1
|
Junaid M, Lee EJ, Lim SB. Single-cell and spatial omics: exploring hypothalamic heterogeneity. Neural Regen Res 2025; 20:1525-1540. [PMID: 38993130 PMCID: PMC11688568 DOI: 10.4103/nrr.nrr-d-24-00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Eun Jeong Lee
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| |
Collapse
|
2
|
Wang YM, Wang WC, Pan Y, Zeng L, Wu J, Wang ZB, Zhuang XL, Li ML, Cooper DN, Wang S, Shao Y, Wang LM, Fan YY, He Y, Hu XT, Wu DD. Regional and aging-specific cellular architecture of non-human primate brains. Genome Med 2025; 17:41. [PMID: 40296047 PMCID: PMC12038948 DOI: 10.1186/s13073-025-01469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Deciphering the functionality and dynamics of brain networks across different regions and age groups in non-human primates (NHPs) is crucial for understanding the evolution of human cognition as well as the processes underlying brain pathogenesis. However, systemic delineation of the cellular composition and molecular connections among multiple brain regions and their alterations induced by aging in NHPs remain largely unresolved. METHODS In this study, we performed single-nucleus RNA sequencing on 39 samples collected from 10 brain regions of two young and two aged rhesus macaques using the DNBelab C4 system. Validation of protein expression of signatures specific to particular cell types, brain regions, and aging was conducted through a series of immunofluorescence and immunohistochemistry staining experiments. Loss-of-function experiments mediated by short hairpin RNA (shRNA) targeting two age-related genes (i.e., VSNL1 and HPCAL4) were performed in U251 glioma cells to verify their aging effects. Senescence-associated beta-galactosidase (SA-β-gal) staining and quantitative PCR (qPCR) of senescence marker genes were employed to assess cellular senescence in U251 cells. RESULTS We have established a large-scale cell atlas encompassing over 330,000 cells for the rhesus macaque brain. Our analysis identified numerous gene expression signatures that were specific to particular cell types, subtypes, brain regions, and aging. These datasets greatly expand our knowledge of primate brain organization and highlight the potential involvement of specific molecular and cellular components in both the regionalization and functional integrity of the brain. Our analysis also disclosed extensive transcriptional alterations and cell-cell connections across brain regions in the aging macaques. Finally, by examining the heritability enrichment of human complex traits and diseases, we determined that neurological traits were significantly enriched in neuronal cells and multiple regions with aging-relevant gene expression signatures, while immune-related traits exhibited pronounced enrichment in microglia. CONCLUSIONS Taken together, our study presents a valuable resource for investigating the cellular and molecular architecture of the primate nervous system, thereby expanding our understanding of the mechanisms underlying brain function, aging, and disease.
Collapse
Affiliation(s)
- Yun-Mei Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen-Chao Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zeng
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Wu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zheng-Bo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650107, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sheng Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yong Shao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Li-Min Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ying-Yin Fan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin-Tian Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
3
|
Na D, Zhang Z, Meng M, Li M, Gao J, Kong J, Zhang G, Guo Y. Energy Metabolism and Brain Aging: Strategies to Delay Neuronal Degeneration. Cell Mol Neurobiol 2025; 45:38. [PMID: 40259102 PMCID: PMC12011708 DOI: 10.1007/s10571-025-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/09/2025] [Indexed: 04/23/2025]
Abstract
Aging is characterized by a gradual decline in physiological functions, with brain aging being a major risk factor for numerous neurodegenerative diseases. Given the brain's high energy demands, maintaining an adequate ATP supply is crucial for its proper function. However, with advancing age, mitochondria dysfunction and a deteriorating energy metabolism lead to reduced overall energy production and impaired mitochondrial quality control (MQC). As a result, promoting healthy aging has become a key focus in contemporary research. This review examines the relationship between energy metabolism and brain aging, highlighting the connection between MQC and energy metabolism, and proposes strategies to delay brain aging by targeting energy metabolism.
Collapse
Affiliation(s)
- Donghui Na
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Zechen Zhang
- Mudi Meng Honors College, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng Meng
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Meiyu Li
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
- Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China
| | - Junyan Gao
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
| | - Ying Guo
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
- Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China.
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
4
|
Wang L, Cui CY, Lee CT, Bodogai M, Yang N, Shi C, Irfanoglu MO, Occean JR, Afrin S, Sarker N, McDevitt RA, Lehrmann E, Abbas S, Banskota N, Fan J, De S, Rapp P, Biragyn A, Benjamini D, Maragkakis M, Sen P. Spatial transcriptomics of the aging mouse brain reveals origins of inflammation in the white matter. Nat Commun 2025; 16:3231. [PMID: 40185750 PMCID: PMC11971433 DOI: 10.1038/s41467-025-58466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
To systematically understand age-induced molecular changes, we performed spatial transcriptomics of young, middle-aged, and old mouse brains and identified seven transcriptionally distinct regions. All regions exhibited age-associated upregulation of inflammatory mRNAs and downregulation of mRNAs related to synaptic function. Notably, aging white matter fiber tracts showed the most prominent changes with pronounced effects in females. The inflammatory signatures indicated major ongoing events: microglia activation, astrogliosis, complement activation, and myeloid cell infiltration. Immunofluorescence and quantitative MRI analyses confirmed physical interaction of activated microglia with fiber tracts and concomitant reduction of myelin in old mice. In silico analyses identified potential transcription factors influencing these changes. Our study provides a resourceful dataset of spatially resolved transcriptomic features in the naturally aging murine brain encompassing three age groups and both sexes. The results link previous disjointed findings and provide a comprehensive overview of brain aging identifying fiber tracts as a focal point of inflammation.
Collapse
Affiliation(s)
- Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher T Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Monica Bodogai
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Mustafa O Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadia Afrin
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Nishat Sarker
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Elin Lehrmann
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Shahroze Abbas
- Center for Alzheimer's and Related Dementia, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Nirad Banskota
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Peter Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dan Benjamini
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
5
|
Babcock KR, Yu D, Webb AE. A sex-biased target against demyelination in Alzheimer's disease. Trends Mol Med 2025; 31:304-306. [PMID: 40133178 PMCID: PMC11985262 DOI: 10.1016/j.molmed.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Aging and Alzheimer's disease (AD) exhibit sex differences in several biological processes, including demyelination. In a recent study, Lopez-Lee et al. uncover the contributions of sex chromosomes and gonadal hormones to sex differences in demyelination and identify Toll-like receptor 7 (TLR7) as a potential target to ameliorate tauopathy-induced demyelination in men.
Collapse
Affiliation(s)
- Kelsey R Babcock
- Graduate Program in Neuroscience, Brown University, Providence, RI 02912, USA
| | - Doudou Yu
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA; The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Ashley E Webb
- The Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
6
|
Cui L, Nie X, Guo Y, Ren P, Guo Y, Wang X, Li R, Hotaling JM, Cairns BR, Guo J. Single-cell transcriptomic atlas of the human testis across the reproductive lifespan. NATURE AGING 2025; 5:658-674. [PMID: 40033047 PMCID: PMC12003174 DOI: 10.1038/s43587-025-00824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Testicular aging is associated with declining reproductive health, but the molecular mechanisms are unclear. Here we generate a dataset of 214,369 single-cell transcriptomes from testicular cells of 35 individuals aged 21-69, offering a resource for studying testicular aging and physiology. Machine learning analysis reveals a stronger aging response in somatic cells compared to germ cells. Two waves of aging-related changes are identified: the first in peritubular cells of donors in their 30s, marked by increased basement membrane thickness, indicating a priming state for aging. In their 50s, testicular cells exhibit functional changes, including altered steroid metabolism in Leydig cells and immune responses in macrophages. Further analyses reveal the impact of body mass index on spermatogenic capacity as age progresses, particularly after age 45. Altogether, our findings illuminate molecular alterations during testis aging and their relationship with body mass index, providing a foundation for future research and offering potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Lina Cui
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xichen Nie
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- Division of Urology, Department of Surgery, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Yixuan Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Pengcheng Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yifei Guo
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ran Li
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - James M Hotaling
- Division of Urology, Department of Surgery, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Jingtao Guo
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Gadek M, Shaw CK, Abdulai-Saiku S, Saloner R, Marino F, Wang D, Bonham LW, Yokoyama JS, Panning B, Benayoun BA, Casaletto KB, Ramani V, Dubal DB. Aging activates escape of the silent X chromosome in the female mouse hippocampus. SCIENCE ADVANCES 2025; 11:eads8169. [PMID: 40043106 PMCID: PMC11881916 DOI: 10.1126/sciadv.ads8169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 03/09/2025]
Abstract
Women live longer than men and exhibit less cognitive aging. The X chromosome contributes to sex differences, as females harbor an inactive X (Xi) and active X (Xa), in contrast to males with only an Xa. Thus, reactivation of silent Xi genes may contribute to sex differences. We use allele-specific, single-nucleus RNA sequencing to show that aging remodels transcription of the Xi and Xa across hippocampal cell types. Aging preferentially changed gene expression on the X's relative to autosomes. Select genes on the Xi underwent activation, with new escape across cells including in the dentate gyrus, critical to learning and memory. Expression of the Xi escapee Plp1, a myelin component, was increased in the aging hippocampus of female mice and parahippocampus of women. AAV-mediated Plp1 elevation in the dentate gyrus of aging male and female mice improved cognition. Understanding how the Xi may confer female advantage could lead to novel targets that counter brain aging and disease in both sexes.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Cayce K. Shaw
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Samira Abdulai-Saiku
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rowan Saloner
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Luke W. Bonham
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer S. Yokoyama
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine; USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- USC Stem Cell Initiative, Los Angeles, CA, USA
| | - Kaitlin B. Casaletto
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Ramani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Ansere VA, Kim SS, Marino F, Morillo K, Dubal DB, Murphy CT, Suh Y, Benayoun BA. Strategies for studying sex differences in brain aging. Trends Genet 2025:S0168-9525(25)00027-7. [PMID: 40037936 DOI: 10.1016/j.tig.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Studying sex effects and their underlying mechanisms is of major relevance to understanding brain health. Despite growing interests, experimentally studying sex differences, particularly in the context of aging, remains challenging. Since sex chromosomal content influences gonadal development, separating the effects of gonadal hormones and chromosomal factors requires specific model systems. Here, we highlight rodent and tractable models for examining sex dimorphism in brain and cognitive aging. In addition, we discuss multi-omic and bioinformatic approaches that yield biological insights from animal and human studies. This review provides a comprehensive overview of the diverse toolkit now available to advance our understanding of sex differences in brain aging.
Collapse
Affiliation(s)
- Victor A Ansere
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Seung-Soo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Katherine Morillo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA; Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA.
| |
Collapse
|
9
|
Huang Y, Zhu S, Yao S, Zhai H, Liu C, Han JDJ. Unraveling aging from transcriptomics. Trends Genet 2025; 41:218-235. [PMID: 39424502 DOI: 10.1016/j.tig.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Research into aging constitutes a pivotal endeavor aimed at elucidating the underlying biological mechanisms governing aging and age-associated diseases, as well as promoting healthy longevity. Recent advances in transcriptomic technologies, such as bulk RNA sequencing (RNA-seq), single-cell transcriptomics, and spatial transcriptomics, have revolutionized our ability to study aging at unprecedented resolution and scale. These technologies present novel opportunities for the discovery of biomarkers, elucidation of molecular pathways, and development of targeted therapeutic strategies for age-related disorders. This review surveys recent breakthroughs in different types of transcripts on aging, such as mRNA, long noncoding (lnc)RNA, tRNA, and miRNA, highlighting key findings and discussing their potential implications for future studies in this field.
Collapse
Affiliation(s)
- Yuanfang Huang
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shouxuan Zhu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuai Yao
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Haotian Zhai
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chenyang Liu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
10
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 2025; 638:160-171. [PMID: 39695234 PMCID: PMC11798877 DOI: 10.1038/s41586-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions-exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease.
Collapse
Affiliation(s)
- Eric D Sun
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biophysics Graduate Program, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Jin K, Yao Z, van Velthoven CTJ, Kaplan ES, Glattfelder K, Barlow ST, Boyer G, Carey D, Casper T, Chakka AB, Chakrabarty R, Clark M, Departee M, Desierto M, Gary A, Gloe J, Goldy J, Guilford N, Guzman J, Hirschstein D, Lee C, Liang E, Pham T, Reding M, Ronellenfitch K, Ruiz A, Sevigny J, Shapovalova N, Shulga L, Sulc J, Torkelson A, Tung H, Levi B, Sunkin SM, Dee N, Esposito L, Smith KA, Tasic B, Zeng H. Brain-wide cell-type-specific transcriptomic signatures of healthy ageing in mice. Nature 2025; 638:182-196. [PMID: 39743592 PMCID: PMC11798837 DOI: 10.1038/s41586-024-08350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Biological ageing can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function1,2. Mammalian brains consist of thousands of cell types3, which may be differentially susceptible or resilient to ageing. Here we present a comprehensive single-cell RNA sequencing dataset containing roughly 1.2 million high-quality single-cell transcriptomes of brain cells from young adult and aged mice of both sexes, from regions spanning the forebrain, midbrain and hindbrain. High-resolution clustering of all cells results in 847 cell clusters and reveals at least 14 age-biased clusters that are mostly glial types. At the broader cell subclass and supertype levels, we find age-associated gene expression signatures and provide a list of 2,449 unique differentially expressed genes (age-DE genes) for many neuronal and non-neuronal cell types. Whereas most age-DE genes are unique to specific cell types, we observe common signatures with ageing across cell types, including a decrease in expression of genes related to neuronal structure and function in many neuron types, major astrocyte types and mature oligodendrocytes, and an increase in expression of genes related to immune function, antigen presentation, inflammation, and cell motility in immune cell types and some vascular cell types. Finally, we observe that some of the cell types that demonstrate the greatest sensitivity to ageing are concentrated around the third ventricle in the hypothalamus, including tanycytes, ependymal cells, and certain neuron types in the arcuate nucleus, dorsomedial nucleus and paraventricular nucleus that express genes canonically related to energy homeostasis. Many of these types demonstrate both a decrease in neuronal function and an increase in immune response. These findings suggest that the third ventricle in the hypothalamus may be a hub for ageing in the mouse brain. Overall, this study systematically delineates a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal ageing that will serve as a foundation for the investigation of functional changes in ageing and the interaction of ageing and disease.
Collapse
Affiliation(s)
- Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Max Departee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Josh Sevigny
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
12
|
Tennant N, Pavuluri A, O'Connor-Giles K, Singh G, Larschan E, Singh R. TimeFlies: an snRNA-seq aging clock for the fruit fly head sheds light on sex-biased aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.25.625273. [PMID: 39896546 PMCID: PMC11785003 DOI: 10.1101/2024.11.25.625273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Although multiple high-performing epigenetic aging clocks exist, few are based directly on gene expression. Such transcriptomic aging clocks allow us to extract age-associated genes directly. However, most existing transcriptomic clocks model a subset of genes and are limited in their ability to predict novel biomarkers. With the growing popularity of single-cell sequencing, there is a need for robust single-cell transcriptomic aging clocks. Moreover, clocks have yet to be applied to investigate the elusive phenomenon of sex differences in aging. We introduce TimeFlies, a pan-cell-type scRNA-seq aging clock for the Drosophila melanogaster head. TimeFlies uses deep learning to classify the donor age of cells based on genome-wide gene expression profiles. Using explainability methods, we identified key marker genes contributing to the classification, with lncRNAs showing up as highly enriched among predicted biomarkers. The top biomarker gene across cell types is lncRNA:roX1, a regulator of X chromosome dosage compensation, a pathway previously identified as a top biomarker of aging in the mouse brain. We validated this finding experimentally, showing a decrease in survival probability in the absence of roX1 in vivo. Furthermore, we trained sex-specific TimeFlies clocks and noted significant differences in model predictions and explanations between male and female clocks, suggesting that different pathways drive aging in males and females.
Collapse
Affiliation(s)
- Nikolai Tennant
- Data Science Institute, Brown University, Providence, RI, USA
| | - Ananya Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Kate O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Gunjan Singh
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Erica Larschan
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Ritambhara Singh
- Data Science Institute, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Computer Science, Brown University, Providence, RI, USA
| |
Collapse
|
13
|
Labarta-Bajo L, Allen NJ. Astrocytes in aging. Neuron 2025; 113:109-126. [PMID: 39788083 PMCID: PMC11735045 DOI: 10.1016/j.neuron.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood. Astrocytes change their transcriptome during aging, with astrocytes in areas such as the cerebellum, the hypothalamus, and white matter-rich regions being the most affected. While numerous studies describe astrocyte transcriptional changes in aging, many questions still remain. For example, how is astrocyte function altered by transcriptional changes that occur during aging? What are the mechanisms promoting astrocyte aged states? How do aged astrocytes impact brain function? This review discusses features of aged astrocytes and their potential triggers and proposes ways in which they may impact brain function and health span.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 PMCID: PMC11842159 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Tokizane K, Imai SI. Inter-organ communication is a critical machinery to regulate metabolism and aging. Trends Endocrinol Metab 2024:S1043-2760(24)00320-5. [PMID: 39694728 DOI: 10.1016/j.tem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Inter-organ communication (IOC) is a complex mechanism involved in maintaining metabolic homeostasis and healthy aging. Dysregulation of distinct forms of IOC is linked to metabolic derangements and age-related pathologies, implicating these processes as a potential target for therapeutic intervention to promote healthy aging. In this review, we delve into IOC mediated by hormonal signaling, circulating factors, organelle signaling, and neuronal networks and examine their roles in regulating metabolism and aging. Given the role of the hypothalamus as a high-order control center for aging and longevity, we particularly emphasize the importance of its communication with peripheral organs and pave the way for a better understanding of this critical machinery in metabolism and aging.
Collapse
Affiliation(s)
- Kyohei Tokizane
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, 63110, MO, USA.
| |
Collapse
|
16
|
Predescu DN, Mokhlesi B, Predescu SA. X-inactive-specific transcript: a long noncoding RNA with a complex role in sex differences in human disease. Biol Sex Differ 2024; 15:101. [PMID: 39639337 PMCID: PMC11619133 DOI: 10.1186/s13293-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, the X and Y chromosomes determine the biological sex, XX specifying for females and XY for males. The long noncoding RNA X-inactive specific transcript (lncRNA XIST) plays a crucial role in the process of X chromosome inactivation (XCI) in cells of the female, a process that ensures the balanced expression of X-linked genes between sexes. Initially, it was believed that XIST can be expressed only from the inactive X chromosome (Xi) and is considered a typically female-specific transcript. However, accumulating evidence suggests that XIST can be detected in male cells as well, and it participates in the development of cancers and other human diseases by regulating gene expression at epigenetic, chromatin remodeling, transcriptional, and translational levels. XIST is abnormally expressed in many sexually dimorphic diseases, including autoimmune and neurological diseases, pulmonary arterial hypertension (PAH), and some types of cancers. However, the underlying mechanisms are not fully understood. Escape from XCI and skewed XCI also contributes to sex-biased diseases and their severity. Interestingly, in humans, similar to experimental animal models of human disease, the males with the XIST gene activated display the sex-biased disease condition at a rate close to females, and significantly greater than males who had not been genetically modified. For instance, the men with supernumerary X chromosomes, such as men with Klinefelter syndrome (47, XXY), are predisposed toward autoimmunity similar to females (46, XX), and have increased risk for strongly female biased diseases, compared to 46, XY males. Interestingly, chromosome X content has been linked to a longer life span, and the presence of two chromosome X contributes to increased longevity regardless of the hormonal status. In this review, we summarize recent knowledge about XIST structure/function correlation and involvement in human disease with focus on XIST abnormal expression in males. Many human diseases show differences between males and females in penetrance, presentation, progression, and survival. In humans, the X and Y sex chromosomes determine the biological sex, XX specifying for females and XY for males. This numeric imbalance, two X chromosomes in females and only one in males, known as sex chromosome dosage inequality, is corrected in the first days of embryonic development by inactivating one of the X chromosomes in females. While this "dosage compensation" should in theory solve the difference in the number of genes between sexes, the expressed doses of X genes are incompletely compensated by X chromosome inactivation in females. In this review we try to highlight how abnormal expression and function of XIST, a gene on the X chromosome responsible for this inactivation process, may explain the sex differences in human health and disease. A better understanding of the molecular mechanisms of XIST participation in the male-female differences in disease is highly relevant since it would allow for improving the personalization of diagnosis and sex-specific treatment of patients.
Collapse
Affiliation(s)
- Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Babak Mokhlesi
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
17
|
Jiang W, Zhang J, Wang M, Zou Y, Liu Q, Song Y, Sun G, Gong Y, Zhang F, Jiang B. The X-linked intellectual disability gene CUL4B is critical for memory and synaptic function. Acta Neuropathol Commun 2024; 12:188. [PMID: 39633474 PMCID: PMC11619648 DOI: 10.1186/s40478-024-01903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene lead to syndromic X-linked intellectual disability (XLID). Till now, the mechanism of intellectual disability caused by CUL4B mutation still needs to be elucidated. In this study, we used single-nucleus RNA sequencing (snRNA-seq) to investigate the impact of CUL4B deficiency on the transcriptional programs of diverse cell types. The results revealed that depletion of CUL4B resulted in impaired intercellular communication and elicited cell type-specific transcriptional changes relevant to synapse dysfunction. Golgi-Cox staining of brain slices and immunostaining of in vitro cultured neurons revealed remarkable synapse loss in CUL4B-deficient mice. Ultrastructural analysis via transmission electron microscopy (TEM) showed that the width of the synaptic cleft was significantly greater in CUL4B-deficient mice. Electrophysiological experiments found a decrease in the amplitude of AMPA receptor-mediated EPSCs in the hippocampal CA1 pyramidal neurons of CUL4B-deficient mice. These results indicate that depletion of CUL4B in mice results in morphological and functional abnormalities in synapses. Furthermore, behavioral tests revealed that depletion of CUL4B in the mouse nervous system results in impaired spatial learning and memory. Taken together, the findings of this study reveal the pathogenesis of neurological disorders associated with CUL4B mutations and promote the identification of therapeutic targets that can halt synaptic abnormalities and preserve memory in individuals.
Collapse
Affiliation(s)
- Wei Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jian Zhang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiao Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Medical Morphology Teaching Laboratory, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
18
|
Niu RZ, Xu HY, Tian H, Zhang D, He CY, Li XL, Li YY, He J. Single-cell transcriptome unveils unique transcriptomic signatures of human organ-specific endothelial cells. Basic Res Cardiol 2024; 119:973-999. [PMID: 39508863 DOI: 10.1007/s00395-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
The heterogeneity of endothelial cells (ECs) across human tissues remains incompletely inventoried. We constructed an atlas of > 210,000 ECs derived from 38 regions across 24 human tissues. Our analysis reveals significant differences in transcriptome, phenotype, metabolism and transcriptional regulation among ECs from various tissues. Notably, arterial, venous, and lymphatic ECs shared more common markers in multiple tissues than capillary ECs, which exhibited higher heterogeneity. This diversity in capillary ECs suggests their greater potential as targets for drug development. ECs from different tissues and vascular beds were found to be associated with specific diseases. Importantly, tissue specificity of EC senescence is more determined by somatic site than by tissue type (e.g. subcutaneus adipose tissue and visceral adipose tissue). Additionally, sex-specific differences in brain EC senescence were observed. Our EC atlas offers valuble resoursce for identifying EC subclusters in single-cell datasets from body tissues or organoids, facilitating the screen of tissue-specific targeted therapies, and serving as a powerful tool for future discoveries.
Collapse
Affiliation(s)
- Rui-Ze Niu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, No.374 Dianmian Road, Wuhua District, Kunming, Yunnan, China
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, China
| | - Hong-Yan Xu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, No.374 Dianmian Road, Wuhua District, Kunming, Yunnan, China
| | - Hui Tian
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dan Zhang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan, China
| | - Chun-Yu He
- Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiao-Lan Li
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, No.374 Dianmian Road, Wuhua District, Kunming, Yunnan, China.
| | - Yu-Ye Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan, China.
| | - Juan He
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, No.374 Dianmian Road, Wuhua District, Kunming, Yunnan, China.
| |
Collapse
|
19
|
Camon C, Garratt M, Correa SM. Exploring the effects of estrogen deficiency and aging on organismal homeostasis during menopause. NATURE AGING 2024; 4:1731-1744. [PMID: 39672893 PMCID: PMC11785355 DOI: 10.1038/s43587-024-00767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Sex hormone signaling declines during aging, from early midlife through menopause, as a consequence of reduced circulating estrogens and decreased receptiveness to these hormones in target tissues. Estrogens preserve energy homeostasis and promote metabolic health via coordinated and simultaneous effects throughout the brain and body. Age-associated loss of estrogen production during menopause has been implicated in a higher risk for metabolic diseases and increased mortality. However, it remains unclear whether age-associated changes in homeostasis are dependent on reduced estrogen signaling during menopause. Although menopausal hormone therapies containing estrogens can alleviate symptoms, concerns about the risks involved have contributed to a broad decline in the use of these approaches. Non-hormonal therapies have emerged that target tissues or pathways with varying levels of selectivity, reducing risk. We summarize here the broad effects of estrogen loss on homeostasis during menopause, current and emerging therapies and opportunities for understanding homeostatic disruptions associated with menopause.
Collapse
Affiliation(s)
- Celine Camon
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Garratt
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Usmani SS, Jung HG, Zhang Q, Kim MW, Choi Y, Caglayan AB, Cai D. Targeting the hypothalamus for modeling age-related DNA methylation and developing OXT-GnRH combinational therapy against Alzheimer's disease-like pathologies in male mouse model. Nat Commun 2024; 15:9419. [PMID: 39482312 PMCID: PMC11528003 DOI: 10.1038/s41467-024-53507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
The hypothalamus plays an important role in aging, but it remains unclear regarding the underlying epigenetics and whether this hypothalamic basis can help address aging-related diseases. Here, by comparing mouse hypothalamus with two other limbic system components, we show that the hypothalamus is characterized by distinctively high-level DNA methylation during young age and by the distinct dynamics of DNA methylation and demethylation when approaching middle age. On the other hand, age-related DNA methylation in these limbic system components commonly and sensitively applies to genes in hypothalamic regulatory pathways, notably oxytocin (OXT) and gonadotropin-releasing hormone (GnRH) pathways. Middle age is associated with transcriptional declines of genes which encode OXT, GnRH and signaling components, which similarly occur in an Alzheimer's disease (AD)-like model. Therapeutically, OXT-GnRH combination is substantially more effective than individual peptides in treating AD-like disorders in male 5×FAD model. In conclusion, the hypothalamus is important for modeling age-related DNA methylation and developing hypothalamic strategies to combat AD.
Collapse
Affiliation(s)
- Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hyun-Gug Jung
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qichao Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Woo Kim
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yuna Choi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ahmet Burak Caglayan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
21
|
Zhu D, Arnold M, Samuelson BA, Wu JZ, Mueller A, Sinclair DA, Kane AE. Sex dimorphism and tissue specificity of gene expression changes in aging mice. Biol Sex Differ 2024; 15:89. [PMID: 39482778 PMCID: PMC11529319 DOI: 10.1186/s13293-024-00666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Aging is a complex process that involves all tissues in an organism and shows sex dimorphism. While transcriptional changes in aging have been well characterized, the majority of studies have focused on a single sex and sex differences in gene expression in aging are poorly understood. In this study, we explore sex dimorphism in gene expression in aging mice across three tissues. METHODS We collected gastrocnemius muscle, liver and white adipose tissue from young (6 months, n = 14) and old (24 months, n = 14) female and male C57BL/6NIA mice and performed RNA-seq. To investigate sex dimorphism in aging, we considered two levels of comparisons: (a) differentially expressed genes between females and males in the old age group and (b) comparisons between females and males across the aging process. We utilized differential expression analysis and gene feature selection to investigate candidate genes. Gene set enrichment analysis was performed to identify candidate molecular pathways. Furthermore, we performed a co-expression network analysis and chose the gene module(s) associated with aging independent of sex or tissue-type. RESULTS We identified both tissue-specific and tissue-independent genes associated with sex dimorphism in aged mice. Unique differentially expressed genes between old males and females across tissues were mainly enriched for pathways related to specific tissue function. We found similar results when exploring sex differences in the aging process, with the exception that in the liver genes enriched for lipid metabolism and digestive system were identified in both females and males. Combining enriched pathways across analyses, we identified amino acid metabolism, digestive system, and lipid metabolism as the core mechanisms of sex dimorphism in aging. Although the vast majority of age-related genes were sex and tissue specific, we identified 127 hub genes contributing to aging independent of sex and tissue that were enriched for the immune system and signal transduction. CONCLUSIONS There are clear sex differences in gene expression in aging across liver, muscle and white adipose. Core pathways, including amino acid metabolism, digestive system and lipid metabolism, contribute to sex differences in aging.
Collapse
Affiliation(s)
- Dantong Zhu
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Matt Arnold
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
| | | | - Judy Z Wu
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Amber Mueller
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
- Cell Press, Cambridge, MA, 02139, USA
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
| | - Alice E Kane
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98115, USA.
| |
Collapse
|
22
|
Ramirez G, Okpara C, Arnett M, Segvich DM, Deosthale P, González PO, Kritikos AE, Melo JB, Sanz N, Pin F, Wallace JM, Plotkin LI. Independent contribution of gonads and sex chromosomes to sex differences in bone mass and strength in the four-core genotypes mouse model. J Bone Miner Res 2024; 39:1659-1672. [PMID: 39255371 PMCID: PMC11523188 DOI: 10.1093/jbmr/zjae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
Vertebrate sexual dimorphism is ascribed to the presence of testes or ovaries, and, hence, to the secretion of gonad-specific hormones. However, mounting evidence indicates that sex differences in tissues and organs also stem from the presence of sex chromosomes (XX or XY). To tease out the contribution of gonads from sex chromosomes to the musculoskeletal system, we used the Four-Core Genotypes (FCG) mouse model, in which the Sry gene, which dictates testis formation, was either deleted from the Y chromosome, resulting in XY mice with ovaries (XY-SryO), or overexpressed in XX mice, resulting in XX mice with testes (XXT), together with gonadal males with XY-SryT (Sry deletion and overexpression of the Sry transgene in chromosome 3) and females with XXO. The FCG mice are generated by crossing XXO with XY-SryT mice, all of C57BL/6 J background. We now show that the musculoskeletal phenotype of 2- to 4-mo-old FCG mice varies based on both gonads and sex chromosomes, depending on the age and the organ/tissue/cell analyzed. The effect of sex chromosomes on body weight, fat and lean/skeletal muscle mass, and bone mass and structure is minor in 2-/3-mo-old mice, soon after sexual maturation. The contribution of sex chromosomes (XX vs XY-Sry in mice with the same gonads and sex hormones) to several of our measurements becomes apparent in adult 4-mo-old mice. The contribution of 1X and 1Y-Sry vs 2X chromosomes varies among different measurements in gonadal males or females, and mice with XY-Sry chromosomes might have higher or lower values that XX mice. Our study shows XX vs XY-Sry chromosome contribution to the musculoskeletal phenotype, which becomes more evident as the animals reach peak bone mass, suggesting that although gonadal sex has a major role, sex chromosomes are also an unrecognized contributor to musculoskeletal mass and bone strength.
Collapse
Affiliation(s)
- Gabriel Ramirez
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Chiebuka Okpara
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Matthew Arnett
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Dyann M Segvich
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Padmini Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Paola Ortiz González
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Alexander E Kritikos
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Julian Balanta Melo
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Dentistry Unit, Universidad del Valle School of Dentistry, Cali, Valle de Cauca 760042, Colombia
| | - Natasha Sanz
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Bone Biology Laboratory. School of Medicine, Rosario National University, Rosario, Santa Fe 2000, Argentina
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, United States
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, United States
| |
Collapse
|
23
|
Sokolowski DJ, Hou H, Yuki KE, Roy A, Chan C, Choi W, Faykoo-Martinez M, Hudson M, Corre C, Uusküla-Reimand L, Goldenberg A, Palmert MR, Wilson MD. Age, sex, and cell type-resolved hypothalamic gene expression across the pubertal transition in mice. Biol Sex Differ 2024; 15:83. [PMID: 39449090 PMCID: PMC11515584 DOI: 10.1186/s13293-024-00661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The hypothalamus plays a central role in regulating puberty. However, our knowledge of the postnatal gene regulatory networks that control the pubertal transition in males and females is incomplete. Here, we investigate the age-, sex- and cell-type-specific gene regulation in the hypothalamus across the pubertal transition. METHODS We used RNA-seq to profile hypothalamic gene expression in male and female mice at five time points spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32, and 37). By combining this data with hypothalamic single nuclei RNA-seq data from pre- and postpubertal mice, we assigned gene expression changes to their most likely cell types of origin. In our colony, pubertal onset occurs earlier in male mice, allowing us to focus on genes whose expression is dynamic across ages and offset between sexes, and to explore the bases of sex effects. RESULTS Our age-by-sex pattern of expression enriched for biological pathways involved hormone production, neuronal activation, and glial maturation. Additionally, we inferred a robust expansion of oligodendrocytes precursor cells into mature oligodendrocytes spanning the prepubertal (PD12) to peri-pubertal (PD27) timepoints. Using spatial transcriptomic data from postpubertal mice, we observed the lateral hypothalamic area and zona incerta were the most oligodendrocyte-rich regions and that these cells expressed genes known to be involved in pubertal regulation. CONCLUSION Together, by incorporating multiple biological timepoints and using sex as a variable, we identified gene and cell-type changes that may participate in orchestrating the pubertal transition and provided a resource for future studies of postnatal hypothalamic gene regulation.
Collapse
Affiliation(s)
- Dustin J Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Huayun Hou
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Kyoko E Yuki
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Anna Roy
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Cadia Chan
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Wendy Choi
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mariela Faykoo-Martinez
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Matt Hudson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christina Corre
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | | | - Anna Goldenberg
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- CIFAR, Toronto, ON, Canada
| | - Mark R Palmert
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Luo W, Yang Z, Zheng J, Cai Z, Li X, Liu J, Guo X, Luo M, Fan X, Cheng M, Tang T, Liu J, Wang Y. Small Molecule Hydrogels Loading Small Molecule Drugs from Chinese Medicine for the Enhanced Treatment of Traumatic Brain Injury. ACS NANO 2024; 18:28894-28909. [PMID: 39383335 DOI: 10.1021/acsnano.4c09097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Self-assembly of hydrogels for mechanical support and drug delivery has been extensively researched in traumatic brain injury (TBI), where treatment options are limited. The chief challenge is that most self-assembled hydrogels rely on high molecular carriers or the incorporation of exogenous inactive substances as mediators. It is difficult for these drug delivery systems to achieve clinical translation due to concerns regarding biological safety. Here we report a small molecule hydrogel (GBR-gel) loading small molecule drugs (glycyrrhizic acid, berberine, and rhein) that originated from popular Chinese medicines without additional drug loading or inactive components under physiological conditions. In the long run, GBR-gel possesses several advantages, including ease of preparation, cost-effectiveness, and high biocompatibility. As a proof-of-concept, GBR-gel allows for prompt administration at the site of brain injury to exert potent pharmacodynamic effects. Further single-cell RNA sequencing and experimental validation indicated that GBR-gel can effectively rescue the suppressed glutamatergic synapse pathway after TBI, thereby attenuating inflammatory responses and neural impairments. Our work provides an alternative strategy for timely intervention of TBI.
Collapse
Affiliation(s)
- Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zexuan Cai
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xuexuan Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
| | - Jingjing Liu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Ming Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xudong Fan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
25
|
Yao S, Jeon Y, Kesner B, Lee JT. Xist RNA binds select autosomal genes and depends on Repeat B to regulate their expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604772. [PMID: 39091753 PMCID: PMC11291044 DOI: 10.1101/2024.07.23.604772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Xist, a pivotal player in X chromosome inactivation (XCI), has long been perceived as a cis-acting long noncoding RNA that binds exclusively to the inactive X chromosome (Xi). However, Xist's ability to diffuse under select circumstances has also been documented, leading us to suspect that Xist RNA may have targets and functions beyond the Xi. Here, using female mouse embryonic stem cells (ES) and mouse embryonic fibroblasts (MEF) as models, we demonstrate that Xist RNA indeed can localize beyond the Xi. However, its binding is limited to ~100 genes in cells undergoing XCI (ES cells) and in post-XCI cells (MEFs). The target genes are diverse in function but are unified by their active chromatin status. Xist binds discretely to promoters of target genes in neighborhoods relatively depleted for Polycomb marks, contrasting with the broad, Polycomb-enriched domains reported for human XIST RNA. We find that Xist binding is associated with down-modulation of autosomal gene expression. However, unlike on the Xi, Xist binding does not lead to full silencing and also does not spread beyond the target gene. Over-expressing Xist in transgenic ES cells similarly leads to autosomal gene suppression, while deleting Xist's Repeat B motif reduces autosomal binding and perturbs autosomal down-regulation. Furthermore, treating female ES cells with the Xist inhibitor, X1, leads to loss of autosomal suppression. Altogether, our findings reveal that Xist targets ~100 genes beyond the Xi, identify Repeat B as a crucial domain for its in-trans function in mice, and indicate that autosomal targeting can be disrupted by a small molecule inhibitor.
Collapse
Affiliation(s)
- Shengze Yao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yesu Jeon
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
26
|
Li Y, Ding Y, Hou Y, Liu L, Liu Z, Yao Z, Shi P, Li J, Chen K, Hu J. Single-cell analysis reveals alternations between the aged and young mice prostates. Biomark Res 2024; 12:117. [PMID: 39385256 PMCID: PMC11462726 DOI: 10.1186/s40364-024-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Aging of the male prostate is an inevitable process in which the prostate undergoes hyperplasia, and this growth may lead to compression of the urethra, resulting in voiding dysfunction and associated symptoms, and an increased risk of prostate cancer. Despite the significance of prostate aging, the molecular mechanisms involved are still not fully understood. METHODS Prostate split by lobes from young (2 months) and aged (24 months) mice were collected for single-cell RNA sequencing (scRNA-seq) analysis. Tissues from both anterior prostate (AP) and ventral/dorsal/lateral prostate (VDLP) were included in the study. Data analysis included unsupervised clustering using the uniform manifold approximation and projection (UMAP) algorithm to identify distinct cell types based on marker gene expression. Differential gene expression analysis was performed to identify age-related changes in gene expression across different cell types. Functional enrichment analysis was conducted to elucidate biological pathways associated with differentially expressed genes. Additionally, cellular interactions and developmental trajectories were analyzed to characterize cellular dynamics during prostate aging. RESULTS The single-cell transcriptome analysis of the mouse prostate during aging revealed heterogeneity across various cell types and their changes during the aging process. We found a significant increase in the proportion of mesenchymal and immune cells in aged mice. Our study unveiled alterations in genes and pathways associated with cellular senescence, oxidative stress, and regeneration in epithelial cells. Furthermore, we observed that basal cells may undergo epithelial-mesenchymal transition (EMT) to become mesenchymal cells, particularly prominent in aged mice. Additionally, immune cells, notably macrophages and T cells, exhibited a heightened inflammatory response in aged mice. CONCLUSION In summary, our study provides a comparative analysis of the single-cell transcriptome of the aged and young mice prostates, elucidating cellular and molecular changes between the aged and young mice prostates.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenghao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengjie Shi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Fritz García JHG, Keller Valsecchi CI, Basilicata MF. Sex as a biological variable in ageing: insights and perspectives on the molecular and cellular hallmarks. Open Biol 2024; 14:240177. [PMID: 39471841 PMCID: PMC11521605 DOI: 10.1098/rsob.240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 11/01/2024] Open
Abstract
Sex-specific differences in lifespan and ageing are observed in various species. In humans, women generally live longer but are frailer and suffer from different age-related diseases compared to men. The hallmarks of ageing, such as genomic instability, telomere attrition or loss of proteostasis, exhibit sex-specific patterns. Sex chromosomes and sex hormones, as well as the epigenetic regulation of the inactive X chromosome, have been shown to affect lifespan and age-related diseases. Here we review the current knowledge on the biological basis of sex-biased ageing. While our review is focused on humans, we also discuss examples of model organisms such as the mouse, fruit fly or the killifish. Understanding these molecular differences is crucial as the elderly population is expected to double worldwide by 2050, making sex-specific approaches in the diagnosis, treatment, therapeutic development and prevention of age-related diseases a pressing need.
Collapse
Affiliation(s)
| | | | - M. Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- University Medical Center (UMC), Mainz, Germany
| |
Collapse
|
28
|
Narukawa M, Saito Y, Kasahara Y, Asakura T, Misaka T. Changes in gene expression due to aging in the hypothalamus of mice. Neuroreport 2024:00001756-990000000-00282. [PMID: 39166393 PMCID: PMC11389885 DOI: 10.1097/wnr.0000000000002092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Aging generally affects food consumption and energy metabolism. Since the feeding center is located in the hypothalamus, it is a major target for understanding the mechanism of age-related changes in eating behavior and metabolism. To obtain insight into the age-related changes in gene expression in the hypothalamus, we investigated genes whose expression changes with age in the hypothalamus. A DNA microanalysis was performed using hypothalamus samples obtained from young (aged 24 weeks) and old male mice (aged 138 weeks). Gene Ontology (GO) analysis was performed using the identified differentially expressed genes. We observed that the expression of 377 probe sets was significantly altered with aging (177 were upregulated and 200 were downregulated in old mice). As a result of the GO analysis of these probe sets, 16 GO terms, including the neuropeptide signaling pathway, were obtained. Intriguingly, although the food intake in old mice was lower than that in young mice, we found that several neuropeptide genes, such as agouti-related neuropeptide (Agrp), neuropeptide Y (Npy), and pro-melanin-concentrating hormone (Pmch), all of which promote food intake, were upregulated in old mice. In conclusion, this suggests that the gene expression pattern in the hypothalamus is regulated to promote food intake.
Collapse
Affiliation(s)
- Masataka Narukawa
- Department of Food and Nutrition, Kyoto Women's University, Kyoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Research Department, Toyo Institute of Food Technology, Kawanishi, Hyogo
| | - Yoichi Kasahara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Liberal Arts, The Open University of Japan, Chiba, Chiba, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
29
|
Liu X, Zhang Z, Hu B, Chen K, Yu Y, Xiang H, Tan A. Single-cell transcriptomes provide insights into expansion of glial cells in Bombyx mori. INSECT SCIENCE 2024; 31:1041-1054. [PMID: 37984500 DOI: 10.1111/1744-7917.13294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
The diversity of cell types in the brain and how these change during different developmental stages, remains largely unknown. The life cycle of insects is short and goes through 4 distinct stages including embryonic, larval, pupal, and adult stages. During postembryonic life, the larval brain transforms into a mature adult version after metamorphosis. The silkworm, Bombyx mori, is a lepidopteran model insect. Here, we characterized the brain cell repertoire of larval and adult B. mori by obtaining 50 708 single-cell transcriptomes. Seventeen and 12 cell clusters from larval and adult brains were assigned based on marker genes, respectively. Identified cell types include Kenyon cells, optic lobe cells, monoaminergic neurons, surface glia, and astrocyte glia. We further assessed the cell type compositions of larval and adult brains. We found that the transition from larva to adult resulted in great expansion of glial cells. The glial cell accounted for 49.8% of adult midbrain cells. Compared to flies and ants, the mushroom body kenyon cell is insufficient in B. mori, which accounts for 5.4% and 3.6% in larval and adult brains, respectively. Analysis of neuropeptide expression showed that the abundance and specificity of expression varied among individual neuropeptides. Intriguingly, we found that ion transport peptide was specifically expressed in glial cells of larval and adult brains. The cell atlas dataset provides an important resource to explore cell diversity, neural circuits and genetic profiles.
Collapse
Affiliation(s)
- Xiaojing Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
30
|
Zocher S. Targeting neuronal epigenomes for brain rejuvenation. EMBO J 2024; 43:3312-3326. [PMID: 39009672 PMCID: PMC11329789 DOI: 10.1038/s44318-024-00148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is associated with a progressive decline of brain function, and the underlying causes and possible interventions to prevent this cognitive decline have been the focus of intense investigation. The maintenance of neuronal function over the lifespan requires proper epigenetic regulation, and accumulating evidence suggests that the deterioration of the neuronal epigenetic landscape contributes to brain dysfunction during aging. Epigenetic aging of neurons may, however, be malleable. Recent reports have shown age-related epigenetic changes in neurons to be reversible and targetable by rejuvenation strategies that can restore brain function during aging. This review discusses the current evidence that identifies neuronal epigenetic aging as a driver of cognitive decline and a promising target of brain rejuvenation strategies, and it highlights potential approaches for the specific manipulation of the aging neuronal epigenome to restore a youthful epigenetic state in the brain.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases, Tatzberg 41, 01307, Dresden, Germany.
| |
Collapse
|
31
|
Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, Dinesh A, Yu K, Chen ELY, Bisschop J, Farnhammer F, Mansur A, Kalucka J, Tirosh I, Regli L, Schaller K, Frei K, Ketela T, Bernstein M, Kongkham P, Carmeliet P, Valiante T, Dirks PB, Suva ML, Zadeh G, Tabar V, Schlapbach R, Jackson HW, De Bock K, Fish JE, Monnier PP, Bader GD, Radovanovic I. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 2024; 632:603-613. [PMID: 38987604 PMCID: PMC11324530 DOI: 10.1038/s41586-024-07493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/30/2024] [Indexed: 07/12/2024]
Abstract
A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
| | - Moheb Ghobrial
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Marc Schwab
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Shigeki Takada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hang Zhong
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Samuel Suntharalingham
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Vetiska
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Ruilin Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Anuroopa Dinesh
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
| | - Kai Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edward L Y Chen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Farnhammer
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ann Mansur
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Regli
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Frei
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Troy Ketela
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Hartland W Jackson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Van Drunen R, Dai Y, Wei H, Fekry B, Noori S, Shivshankar S, Bravo R, Zhao Z, Yoo SH, Justice N, Wu JQ, Tong Q, Eckel-Mahan K. Cell-specific regulation of the circadian clock by BMAL1 in the paraventricular nucleus: Implications for regulation of systemic biological rhythms. Cell Rep 2024; 43:114380. [PMID: 38935503 PMCID: PMC11446153 DOI: 10.1016/j.celrep.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Circadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression. BMAL1 chromatin immunoprecipitation sequencing (ChIP-seq) and single-nucleus RNA sequencing (snRNA-seq) reveal its temporal regulation of target genes, including oxytocin (OXT), and restoring circulating OXT peaks in BMAL1-PVN knockout (KO) mice rescues absent activity rhythms. While glutamatergic neurons undergo day/night changes in expression of genes involved in cell morphogenesis, astrocytes and oligodendrocytes show gene expression changes in cytoskeletal organization and oxidative phosphorylation. Collectively, our findings show diurnal gene regulation in neuronal and non-neuronal PVN cells and that BMAL1 contributes to diurnal OXT secretion, which is important for systemic diurnal rhythms.
Collapse
Affiliation(s)
- Rachel Van Drunen
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baharan Fekry
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sina Noori
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samay Shivshankar
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rafael Bravo
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicholas Justice
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingchun Tong
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Liu Q, Liu Z, Xie W, Li Y, Wang H, Zhang S, Wang W, Hao J, Geng D, Yang J, Wang L. Single-cell sequencing of the substantia nigra reveals microglial activation in a model of MPTP. Front Aging Neurosci 2024; 16:1390310. [PMID: 38952478 PMCID: PMC11215054 DOI: 10.3389/fnagi.2024.1390310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Background N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. Methods Single-nucleus RNA sequencing was performed in the Substantia Nigra (SN) of MPTP mice. UMAP analysis was used for the dimensionality reduction visualization of the SN in the MPTP mice. Known marker genes highly expressed genes in each cluster were used to annotate most clusters. Specific Differentially Expressed Genes (DEGs) and PD risk genes analysis were used to find MPTP-associated cells. GO, KEGG, PPI network, GSEA and CellChat analysis were used to reveal cell type-specific functional alterations and disruption of cell-cell communication networks. Subset reconstruction and pseudotime analysis were used to reveal the activation status of the cells, and to find the transcription factors with trajectory characterized. Results Initially, we observed specific DEGs and PD risk genes enrichment in microglia. Next, We obtained the functional phenotype changes in microglia and found that IGF, AGRN and PTN pathways were reduced in MPTP mice. Finally, we analyzed the activation state of microglia and revealed a pro-inflammatory trajectory characterized by transcription factors Nfe2l2 and Runx1. Conclusion Our work revealed alterations in microglia function, signaling pathways and key genes in the SN of MPTP mice.
Collapse
Affiliation(s)
- Qing Liu
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziyu Liu
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenmeng Xie
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yibo Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongfang Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sanbing Zhang
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Wenyu Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiaxin Hao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dandan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China
| | - Jing Yang
- Zhejiang Provincial Key Laboratory of Aging and Cancer Biology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lei Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
34
|
Krarup J, Araya L, Álvarez F, Bórquez DA, Urrutia PJ. A Brain Anti-Senescence Transcriptional Program Triggered by Hypothalamic-Derived Exosomal microRNAs. Int J Mol Sci 2024; 25:5467. [PMID: 38791505 PMCID: PMC11122052 DOI: 10.3390/ijms25105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In contrast to the hypothesis that aging results from cell-autonomous deterioration processes, the programmed longevity theory proposes that aging arises from a partial inactivation of a "longevity program" aimed at maintaining youthfulness in organisms. Supporting this hypothesis, age-related changes in organisms can be reversed by factors circulating in young blood. Concordantly, the endocrine secretion of exosomal microRNAs (miRNAs) by hypothalamic neural stem cells (htNSCs) regulates the aging rate by enhancing physiological fitness in young animals. However, the specific molecular mechanisms through which hypothalamic-derived miRNAs exert their anti-aging effects remain unexplored. Using experimentally validated miRNA-target gene interactions and single-cell transcriptomic data of brain cells during aging and heterochronic parabiosis, we identify the main pathways controlled by these miRNAs and the cell-type-specific gene networks that are altered due to age-related loss of htNSCs and the subsequent decline in specific miRNA levels in the cerebrospinal fluid (CSF). Our bioinformatics analysis suggests that these miRNAs modulate pathways associated with senescence and cellular stress response, targeting crucial genes such as Cdkn2a, Rps27, and Txnip. The oligodendrocyte lineage appears to be the most responsive to age-dependent loss of exosomal miRNA, leading to significant derepression of several miRNA target genes. Furthermore, heterochronic parabiosis can reverse age-related upregulation of specific miRNA-targeted genes, predominantly in brain endothelial cells, including senescence promoting genes such as Cdkn1a and Btg2. Our findings support the presence of an anti-senescence mechanism triggered by the endocrine secretion of htNSC-derived exosomal miRNAs, which is associated with a youthful transcriptional signature.
Collapse
Affiliation(s)
- Josefa Krarup
- Laboratory of Cell Signaling & Bioinformatics, Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Ejército Libertador 141, Santiago 8370007, Chile; (J.K.); (F.Á.)
| | - Lucas Araya
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile;
| | - Felipe Álvarez
- Laboratory of Cell Signaling & Bioinformatics, Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Ejército Libertador 141, Santiago 8370007, Chile; (J.K.); (F.Á.)
| | - Daniel A. Bórquez
- Laboratory of Cell Signaling & Bioinformatics, Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Ejército Libertador 141, Santiago 8370007, Chile; (J.K.); (F.Á.)
| | - Pamela J. Urrutia
- Laboratory of Resilient Aging, Institute for Nutrition & Food Technology (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830490, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile
| |
Collapse
|
35
|
Song QH, Zhao KX, Huang S, Chen T, He L. Escape from X-chromosome inactivation and sex differences in Alzheimer's disease. Rev Neurosci 2024; 35:341-354. [PMID: 38157427 DOI: 10.1515/revneuro-2023-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Sex differences exist in the onset and progression of Alzheimer's disease. Globally, women have a higher prevalence, while men with Alzheimer's disease experience earlier mortality and more pronounced cognitive decline than women. The cause of sex differences in Alzheimer's disease remains unclear. Accumulating evidence suggests the potential role of X-linked genetic factors in the sex difference of Alzheimer's disease (AD). During embryogenesis, a remarkable process known as X-chromosome inactivation (XCI) occurs in females, leading to one of the X chromosomes undergoing transcriptional inactivation, which balances the effects of two X chromosomes in females. Nevertheless, certain genes exceptionally escape from XCI, which provides a basis for dual expression dosage of specific genes in females. Based on recent research findings, we explore key escape genes and their potential therapeutic use associated with Alzheimer's disease. Also, we discuss their possible role in driving the sex differences in Alzheimer's disease. This will provide new perspectives for precision medicine and gender-specific treatment of AD.
Collapse
Affiliation(s)
- Qing-Hua Song
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Ke-Xuan Zhao
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Shuai Huang
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
36
|
Huang Y, Wang A, Zhou W, Li B, Zhang L, Rudolf AM, Jin Z, Hambly C, Wang G, Speakman JR. Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice. Nat Commun 2024; 15:2382. [PMID: 38493217 PMCID: PMC10944494 DOI: 10.1038/s41467-024-46589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Maternal overnutrition during lactation predisposes offspring to develop metabolic diseases and exacerbates the relevant syndromes in males more than females in later life. The hypothalamus is a heterogenous brain region that regulates energy balance. Here we combined metabolic trait quantification of mother and offspring mice under low and high fat diet (HFD) feeding during lactation, with single nucleus transcriptomic profiling of their offspring hypothalamus at peak lacation to understand the cellular and molecular alterations in response to maternal dietary pertubation. We found significant expansion in neuronal subpopulations including histaminergic (Hdc), arginine vasopressin/retinoic acid receptor-related orphan receptor β (Avp/Rorb) and agouti-related peptide/neuropeptide Y (AgRP/Npy) in male offspring when their mothers were fed HFD, and increased Npy-astrocyte interactions in offspring responding to maternal overnutrition. Our study provides a comprehensive offspring hypothalamus map at the peak lactation and reveals how the cellular subpopulations respond to maternal dietary fat in a sex-specific manner during development.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Broad Institute of MIT and Harvard, Metabolism Program, Cambridge, MA, 02142, USA
| | - Anyongqi Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenjiang Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Linshan Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Agata M Rudolf
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zengguang Jin
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Guanlin Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China.
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK.
- China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
37
|
Kwok AJ, Lu J, Huang J, Ip BY, Mok VCT, Lai HM, Ko H. High-resolution omics of vascular ageing and inflammatory pathways in neurodegeneration. Semin Cell Dev Biol 2024; 155:30-49. [PMID: 37380595 DOI: 10.1016/j.semcdb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
High-resolution omics, particularly single-cell and spatial transcriptomic profiling, are rapidly enhancing our comprehension of the normal molecular diversity of gliovascular cells, as well as their age-related changes that contribute to neurodegeneration. With more omic profiling studies being conducted, it is becoming increasingly essential to synthesise valuable information from the rapidly accumulating findings. In this review, we present an overview of the molecular features of neurovascular and glial cells that have been recently discovered through omic profiling, with a focus on those that have potentially significant functional implications and/or show cross-species differences between human and mouse, and that are linked to vascular deficits and inflammatory pathways in ageing and neurodegenerative disorders. Additionally, we highlight the translational applications of omic profiling, and discuss omic-based strategies to accelerate biomarker discovery and facilitate disease course-modifying therapeutics development for neurodegenerative conditions.
Collapse
Affiliation(s)
- Andrew J Kwok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jianning Lu
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bonaventure Y Ip
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
38
|
Harkany T, Tretiakov E, Varela L, Jarc J, Rebernik P, Newbold S, Keimpema E, Verkhratsky A, Horvath T, Romanov R. Molecularly stratified hypothalamic astrocytes are cellular foci for obesity. RESEARCH SQUARE 2024:rs.3.rs-3748581. [PMID: 38405925 PMCID: PMC10889077 DOI: 10.21203/rs.3.rs-3748581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Astrocytes safeguard the homeostasis of the central nervous system1,2. Despite their prominent morphological plasticity under conditions that challenge the brain's adaptive capacity3-5, the classification of astrocytes, and relating their molecular make-up to spatially devolved neuronal operations that specify behavior or metabolism, remained mostly futile6,7. Although it seems unexpected in the era of single-cell biology, the lack of a major advance in stratifying astrocytes under physiological conditions rests on the incompatibility of 'neurocentric' algorithms that rely on stable developmental endpoints, lifelong transcriptional, neurotransmitter, and neuropeptide signatures for classification6-8 with the dynamic functional states, anatomic allocation, and allostatic plasticity of astrocytes1. Simplistically, therefore, astrocytes are still grouped as 'resting' vs. 'reactive', the latter referring to pathological states marked by various inducible genes3,9,10. Here, we introduced a machine learning-based feature recognition algorithm that benefits from the cumulative power of published single-cell RNA-seq data on astrocytes as a reference map to stepwise eliminate pleiotropic and inducible cellular features. For the healthy hypothalamus, this walk-back approach revealed gene regulatory networks (GRNs) that specified subsets of astrocytes, and could be used as landmarking tools for their anatomical assignment. The core molecular censuses retained by astrocyte subsets were sufficient to stratify them by allostatic competence, chiefly their signaling and metabolic interplay with neurons. Particularly, we found differentially expressed mitochondrial genes in insulin-sensing astrocytes and demonstrated their reciprocal signaling with neurons that work antagonistically within the food intake circuitry. As a proof-of-concept, we showed that disrupting Mfn2 expression in astrocytes reduced their ability to support dynamic circuit reorganization, a time-locked feature of satiety in the hypothalamus, thus leading to obesity in mice. Overall, our results suggest that astrocytes in the healthy brain are fundamentally more heterogeneous than previously thought and topologically mirror the specificity of local neurocircuits.
Collapse
Affiliation(s)
- Tibor Harkany
- Center for Brain Research, Medical University of Vienna
| | | | | | - Jasna Jarc
- Center for Brain Research, Medical University of Vienna
| | | | | | - Erik Keimpema
- Medical University of Vienna, Center for Brain Research
| | | | | | | |
Collapse
|
39
|
Lei Y, Liang X, Sun Y, Yao T, Gong H, Chen Z, Gao Y, Wang H, Wang R, Huang Y, Yang T, Yu M, Liu L, Yi CX, Wu QF, Kong X, Xu X, Liu S, Zhang Z, Liu T. Region-specific transcriptomic responses to obesity and diabetes in macaque hypothalamus. Cell Metab 2024; 36:438-453.e6. [PMID: 38325338 DOI: 10.1016/j.cmet.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/27/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.
Collapse
Affiliation(s)
- Ying Lei
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Xian Liang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yunong Sun
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Ting Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University School of Medicine, Xi'an, Shanxi 710063, China
| | - Hongyu Gong
- School of Life Sciences, Institues of Biomedical Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanqing Gao
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Wang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yunqi Huang
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Tao Yang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Miao Yu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Longqi Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingxing Kong
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Xun Xu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China.
| | - Shiping Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China.
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China; School of Life Sciences, Institues of Biomedical Sciences, Inner Mongolia University, Hohhot 010000, China.
| |
Collapse
|
40
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
41
|
Donovan LJ, Brewer CL, Bond SF, Lopez AP, Hansen LH, Jordan CE, González OC, de Lecea L, Kauer JA, Tawfik VL. Aging and injury drive neuronal senescence in the dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576299. [PMID: 39829815 PMCID: PMC11741248 DOI: 10.1101/2024.01.20.576299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aging negatively impacts central nervous system function; however, the cellular impact of aging in the peripheral nervous system remains poorly understood. Aged individuals are more likely to experience increased pain and slower recovery after trauma. Such injury can damage vulnerable peripheral axons of dorsal root ganglion (DRG) neurons resulting in somatosensory dysfunction. One cellular mechanism common to both aging and injury is cellular senescence, a complex cell state that can contribute to the aged pro-inflammatory environment. We uncovered, for the first time, DRG neuron senescence in the context of aging and pain-inducing peripheral nerve injury in young and aged mice. Aged DRG neurons displayed multiple markers of senescence (SA-β-gal, p21, p16, IL6) when compared to young DRG neurons. Peripheral nerve injury triggered a further accumulation of senescent DRG neurons over time post-injury in young and aged DRG. These senescent neurons were dynamic and heterogeneous in their expression of senescence markers, p16, p21, and senescence-associated secretory phenotype (SASP) expression of IL6, which was influenced by age. An electrophysiological characterization of senescence marker-expressing neurons revealed high-firing and nociceptor-like phenotypes within these populations. In addition, we observed improvement in nociceptive behaviors in young and aged nerve-injured mice after treatment with a senolytic agent that eliminates senescent cells. Finally, we confirmed in human post-mortem DRG samples that neuronal senescence is present and increases with age. Overall, we describe a susceptibility of the peripheral nervous system to neuronal senescence with age or injury that may be a targetable mechanism to treat sensory dysfunction, such as chronic pain, particularly in aged populations.
Collapse
Affiliation(s)
- Lauren J. Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Chelsie L. Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sabrina F. Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aleishai Pena Lopez
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Linus H. Hansen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claire E. Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Oscar C. González
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Vivianne L. Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
42
|
Kundakovic M, Tickerhoof M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci 2024; 47:18-35. [PMID: 37968206 PMCID: PMC10841872 DOI: 10.1016/j.tins.2023.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Sex differences are found across brain regions, behaviors, and brain diseases. Sexual differentiation of the brain is initiated prenatally but it continues throughout life, as a result of the interaction of three major factors: gonadal hormones, sex chromosomes, and the environment. These factors are thought to act, in part, via epigenetic mechanisms which control chromatin and transcriptional states in brain cells. In this review, we discuss evidence that epigenetic mechanisms underlie sex-specific neurobehavioral changes during critical organizational periods, across the estrous cycle, and in response to diverse environments throughout life. We further identify future directions for the field that will provide novel mechanistic insights into brain sex differences, inform brain disease treatments and women's brain health in particular, and apply to people across genders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | - Maria Tickerhoof
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
43
|
Chen Y, Yang S, Yu K, Zhang J, Wu M, Zheng Y, Zhu Y, Dai J, Wang C, Zhu X, Dai Y, Sun Y, Wu T, Wang S. Spatial omics: An innovative frontier in aging research. Ageing Res Rev 2024; 93:102158. [PMID: 38056503 DOI: 10.1016/j.arr.2023.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Disentangling the impact of aging on health and disease has become critical as population aging progresses rapidly. Studying aging at the molecular level is complicated by the diverse aging profiles and dynamics. However, the examination of cellular states within aging tissues in situ is hampered by the lack of high-resolution spatial data. Emerging spatial omics technologies facilitate molecular and spatial analysis of tissues, providing direct access to precise information on various functional regions and serving as a favorable tool for unraveling the heterogeneity of aging. In this review, we summarize the recent advances in spatial omics application in multi-organ aging research, which has enhanced the understanding of aging mechanisms from multiple standpoints. We also discuss the main challenges in spatial omics research to date, the opportunities for further developing the technology, and the potential applications of spatial omics in aging and aging-related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Shuhao Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Kaixu Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yongqiang Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Sun Yat-sen University, Guangzhou, China
| | - Yun Zhu
- Department of Internal Medicine, Southern Illinois University School of Medicine, 801 N. Rutledge, P.O. Box 19628, Springfield, IL 62702, USA
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chunyan Wang
- College of Science & Engineering Jinan University, Guangzhou, China
| | - Xiaoran Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yunhong Sun
- Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
44
|
Yu D, Li M, Linghu G, Hu Y, Hajdarovic KH, Wang A, Singh R, Webb AE. CellBiAge: Improved single-cell age classification using data binarization. Cell Rep 2023; 42:113500. [PMID: 38032797 PMCID: PMC10791072 DOI: 10.1016/j.celrep.2023.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Aging is a major risk factor for many diseases. Accurate methods for predicting age in specific cell types are essential to understand the heterogeneity of aging and to assess rejuvenation strategies. However, classifying organismal age at single-cell resolution using transcriptomics is challenging due to sparsity and noise. Here, we developed CellBiAge, a robust and easy-to-implement machine learning pipeline, to classify the age of single cells in the mouse brain using single-cell transcriptomics. We show that binarization of gene expression values for the top highly variable genes significantly improved test performance across different models, techniques, sexes, and brain regions, with potential age-related genes identified for model prediction. Additionally, we demonstrate CellBiAge's ability to capture exercise-induced rejuvenation in neural stem cells. This study provides a broadly applicable approach for robust classification of organismal age of single cells in the mouse brain, which may aid in understanding the aging process and evaluating rejuvenation methods.
Collapse
Affiliation(s)
- Doudou Yu
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA; Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Manlin Li
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Guanjie Linghu
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Yihuan Hu
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | | | - An Wang
- Department of Applied Mathematics & Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
45
|
Labarta-Bajo L, Deng J, Contreras M, Allen NJ. Protocol for the purification and transcriptomic analysis of mouse astrocytes using GFAT. STAR Protoc 2023; 4:102599. [PMID: 37742178 PMCID: PMC10522990 DOI: 10.1016/j.xpro.2023.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Astrocytes are glial cells of the central nervous system that modulate neuronal function. Here, we present glyoxal-fixed astrocyte nuclei transcriptomics (GFAT), a protocol for the purification and transcriptomic analysis of astrocyte nuclei from the cortex and cerebellum of adult and aged fresh mouse brain. We describe steps for tissue dissection, glyoxal fixation, homogenization, nuclei isolation, antibody staining, fluorescence-activated cell sorting, and RT-qPCR or bulk RNA sequencing. GFAT does not require transgenic lines or viral injection and allows parallel astrocyte and neuron profiling.
Collapse
Affiliation(s)
| | - James Deng
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Minerva Contreras
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicola J Allen
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
Kellogg CM, Pham K, Ko S, Cox JE, Machalinski AH, Stout MB, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Specificity and efficiency of tamoxifen-mediated Cre induction is equivalent regardless of age. iScience 2023; 26:108413. [PMID: 38058312 PMCID: PMC10696116 DOI: 10.1016/j.isci.2023.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Temporally controlling Cre recombination through tamoxifen (Tam) induction has many advantages for biomedical research. Most studies report early post-natal/juvenile (<2 m.o.) Tam induction, but age-related neurodegeneration and aging studies can require Cre induction in older mice (>12 m.o.). While anecdotally reported as problematic, there are no published comparisons of Tam-mediated Cre induction at early and late ages. Here, microglial-specific Cx3cr1creERT2 mice were crossed to a floxed NuTRAP reporter to compare Cre induction at early (3-6 m.o.) and late (20 m.o.) ages. Specificity and efficiency of microglial labeling at 21-22 m.o. were identical in mice induced with Tam at early and late ages. Age-related microglial translatomic changes were also similar regardless of Tam induction age. Each Cre and flox mouse line should be independently validated, however, these findings demonstrate that Tam-mediated Cre induction can be performed even into older mouse ages and should be generalizable to other inducible Cre models.
Collapse
Affiliation(s)
- Collyn M. Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sunghwan Ko
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jillian E.J. Cox
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adeline H. Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Amanda L. Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael J. Beckstead
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Ana J. Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M. Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
47
|
Morselli M, Bennett R, Shaidani NI, Horb M, Peshkin L, Pellegrini M. Age-associated DNA methylation changes in Xenopus frogs. Epigenetics 2023; 18:2201517. [PMID: 37092296 PMCID: PMC10128463 DOI: 10.1080/15592294.2023.2201517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Age-associated changes in DNA methylation have been characterized across various animals, but not yet in amphibians, which are of particular interest because they include widely studied model organisms. In this study, we present clear evidence that the aquatic vertebrate species Xenopus tropicalis displays patterns of age-associated changes in DNA methylation. We have generated whole-genome bisulfite sequencing (WGBS) profiles from skin samples of nine frogs representing young, mature, and old adults and characterized the gene- and chromosome-scale DNA methylation changes with age. Many of the methylation features and changes we observe are consistent with what is known in mammalian species, suggesting that the mechanism of age-related changes is conserved. Moreover, we selected a few thousand age-associated CpG sites to build an assay based on targeted DNA methylation analysis (TBSseq) to expand our findings in future studies involving larger cohorts of individuals. Preliminary results of a pilot TBSeq experiment recapitulate the findings obtained with WGBS setting the basis for the development of an epigenetic clock assay. The results of this study will allow us to leverage the unique resources available for Xenopus to study how DNA methylation relates to other hallmarks of ageing.
Collapse
Affiliation(s)
- Marco Morselli
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Ronan Bennett
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Leonid Peshkin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
- Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
48
|
Li P, Wei J, Zhu Y. CellGO: a novel deep learning-based framework and webserver for cell-type-specific gene function interpretation. Brief Bioinform 2023; 25:bbad417. [PMID: 37995133 PMCID: PMC10790717 DOI: 10.1093/bib/bbad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Interpreting the function of genes and gene sets identified from omics experiments remains a challenge, as current pathway analysis tools often fail to consider the critical biological context, such as tissue or cell-type specificity. To address this limitation, we introduced CellGO. CellGO tackles this challenge by leveraging the visible neural network (VNN) and single-cell gene expressions to mimic cell-type-specific signaling propagation along the Gene Ontology tree within a cell. This design enables a novel scoring system to calculate the cell-type-specific gene-pathway paired active scores, based on which, CellGO is able to identify cell-type-specific active pathways associated with single genes. In addition, by aggregating the activities of single genes, CellGO extends its capability to identify cell-type-specific active pathways for a given gene set. To enhance biological interpretation, CellGO offers additional features, including the identification of significantly active cell types and driver genes and community analysis of pathways. To validate its performance, CellGO was assessed using a gene set comprising mixed cell-type markers, confirming its ability to discern active pathways across distinct cell types. Subsequent benchmarking analyses demonstrated CellGO's superiority in effectively identifying cell types and their corresponding cell-type-specific pathways affected by gene knockouts, using either single genes or sets of genes differentially expressed between knockout and control samples. Moreover, CellGO demonstrated its ability to infer cell-type-specific pathogenesis for disease risk genes. Accessible as a Python package, CellGO also provides a user-friendly web interface, making it a versatile and accessible tool for researchers in the field.
Collapse
Affiliation(s)
- Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Junfeng Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
49
|
Munkhzul C, Yi SS, Kim J, Lee S, Kim H, Moon JS, Lee M. The microRNA-mediated gene regulatory network in the hippocampus and hypothalamus of the aging mouse. PLoS One 2023; 18:e0291943. [PMID: 37943864 PMCID: PMC10635555 DOI: 10.1371/journal.pone.0291943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023] Open
Abstract
Aging leads to time-dependent functional decline of all major organs. In particular, the aging brain is prone to cognitive decline and several neurodegenerative diseases. Various studies have attempted to understand the aging process and underlying molecular mechanisms by monitoring changes in gene expression in the aging mouse brain using high-throughput sequencing techniques. However, the effect of microRNA (miRNA) on the post-transcriptional regulation of gene expression has not yet been comprehensively investigated. In this study, we performed global analysis of mRNA and miRNA expression simultaneously in the hypothalamus and hippocampus of young and aged mice. We identified aging-dependent differentially expressed genes, most of which were specific either to the hypothalamus or hippocampus. However, genes related to immune response-related pathways were enriched in upregulated differentially expressed genes, whereas genes related to metabolism-related pathways were enriched in downregulated differentially expressed genes in both regions of the aging brain. Furthermore, we identified many differentially expressed miRNAs, including three that were upregulated and three that were downregulated in both the hypothalamus and hippocampus. The two downregulated miRNAs, miR-322-3p, miR-542-3p, and the upregulated protein-encoding coding gene C4b form a regulatory network involved in complement and coagulation cascade pathways in the hypothalamus and hippocampus of the aging brain. These results advance our understanding of the miRNA-mediated gene regulatory network and its influence on signaling pathways in the hypothalamus and hippocampus of the aging mouse brain.
Collapse
Affiliation(s)
- Choijamts Munkhzul
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hyuntae Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Korea
| | - Jong-Seok Moon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
50
|
Yang L, Lu P, Qi X, Yang Q, Liu L, Dou T, Guan Q, Yu C. Metformin inhibits inflammatory response and endoplasmic reticulum stress to improve hypothalamic aging in obese mice. iScience 2023; 26:108082. [PMID: 37860765 PMCID: PMC10582490 DOI: 10.1016/j.isci.2023.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The hypothalamus, as a vital brain region for endocrine and metabolism regulation, undergoes functional disruption during obesity.The anti-aging effect of metformin has come into focus. However, whether it has the potential to ameliorate hypothalamic aging and dysfunction in the obese state remains unclear. In this study, obese mice were utilized to investigate the effects of metformin on the hypothalamus of obese mice. According to the results, metformin treatment resulted in improved insulin sensitivity, reduced blood glucose and lipid levels, as well as attenuation of hypothalamic aging, demonstrated by decreased SA-β-gal staining and downregulation of senescence markers. Additionally, metformin decreased the expression of endoplasmic reticulum stress-related proteins in neurons and reduced the inflammatory response triggered by microglia activation. Further mechanistic analysis revealed that metformin inhibited the expression and activation of STING and NLRP3 in microglia. These results reveal a possible mechanism by which metformin ameliorates hypothalamic aging.
Collapse
Affiliation(s)
- Leilei Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Peng Lu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiangyu Qi
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Qian Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Luna Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Tao Dou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Chunxiao Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|