identifying their bioactive components such as phenolics, terpenoids, polysaccharides, anandamide, fatty acids, and ergosterols, researchers have paid attention to their biological activities including antitumor, antioxidant, antibacterial, anti-inflammatory, and hepatoprotective activities. In addition, numerous factors have been investigating that can affect the quality and productivity of truffles to overcome their difficulty in culturing and preserving. To provide the information for their potential applications in medicine as well as in functional food, this review summarizes the relevant literature about the biochemical composition, aromatic and nutritional benefits, and biological properties of truffles. Besides, various factors affecting their productivity and quality as well as the preservation methods are also highlighted.
Collapse
Affiliation(s)
- Heayyean Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea.,Plamica Labs, Batten Hall, 125 Western Ave, Allston, 02163 MA USA
| | - Kyungmin Nam
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, 02163 MA USA
| | - Zahra Zahra
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea.,Department of Civil & Environmental Engineering, University of California, Irvine, CA 92697 USA
| | | |
Collapse
|
48
|
An oligosaccharide-marker approach to quantify specific polysaccharides in herbal formula by LC-qTOF-MS: Danggui Buxue Tang, a case study. J Pharm Biomed Anal 2020; 185:113235. [DOI: 10.1016/j.jpba.2020.113235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022]
|
49
|
Chen Y, Ou X, Yang J, Bi S, Peng B, Wen Y, Song L, Li C, Yu R, Zhu J. Structural characterization and biological activities of a novel polysaccharide containing N-acetylglucosamine from Ganoderma sinense. Int J Biol Macromol 2020; 158:S0141-8130(20)33174-3. [PMID: 32387611 DOI: 10.1016/j.ijbiomac.2020.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
A novel homogeneous heteropolysaccharide (GSPB70-S) with a molecular weight of 2.87 kDa was isolated from Ganoderma sinense. Structural analysis showed that GSPB70-S was composed of glucose, glucosamine, mannose, and galactose with a molar ratio of 12.90:3.70:2.26:1.00. The repeating structure units of GSPB70-S were characterized by the combined application of chemical methods and nuclear magnetic resonance. GSPB70-S contains a backbone of →3)-β-D-Glcp-(1 → 4)-α-D-GlcpNAc-(1 → 4)-α-D-Manp-(1 → 3)-β-D-Glcp-(1→, with branches of β-D-Glcp-(1→, α-D-GlcpNAc-(1 → and →4)-α-D-Galp-(1→. Scanning electron microscope (SEM) showed that GSPB70-S presented a long strip shape with different thicknesses, and there were many lamellar substances on the surface. Biological research showed that GSPB70-S inhibited the activity of α-glucosidase in vitro, increased the viability of RAW 264.7 macrophages, and promoted the release of NO. In addition, GSPB70-S showed good abilities to scavenge free radicals.
Collapse
Affiliation(s)
- Yiyu Chen
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaozheng Ou
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianing Yang
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Sixue Bi
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Bao Peng
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yao Wen
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liyan Song
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Chunlei Li
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
50
|
Shen SF, Zhu LF, Wu Z, Wang G, Ahmad Z, Chang MW. Extraction of triterpenoid compounds from Ganoderma Lucidum spore powder through a dual-mode sonication process. Drug Dev Ind Pharm 2020; 46:963-974. [PMID: 32363953 DOI: 10.1080/03639045.2020.1764022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Development of drug products from natural sources enable advantageous treatment and therapy options. Bioactive compounds in Ganoderma lucidum spore powder (GLSP) are known for vast antibacterial, antioxidant and anti-cancer properties. Herein, we studied the use of dual-probe ultrasound to extract triterpenoids from GLSP and further investigated the bioactivity of resulting products. FTIR results confirm the presence of key peaks although dual-probe ultrasound varied extraction efficacy. Response surface methodology (RSM) was used to optimize extraction conditions (55:28 for solvent to solid ratio, 10.38 s of ultrasound time and 94% v/v of ethanol concentration). HPLC-Q-TOF-MS confirmed the presence of nine different compounds and in vitro tests confirm good biocompatibility. Extracts are shown to inhibit DPPH radicals, reaching a maximum (61.09 ± 1.38%) at triterpenoid concentrations of 600 µg/mL. Dual-mode assisted extraction provides an enhanced approach for active embedded fiber production on a scale favorable to industry when using optimized process parameters. Furthermore, triterpenoid extracts show antibacterial properties on Staphylococcus aureus and Escherichia coli with potential in antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Shuang-Fei Shen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, PR China
| | - Li-Fang Zhu
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, PR China
| | - Zijing Wu
- Tianhe Agricultural Group, Longquan City, Zhejiang, PR China
| | - Guangkun Wang
- Tianhe Agricultural Group, Longquan City, Zhejiang, PR China
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, PR China.,Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Newtownabbey, UK
| |
Collapse
|