1
|
Cao Y, Perry JSM, Zhang E, Trinh A, Kacker A, Cruz S, Ceballos H, Pan A, Huang W, Kou KGM. Synthesis of Protoberberine Alkaloids by C-H Functionalization and Anionic Aza-6π-Electrocyclization: Dual Activity as AMPK Activators and Inhibitors. JACS AU 2025; 5:1429-1438. [PMID: 40151253 PMCID: PMC11937996 DOI: 10.1021/jacsau.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in maintaining cellular energy homeostasis, and its activation has garnered attention for treating chronic metabolic diseases. Inhibitors of AMPK are underdeveloped but bear implications in treating cancers, controlling autophagy, and elderly wasting. Protoberberine alkaloids are typically regarded as AMPK activators. Herein, we report a modular synthesis strategy to access a collection of oxyberberine alkaloids, including the first synthesis of stepharotudine. In vitro assays reveal how subtle structural modifications can negate AMPK activation while conferring unprecedented inhibitory properties within the same class of compounds, which was previously unknown. Key steps in the synthesis include an oxidative Rh(III)-catalyzed C-H functionalization using electron-rich alkenes, NaH-mediated reductive N-O bond cleavage, and a rare example of an anionic aza-6π-electrocyclization. Additionally, we provide mechanistic support for nucleophilic hydride transfer reactivity with NaH in DMF.
Collapse
Affiliation(s)
- Yujie Cao
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Justin S. M. Perry
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Eryun Zhang
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Andy Trinh
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Arnav Kacker
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Shayne Cruz
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Hannah Ceballos
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Aaron Pan
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Wendong Huang
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Kevin G. M. Kou
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| |
Collapse
|
2
|
Zhang J, Pollard AE, Pearson EF, Carling D, Viollet B, Ellacott KLJ, Beall C. Hypoglycaemic stimulation of macrophage cytokine release is suppressed by AMP-activated protein kinase activation. Diabet Med 2025; 42:e15456. [PMID: 39717018 PMCID: PMC11823358 DOI: 10.1111/dme.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
AIMS Acute hypoglycaemia promotes pro-inflammatory cytokine production, increasing the risk for cardiovascular events in diabetes. AMP-activated protein kinase (AMPK) is regulated by and influences the production of pro-inflammatory cytokines. We sought to examine the mechanistic role of AMPK in low glucose-induced changes in the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF), which is elevated in people with diabetes. METHODS Macrophage cell line Raw264.7 cells, primary macrophage bone marrow-derived macrophages obtained from wild-type mice or AMPK γ1 gain-of-function mice, were used, as were AMPKα1/α2 knockout mouse embryonic fibroblasts (MEFs). Allosteric AMPK activators PF-06409577 and BI-9774 were used in conjunction with inhibitor SBI-0206965. We examined changes in protein phosphorylation/expression using western blotting and protein localisation using immunofluorescence. Metabolic function was assessed using extracellular flux analyses and luciferase-based ATP assay. Cytokine release was quantified by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was detected using a fluorescence-based reactive oxygen species (ROS) assay, and cell viability was examined using flow cytometry. RESULTS Macrophages exposed to low glucose showed a transient and modest activation of AMPK and a metabolic shift towards increased oxidative phosphorylation. Moreover, low glucose increased oxidative stress and augmented the release of macrophage MIF. However, pharmacological activation of AMPK by PF-06409577 and BI-9774 attenuated low glucose-induced MIF release, with a similar trend noted with genetic activation using AMPKγ1 gain-of-function (D316A) mice, which produced a mild effect on low glucose-induced MIF release. Inhibition of NFĸB signalling diminished MIF release and AMPK activation modestly but significantly reduced low glucose-induced nuclear translocation of NFĸB. CONCLUSIONS Taken together, these data indicate that pharmacological AMPK activation suppresses the release of MIF from macrophages caused by energy stress, suggesting that AMPK activation could be a useful strategy for mitigating hypoglycaemia-induced inflammation.
Collapse
Affiliation(s)
- Jiping Zhang
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Alice E. Pollard
- MRC London Institute of Medical Sciences, Imperial College LondonHammersmith HospitalLondonUK
| | - Eleanor F. Pearson
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of Exeter Medical SchoolExeterUK
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College LondonHammersmith HospitalLondonUK
| | - Benoit Viollet
- Institute CochinUniversité Paris Cité, CNRS, InsermParisFrance
| | - Kate L. J. Ellacott
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
3
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2025; 329:e13382. [PMID: 39158380 PMCID: PMC11744256 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
- Nexus Institute of Research and Innovation (NIRI)KathmanduNepal
| |
Collapse
|
4
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
5
|
Song GY, Kim SM, Back S, Yang SB, Yang YM. Atractylodes Lancea and Its Constituent, Atractylodin, Ameliorates Metabolic Dysfunction-Associated Steatotic Liver Disease via AMPK Activation. Biomol Ther (Seoul) 2024; 32:778-792. [PMID: 39391981 PMCID: PMC11535289 DOI: 10.4062/biomolther.2024.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), which encompasses a spectrum of conditions ranging from simple steatosis to hepatocellular carcinoma, is a growing global health concern associated with insulin resistance. Since there are limited treatment options for MASLD, this study investigated the therapeutic potential of Atractylodes lancea, a traditional herbal remedy for digestive disorders in East Asia, and its principal component, atractylodin, in treating MASLD. Following 8 weeks of high-fat diet (HFD) feeding, mice received oral doses of 30, 60, or 120 mg/kg of Atractylodes lancea. In HFD-fed mice, Atractylodes lancea treatment reduced the body weight; serum triglyceride, total cholesterol, and alanine aminotransferase levels; and hepatic lipid content. Furthermore, Atractylodes lancea significantly ameliorated fasting serum glucose, fasting serum insulin, and homeostatic model assessment of insulin resistance levels in response to HFD. Additionally, a glucose tolerance test demonstrated improved glucose homeostasis. Treatment with 5 or 10 mg/kg atractylodin also resulted in anti-obesity, anti-steatosis, and glucose-lowering effects. Atractylodin treatment resulted in the downregulation of key lipogenic genes (Srebf1, Fasn, Scd2, and Dgat2) and the upregulation of genes regulated by peroxisome proliferator-activated receptor-α. Notably, the molecular docking model suggested a robust binding affinity between atractylodin and AMP-activated protein kinase (AMPK). Atractylodin activated AMPK, which contributed to SREBP1c regulation. In conclusion, our results revealed that Atractylodes lancea and atractylodin activated the AMPK signaling pathway, leading to improvements in HFD-induced obesity, fatty liver, and glucose intolerance. This study suggests that the phytochemical, atractylodin, can be a treatment option for MASLD.
Collapse
Affiliation(s)
- Ga Yeon Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun Myoung Kim
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
- KNU Innovative Drug Development Research Team for Intractable Diseases (BK21 Four), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seungil Back
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Bo Yang
- Department of Korean Internal Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
- KNU Innovative Drug Development Research Team for Intractable Diseases (BK21 Four), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Santana CVN, Magno LAV, Ramos AV, Rios MA, Sandrim VC, De Marco LA, de Miranda DM, Romano-Silva MA. Genetic Variations in AMPK, FOXO3A, and POMC Increase the Risk of Extreme Obesity. J Obes 2024; 2024:3813621. [PMID: 39484290 PMCID: PMC11527528 DOI: 10.1155/2024/3813621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/11/2024] [Indexed: 11/03/2024] Open
Abstract
Objective: Genetic variability significantly impacts metabolism, weight gain, and feeding behaviors, predisposing individuals to obesity. This study explored how variations in key genes related to obesity-FOXO3A (forkhead box O3), AMPK (protein kinase AMP-activated), and POMC (proopiomelanocortin)-are associated with extreme obesity (EOB). Methods: We conducted a case-control study with 251 EOB patients and 212 healthy controls with a body mass index (BMI) of less than 25 kg/m2. We genotyped 10 single nucleotide variants (SNVs) using TaqMan-based assays. Results: Four SNVs-rs1536057 in FOXO3A, rs103685 in AMPK, rs934778, and rs6545975 in POMC-were associated with an increased risk of EOB. The strongest association was observed with rs934778 (POMC), which had a maximum odds ratio (OR) of 5.26 (95% CI: 2.86-9.09). While these genetic variations are closely linked to EOB, they do not affect serum glucose, triglycerides, HDL, LDL, BMI, or waist circumference. Conclusions: These findings indicate that factors beyond traditional metabolic pathways, potentially related to feeding behavior or hormonal regulation, may also link these genetic variations to obesity. Further research in a larger sample is essential to validate these findings and explore their potential to guide clinical interventions and public health strategies.
Collapse
Affiliation(s)
- Cinthia Vila Nova Santana
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| | | | - Maria Angélica Rios
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte, Brazil
| | - Valéria Cristina Sandrim
- Instituto de Biociências Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, Brazil
| | - Luiz Armando De Marco
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| | - Débora Marques de Miranda
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| | - Marco Aurélio Romano-Silva
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| |
Collapse
|
7
|
Felemban AH, Alshammari GM, Yagoub AEA, Saleh A, Yahya MA. Royal Jelly Exerts a Potent Anti-Obesity Effect in Rats by Activating Lipolysis and Suppressing Adipogenesis. Nutrients 2024; 16:3174. [PMID: 39339774 PMCID: PMC11435164 DOI: 10.3390/nu16183174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objective: This study examined the anti-obesity effect of royal jelly (RJ) in rats fed with a high-fat diet by targeting the major pathways involved in adipogenesis and lipolysis. In addition, it examined whether this effect is AMPK-dependent. Methods: Five groups of adult male albino rats were used (n = 6 each as 1); the control rats were fed with a normal diet (2.9 kcal), and the other groups were as follows: control + RJ (300 mg/kg), HFD (4.75 kcal), HFD + RJ (300 mg/kg), and HFD + RJ (300 mg/kg) + dorsomorphin (an AMPK inhibitor) (0.2 mg/kg). Results: RJ was administered orally to all rats. With no changes in food and energy intake, RJ significantly reduced gains in body weight, fat weight, body mass index (BMI), the Lee index, abdominal circumference (AC), and the adiposity index (AI). It also reduced fasting glucose and insulin levels, HOMA-IR, and the circulatory levels of free fatty acids (FFAs), triglycerides, cholesterol, and LDL-c in the HFD-fed rats. RJ also increased serum glycerol levels and adiponectin levels, but reduced the serum levels of leptin, IL-6, and TNF-α. Moreover, RJ reduced the secretion of IL-6 and TNF-α from isolated WAT. At the tissue level, the HFD + RJ rats exhibited a smaller adipocyte size compared to the HFD rats. At the molecular level, RJ increased the phosphorylation of AMPK, SREBP1, and ACC-1 and increased the mRNA and protein levels of HSL and ATG in the WAT of the HFD rats. In concomitance, RJ increased the mRNA levels of PGC-α1, reduced the protein levels of PPARγ, and repressed the transcriptional activities of PPARγ, SREBP1, and C/EBPαβ in the WAT of these rats. All the aforementioned effects of RJ were prevented by co-treatment with dorsomorphin. Conclusions: RJ exerts a potent anti-obesity effect in rats that is mediated by the AMPk-dependent suppression of WAT adipogenesis and the stimulation of lipolysis.
Collapse
Affiliation(s)
- Alaa Hasanain Felemban
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Saleh
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Hyun J, Lee HG, Je JG, Choi YS, Song KM, Kim TK, Ryu B, Kang MC, Jeon YJ. L-Fucose-Rich Sulfated Glycans from Edible Brown Seaweed: A Promising Functional Food for Obesity and Energy Expenditure Improvement. Int J Mol Sci 2024; 25:9738. [PMID: 39273687 PMCID: PMC11395595 DOI: 10.3390/ijms25179738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The global obesity epidemic, exacerbated by the sedentary lifestyle fostered by the COVID-19 pandemic, presents a growing socioeconomic burden due to decreased physical activity and increased morbidity. Current obesity treatments show promise, but they often come with expensive medications, frequent injections, and potential side effects, with limited success in improving obesity through increased energy expenditure. This study explores the potential of a refined sulfated polysaccharide (SPSL), derived from the brown seaweed Scytosiphon lomentaria (SL), as a safe and effective anti-obesity treatment by promoting energy expenditure. Chemical characterization revealed that SPSL, rich in sulfate and L-fucose content, comprises nine distinct sulfated glycan structures. In vitro analysis demonstrated potent anti-lipogenic properties in adipocytes, mediated by the downregulation of key adipogenic modulators, including 5' adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Inhibiting AMPK attenuated the anti-adipogenic effects of SPSL, confirming its involvement in the mechanism of action. Furthermore, in vivo studies using zebrafish models showed that SPSL increased energy expenditure and reduced lipid accumulation. These findings collectively highlight the therapeutic potential of SPSL as a functional food ingredient for mitigating obesity-related metabolic dysregulation by promoting energy expenditure. Further mechanistic and preclinical investigations are warranted to fully elucidate its mode of action and evaluate its efficacy in obesity management, potentially offering a novel, natural therapeutic avenue for this global health concern.
Collapse
Affiliation(s)
- Jimin Hyun
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Kyung-Mo Song
- Department of Food Science & Biotechnology, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Bomi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
9
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. Cationic polymer effect on brown adipogenic induction of dedifferentiated fat cells. Mater Today Bio 2024; 27:101157. [PMID: 39113911 PMCID: PMC11304885 DOI: 10.1016/j.mtbio.2024.101157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity and its associated comorbidities place a substantial burden on public health. Given the considerable potential of brown adipose tissue in addressing metabolic disorders that contribute to dysregulation of the body's energy balance, this area is an intriguing avenue for research. This study aimed to assess the impact of various polymers, including collagen type I, fibronectin, laminin, gelatin, gellan gum, and poly-l-lysine (PLL), on the in vitro brown adipogenic differentiation of dedifferentiated fat cells within a fibrin gel matrix. The findings, obtained through RT-qPCR, immunofluorescent imaging, ELISA assay, and mitochondria assessment, revealed that PLL exhibited a significant browning-inducing effect. Compared to fibrin-only brown-like drops after two weeks of incubation in brown adipogenic medium, PLL showed 6 (±3) times higher UCP1 gene expression, 5 (±2) times higher UCP1 concentration by ELISA assay, and 2 (±1) times higher mitochondrial content. This effect can be attributed to PLL's electrostatic properties, which potentially facilitate the cellular uptake of crucial brown adipogenic inducers such as the thyroid hormone, triiodothyronine (T3), and insulin from the induction medium.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| |
Collapse
|
10
|
Yang C, Du Y, Zhao T, Zhao L, Liu L, Liu L, Yang X. Consumption of dietary turmeric promotes fat browning and thermogenesis in association with gut microbiota regulation in high-fat diet-fed mice. Food Funct 2024; 15:8153-8167. [PMID: 39011866 DOI: 10.1039/d4fo01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
This study was designed to verify the anti-obesity effect of dietary turmeric powder (TP) as a traditional cooking spice and its underlying mechanism. The HFD-fed C57BL/6J mice were supplemented with or without TP (8%) for 12 weeks. The results indicated that the glucolipid metabolism disorder of high-fat diet (HFD)-fed mice was significantly ameliorated through the supplementation of TP. The consumption of TP also induced beige-fat development and brown adipose tissue (BAT)-derived nonshivering thermogenesis in HFD-fed obese mice. 16S rDNA-based microbiota or targeted metabolomics analysis indicated that TP ameliorated the intestinal microbiota dysbiosis and microbial metabolism abnormality caused by HFD, reflected by dramatically increasing the relative abundance of Muribaculaceae, Candidatus_Saccharimonas, and Bifidobacterium and production of short-chain fatty acids (SCFAs) and succinate. Interestingly, TP-induced BAT thermogenesis and iWAT browning were highly correlated with the reconstruction of the gut microbiome and formation of SCFAs and succinate. Collectively, these findings manifest beneficial actions of TP on the promotion of adipose browning and thermogenesis in association with gut microbiota reconstruction, and our findings may provide a promising way for preventing obesity.
Collapse
Affiliation(s)
- Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Tong Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Luyao Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Jiang Z, Hu YT, Guo SY, Li YX, Zhao DD, Wei LY, Lin YW, Xu SM, Huang SL, Li Q, Tan JH, Rao Y, Chen SB, Huang ZS. Development of Novel N-Acylhydrazone Derivatives with High Anti-obesity Activity and Improved Safety by Exploring the Pharmaceutical Properties of Aldehyde Group. J Med Chem 2024; 67:12439-12458. [PMID: 38996004 DOI: 10.1021/acs.jmedchem.4c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The discovery of effective and safe antiobesity agents remains a challenging yet promising field. Our previous studies identified Bouchardatine derivatives as potential antiobesity agents. However, the 8a-aldehyde moiety rendered them unsuitable for drug development. In this study, we designed two series of novel derivatives to modify this structural feature. Through a structure-activity relationship study, we elucidated the role of the 8a-aldehyde group in toxicity induction. We identified compound 14d, featuring an 8a-N-acylhydrazone moiety, which exhibited significant lipid-lowering activity and reduced toxicity. Compound 14d shares a similar lipid-lowering mechanism with our lead compound 3, but demonstrates improved pharmacokinetic properties and safety profile. Both oral and injectable administration of 14d significantly reduced body weight gain and ameliorated metabolic syndrome in diet-induced obese mice. Our findings identify 14d as a promising antiobesity agent and highlight the potential of substituting the aldehyde group with an N-acylhydrazone to enhance drug-like properties.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi-Xian Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Li-Yuan Wei
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Wei Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Min Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingjiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, Chen G, Farag MA, Yan N, Liu L. Dietary polyphenols regulate appetite mechanism via gut-brain axis and gut homeostasis. Food Chem 2024; 446:138739. [PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao 266101, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Zhou Z, Li C, Li C, Zhou L, Tan S, Hou W, Xie C, Wang L, Shen J, Xiong W. Mitochondria-Targeted Nanoadjuvants Induced Multi-Functional Immune-Microenvironment Remodeling to Sensitize Tumor Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400297. [PMID: 38704675 PMCID: PMC11234464 DOI: 10.1002/advs.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Indexed: 05/06/2024]
Abstract
It is newly revealed that collagen works as a physical barrier to tumor immune infiltration, oxygen perfusion, and immune depressor in solid tumors. Meanwhile, after radiotherapy (RT), the programmed death ligand-1 (PD-L1) overexpression and transforming growth factor-β (TGF-β) excessive secretion would accelerate DNA damage repair and trigger T cell exclusion to limit RT efficacy. However, existing drugs or nanoparticles can hardly address these obstacles of highly effective RT simultaneously, effectively, and easily. In this study, it is revealed that inducing mitochondria dysfunction by using oxidative phosphorylation inhibitors like Lonidamine (LND) can serve as a highly effective multi-immune pathway regulation strategy through PD-L1, collagen, and TGF-β co-depression. Then, IR-LND is prepared by combining the mitochondria-targeted molecule IR-68 with LND, which then is loaded with liposomes (Lip) to create IR-LND@Lip nanoadjuvants. By doing this, IR-LND@Lip more effectively sensitizes RT by generating more DNA damage and transforming cold tumors into hot ones through immune activation by PD-L1, collagen, and TGF-β co-inhibition. In conclusion, the combined treatment of RT and IR-LND@Lip ultimately almost completely suppressed the growth of bladder tumors and breast tumors.
Collapse
Affiliation(s)
- Zaigang Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Cheng Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Chao Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Lei Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Shuo Tan
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Weibin Hou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyZhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhou key Laboratory of Basic Science and Translational Research of Radiation OncologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Long Wang
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Wei Xiong
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| |
Collapse
|
14
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
15
|
Wen X, Song Y, Zhang M, Kang Y, Chen D, Ma H, Nan F, Duan Y, Li J. Polyphenol Compound 18a Modulates UCP1-Dependent Thermogenesis to Counteract Obesity. Biomolecules 2024; 14:618. [PMID: 38927022 PMCID: PMC11201655 DOI: 10.3390/biom14060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies increasingly suggest that targeting brown/beige adipose tissues to enhance energy expenditure offers a novel therapeutic approach for treating metabolic diseases. Brown/beige adipocytes exhibit elevated expression of uncoupling protein 1 (UCP1), which is a thermogenic protein that efficiently converts energy into heat, particularly in response to cold stimulation. Polyphenols possess potential anti-obesity properties, but their pharmacological effects are limited by their bioavailability and distribution within tissue. This study discovered 18a, a polyphenol compound with a favorable distribution within adipose tissues, which transcriptionally activates UCP1, thereby promoting thermogenesis and enhancing mitochondrial respiration in brown adipocytes. Furthermore, in vivo studies demonstrated that 18a prevents high-fat-diet-induced weight gain and improves insulin sensitivity. Our research provides strong mechanistic evidence that UCP1 is a complex mediator of 18a-induced thermogenesis, which is a critical process in obesity mitigation. Brown adipose thermogenesis is triggered by 18a via the AMPK-PGC-1α pathway. As a result, our research highlights a thermogenic controlled polyphenol compound 18a and clarifies its underlying mechanisms, thus offering a potential strategy for the thermogenic targeting of adipose tissue to reduce the incidence of obesity and its related metabolic problems.
Collapse
Affiliation(s)
- Xueping Wen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufei Song
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yiping Kang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Dandan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Hui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Fajun Nan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yanan Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| |
Collapse
|
16
|
Shao H, Zhang H, Jia D. The Role of Exerkines in Obesity-Induced Disruption of Mitochondrial Homeostasis in Thermogenic Fat. Metabolites 2024; 14:287. [PMID: 38786764 PMCID: PMC11122964 DOI: 10.3390/metabo14050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
There is a notable correlation between mitochondrial homeostasis and metabolic disruption. In this review, we report that obesity-induced disruption of mitochondrial homeostasis adversely affects lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin sensitivity, and thermogenesis in thermogenic fat. Elevating mitochondrial homeostasis in thermogenic fat emerges as a promising avenue for developing treatments for metabolic diseases, including enhanced mitochondrial function, mitophagy, mitochondrial uncoupling, and mitochondrial biogenesis. The exerkines (e.g., myokines, adipokines, batokines) released during exercise have the potential to ameliorate mitochondrial homeostasis, improve glucose and lipid metabolism, and stimulate fat browning and thermogenesis as a defense against obesity-associated metabolic diseases. This comprehensive review focuses on the manifold benefits of exercise-induced exerkines, particularly emphasizing their influence on mitochondrial homeostasis and fat thermogenesis in the context of metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Hui Shao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
- Graduate School of Harbin Sport University, Harbin Sport University, Harbin 150006, China
| | - Huijie Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| |
Collapse
|
17
|
Bustraan S, Bennett J, Whilding C, Pennycook BR, Smith D, Barr AR, Read J, Carling D, Pollard A. AMP-activated protein kinase activation suppresses leptin expression independently of adipogenesis in primary murine adipocytes. Biochem J 2024; 481:345-362. [PMID: 38314646 PMCID: PMC11088909 DOI: 10.1042/bcj20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/06/2024]
Abstract
Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.
Collapse
Affiliation(s)
- Sophia Bustraan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Jane Bennett
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Chad Whilding
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | | | - David Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Jon Read
- Mechanistic and Structural Biology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, U.K
| | - David Carling
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
- Medical Research Council Laboratory of Medical Sciences, London, U.K
| | - Alice Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
18
|
Wang Y, Yang C, Wen J, Ju L, Ren Z, Zhang T, Liu Y. Whole-exome sequencing combined with postoperative data identify c.1614dup (CAMKK2) as a novel candidate monogenic obesity variant. Front Endocrinol (Lausanne) 2024; 15:1334342. [PMID: 38469147 PMCID: PMC10925648 DOI: 10.3389/fendo.2024.1334342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 03/13/2024] Open
Abstract
Early-onset obesity is a rising health concern influenced by heredity. However, many monogenic obesity variants (MOVs) remain to be discovered due to differences in ethnicity and culture. Additionally, patients with known MOVs have shown limited weight loss after bariatric surgery, suggesting it can be used as a screening tool for new candidates. In this study, we performed whole-exome sequencing (WES) combined with postoperative data to detect candidate MOVs in a cohort of 62 early-onset obesity and 9 late-onset obesity patients. Our findings demonstrated that patients with early-onset obesity preferred a higher BMI and waist circumference (WC). We confirmed the efficacy of the method by identifying a mutation in known monogenic obesity gene, PCSK1, which resulted in less weight loss after surgery. 5 genes were selected for further verification, and a frameshift variant in CAMKK2 gene: NM_001270486.1, c.1614dup, (p. Gly539Argfs*3) was identified as a novel candidate MOV. This mutation influenced the improvement of metabolism after bariatric surgery. In conclusion, our data confirm the efficacy of WES combined with postoperative data in detecting novel candidate MOVs and c.1614dup (CAMKK2) might be a promising MOV, which needs further confirmation. This study enriches the human monogenic obesity mutation database and provides a scientific basis for clinically accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Wang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Chao Yang
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun Wen
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Lingling Ju
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Zhengyun Ren
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
19
|
Abbasi M, Fan Z, Dawson JA, Wang S. Anti-obesity and metabolic benefits of metformin: Comparison of different delivery routes. J Drug Deliv Sci Technol 2024; 91:105110. [PMID: 38188941 PMCID: PMC10768944 DOI: 10.1016/j.jddst.2023.105110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Obesity is a severe public health problem. Healthy lifestyle interventions are commonly recommended for fighting obesity. But they are hard to follow and have low efficacy. Pharmacotherapy and surgery are of high efficacy but are beset with side effects. Browning subcutaneous white adipose tissue (WAT) is a practical and efficient approach for combating obesity. Metformin, a commonly used FDA-approved antidiabetic drug, is potent to induce browning of WAT through phosphorylation and activation of AMP-activated protein kinase. However, oral administration of metformin has low oral bioavailability, fast renal clearance, and low target specificity that limit metformin's application in browning WAT. Local and transdermal delivery of metformin directly to subcutaneous WAT using injection or microneedle (MN) in combination with iontophoresis (INT) may solve these problems. In this paper, we administered metformin to C57BL/6J obese mice using the following three routes: transdermal delivery (MN and INT), local injection into inguinal WAT (IgWAT, a type of subcutaneous WAT in mice), and oral gavage. The anti-obesity and metabolic effects of metformin via these delivery routes were determined and compared. As compared to local IgWAT injection and oral gavage delivery, transdermal delivery of metformin using MN and INT resulted in 9% lower body weight and 7% decrease in body fat% accompanied by improved energy metabolism and decreased inflammation through browning IgWAT in obese C57BL/6J mice. Transdermal delivery of metformin using MN and INT is an effective approach in browning subcutaneous WAT for combating obesity and improving metabolic health.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- College of Human Sciences, Auburn University, Auburn, AL, 36830, USA
| | - Zhaoyang Fan
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85281, USA
| | - John A. Dawson
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- Department of Economics, Applied Statistics, and International, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, 85004, USA
| |
Collapse
|
20
|
Ripa R, Ballhysa E, Steiner JD, Laboy R, Annibal A, Hochhard N, Latza C, Dolfi L, Calabrese C, Meyer AM, Polidori MC, Müller RU, Antebi A. Refeeding-associated AMPK γ1 complex activity is a hallmark of health and longevity. NATURE AGING 2023; 3:1544-1560. [PMID: 37957359 PMCID: PMC10724066 DOI: 10.1038/s43587-023-00521-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Late-life-initiated dietary interventions show limited efficacy in extending longevity or mitigating frailty, yet the underlying causes remain unclear. Here we studied the age-related fasting response of the short-lived killifish Nothobranchius furzeri. Transcriptomic analysis uncovered the existence of a fasting-like transcriptional program in the adipose tissue of old fish that overrides the feeding response, setting the tissue in persistent metabolic quiescence. The fasting-refeeding cycle triggers an inverse oscillatory expression of genes encoding the AMP-activated protein kinase (AMPK) regulatory subunits Prkag1 (γ1) and Prkag2 (γ2) in young individuals. Aging blunts such regulation, resulting in reduced Prkag1 expression. Transgenic fish with sustained AMPKγ1 countered the fasting-like transcriptional program, exhibiting a more youthful feeding and fasting response in older age, improved metabolic health and longevity. Accordingly, Prkag1 expression declines with age in human tissues and is associated with multimorbidity and multidimensional frailty risk. Thus, selective activation of AMPKγ1 prevents metabolic quiescence and preserves healthy aging in vertebrates, offering potential avenues for intervention.
Collapse
Affiliation(s)
- Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Eugen Ballhysa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
| | - Joachim D Steiner
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Raymond Laboy
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andrea Annibal
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nadine Hochhard
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christian Latza
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Luca Dolfi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Chiara Calabrese
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
| | - Anna M Meyer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Maria Cristina Polidori
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
22
|
Sun X, Sui W, Mu Z, Xie S, Deng J, Li S, Seki T, Wu J, Jing X, He X, Wang Y, Li X, Yang Y, Huang P, Ge M, Cao Y. Mirabegron displays anticancer effects by globally browning adipose tissues. Nat Commun 2023; 14:7610. [PMID: 37993438 PMCID: PMC10665320 DOI: 10.1038/s41467-023-43350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Metabolic reprogramming in malignant cells is a hallmark of cancer that relies on augmented glycolytic metabolism to support their growth, invasion, and metastasis. However, the impact of global adipose metabolism on tumor growth and the drug development by targeting adipose metabolism remain largely unexplored. Here we show that a therapeutic paradigm of drugs is effective for treating various cancer types by browning adipose tissues. Mirabegron, a clinically available drug for overactive bladders, displays potent anticancer effects in various animal cancer models, including untreatable cancers such as pancreatic ductal adenocarcinoma and hepatocellular carcinoma, via the browning of adipose tissues. Genetic deletion of the uncoupling protein 1, a key thermogenic protein in adipose tissues, ablates the anticancer effect. Similarly, the removal of brown adipose tissue, which is responsible for non-shivering thermogenesis, attenuates the anticancer activity of mirabegron. These findings demonstrate that mirabegron represents a paradigm of anticancer drugs with a distinct mechanism for the effective treatment of multiple cancers.
Collapse
Affiliation(s)
- Xiaoting Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Zepeng Mu
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Sisi Xie
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Jinxiu Deng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Sen Li
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
- Department of Head and Neck Surgery, Center of Otolaryngology-Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xingkang He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou, 310016, China
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China.
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Minghua Ge
- Department of Head and Neck Surgery, Center of Otolaryngology-Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden.
| |
Collapse
|
23
|
Chen S, Fu Y, Wang T, Chen Z, Zhao P, Huang X, Qiao M, Li T, Song L. Effect of 2'-Fucosyllactose on Beige Adipocyte Formation in 3T3-L1 Adipocytes and C3H10T1/2 Cells. Foods 2023; 12:4137. [PMID: 38002194 PMCID: PMC10670332 DOI: 10.3390/foods12224137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
2'-Fucosyllactose (2'-FL), the functional oligosaccharide naturally present in milk, has been shown to exert health benefits. This study was aimed to investigate the effect of 2'-fucosyllactose (2'-FL) on the browning of white adipose tissue in 3T3-L1 adipocytes and C3H10T1/2 cells. The results revealed that 2'-FL decreased lipid accumulations with reduced intracellular triglyceride contents in vitro. 2'-FL intervention increased the mitochondria density and the proportion of UCP1-positive cells. The mRNA expressions of the mitochondrial biogenesis-related and browning markers (Cox7a, Cyto C, Tfam, Ucp1, Pgc1α, Prdm16, Cidea, Elovl3, Pparα, CD137, and Tmem26) were increased after 2'-FL intervention to some extent. Similarly, the protein expression of the browning markers, including UCP1, PGC1α, and PRDM16, was up-regulated in the 2'-FL group. Additionally, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor, compound C (1 μM), significantly decreased the induction of thermogenic proteins expressions mediated by 2'-FL, indicating that the 2'-FL-enhanced beige cell formation was partially dependent on the AMPK pathway. In conclusion, 2'-FL effectively promoted the browning of white adipose in vitro.
Collapse
Affiliation(s)
- Siru Chen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Yankun Fu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Zhenglin Chen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Peijun Zhao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
24
|
Sun Y, Ni X, Cheng S, Yu X, Jin X, Chen L, Yang Z, Xia D, Chen Z, Hu MG, Hou X. Acteoside improves adipocyte browning by CDK6-mediated mTORC1-TFEB pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159364. [PMID: 37433343 DOI: 10.1016/j.bbalip.2023.159364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/10/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Adipocyte browning increases energy expenditure by thermogenesis, which has been considered a potential strategy against obesity and its related metabolic diseases. Phytochemicals derived from natural products with the ability to improve adipocyte thermogenesis have aroused extensive attention. Acteoside (Act), a phenylethanoid glycoside, exists in various medicinal or edible plants and has been shown to regulate metabolic disorders. Here, the browning effect of Act was evaluated by stimulating beige cell differentiation from the stromal vascular fraction (SVF) in the inguinal white adipose tissue (iWAT) and 3 T3-L1 preadipocytes, and by converting the iWAT-SVF derived mature white adipocytes. Act improves adipocyte browning by differentiation of the stem/progenitors into beige cells and by direct conversion of mature white adipocytes into beige cells. Mechanistically, Act inhibited CDK6 and mTOR, and consequently relieved phosphorylation of the transcription factor EB (TFEB) and increased its nuclear retention, leading to induction of PGC-1α, a driver of mitochondrial biogenesis, and UCP1-dependent browning. These data thus unveil a CDK6-mTORC1-TFEB pathway that regulates Act-induced adipocyte browning.
Collapse
Affiliation(s)
- Yunxia Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, China
| | - Xintao Ni
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, China
| | - Siyao Cheng
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, China
| | - Xiaofeng Yu
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, China
| | - Xiaoqin Jin
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, China
| | - Liangxin Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenggang Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhe Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, China
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Xiaoli Hou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, China.
| |
Collapse
|
25
|
Zhao S, Hu S, Sun K, Luo L, Zeng L. Pu-erh tea intake enhances the anti-obesity effect of intermittent fasting via modulating follicle-stimulating hormone and gut dysbacteriosis in female high-fat-diet mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
26
|
Penfold L, Woods A, Pollard AE, Arizanova J, Pascual-Navarro E, Muckett PJ, Dore MH, Montoya A, Whilding C, Fets L, Mokochinski J, Constantin TA, Varela-Carver A, Leach DA, Bevan CL, Nikitin AY, Hall Z, Carling D. AMPK activation protects against prostate cancer by inducing a catabolic cellular state. Cell Rep 2023; 42:112396. [PMID: 37061917 PMCID: PMC10576838 DOI: 10.1016/j.celrep.2023.112396] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Accepted: 03/30/2023] [Indexed: 04/17/2023] Open
Abstract
Emerging evidence indicates that metabolic dysregulation drives prostate cancer (PCa) progression and metastasis. AMP-activated protein kinase (AMPK) is a master regulator of metabolism, although its role in PCa remains unclear. Here, we show that genetic and pharmacological activation of AMPK provides a protective effect on PCa progression in vivo. We show that AMPK activation induces PGC1α expression, leading to catabolic metabolic reprogramming of PCa cells. This catabolic state is characterized by increased mitochondrial gene expression, increased fatty acid oxidation, decreased lipogenic potential, decreased cell proliferation, and decreased cell invasiveness. Together, these changes inhibit PCa disease progression. Additionally, we identify a gene network involved in cell cycle regulation that is inhibited by AMPK activation. Strikingly, we show a correlation between this gene network and PGC1α gene expression in human PCa. Taken together, our findings support the use of AMPK activators for clinical treatment of PCa to improve patient outcome.
Collapse
Affiliation(s)
- Lucy Penfold
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK.
| | - Angela Woods
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Alice E Pollard
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Julia Arizanova
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Eneko Pascual-Navarro
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Phillip J Muckett
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Marian H Dore
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Alex Montoya
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Chad Whilding
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Louise Fets
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Joao Mokochinski
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Theodora A Constantin
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Anabel Varela-Carver
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Damien A Leach
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Alexander Yu Nikitin
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY, USA
| | - Zoe Hall
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - David Carling
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, London, UK.
| |
Collapse
|
27
|
Cerri GC, Santos SHS, Bader M, Santos RAS. Brown adipose tissue transcriptome unveils an important role of the Beta-alanine/alamandine receptor, MrgD, in metabolism. J Nutr Biochem 2023; 114:109268. [PMID: 36641071 DOI: 10.1016/j.jnutbio.2023.109268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Alamandine is a recently described heptapeptide component of the renin-angiotensin system (RAS), and its effects are mediated by the receptor Mas-related G protein-coupled receptor D (MrgD) RAS represents an important link between obesity and its consequences by directly modulating the thermogenesis and brown adipose tissue (BAT) function. The alamandine/MrgD metabolic effects and signaling remain unexplored. In this context, the main goal of the present study was to assess the metabolic consequences of MrgD genetic ablation in C57BL6/J mice by evaluating brown adipose tissue RNA sequencing. The main results showed that MrgD-KO mice have diminished brown adipose tissue and that a high-glucose diet (HG) decreased both circulating alamandine levels and MrgD expression in BAT from wild-type mice (WT). BAT transcriptome reveals that MrgD-KO HG mice regulated 45 genes, while WT HG mice regulated 1,148 genes. MrgD-KO mice fed a standard diet (ST) compared with WT ST mice regulated 476 genes, of which 445 genes were downregulated. BAT uses the MrgD receptor to display a normal pattern of gene expression and to respond, like WT mice, to an HG diet. In conclusion, the MrgD signaling is important for the metabolic regulation and manutention of BAT functionality.
Collapse
Affiliation(s)
- Gabriela C Cerri
- Laboratory of Hypertension, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio H S Santos
- Institute of Agricultural Sciences, Food Engineering College, Federeal University of Minas Gerais, Montes Claros, Minas Gerais, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Robson A S Santos
- Laboratory of Hypertension, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24:255-272. [PMID: 36316383 DOI: 10.1038/s41580-022-00547-x] [Citation(s) in RCA: 385] [Impact Index Per Article: 192.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
29
|
Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants (Basel) 2023; 12:antiox12020416. [PMID: 36829976 PMCID: PMC9952395 DOI: 10.3390/antiox12020416] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is a condition that leads to increased health problems associated with metabolic disorders. Synthetic drugs are available for obesity treatment, but some of these compounds have demonstrated considerable side effects that limit their use. Polyphenols are vital phytonutrients of plant origin that can be incorporated as functional food ingredients. This review presents recent developments in dietary polyphenols as anti-obesity agents. Evidence supporting the potential application of food-derived polyphenols as agents against obesity has been summarized. Literature evidence supports the effectiveness of plant polyphenols against obesity. The anti-obesity mechanisms of polyphenols have been explained by their potential to inhibit obesity-related digestive enzymes, modulate neurohormones/peptides involved in food intake, and their ability to improve the growth of beneficial gut microbes while inhibiting the proliferation of pathogenic ones. Metabolism of polyphenols by gut microbes produces different metabolites with enhanced biological properties. Thus, research demonstrates that dietary polyphenols can offer a novel path to developing functional foods for treating obesity. Upcoming investigations need to explore novel techniques, such as nanocarriers, to improve the content of polyphenols in foods and their delivery and bioavailability at the target sites in the body.
Collapse
|
30
|
AMPK inhibits liver gluconeogenesis: fact or fiction? Biochem J 2023; 480:105-125. [PMID: 36637190 DOI: 10.1042/bcj20220582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Is there a role for AMPK in the control of hepatic gluconeogenesis and could targeting AMPK in liver be a viable strategy for treating type 2 diabetes? These are frequently asked questions this review tries to answer. After describing properties of AMPK and different small-molecule AMPK activators, we briefly review the various mechanisms for controlling hepatic glucose production, mainly via gluconeogenesis. The different experimental and genetic models that have been used to draw conclusions about the role of AMPK in the control of liver gluconeogenesis are critically discussed. The effects of several anti-diabetic drugs, particularly metformin, on hepatic gluconeogenesis are also considered. We conclude that the main effect of AMPK activation pertinent to the control of hepatic gluconeogenesis is to antagonize glucagon signalling in the short-term and, in the long-term, to improve insulin sensitivity by reducing hepatic lipid content.
Collapse
|
31
|
Gao Y, Wei X, Wei P, Lu H, Zhong L, Tan J, Liu H, Liu Z. MOTS-c Functionally Prevents Metabolic Disorders. Metabolites 2023; 13:metabo13010125. [PMID: 36677050 PMCID: PMC9866798 DOI: 10.3390/metabo13010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial-derived peptides are a family of peptides encoded by short open reading frames in the mitochondrial genome, which have regulatory effects on mitochondrial functions, gene expression, and metabolic homeostasis of the body. As a new member of the mitochondrial-derived peptide family, mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) is regarding a peptide hormone that could reduce insulin resistance, prevent obesity, improve muscle function, promote bone metabolism, enhance immune regulation, and postpone aging. MOTS-c plays these physiological functions mainly through activating the AICAR-AMPK signaling pathways by disrupting the folate-methionine cycle in cells. Recent studies have shown that the above hormonal effect can be achieved through MOTS-c regulating the expression of genes such as GLUT4, STAT3, and IL-10. However, there is a lack of articles summarizing the genes and pathways involved in the physiological activity of MOTS-c. This article aims to summarize and interpret the interesting and updated findings of MOTS-c-associated genes and pathways involved in pathological metabolic processes. Finally, it is expected to develop novel diagnostic markers and treatment approaches with MOTS-c to prevent and treat metabolic disorders in the future.
Collapse
Affiliation(s)
- Yue Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Xinran Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Pingying Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin 541199, China
- Correspondence: (H.L); (Z.L.); Tel.: +86-773-5892890 (Z.L.)
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Correspondence: (H.L); (Z.L.); Tel.: +86-773-5892890 (Z.L.)
| |
Collapse
|
32
|
Nicholls DG, Brand MD. A critical assessment of the role of creatine in brown adipose tissue thermogenesis. Nat Metab 2023; 5:21-28. [PMID: 36624158 DOI: 10.1038/s42255-022-00718-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Brown adipose tissue is specialized for non-shivering thermogenesis, combining lipolysis with an extremely active mitochondrial electron transport chain and a unique regulated uncoupling protein, UCP1, allowing unrestricted respiration. Current excitement focuses on the presence of brown adipose tissue in humans and the possibility that it may contribute to diet-induced thermogenesis, countering obesity and obesity-related disease as well as protecting cardio-metabolic health. In common with other tissues displaying a high, variable respiration, the tissue possesses a creatine pool and mitochondrial and cytosolic creatine kinase isoforms. Genetic and pharmacological manipulation of these components have pleiotropic effects that appear to influence diet- and cold-induced metabolism in vivo and modeled in vitro. These findings have been used to advance the concept of a UCP1-independent diet-induced thermogenic mechanism based on a dissipative hydrolysis of phosphocreatine in beige and brown adipose tissue. Here we review the in vivo and in vitro experimental basis for this hypothesis, and explore alternative explanations. We conclude that there is currently no convincing evidence for a significant futile creatine cycle in these tissues.
Collapse
|
33
|
Blocking AMPK β1 myristoylation enhances AMPK activity and protects mice from high-fat diet-induced obesity and hepatic steatosis. Cell Rep 2022; 41:111862. [PMID: 36543129 DOI: 10.1016/j.celrep.2022.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis and a therapeutic target for metabolic diseases. Co/post-translational N-myristoylation of glycine-2 (Gly2) of the AMPK β subunit has been suggested to regulate the distribution of the kinase between the cytosol and membranes through a "myristoyl switch" mechanism. However, the relevance of AMPK myristoylation for metabolic signaling in cells and in vivo is unclear. Here, we generated knockin mice with a Gly2-to-alanine point mutation of AMPKβ1 (β1-G2A). We demonstrate that non-myristoylated AMPKβ1 has reduced stability but is associated with increased kinase activity and phosphorylation of the Thr172 activation site in the AMPK α subunit. Using proximity ligation assays, we show that loss of β1 myristoylation impedes colocalization of the phosphatase PPM1A/B with AMPK in cells. Mice carrying the β1-G2A mutation have improved metabolic health with reduced adiposity, hepatic lipid accumulation, and insulin resistance under conditions of high-fat diet-induced obesity.
Collapse
|
34
|
Carling D. Inhibiting lysosomal aldolase: a magic bullet for AMPK activation in treating metabolic disease? LIFE METABOLISM 2022; 1:209-210. [PMID: 39872072 PMCID: PMC11749459 DOI: 10.1093/lifemeta/loac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 01/29/2025]
Affiliation(s)
- David Carling
- MRC London Institute of Medical Sciences, Imperial College, London W12 0NN, UK
| |
Collapse
|
35
|
Chua D, Low ZS, Cheam GX, Ng AS, Tan NS. Utility of Human Relevant Preclinical Animal Models in Navigating NAFLD to MAFLD Paradigm. Int J Mol Sci 2022; 23:14762. [PMID: 36499091 PMCID: PMC9737809 DOI: 10.3390/ijms232314762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is an emerging contributor to disease burden worldwide. The past decades of work established the heterogeneous nature of non-alcoholic fatty liver disease (NAFLD) etiology and systemic contributions to the pathogenesis of the disease. This called for the proposal of a redefinition in 2020 to that of metabolic dysfunction-associated fatty liver disease (MAFLD) to better reflect the current understanding of the disease. To date, several clinical cohort studies comparing NAFLD and MAFLD hint at the relevancy of the new nomenclature in enriching for patients with more severe hepatic injury and extrahepatic comorbidities. However, the underlying systemic pathogenesis is still not fully understood. Preclinical animal models have been imperative in elucidating key biological mechanisms in various contexts, including intrahepatic disease progression, interorgan crosstalk and systemic dysregulation. Furthermore, they are integral in developing novel therapeutics against MAFLD. However, substantial contextual variabilities exist across different models due to the lack of standardization in several aspects. As such, it is crucial to understand the strengths and weaknesses of existing models to better align them to the human condition. In this review, we consolidate the implications arising from the change in nomenclature and summarize MAFLD pathogenesis. Subsequently, we provide an updated evaluation of existing MAFLD preclinical models in alignment with the new definitions and perspectives to improve their translational relevance.
Collapse
Affiliation(s)
- Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Guo Xiang Cheam
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
36
|
Li C, Chen Q, Liu Y, Sun Z, Shen Z, Li S, Cha D, Sun C. Methionine enkephalin promotes white fat browning through cAMP/PKA pathway. Life Sci 2022; 312:121189. [PMID: 36396109 DOI: 10.1016/j.lfs.2022.121189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
AIMS Obesity and its related metabolic disorders, including insulin resistance and fatty liver, have become a serious global public health problem. Previous studies have shown Methionine Enkephalin (MetEnk) has the potential on adipocyte browning, however, its effects on the potential mechanisms of its regulation in browning as well as its improvement in energy metabolic homeostasis remain to be deciphered. MAIN METHODS C57BL/6J male mice were fed with high-fat diet (HFD) to induce obesity model, and MetEnk was injected subcutaneously to detect changes in the metabolic status of mice, adipocytes and HepG2 cells were also treated with MetEnk, and transcriptomic, metabolomic were used to detect the changes of lipid metabolism, mitochondrial function, inflammation and other related factors. KEY FINDINGS We found that MetEnk effectively protected against obesity weight gain in HFD-induced C57BL/6J mice, significantly improved glucose tolerance and insulin sensitivity, reduced the expression levels of interleukin 6 (IL-6), promoted white fat browning, moreover, using a combination of transcriptomic, metabolomic and inhibitors, it was found that MetEnk improved mitochondrial function, promoted thermogenesis and lipolysis by activating cAMP/PKA pathway in adipocytes, further analysis found that MetEnk also promoted lipolysis and alleviated inflammation through AMP-activated protein kinase (AMPK) pathway in mice liver and HepG2 cells. SIGNIFICANCE Our study provides profound evidence for the role of MetEnk in improving lipid metabolism disorders. This study provides a mechanical foundation for investigating the potential of MetEnk to improve obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Chaowei Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Qi Chen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Yanrong Liu
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhuwen Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhentong Shen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Shuhan Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Dingrui Cha
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Chao Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China.
| |
Collapse
|
37
|
Narasimhan A, Flores RR, Camell CD, Bernlohr DA, Robbins PD, Niedernhofer LJ. Cellular Senescence in Obesity and Associated Complications: a New Therapeutic Target. Curr Diab Rep 2022; 22:537-548. [PMID: 36239841 PMCID: PMC10123542 DOI: 10.1007/s11892-022-01493-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Obesity has increased worldwide recently and represents a major global health challenge. This review focuses on the obesity-associated cellular senescence in various organs and the role of these senescent cells (SnCs) in driving complications associated with obesity. Also, the ability to target SnCs pharmacologically with drugs termed senotherapeutics as a therapy for these complications is discussed. RECENT FINDINGS Several studies have shown a positive correlation between obesity and SnC burden in organs such as adipose tissue, liver, and pancreatic-β-cells. These SnCs produce several secretory factors which affect other cells and tissues in a paracrine manner resulting in organ dysfunction. The accumulation of SnCs in adipocytes affects their lipid storage and impairs adipogenesis. The inflammatory senescence-associated secretory phenotype (SASP) of SnCs downregulates the antioxidant capacity and mitochondrial function in tissues. Senescent hepatocytes cannot oxidize fatty acids, which leads to lipid deposition and senescence in β-cells decrease function. These and other adverse effects of SnCs contribute to insulin resistance and type-2 diabetes. The reduction in the SnC burden genetically or pharmacologically improves the complications associated with obesity. The accumulation of SnCs with age and disease accelerates aging. Obesity is a key driver of SnC accumulation, and the complications associated with obesity can be controlled by reducing the SnC burden. Thus, senotherapeutic drugs have the potential to be an effective therapeutic option.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - Rafael R Flores
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - Christina D Camell
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - David A Bernlohr
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA.
| | - Laura J Niedernhofer
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
38
|
Lee IS, Ko SJ, Lee YN, Lee G, Rahman MH, Kim B. The Effect of Laminaria japonica on Metabolic Syndrome: A Systematic Review of Its Efficacy and Mechanism of Action. Nutrients 2022; 14:3046. [PMID: 35893900 PMCID: PMC9370431 DOI: 10.3390/nu14153046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Metabolic syndrome (MetS) is a medical condition characterized by abdominal obesity, insulin resistance, high blood pressure, and hyperlipidemia. An increase in the incidence of MetS provokes an escalation in health care costs and a downturn in quality of life. However, there is currently no cure for MetS, and the absence of immediate treatment for MetS has prompted the development of novel therapies. In accordance with recent studies, the brown seaweed Laminaria japonica (LJP) has anti-inflammatory and antioxidant properties, and so forth. LJP contains bioactive compounds used as food globally, and it has been used as a medicine in East Asian countries. We conducted a systematic review to examine whether LJP could potentially be a useful therapeutic drug for MetS. The following databases were searched from initiation to September 2021: PubMed, Web of Science, EMBASE, and Cochrane Central Register of Controlled Trials Library. Clinical trials and in vivo studies evaluating the effects of LJP on MetS were included. LJP reduces the oxidative stress-related lipid mechanisms, inflammatory cytokines and macrophage-related chemokines, muscle cell proliferation, and migration. Bioactive-glucosidase inhibitors reduce diabetic complications, a therapeutic target in obesity and type 2 diabetes. In obesity, LJP increases AMP-activated protein kinase and decreases acetyl-CoA carboxylase. Based on our findings, we suggest that LJP could treat MetS, as it has pharmacological effects on MetS.
Collapse
Affiliation(s)
- In-Seon Lee
- Department of Meridians and Acupoints, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
| | - Yu Na Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Gahyun Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Md. Hasanur Rahman
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| |
Collapse
|
39
|
Zhou D, Zhuan Q, Luo Y, Liu H, Meng L, Du X, Wu G, Hou Y, Li J, Fu X. Mito-Q promotes porcine oocytes maturation by maintaining mitochondrial thermogenesis via UCP2 downregulation. Theriogenology 2022; 187:205-214. [PMID: 35644089 DOI: 10.1016/j.theriogenology.2022.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
Mitochondrial thermogenesis is an adaptive response of cells to their surrounding stress. Oxidative stress is one of the common stresses during in vitro maturation (IVM) of oocytes, which leads to mitochondrial dysfunction. This study aimed to probe the effects of the mitochondria-targeted antioxidant Mito-Q on oocyte development and unravel the role of Mito-Q in mitochondrial ATP production and thermogenesis regulation. Our results showed that Mito-Q had a positive effect on porcine oocytes maturation and subsequent embryo development. During oocytes IVM, Mito-Q could reduce ATP levels and ROS, increase lipid droplets accumulation, induce autophagy, and maintain mitochondrial temperature stability. Moreover, in metaphase II (MII) oocytes, Mito-Q would induce mitochondrial uncoupling manifested by decreased ATP, attenuated mitochondrial membrane potential (MMP), and increased mitochondrial thermogenesis. Notably, the expression of mitochondrial uncoupling protein (UCP2) was significantly reduced in oocytes treated with Mito-Q. Further study indicated that specific depletion of UCP2 in oocytes also resulted in increased thermogenesis, decreased ATP and declined MMP, suggesting that UCP2 downregulation may participate in Mito-Q-induced mitochondrial uncoupling. In summary, our data demonstrate that Mito-Q promotes oocyte maturation in vitro and maintains the stability of mitochondrial thermogenesis by inhibiting UCP2 expression.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Yuwen Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Lin Meng
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingzhu Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Yunpeng Hou
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China.
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
40
|
Horino M, Ikeda K, Yamada T. The Role of Thermogenic Fat Tissue in Energy Consumption. Curr Issues Mol Biol 2022; 44:3166-3179. [PMID: 35877443 PMCID: PMC9317885 DOI: 10.3390/cimb44070219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022] Open
Abstract
Mammalian adipose tissues are broadly divided into white adipose tissue (WAT) and thermogenic fat tissue (brown adipose tissue and beige adipose tissue). Uncoupling protein 1 (UCP1) is the central protein in thermogenesis, and cells that exhibit induced UCP1 expression and appear scattered throughout WAT are called beige adipocytes, and their induction in WAT is referred to as “beiging”. Beige adipocytes can differentiate from preadipocytes or convert from mature adipocytes. UCP1 was thought to contribute to non-shivering thermogenesis; however, recent studies demonstrated the presence of UCP1-independent thermogenic mechanisms. There is evidence that thermogenic fat tissue contributes to systemic energy expenditure even in human beings. This review discusses the roles that thermogenic fat tissue plays in energy consumption and offers insight into the possibility and challenges associated with its application in the treatment of obesity and type 2 diabetes.
Collapse
|
41
|
Xiao F, Farag MA, Xiao J, Yang X, Liu Y, Shen J, Lu B. The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: the prospects of single cell sequencing. J Nutr Biochem 2022; 108:109091. [PMID: 35718097 DOI: 10.1016/j.jnutbio.2022.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Chronic inflammation-associated diseases include, but is not limited to cardiovascular disease, cancer, obesity, diabetes, etc. Cell heterogeneity is a prerequisite for understanding the physiological and pathological development of cell metabolism, and its response to external stimuli. Recently, dietary habits based on phytochemicals became increasingly recognized to play a pivotal role in chronic inflammation. Phytochemicals can relieve chronic inflammation by regulating inflammatory cell differentiation and immune cell response, but the influence of phytochemicals on cell heterogeneity from in vitro and ex vivo studies cannot simulate the complexity of cell differentiation in vivo due to the differences in cell lines and extracellular environment. Therefore, there is no consensus on the regulation mechanism of phytochemicals on chronic diseases based on cell heterogeneity. The purpose of this review is to summarize cell heterogeneity in common chronic inflammation-associated diseases and trace the effects of phytochemicals on cell differentiation in chronic diseases development. More importantly, by discussing the problems and challenges which hinder the study of cell heterogeneity in recent nutritional assessment experiments, we propose new prospects based on the drawbacks of existing research to optimize the research on the regulation mechanism of phytochemicals on chronic diseases. The need to explore precise measurements of cell heterogeneity is a key pillar in understanding the influence of phytochemicals on certain diseases. In the future, deeper understanding of cell-to-cell variation and the impact of food components and their metabolites on cell function by single-cell genomics and epigenomics with the focus on individual differences will open new avenues for the next generation of health care.
Collapse
Affiliation(s)
- Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
42
|
Nguyen-Tu MS, Harris J, Martinez-Sanchez A, Chabosseau P, Hu M, Georgiadou E, Pollard A, Otero P, Lopez-Noriega L, Leclerc I, Sakamoto K, Schmoll D, Smith DM, Carling D, Rutter GA. Opposing effects on regulated insulin secretion of acute vs chronic stimulation of AMP-activated protein kinase. Diabetologia 2022; 65:997-1011. [PMID: 35294578 PMCID: PMC9076735 DOI: 10.1007/s00125-022-05673-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Although targeted in extrapancreatic tissues by several drugs used to treat type 2 diabetes, the role of AMP-activated protein kinase (AMPK) in the control of insulin secretion is still debatable. Previous studies have used pharmacological activators of limited selectivity and specificity, and none has examined in primary pancreatic beta cells the actions of the latest generation of highly potent and specific activators that act via the allosteric drug and metabolite (ADaM) site. METHODS AMPK was activated acutely in islets isolated from C57BL6/J mice, and in an EndoC-βH3 cell line, using three structurally distinct ADaM site activators (991, PF-06409577 and RA089), with varying selectivity for β1- vs β2-containing complexes. Mouse lines expressing a gain-of-function mutation in the γ1 AMPK subunit (D316a) were generated to examine the effects of chronic AMPK stimulation in the whole body, or selectively in the beta cell. RESULTS Acute (1.5 h) treatment of wild-type mouse islets with 991, PF-06409577 or RA089 robustly stimulated insulin secretion at high glucose concentrations (p<0.01, p<0.05 and p<0.001, respectively), despite a lowering of glucose-induced intracellular free Ca2+ dynamics in response to 991 (AUC, p<0.05) and to RA089 at the highest dose (25 μmol/l) at 5.59 min (p<0.05). Although abolished in the absence of AMPK, the effects of 991 were observed in the absence of the upstream kinase, liver kinase B1, further implicating 'amplifying' pathways. In marked contrast, chronic activation of AMPK, either globally or selectively in the beta cell, achieved using a gain-of-function mutant, impaired insulin release in vivo (p<0.05 at 15 min following i.p. injection of 3 mmol/l glucose) and in vitro (p<0.01 following incubation of islets with 17 mmol/l glucose), and lowered glucose tolerance (p<0.001). CONCLUSIONS/INTERPRETATION AMPK activation exerts complex, time-dependent effects on insulin secretion. These observations should inform the design and future clinical use of AMPK modulators.
Collapse
Affiliation(s)
- Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Joseph Harris
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alice Pollard
- MRC- London Institute of Medical Sciences, Imperial College London, London, UK
- Structure Biophysics and Fragments, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Pablo Otero
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Livia Lopez-Noriega
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kei Sakamoto
- Novo Nordisk Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Dieter Schmoll
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - David M Smith
- Emerging Innovations Unit, Discovery Sciences, AstraZeneca R&D , Cambridge, UK
| | - David Carling
- MRC- London Institute of Medical Sciences, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.
- CR-CHUM, University of Montréal, Montréal, QC, Canada.
| |
Collapse
|
43
|
Luo Y, Chen Q, Zou J, Fan J, Li Y, Luo Z. Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver. Int J Mol Sci 2022; 23:ijms23095209. [PMID: 35563600 PMCID: PMC9104027 DOI: 10.3390/ijms23095209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity often concurs with nonalcoholic fatty liver disease (NAFLD), both of which are detrimental to human health. Thus far, exercise appears to be an effective treatment approach. However, its effects cannot last long and, moreover, it is difficult to achieve for many obese people. Thus, it is necessary to look into alternative remedies. The present study explored a noninvasive, easy, tolerable physical alternative. In our experiment, C57BL/6 mice were fed with a high-fat diet (HFD) to induce overweight/obesity and were exposed to 10% oxygen for one hour every day. We found that hypoxia exerted protective effects. First, it offset HFD-induced bodyweight gain and insulin resistance. Secondly, hypoxia reversed the HFD-induced enlargement of white and brown adipocytes and fatty liver, and protected liver function. Thirdly, HFD downregulated the expression of genes required for lipolysis and thermogenesis, such as UCP1, ADR3(beta3-adrenergic receptor), CPT1A, ATGL, PPARα, and PGC1α, M2 macrophage markers arginase and CD206 in the liver, and UCP1 and PPARγ in brown fat, while these molecules were upregulated by hypoxia. Furthermore, hypoxia induced the activation of AMPK, an energy sensing enzyme. Fourthly, our results showed that hypoxia increased serum levels of epinephrine. Indeed, the effects of hypoxia on bodyweight, fatty liver, and associated changes in gene expression ever tested were reproduced by injection of epinephrine and prevented by propranolol at varying degrees. Altogether, our data suggest that hypoxia triggers stress responses where epinephrine plays important roles. Therefore, our study sheds light on the hope to use hypoxia to treat the daunting disorders, obesity and NAFLD.
Collapse
Affiliation(s)
- Yunfei Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Qiongfeng Chen
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Jingjing Fan
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Yuanjun Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
- Queen Mary School, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-158-7917-7010
| |
Collapse
|
44
|
Rab2A regulates the progression of nonalcoholic fatty liver disease downstream of AMPK-TBC1D1 axis by stabilizing PPARγ. PLoS Biol 2022; 20:e3001522. [PMID: 35061665 PMCID: PMC8809606 DOI: 10.1371/journal.pbio.3001522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 02/02/2022] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population worldwide, and persistent overnutrition is one of the major causes. However, the underlying molecular basis has not been fully elucidated, and no specific drug has been approved for this disease. Here, we identify a regulatory mechanism that reveals a novel function of Rab2A in the progression of NAFLD based on energy status and PPARγ. The mechanistic analysis shows that nutrition repletion suppresses the phosphorylation of AMPK-TBC1D1 signaling, augments the level of GTP-bound Rab2A, and then increases the protein stability of PPARγ, which ultimately promotes the hepatic accumulation of lipids in vitro and in vivo. Furthermore, we found that blocking the AMPK-TBC1D1 pathway in TBC1D1S231A-knock-in (KI) mice led to a markedly increased GTP-bound Rab2A and subsequent fatty liver in aged mice. Our studies also showed that inhibition of Rab2A expression alleviated hepatic lipid deposition in western diet-induced obesity (DIO) mice by reducing the protein level of PPARγ and the expression of PPARγ target genes. Our findings not only reveal a new molecular mechanism regulating the progression of NAFLD during persistent overnutrition but also have potential implications for drug discovery to combat this disease. Non-alcoholic fatty liver disease (NAFLD) affects approximately a quarter of the global population; persistent overnutrition is one of the major causes, but the molecular mechanism remains unclear. This study shows that overnutrition suppresses the phosphorylation of AMPK and TBC1D1, augmenting the level of GTP-bound Rab2A and increasing the stability of PPARγ, which ultimately promotes the hepatic accumulation of lipids.
Collapse
|
45
|
Zhao A, Chen Y, Li Y, Lin D, Yang Z, Wang Q, Chen H, Xu Q, Chen J, Zhu P, Huang F, Huang Z, Ren R, Lin W, Wang W. Sulfated Polysaccharides from Enteromorpha prolifera Attenuate Lipid Metabolism Disorders in Mice with High-fat Diet-induced Obesity via an AMPK-dependent Pathway. J Nutr 2021; 152:939-949. [PMID: 36967184 DOI: 10.1093/jn/nxab432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity-related metabolic diseases have recently evoked worldwide attention. Studies have demonstrated that Enteromorpha polysaccharide (EP) exerts lipid-lowering effects, but the underlying mechanism remains unclear. OBJECTIVE To investigate whether EP regulates lipid metabolism disorders in mice with high-fat diet (HFD)-induced obesity via an AMP-activated protein kinase (AMPK)-dependent pathway. METHODS Six-week-old male C57BL/6J mice (18 ± 2 g) were fed a normal diet (ND; 10% energy from fats) or a HFD (60% energy from fats) for 6 weeks to induce obesity and treated intragastrically with EP (200 mg/kg body weight) or distilled water (10 mL/kg body weight) for 8 weeks. Biochemical indicators, AMPK-dependent pathways and lipid metabolism-related genes were evaluated to assess the effects of EP on HFD-induced lipid metabolism disorders. The essential role of AMPK in the EP-mediated regulation of lipid metabolism was confirmed using HFD-fed male Ampka2-knockout mice (aged 6 weeks, 17 ± 2 g) treated or not treated with the above-mentioned dose of EP. The data were analyzed by t tests and two-factor and one-way ANOVAs. RESULTS Compared to the ND, the HFD resulted in the greater body weight (24.3%), perirenal fat index (2.2-fold), and serum TC (24.66%) and LDL cholesterol (1.25-fold) concentrations (P < 0.05) and dysregulated the AMPK-dependent pathway and the expression of most lipid metabolism-related genes (P < 0.05). Compared to the HFD, EP treatment resulted in the lower perirenal fat index (31.22%) and the LDL-C concentration (23.98%) and partly reversed the dysregulation of the AMPK-dependent pathway and the altered expression of lipid metabolism-related genes (P < 0.05). Ampka2 knockout abolished the above-mentioned effects of EP in obese mice and the EP-mediated effects on the expression of lipid metabolism-related genes (P > 0.05). CONCLUSIONS These findings suggest that EP can ameliorate lipid metabolism disorders in mice with HFD-induced obesity via an AMPK-dependent pathway.
Collapse
Affiliation(s)
- Aili Zhao
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiqin Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yixin Li
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Dai Lin
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zheng Yang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Hui Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Qian Xu
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Pingping Zhu
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Fang Huang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zuxiong Huang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Rendong Ren
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenting Lin
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
46
|
Chronic activation of AMP-activated protein kinase leads to early-onset polycystic kidney phenotype. Clin Sci (Lond) 2021; 135:2393-2408. [PMID: 34622923 DOI: 10.1042/cs20210821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) plays a key role in the cellular response to low energy stress and has emerged as an attractive therapeutic target for tackling metabolic diseases. Whilst significant progress has been made regarding the physiological role of AMPK, its function in the kidney remains only partially understood. We use a mouse model expressing a constitutively active mutant of AMPK to investigate the effect of AMPK activation on kidney function in vivo. Kidney morphology and changes in gene and protein expression were monitored and serum and urine markers were measured to assess kidney function in vivo. Global AMPK activation resulted in an early-onset polycystic kidney phenotype, featuring collecting duct cysts and compromised renal function in adult mice. Mechanistically, the cystic kidneys had increased cAMP levels and ERK activation, increased hexokinase I (Hk I) expression, glycogen accumulation and altered expression of proteins associated with autophagy. Kidney tubule-specific activation of AMPK also resulted in a polycystic phenotype, demonstrating that renal tubular AMPK activation caused the cystogenesis. Importantly, human autosomal dominant polycystic kidney disease (ADPKD) kidney sections revealed similar protein localisation patterns to that observed in the murine cystic kidneys. Our findings show that early-onset chronic AMPK activation leads to a polycystic kidney phenotype, suggesting dysregulated AMPK signalling is a contributing factor in cystogenesis.
Collapse
|
47
|
Son YJ, Jung DS, Shin JM, Erdenebileg S, Nho CW. Heracleum dissectum Ledeb. ethanol extract attenuates metabolic syndrome symptoms in high-fat diet-induced obese mice by activating adiponectin/AMPK signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
48
|
Zhao R, Ji Y, Chen X, Hu Q, Zhao L. Polysaccharide from Flammulina velutipes attenuates markers of metabolic syndrome by modulating the gut microbiota and lipid metabolism in high fat diet-fed mice. Food Funct 2021; 12:6964-6980. [PMID: 34137411 DOI: 10.1039/d1fo00534k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural biological macromolecules with putative functions of gut microbiota regulation possess the advantage of improving metabolic syndrome (MS). In this research, we aimed to determine the effects of Flammulina velutipes polysaccharide (FVP) (Expt. 1) and fecal microbiota transplantation (FMT) (Expt. 2) on MS-related disorders, gut microbiota structure changes and their underlying mechanisms in a murine model fed with high-fat diet (HFD). In Expt. 1, six-week-old male C57BL/6J mice were fed with a control diet (10% calories from fat) or a high fat diet (45% calories from fat), administered with saline or FVP (0.4 mg per g b.w.) by gavage over a 12-week period. In Expt. 2, mice were fed with a HFD, administered with fecal supernatants from healthy and FVP-fed donor mice for 12 weeks simultaneously. The body mass, blood lipid levels and blood glucose homeostasis of mice were analyzed, and total RNA from mouse liver and adipose tissue were extracted by TRIzol and the lipid metabolism-related gene expressions were calculated by qRT-PCR. Gut microbiota changes were evaluated by high-throughput sequencing. Results indicated that FVP and FMT supplementations showed an attenuation effect on mouse obesity, hyperlipidemia and insulin resistance. Up-regulated expressions of Ampkα1 and Ppara were found both in FVP and FMT treatment groups. Different changes were found in the gut microbiota caused by FVP and FMT, respectively. PICRUSt analysis indicated that compared with FVP supplementation, FMT showed a significant effect on regulating lipid metabolism in HFD-fed mice. The findings from this study indicated that oral administrations of FVP or FMT could significantly attenuate MS-related obesity, hyperlipidemia and insulin resistance in HFD-fed mice, and the beneficial effects may be mediated through lipid metabolism and gut microbiota regulation in different ways. These results improve the understanding of the functional activity of FVP as prebiotics.
Collapse
Affiliation(s)
- Ruiqiu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | | | | | | | | |
Collapse
|
49
|
Vásquez-Reyes S, Velázquez-Villegas LA, Vargas-Castillo A, Noriega LG, Torres N, Tovar AR. Dietary bioactive compounds as modulators of mitochondrial function. J Nutr Biochem 2021; 96:108768. [PMID: 34000412 DOI: 10.1016/j.jnutbio.2021.108768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
The increase in incidence and prevalence of metabolic diseases, such as diabetes, obesity, and metabolic syndrome, is a health problem worldwide. Nutritional strategies that can impact on mitochondrial activity represent a novel and effective option to modulate energy expenditure and energetic metabolism in cells and tissues and could be used as adjuvant treatments for metabolic-associated disorders. Dietary bioactive compounds also known as "food bioactives" have proven to exert multiple health benefits and counteract metabolic alterations. In the last years, it has been consistently reported that the modulation of mitochondrial function represents one of the mechanisms behind the bioactive compounds-dependent health improvements. In this review, we focus on gathering, summarizing, and discussing the evidence that supports the effect of dietary bioactive compounds on mitochondrial activity and the relation of these effects in the pathological context. Despite the evidence presented here on in vivo and in vitro effects, more studies are needed to determine their effectiveness in humans.
Collapse
Affiliation(s)
- Sarai Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico.
| |
Collapse
|
50
|
Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 2021; 17:276-295. [PMID: 33627836 DOI: 10.1038/s41574-021-00471-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
In mammals, the white adipocyte is a cell type that is specialized for storage of energy (in the form of triacylglycerols) and for energy mobilization (as fatty acids). White adipocyte metabolism confers an essential role to adipose tissue in whole-body homeostasis. Dysfunction in white adipocyte metabolism is a cardinal event in the development of insulin resistance and associated disorders. This Review focuses on our current understanding of lipid and glucose metabolic pathways in the white adipocyte. We survey recent advances in humans on the importance of adipocyte hypertrophy and on the in vivo turnover of adipocytes and stored lipids. At the molecular level, the identification of novel regulators and of the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states. We also examine the metabolic alterations involved in the genesis of obesity-associated metabolic disorders, lipodystrophic states, cancers and cancer-associated cachexia. New challenges include defining the heterogeneity of white adipocytes in different anatomical locations throughout the lifespan and investigating the importance of rhythmic processes. Targeting white fat metabolism offers opportunities for improved patient stratification and a wide, yet unexploited, range of therapeutic opportunities.
Collapse
Affiliation(s)
- Pauline Morigny
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France.
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|