1
|
Mony U, Veeraraghavan VP. Outcomes of tumor-infiltrating lymphocyte therapy in solid tumours - A systematic review and meta analysis. Crit Rev Oncol Hematol 2025; 209:104671. [PMID: 39978425 DOI: 10.1016/j.critrevonc.2025.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocyte (TIL) treatment is an individualized method of treating different types of solid tumors by using the immune system of the body to target and destroy cancer cells. Although its usefulness has been shown in certain diseases, such as ovarian cancer and melanoma, research is still being done to see whether it is also beneficial against a wider variety of solid tumors. AIM To methodically assess the safety, effectiveness, and clinical results of TIL therapy for various solid tumors. METHODOLOGY A thorough search in various databases produced 218 papers on TIL treatment for various solid tumors (2018-2024). Nine of the ten papers that satisfied the requirements for inclusion in the quantitative analysis were also included in the systematic review. Two reviewers separately extracted the data and evaluated it. The Newcastle-Ottawa Scale and the Cochrane Risk of Bias tool were used to evaluate the quality of the studies, and the I2 statistic in the meta-analysis was used to measure heterogeneity. RESULTS Numerous studies that looked at the effectiveness of TIL treatment in different types of cancer showed different results. In NSCLC and melanoma, higher CD8+/CD4+ TIL ratios were associated with improved outcomes; in advanced melanoma, TIL therapy was superior to ipilimumab. Response rates differed, with NSCLC showing up at 23.1 % and melanoma up to 53.3 %. Most studies were of good quality and is confirmed by the Newcastle-Ottawa Scale, while some had problems with follow-up. The results' dependability was confirmed by the ROBINS-I and ROB2 tools, which showed low to moderate bias risk. CONCLUSION According to the study's findings, TIL therapy is effective in treating solid tumors, especially melanoma, but its results vary according to the kind of cancer as well as tumour microenvironments. Therefore more research is needed to determine the best course of action.
Collapse
Affiliation(s)
- Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; School of Allied and Public Health Sciences and Technology, Malla Reddy Vishwavidyapeeth, Suraram, Hyderabad 500055, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
2
|
Zhu Y, Abedini A, Rodriguez GM, McCloskey CW, Abou-Hamad J, Salah OS, Larocque J, Tsoi MF, Boerboom D, Cook D, Vanderhyden B. Loss of LATS1 and LATS2 promotes ovarian tumor formation by enhancing AKT activity and PD-L1 expression. Oncogene 2025:10.1038/s41388-025-03387-z. [PMID: 40221530 DOI: 10.1038/s41388-025-03387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest and most common subtype of ovarian cancer. Unfortunately, most patients develop recurrence and, ultimately, resistance to standard platinum chemotherapy. Large tumor suppressors LATS1 and LATS2, the core Hippo signaling kinases, have been implicated in various cancer types, including ovarian cancer. The mechanism by which LATS1/2 suppresses ovarian cancer progression is currently elusive, but the expression of LATS1/2 is frequently reduced or lost in these cancers. In this study, we demonstrate that the inactivation of LATS1/2 is sufficient to transform normal mouse ovarian epithelium into tumorigenic cells associated with increased cell proliferation, invasion, and stemness and epithelial-mesenchymal transition (EMT) characteristics. The knockout of Lats1/2 in the epithelial cells also leads to higher expression levels of the immune checkpoint molecule PD-L1, suggesting a regulatory role of LATS1/2 in modulating immune responses and immune evasion. In addition to the loss of LATS1/2 activating the downstream transcriptional coactivators YAP and TAZ, PI3K-AKT activity was also increased, likely contributing to enhanced tumor proliferation and survival. The stimulatory effect of Lats1/2 knockout on cell proliferation can be partially reversed by treatment with the AKT inhibitor MK2206. Treatment with verteporfin, a potent inhibitor of YAP/TAZ, decreases ovarian tumor progression and reduces the activated AKT in the tumors. In summary, this study uncovers several biological mechanisms for the initiation of HGSOC and identifies LATS1/2 as potential prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Yalun Zhu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Atefeh Abedini
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Galaxia M Rodriguez
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis W McCloskey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - John Abou-Hamad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Omar Salah Salah
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Janie Larocque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mayra F Tsoi
- Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Braun LM, Giesler S, Andrieux G, Riemer R, Talvard-Balland N, Duquesne S, Rückert T, Unger S, Kreutmair S, Zwick M, Follo M, Hartmann A, Osswald N, Melchinger W, Chapman S, Hutchinson JA, Haferkamp S, Torster L, Kött J, Gebhardt C, Hellwig D, Karantzelis N, Wallrabenstein T, Lowinus T, Yücel M, Brehm N, Rawluk J, Pfeifer D, Bronsert P, Rogg M, Mattern S, Heikenwälder M, Fusco S, Malek NP, Singer S, Schmitt-Graeff A, Ceteci F, Greten FR, Blazar BR, Boerries M, Köhler N, Duyster J, Ihorst G, Lassmann S, Keye P, Minguet S, Schadendorf D, Ugurel S, Rafei-Shamsabadi D, Thimme R, Hasselblatt P, Bengsch B, Schell C, Pearce EL, Meiss F, Becher B, Funke-Lorenz C, Placke JM, Apostolova P, Zeiser R. Adiponectin reduces immune checkpoint inhibitor-induced inflammation without blocking anti-tumor immunity. Cancer Cell 2025; 43:269-291.e19. [PMID: 39933899 DOI: 10.1016/j.ccell.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Immune-related adverse events (irAEs) in cancer patients receiving immune checkpoint inhibitors (ICIs) cause morbidity and necessitate cessation of treatment. Comparing irAE treatments, we find that anti-tumor immunity is preserved in mice after extracorporeal photopheresis (ECP) but reduced with glucocorticosteroids, TNFα blockade, and α4β7-integrin inhibition. Local adiponectin production elicits a tissue-specific effect by reducing pro-inflammatory T cell frequencies in the colon while sparing tumor-specific T cell development. A prospective phase-1b/2 trial (EudraCT-No.2021-002073-26) with 14 patients reveals low ECP-related toxicity. Overall response rate for all irAEs is 92% (95% confidence interval [CI]: 63.97%-99.81%); colitis-specific complete remission rate is 100% (95% CI: 63.06%-100%). Glucocorticosteroid dosages could be reduced for all patients after ECP therapy. The ECP-adiponectin axis reduces intestinal tissue-resident memory T cell activation and CD4+IFN-γ+ T cells in patients with ICI-induced colitis without evidence of loss of anti-tumor immunity. In conclusion, we identify adiponectin as an immunomodulatory molecule that controls ICI-induced irAEs without blocking anti-tumor immunity.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sophie Giesler
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roxane Riemer
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nana Talvard-Balland
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tamina Rückert
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melissa Zwick
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alina Hartmann
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natascha Osswald
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Melchinger
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Chapman
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Leopold Torster
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Kött
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Hellwig
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Nikolaos Karantzelis
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Till Wallrabenstein
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theresa Lowinus
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mehtap Yücel
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Niklas Brehm
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justyna Rawluk
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sven Mattern
- Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; M3 Research Center, Eberhard Karls University Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Stefano Fusco
- Medizinische Klinik I, Uniklinik Tübingen, Tübingen, Germany
| | - Nisar P Malek
- Medizinische Klinik I, Uniklinik Tübingen, Tübingen, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Fatih Ceteci
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Natalie Köhler
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Lassmann
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philip Keye
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSS, Freiburg. Germany. Department of Synthetic Immunology, Faculty of Biology and Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Essen, Germany; National Center for Tumor Diseases (NCT)-West, Campus Essen, & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Essen, Germany
| | - David Rafei-Shamsabadi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Internal Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Internal Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany; Department of Internal Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Erika L Pearce
- Department of Oncology, The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Frank Meiss
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Carolin Funke-Lorenz
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Essen, Germany
| | - Petya Apostolova
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany; Department of Oncology, The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Biomedicine, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Division of Hematology, University Hospital Basel, Basel, Switzerland.
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Hillmann J, Maass N, Bauerschlag DO, Flörkemeier I. Promising new drugs and therapeutic approaches for treatment of ovarian cancer-targeting the hallmarks of cancer. BMC Med 2025; 23:10. [PMID: 39762846 PMCID: PMC11706140 DOI: 10.1186/s12916-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics. New advancements in therapeutic strategies target the pivotal hallmarks of cancer. This review is giving an updated overview of innovative and upcoming therapies for the treatment of ovarian cancer that focuses specific on the hallmarks of cancer. The hallmarks of cancer constitute a broad concept to reenact complexity of malignancies and furthermore identify possible targets for new treatment strategies. For this purpose, we analyzed approvals and current clinical phase III studies (registered at ClinicalTrials.gov (National Library of Medicine, National Institutes of Health; U.S. Department of Health and Human Services, 2024)) for new drugs on the basis of their mechanisms of action and identified new target approaches. A broad spectrum of new promising drugs is currently under investigation in clinical phase III studies targeting mainly the hallmarks "self-sufficiency in growth signals," "genomic instability," and "angiogenesis." The benefit of immune checkpoint inhibitors in ovarian cancer has been demonstrated for the first time. Besides, targeting the tumor microenvironment is of growing interest. Replicative immortality, energy metabolism, tumor promoting inflammation, and the microbiome of ovarian cancer are still barely targeted by drugs. Nevertheless, precision medicine, which focuses on specific disease characteristics, is becoming increasingly important in cancer treatment.
Collapse
Affiliation(s)
- Julia Hillmann
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
- Department of Gynaecology, Jena University Hospital, Jena, Germany.
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
5
|
Lanickova T, Hensler M, Kasikova L, Vosahlikova S, Angelidou A, Pasulka J, Griebler H, Drozenova J, Mojzisova K, Vankerckhoven A, Laco J, Ryska A, Dundr P, Kocian R, Cibula D, Brtnicky T, Skapa P, Jacob F, Kovar M, Praznovec I, McNeish IA, Halaska MJ, Rob L, Coosemans A, Orsulic S, Galluzzi L, Spisek R, Fucikova J. Chemotherapy Drives Tertiary Lymphoid Structures That Correlate with ICI-Responsive TCF1+CD8+ T Cells in Metastatic Ovarian Cancer. Clin Cancer Res 2025; 31:164-180. [PMID: 39163092 PMCID: PMC11701433 DOI: 10.1158/1078-0432.ccr-24-1594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE Patients with high-grade serous ovarian carcinoma (HGSOC) are virtually insensitive to immune checkpoint inhibitors (ICI) employed as standalone therapeutics, at least in part reflecting microenvironmental immunosuppression. Thus, conventional chemotherapeutics and targeted anticancer agents that not only mediate cytotoxic effects but also promote the recruitment of immune effector cells to the HGSOC microenvironment stand out as promising combinatorial partners for ICIs in this oncological indication. EXPERIMENTAL DESIGN We harnessed a variety of transcriptomic, spatial, and functional assays to characterize the differential impact of neoadjuvant paclitaxel-carboplatin on the immunological configuration of paired primary and metastatic HGSOC biopsies as compared to neoadjuvant chemotherapy (NACT)-naïve HGSOC samples from five independent patient cohorts. RESULTS We found NACT-driven endoplasmic reticulum stress and calreticulin exposure in metastatic HGSOC lesions culminates with the establishment of a dense immune infiltrate including follicular T cells (TFH cells), a prerequisite for mature tertiary lymphoid structure (TLS) formation. In this context, TLS maturation was associated with an increased intratumoral density of ICI-sensitive TCF1+PD1+ CD8+ T cells over their ICI-insensitive TIM-3+PD1+ counterparts. Consistent with this notion, chemotherapy coupled with a PD1-targeting ICI provided a significant survival benefit over either therapeutic approach in syngeneic models of HGSOC bearing high (but not low) tumor mutational burden. CONCLUSIONS Altogether, our findings suggest that NACT promotes TLS formation and maturation in HGSOC lesions, de facto preserving an intratumoral ICI-sensitive T-cell phenotype. These observations emphasize the role of rational design, especially relative to the administration schedule, for clinical trials testing chemotherapy plus ICIs in patients with HGSOC. See related commentary by Bravo Melgar and Laoui, p. 10.
Collapse
Affiliation(s)
- Tereza Lanickova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | | | | | | | | | | | - Jana Drozenova
- Department of Pathology, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | | | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ales Ryska
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Roman Kocian
- Department of Gynaecology, Obstetrics and Neonatology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Cibula
- Department of Gynaecology, Obstetrics and Neonatology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Brtnicky
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| | - Petr Skapa
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivan Praznovec
- Department of Gynecology and Obstetrics, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Iain A. McNeish
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Michal J. Halaska
- Department of Gynecology and Obstetrics, Charles University, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Charles University, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, California
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
6
|
Nakabayashi Y, Kiuchi J, Kubota T, Ohashi T, Nishibeppu K, Imamura T, Nanishi K, Shimizu H, Arita T, Yamamoto Y, Konishi H, Morimura R, Komatsu S, Shiozaki A, Ikoma H, Kuriu Y, Fujiwara H, Tsuda H, Otsuji E. A novel semi-quantitative scoring method for CD8+ tumor-infiltrating lymphocytes based on infiltration sites in gastric cancer. Am J Cancer Res 2024; 14:5965-5986. [PMID: 39803654 PMCID: PMC11711524 DOI: 10.62347/jkcu5881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
No established method currently exists for evaluating tumor-infiltrating lymphocytes (TILs) in gastric cancer (GC), and their clinical significance based on infiltration site in GC remains unclear. In this study, we developed a method to evaluate TILs according to their infiltration site as a prognostic marker for GC. We retrospectively analyzed 103 patients with advanced GC who underwent curative resection. TILs located at the invasive margin (TILIM) and the center of tumors (TILCT) were scored semi-quantitatively using immunohistochemical staining of CD8+ T cells. The sum of the TILIM and TILCT scores was defined as the TILs score. Based on this score, patients were classified into low and high TILs groups. Quantitative TILs were also assessed to validate the semi-quantitative scoring method. Furthermore, we confirmed a tumor suppressive effect due to CD8+ T cells co-cultured in GC cell lines in vitro. In the univariate analysis, patients with low TILIM were significantly more likely to be female, younger, and have undifferentiated histological types and deeper tumor invasion compared to those with high TILIM. Similarly, patients with low TILCT had significantly more positive lymph node metastases than those with high TILCT. In the multivariate analysis, deeper tumor invasion and positive lymph node metastasis were identified as independent risk factors for patients with low TILIM and low TILCT, respectively. According to our semi-quantitative TILs scoring method, the low TILs group had significantly poorer prognoses compared to the high TILs group. This group had significantly larger tumor diameters, deeper tumor invasion, and more positive lymph node metastases. Additionally, deeper tumor invasion was an independent risk factor for the low TILs group. Quantitative TILs analysis revealed that the low TILs group had significantly lower TIL levels compared to the high TILs group. In vitro, CD8+ T cells induced apoptosis in GC cells in a concentration-dependent manner. Furthermore, these cells significantly suppressed the proliferative, migratory, and invasive capacities of GC cells. Our simple and versatile semi-quantitative scoring method for CD8+ TILs indicates that CD8+ TILs are sensitive prognostic markers. The low TILs group accurately reflects the low quantitative TIL levels and is associated with poor oncological prognosis.
Collapse
Affiliation(s)
- Yudai Nakabayashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Kenji Nanishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yoshiaki Kuriu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical CollegeTokorozawa, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
7
|
Berry LK, Pullikuth AK, Stearns KL, Wang Y, Wagner CJ, Chou JW, Darby JP, Kelly MG, Mall R, Leung M, Chifman J, Miller LD. A patient stratification signature mirrors the immunogenic potential of high grade serous ovarian cancers. J Transl Med 2024; 22:1048. [PMID: 39568014 PMCID: PMC11577735 DOI: 10.1186/s12967-024-05846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND While high-grade serous ovarian cancer (HGSC) has proven largely resistant to immunotherapy, sporadic incidents of partial and complete response have been observed in clinical trials and case reports. These observations suggest that a molecular basis for effective immunity may exist within a subpopulation of HGSC. Herein, we developed an algorithm, CONSTRU (Computing Prognostic Marker Dependencies by Successive Testing of Gene-Stratified Subgroups), to facilitate the discovery and characterization of molecular backgrounds of HGSC that confer resistance or susceptibility to protective anti-tumor immunity. METHODS We used CONSTRU to identify genes from tumor expression profiles that influence the prognostic power of an established immune cytolytic activity signature (CYTscore). From the identified genes, we developed a stratification signature (STRATsig) that partitioned patient populations into tertiles that varied markedly by CYTscore prognostic power. The tertile groups were then analyzed for distinguishing biological, clinical and immunological properties using integrative bioinformatics approaches. RESULTS Patient survival and molecular measures of immune suppression, evasion and dysfunction varied significantly across STRATsig tertiles in validation cohorts. Tumors comprising STRATsig tertile 1 (S-T1) showed no immune-survival benefit and displayed a hyper-immune suppressed state marked by activation of TGF-β, Wnt/β-catenin and adenosine-mediated immunosuppressive pathways, with concurrent T cell dysfunction, reduced potential for antigen presentation, and enrichment of cancer-associated fibroblasts. By contrast, S-T3 tumors exhibited diminished immunosuppressive signaling, heightened antigen presentation machinery, lowered T cell dysfunction, and a significant CYTscore-survival benefit that correlated with mutational burden in a manner consistent with anti-tumor immunoediting. These tumors also showed elevated activity of DNA damage/repair, cell cycle/proliferation and oxidative phosphorylation, and displayed greater proportions of Th1 CD4 + T cells. In these patients, but not those of S-T1 or S-T2, validated predictors of immunotherapy response were prognostic of longer patient survival. Further analyses showed that STRATsig tertile properties were not explained by known HGSC molecular or clinical subtypes or singular immune mechanisms. CONCLUSIONS STRATsig is a composite of parallel immunoregulatory pathways that mirrors tumor immunogenic potential. Approximately one-third of HGSC cases classify as S-T3 and display a hypo-immunosuppressed and antigenic molecular composition that favors immunologic tumor control. These patients may show heightened responsiveness to current immunotherapies.
Collapse
Affiliation(s)
- Laurel K Berry
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ashok K Pullikuth
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristen L Stearns
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Calvin J Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jeff W Chou
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Janelle P Darby
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Michael G Kelly
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Ming Leung
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Julia Chifman
- Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
8
|
Kefas J, Flynn M. Unlocking the potential of immunotherapy in platinum-resistant ovarian cancer: rationale, challenges, and novel strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:39. [PMID: 39534871 PMCID: PMC11555186 DOI: 10.20517/cdr.2024.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Ovarian cancer is a significant global health challenge, with cytoreductive surgery and platinum-based chemotherapy serving as established primary treatments. Unfortunately, most patients relapse and ultimately become platinum-resistant, at which point there are limited effective treatment options. Given the success of immunotherapy in inducing durable treatment responses in several other cancers, its potential in platinum-resistant ovarian cancer (PROC) is currently being investigated. However, in unselected advanced ovarian cancer populations, researchers have reported low response rates to immune checkpoint inhibition, and thus far, no validated biomarkers are predictive of response. Understanding the intricate interplay between platinum resistance, immune recognition, and the tumour microenvironment (TME) is crucial. In this review, we examine the research challenges encountered thus far, the biological rationale for immunotherapy, the underlying mechanisms of immune resistance, and new strategies to overcome resistance.
Collapse
Affiliation(s)
| | - Michael Flynn
- Medical Oncology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK
| |
Collapse
|
9
|
Spagnol G, Ghisoni E, Morotti M, De Tommasi O, Marchetti M, Bigardi S, Tuninetti V, Tasca G, Noventa M, Saccardi C, Tozzi R, Dangaj Laniti D. The Impact of Neoadjuvant Chemotherapy on Ovarian Cancer Tumor Microenvironment: A Systematic Review of the Literature. Int J Mol Sci 2024; 25:7070. [PMID: 39000178 PMCID: PMC11241241 DOI: 10.3390/ijms25137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Immunotherapy, particularly the use of immune checkpoint inhibitors (ICIs), has shown limited efficacy in treating ovarian cancer (OC), possibly due to diverse T cell infiltration patterns in the tumor microenvironment. This review explores how neoadjuvant chemotherapy (NACT) impacts the immune landscape of OC, focusing on tumor-infiltrating lymphocytes (TILs), PD-1/PD-L1 expression, and their clinical implications. A comprehensive literature search across four databases yielded nine relevant studies. These studies evaluated stromal (sTILs) and intra-epithelial (ieTILs) TILs before and after NACT. sTIL responses varied, impacting prognostic outcomes, and ieTILs increased in some patients without clear survival associations. PD-L1 expression after NACT correlated with improved overall survival (OS), and increases in granzyme B+ and PD-1 correlated with longer progression-free survival (PFS). Remarkably, reduced FoxP3+ TILs post-NACT correlated with better prognosis. NACT often increases sTIL/ieTIL and CD8+ subpopulations, but their correlation with improved PFS and OS varies. Upregulation of co-inhibitory molecules, notably PD-L1, suggests an immunosuppressive response to chemotherapy. Ongoing trials exploring neoadjuvant ICIs and chemotherapy offer promise for advancing OC treatment. Standardized measurements assessing TIL density, location, and heterogeneity are crucial for addressing genetic complexity and immunological heterogeneity in OC.
Collapse
Affiliation(s)
- Giulia Spagnol
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padua, 35122 Padua, Italy
| | - Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne (UNIL), 1015 Lausanne, Switzerland
- Lausanne Branch, Ludwig Institute for Cancer Research, University of Lausanne (UNIL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1005 Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne (UNIL), 1015 Lausanne, Switzerland
- Lausanne Branch, Ludwig Institute for Cancer Research, University of Lausanne (UNIL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1005 Lausanne, Switzerland
| | - Orazio De Tommasi
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padua, 35122 Padua, Italy
| | - Matteo Marchetti
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padua, 35122 Padua, Italy
| | - Sofia Bigardi
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padua, 35122 Padua, Italy
| | - Valentina Tuninetti
- Department of Oncology, Ordine Mauriziano Hospital, University of Turin, 10124 Turin, Italy
| | - Giulia Tasca
- Istituto Oncologico Veneto IOV-IRCCS, 35128 Padova, Italy
| | - Marco Noventa
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padua, 35122 Padua, Italy
| | - Carlo Saccardi
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padua, 35122 Padua, Italy
| | - Roberto Tozzi
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padua, 35122 Padua, Italy
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne (UNIL), 1015 Lausanne, Switzerland
- Lausanne Branch, Ludwig Institute for Cancer Research, University of Lausanne (UNIL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1005 Lausanne, Switzerland
| |
Collapse
|
10
|
Stout A, Facey N, Bhatnagar A, Rice K, Berditchevski F, Kearns D, Metcalf A, Elghobashy A, Shaaban AM. Profiling of Tumour-Infiltrating Lymphocytes and Tumour-Associated Macrophages in Ovarian Epithelial Cancer-Relation to Tumour Characteristics and Impact on Prognosis. Int J Mol Sci 2024; 25:4524. [PMID: 38674108 PMCID: PMC11049869 DOI: 10.3390/ijms25084524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Early evidence suggests a strong impact of tumour-infiltrating lymphocytes (TILs) on both the prognosis and clinical behaviour of ovarian cancer. Proven associations, however, have not yet translated to successful immunotherapies and further work in the field is urgently needed. We aimed to analyse the tumour microenvironment of a well-characterised cohort of ovarian cancer samples. Tumour markers were selected owing to their comparative underrepresentation in the current literature. Paraffin-embedded, formalin-fixed tumour tissue blocks of 138 patients representative of the population and including early stage disease were identified, stained for CD3, CD20, CD68 and CD163 and analysed for both the stromal and intertumoral components. Data were statistically analysed in relation to clinical details, histological subtype, borderline vs. malignant status, survival and management received. Mean stromal CD3, total CD3 count, mean stromal CD20 and total CD20 count all correlated negatively with survival. Malignant ovarian tumours consistently demonstrated significantly higher infiltration of all analysed immune cells than borderline tumours. Assessment of the stromal compartment produced a considerably higher proportion of significant results when compared to the intra-tumoural infiltrates. Customary assessment of solely intra-tumoural cells in advanced stage disease patients undergoing primary debulking surgery should be challenged, with recommendations for future scoring systems provided.
Collapse
Affiliation(s)
- Annabel Stout
- Department of Gynaecological Oncology, Birmingham Women’s Hospital, Edgbaston, Birmingham B15 2TG, UK;
| | - Natalya Facey
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2GW, UK; (N.F.); (D.K.)
| | - Anjali Bhatnagar
- Department of Cellular Pathology, The Royal Wolverhampton NHS Trust, New Cross Hospital, Wolverhampton WV10 0QP, UK; (A.B.); (K.R.)
| | - Kirstie Rice
- Department of Cellular Pathology, The Royal Wolverhampton NHS Trust, New Cross Hospital, Wolverhampton WV10 0QP, UK; (A.B.); (K.R.)
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Daniel Kearns
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2GW, UK; (N.F.); (D.K.)
| | - Amy Metcalf
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UK;
| | - Alaa Elghobashy
- Department of Gynaecological Oncology, The Royal Wolverhampton NHS Trust, New Cross Hospital, Wolverhampton WV10 0QP, UK;
| | - Abeer M. Shaaban
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2GW, UK; (N.F.); (D.K.)
| |
Collapse
|
11
|
Kisovar A, Becker CM, Granne I, Southcombe JH. The role of CD8+ T cells in endometriosis: a systematic review. Front Immunol 2023; 14:1225639. [PMID: 37497226 PMCID: PMC10366819 DOI: 10.3389/fimmu.2023.1225639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Background Endometriosis is a chronic disease affecting 6-10% of women of reproductive age. It is an important cause of infertility and chronic pelvic pain with poorly understood aetiology. CD8+ T (CD8 T) cells were shown to be linked to infertility and chronic pain and play a significant role in lesion clearance in other pathologies, yet their function in endometriosis is unknown. We systematically evaluated the literature on the CD8 T in peripheral blood and endometriosis-associated tissues to determine the current understanding of their pathophysiological and clinical relevance in the disease and associated conditions (e.g. infertility and pelvic pain). Methods Four databases were searched (MEDLINE, EMBASE, Web of Science, CINAHL), from database inception until September 2022, for papers written in the English language with database-specific relevant terms/free-text terms from two categories: CD8 T cells and endometriosis. We included peer-reviewed papers investigating CD8 T cells in peripheral blood and endometriosis-associated tissues of patients with surgically confirmed endometriosis between menarche and menopause, and animal models with oestrous cycles. Studies enrolling participants with other gynaecological pathologies (except uterine fibroids and tubal factor infertility used as controls), cancer, immune diseases, or taking immune or hormonal therapy were excluded. Results 28 published case-control studies and gene set analyses investigating CD8 T cells in endometriosis were included. Data consistently indicate that CD8 T cells are enriched in endometriotic lesions in comparison to eutopic endometrium, with no differences in peripheral blood CD8 T populations between patients and healthy controls. Evidence on CD8 T cells in peritoneal fluid and eutopic endometrium is conflicting. CD8 T cell cytotoxicity was increased in the menstrual effluent of patients, and genomic analyses have shown a clear trend of enriched CD8 T effector memory cells in the eutopic endometrium of patients. Conclusion Literature on CD8 T cells in endometriosis-associated tissues is inconsistent. Increased CD8 T levels are found in endometriotic lesions, however, their activation potential is understudied in all relevant tissues. Future research should focus on identifying clinically relevant phenotypes to support the development of non-invasive diagnostic and treatment strategies. Systematic Review Registration PROSPERO identifier CRD42021233304.
Collapse
Affiliation(s)
| | | | | | - Jennifer H. Southcombe
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
13
|
Rajtak A, Ostrowska-Leśko M, Żak K, Tarkowski R, Kotarski J, Okła K. Integration of local and systemic immunity in ovarian cancer: Implications for immunotherapy. Front Immunol 2022; 13:1018256. [PMID: 36439144 PMCID: PMC9684707 DOI: 10.3389/fimmu.2022.1018256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Cancer is a disease that induces many local and systemic changes in immunity. The difficult nature of ovarian cancer stems from the lack of characteristic symptoms that contributes to a delayed diagnosis and treatment. Despite the enormous progress in immunotherapy, its efficacy remains limited. The heterogeneity of tumors, lack of diagnostic biomarkers, and complex immune landscape are the main challenges in the treatment of ovarian cancer. Integrative approaches that combine the tumor microenvironment - local immunity - together with periphery - systemic immunity - are urgently needed to improve the understanding of the disease and the efficacy of treatment. In fact, multiparametric analyses are poised to improve our understanding of ovarian tumor immunology. We outline an integrative approach including local and systemic immunity in ovarian cancer. Understanding the nature of both localized and systemic immune responses will be crucial to boosting the efficacy of immunotherapies in ovarian cancer patients.
Collapse
Affiliation(s)
- Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Marta Ostrowska-Leśko
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Chair and Department of Toxicology, Medical University of Lublin, Lublin, Poland
| | - Klaudia Żak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okła
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Department of Surgery, University of Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Immune Tumor Microenvironment in Ovarian Cancer Ascites. Int J Mol Sci 2022; 23:ijms231810692. [PMID: 36142615 PMCID: PMC9504085 DOI: 10.3390/ijms231810692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OC) has a specific type of metastasis, via transcoelomic, and most of the patients are diagnosed at advanced stages with multiple tumors spread within the peritoneal cavity. The role of Malignant Ascites (MA) is to serve as a transporter of tumor cells from the primary location to the peritoneal wall or to the surface of the peritoneal organs. MA comprise cellular components with tumor and non-tumor cells and acellular components, creating a unique microenvironment capable of modifying the tumor behavior. These microenvironment factors influence tumor cell proliferation, progression, chemoresistance, and immune evasion, suggesting that MA play an active role in OC progression. Tumor cells induce a complex immune suppression that neutralizes antitumor immunity, leading to disease progression and treatment failure, provoking a tumor-promoting environment. In this review, we will focus on the High-Grade Serous Carcinoma (HGSC) microenvironment with special attention to the tumor microenvironment immunology.
Collapse
|
15
|
Fanale D, Dimino A, Pedone E, Brando C, Corsini LR, Filorizzo C, Fiorino A, Lisanti MC, Magrin L, Randazzo U, Bazan Russo TD, Russo A, Bazan V. Prognostic and Predictive Role of Tumor-Infiltrating Lymphocytes (TILs) in Ovarian Cancer. Cancers (Basel) 2022; 14:4344. [PMID: 36139508 PMCID: PMC9497073 DOI: 10.3390/cancers14184344] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decade, tumor-infiltrating lymphocytes (TILs) have been recognized as clinically relevant prognostic markers for improved survival, providing the immunological basis for the development of new therapeutic strategies and showing a significant prognostic and predictive role in several malignancies, including ovarian cancer (OC). In fact, many OCs show TILs whose typology and degree of infiltration have been shown to be strongly correlated with prognosis and survival. The OC histological subtype with the higher presence of TILs is the high-grade serous carcinoma (HGSC) followed by the endometrioid subtype, whereas mucinous and clear cell OCs seem to contain a lower percentage of TILs. The abundant presence of TILs in OC suggests an immunogenic potential for this tumor. Despite the high immunogenic potential, OC has been described as a highly immunosuppressive tumor with a high expression of PD1 by TILs. Although further studies are needed to better define their role in prognostic stratification and the therapeutic implication, intraepithelial TILs represent a relevant prognostic factor to take into account in OC. In this review, we will discuss the promising role of TILs as markers which are able to reflect the anticancer immune response, describing their potential capability to predict prognosis and therapy response in OC.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandra Dimino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Clarissa Filorizzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Maria Chiara Lisanti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
16
|
James NE, Woodman M, De La Cruz P, Eurich K, Ozsoy MA, Schorl C, Hanley LC, Ribeiro JR. Adaptive transcriptomic and immune infiltrate responses in the tumor immune microenvironment following neoadjuvant chemotherapy in high grade serous ovarian cancer reveal novel prognostic associations and activation of pro-tumorigenic pathways. Front Immunol 2022; 13:965331. [PMID: 36131935 PMCID: PMC9483165 DOI: 10.3389/fimmu.2022.965331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The high rate of ovarian cancer recurrence and chemoresistance necessitates further research into how chemotherapy affects the tumor immune microenvironment (TIME). While studies have shown that immune infiltrate increases following neoadjuvant (NACT) chemotherapy, there lacks a comprehensive understanding of chemotherapy-induced effects on immunotranscriptomics and cancer-related pathways and their relationship with immune infiltrate and patient responses. In this study, we performed NanoString nCounter® PanCancer IO360 analysis of 31 high grade serous ovarian cancer (HGSOC) patients with matched pre-treatment biopsy and post-NACT tumor. We observed increases in pro-tumorigenic and immunoregulatory pathways and immune infiltrate following NACT, with striking increases in a cohort of genes centered on the transcription factors ATF3 and EGR1. Using quantitative PCR, we analyzed several of the top upregulated genes in HGSOC cell lines, noting that two of them, ATF3 and AREG, were consistently upregulated with chemotherapy exposure and significantly increased in platinum resistant cells compared to their sensitive counterparts. Furthermore, we observed that pre-NACT immune infiltrate and pathway scores were not strikingly related to platinum free interval (PFI), but post-NACT immune infiltrate, pathway scores, and gene expression were. Finally, we found that higher levels of a cohort of proliferative and DNA damage-related genes was related to shorter PFI. This study underscores the complex alterations in the ovarian TIME following chemotherapy exposure and begins to untangle how immunologic factors are involved in mediating chemotherapy response, which will allow for the future development of novel immunologic therapies to combat chemoresistance.
Collapse
Affiliation(s)
- Nicole E. James
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
- *Correspondence: Nicole E. James,
| | - Morgan Woodman
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Payton De La Cruz
- Pathobiology Graduate Program, Brown University, Providence, RI, United States
| | - Katrin Eurich
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Melih Arda Ozsoy
- Department of Biochemistry, Brown University, Providence, RI, United States
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Linda C. Hanley
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Jennifer R. Ribeiro
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
17
|
Anticancer Effect of Puerarin on Ovarian Cancer Progression Contributes to the Tumor Suppressor Gene Expression and Gut Microbiota Modulation. J Immunol Res 2022; 2022:4472509. [PMID: 35935578 PMCID: PMC9352477 DOI: 10.1155/2022/4472509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OC) causes more deaths than any other cancer of the female reproductive system due to its late presentation and malignant nature. Although significant progress has been made in the diagnosis and treatment of OC over the last decade, chemotherapeutic drug resistance and cancer recurrence remain serious challenges in OC management. In the field of cancer therapy, traditional Chinese herbal medicines and their active compounds have been widely reported to have favorable therapeutic effects on cancer. Recent studies have also revealed the protective effect of puerarin in cancer, but the exact role and underlying mechanism of puerarin in OC remain unclear. Here, we established in vivo and in vitro OC models to evaluate the anticancer effect of puerarin. It was found that puerarin significantly inhibited OC cell viability and proliferation and induced cell apoptosis. In OC model mice, puerarin treatment suppressed tumor formation and modulated the gut microbiome. In addition, the expression of tumor suppressor genes was activated by puerarin in vitro and in vivo. These findings add to the existing knowledge on the usefulness of herbal active ingredients for the prevention and treatment of OC and provide a new perspective regarding the therapeutic potential of puerarin in cancer.
Collapse
|
18
|
The worsening impact of programmed cell death ligand 1 in ovarian clear cell carcinomas. Arch Gynecol Obstet 2022; 306:2133-2142. [PMID: 35507079 DOI: 10.1007/s00404-022-06582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To investigate the clinical significance of programmed cell death ligand 1 (PD-L1) expression in ovarian clear cell carcinoma (CCC). MATERIALS AND METHODS Patients with CCC who underwent primary surgery at our hospital between 1984 and 2014 were enrolled in this study. PD-L1 and mismatch repair (MMR) protein expression in tumor cells, tumor-infiltrating lymphocytes (TILs), including cluster of differentiation (CD) 8, CD4, forkhead box P3 (FOXP3), programmed cell death 1 (PD-1), and BAF250a, were evaluated using immunohistochemistry. The association between PD-L1 expression, clinicopathological features, prognosis, and expression of several proteins was investigated. RESULTS Of the 125 patients with CCC, 17 had negative PD-L1 and 108 had positive PD-L1. Patients with positive PD-L1 expression showed a lower response to chemotherapy (p = 0.01). In addition, patients with positive PD-L1 showed worse progression-free survival (PFS, p = 0.01) and overall survival (OS, p = 0.01) than that in patients with negative PD-L1 expression. Multivariate analyses for PFS and OS showed that PD-L1 expression was an independent prognostic factor for PFS (hazard ratio [HR] 7.81, p < 0.01) and OS (HR 12.90, p < 0.01). PD-L1 expression was not associated with the expression of several TILs or proteins. CONCLUSION The expression of PD-L1 was related to a lower response to chemotherapy and worse prognosis in CCC. These results may be useful for the development of new treatments.
Collapse
|
19
|
Fucikova J, Coosemans A, Orsulic S, Cibula D, Vergote I, Galluzzi L, Spisek R. Immunological configuration of ovarian carcinoma: features and impact on disease outcome. J Immunother Cancer 2021; 9:jitc-2021-002873. [PMID: 34645669 PMCID: PMC8515436 DOI: 10.1136/jitc-2021-002873] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is a relatively rare malignancy but is the fifth-leading cause of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant disease to the peritoneum. At odds with other neoplasms, EOC is virtually insensitive to immune checkpoint inhibitors, correlating with a tumor microenvironment that exhibits poor infiltration by immune cells and active immunosuppression. Here, we comparatively summarize the humoral and cellular features of primary and metastatic EOC, comparatively analyze their impact on disease outcome, and propose measures to alter them in support of treatment sensitivity and superior patient survival.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sandra Orsulic
- UCLA David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
20
|
Pisano S, Lenna S, Healey GD, Izardi F, Meeks L, Jimenez YS, Velazquez OS, Gonzalez D, Conlan RS, Corradetti B. Assessment of the immune landscapes of advanced ovarian cancer in an optimized in vivo model. Clin Transl Med 2021; 11:e551. [PMID: 34709744 PMCID: PMC8506632 DOI: 10.1002/ctm2.551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is typically diagnosed late, associated with high rates of metastasis and the onset of ascites during late stage disease. Understanding the tumor microenvironment and how it impacts the efficacy of current treatments, including immunotherapies, needs effective in vivo models that are fully characterized. In particular, understanding the role of immune cells within the tumor and ascitic fluid could provide important insights into why OC fails to respond to immunotherapies. In this work, we comprehensively described the immune cell infiltrates in tumor nodules and the ascitic fluid within an optimized preclinical model of advanced ovarian cancer. METHODS Green Fluorescent Protein (GFP)-ID8 OC cells were injected intraperitoneally into C57BL/6 mice and the development of advanced stage OC monitored. Nine weeks after tumor injection, mice were sacrificed and tumor nodules analyzed to identify specific immune infiltrates by immunohistochemistry. Ascites, developed in tumor bearing mice over a 10-week period, was characterized by mass cytometry (CyTOF) to qualitatively and quantitatively assess the distribution of the immune cell subsets, and their relationship to ascites from ovarian cancer patients. RESULTS Tumor nodules in the peritoneal cavity proved to be enriched in T cells, antigen presenting cells and macrophages, demonstrating an active immune environment and cell-mediated immunity. Assessment of the immune landscape in the ascites showed the predominance of CD8+ , CD4+ , B- , and memory T cells, among others, and the coexistance of different immune cell types within the same tumor microenvironment. CONCLUSIONS We performed, for the first time, a multiparametric analysis of the ascitic fluid and specifically identify immune cell populations in the peritoneal cavity of mice with advanced OC. Data obtained highlights the impact of CytOF as a diagnostic tool for this malignancy, with the opportunity to concomitantly identify novel targets, and define personalized therapeutic options.
Collapse
Affiliation(s)
- Simone Pisano
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Stefania Lenna
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | | | - Lucille Meeks
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | - Yajaira S. Jimenez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| | - Oscar S Velazquez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | - Robert Steven Conlan
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Bruna Corradetti
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| |
Collapse
|
21
|
Wang L, Sun X, Jin C, Fan Y, Xue F. Identification of Tumor Microenvironment-Related Prognostic Biomarkers for Ovarian Serous Cancer 3-Year Mortality Using Targeted Maximum Likelihood Estimation: A TCGA Data Mining Study. Front Genet 2021; 12:625145. [PMID: 34149794 PMCID: PMC8211425 DOI: 10.3389/fgene.2021.625145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/11/2021] [Indexed: 02/01/2023] Open
Abstract
Ovarian serous cancer (OSC) is one of the leading causes of death across the world. The role of the tumor microenvironment (TME) in OSC has received increasing attention. Targeted maximum likelihood estimation (TMLE) is developed under a counterfactual framework to produce effect estimation for both the population level and individual level. In this study, we aim to identify TME-related genes and using the TMLE method to estimate their effects on the 3-year mortality of OSC. In total, 285 OSC patients from the TCGA database constituted the studying population. ESTIMATE algorithm was implemented to evaluate immune and stromal components in TME. Differential analysis between high-score and low-score groups regarding ImmuneScore and StromalScore was performed to select shared differential expressed genes (DEGs). Univariate logistic regression analysis was followed to evaluate associations between DEGs and clinical pathologic factors with 3-year mortality. TMLE analysis was conducted to estimate the average effect (AE), individual effect (IE), and marginal odds ratio (MOR). The validation was performed using three datasets from Gene Expression Omnibus (GEO) database. Additionally, 355 DEGs were selected after differential analysis, and 12 genes from DEGs were significant after univariate logistic regression. Four genes remained significant after TMLE analysis. In specific, ARID3C and FREM2 were negatively correlated with OSC 3-year mortality. CROCC2 and PTF1A were positively correlated with OSC 3-year mortality. Combining of ESTIMATE algorithm and TMLE algorithm, we identified four TME-related genes in OSC. AEs were estimated to provide averaged effects based on the population level, while IEs were estimated to provide individualized effects and may be helpful for precision medicine.
Collapse
Affiliation(s)
- Lu Wang
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoru Sun
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuandi Jin
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fan
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | - Fuzhong Xue
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
22
|
Immune-Checkpoint Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13071663. [PMID: 33916221 PMCID: PMC8037571 DOI: 10.3390/cancers13071663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Platinum-resistant ovarian cancer (OC) has limited treatment options and is associated with a poor prognosis. There appears to be an overlap between molecular mechanisms responsible for platinum resistance and immunogenicity in OC. Immunotherapy with single agent checkpoint inhibitors has been evaluated in a few clinical trials with disappointing results. This has prompted exploration of immunotherapy combination strategies with chemotherapy, anti-angiogenics, poly (ADP-ribose) polymerase (PARP) inhibitors and other targeted agents. The role of immunotherapy in the treatment of platinum-resistant OC remains undefined. The aim of this review is to describe the immunobiology of OC and likely benefit from immunotherapy, discuss clinical trial data and biomarkers that warrant further exploration, as well as provide an overview of future drug development strategies.
Collapse
|
23
|
Baş Y, Koç N, Helvacı K, Koçak C, Akdeniz R, Şahin HHK. Clinical and pathological significance of programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) expression in high grade serous ovarian cancer. Transl Oncol 2021; 14:100994. [PMID: 33333370 PMCID: PMC7736714 DOI: 10.1016/j.tranon.2020.100994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated programmed cell death 1 (PD-1) / programmed cell death ligand 1 (PD-L1) expression in high grade serous ovarian cancer (HGSOC) and its relationship to tumor infiltrating lymphocytes (TIL) and prognosis. Formalin fixed paraffin embedded (FFPE) samples of 94 HGSOC cases were included in the study. Immunohistochemical analysis (CD3, CD4, CD8, PD-1 and PD-L1) was performed. Samples were analyzed for expression of immune proteins in the peritumoral stromal and intratumoral areas, scored, and expression was correlated with overall survival, stage, and age. PD-L1 staining ratio with a score greater than 0 was found to have lower survival. There were two positive staining patterns, patchy/diffuse and patchy/focal patterns, in 24 (25.5%) cases. Considering the threshold value ≥5%, we demonstrated that the PD-L1 positive cancer cell membrane immunoreactivity rate and patchy/diffuse PD-L1 expression were 9.6% (n = 9). There was statistically significant relationship between high PD-1 scores and PD-L1 cases of ≥ 5%. A statistically significant difference was found between PD-L1 staining and survival in patients with a threshold ≥ 5%. However an appropriate rate for treatment was determined in 9.6% cases. There was a statistically significant correlation between PD-1 positive TIL score and intratumoral CD3, peritumoral stromal CD3, intratumoral CD4 and intratumoral CD8 positive cells. Survival was lower in cases with higher PD-L1 positive stromal TIL score.
Collapse
Affiliation(s)
- Yılmaz Baş
- Department of Pathology, Hitit University Faculty of Medicine, Çorum Turkey.
| | - Nermin Koç
- Department of Pathology, Zeynep Kamil Maternity and Pediatric Research and Training Hospital, İstanbul, Turkey.
| | - Kaan Helvacı
- Department of Oncology, Hitit University Faculty of Medicine, Çorum, Turkey.
| | - Cem Koçak
- Department of Statistics, Hitit University Faculty of Health Sciences/Nursing, Çorum Turkey.
| | - Raşit Akdeniz
- Department of Pathology, Hitit University Erol Olçok Education and Research Hospital, Çorum, Turkey.
| | | |
Collapse
|
24
|
Krishnamoorthy M, Lenehan JG, Maleki Vareki S. Neoadjuvant Immunotherapy for High-Risk, Resectable Malignancies: Scientific Rationale and Clinical Challenges. J Natl Cancer Inst 2021; 113:823-832. [PMID: 33432320 PMCID: PMC8246900 DOI: 10.1093/jnci/djaa216] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Neoadjuvant immunotherapy involves administering immune checkpoint inhibitors before surgical resection in high-risk resectable disease. This strategy was shown to have a high pathological response rate and prolonged relapse-free survival in randomized trials in melanoma, glioblastoma, and colon cancer with small numbers of patients. In resectable cancers, immune checkpoint inhibitors such as anti-programmed cell death-1 (PD1) and anti-cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) can enhance antitumor immunity by activating antigen-specific T cells found in the primary tumor. These tumor-reactive T cells continue to exert antitumor effects on remaining neoplastic cells after the resection of the primary tumor, potentially preventing relapses from occurring. Based on the scientific rationale and early clinical observations with surrogate survival endpoints, neoadjuvant immunotherapy may provide an effective alternative to other therapeutic strategies such as adjuvant treatment. However, this can be determined only by conducting randomized controlled trials comparing neoadjuvant immunotherapy with the current standard of care for each tumor site. This review discusses the cellular mechanisms that occur during successful neoadjuvant immunotherapy and highlights the clinical data from the available human studies that support the preclinical mechanistic data. Here we also discuss strategies required for successful neoadjuvant immunotherapy, including combination treatment strategies and resistance mechanisms to neoadjuvant treatment.
Collapse
Affiliation(s)
- Mithunah Krishnamoorthy
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada
| | - John G Lenehan
- Division of Medical Oncology, Department of Oncology, University of Western Ontario, London, ON, Canada
| | - Saman Maleki Vareki
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON, Canada
- Correspondence to: Saman Maleki Vareki, PhD, London Regional Cancer Program, Room A4-130A, Cancer Research Laboratory Program, 790 Commissioners Rd. E., London, ON N6A 4L6, Canada (e-mail: )
| |
Collapse
|
25
|
Özkan S, Selvi Gunel N, Aygünes D, Akman L, Yildirim N, Teti K Vardarli A, Özsaran A, Terek C. The investigation of T-cell receptor subtypes in ovarian cancer: effects on survival and prognostic factors. J OBSTET GYNAECOL 2020; 41:951-955. [PMID: 33228419 DOI: 10.1080/01443615.2020.1820460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate T-cell receptor (TCR) changes in ovarian carcinoma (OC). The study included 24 malignant and 23 benign adnexal masses. DNA was isolated from ovarian samples. Multiplex PCR was used to determine T-cell gene clonality. PCR products were loaded onto polyacrylamide gel electrophoresis and imaged. The relationship between prognostic parameters and T-cell rearrangement was evaluated. In the study group (SG), TCRB-B positivity was higher than control group (CG) and TCRD receptor positivity was higher in CG. In SG, TCRG-B levels were higher in patients with stage I-II tumours compared to stage III. TCRG-B receptor was higher in patients with overall survival of 36 months and above. In our study, subgroups of TCRs were analysed in OC. According to our findings, significant differences in TCRB-B and TCRD subgroups may be applied to immune therapies. Understanding of TCR pathways will provide new treatment approaches in OC.IMPACT STATEMENTWhat is already known on this subject? Ovarian cancer is the most challenging kind of gynaecologic cancer. Although the main route of spread is direct invasion and peritoneal spread in the abdominal cavity, lymphatic invasion is also very important. Recent studies put forward that immunological mechanisms play crucial role in ovarian cancer. CD3 and CD8 positive lymphocyte infiltration in ovarian tumour is related with better prognosis where, FoxP3 positive lymphocyte infiltration is a predictor of poor survival. Also, immune checkpoints and inhibitors are important topics in ovarian cancer.What the results of this study add? Despite all the improvements and studies regarding immune system and ovarian cancer, the role T-cell receptor (TCR) subtypes is not clear and there are very few number of studies in this area. This is one of the first studies that describe the rearrangement of TCR subtypes between normal ovarian tissue and ovarian cancer tissue.What the implications are of these findings for clinical practice and/or further research? Understanding the role of TCR subtypes has a key role because studies about lymphocyte infiltration in ovarian cancer varies from region to region in the world and same type of lymphocytes has different effects in different studies. Further studies on TCR subtypes may elucidate us about the behaviour of lymphocytes. Additionally, these receptor may be targeted if their roles are better understood.
Collapse
Affiliation(s)
- Sultan Özkan
- Faculty of Medicine, Department of Obstetrics and Gynecology, Ege University, Izmir, Turkey
| | - Nur Selvi Gunel
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | - Duygu Aygünes
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | - Levent Akman
- Faculty of Medicine, Department of Obstetrics and Gynecology, Ege University, Izmir, Turkey
| | - Nuri Yildirim
- Faculty of Medicine, Department of Obstetrics and Gynecology, Ege University, Izmir, Turkey
| | - Aslı Teti K Vardarli
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | - Aydın Özsaran
- Faculty of Medicine, Department of Obstetrics and Gynecology, Ege University, Izmir, Turkey
| | - Coşan Terek
- Faculty of Medicine, Department of Obstetrics and Gynecology, Ege University, Izmir, Turkey
| |
Collapse
|
26
|
Zhang S, Iyer S, Ran H, Dolgalev I, Gu S, Wei W, Foster CJR, Loomis CA, Olvera N, Dao F, Levine DA, Weinberg RA, Neel BG. Genetically Defined, Syngeneic Organoid Platform for Developing Combination Therapies for Ovarian Cancer. Cancer Discov 2020; 11:362-383. [PMID: 33158842 DOI: 10.1158/2159-8290.cd-20-0455] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023]
Abstract
The paucity of genetically informed, immunocompetent tumor models impedes evaluation of conventional, targeted, and immune therapies. By engineering mouse fallopian tube epithelial organoids using lentiviral gene transduction and/or CRISPR/Cas9 mutagenesis, we generated multiple high-grade serous tubo-ovarian cancer (HGSC) models exhibiting mutational combinations seen in patients with HGSC. Detailed analysis of homologous recombination (HR)-proficient (Trp53-/-;Ccne1OE;Akt2OE;KrasOE ), HR-deficient (Trp53-/-;Brca1-/-;MycOE ), and unclassified (Trp53-/-;Pten-/-;Nf1-/- ) organoids revealed differences in in vitro properties (proliferation, differentiation, and "secretome"), copy-number aberrations, and tumorigenicity. Tumorigenic organoids had variable sensitivity to HGSC chemotherapeutics, and evoked distinct immune microenvironments that could be modulated by neutralizing organoid-produced chemokines/cytokines. These findings enabled development of a chemotherapy/immunotherapy regimen that yielded durable, T cell-dependent responses in Trp53-/-;Ccne1OE;Akt2OE;Kras HGSC; in contrast, Trp53-/-;Pten-/-;Nf1-/- tumors failed to respond. Mouse and human HGSC models showed genotype-dependent similarities in chemosensitivity, secretome, and immune microenvironment. Genotype-informed, syngeneic organoid models could provide a platform for the rapid evaluation of tumor biology and therapeutics. SIGNIFICANCE: The lack of genetically informed, diverse, immunocompetent models poses a major barrier to therapeutic development for many malignancies. Using engineered fallopian tube organoids to study the cell-autonomous and cell-nonautonomous effects of specific combinations of mutations found in HGSC, we suggest an effective combination treatment for the currently intractable CCNE1-amplified subgroup.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Shuang Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Sonia Iyer
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology (MIT) Ludwig Center for Molecular Oncology and MIT Department of Biology, Cambridge, Massachusetts
| | - Hao Ran
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Shengqing Gu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Wei Wei
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Connor J R Foster
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Cynthia A Loomis
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Narciso Olvera
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Fanny Dao
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Douglas A Levine
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology (MIT) Ludwig Center for Molecular Oncology and MIT Department of Biology, Cambridge, Massachusetts
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York.
| |
Collapse
|
27
|
Hao J, Yu H, Zhang T, An R, Xue Y. Prognostic impact of tumor-infiltrating lymphocytes in high grade serous ovarian cancer: a systematic review and meta-analysis. Ther Adv Med Oncol 2020; 12:1758835920967241. [PMID: 33193829 PMCID: PMC7607723 DOI: 10.1177/1758835920967241] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs) are involved in the antitumor immune response. The association between prognosis in patients with TILs and high-grade serous ovarian cancer (HGSOC) remains obscure, with some studies reporting conflicting results. Methods We conducted an extensive literature search of electronic databases and retrieved prognostic data of each selected subtype of TILs, including CD3+, CD4+, CD8+, CD103+, and PD-1+ TILs. The fixed-effects model was applied to derive the pooled hazard ratio (HR) and 95% confidence interval (CI) of these markers. Results The systematic review process yielded 19 eligible studies comprising 6004 patients with HGSOC. We compared TIL-positive and TIL-negative patients, and the pooled HRs from the multivariate analysis revealed that intraepithelial CD8+ TILs were positively correlated with progression-free survival (PFS, HR 0.46, 95% CI 0.25-0.67) and overall survival (OS, HR 0.90, 95% CI 0.86-0.9); stromal CD8+ TILs were positively correlated with OS (HR 0.61, 95% CI 0.36-0.87). Furthermore, the pooled HRs from univariate analysis demonstrated that intraepithelial CD3+, CD4+, CD8+, and CD103+ TILs were positively associated with OS (HR 0.58, 95% CI 0.44-0.72; HR 0.37, 95% CI 0.16-0.59; HR 0.51, 95% CI 0.42-0.60, and HR 0.59, 95% CI 0.44-0.74, respectively); stromal CD4+ and CD8+ TILs were significantly associated with OS (HR 0.63, 95% CI 0.32-0.94 and HR 0.78, 95% CI 0.58-0.97, respectively). However, the pooled HR from the multivariate analysis revealed that PD-1+ TILs were not associated with the OS of patients with HGSOC (HR 0.97, 95% CI 0.90-1.04). Conclusion This meta-analysis provided evidence of the association of CD3+, CD4+, CD8+, and CD103+ TILs with the survival benefits (OS and PFS) of patients with HGSOC.
Collapse
Affiliation(s)
- Jiatao Hao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Taohong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ruifang An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi Province, 710061, China
| | - Yan Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi Province, 710061, China
| |
Collapse
|
28
|
Pharaon R, Koczywas MA, Salgia S, Mohanty A, Massarelli E. Biomarkers in immunotherapy: literature review and future directions. J Thorac Dis 2020; 12:5119-5127. [PMID: 33145089 PMCID: PMC7578474 DOI: 10.21037/jtd.2020.04.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Within the past decade, immunotherapy has revolutionized the treatment of advanced non-small lung cancer (NSCLC). Immune checkpoint inhibitors (ICIs) such as pembrolizumab, nivolumab, atezolizumab, and durvalumab have shown superiority over chemotherapy regimens in patients with programmed death-ligand 1 (PD-L1) expression. Several predictive molecular biomarkers, including PD-L1 expression and high tumor mutation burden, have shown utility in discovering lung cancer patient groups that would benefit from ICIs. However, there remains to be a reliable imaging biomarker that would clearly select patients, through baseline or restaging imaging, who would respond or have a prolonged response to ICIs. The purpose of this review is to highlight the role of ICIs in patients with advanced NSCLC and past or current studies in potential biomarkers as well as future directions on the role of imaging in immunotherapy.
Collapse
Affiliation(s)
- Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Maria A Koczywas
- Wroclaw Medical University, Wybrzeze L. Pasteura 1, 50-367 Wroclaw, Poland
| | - Sabrina Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
29
|
Zhang H, Jiang R, Zhou J, Wang J, Xu Y, Zhang H, Gu Y, Fu F, Shen Y, Zhang G, Feng L, Zhang X, Chen Y, Shen F. CTL Attenuation Regulated by PS1 in Cancer-Associated Fibroblast. Front Immunol 2020; 11:999. [PMID: 32587587 PMCID: PMC7297945 DOI: 10.3389/fimmu.2020.00999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/27/2020] [Indexed: 01/15/2023] Open
Abstract
Objective: Cancer-associated fibroblasts (CAFs) were associated with tumor progression in the tumor microenvironment (TME). However, their immunosuppressive roles in protecting cancer cells from the attack by cytotoxic T lymphocytes (CTLs) are not fully clear. In this study, we investigated whether and how CAFs regulate tumor-infiltrating lymphocytes as well as their role in tumor immunosuppression. Methods: Eighty-three cases of ovarian cancer and 10 controls were analyzed for CAFs and CD8+ tumor-infiltrating lymphocytes by gene array and immunohistochemistry. We evaluated presenilin 1 (PS1) expression in CAFs, CTL penetration, tumor burden, dendritic cell function, and migration of tumor-infiltrating lymphocytes and their function in vivo and in vitro after silencing PS1. In addition, the pathway via which PS1 affects the TME was also evaluated. Results: PS1 was highly expressed in CAFs, and its silencing significantly promoted CD8+ CTL proliferation and penetration in multiple ovarian models (p < 0.05), resulting in tumor regression and growth inhibition. Interleukin (IL)-1β was identified as a major immune inhibitor in the TME, and it was significantly decreased after PS1 silencing (p < 0.05), which was regulated by the WNT/β-catenin pathway. It was also showed that high expression of IL-1β in CAFs inhibits CTL penetration significantly (p < 0.05). Conclusion: Highly expressed PS1 in CAFs plays a crucial role in regulating tumor-infiltrating lymphocyte populations in the TME via the WNT/β-catenin pathway. Targeting PS1 may retrieve functional CTLs in the TME and improve the efficacy of current immunotherapies.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuejuan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - He Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fengqing Fu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lanlan Feng
- Department of Gynecology, The Second People's Hospital of Taizhou, Taizhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Mlynska A, Vaišnorė R, Rafanavičius V, Jocys S, Janeiko J, Petrauskytė M, Bijeikis S, Cimmperman P, Intaitė B, Žilionytė K, Barakauskienė A, Meškauskas R, Paberalė E, Pašukonienė V. A gene signature for immune subtyping of desert, excluded, and inflamed ovarian tumors. Am J Reprod Immunol 2020; 84:e13244. [PMID: 32294293 DOI: 10.1111/aji.13244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
PROBLEM The current tumor immunology paradigm emphasizes the role of the immune tumor microenvironment and distinguishes several histologically and transcriptionally different immune tumor subtypes. However, the experimental validation of such classification is so far limited to selected cancer types. Here, we aimed to explore the existence of inflamed, excluded, and desert immune subtypes in ovarian cancer, as well as investigate their association with the disease outcome. METHOD OF STUDY We used the publicly available ovarian cancer dataset from The Cancer Genome Atlas for developing subtype assignment algorithm, which was next verified in a cohort of 32 real-world patients of a known tumor subtype. RESULTS Using clinical and gene expression data of 489 ovarian cancer patients in the publicly available dataset, we identified three transcriptionally distinct clusters, representing inflamed, excluded, and desert subtypes. We developed a two-step subtyping algorithm with COL5A2 serving as a marker for separating excluded tumors, and CD2, TAP1, and ICOS for distinguishing between inflamed and desert tumors. The accuracy of gene expression-based subtyping algorithm in a real-world cohort was 75%. Additionally, we confirmed that patients bearing inflamed tumors are more likely to survive longer. CONCLUSION Our results highlight the presence of transcriptionally and histologically distinct immune subtypes among ovarian tumors and emphasize the potential benefit of immune subtyping as a clinical tool for treatment tailoring.
Collapse
Affiliation(s)
| | | | | | - Simonas Jocys
- Baltic Institute of Advanced Technology, Vilnius, Lithuania
| | - Julija Janeiko
- Baltic Institute of Advanced Technology, Vilnius, Lithuania
| | | | - Simas Bijeikis
- Baltic Institute of Advanced Technology, Vilnius, Lithuania
| | | | | | | | - Aušrinė Barakauskienė
- Vilnius University, Vilnius, Lithuania.,Ltd Patologijos Diagnostika, Vilnius, Lithuania
| | | | | | | |
Collapse
|
31
|
Mirandola L, Chiriva-Internati M, Bresalier R, Piccotti L, Grizzi F, Marincola FM. A novel method for efficient generation of antigen-specific effector T-cells using dendritic cells transduced with recombinant adeno-associated virus and p38 kinase blockade. J Transl Med 2019; 17:424. [PMID: 31878933 PMCID: PMC6931250 DOI: 10.1186/s12967-019-02163-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The inefficacy of standard therapeutic strategies for ovarian cancer is reflected by the enduring poor prognosis of this malignancy. Due to the potential for exquisite specificity, sensitivity and long-term memory, immunotherapy offers an alternative modality for durable control of the disease, provided appropriate antigens can be identified and presented in the right context. METHODS We tested a novel dendritic cell vaccine formulation to reprogram autologous antigen-specific T-cells in vitro, in vivo in a murine model of ovarian cancer, and ex vivo using human cells from patients. RESULTS We show that dendritic cells (DCs) treated with a p38 MAPK inhibitor and transduced with a recombinant adenovirus associated vector (AAV) expressing Sperm protein (Sp) 17 are highly effective in generating antigen-specific T-cell cytotoxic response against ovarian cancer cells. Additionally, these DCs enhanced the differentiation of effector T-cells while reducing the frequency of Foxp3+ T-reg cells in vitro. CONCLUSIONS This work provides a rationale for translation of pharmacologically reprogrammed DCs into clinical trials for prevention of tumor recurrence and progression in high-risk ovarian cancer patients.
Collapse
Affiliation(s)
| | - Maurizio Chiriva-Internati
- Kiromic, Inc, 7707 Fannin St., Suite 140, Houston, TX, 77054, USA.
- Division of Internal Medicine, Department of Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Robert Bresalier
- Division of Internal Medicine, Department of Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lucia Piccotti
- Kiromic, Inc, 7707 Fannin St., Suite 140, Houston, TX, 77054, USA
| | - Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | | |
Collapse
|
32
|
De La Motte Rouge T, Corné J, Cauchois A, Le Boulch M, Poupon C, Henno S, Rioux-Leclercq N, Le Pabic E, Laviolle B, Catros V, Levêque J, Fautrel A, Le Gallo M, Legembre P, Lavoué V. Serum CD95L Level Correlates with Tumor Immune Infiltration and Is a Positive Prognostic Marker for Advanced High-Grade Serous Ovarian Cancer. Mol Cancer Res 2019; 17:2537-2548. [DOI: 10.1158/1541-7786.mcr-19-0449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022]
|
33
|
Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. Front Immunol 2019; 10:766. [PMID: 31031762 PMCID: PMC6470191 DOI: 10.3389/fimmu.2019.00766] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
With the advent of combined immunotherapies, personalized dendritic cell (DC)-based vaccination could integrate the current standard of care for the treatment of a large variety of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the innate and adaptive immune system, and have critical roles in the induction of antitumor immunity. However, despite proven immunogenicity and favorable safety profiles, DC-based immunotherapies have not succeeded at inducing significant objective clinical responses. Emerging data suggest that the combination of DC-based vaccination with other cancer therapies may fully unleash the potential of DC-based cancer vaccines and improve patient survival. In this review, we discuss the recent efforts to develop innovative personalized DC-based vaccines and their use in combined therapies, with a particular focus on ovarian cancer and the promising results of mutanome-based personalized immunotherapies.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Caroline Boudousquie
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Philippe O Gannon
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Perales-Puchalt A, Wojtak K, Duperret EK, Yang X, Slager AM, Yan J, Muthumani K, Montaner LJ, Weiner DB. Engineered DNA Vaccination against Follicle-Stimulating Hormone Receptor Delays Ovarian Cancer Progression in Animal Models. Mol Ther 2019; 27:314-325. [PMID: 30554854 PMCID: PMC6369450 DOI: 10.1016/j.ymthe.2018.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer presents in 80% of patients as a metastatic disease, which confers it with dismal prognosis despite surgery and chemotherapy. However, it is an immunogenic disease, and the presence of intratumoral T cells is a major prognostic factor for survival. We used a synthetic consensus (SynCon) approach to generate a novel DNA vaccine that breaks immune tolerance to follicle-stimulating hormone receptor (FSHR), present in 50% of ovarian cancers but confined to the ovary in healthy tissues. SynCon FSHR DNA vaccine generated robust CD8+ and CD4+ cellular immune responses and FSHR-redirected antibodies. The SynCon FSHR DNA vaccine delayed the progression of a highly aggressive ovarian cancer model with peritoneal carcinomatosis in immunocompetent mice, and it increased the infiltration of anti-tumor CD8+ T cells in the tumor microenvironment. Anti-tumor activity of this FSHR vaccine was confirmed in a syngeneic murine FSHR-expressing prostate cancer model. Furthermore, adoptive transfer of vaccine-primed CD8+ T cells after ex vivo expansion delayed ovarian cancer progression. In conclusion, the SynCon FSHR vaccine was able to break immune tolerance and elicit an effective anti-tumor response associated with an increase in tumor-infiltrating T cells. FSHR DNA vaccination could help current ovarian cancer therapy after first-line treatment of FSHR+ tumors to prevent tumor recurrence.
Collapse
Affiliation(s)
- Alfredo Perales-Puchalt
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Krzysztof Wojtak
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Elizabeth K. Duperret
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xue Yang
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Jian Yan
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Kar Muthumani
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA,Corresponding author: David B. Weiner, PhD, Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Sahami S, Wildenberg ME, Koens L, Doherty G, Martin S, D'Haens GRAM, Cullen G, Bemelman WA, Winter D, Buskens CJ. Appendectomy for Therapy-Refractory Ulcerative Colitis Results in Pathological Improvement of Colonic Inflammation: Short-Term Results of the PASSION Study. J Crohns Colitis 2019; 13:165-171. [PMID: 30285094 DOI: 10.1093/ecco-jcc/jjy127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The objective of this study was to examine the modulating effect of an appendectomy on the disease course of therapy-refractory ulcerative colitis [UC] patients, and to analyse appendiceal pathological characteristics predictive of pathological response. METHODS Patients with therapy-refractory UC, and referred for proctocolectomy, were invited to undergo laparoscopic appendectomy first. The primary end points were clinical response after 3 and 12 months. Secondary end points were endoscopic remission, failure, and pathologic response. Appendiceal specimens, and pre- and post-operative biopsies were histologically graded according to the validated Geboes score. RESULTS Thirty patients [53% male] with a median age of 40 (interquartile range [IQR], 33-47) underwent appendectomy, with a median preoperative total Mayo score of 9 [IQR, 8-11]. After 12 months, 9 patients [30%] had lasting clinical response, of whom 5 [17%] were in endoscopic remission. Pathological evaluation was possible in 28 patients. After a median of 13.0 weeks [range 7-51], pathological response was seen in 13 patients [46%], with a median decrease of 2 points [range 1-3]. Appendiceal inflammation was highly predictive of pathological response when compared with no inflammation or extensive ulcerations [85% vs 20%, p = 0.001]. CONCLUSIONS Appendectomy was effective in one-third of therapy-refractory UC patients, with a substantial proportion of patients demonstrating complete endoscopic remission after 1 year. Pathological response was seen in almost 50% of patients and was related to active inflammation in the appendix, limited disease, and shorter disease duration. These early results suggest that there is a UC patient group that may benefit from appendectomy.
Collapse
Affiliation(s)
- S Sahami
- Department of Surgery, Academic Medical Centre, Amsterdam, The Netherlands.,Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - M E Wildenberg
- Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, The Netherlands.,Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - L Koens
- Department of Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - G Doherty
- Department of Gastroenterology and Hepatology, St. Vincent's Hospital, Dublin, Ireland
| | - S Martin
- Department of Gastroenterology and Hepatology, St. Vincent's Hospital, Dublin, Ireland
| | - G R A M D'Haens
- Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - G Cullen
- Department of Gastroenterology and Hepatology, St. Vincent's Hospital, Dublin, Ireland
| | - W A Bemelman
- Department of Surgery, Academic Medical Centre, Amsterdam, The Netherlands
| | - D Winter
- Department of Surgery, St. Vincent's Hospital, Dublin, Ireland
| | - C J Buskens
- Department of Surgery, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Heimes AS, Schmidt M, Jäkel J, Almstedt K, Gebhard S, Weyer-Eiberich V, Elger T, Krajnak S, Brenner W, Hasenburg A, Battista MJ. A retrospective analysis of immunohistochemically determined IRF4 (interferon regulating factor 4) expression in a consecutive cohort of 114 ovarian cancer patients. Arch Gynecol Obstet 2018; 299:239-246. [DOI: 10.1007/s00404-018-4941-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/12/2018] [Indexed: 01/23/2023]
|
37
|
Seo JW, Tavaré R, Mahakian LM, Silvestrini MT, Tam S, Ingham ES, Salazar FB, Borowsky AD, Wu AM, Ferrara KW. CD8 + T-Cell Density Imaging with 64Cu-Labeled Cys-Diabody Informs Immunotherapy Protocols. Clin Cancer Res 2018; 24:4976-4987. [PMID: 29967252 PMCID: PMC6215696 DOI: 10.1158/1078-0432.ccr-18-0261] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/06/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
Abstract
Purpose: Noninvasive and quantitative tracking of CD8+ T cells by PET has emerged as a potential technique to gauge response to immunotherapy. We apply an anti-CD8 cys-diabody, labeled with 64Cu, to assess the sensitivity of PET imaging of normal and diseased tissue.Experimental Design: Radiolabeling of an anti-CD8 cys-diabody (169cDb) with 64Cu was developed. The accumulation of 64Cu-169cDb was evaluated with PET/CT imaging (0, 5, and 24 hours) and biodistribution (24 hours) in wild-type mouse strains (n = 8/group studied with imaging and IHC or flow cytometry) after intravenous administration. Tumor-infiltrating CD8+ T cells in tumor-bearing mice treated with CpG and αPD-1 were quantified and mapped (n = 6-8/group studied with imaging and IHC or flow cytometry).Results: We demonstrate the ability of immunoPET to detect small differences in CD8+ T-cell distribution between mouse strains and across lymphoid tissues, including the intestinal tract of normal mice. In FVB mice bearing a syngeneic HER2-driven model of mammary adenocarcinoma (NDL), 64Cu-169cDb PET imaging accurately visualized and quantified changes in tumor-infiltrating CD8+ T cells in response to immunotherapy. A reduction in the circulation time of the imaging probe followed the development of treatment-related liver and splenic hypertrophy and provided an indication of off-target effects associated with immunotherapy protocols.Conclusions: 64Cu-169cDb imaging can spatially map the distribution of CD8+ T cells in normal organs and tumors. ImmunoPET imaging of tumor-infiltrating cytotoxic CD8+ T cells detected changes in T-cell density resulting from adjuvant and checkpoint immunotherapy protocols in our preclinical evaluation. Clin Cancer Res; 24(20); 4976-87. ©2018 AACR.
Collapse
Affiliation(s)
- Jai Woong Seo
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Richard Tavaré
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Matthew T Silvestrini
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Sarah Tam
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Felix B Salazar
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
38
|
McCloskey CW, Rodriguez GM, Galpin KJC, Vanderhyden BC. Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics. Cancers (Basel) 2018; 10:cancers10080244. [PMID: 30049987 PMCID: PMC6115831 DOI: 10.3390/cancers10080244] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has emerged as one of the most promising approaches for ovarian cancer treatment. The tumor microenvironment (TME) is a key factor to consider when stimulating antitumoral responses as it consists largely of tumor promoting immunosuppressive cell types that attenuate antitumor immunity. As our understanding of the determinants of the TME composition grows, we have begun to appreciate the need to address both inter- and intra-tumor heterogeneity, mutation/neoantigen burden, immune landscape, and stromal cell contributions. The majority of immunotherapy studies in ovarian cancer have been performed using the well-characterized murine ID8 ovarian carcinoma model. Numerous other animal models of ovarian cancer exist, but have been underutilized because of their narrow initial characterizations in this context. Here, we describe animal models that may be untapped resources for the immunotherapy field because of their shared genomic alterations and histopathology with human ovarian cancer. We also shed light on the strengths and limitations of these models, and the knowledge gaps that need to be addressed to enhance the utility of preclinical models for testing novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
39
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
40
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
41
|
Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC. The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018; 10:E242. [PMID: 30042343 PMCID: PMC6116043 DOI: 10.3390/cancers10080242] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
Affiliation(s)
- Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
42
|
Deng X, Luo S, Luo X, Hu M, Ma F, Wang Y, Lai X, Zhou L. Polysaccharides from Chinese Herbal Lycium barbarum Induced Systemic and Local Immune Responses in H22 Tumor-Bearing Mice. J Immunol Res 2018; 2018:3431782. [PMID: 29967800 PMCID: PMC6008830 DOI: 10.1155/2018/3431782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Lycium barbarum polysaccharide (LBP) is isolated from the fruit of Chinese herbal Lycium barbarum. Previous studies had demonstrated that LBP could inhibit tumor growth and enhance the immunity in mice. However, the effect of LBP on systemic and local immune responses in vivo, especially on phenotypic and functional changes of T cells, is still largely unknown. In the present study, we investigated the effects of LBP on systemic and local T cell-dependent antitumor immune responses in H22 tumor-bearing mice. The results showed that LBP could inhibit the solid tumor growth in mice, but showed little effect on the body weight or spleen index. Furthermore, LBP could maintain high levels of T cells in peripheral blood (PB), tumor draining lymph node (TDLN), and tumor tissue, prevent the increase of Tregs while promote infiltration of CD8+ T cells in tumor tissue, inhibit the production of TGF-β1 and IL-10 in serum, decrease the exhaustion phenotype of T cells, and maintain cytotoxicity of lymphocytes. Taken together, our results demonstrated that LBP simultaneously induced systemic and local immune responses in H22 tumor-bearing mice by alleviating immunosuppression and maintaining antitumor immune responses in mice.
Collapse
Affiliation(s)
- Xiangliang Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou 510600, China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Shuang Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Minghua Hu
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou 510600, China
| | - Fangli Ma
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou 510600, China
| | - Yuanyuan Wang
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou 510600, China
| | - Xiaoping Lai
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
43
|
Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, Baumgartner P, Stevenson BJ, Iseli C, Dangaj D, Czerniecki B, Semilietof A, Racle J, Michel A, Xenarios I, Chiang C, Monos DS, Torigian DA, Nisenbaum HL, Michielin O, June CH, Levine BL, Powell DJ, Gfeller D, Mick R, Dafni U, Zoete V, Harari A, Coukos G, Kandalaft LE. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med 2018; 10:10/436/eaao5931. [DOI: 10.1126/scitranslmed.aao5931] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
We conducted a pilot clinical trial testing a personalized vaccine generated by autologous dendritic cells (DCs) pulsed with oxidized autologous whole-tumor cell lysate (OCDC), which was injected intranodally in platinum-treated, immunotherapy-naïve, recurrent ovarian cancer patients. OCDC was administered alone (cohort 1, n = 5), in combination with bevacizumab (cohort 2, n = 10), or bevacizumab plus low-dose intravenous cyclophosphamide (cohort 3, n = 10) until disease progression or vaccine exhaustion. A total of 392 vaccine doses were administered without serious adverse events. Vaccination induced T cell responses to autologous tumor antigen, which were associated with significantly prolonged survival. Vaccination also amplified T cell responses against mutated neoepitopes derived from nonsynonymous somatic tumor mutations, and this included priming of T cells against previously unrecognized neoepitopes, as well as novel T cell clones of markedly higher avidity against previously recognized neoepitopes. We conclude that the use of oxidized whole-tumor lysate DC vaccine is safe and effective in eliciting a broad antitumor immunity, including private neoantigens, and warrants further clinical testing.
Collapse
|
44
|
Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration. Acta Neuropathol 2018; 135:569-579. [PMID: 29299667 DOI: 10.1007/s00401-017-1802-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/23/2022]
Abstract
Paraneoplastic cerebellar degenerations with anti-Yo antibodies (Yo-PCD) are rare syndromes caused by an auto-immune response against neuronal antigens (Ags) expressed by tumor cells. However, the mechanisms responsible for such immune tolerance breakdown are unknown. We characterized 26 ovarian carcinomas associated with Yo-PCD for their tumor immune contexture and genetic status of the 2 onconeural Yo-Ags, CDR2 and CDR2L. Yo-PCD tumors differed from the 116 control tumors by more abundant T and B cells infiltration occasionally organized in tertiary lymphoid structures harboring CDR2L protein deposits. Immune cells are mainly in the vicinity of apoptotic tumor cells, revealing tumor immune attack. Moreover, contrary to un-selected ovarian carcinomas, 65% of our Yo-PCD tumors presented at least one somatic mutation in Yo-Ags, with a predominance of missense mutations. Recurrent gains of the CDR2L gene with tumor protein overexpression were also present in 59% of Yo-PCD patients. Overall, each Yo-PCD ovarian carcinomas carried at least one genetic alteration of Yo-Ags. These data demonstrate an association between massive infiltration of Yo-PCD tumors by activated immune effector cells and recurrent gains and/or mutations in autoantigen-encoding genes, suggesting that genetic alterations in tumor cells trigger immune tolerance breakdown and initiation of the auto-immune disease.
Collapse
|
45
|
Khairallah AS, Genestie C, Auguste A, Leary A. Impact of neoadjuvant chemotherapy on the immune microenvironment in advanced epithelial ovarian cancer: Prognostic and therapeutic implications. Int J Cancer 2017; 143:8-15. [DOI: 10.1002/ijc.31200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Aya S. Khairallah
- Department of Pathology and Laboratory Medicine; Gustave Roussy Cancer Center; Villejuif France
| | - Catherine Genestie
- Department of Pathology and Laboratory Medicine; Gustave Roussy Cancer Center; Villejuif France
| | - Aurélie Auguste
- INSERM U981 Gynaecological Tumours, Gustave Roussy Cancer Center; Villejuif France
| | - Alexandra Leary
- Department of Pathology and Laboratory Medicine; Gustave Roussy Cancer Center; Villejuif France
- Department of Medical Oncology; Gustave Roussy Cancer Center; Villejuif France
- Faculty of Sciences; University Paris-Sud; Orsay France
| |
Collapse
|
46
|
Jakubowska K, Kisielewski W, Kańczuga-Koda L, Koda M, Famulski W. Stromal and intraepithelial tumor-infiltrating lymphocytes in colorectal carcinoma. Oncol Lett 2017; 14:6421-6432. [PMID: 29151905 PMCID: PMC5680638 DOI: 10.3892/ol.2017.7013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022] Open
Abstract
The local mechanisms of antitumor immune defense determine the development and organization of the tumor microenvironment, and the composition and relative proportions of the inflammatory cell population affect the quality and characteristics of the immune response. The aim of the present study was to conduct a quantitative morphological evaluation of two types of tumor-infiltrating lymphocyte (TILs) populations, including those located in the stroma and intraepithelial cancer structures, in the invasive front and the center of the tumor in patients with colorectal cancer (CRC). The study included 160 patients with CRC who had undergone surgery. The tissue material was stained with hematoxylin and eosin, as used in routine histopathological diagnosis, and the two TIL populations were observed and counted with light microscopy. The relative extent of infiltration of stromal and intraepithelial TILs into the front and center of the primary tumors was similar. The extent of infiltration by stromal TILs was negatively correlated with the morphological features of tumor progression including the cancer infiltration of blood vessels (P=0.016), the invasion of lymph vessels (P=0.007), perineural invasion (P=0.036), lymph node involvement (P=0.047) and distant metastases (P=0.032). The infiltration by intraepithelial TILs was positively correlated with a desmoplastic reaction (P=0.002). Disease-free survival time was statistically shorter in patients without intraepithelial TILs in the center of the primary tumor mass (P=0.049; hazard ratio = 1.45). These results confirm that the infiltration of TILs into the invasive front and center of the tumor in patients with CRC serves an important role in the invasion and progression of the disease, and should be considered in routine histopathological examinations.
Collapse
Affiliation(s)
- Katarzyna Jakubowska
- Department of Pathomorphology, Comprehensive Cancer Center, 15-027 Bialystok, Poland
| | - Wojciech Kisielewski
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Luiza Kańczuga-Koda
- Department of Pathomorphology, Comprehensive Cancer Center, 15-027 Bialystok, Poland
| | - Mariusz Koda
- Department of General Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Waldemar Famulski
- Department of Pathomorphology, Comprehensive Cancer Center, 15-027 Bialystok, Poland
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
47
|
Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI, Sanders M, Solomon B, Solinas C, Van den Eynden GGGM, Allory Y, Preusser M, Hainfellner J, Pruneri G, Vingiani A, Demaria S, Symmans F, Nuciforo P, Comerma L, Thompson EA, Lakhani S, Kim SR, Schnitt S, Colpaert C, Sotiriou C, Scherer SJ, Ignatiadis M, Badve S, Pierce RH, Viale G, Sirtaine N, Penault-Llorca F, Sugie T, Fineberg S, Paik S, Srinivasan A, Richardson A, Wang Y, Chmielik E, Brock J, Johnson DB, Balko J, Wienert S, Bossuyt V, Michiels S, Ternes N, Burchardi N, Luen SJ, Savas P, Klauschen F, Watson PH, Nelson BH, Criscitiello C, O’Toole S, Larsimont D, de Wind R, Curigliano G, André F, Lacroix-Triki M, van de Vijver M, Rojo F, Floris G, Bedri S, Sparano J, Rimm D, Nielsen T, Kos Z, Hewitt S, Singh B, Farshid G, Loibl S, Allison KH, Tung N, Adams S, Willard-Gallo K, Horlings HM, Gandhi L, Moreira A, Hirsch F, Dieci MV, Urbanowicz M, Brcic I, Korski K, Gaire F, Koeppen H, Lo A, Giltnane J, Ziai J, Rebelatto MC, Steele KE, Zha J, Emancipator K, Juco JW, Denkert C, Reis-Filho J, Loi S, et alHendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI, Sanders M, Solomon B, Solinas C, Van den Eynden GGGM, Allory Y, Preusser M, Hainfellner J, Pruneri G, Vingiani A, Demaria S, Symmans F, Nuciforo P, Comerma L, Thompson EA, Lakhani S, Kim SR, Schnitt S, Colpaert C, Sotiriou C, Scherer SJ, Ignatiadis M, Badve S, Pierce RH, Viale G, Sirtaine N, Penault-Llorca F, Sugie T, Fineberg S, Paik S, Srinivasan A, Richardson A, Wang Y, Chmielik E, Brock J, Johnson DB, Balko J, Wienert S, Bossuyt V, Michiels S, Ternes N, Burchardi N, Luen SJ, Savas P, Klauschen F, Watson PH, Nelson BH, Criscitiello C, O’Toole S, Larsimont D, de Wind R, Curigliano G, André F, Lacroix-Triki M, van de Vijver M, Rojo F, Floris G, Bedri S, Sparano J, Rimm D, Nielsen T, Kos Z, Hewitt S, Singh B, Farshid G, Loibl S, Allison KH, Tung N, Adams S, Willard-Gallo K, Horlings HM, Gandhi L, Moreira A, Hirsch F, Dieci MV, Urbanowicz M, Brcic I, Korski K, Gaire F, Koeppen H, Lo A, Giltnane J, Ziai J, Rebelatto MC, Steele KE, Zha J, Emancipator K, Juco JW, Denkert C, Reis-Filho J, Loi S, Fox SB. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv Anat Pathol 2017; 24:311-335. [PMID: 28777143 PMCID: PMC5638696 DOI: 10.1097/pap.0000000000000161] [Show More Authors] [Citation(s) in RCA: 538] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Assessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor-infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma. In part 2 of this review, we discuss the available evidence for the prognostic and predictive value of TILs in common solid tumors, including carcinomas of the lung, gastrointestinal tract, genitourinary system, gynecologic system, and head and neck, as well as primary brain tumors, mesothelioma and melanoma. The particularities and different emphases in TIL assessment in different tumor types are discussed. The standardized methodology we propose can be adapted to different tumor types and may be used as a standard against which other approaches can be compared. Standardization of TIL assessment will help clinicians, researchers and pathologists to conclusively evaluate the utility of this simple biomarker in the current era of immunotherapy.
Collapse
Affiliation(s)
- Shona Hendry
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Roberto Salgado
- Breast Cancer Translational Research Laboratory/Breast International Group, Institut Jules Bordet, Brussels, Belgium
- Department of Pathology and TCRU, GZA, Antwerp, Belgium
| | - Thomas Gevaert
- Department of Development and Regeneration, Laboratory of Experimental Urology, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Prudence A. Russell
- Department of Anatomical Pathology, St Vincent’s Hospital Melbourne, Fitzroy, Australia
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Tom John
- Department of Medical Oncology, Austin Health, Heidelberg, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Bibhusal Thapa
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Michael Christie
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Australia
| | - Koen van de Vijver
- Divisions of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M. Valeria Estrada
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | | | - Melinda Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Benjamin Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert GGM Van den Eynden
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pathology, GZA Ziekenhuizen, Antwerp, Belgium
| | - Yves Allory
- Université Paris-Est, Créteil, France
- INSERM, UMR 955, Créteil, France
- Département de pathologie, APHP, Hôpital Henri-Mondor, Créteil, France
| | - Matthias Preusser
- Department of Medicine, Clinical Division of Oncology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Johannes Hainfellner
- Institute of Neurology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Giancarlo Pruneri
- European Institute of Oncology, Milan, Italy
- University of Milan, School of Medicine, Milan, Italy
| | - Andrea Vingiani
- European Institute of Oncology, Milan, Italy
- University of Milan, School of Medicine, Milan, Italy
| | - Sandra Demaria
- New York University Medical School, New York, USA
- Perlmutter Cancer Center, New York, USA
| | - Fraser Symmans
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Laura Comerma
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | - Sunil Lakhani
- Centre for Clinical Research and School of Medicine, The University of Queensland, Brisbane, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Seong-Rim Kim
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
| | - Stuart Schnitt
- Cancer Research Institute and Department of Pathology, Beth Israel Deaconess Cancer Center, Boston, USA
- Harvard Medical School, Boston, USA
| | - Cecile Colpaert
- Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus, Wilrijk, Belgium
| | - Christos Sotiriou
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan J. Scherer
- Academic Medical Innovation, Novartis Pharmaceuticals Corporation, East Hanover, USA
| | - Michail Ignatiadis
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, USA
| | - Robert H. Pierce
- Cancer Immunotherapy Trials Network, Central Laboratory and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Giuseppe Viale
- Department of Pathology, Istituto Europeo di Oncologia, University of Milan, Milan, Italy
| | - Nicolas Sirtaine
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Frederique Penault-Llorca
- Department of Surgical Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre, Clermont-Ferrand, France
- University of Auvergne UMR1240, Clermont-Ferrand, France
| | - Tomohagu Sugie
- Department of Surgery, Kansai Medical School, Hirakata, Japan
| | - Susan Fineberg
- Montefiore Medical Center, Bronx, New York, USA
- The Albert Einstein College of Medicine, Bronx, New York, USA
| | - Soonmyung Paik
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
- Severance Biomedical Science Institute and Department of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ashok Srinivasan
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
| | - Andrea Richardson
- Harvard Medical School, Boston, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, USA
- Warren Alpert Medical School of Brown University, Providence, USA
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center, Gliwice, Poland
- Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Jane Brock
- Harvard Medical School, Boston, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, USA
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- Vanderbilt Ingram Cancer Center, Nashville, USA
| | - Justin Balko
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- Vanderbilt Ingram Cancer Center, Nashville, USA
| | - Stephan Wienert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- VMscope GmbH, Berlin, Germany
| | - Veerle Bossuyt
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Stefan Michiels
- Service de Biostatistique et d’Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay, Villejuif, France
| | - Nils Ternes
- Service de Biostatistique et d’Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay, Villejuif, France
| | | | - Stephen J. Luen
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Peter H. Watson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Brad H. Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sandra O’Toole
- The Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
- Australian Clinical Labs, Bella Vista, Australia
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Roland de Wind
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fabrice André
- INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris Sud, Kremlin-Bicêtre, France
| | - Magali Lacroix-Triki
- INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Mark van de Vijver
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain
| | - Giuseppe Floris
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Shahinaz Bedri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Joseph Sparano
- Department of Oncology, Montefiore Medical Centre, Albert Einstein College of Medicine, Bronx, USA
| | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Torsten Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baljit Singh
- Department of Pathology, New York University Langone Medical Centre, New York, USA
| | - Gelareh Farshid
- Directorate of Surgical Pathology, SA Pathology, Adelaide, Australia
- Discipline of Medicine, Adelaide University, Adelaide, Australia
| | | | | | - Nadine Tung
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Sylvia Adams
- New York University Medical School, New York, USA
- Perlmutter Cancer Center, New York, USA
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Hugo M. Horlings
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Leena Gandhi
- Perlmutter Cancer Center, New York, USA
- Dana-Farber Cancer Institute, Boston, USA
| | - Andre Moreira
- Pulmonary Pathology, New York University Center for Biospecimen Research and Development, New York University, New York, USA
| | - Fred Hirsch
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maria Urbanowicz
- European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Iva Brcic
- Institute of Pathology, Medical University of Graz, Austria
| | - Konstanty Korski
- Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg, Germany
| | - Fabien Gaire
- Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg, Germany
| | - Hartmut Koeppen
- Research Pathology, Genentech Inc., South San Francisco, USA
| | - Amy Lo
- Research Pathology, Genentech Inc., South San Francisco, USA
- Department of Pathology, Stanford University, Palo Alto, USA
| | | | - James Ziai
- Research Pathology, Genentech Inc., South San Francisco, USA
| | | | | | - Jiping Zha
- Translational Sciences, MedImmune, Gaithersberg, USA
| | | | | | - Carsten Denkert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jorge Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Sherene Loi
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
48
|
James FR, Jiminez-Linan M, Alsop J, Mack M, Song H, Brenton JD, Pharoah PDP, Ali HR. Association between tumour infiltrating lymphocytes, histotype and clinical outcome in epithelial ovarian cancer. BMC Cancer 2017; 17:657. [PMID: 28931370 PMCID: PMC5607562 DOI: 10.1186/s12885-017-3585-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There is evidence that some ovarian tumours evoke an immune response, which can be assessed by tumour infiltrating lymphocytes (TILs). To facilitate adoption of TILs as a clinical biomarker, a standardised method for their H&E visual evaluation has been validated in breast cancer. METHODS We sought to investigate the prognostic significance of TILs in a study of 953 invasive epithelial ovarian cancer tumour samples, both primary and metastatic, from 707 patients from the prospective population-based SEARCH study. TILs were analysed using a standardised method based on H&E staining producing a percentage score for stromal and intratumoral compartments. We used Cox regression to estimate hazard ratios of the association between TILs and survival. RESULTS The extent of stromal and intra-tumoral TILs were correlated in the primary tumours (n = 679, Spearman's rank correlation = 0.60, P < 0.001) with a similar correlation in secondary tumours (n = 224, Spearman's rank correlation = 0.62, P < 0.001). There was a weak correlation between stromal TIL levels in primary and secondary tumour samples (Spearman's rank correlation = 0.29, P < 0.001) and intra-tumoral TIL levels in primary and secondary tumour samples (Spearman's rank correlation = 0.19, P = 0.0094). The extent of stromal TILs differed between histotypes (Pearson chi2 (12d.f.) 54.1, P < 0.0001) with higher levels of stromal infiltration in the high-grade serous and endometriod cases. A significant association was observed for higher intratumoral TIL levels and a favourable prognosis (HR 0.74 95% CI 0.55-1.00 p = 0.047). CONCLUSION This study is the largest collection of epithelial ovarian tumour samples evaluated for TILs. We have shown that stromal and intratumoral TIL levels are correlated and that their levels correlate with clinical variables such as tumour histological subtype. We have also shown that increased levels of both intratumoral and stromal TILs are associated with a better prognosis; however, this is only statistically significant for intratumoral TILs. This study suggests that a clinically useful immune prognostic indicator in epithelial ovarian cancer could be developed using this technique.
Collapse
Affiliation(s)
- Fiona R. James
- Lancashire Teaching Hospitals Foundation NHS Trust, Lancashire, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Jennifer Alsop
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Marie Mack
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Honglin Song
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Paul D. P. Pharoah
- Department of Oncology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - H. Raza Ali
- Department of Pathology, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
49
|
Li J, Wang J, Chen R, Bai Y, Lu X. The prognostic value of tumor-infiltrating T lymphocytes in ovarian cancer. Oncotarget 2017; 8:15621-15631. [PMID: 28152503 PMCID: PMC5362510 DOI: 10.18632/oncotarget.14919] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022] Open
Abstract
The prognostic value of tumor-infiltrating lymphocytes (TILs) in ovarian cancer is still in controversial. This study is aimed to assess the impact of different TIL subsets on the progression free survival (PFS)/disease free survival (DSS) and overall survival (OS)/disease specific survival (DSS) in ovarian cancer. A comprehensive literature search in PubMed, ISI Web of Science, and Medline was performed to identify relevant studies evaluating the prognostic value of TILs in ovarian cancer. Reviews of each study were conducted and data were extracted. The main outcomes analyzed were PFS/DFS and OS/DSS. A total of 21 eligible studies enrolling 2903 ovarian cancer patients were included for the meta-analysis. The overall analysis revealed that intraepithelial CD3+ and CD8+ TILs were strongly associated with improved PFS/DFS (HR=0.53, for CD3+ TILs; and HR=0.50, for CD8+ TILs). Intraepithelial CD8+/Foxp3+ ratios appeared to be associated with improved PFS, though without reaching statistical significance (HR=0.73). Moreover, intraepithelial CD3+, CD8+, and CD103+ TILs were clearly associated with increased OS/DSS (HR=0.50, for CD3+ TILs; HR=0.62, for CD8+ TILs; HR=0.54, for CD103+ TILs). However, intraepithelial FoxP3+ TILs, CD8+/FoxP3+ ratios, CD8+/CD4+ ratios, and stromal TILs had no impact on the OS/DSS (HR=0.98, for FoxP3+ TILs; HR=0.69, for CD8+/FoxP3+ ratios; HR=0.48, for CD8+/CD4+ ratios; HR=0.82, for stromal TILs). In conclusion, the present meta-analysis supports the hypothesis that intraepithelial TILs are predictive biomarkers for the prognosis of ovarian cancer patients. Future randomized studies are needed to verify these observations.
Collapse
Affiliation(s)
- Jun Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jieyu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ruifang Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yang Bai
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xin Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
50
|
Lohneis P, Sinn M, Bischoff S, Jühling A, Pelzer U, Wislocka L, Bahra M, Sinn BV, Denkert C, Oettle H, Bläker H, Riess H, Jöhrens K, Striefler JK. Cytotoxic tumour-infiltrating T lymphocytes influence outcome in resected pancreatic ductal adenocarcinoma. Eur J Cancer 2017; 83:290-301. [PMID: 28772128 DOI: 10.1016/j.ejca.2017.06.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND We studied the prognostic effect of CD3-, CD8- and CD103-positive T lymphocytes in a cohort of 165 patients with resected pancreatic ductal adenocarcinomas (PDACs) of the treatment group (adjuvant gemcitabine) and the untreated control group of the CONKO-001 study. METHODS Immunohistochemical stainings on tissue microarrays (TMAs) against CD3, CD8 and CD103 were performed according to standard procedures. RESULTS A high number of CD8-positive lymphocytes were significantly and independently associated with longer disease-free survival (DFS) and overall survival (OS) in the overall study population. Median DFS/OS were 7.4/18.1 months for patients with a low number of CD8-positive intratumoural lymphocytes (≤42 per 1 mm tissue core) and 12.7/25.2 months for patients with high numbers (>42 per 1-mm tissue core; p = 0.008/0.020; HR 0.62/0.65). The ratio of intraepithelial to total CD103-positive lymphocytes, but not total numbers of CD103-positive lymphocytes or CD103-positive intraepithelial lymphocytes, was associated with significantly improved DFS and OS in the overall study population (p = 0.022/0.009). Median DFS/OS was 5.9/15.7 for patients with a ratio of intraepithelial to total CD103-positive intratumoural lymphocytes higher than 0.3 and 11.6/24.7 for patients with a lower ratio. CONCLUSION T-lymphocyte subpopulations might be prognostic in resectable PDAC but need standardization and verification by further studies.
Collapse
Affiliation(s)
- Philipp Lohneis
- Universitätsmedizin Charité Berlin, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Marianne Sinn
- Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Bischoff
- Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Anja Jühling
- Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Uwe Pelzer
- Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lilianna Wislocka
- Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marcus Bahra
- Universitätsmedizin Charité Berlin, Department of General, Visceral and Transplantation Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bruno V Sinn
- Universitätsmedizin Charité Berlin, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany
| | - Carsten Denkert
- Universitätsmedizin Charité Berlin, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany
| | - Helmut Oettle
- Outpatient Department Hematology/Oncology, Friedrichstrasse 53, 88045 Friedrichshafen, Germany
| | - Hendrik Bläker
- Universitätsmedizin Charité Berlin, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanno Riess
- Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Korinna Jöhrens
- Universitätsmedizin Charité Berlin, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jana K Striefler
- Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|